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The projective line with respect to a local field is the bound-
ary of the Bruhat-Tits tree associated to the field, much in
the same way as the real projective line is the boundary of
the upper half-plane. In both cases we may consider the horo-
cycles with respect to the point at infinity. These horocycles
are exactly the horizontal lines {y = a} with a > 0 in the real
case, while in the case of a local field the horocycles may be
thought of as discretizations of the field obtained by collapsing
to a point each ball of a given radius.

In this paper we exploit this geometric parallelism to con-
struct symmetric a-stable random variables on the real line
and on a local field by completely analogous procedures. In
the case of a local field the main ingredient is a drifted ran-
dom walk on the tree. In the real case the random walk is
replaced by a drifted Brownian motion on the hyperbolic half-
plane. In both cases the random processes are invariant under
the automorphisms of the tree and the hyperbolic half-plane,
respectively, that fix the point at infinity.

These random processes determine hitting distributions on
the horocycles which, in a sense to be specified, are shown to
be in the domain of attraction of a-stable symmetric random
variables. In both cases the exponent of a-stability is related
by an explicit formula to the drift coefficient.

1. Introduction.

There are many equivalent definitions of a stable symmetric random variable
with values in the real field (for detailed treatments see [GK], or the more
recent [ST]). That which most easily extends to local fields is based on the
form of its characteristic function:
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Definition 1.1. A symmetric random variable U is stable if for some o > 0
and ¢ > 0 its characteristic function has the form

E[¢%V] = ¢—clé® for all &.

The constant «, as opposed to the scaling factor ¢, plays an important
role in the classification and properties of a stable random variable and the
related stable processes, to the extent that one often refers to this as an
a-stable random variable. This constant is subject to the limitation o < 2:
Indeed, if @ > 2 then the second derivative of e~l¥I” must vanish at the
origin, whence E[U?] = 0.

The definition above extends readily to a local field, that is to a non-
discrete, totally disconnected, locally compact field. A local field F is en-
dowed with a norm taking values in the non-negative reals and satisfying
the ultrametric inequality:

(1.1) la + b| < max(|al, |b]).

The norm is consequently subadditive, and F becomes a metric space with
the induced distance. Local compactness implies completeness of F as a
metric space. The norm is also multiplicative:

|ab| = al |0,

and the elements of unit norm form a compact group under multiplication.
A random variable U with values in F is symmetric if it has the same
probability distribution as aU for every a € F with |a| = 1.

The field F is a locally compact additive Abelian group, therefore we may
associate to a random variable with values in F a characteristic function,
defined as the (inverse) Fourier transform of its probability distribution.
The character group F of F is isomorphic to F itself (cf. §2). Thus to every
element £ € F we can associate a character x¢. The characteristic function
of the random variable U may then be defined as & — E[x¢(U)]. At this
point it is natural to define an a-stable symmetric random variable to be a
random variable U with values in F whose characteristic function is of the

type
(1.2) E[x:(U)] = e~ckl” for all £ € F,

for some ¢ > 0 and some a > 0 (cf. [I], [K]). This formal definition does not
give any clue on the possible role of stable random variables in the definition
of diffusion processes, neither does it immediately account for the role of the
“geometry” of F with respect to stability.

In this paper we shall define, for each @ > 0, an a-stable symmetric
random variable as the limit of sums of identically distributed independent
random variables obtained as “hitting distributions” on a horocycle of a
random walk on the Bruhat-Tits tree of F. The number « arises in the
definition of the random walk, measuring its drift; the isotropic (drift-free)
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random walk corresponds to the case @ = 1. In other words, we “derive”
a stable random variable via a construction which should have intuitive
content, and should clarify the role of the scaling constant ¢ of (1.2). Even
though multiplication of U by a positive real number does not make sense
in terms of the field operations, we shall be able to define, for an a-stable
symmetric random variable U and for each ¢ > 0, an a-stable symmetric
random variable U; such that

E[x¢(Ur)] = Elxe(U)]",

as if U; were obtained multiplying U by ¢*/®. Thus we can define an a-stable
process on F with respect to real time (see also [V]).

