SPECIAL VALUES OF KOECHER–MAASS SERIES OF
SIEGEL CUSP FORMS

YOUNGJU CHOE AND WINFRIED KOHNEN
SPECIAL VALUES OF KOECHER–MAASS SERIES OF SIEGEL CUSP FORMS

YOUNGJU CHOIE AND WINFRIED KOHNEN

A certain finiteness result for special values of character twists of Koecher-Maass series attached to Siegel cusp of genus g is proved.

1. Introduction.

Let f be an elliptic cusp form of even integral weight k on $\Gamma_1 := SL_2(\mathbb{Z})$. Let χ be a primitive Dirichlet character modulo a positive integer N and denote by $L(f, \chi, s)$ ($s \in \mathbb{C}$) the Hecke L-function of f twisted with χ, defined by analytic continuation of the series

$$\sum_{n \geq 1} \chi(n)a(n)n^{-s} \quad (\text{Re}(s) \gg 0; \ a(n) = n\text{-th Fourier coefficient of } f).$$

Let $g(\chi)$ be the Gauss sum attached to χ. As is well-known, there exists a \mathbb{Z}-module $M_f \subset \mathbb{C}$ (depending only on f) of finite rank such that all the special values

$$i^{s+1}(2\pi)^{-s}g(\chi)L(f, \chi, s)$$

$(s \in \mathbb{N}, 1 \leq s \leq k - 1; \ \chi \text{ a primitive Dirichlet character modulo } N, N \in \mathbb{N})$ lie in $M_f \otimes_{\mathbb{Z}} \mathbb{Z}[\chi]$, where $\mathbb{Z}[\chi]$ is the \mathbb{Z}-module obtained from \mathbb{Z} by adjoining the values of χ. In fact, if f is a Hecke eigenform, one has $\text{rk}_{\mathbb{Z}} M_f \leq 2$ [1, 7, 8, 10].

The purpose of this paper is to give a generalization of the above result to the case of a Siegel cusp form f, where now $L(f, \chi, s)$ is replaced by an appropriate χ-twist of the Koecher-Maass series attached to f.

More precisely, let f be a cusp form of even integral weight $k \geq g + 1$ w.r.t. the Siegel modular group $\Gamma_g := Sp_g(\mathbb{Z})$ of genus g and write $a(T)$ (T a positive definite half-integral matrix of size g) for its Fourier coefficients. For χ as above we set

$$L(f, \chi, s) := \sum_{\{T > 0\}/GL_g, N(\mathbb{Z})} \frac{\chi(\text{tr } T)a(T)}{\epsilon_N(T)(\text{det } T)^s} \quad (\text{Re}(s) \gg 0),$$

(1)
where the summation extends over all positive definite half-integral \((g, g)\)-
matrices \(T\) modulo the action \(T
\mapsto \cdot T U\) of the group \(GL_{g, N}(\mathbb{Z}) := \{U \in GL_g(\mathbb{Z}) | U \equiv E_g \pmod{N}\}\) and \(\epsilon_N(T) := \#\{U \in GL_{g, N}(\mathbb{Z}) | T[U] = T\}\) is the order of the corresponding unit group of \(T\) (note that \(\epsilon_N(T) = 1\) whenever \(N > 2\) by a classical result of Minkowski). Furthermore, \(\text{tr} T\) denotes the trace of \(T\). Note that \(\chi(\text{tr} T)\) depends only on the \(GL_{g, N}(\mathbb{Z})\)-
class of \(T\).

In §2 (Thm. 1) we shall prove that the series \(L(f, \chi, s)\) have holomorphic
continuations to \(\mathbb{C}\) and satisfy functional equations under \(s \mapsto k - s\). The
proof is fairly standard and follows the same pattern as in [6] for the case
\(N = 1\) (compare also [5]) and [9, §3.6] for \(g = 1\).

