Pacific

 Journal of MathematicsA PROBLEM OF MCMILLAN ON CONFORMAL MAPPINGS

Michael D. O’Neill and Robert E. Thurman

A PROBLEM OF MCMILLAN ON CONFORMAL MAPPINGS

Michael D. O’Neill and Robert E. Thurman

Abstract

We answer one of two questions asked by McMillan in 1970 concerning distortion at the boundary by conformal mappings of the disk.

1. Introduction.

The purpose of this note is to answer a question of J.E McMillan concerning boundary behavior of conformal mappings which was raised in the paper [4]. In that paper, McMillan gave a sufficient geometric condition for a subset of the boundary of a domain to have harmonic measure zero and used it to prove a result which we will describe below. A similar geometric lemma was the key to the original proof of the twist point theorem in [5]. The reader can refer to both of McMillan's papers and to [6] for background on these problems and more generally to $[\mathbf{1}],[\mathbf{3}]$ and $[\mathbf{7}]$ for the ideas used in this paper.

We will use $\omega\left(z_{0}, F, \Omega\right)$ to denote the harmonic measure of the set F in the domain Ω from the point z_{0}. Let \mathbb{D} denote the unit disk in the complex plane and let $f: \mathbb{D} \rightarrow \Omega$ be a conformal map. Let A denote the set of all ideal accessible boundary points $f\left(e^{i \theta}\right)$ of Ω when f has the nontangential limit $f\left(e^{i \theta}\right)$ at $e^{i \theta}$. Note that points of A are prime ends of Ω so that a single complex coordinate may represent more than one point of A.

Let $D(a, r)$ denote a disk with center a and radius r. Choose $r_{0}<$ $d(f(0), A)$ where d denotes Euclidean distance. For each $a \in A$ and for each $r<r_{0}$ let $\gamma(a, r) \subset \partial D(a, r)$ be the crosscut of Ω seperating a from $f(0)$ which can be joined to a by a Jordan arc in $\Omega \cap D(a, r)$. Let $L(a, r)$ denote the Euclidean length of $\gamma(a, r)$ and let $U(a, r)=\bigcup_{r^{\prime}<r} \gamma\left(a, r^{\prime}\right)$.

Let

$$
A(a, r)=\int_{0}^{r} L(a, \rho) d \rho
$$

denote the Lebesgue measure of $U(a, r)$.
McMillan proved:

Theorem 1.1. The set of $a \in A$ such that

$$
\limsup _{r \rightarrow 0} \frac{A(a, r)}{\pi r^{2}}<\frac{1}{2}
$$

has harmonic measure zero.
Notice that this theorem implies that the set of $a \in A$ such that

$$
\limsup _{r \rightarrow 0} \frac{L(a, r)}{2 \pi r}<\frac{1}{2}
$$

has harmonic measure zero.
McMillan also gave an example of a domain for which both

$$
\limsup _{r \rightarrow 0} \frac{A(a, r)}{\pi r^{2}}=1 \quad \omega \quad \text { a.e. }
$$

and

$$
\liminf _{r \rightarrow 0} \frac{A(a, r)}{\pi r^{2}}=0 \quad \omega \quad \text { a.e. }
$$

(implying the corresponding limits for $\frac{L(a, r)}{2 \pi r}$) and conjectured that

$$
E_{1}=\left\{a \in A: \liminf _{r \rightarrow 0} \frac{A(a, r)}{\pi r^{2}}>\frac{1}{2}\right\}
$$

and

$$
E_{2}=\left\{a \in A: \liminf _{r \rightarrow 0} \frac{L(a, r)}{2 \pi r}>\frac{1}{2}\right\}
$$

must be sets of harmonic measure zero.
Here, we will verify McMillan's conjecture that the set E_{2} must always have zero harmonic measure.
2. There are no points of density in $f^{-1}\left(E_{2}\right)$.

With the notations and definitions of the introduction we prove:
Theorem 2.1. The harmonic measure of the set E_{2} is zero.
Proof. For any positive integers m and k, let

$$
E_{m, k}=\left\{a \in A \left\lvert\, L(a, r)>\left(\frac{1}{2}+\frac{1}{m}\right) 2 \pi r \quad \forall r<\frac{1}{k}\right.\right\} .
$$

Since E_{2} is the countable union of sets $E_{m, k}$, it suffices to show that each $E_{m, k}$ has harmonic measure zero.