The relationship between the parameter o and the random walk used
to derive U should also clarify the role of the geometry of the field and its
Bruhat-Tits tree in the definition of a-stability. In fact the intuitive meaning
of the drifted random walk on the tree may be translated in terms of the
diffusion process U;: The larger is «, the more probably we move into a
smaller ball rather than out to a larger one. (The vertices of the Bruhat-
Tits tree are the balls of F, see §2.) This intuitive content is elaborated
in [F1] in the context of finite ultrametric spaces, with compact ultrametric
spaces as the limiting case.

It also turns out that the limitation o < 2 is no longer in effect on
a local field. This may actually be observed directly by just taking the
Fourier transform of the function e~¢%” | and verifying that it is positive and
continuous on F for every a > 0 [I]. Our derivation of the stable random
variable also makes it clear that the limiting case is not @ = 2, as in the real
case, but rather a = oo, which corresponds to a bounded random variable
with characteristic function identically 1 on a compact open subgroup of
F. In some respect this should be considered the analogue of a Gaussian
random variable in this context [E].

In the second part of the paper we study a similar continuous-time sit-
uation. The role of the Bruhat-Tits tree of a local field is now played by
the hyperbolic upper half-plane, and that of the random walk by a drifted
Brownian motion, invariant under the hyperbolic isometries that fix the
point at infinity; the horocycles through that point are the horizontal lines.
The results obtained are remarkably similar. As it turns out, the drift-free
random walk on the tree is easily replicated for a real-valued symmetric
random variable with Cauchy distribution (corresponding to o = 1). In this
case one only has to observe, using a time change, that the Cauchy distri-
bution is the hitting distribution on the real line of a Brownian motion on
the upper half-plane starting at (0,1). For a drifted Brownian motion with
downward drift coefficient (a—1)y/2, we obtain a hitting distribution which
is in the domain of attraction of an a-stable symmetric random variable. A
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drift coefficient strictly greater than 1/2 always yields a hitting distribu-
tion with a finite second moment, that is in the domain of attraction of a
Gaussian law. In the limiting case o = 2 the hitting distribution has infinite
variance, but is in the extended attraction domain of a Gaussian law. These
results are closely linked with results on exponential functionals of Brownian
motions first obtained by Dufresne [D], motivated by applications to risk
theory. We give a short alternate proof of Dufresne’s result in the context
of the hyperbolic half-plane.

The authors are aware of the fact that the results on random variables
on local fields contained in this paper could be formulated in the more
general context of locally compact ultrametric spaces, along the lines of [F'1].
Indeed the algebraic structure of the field is blurred by the condition that
the random variables be symmetric. The most general context for which our
results and actual calculations would hold is that of locally compact, non-
compact ultrametric spaces with the property that closed balls are compact
and that the group of isometries acts transitively on the space. We chose to
express and prove the result in the context of local fields mainly to stress
the analogy with the theory of real-valued stable random variables.

Many ideas and actual computations for the first part of the paper were
already explicit in [F1] and [F2]. The third-named author presented a
preliminary version of this part at a Conference commemorating Carl Herz
in Montreal, and regrets that a delay in the preparation of the final version
prevented the paper to be published in [DM]; he would like to dedicate the
paper to the memory of C. Herz.

Random variables and random processes in vector spaces with respect
to local fields were studied extensively by S. Evans with quite different ap-
proach, methods and results. However, in the one-dimensional case his defi-
nition of Gaussian random variable [E] yields what we obtain in the limiting
case @ = 00, a random variable uniformly distributed on a compact open
subgroup.

The authors acknowledge with thanks several helpful and illuminating
comments by Tim Steger and Marc Yor.

2. Notation and preliminaries.

For the purpose of establishing notation we recall here the basic properties
of local fields. The terminology is mostly the same as in [F3], to which
we refer the reader for a more exhaustive description of the subject matter.
Good general references on the subject are [T, Chapter 1], [W, Chapter 1].
Let F be a fixed local field. As explained above, its norm |-| satisfies the
ultrametric inequality (1.1). Let O = {a € F : |a] < 1} be the compact
and open ring of integers, P its maximal ideal, and ¢ the order of the finite
field O/P. Fix a generator p of P. Then |p| = 1/¢, and the norm in F
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takes exactly the values ¢" for h € Z, as well as the value 0. Indeed any
ball (necessarily open and closed) containing a € F is of the form a + p*O
for some k € Z, and has radius ¢~* (we agree to refer to the radius of the
“closed” ball, which is also its diameter, i.e., the maximum distance between
any two of its points). Finally, denote by O the set of elements of unit
norm, which is a (compact and open) group under multiplication.