The main result of the paper (Thm. 2) which will be proved in §3, states
that all the special values
\[
\left(s \in \mathbb{N}, \frac{g + 1}{2} \leq s \leq k - \frac{g + 1}{2} ;
\chi \text{ a primitive Dirichlet character modulo } N, N \in \mathbb{N}\right)
\]
are contained in \(M_f \otimes_{\mathbb{Z}} \mathbb{Z}[\chi]\) where \(M_f \subset \mathbb{C}\) is a finite \(\mathbb{Z}\)-module depending
only on \(f\). Its rank is bounded by the rank of a certain singular relative
homology group of a toroidal compactification of a quotient space of \(H_g \times \mathbb{C}^g\), where \(H_g\) is the
Siegel upper half-space of genus \(g\) and \(w := k - (g + 1)\).
See §3 for details.

For the proof one represents the functions \(L(f, \chi, s)\) (similar as in the case
\(g = 1\)) as finite linear combinations of integrals of certain differential forms
attached to \(f\) along certain \(g(g + 1)/2\)-dimensional real subcycles of \(\Gamma_g\). Our
assertion then can be deduced if we use results of Hatada given in [2, 3].
More precisely, in [2] it is shown that the space of cusp forms of weight
\(k \geq g + 1\) w.r.t. a torsion-free congruence subgroup \(\Gamma \subset \Gamma_g\) is canonically
isomorphic to the space of holomorphic differential forms of highest degree
on a compactification of \(\Gamma \times \mathbb{C}^g\), and in [3] using [2] a certain
finiteness statement for a certain family of integrals of Siegel cusp forms is
derived. (Actually, as we think, some of the assertions of [3] have to be
slightly modified, for complete correctness’ purposes; cf. §3.)

Inspecting the proof of Thm. 2, it is quite suggestive or even more or less
clear that a similar finiteness statement as given there can be proved for
special values of Dirichlet series of a much more general type. In fact, such
a result essentially seems to be true for finite linear combinations of all the
partial series
\[
\sum_{\{T > 0\}/GL_g(Z)} \frac{e^{2\pi i \text{tr}(TS)}a(T)}{\epsilon(S)(T)(\text{det } T)^s} \quad (\text{Re } s > 0),
\]
where S is any rational symmetric matrix of size g, $GL_g(Z)$ is the subgroup \{ $U \in GL_g(Z) \mid S[U] \equiv S \pmod{Z}$ \} and $\epsilon(S)(T) := \#\{ U \in GL_g(Z) \mid T[U] = T \}$. However, we do not want to pursue this point further.

We finally remark that in [4] the Koecher-Maass series of a Siegel-Eisenstein series of genus g is explicitly expressed in terms of “elementary” zeta functions. In particular, if g is odd it is shown to be a sum of products of Riemann zeta functions. It would be interesting to investigate if a similar statement as given in Thm. 2 would also hold in this case. In fact, it is suggestive that such an assertion can be derived directly from the explicit formulas given in [4].

One can also ask similar questions in the case of a Klingen-Siegel-Eisenstein series.

Notations. If A and B are complex matrices of appropriate sizes, we put $A[B] := B^tAB$. We simply write $E = E_g$ resp. $0 = 0_g$ for the unit resp. zero matrix of size g if there is no confusion.

We often write elements of the group $GSp_g^+(\mathbb{R}) \subset GL_{2g}(\mathbb{R})$ consisting of real symplectic similitudes of size $2g$ with positive scale in the form \[
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix},
\]
understanding that A, B, C and D are real (g, g)-matrices.

If $Y \in \mathbb{R}^{(g,g)}$, we write $Y > 0$ if Y is symmetric and positive definite. The group $GL_g(\mathbb{R})$ operates on $\mathcal{P}_g := \{ Y \in \mathbb{R}^{(g,g)} \mid Y > 0 \}$ in the usual way from the right by $Y \mapsto Y[U]$.

If $f(Z)$ is a complex-valued function on \mathcal{H}_g, k a positive integer and $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in GSp_g^+(\mathbb{R})$, we set
\[
(f|_k\gamma)(Z) := \det (CZ + D)^{-k}f((AZ + B)(CZ + D)^{-1}) \quad (Z \in \mathcal{H}_g).
\]
We often write $f|\gamma$ instead of $f|_k\gamma$ if there is no misunderstanding.

If k is a positive integer, Γ is a subgroup of Γ_g and χ is a character of Γ of finite order, we denote by $S_k(\Gamma, \chi)$ the space of Siegel cusp forms of weight k and character χ w.r.t. Γ. If $\chi = 1$ we simply write $S_k(\Gamma)$.
2. Character twists of Koecher-Maass series.