We will require the following lemma (see [7], p. 142) which is a consequence of results of Beurling, [2].

Lemma 2.1. Let f map \mathbb{D} conformally into \mathbb{C} and let $0<\delta<1$. If $z \in \mathbb{D}$ and I is an arc of \mathbb{T} with $\omega(z, I) \geq \alpha>0$ then there exists a Borel set $B \subset I$ with $\omega(z, B)>(1-\delta) \omega(z, I)$ such that

$$
|f(\xi)-f(z)| \leq \Lambda(f(S))<K(\delta, \alpha) d_{f}(z) \quad \text { for } \xi \in B
$$

where Λ denotes linear measure, $d_{f}(z)$ is the euclidean distance from $f(z)$ to the boundary of $f(\mathbb{D}), S$ is the non-euclidean segment from z to ξ and where $K(\delta, \alpha)$ depends only on δ and α.

The basic idea of the proof of Theorem 2.1 is that since points of $E_{m, k}$ are separated from $f(0)$ by circular arcs of wide angle and large radius, if $f^{-1}\left(E_{m, k}\right)$ has a point of density then Lemma 2.1 will provide enough wide angled circular arcs of a fixed radius to wrap around on themselves and disconnect the domain Ω.

Suppose then that $\eta \in \mathbb{T}$ is a point of density of $f^{-1}\left(E_{m, k}\right)$ and let I denote an arc of \mathbb{T} centered at η.

Given $\delta_{1}>0$ we can choose I such that

$$
\begin{equation*}
\frac{\left|f^{-1}\left(E_{m, k}\right) \cap I\right|}{|I|}>\left(1-\delta_{1}\right) . \tag{1}
\end{equation*}
$$

Given $\delta_{2}>0$ we can find $0<r\left(I, \delta_{2}\right)<1$ such that

$$
\omega\left(\left(1-r\left(I, \delta_{2}\right)\right) \eta, I, \mathbb{D}\right)=1-\delta_{2}
$$

and this determines the point $z_{I}=\left(1-r\left(I, \delta_{2}\right)\right) \eta$.
If we are given $\delta_{3}>0$ then if δ_{1} is sufficiently small, (1) implies that

$$
\omega\left(f^{-1}\left(E_{m, k}\right), z_{I}, \mathbb{D}\right)>\left(1-\delta_{3}\right)
$$

By Lemma 2.1, if we are given $\delta_{4}>0$ then there is a Borel set $B \subset I$ such that

$$
\omega\left(z_{I}, B, \mathbb{D}\right)>\left(1-\delta_{4}\right)\left(1-\delta_{2}\right)
$$

and such that

$$
\begin{equation*}
\left|f(\xi)-f\left(z_{I}\right)\right|<K\left(\delta_{4},\left(1-\delta_{2}\right)\right) d_{f}\left(z_{I}\right) \quad \forall \xi \in B \tag{2}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\omega\left(f^{-1}\left(E_{m, k}\right) \cap B, z_{I}, \mathbb{D}\right)>1-\left(\delta_{2}+\delta_{3}+\delta_{4}-\delta_{2} \delta_{4}\right) \tag{3}
\end{equation*}
$$

and that (2) holds for all $\xi \in f^{-1}\left(E_{m, k}\right) \cap B$. Notice that the constant K only depends on δ_{2} and δ_{4}.

Since $f(\eta) \in A$ we can choose I so that $K d_{f}\left(z_{I}\right) \ll \frac{1}{k}$ where k is the integer in the definition of $E_{m, k}$. The finite number of steps required to get a contradiction in the construction to follow will only depend on the number m in the definition of $E_{m, k}$. By choosing a sufficiently small arc I, we can arrange that in each step of our construction, the positive number

$$
\delta \equiv \delta_{2}+\delta_{3}+\delta_{4}-\delta_{2} \delta_{4}
$$

is small enough so that the construction can proceed to the next step. We assume that these conditions hold on the size of the interval I.