A simple but very useful fact about the metric of F is that the set of
balls can be identified in a natural fashion with (the set of vertices of) a
homogeneous tree X of degree ¢ + 1, often called the Bruhat-Tits tree asso-
ciated to F. A closed ball of radius (or diameter) ¢” is contained in exactly
one ball of radius ¢! and contains exactly ¢ balls of radius ¢"~!. So it is
natural to let the balls be the vertices of a tree X, stipulating that two balls
are adjacent if one is a maximal ball properly contained in the other. The
boundary of X may then be identified with the one-point compactification
of F, or better still with the projective line of F. We shall let X also stand
for the set of vertices of the tree: Thus x € X means that = is a closed ball
of the metric space F.

An important role in our construction will be played by the so-called
horocycles of the tree with respect to the point at infinity w, which is the
boundary point corresponding to the infinite chain of vertices {p™"O :n =
0,1,...}. Each horocycle consists of balls of the same radius, which consti-
tute a partition of F.

The Haar measure m on F may be chosen in such a way that m(O) = 1.
Once this choice is made, the measure of each ball equals its diameter. The
Haar integral of, say, a continuous function u is denoted by | ru(a)da, or
simply by | 7 u. With our definitions the substitution a = p"b yields

(2.1) db = ¢" da,

a simple fact which will be exploited in the sequel.

We describe now the character group of F. Observe first that every
character maps O into a compact subgroup of the 1-dimensional torus. It
follows that the image of O is finite, hence the kernel of every non-trivial
character is open and compact. This means that we can find a character
x whose kernel is O. (If the kernel of X’ is p*O then let x(a) = x'(p~*a)
for every a € F.) Fix such a x. For each £ € F define a character x¢ by
x¢(a) = x(&a). These characters x¢ form a group under multiplication which
is isomorphic to F. On the other hand, if f € L'(F) and f(¢) = Jrfxe=0
for every £ € F, then f = 0. Thus the full character group of F may be
identified with F itself via the correspondence x¢ — &.
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For the computations of this paper we make use of the so-called spherical
functions. First set

1 if |a] <1,

1
¢0(a) = 17_(1 lf |a] =4q,
0 otherwise;

then, for n € Z, define ¢,, by

Pn(a) = ¢o(p™"a);
finally set
G0 = 1.

The functions ¢, for n € ZU{—o0}, are called the spherical functions of F,
with respect to its group of isometries [F3]. The spherical functions other
than ¢_, form an orthogonal system in L?(F) that spans the subspace of
radial functions (i.e., constant on the sets {a € F : |a| = ¢"} for h € Z).

Spherical functions may be obtained as averages of characters. If x¢ is a
character and |£| = ¢" then

oufe) = [ () difu),

where dp denotes the normalized Haar measure on the group O*. (Of
course the trivial spherical function is the average of, and coincides with,
the trivial character.) This can be checked by direct computation or using
one of the standard characterizations of spherical functions [L, Chap. 4], e.g.,
the fact that they yield multiplicative linear functionals on the commutative
convolution algebra of radial integrable functions. The computation of the
Fourier transform of a radial function therefore reduces to the much easier
computation of its spherical transform.
The upper half-plane

M= {z=(r,y) € C=R?:y >0}

is a homogeneous Riemannian manifold when endowed with the Riemann-
ian metric ds? = ]dz|2 /y?. This metric is conformal to the Euclidean met-
ric, and the corresponding Laplace-Beltrami operator Ar is a non-constant
multiple of the Euclidean Laplacian, namely Ap = y2A. The group G of
orientation-preserving isometries of II is SL(2,R)/ + 1, acting as fractional
linear transformations. Thus II = G/T is a Riemannian symmetric space,
where the one-dimensional torus T of rotation matrices is the isotropy sub-
group at z = i of G. The horocycles of 11, i.e., the orbits of the nilpotent
subgroup N of an Iwasawa decomposition of G = K AN, are all Euclidean
circles tangent to the real line, as well as all horizontal lines; those of the
latter type are exactly the horocycles passing through the point at infinity
00. The orientation-preserving isometries that fix co, thereby preserving the
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family of such horizontal horocycles, are of the form z +— az 4+ b, with a > 0
and b € R. Among these, horizontal translations (i.e., those for a = 1) pre-
serve each horizontal horocycle. It follows that the induced metric on the
horizontal line {y = yo} is the constant 1/yg times the Euclidean metric.