For N a natural number we define
\[
\Gamma^*_{g,0}(N^2) := \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_g \mid C \equiv 0 \pmod{N^2}, \quad D \equiv \lambda E \pmod{N} \text{ for some } \lambda \in \mathbb{Z} \right\}
\]
(note that λ must necessarily satisfy $(\lambda, N) = 1$).

It is easy to see that $\Gamma^*_{g,0}(N^2)$ is a subgroup of Γ_g. If χ is a Dirichlet character modulo N, we extend χ to a character of $\Gamma^*_{g,0}(N^2)$ by putting $\chi(\gamma) := \chi(\lambda)$ if $\gamma \equiv \begin{pmatrix} * & * \\ 0 & \lambda E \end{pmatrix} \pmod{N}$.

Lemma 1. Let $f \in S_k(\Gamma_g)$ with Fourier coefficients $a(T)$ ($T > 0$ half-integral). Let χ be a primitive Dirichlet character modulo N. Then the function
\[
f_\chi(Z) := \sum_{T > 0} \chi(\text{tr} T)a(T)e^{2\pi i \text{tr}(TZ)} \quad (Z \in \mathcal{H}_g)
\]
belongs to $S_k(\Gamma^*_{g,0}(N^2), \chi^2)$.

Proof. Let
\[
g(\chi) := \sum_{\nu \pmod{N}} \chi(\nu)e^{2\pi i \nu/N}
\]
be the Gauss sum attached to χ. Since
\[
\sum_{\nu \pmod{N}} \chi(\nu)e^{2\pi i \text{tr}(T)\frac{\nu}{N}} = \chi(\text{tr} T)g(\chi),
\]
we obtain
\[
(2) \quad f_\chi = \frac{1}{g(\chi)} \sum_{\nu \pmod{N}} \chi(\nu) f|_{\alpha_\nu},
\]
where
\[
\alpha_\nu := \begin{pmatrix} E & \nu E \\ 0 & E \end{pmatrix} \quad (\nu \in \mathbb{Z}).
\]

Let $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma^*_{g,0}(N^2)$ and put
\[
A' := A + \frac{\nu}{N} C,
\]
\[
B' := B + \frac{\nu}{N}(E - AD^t)D - \frac{\nu^2}{N^2} CD^tD,
\]
\[
D' := D - \frac{\nu}{N} CD^tD.
\]
Then A', B' and D' are integral matrices, one has $D' \equiv D \pmod{N}$ and
\[
\alpha_{\nu} \gamma = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix} \begin{pmatrix} E & \frac{\gamma}{E} D D' \\ 0 & E \end{pmatrix};
\]
in particular \(\begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix} \in \Gamma^*_{g,0}(N^2) \), and it follows that
\[
f_{\chi}|\gamma = \frac{1}{g(\overline{\chi})} \sum_{\nu \pmod{N}} \overline{\chi}(\nu) f \begin{pmatrix} E & \frac{\gamma}{E} D D' \\ 0 & E \end{pmatrix} \]
\[
= \chi(\lambda^2) \cdot \frac{1}{g(\overline{\chi})} \sum_{\nu \pmod{N}} \overline{\chi}(\nu) f_{\alpha_{\nu}} (D \equiv \lambda E \pmod{N})
\]
\[
= \chi^2(\gamma)f.
\]
This proves the claim.

Lemma 2. Let the notations be as in Lemma 1 and put
\[
W_{N^2} := \begin{pmatrix} 0 & -E \\ N^2 E & 0 \end{pmatrix}.
\]
Then
\[
f_{\chi}|W_{N^2} = g(\overline{\chi})^2 N^{-g-1} f_{\overline{\chi}}.
\]

Proof. For $(\nu, N) = 1$ determine $\lambda, \mu \in \mathbb{Z}$ with $\lambda N - \mu \nu = 1$. Then
\[
\alpha_{\nu} W_{N^2} = N \begin{pmatrix} 0 & -E \\ E & 0 \end{pmatrix} \begin{pmatrix} N E & -\mu E \\ -\nu E & \lambda E \end{pmatrix} \alpha_{\mu}.
\]
Hence
\[
g(\overline{\chi}) \cdot f_{\chi}|W_{N^2} = N^{-g-1} \sum_{\nu \pmod{N},(\nu,N)=1} \overline{\chi}(\nu) f_{\alpha_{\mu}}
\]
\[
= \chi(-1) N^{-g-1} \sum_{\mu \pmod{N},(\mu,N)=1} \chi(\mu) f_{\alpha_{\mu}}
\]
\[
= \chi(-1) g(\chi) N^{-g-1} f_{\overline{\chi}}.
\]
Since $g(\chi) g(\overline{\chi}) = \chi(-1) N$, we obtain our claim.