Let $w_{0}=f(0), w_{1}=f\left(z_{I}\right), d_{0}=d_{f}\left(z_{I}\right)$ and let x_{1} be a point of $\partial \Omega$ such that $\left|x_{1}-w_{1}\right|=d_{0}$. Let the letters c_{1}, c_{2}, \ldots denote positive constants which will be assumed to be sufficiently small in each step of the construction but will ultimately depend only on the number m in the definition of the set $E_{m, k}$ and not on f, Ω, or δ. Let C_{1}, C_{2}, \ldots denote other constants which may be purely numerical or which may depend only on the number m.

First let $0<c_{0} \ll 1$ and $c_{1} \ll \frac{\pi}{m} c_{0}$. We will see that these choices allow for rotation by a fixed positive angle of certain separating circular arcs in consecutive steps of the construction to follow. The arc of $\partial D\left(x_{1}, c_{1} d_{0}\right)$ which intersects the interior of $D\left(w_{1}, d_{0}\right)$ extends to a crosscut of Ω and determines a unique subdomain $U_{1} \subset \Omega$ not containing w_{1}. We proceed to find a point close to x_{1} which is contained in $E_{m, k}$. By Harnack's inequality,

$$
\omega\left(w_{1}, \partial U_{1} \cap \partial \Omega \cap D\left(x_{1}, c_{1} d_{0}\right), \Omega\right) \geq C_{1} \omega\left(w_{1}^{\prime}, \partial U_{1} \cap \partial \Omega \cap D\left(x_{1}, c_{1} d_{0}\right), \Omega\right)
$$

where w_{1}^{\prime} is the point on the line between w_{1} and x_{1} such that $\left|x_{1}-w_{1}^{\prime}\right|=$ $\frac{c_{1} d_{0}}{2}$. By the comparison principle for harmonic measure and the Beurling projection theorem, ([1], p. 43),

$$
\omega\left(w_{1}^{\prime}, \partial U_{1} \cap \partial \Omega \cap D\left(x_{1}, c_{1} d_{0}\right), \Omega\right) \geq C_{2}>0
$$

So by Lemma 2.1 and Equation (3), if δ is sufficiently small, $\left(\delta \ll C_{1} C_{2}\right)$, there is a constant C_{3} such that

$$
\omega\left(w_{1}, \partial U_{1} \cap \partial \Omega \cap D\left(x_{1}, c_{1} d_{0}\right) \cap E_{m, k}, \Omega\right) \geq C_{3}>0 .
$$

Choose a point $x_{1}^{*} \in \partial U_{1} \cap \partial \Omega \cap D\left(x_{1}, c_{1} d_{0}\right) \cap E_{m, k}$. If c_{0} is sufficiently small then the arc of $\left\{z \in \mathbb{C}:\left|x_{1}^{*}-z\right|=c_{0} d_{0}\right\}$ which intersects $D\left(w_{1}, d_{0}\right)$ has an angle greater than $\pi\left(1-\frac{1}{2 m}\right)$. This arc must therefore be part of the crosscut whose length is $L\left(x_{1}^{*}, c_{0} d_{0}\right)>\pi\left(1+\frac{1}{m}\right)$. Denote by $\overline{a b}$ the segment with endpoints $a \in \mathbb{C}$ and $b \in \mathbb{C}$. Let w_{1}^{*} be the point on $\overline{x_{1}^{*} w_{1}}$ with $\left|x_{1}-w_{1}^{*}\right|=c_{0} d_{0}$ and consider the annulus

$$
R_{1}=\left\{z \in \mathbb{C}:\left(1-c_{2}\right)\left|x_{1}^{*}-w_{1}^{*}\right|<\left|x_{1}^{*}-z\right|<\left(1+c_{2}\right)\left|x_{1}^{*}-w_{1}^{*}\right|\right\}
$$

where $c_{2} \ll \frac{\pi}{m} c_{0}$. Let S_{1} be the component of $R_{1} \cap \Omega$ which intersects $D\left(w_{1}, d_{0}\right)$ and let x_{2} be a point of $\partial \Omega \cap S_{1}$ such that $\overline{x_{1}^{*} x_{2}}$ has minimal angle clockwise from $\overline{x_{1}^{*} w_{1}^{*}}$.