3. The case of a local field.

Our aim is to construct for each o > 0 a symmetric random variable U with
values in F and such that (1.2) holds with ¢ = 1. We shall first define a
symmetric random variable V uniformly distributed on each ball of radius 1.
Of course V' cannot be stable because its characteristic function vanishes on a
non-negligible set of characters, namely {x¢ : |{| > ¢} (see below). However
we shall eventually obtain any prescribed a-stable random variable U as a
limit of appropriate multiples of sums of independent copies of V.

Consider the random walk on the tree X of F given by the following
transition matrix:

0 if x, y are not adjacent,
1

P(z,y) = ¢ 14+ ¢~

if x, y are adjacent and = C y,

1<1 I > if x, y are adjacent and y C z.
q L+q°

The number P(z,y) is interpreted of course as the probability of going from
x to y in one step. The only case in which the random walk is symmetric
is when a = 1, for which the transition matrix P(z,y) induces the isotropic
nearest-neighbor random walk on X. If @ < 1 the probability of moving
towards w is greater than that of moving towards one of the points of F;
the opposite happens if & > 1. But in all cases 1/(1 + ¢%) < 1/2, thus
with probability 1 the random walk eventually moves to smaller and smaller
balls.

Define a positive function on the set of balls of radius 1, that is, on the
horocycle of the tree X (with respect to w) containing the ball O: If z = a+0O
is a ball of radius 1, we let f(x) be the probability that x is the first ball of
radius 1 reached by the random walk if its starting point is the ball p~1O.
The function f is defined on the quotient /O, thus it may be regarded as
a function defined on F which is constant on balls of radius 1. Then

(3.1) /ffzzjf(aw):l,

the sum being taken over all the disjoint balls a + O of radius 1, which, by
our choice of the Haar measure, have all measure 1.

Let V be the random variable with values in F which is uniformly dis-
tributed with probability f(a) on each ball a+ O of radius 1. We proceed to
compute the density f of the probability distribution of V. Let xg, 1, ...
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be the infinite chain on the tree which starts at xyp = O and approaches w;
explicitly, x; = p7O for j =0,1,.... Let ¢; be the probability of reaching
sooner or later x;;1 under the condition that x; is reached at least once.
Since we start from x; we have (; =1/(1 + qo‘). For j > 1 we must have

1
Cj:1+qa+<1 1+q ><J 16

In other words, once the walk is at x; it can either reach x; 1 with the next
step, which happens with probability 1/(1 + ¢%), or else, with probability
1 —1/(1+ q%), it will first move to one of the balls contained in z;, then
eventually reach again x; with probability (;_1, and from there eventually
reach x;j41 with probability ¢;. It follows that

*“—1

Cj:m for j > 1.

(3.2)

Observe that
Z q 1 - Ck H C]

(the empty product equals 1). Indeed the summands are the probabilities of
the disjoint events 2 defined as follows: The random walk reaches, sooner or
later, the verter xj without ever reaching xj1, and, of the possible ¢* balls
of radius 1 contained in the ball xj., the first reached is xy. This determines
f(a) for all a € O = z¢, but f will obviously also take the same value on
each of the ¢ — 1 balls of radius 1 contained in p~*(. At this point f(a) is
determined and given by the above sum for all |a| < ¢g. To reach any other
ball the random walk must necessarily reach xs. More generally, in order to
reach a ball of radius 1 of type a + O with |a| = ¢", the random walk must
reach x, = p7"O. Thus

(3.3) Z g (1 —Ck) H G where n = max{1, log, |a|}.

Let us compute the spherical tmnsform of f, i.e., the scalar products

(fa¢n>=/}_f¢n forn € ZU {—o0}.

Recall that for n € Z the spherical function ¢, is supported on the set
p"lO = {a € F : |a| < ¢ "'}, and its integral vanishes. But f is constant
on p~tO, therefore

(f,on) =0 for n > 0.