Theorem 1. Let k be even and let $f \in S_k(\Gamma_g)$. Let χ be a primitive Dirichlet character modulo N and define $L(f, \chi, s)$ (Re $s \gg 0$) by (1). Let
\[
\gamma_g(s) := (2\pi)^{-gs} \prod_{\nu=1}^{g} \pi(\nu^{-1})/2 \Gamma \left(s - \frac{\nu - 1}{2} \right) \quad (s \in \mathbb{C})
\]
and set
\[
L^*(f, \chi, s) := N^{gs} \gamma_g(s) L(f, \chi, s) \quad (\text{Re } s \gg 0).
\]
Then \(L^*(f, \chi, s) \) extends to a holomorphic function on \(\mathbb{C} \), and the functional equation

\[
L^*(f, \chi, k - s) = (-1)^{\frac{ak}{2}} g(\chi)^2 \frac{1}{N} L^*(f, \overline{\chi}, s)
\]

holds, where \(g(\chi) \) is the Gauss sum attached to \(\chi \).

Proof. Since

\[
\left\{ \begin{pmatrix} U & 0 \\ 0 & (U^t)^{-1} \end{pmatrix} \mid U \in \text{GL}_{g,N}(\mathbb{Z}) \right\} \subset \Gamma_{g,0}(N^2)
\]

and \(k \) is even, the function \(f_\chi(iY) (Y > 0) \) is invariant under \(Y \mapsto Y[U] \) \((U \in \text{GL}_{g,N}(\mathbb{Z}))\). Hence it follows in the usual way that

\[
L^*(f, \chi, s) = \frac{1}{2} N^{gs} \int_{\mathcal{F}_{g,N}} f_\chi(iY)(\det Y)^s d\nu \quad (\text{Re } (s) \gg 0),
\]

where \(\mathcal{F}_{g,N} \) is any fundamental domain for the action of \(\text{GL}_{g,N}(\mathbb{Z}) \) on \(\mathcal{P}_g \) and \(d\nu = (\det Y)^{-(g+1)/2} dY \) is the \(\text{GL}_g(\mathbb{R}) \)-invariant volume element on \(\mathcal{P}_g \).

We fix a set of representatives \(U_1, \ldots, U_r \) for \(\text{GL}_g(\mathbb{Z})/\text{GL}_{g,N}(\mathbb{Z}) \) and now take

\[
\mathcal{F}_{g,N} = \bigcup_{\nu=1}^r \mathcal{R}_g[U_\nu],
\]

where \(\mathcal{R}_g \) is Minkowski’s fundamental domain for the action of \(\text{GL}_g(\mathbb{Z}) \).

Since \(\text{GL}_{g,N}(\mathbb{Z}) \) is closed under transposition, also \(\mathcal{F}_{g,N}^{-1} \) is a fundamental domain for \(\text{GL}_{g,N}(\mathbb{Z}) \).

We let

\[
\mathcal{P}_{g,+} := \{ Y \in \mathcal{P}_g \mid \det Y \geq N^{-g} \}, \quad \mathcal{P}_{g,-} := \{ Y \in \mathcal{P}_g \mid \det Y \leq N^{-g} \},
\]

write

\[
\mathcal{F}_{g,N} = (\mathcal{F}_{g,N} \cap \mathcal{P}_{g,+}) \cup (\mathcal{F}_{g,N} \cap \mathcal{P}_{g,-})
\]

and observe that \(\mathcal{F}_{g,N} \cap \mathcal{P}_{g,-} \) under the map \(Y \mapsto (N^2Y)^{-1} \) is transformed bijectively onto \(\mathcal{F}_{g,N}^{-1} \cap \mathcal{P}_{g,+} \). We also observe that both \(\mathcal{F}_{g,N} \cap \mathcal{P}_{g,+} \) and \(\mathcal{F}_{g,N}^{-1} \cap \mathcal{P}_{g,+} \) are fundamental domains for the induced action of \(\text{GL}_{g,N}(\mathbb{Z}) \) on \(\mathcal{P}_{g,+} \), the integral in (3) is absolutely convergent and the integrand is invariant under \(\text{GL}_{g,N}(\mathbb{Z}) \).

