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We define the injectivity radius of a Coxeter polyhedron in
H3 to be half the shortest translation length among hyper-
bolic/loxodromic elements in the orientation-preserving re-
flection group. We show that, for finite-volume polyhedra,
this number is always less than 2.6339..., and for compact
polyhedra it is always less than 2.1225... .

1. Introduction.

Hyperbolic reflection groups are discrete groups of isometries of hyperbolic
space generated by reflections in the faces of a polyhedron. They provided
some of the earliest known examples of Kleinian groups, and have been well-
studied (see [V]). In this paper, we prove that 3-dimensional hyperbolic
reflection groups always contain short elements.

To be more precise, let Γ+(P ) be the group of orientation-preserving
isometries generated by reflections in the faces of the polyhedron P . We
define injrad (Γ+(P )) to be half the shortest translation length among hy-
perbolic/loxodromic elements of Γ+(P ). Then we have:

Theorem 4.1 (Main Theorem). Let P be a finite-volume Coxeter polyhe-
dron in H3. Then injrad(Γ+(P )) < cosh−1(7) = 2.6639.... If P is compact,
then injrad(Γ+(P )) < cosh−1(3 + 4 cos(2π/5)) = 2.1225....

Remarks.
1. It is known (see [W]) that if {H3/Γi} is a family of closed hyperbolic

3-manifolds, and if {rank (Γi)} is bounded, then {injrad (H3/Γi)} is also
bounded (recall the rank of a finitely generated group is the cardinality of a
minimal generating set). Observe that by [B], Rank (Γ(P )) increases with
the number of sides of P , so Theorem 4.1 is not covered by [W].

2. For more about short geodesics in hyperbolic 3-manifolds, see [AR].

3. We speculate that the bounds may be sharp, but we do not know a
proof.

Idea of Proof. To prove the Main Theorem, we must show that every
three-dimensional hyperbolic reflection group contains a hyperbolic element
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with suitably short translation length. This can usually be done by find-
ing two non-adjacent faces of the polyhedron which are suitably close; the
short element is obtained by composing the reflections in the corresponding
hyperplanes.

A result of Nikulin’s guarantees that every Coxeter polygon which is not a
triangle has two non-adjacent sides which are close, and a two-dimensional
version of the Main Theorem follows easily. For most polyhedra, we can
use Nikulin’s result to show that two non-adjacent faces are close; the ex-
ceptions are those which contain “non-prismatic” faces (see Section 2 for a
definition). We show that these exceptional cases always contain triangular
faces. Then, after extending to the sphere at infinity, we use combinatorics
and Euclidean geometry to deduce the existence of a short element. The
results on hyperbolic polyhedra contained in Section 3 allow us to sharpen
the bound.

Organization. Section 2 contains basic definitions; Section 3 contains some
general, technical results about hyperbolic polyhedra; Section 4 contains the
proof of the Main Theorem.

Acknowledgments. I would like to thank Alan Reid for his help and en-
couragement. Thanks also to Gary Hamrick and David Bachman for valu-
able conversations, Daryl Cooper for helpful correspondence, and the referee
for valuable comments.

2. Definitions.

A convex polyhedron, P , in Hn is a countable intersection of closed half-
spaces: P =

⋂
i H

+
i , where Hi denotes a hyperplane and H+

i the corre-
sponding closed half-space. When n=2, we use the term polygon instead. If
P is a convex polyhedron in Hn, we let Γ(P ) denote the group of isometries
generated by reflections in the bounding hyperplanes of P . Γ+(P ) denotes
its orientation-preserving subgroup of index 2. We say that a finite-volume,
convex polyhedron P is a Coxeter polyhedron if its dihedral angles are all
integer submultiples of π; if P is a Coxeter polyhedron, then Γ+(P ) is dis-
crete. Two faces of P are adjacent if they share an edge. Given a hyperplane
H in Hn, ρH will denote the isometry obtained by reflection in H. We will
denote the hyperbolic distance between two sets X and Y in Hn by d(X, Y ).