To compute (f,p_) for k > 1 observe that f is constant on each of the
sets {a € F : |a| = ¢’}. For j > 1 this set has measure ¢/ — ¢/~1, while
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{a € F :]a| < ¢} has measure q. If a1, ...,ax11 € F are such that |aj| = ¢/
forall j =1,...,k+ 1, then

k
(frd-i) = af(a) + Y (¢ = ") flay) + L(qk+1 —¢") f(ar41)

=2 L-q
k ‘ k 7j—1
=> ¢ (flaj) = flajr) =Y 1= [[ &
j=1 =1 i=1
k -1
- 1_1:[1@1 q(k—l-l)a 1’

since (¢ — ¢¥)/(1 - q) = —¢* and f(a;) — f(a;41) = ¢ (1 = {) [T G
from (3.3), and using (3.2).

Recall that V' is the random variable that on each ball of radius 1, of
the type a + O, is uniformly distributed with probability f(a). Clearly if
a € F with |a| = 1 the random variables aV and V have the same probability
distribution. Observe that the density of the probability distribution of p"V
is fn(a) = q" f(p~"a). Therefore, for n > k,

o) = q /f )i (a)da = ¢" /f (v ") da

q“—1
/f ¢ k q(kJrl) 17

having changed variable a = p™b and used (2.1). Thus, for h € Z and n > h,
setting h = n — k one has:

— qa _ 1
(3.4) (s bn) =1 = gt Dagha

-1
Let V1, Va, ... be a sequence of independent random variables with the same
distribution as V', and let

j(n)

U, =p" ZVk forn>1,

where, denoting by |¢] the integral part of the real number ¢, we set
(n+1)a
g
itn) = {qa—lJ'

The density of the probability distribution of U, is simply the j(n)-fold
convolution product F,, = fp, % -+ fp, hence (3.4) gives

a j(n)
(41 ’
<Fn’ ¢h> - <1 q(n-i-l)aq—ha _ ]_) !
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For fixed h we obtain in the limit
lim (F,, ¢p) = e 4"
n—oo
Define the random variable U as a limit in distribution of U,,. More
precisely, keeping in mind that {¢, : n € Z} is an orthogonal set in L?(F)
whose span is the space of radial functions, and recalling that the square of
the L? norm of ¢, is ¢ %q/(q — 1), define the radial function F on F as

+o0 . q 1 +oo
> okl e di(a) ST e o).
k=—o00 k=—o00

Then on each radial set {a € F : |a| = ¢/} we have F = lim,, F}, uniformly.
Let U be the random variable whose probability distribution has density F'.
The characteristic function of U simply coincides with the Fourier transform
of F' given by

F(f)_/Fm_/F(ﬁh—@qha for €] = ¢™.
F F
We have thus proved:

Theorem 3.1. The random wariable U defined above has characteristic
function

Elxe(U)] =" force F.

In other words, U 1is a symmetric a-stable random wvariable in “standard
form” (i.e., with scaling factor ¢ = 1).

To clarify the role of the scaling factor, set

tq(n—i-l)a
j(n,t) = {MJ for n > 1 and real t > 0.
q —
Then the random variables
J(nit)
Un,t = pn Z Vk
k=1

converge in distribution to a random variable U; with characteristic function
E[x¢(Uy)] = e He” for £ € F.

The density F; of the probability distribution of U, satisfies Fy+s = F} % Fs
whenever s,t > 0, and may be interpreted as the kernel of a diffusion process
[F1], [V].

The stable random variable U has the property that, if U(y), Uy, ... are
independent random variables with the same distribution as U, defining
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Jj(n) = ¢"*] then
J(n)
P Uy
k=1
converges in distribution to U. To prove this, observe that the density of

the probability distribution of p"U is H,(a) = ¢"F(p~"a), and that, for n
large and n — k = h,

n —-n —-n _o(h—n)a
<Hn7¢h> =q /]__F(p a)¢—k(p a) da:/]:ng_k = e qh .
Therefore if G,, = Hy, * - - - x H,, (with j(n) factors) then

(G, ) = 7T,
The definition of j(n) implies that

lim (Gy, ép) = e 4",

which proves our assertion.

4. The hyperbolic half-plane.

The real line plays with reference to the hyperbolic half-plane II the same
role as the local field F plays with reference to the homogeneous tree X
of degree ¢ + 1. In other words the boundary of II can be realized as the
projective line R U {oo}. The role of a drifted random walk on X is played
in this context by a random process defined by

dx, = Y, aw",

4.1 Ay, = Y, dw?) — <1/ - ;) Y dt,

where Wt(l), t(Z) are independent one-dimensional Brownian motions. The
real coefficient v — 1/2 measures the strength of the drift (positive for down-
ward drift, negative for upward). Observe that the process is invariant under
the orientation-preserving isometries of II that fix the point at infinity, that
is, under the real affine transformations z — az + b with ¢ > 0 and b € R.
The infinitesimal generator that corresponds to (4.1) is

2
AN A
L—2A <V 2)yay.

Of course L is also invariant under the same affine transformations.