Therefore, since by Lemma 2

\[
f_\chi(i(N^2Y)^{-1}) = (-1)^{\frac{ak}{2}} g(\chi)^2 N^{gk-1}(\det Y)^k f_\overline{\chi}(iY),
\]
we conclude that
\[L^s(f, \chi, s) = \frac{1}{2} \int_{Fg,N \cap Fg,+} \left(f_\chi(iY)(N^g \det Y)^s \right. \\
+ \left. (-1)^{\frac{g^2}{2}} g(\chi)^2 N^{-1} f_\chi(iY)(N^g \det Y)^{k-s} \right) dv. \]

Standard arguments and estimates taking into account (4) and properties of \(R_g \) (compare e.g., [5, Chap. VI]) now show that the integral on the right of (5) is (absolutely) convergent for all \(s \in \mathbb{C} \) and represents a holomorphic function of \(s \).

Since
\[g(\chi)g(\overline{\chi}) = \chi(-1)N, \]
we also easily see the claimed functional equation. This concludes the proof of the Theorem.

3. Special values.

In this section we shall prove:

Theorem 2. Let \(k \) be even, \(k \geq g+1 \) and let \(f \in S_k(\Gamma_g) \). If \(\chi \) is a primitive Dirichlet character modulo \(N \), define \(L(f, \chi, s) \) (\(s \in \mathbb{C} \)) by holomorphic continuation of the series (1) (Theorem 1). Let \(g(\chi) \) be the Gauss sum attached to \(\chi \) and let \(Z[\chi] \) be the \(\mathbb{Z} \)-module obtained from \(\mathbb{Z} \) by adjoining the values of \(\chi \).

Then there exists a \(\mathbb{Z} \)-module \(M_f \subset \mathbb{C} \) depending only on \(f \) of finite rank such that all the special values
\[s \in \mathbb{N}, \quad \frac{g^2+1}{2} \leq s \leq k - \frac{g^2+1}{2} \]
and \(\chi \) runs over all primitive Dirichlet characters modulo all positive integers \(N \), are contained in \(M_f \otimes \mathbb{Z} Z[\chi] \).

Proof. From (2) and (3) and the proof of Theorem 1 we find that
\[g(\overline{\chi})\gamma_g(s)L(f, \chi, s) = \frac{1}{2} \sum_{\nu \pmod{N}} \overline{\chi}(\nu) \int_{Fg,N} f(iY + \frac{\nu}{N} E)(\det Y)^s\gamma \frac{g^2+1}{2} dY \]
for all \(s \in \mathbb{C} \).

Note that the individual integrands on the right of (6) are \(GL_{g,N}(\mathbb{Z}) \)-invariant since \(f(Z) \) is invariant under \{ \(\begin{pmatrix} U & 0 \\ 0 & (U^t)^{-1} \end{pmatrix} \mid U \in GL_{g,N}(\mathbb{Z}) \) \} and under translations. Let \(w \in \mathbb{Z}, w \geq 0 \) and \(Sp_g(\mathbb{R}) \rtimes \mathbb{R}^{2gw} \) be the semi-direct product of \(Sp_g(\mathbb{R}) \) and \(\mathbb{R}^{2gw} \cong (\mathbb{R}^{2g})^w \) with multiplication given by
\[(\gamma, \lambda)(\gamma', \lambda') = (\gamma\gamma', \lambda\gamma'^t + \lambda') \]
where by $\gamma \mapsto \gamma^\dagger$ we denote the diagonal embedding of $Sp_g(\mathbb{R})$ into $GL_{2gw}(\mathbb{R})$.