Let S_{1}^{*} denote the sector of R_{1} clockwise between $\overline{x_{1}^{*} w_{1}^{*}}$ and $\overline{x_{1}^{*} x_{2}}$. The circular arc $\partial D\left(x_{2}, c_{2} d_{0}\right) \cap S_{1}^{*}$ is part of a crosscut of Ω which determines a unique subdomain U_{2} of Ω not containing w_{1}^{*}. By an argument similar to the previous one using Harnack's inequality, the comparison principle for harmonic measure and the Beurling projection theorem but now in the annular sector S_{1}, it follows that

$$
\omega\left(w_{1}, \partial \Omega \cap \partial U_{2} \cap D\left(x_{2}, c_{2} d_{0}\right), \Omega\right)>C_{4}>0 .
$$

We remark that C_{4} depends on c_{0}, c_{1}, c_{2} and therefore only on m and that the remaining constants C_{j} may have similar dependence on m.

A simple geometric argument shows that there is a point x_{2}^{*} in $D\left(x_{2}, c_{2} d_{0}\right)$ $\cap E_{m, k}$ and a constant $c_{3}>0$ determined by the diameter of the $E_{m, k} \cap$ $D\left(x_{2}, c_{2} d_{0}\right)$ such that the set of distances

$$
\left\{\left|x_{2}^{*}-w\right|: w \in D\left(x_{1}^{*}, c_{1} d_{0}\right) \cap \partial \Omega\right\}
$$

contains an interval J_{1} of length greater than $c_{3} d_{0}$.
Let $R_{2}=\left\{w \in \mathbb{C}:\left|w-x_{2}^{*}\right| \in J_{1}\right\}$ and let S_{2} be the component of $R_{2} \cap \Omega$ which intersects S_{1}. Each of the circular arcs of S_{2} centered at x_{2}^{*} is a crosscut of Ω. If there is such a crosscut $L_{1} \subset S_{2} \cap \Omega$ which does not separate x_{2}^{*} from w_{0} then we repeat the above construction of S_{2} but in the counterclockwise direction from $\overline{x_{1}^{*} w_{1}^{*}}$. Then any circular arc $L_{2} \subset S_{2} \cap \Omega$ centered at x_{2}^{*} which intersects S_{1}, separates x_{2}^{*} from w_{0}. For otherwise, w_{0} is contained in both subdomains of Ω determined by the concave sides of L_{1} and L_{2}. Since w_{0} lies on the convex side of any circular arc which defines $L(a, r)$ for some $a \in A$ and $r>0$ and therefore of any arc of S_{1}, this is impossible. If one choice of S_{2}, clockwise or counterclockwise from $\overline{x_{1}^{*} w_{1}^{*}}$, fails to separate x_{2}^{*} from w_{0} we choose the other. Otherwise, the construction can continue, as described below, in both directions until the non-separating case occurs and after that point, a topological argument similar to the above allows the construction to continue in the remaining direction.

We have now arranged that each of the circular arcs of S_{2} centered at x_{2}^{*} separates x_{2}^{*} from w_{0} and can be joined to x_{2}^{*} by a Jordan arc lying inside S_{1}. Therefore, since $x_{2}^{*} \in E_{m, k}$, each circular arc of S_{2} has an angular measure greater than $\left(1+\frac{2}{m}\right) \pi$. Let w_{2} be a point of $S_{2} \cap S_{1}$ and let x_{3} be a point of $\partial \Omega \cap \overline{S_{2}}$ which minimizes the clockwise angle from $\overline{x_{2}^{*} w_{2}}$ to $\overline{x_{2}^{*} x_{3}}$. Let S_{2}^{*} denote the sector of R_{2} clockwise between $\overline{x_{2}^{*} w_{2}}$ and $\overline{x_{2}^{*} x_{3}}$. As before the circular arc $\partial D\left(x_{3}, c_{3} d_{0}\right) \cap S_{2}^{*}$ extends to a crosscut of Ω which determines a unique subdomain of $U_{3} \subset \Omega$ not containing w_{1}. The same harmonic measure argument as before but now done in the union of annular corridors $S_{1} \cup S_{2}$ shows that

$$
\omega\left(w_{1}, \partial \Omega \cap \partial U_{3} \cap D\left(x_{3}, c_{3} d_{0}\right), \Omega\right)>C_{6}>0 .
$$