For a > 0 let H, be the horocycle through ia = (0,a) and through the
point at infinity; thus H, is the horizontal line given by {3z = a}. Consider
the process starting at the point i = (0, 1), above the z-axis. For 0 < a < 1
let 7, denote the hitting time on H,, and let =* = X, be the corresponding
hitting random variable.
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Let us compute the characteristic function of =2¢. For y > 0, the solution
of (4.1) with starting point iy = (0,y) is

(2)
W, —vt
Yy,t =ye 't v )

t
Xyt = / Y. AW,
0

For v > 0 and every y > 0 this implies that Y, ; — 0 almost surely as
t — 00, so that 7, < oo almost surely. Let us first compute the characteristic
function of X, . Introducing the random variable

‘17(2)
/ Y2 ds—/ 2Ws 72”Sds,
observe that

t
(4.2) Xy + has the same law as ’y</0 Y;S ds) = y(y?AY),

where ~(t) is a Brownian motion independent of Wt(l), Wt@) . Thus X, « has
the same law as y(y?A%). By a result of Dufresne [D] (see also Yor [Y]),
the random variable A% has the same law as the reciprocal of 27, where Z
is a random variable having law I'(v, 1). That is, Z has a density

szflefz

(4.3) 9(z) =49 T@)
0 for z < 0.

for z > 0,

The Laplace transform of A% for ¢t > 0 is
v 1 oo
Y(t) = Ele %] = E[e 7"/ (%)) = 1‘(1/)/0 o—t/(22) v=1,-2 4.

Since the modified Bessel function of order v [GR, §88.4-8.5] is given by
[GR, Formula 8.432.6]

oV 1 00 5
(4.4) Ky (2) = — / prle=(2/at4t) gy
z 0
then, setting for later convenience
_ 21—V
(4.5) Ky(z) = ) 2" Ko (|z]),
we have

¥(2%/2) = Ky (2).

Using the independence of the Brownian motion v(¢) and the random vari-
able A% , one has easily

(4.6) E[eiAXypo] _ E[ei)\'y(y2A’;o)] _ E[e—()\2/2)y2Ago] _ KV()\y)
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Remark 4.1. Recall that the characteristic function of a Student distribu-
tion t(n) with n degrees of freedom is

Comparing with (4.6) for y = 1 we find again that, if v = 1/2, then X

has a Cauchy distribution (which is the same as a ¢(1)). Whereas, if v = n/2

for n > 2, then X o has the same distribution as a ¢(n) divided by y/n.
Since the density of (24% )71 is given by (4.3), then that of X o is

(4.7)

1 2 v 1 > 2
g E e /(2A<x>) — / (V+1/2)_1 —ST —S
f(x) 27rAgo€ TV Jo s e e tds
_ T(wv+1/2) 1

PN EI e
(cf. [AG, last formula of the paper] for v a half-integer).

By (4.2) the characteristic function ¢,(A) of 2% = X ., is the same as
that of y(AY ). With reference to (4.6) for y = 1, we have

e’(V/Q)Ago _ e—(,\2/2) Jo* Y2, ds e—(>\2/2) S YE ds
The strong Markov property then implies
E[¢MX100] = E[e_(,\z/z)Ago] _ g2 5 yl%sds]E[e_(,\zp) s Y[ﬁsds]’

whose rightmost factor equals E[e?*Xa=]. Then, by (4.6),
RN = 6u(N Ky (M),

whence

K,(\)

(48) @a(A) = Bl ] = 220

Remark 4.2. An easy proof of Dufresne’s result [D] used above can be
obtained using the diffusion Y defined in (4.1). Indeed, for fixed A, it is
easy to check that the function u(y) = K,(\y) is a positive solution of the
problem

]'2// ]‘ / )\2 2
§yU(y)— V-3 yu(y)—gyU(y):O for y > 0,
u(0) = 1.