The group $Sp_g(\mathbb{R}) \ltimes \mathbb{R}^{2gw}$ acts on $\mathcal{H}_g \times \mathbb{C}^{gw}$ (with $\mathbb{C}^{gw} \cong (\mathbb{C}^g)^w$) from the left by

$$(\gamma, \lambda) \circ (Z, (\zeta_1, \ldots, \zeta_w)) = \left((AZ + B)(CZ + D)^{-1}, \left(\begin{array}{c} \zeta_1 + (\mu_1, \nu_1) \\ \vdots \\ \zeta_w + (\mu_w, \nu_w) \end{array}\right) \left(CZ + D\right)^{-1}\right)$$

where $\gamma = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right)$ and $\lambda = ((\mu_1, \nu_1), \ldots, (\mu_w, \nu_w))$ with $\mu_j, \nu_j \in \mathbb{R}^g$ for all j. The discrete subgroup $\Gamma_g \propto \mathbb{Z}^{2gw}$ acts properly discontinuously.

Let $\Gamma \subset \Gamma_g$ be any congruence subgroup acting without fixed points on \mathcal{H}_g (e.g., the principal congruence subgroup $\Gamma_g(\ell)$ with $\ell \geq 3$) and view f as an element of $S_k(\Gamma)$.

Put $w := k - (g + 1)$. It was shown in [2] that the map

$$h(Z) \mapsto h(Z)dzd\zeta$$

gives an isomorphism between $S_k(\Gamma)$ and the space of holomorphic differential forms of degree $\frac{g(g+1)}{2} + gw$ of (any) non-singular compactification of the quotient space $\Gamma \times \mathbb{Z}^{2gw}\backslash \mathcal{H}_g \times \mathbb{C}^{gw}$.

Using toroidal compactifications, in [3] from this a certain finiteness statement for certain cycle integrals attached to h was derived which we now want to describe in the special case we need.

Let S be a given rational symmetric matrix of size g and let n be an integer with $0 \leq n \leq w$. Define

$$T_g(S; n) := \bigcup_{Y \in \mathcal{P}} \{S + iY\}$$

$$\times \left(\mathbb{R}^{g}^{w-n} \times \{(\mu_1iY, \ldots, \mu_niY) \mid \mu_1, \ldots, \mu_n \in \mathbb{R}^{g}\}\right)$$

$$\subset \mathcal{H}_g \times \mathbb{C}^{gw}.$$

Then $T_g(S; n)$ is a real submanifold of $\mathcal{H}_g \times \mathbb{C}^{gw}$ of dimension $\frac{g(g+1)}{2} + gw$.

(In the notation of [3, §6] we have taken $a_1 = a_2 = \ldots = a_{w-n} \in \{g + 1, \ldots, 2g\}$ and $a_{w-n+1} = \ldots a_w \in \{1, \ldots, g\}$. Also note that in the definition of $T_g(a_1, \ldots, a_w; X)$ in [3, p. 401] we have replaced the “Z” in $W(a_1, \ldots, a_w)[Z]$ by “iY”. We think that this is the correct definition, since otherwise the corresponding integrals in [3, Lemma 6.2 and Thm. 5] in general would not be convergent.)
Put
\[U_g := \left\{ \begin{pmatrix} U & 0 \\ 0 & (U^t)^{-1} \end{pmatrix} | U \in GL_g(\mathbb{R}) \right\} \subset Sp_g(\mathbb{R}), \]

\[V_{g,n} := \{(\lambda_1, \ldots, \lambda_{w-n}, (\mu_1, 0), \ldots, (\mu_n, 0)) | \lambda_1, \ldots, \lambda_{w-n} \in \mathbb{R}^g, \mu_1, \ldots, \mu_n \in \mathbb{R}^g \} \]

and
\[H_{g,n} := U_g \otimes V_{g,n} \subset Sp_g(\mathbb{R}) \otimes \mathbb{R}^{2gw}. \]

Let
\[\alpha^{(S)} := \begin{pmatrix} E & S \\ 0 & E \end{pmatrix}. \]

Then one easily checks that the conjugate subgroup
\[H_{g,n}^{(S)} := (\alpha^{(S)}, 0) \cdot H_{g,n} \cdot (\alpha^{(S)}, 0)^{-1} \]
leaves \(T_g(S; n) \) stable.