Given an n-sided face F of P (n > 3), label the edges of F by E1, . . . , En,
where Ei shares a vertex with Ei+1 for i = 1, 2, . . . , n − 1, and label the
adjacent faces by F1, . . . , Fn, where F and Fi share edge Ei (we say the
faces adjacent to F are labeled “cyclicly”). We say that F is prismatic if,
for i, j = 1, . . . , n, |i− j| > 1 (modn) implies Fi is non-adjacent to Fj .

By a hyperbolic n-manifold, Hn/Γ, we mean the quotient of hyperbolic
n-space by a discrete group of isometries acting freely. If Γ has torsion,
the quotient space Hn/Γ is a hyperbolic n-orbifold. The injectivity radius
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of a hyperbolic manifold M = Hn/Γ is equal to sup{α ∈ R+| every point
x ∈ M is the center of an embedded ball of radius α}. We shall generalize
this definition to the case where Γ has torsion: The injectivity radius of a
Kleinian group Γ, denoted injrad (Γ), is equal to half the shortest translation
length among hyperbolic/loxodromic elements of Γ. Note that this agrees
with the usual notion when Γ is torsion-free. The injectivity radius of a
Coxeter polyhedron P is equal to injrad (Γ+(P )). Given an element g of Γ,
we will denote its translation length by `(g).

3. Hyperbolic Polyhedra.

The following technical result shall be used in our proof of the Main Theo-
rem.

Theorem 3.1. Let P be a finite-volume, convex polyhedron in H3 with acute
dihedral angles and no triangular faces. Then P has a prismatic face. If, fur-
thermore, P is compact, then P has a prismatic quadrilateral or pentagonal
face.

Proof. We first consider the finite-volume case.

Lemma 3.2. Let P be a finite-volume, convex polyhedron in H3 with acute
dihedral angles and no triangular faces, and suppose that P contains at least
one non-prismatic face. Let G be a planar graph representing the 1-skeleton
of P (see Fig. 1). Then there are three non-prismatic faces of P which
bound a region in G consisting entirely of prismatic faces.

Proof. Let F be a non-prismatic face of P, and label its adjacent faces cyclicly
by F1, F2, . . . . We have that Fi and Fj are adjacent for some i, j with
|i− j| > 1 (see Fig. 1). Note that F , Fi, and Fj bound a region R, and that
Fi and Fj are also non-prismatic. Since P contains no triangular faces, R
cannot be a face. And if the lemma is false, R must contain a non-prismatic
face F ′. Label the faces adjacent to F ′ cyclicly by F ′

1, F
′
2, . . . . Then for

some k, ` with |k − `| > 1, F ′
k and F ′

` are adjacent. Then F ′, F ′
k, and F ′

`
bound a triangular region R′ ( R. Again, if the lemma is false, R′ must
contain a non-prismatic face F ′′, creating a triangular region R′′ ( R′. Since
P has a finite number of sides, this process must eventually terminate with
three non-prismatic faces bounding a region containing only prismatic faces.
This proves the lemma, and the non-compact case of Theorem 3.1 follows
immediately. �

To prove the stronger statement for the compact case, we shall need the
following combinatorial lemma:

Lemma 3.3. Let P be a compact, convex polyhedron in H3 with acute di-
hedral angles. Then P contains a face with 5 or fewer edges.
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Figure 1. Reducing the graph around a non-prismatic face.

Proof. This follows from an Euler characteristic count. Let |V | = number of
vertices of P , |E| = number of edges of P , and |F | = number of faces of P .
Since P is a compact, convex hyperbolic polyhedron, P is simple– i.e., each
vertex is shared by exactly 3 different edges (see [A1]). So |V | = 2|E|/3.

We have |V | − |E|+ |F | = 2.
|F | − |E|/3 = 2.
|F |(1− |E|/3|F |) = 2.
So |E|/|F | < 3.
So the average number of edges per face < 6. So P must contain a face

with 5 or fewer edges. �

Now suppose P is compact. If all faces of P are prismatic, we are done by
Lemma 3.3. So suppose P contains a non-prismatic face. Then by Lemma
3.2, there are three non-prismatic faces of P which bound a region R in G
consisting entirely of prismatic faces. We need to show that R contains a
face with 5 or fewer edges. We form R̂ from R by subtracting the three
vertices, v1, v2, v3, of non-prismatic faces on the boundary of R, and then
adding a face to the exterior of R, so that R̂ is topologically a sphere (see
Fig. 2).