This is straightforward, using the defining differential equation of the mod-
ified Bessel function K, namely

2K (2) 4 2K/ (2) — (22 + V*) K, () = 0.
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Moreover u(y) — 0 as y — oo. Using this and the fact that lim;_.o Yy =0
almost surely, it is easy to prove the Feynman-Kac formula
u(y) = E [e—(k2/2) I3 Yisds| = Ele=(¥/20° A%,

Theorem 4.3. If 0 < v < 1 then, for every 0 < a < 1, the random vari-
able =% lies in the domain of attraction of a symmetric a-stable real-valued
random variable, where a = 2v. In the special case v = 1/2 (i.e., a = 1),
corresponding to drift-free Brownian motion, the random variable =% is itself
distributed according the Cauchy law.

The limiting case v =1 (i.e., a = 2) yields a random variable Z* which
is in the extended domain of attraction of a Gaussian random variable.

For v > 1, the random variable =%, which has a moment of order 2, is in
the domain of attraction of a Gaussian random variable.

Proof. We shall give the details for a > 0, the changes for the case a = 0
being almost obvious.

Consider first the case 0 < v < 1. In order to prove that 2% = X, is in
the domain of attraction of an a-stable random variable, with o = 2v, it
suffices to prove that for some ¢ > 0 we have

llm ¢a< f/a) = e_C|9|o¢7

. 9 %
nlLIrolon<1 — ¢q <nl/a>> =c|l|

To this end observe that

that is,

-y -1 - ) R u@(zjux
Recalling (4.4), (4.5) one has
lir(r]l+ K,(z)=1.

It remains to prove that

) - af
JE;”<K$<nua>
In fact

(% (i) - %)

n > 202 2/a 2 2/a
_ / tlffleft(efa 0=/4n=/t 679 /4n t) dt
L) Jo

_ 1 /OO Sl,,lefsn—Q/“ (67a292/4s _ 6702/48) ds
L) Jo

N 0 N
)
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(the last factor of the integrand is positive for 0 < a < 1). For n — oo we
obtain

L /OO Sy—l(e—a292/4s_€—92/45) ds = m /OO uu—l(e—a2/4u_e—1/4u) du
I'(v) Jo - T(w) Jo '
This integral is always convergent because the factor in parentheses is as-
ymptotic to ¢/u as u — oc.

The case v > 1 is immediate, since X1 o has a finite second moment by
the expression of its density given in (4.7). Therefore K, is differentiable
twice by (4.6), then so is ¢, by (4.8), thus ensuring that = also has a finite
second moment.

Finally, in the case v = 1 it is sufficient to show that for some sequence

b, — 0o we have
lim n<1 — ¢q <b€>> = ch.

As in the case 0 < v < 1, this is the same as proving that

. ~ 0 - (0
nlirglon<K1 <Zn> - K; <bn>> = ch?.
5 5 0/bn
K1<a9> e <9> :/ LKy (1) dt,
by, bn af /by

since dK1(z)/dz = —zKo(z) by [GR, Formula 8.486.14]. By [AS, For-
mula 9.6.8] the function Ky(z) is asymptotic to —log z for z — 07, therefore
we want to evaluate the limit for n — oo of

We have

6/bn £2(1 — 2logt) |7/
g e
a@/bn 4 ag/bn
which is finite and positive if b, = v/nlogn. O

We are in a position to replicate on the real line, for 0 < a < 2, the
procedure we followed for local fields in the preceding section. Fix 0 < a < 1
(e.g., a = 1/2), and let V4, V5,... be a sequence of independent random
variables with the same distribution as =*. By Theorem 4.3, the sequence

U, =n"2 En: Vi
k=1

converges in law to a symmetric a-stable random variable U on the real line.

Remark 4.4. As indicated in the statement of Theorem 4.3, the hitting
distribution on a horocycle H, or on the boundary R of a drift-free Brownian
motion on II is the Cauchy distribution, up to a scaling factor. The situation
is completely different for local fields, where the hitting distributions of
an isotropic random walk on any horocycle as well as on the boundary F



272 P. BALDI, E. CASADIO TARABUSI, AND A. FIGA-TALAMANCA

itself are constant on a compact open subgroup. This implies that their
characteristic functions have compact support, and cannot be of the type
ekl In our terminology they are not distributed according a Cauchy law.
We remark however that the hitting distribution on the boundary of a
tree of an isotropic random walk is called a Cauchy distribution in [H].
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