If $\delta>0$ is sufficiently small, then as before, Lemma 2.1 and (3) imply that

$$
\omega\left(w_{1}, \partial \Omega \cap \partial U_{3} \cap D\left(x_{3}, c_{3} d_{0}\right) \cap E_{m, k}, \Omega\right)>C_{7}>0
$$

and we find $x_{3}^{*} \in \partial \Omega \cap \partial U_{3} \cap D\left(x_{3}, c_{3} d_{0}\right) \cap E_{m, k}$ such that the set of distances

$$
\left\{\left|x_{3}^{*}-w\right|: w \in D\left(x_{2}^{*}, c_{3} d_{0}\right) \cap \partial \Omega\right\}
$$

contain an interval J_{3} of length greater than $c_{4} d_{0}$, where c_{4} depends only on the previous c_{i} and on m. Note that since the constants satisfy $c_{i} \ll c_{0} \frac{\pi}{m}$, there is a numerical constant $c>0$ such that the clockwise angle from $\overline{x_{1}^{*} x_{2}^{*}}$
to $\overline{x_{2}^{*} x_{3}^{*}}$ is at least $\left(1+\frac{c}{m}\right) \pi$. The construction continues in this way so that having found annular corridors $S_{1}, \ldots S_{j}$ with centers $x_{1}^{*}, x_{2}^{*}, \ldots x_{j}^{*}$ we find $x_{j+1}^{*} \in E_{m, k}$ so that there is an interval of distances J_{j} between x_{j+1}^{*} and the part of $\partial \Omega$ in a disk of radius $c_{\ell} d_{0}$ centered at x_{j}^{*}. The intersection of the annulus centered at x_{j+1}^{*} determined by J_{j} with Ω contains a component S_{j+1} which intersects S_{j}. Concentric circular arcs of this annular piece separate x_{j+1}^{*} from w_{0} (or else the construction continues in the other direction) and each such circular arc can be joined to x_{j+1}^{*} through the annular corridor S_{j} by a Jordan arc contained in the circle. Therefore, each such arc has an angle greater than $\left(1+\frac{2}{m}\right) \pi$. Let w_{j+1} be a point of $S_{j+1} \cap S_{j}$ and find x_{j+2} which minimizes the clockwise angle between $\overline{x_{j+1}^{*} w_{j+1}}$ and $\overline{x_{j+1}^{*} x_{j+2}}$. The construction can continue if $\delta>0$ is sufficiently small since the harmonic measure of the end of S_{j+1} near x_{j+2} from w_{1} in $S_{1} \cup S_{2} \cup \ldots S_{j+1} \cup D\left(w_{1}, d_{0}\right)$ is greater than some positive numerical constant.

But it is clear from the construction that the union of annular corridors $S_{1} \cup \cdots \cup S_{j}$ must wrap around on itself after a finite number of steps which only depends on m. The union of annular corridors thus formed, being a subset of Ω, would contain a closed curve in Ω whose interior component contains the points $x_{i}^{*} \in \partial \Omega$. Since Ω is simply connected, this contradiction shows that $f^{-1}\left(E_{m, k}\right)$ does not contain a point of density and therefore must have measure zero. Therefore $E_{m, k}$ has harmonic measure zero in Ω.
Note. The authors have now answered the question left open here. The result will appear in a forthcoming paper.

References

[1] L.V. Ahlfors, Conformal Invariants, Topics in Geometric Function Theory, McGrawHill, New York, 1973.
[2] A. Beurling, Ensembles exceptionels, Acta Math., 72 (1940), 1-13.
[3] J. Garnett and D. Marshall, Harmonic measure, Cambridge University Press, to appear.
[4] J.E. McMillan. On the boundary correspondence under conformal mapping, Duke Math. J., 37 (1970), 725-739.
[5] \qquad , Boundary behavior of a conformal mapping, Acta. Math., 123 (1969), 43-67.
[6] M.D. O'Neill. J.E. McMillan's area theorem, Colloq. Math., to appear.
[7] Ch. Pommerenke. Boundary Behavior of Conformal Maps, Springer-Verlag, Berlin, 1991.

Received February 11, 1999.
Department of Mathematics
University of Texas at El Paso
El Paso, TX 79968-0514
E-mail address: michael@math.utep.edu
Department of Mathematics
University of Texas at El Paso
El Paso, TX 79968-0514
E-mail address: bob@math.utep.edu