Then, arguing as in Lemma 3.3, R̂ must contain a face F with 5 or fewer
edges. We claim that R must also contain such a face. This will certainly
be true unless
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Figure 2. To form R̂ from R, we remove three vertices and
include an exterior face.

1. F is the face on the exterior of R.

or

2. F is a pentagon, and F contains one of the edges from which a vertex
was deleted (note that F can contain at most one of the vi’s, since it is
prismatic).

If F is the face on the exterior and F is a triangle, then we claim that R
must consist of three quadrilaterals, as in Fig. 3b. For otherwise, R must
contain three non-prismatic faces, contrary to assumption (see Fig. 3b).

non-prismatic
v1

v1

v2

v2v3
v3

a b

Figure 3. If the exterior is a triangle, then R will contain
either a) non-prismatic faces, or b) three quadrilaterals.
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So if the theorem is false, then R̂ contains at most four faces with fewer
than 6 sides; at least three of them must be pentagons, and none are trian-
gles. We shall show that this is impossible.

Number the faces of R̂ by F1, F2, . . . , Fn. Let |Ej | be the number of sides
of Fj . Then |E1|+ · · ·+ |En| = 2|F |, where |F | is the total number of faces
of R̂. Since P is simple, the graph is trivalent, so |F | is divisible by 3; hence
|E1|+ · · ·+ |En| is divisible by 6. Since also the average number of sides per
face is < 6, we have:

6n− 5 ≤
∑

i=1,... ,n

|Ei| < 6n.

Thus the sum is not divisible by 6, for a contradiction. �

4. Injectivity radius of hyperbolic polyhedra.

In this section we prove the Main Theorem:

Theorem 4.1. Let P be a finite-volume Coxeter polyhedron in H3.
Then injrad (Γ+(P )) < cosh−1 (7) = 2.6339... . If P is compact, then
injrad (Γ+(P )) < cosh−1 (3 + 4 cos(2π/5)) = 2.1226... .

An important part of the proof of Theorem 4.1 is played by the following
2-dimensional result.

Theorem 4.2. Let P be a finite-area Coxeter n-gon in H2, n > 3. Then
injrad (Γ+(P )) ≤ cosh−1 (3 + 4 cos(2π/n)) < cosh−1 (7) = 2.6339... . If
n = 3, then injrad (Γ+(P )) ≤ cosh−1 (3 + 4 cos(2π/4)). If P is compact,
then all the inequalities are strict.

Proof. The theorem is a consequence of the following lemma, which is a
re-phrasing of ([N, Theorem 3.2.1]).

Lemma 4.3. Let P be a finite area, convex n-gon in H2. Label the bounding
geodesics of P cyclicly by H1,H2, . . . , Hn. Then for some i, d(Hi,Hi+2) ≤
cosh−1 (3 + 4 cos(2π/n)) (subscripts taken mod n). If P is compact, the in-
equality is strict.

Proof. We will reproduce Nikulin’s proof that d(Hi,Hi+2) < cosh−1 (7). The
proof of the finer estimate is a bit more complicated, and we omit it (see
[N]).

We use the Lobachevsky model for H2. First, pick a point p on the
interior of P . Project the vertices of P onto the circle at infinity along
rays emanating from p. This determines an ideal polygon P ′ with bound-
ing geodesics H ′

1,H
′
2, . . . . We claim that d(Hi,Hi+2) ≤ d(H ′

i,H
′
i+2): The

distance between H ′
i and H ′

i+2 is measured along a mutually orthogonal
geodesic segment α (see Fig. 4a); since α must intersect Hi and Hi+2,
d(Hi,Hi+2) < length (α) = d(H ′

i,H
′
i+2).
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Figure 4. a) The faces of the ideal polygon are farther apart.
b) Notation for Lemma 3.2.