Note that \(H_{g,n}^{(S)} \) consists of all pairs
\[\left(\begin{pmatrix} U & S(U^t)^{-1} - US \\ 0 & (U^t)^{-1} \end{pmatrix}, (\lambda_1, \ldots, \lambda_{w-n}, (\mu_1, -\mu_1 S), \ldots, (\mu_n, -\mu_n S)) \right) \]
with \(\lambda_1, \ldots, \lambda_{w-n} \in \mathbb{R}^g \) and \(\mu_1, \ldots, \mu_n \in \mathbb{R}^g \).

Let
\[H_{g,n,\Gamma}^{(S)} := H_{g,n}^{(S)} \cap \Gamma \otimes \mathbb{Z}^{2gw}. \]

Write \(M := \Gamma \otimes \mathbb{Z}^{2gw} \backslash \mathcal{H}_g \times C^{gw} \) and denote by \(\overline{M} \) a fixed toroidal compactification of \(M \). Let \(\partial M = \overline{M} \setminus M \). Then according to [3, Lemma 6.1] the closure of the image of \(H_{g,n,\Gamma}^{(S)} \setminus T_g(S; n) \) in \(\overline{M} \) w.r.t. the usual complex topology is the support of a singular relative \(\frac{g(g+1)}{2} + gw \)-cycle with integral coefficients w.r.t. \((\overline{M}, \partial M) \).

Since \(H_{g,n+1}^{(S)} + gw(\overline{M}, \partial M, \mathbb{Z}) \) is of finite rank, one concludes that for any given \(h \in S_k(\Gamma) \) all the numbers
\[\int_{H_{g,n,\Gamma}^{(S)} \setminus T_g(S; n)} h(Z) dZ d\zeta \quad (S \in \mathbb{Q}^{(g,g)}, S = S^t) \]
are contained in a finite \(\mathbb{Z} \)-module (depending only on \(h \)) whose rank is bounded by the rank of the above cohomology group ([3, Thm. 5], compare our above remark).
On the other hand (compare [3, Lemma 6.2]) one has the equality

\[
\int_{H^{(S)} \backslash \mathcal{T}_g(S; n)} h(Z) dZ d\zeta = \sum_{\alpha(S) \notin \U_g(\alpha(S))^{-1} \cap \Gamma \{ S + iY \mid Y \in \mathcal{P}_g \}} h(Z) \det (Z - S)^n dZ.
\]

In particular, now take \(\Gamma = \Gamma_g(\ell) \) with some fixed \(\ell \geq 3 \). Then the integral on the right of (7) is equal to

\[
\int_{\mathcal{P}_g/GL^{(S)}_{g,\ell}(Z)} h(S + iY) (\det Y)^n dY,
\]

where

\[
GL^{(S)}_{g,\ell}(Z) := \{ U \in GL_{g,\ell}(Z) \mid S[U^t] \equiv S \pmod{\ell(Z)} \}.
\]

Let \(S = \frac{\nu}{N} E \) with \(\nu \in \mathbb{Z} \) (so \(\alpha^{(S)} = \alpha_\nu \) in the notation of §2). Then we see that \(GL_{g,\ell N}(Z) \) is contained in \(GL^{(S)}_{g,\ell}(Z) \). Since the index of \(GL_{g,\ell N}(Z) \) in \(GL_{g,N}(Z) \) is bounded by a number depending only on \(\ell \), the assertion of Thm. 2 now follows taking into account (6) and the fact that \(\Gamma(\frac{1}{2} + \nu) \in \mathbb{Q}\sqrt{\pi} \) for \(\nu = 0, 1, 2 \ldots \).

Acknowledgements. The authors would like to thank E. Freitag, T. Oda, R. Scharlau and H. Yoshida for valuable conversations.

References

Received June 15, 1999. The first author was partially supported by KOSEF 98-0701-01-01-3 and POSTECH fund in the program year of 1999.

Department of Mathematics
Pohang Institute of Science & Technology
Pohang 790-784
Korea
E-mail address: yjc@yjc.postech.ac.kr

Universität Heidelberg
Mathematisches Institut,
INF 288, D-69120 Heidelberg
Germany
E-mail address: winfried@mathi.uni-heidelberg.de