So it is enough to consider the case where P is an ideal polygon. Pick
i such that the Euclidean angle θi = viOvi+1 is minimal, where O is the
origin. Let A be the diameter through vi and let B be the diameter through
vi+1. Then d(Hi,Hi+2) ≤ d(ρA(Hi+1), ρB(Hi+1)) = cosh−1 (−〈e, f〉), where
e is the unit normal to ρA(Hi+1), f is the unit normal to ρB(Hi+1), and 〈.|.〉
is the inner product 〈(x1, y1, z1)|(x2, y2, z2)〉 = x1x2 + y1y2 − z1z2 (see Fig.
4b).

Now, let v,a and b be outward unit normals to Hi+1, A and B, respec-
tively. Then we have:

〈e, f〉 = 〈v − 2〈v,a〉a,v − 2〈v,b〉b〉

= 〈v,v〉 − 2〈v,a〉2 − 2〈v,b〉2 + 4〈v,a〉〈v,b〉〈a,b〉
= 1− 2− 2− 4 cos(θi).

So d(Hi,Hi+2) < cosh−1 (7). �

We now resume the proof of Theorem 4.2. Let P be a Coxeter n-gon, and
suppose first n > 3. Pick two non-adjacent edges such that the correspond-
ing geodesics H and H ′ are less than cosh−1 (3 + 4 cos(2π/n)) apart. Let
g = ρHρH′ in Γ+(P ). Since P has acute angles, H is disjoint from H ′, so g
is hyperbolic. Let α denote the axis of g, and note that it is perpendicular
to both Hi and Hi+2 (see Fig. 5). `(g) is given by d(p, g(p)), where p is any
point on α. Taking p to be α∩Hi+2, it is easy to see that `(g) = 2d(Hi,Hi+2).
Therefore injrad (Γ+(P )) ≤ `(g)/2 = d(H,H ′) < cosh−1 (3 + 4 cos(2π/n)).
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ρ ρ (H)
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Figure 5. The distance from H to H′ is half the translation
length of ρHρH′.

If P is a triangle, suppose first that P has no right angles, and is compact.
Label the vertices of P by v0, v1, v2, with corresponding angles θ0, θ1, θ2

(see Fig. 6a). One of the angles, say θ0, must be ≤ π/4. Consider
the quadrilateral Q, with angles (θ0, 2θ1, θ0, 2θ2), obtained by reflecting P
along v1v2. Let H and H ′ be non-adjacent bounding geodesics of Q, with
d(H,H ′) < cosh−1 (3 + 4 cos(2π/4)). H and H ′ are disjoint: For if they
intersected, they would create a triangle T with angles (π − θ0, π − 2θi, x),
for i = 1 or 2; however θ0 + 2θi < π, so T would have angle sum > π, which
is impossible. Therefore, as above, g = ρHρH′ is a hyperbolic element of
Γ+(P ) with `(g)/2 < cosh−1 (3 + 4 cos(2π/4)).

If P has a right angle at a vertex v0, and is compact, reflect P along v0v1 to
obtain a new triangle, P ′, with angles (2θ1, θ2, θ2) (see Fig. 6b). Reflect P ′

along v0v2 to obtain a quadrilateral Q with angles (2θ1, 2θ2, 2θ1, 2θ2). Then,
again, the opposite geodesics bounding Q must be disjoint, or else they
would create a triangle with angles (π− 2θ1, π− 2θ2, x), which is impossible
since θ1+θ2 < π/2. So again we obtain a hyperbolic element g with `(g)/2 <
cosh−1 (3 + 4 cos(2π/4)).

If P has an ideal vertex v0, then reflecting P along v1v2 creates a quadri-
lateral Q whose bounding geodesics clearly cannot intersect, so that again
we obtain the required hyperbolic element. �

As a corollary of Theorem 4.2, we have:

Corollary 4.4. Let P be a finite-volume Coxeter polyhedron in H3 with an
n-sided prismatic face. Then injrad (Γ+(P )) ≤ cosh−1 (3 + 4 cos(2π/n)).



INJECTIVITY RADII 377

v0
v1

v2

θ0θ1

θ
2

θ0

θ
2

θ1

P

Q

H

H’

P
Qθ1 θ1

θ1 θ1

θ2 θ2

θ2 θ2

P’

a b

Figure 6. We can reflect to obtain a quadrilateral.

Proof. Consider the n-sided prismatic face F0, and label the faces adjacent
to F0 cyclicly by F1, . . . , Fn. Let Hj denote the hyperplane spanned by
Fj , and let Hi,j = Hi ∩ Hj . By Lemma 4.3, there is some i such that
d(H0,i,H0,i+2) ≤ cosh−1 (3 + 4 cos(2π/n)). Then d(Hi,Hi+2) ≤ cosh−1 (3 +
4 cos(2π/n)). Since Fi and Fi+2 are non-adjacent, Hi and Hi+2 do not
intersect by [A1]. So g = ρHiρHi+2 is a hyperbolic element of Γ+(P ). So
injrad (Γ+(P )) ≤ `(g)/2 ≤ cosh−1 (3 + 4 cos(2π/n)). �

We now prove the Main Theorem.

Proof of 4.1.

Compact case.

Case 1: P has no triangular faces.

By Theorem 3.1, P contains a prismatic quadrilateral or pentagonal face,
and so by Corollary 4.4, we are done.

Case 2: P has a triangular face, but P is not a simplex.

Let F0 be the triangular face, and label the faces adjacent to F0 by F1, F2

and F3. Let P ′ =
⋂

i=0,1,2,3 H+
i , where Hi denotes the hyperplane spanned

by Fi (recall Section 2 for the definition of H+
i ). Let Ci and C+

i denote the
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boundary at infinity of Hi and H+
i , respectively. Let θij = dihedral angle

between Fi and Fj = π/nij (here we are again using the fact that in the
compact case the polyhedra are simple). We label the dihedral angles of P ′
by AP ′ = ((n01,n02,n03), (n12,n23,n31)). Then,

I. 1/n0i + 1/n0j + 1/nij > 1, and

II. 1/n12 + 1/n23 + 1/n31 < 1.

One may then easily verify that the only 5 possibilities for (n01, n02, n03)
are: (2,2,2), (2,2,3), (2,2,4), (2,2,5) and (2,3,3).

Case 2a: AP ′ = ((2, 2, 2), (n12, n23, n31)) or ((2, 2, 4), (n12, n23, n31)).

Let Stab F0 denote the subgroup of Γ+(P ) which leaves F0 invariant. Then
Theorem 5.4 of [BM] implies that Stab F0 contains a triangle group. So by
Theorem 4.2, we are done.

Case 2b: AP ′ = ((2, 3, 3), (n12, n23, n31)).

By I and II, the only two possibilities (modulo relabeling of edges) are
AP ′ = ((2, 3, 3), (4, 2, 5)) or ((2, 3, 3), (5, 2, 5)). Consider P ′′ = P ′ ∪ ρH1(P ′)
(see Fig. 7a). Let Q denote the quadrilateral created in H0. Conjugate so
that, in the upper half space model, C1 is the imaginary axis (see Fig. 7b),
and ∞ ∈ C+

i − Ci for i = 2,3. H1 ∩ H2 ∩ H3 = ∅, since the angles θ0i are
acute; therefore, C+

2 ∩C+
3 ∩ρH1(C

+
2 )∩ρH1(C

+
3 ) = Q1

∞∪Q2
∞, where Q1

∞, Q2
∞

are quadrilateral regions in S2
∞ = Ĉ, and ∞ ∈ Q2

∞. The dihedral angles of
Q1
∞ are (θ23, 2θ12, θ23, 2θ31).
We claim that C2∩ρH1(C3) = C3∩ρH1(C2) = ∅, in which case H2, ρH1(H3)

are disjoint, and H3, ρH1(H2) are disjoint. Otherwise, three circles would
intersect to create a triangle T with angle sum > π (see Fig. 7c). However,
T has only one positively curved side — call its curvature κ — and it has
another, longer side of curvature −κ. So, by the Gauss-Bonnet formula,
T has angle sum < π, for a contradiction. Hence g1 = ρH2ρρH1

(H3) and
g2 = ρH3ρρH1

(H2) are both hyperbolic elements of Γ+(P ). By Lemma 4.3,
two of the opposite faces of Q must be less than cosh−1(3 + 4 cos(2π/4))
apart. It follows that either g1 or g2 has suitably short translation length.

Case 2c: AP ′ = ((2, 2, 3), (n12, n23, n31)) or ((2, 2, 5), (n12, n23, n31)).

Without loss of generality, assume n13 ≥ n23, so by II, n13 ≥ 3. First
suppose n12, n23 ≥ 3. As in Case 2b, reflect in H1 to create a polyhedron P ′′
with a quadrilateral face Q. Again, on S2

∞ we see a quadrilateral Q1
∞ with
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Figure 7. a) The polyhedron P ′′. b) The view on the sphere
at infinity. c) If opposite circles intersect, a triangle is formed.

angles (θ23, 2θ12, θ23, 2θ31). Since the sum of any two adjacent angles of Q1
∞

is ≤ π, we can argue as in Case 2b to show that opposite circles bounding
Q′ must be disjoint, thus creating a hyperbolic element with suitably short
translation length.

If n12 = 2, then by I and II, n23 and n31 ≥ 4. Then after reflecting in H1

and in H2, we see on S2
∞ an acute quadrilateral (see Fig. 8), and we may

argue as above.
If n23 = 2, then by I and II, n12 ≥ 4.
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H1
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Figure 8. Reflect twice, then view at infinity.

— If n12 = 4, then after reflecting in H2, we can reduce to the case where
n12 = 2.

— If n12 ≥ 5, then by II, n23 ≥ 4, and reflecting in H2 creates an acute
quadrilateral. So we may argue as in Case 2b.

Case 3: P is a simplex.

By [L] there are only nine congruence classes of compact simplices in H3.
By [M] (see also [BM]), eight of these contain triangle groups, so in these
cases the result follows from Theorem 4.2. Denote the remaining tetrahedron
by T8; label its faces F1, . . . , F4; and let π/nij be the dihedral angle between
Fi and Fj . We have n12 = 2, n13 = 3, n14 = 4, n23 = 5, n24 = 3, and
n34 = 4. Let Hi be the hyperplane spanned by Fi. It is not difficult to
construct T8 explicitly in Lobachevsky space and then compute the faithful
discrete representation of Γ+(T8) in O(3, 1). Then it is straightforward to
compute that ρH3ρH4ρH2ρH1ρH4ρH2 is a hyperbolic element with translation
length 1.66131... < 2cosh−1(3 + 4 cos(π/5)).

Non-compact case:

By Theorem 3.1 and Corollary 4.4, it is enough to consider the case where
P has a triangular face, F0. As in the compact case, the faces adjacent to
F0 form a polyhedron P ′.

If none of the vertices of F0 are ideal, then the proof for the compact case
carries over without change. So suppose F0 has an ideal vertex.

Ideal vertices may be either tri-valent or 4-valent (see [A2]). If the vertices
of F0 are all trivalent then condition II still holds; condition I holds at regular
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vertices, and changes to an equality at ideal vertices. Then the techniques
from the compact case are sufficient to prove the theorem– we omit the
details. If one of the vertices is 4-valent, then two of the sides adjacent to F0

are tangent on S2
∞ (see Fig. 9). One may now argue as in the compact case,

treating the tangent sides as adjacent with dihedral angle 0. The theorem
follows.

2

2
2

2
>2

0

2
2

>2

a b c

FF

F

1

2

F1

F2

Figure 9. a) A triangular region with a 4-valent ideal vertex.
b) A 4-valent ideal vertex on S2

∞. c) We may remove F and
view F1 and F2 as adjacent with dihedral angle 0.

�
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