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BOUNDEDNESS OF THE RIESZ PROJECTION ON
SPACES WITH WEIGHTS

Stephen D. Abbott and Irina Marinov

Given a bounded, non-negative operator W and a projec-
tion P on a Hilbert space, we find necessary and sufficient
conditions for the existence of a non-trivial, non-negative op-
erator V such that P is bounded from L2(W ) to L2(V ). This
leads to a vector-valued version of a theorem of Koosis and
Treil’ concerning the boundedness of the Riesz projection in
spaces with weights.

1. Introduction.

Let ∂D be the unit circle in the complex plane, define the function χ on ∂D
by χ(eiθ) = eiθ, and set P = {p : p =

∑N
k=−N ckχ

k}. Let σ be normalized
Lebesgue measure on ∂D. The Riesz projection P+ is defined on P by the
formula P+(

∑N
k=−N ckχ

k) =
∑N

k=0 ckχ
k.

In [4], Paul Koosis proved:

Theorem 1 (Koosis). Given a non-negative function w ∈ L1, there exists
a non-negative, non-trivial function v ∈ L1 such that∫

∂D
|P+f |2v dσ ≤

∫
∂D
|f |2w dσ ∀f ∈ P

if and only if 1
w ∈ L

1.

The w−1 ∈ L1 requirement may look familiar to readers acquainted with
the theorems of prediction theory, and indeed, in his proof of Theorem 1,
Koosis observes that the necessity of the w−1 ∈ L1 condition is a consequence
of:

Theorem 2 (Kolmogorov’s infimum). Given w ≥ 0 in L1,

inf
{∫

∂D
|1− p|2ωdσ : p ∈ P,

∫
∂D

pdσ = 0
}

=
[∫

∂D

1
ω
dσ

]−1

,

where the infimum is understood to be zero if w−1 /∈ L1.

Koosis’ proof that w−1 ∈ L1 is sufficient in Theorem 1 is short and ele-
gant, but it uses techniques from analytic function theory that tie it to the
scalar-valued setting. A version of Theorem 1 for vector-valued functions
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258 STEPHEN D. ABBOTT AND IRINA MARINOV

and operator-valued weights was proved in a very different way by S.R. Treil’
in [6]. Treil’ takes an interesting geometric approach, and it is this view-
point that prompted us to study more deeply the nature of the relationship
between the weights w, v, and the projection P+.

Starting with an extremely general formulation of the Koosis result in
Section 2, we prove a version of Theorem 1 for a projection P and a non-
negative, bounded operator W on an arbitrary Hilbert space L. The re-
sulting theorem (Theorem 4) has some interesting implications when we
specialize to L2 of the unit circle. We cannot, however, use it to recover the
Koosis result (for bounded weight functions) since the positive operator V
that appears in the theorem need not be a multiplication operator. This
issue is addressed in Section 3, where we introduce a bilateral shift U on L
and require that our weights W and V commute with U . The main result
of this section (Theorem 7) is a strengthening of Treil’s vector-valued result
referenced above.

This research owes a great debt to Treil’ in that the proof of Theorem 7
uses the same line of attack discovered by him, albeit with two notable dif-
ferences. One substantial simplification comes from the use of Theorem 4
below which is essentially a corollary to the main result in [1]. A second,
more significant, improvement is achieved by replacing Treil’s geometric con-
struction with an algebraic argument that enables us to drop the hypothesis
of invertibility assumed in Treil’s work. (See Corollary 8.) The result is a
stronger theorem with, what is in our opinion, a more elegant proof.

2. Koosis’ Theorem for an Arbitrary Projection.

Let L be a Hilbert space with inner product 〈·, ·〉, and let B(L) be the
algebra of bounded linear operators on L. Given a projection P ∈ B(L)
onto a subspace C ⊆ L and a non-negative operator W ∈ B(L), we ask
when there exists a non-trivial, non-negative operator V ∈ B(C) satisfying

〈V Pf, Pf〉 ≤ 〈Wf, f〉 ∀f ∈ L.
It may seem surprising that one could say anything interesting at all without
the addition of some more hypotheses, but we get hope from the fact that
Kolmogorov’s infimum has a useful analogue in this very general setting.
The result appears in [1], and is stated here as:

Theorem 3. Let W ∈ B(L) be non-negative, and let P ∈ B(L) be the
projection onto a subspace C ⊆ L. If k ∈ C, then

inf {〈W (k + f), k + f〉 : Pf = 0} = lim
ε→0+

〈[PW−1
ε |C ]−1k, k〉,(1)

where Wε = W + εI, and I is the identity operator on L.

The two inverses in Equation (1) refer to different spaces. For each ε > 0,
the operator Wε is invertible in B(L). Letting Aε = PW−1

ε |C ∈ B(C), we
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have that Aε is bounded below and thus is invertible in B(C). The limit in
Equation (1) is monotone decreasing with decreasing ε, and a polarization
argument ensures that limε→0+〈[PW−1

ε |C ]−1f, g〉 exists for all f, g ∈ C. Thus
it makes sense to define V ∈ B(C) to be the weak limit of [PW−1

ε |C ]−1 as ε
tends to zero from the right.

Combining these observations with Treil’s geometric insight into Koosis’
theorem gives us:

Theorem 4. Let W ∈ B(L) be non-negative, and let P ∈ B(L) be a projec-
tion onto C ⊆ L. Then V = wk- lim

ε→0+
[PW−1

ε |C ]−1 satisfies

〈V Pf, Pf〉 ≤ 〈Wf, f〉 ∀f ∈ L,(2)

and is maximal in the sense that V ≥ B for any B that also satisfies (2).

Proof. For f ∈ L, write f = k + g where k ∈ C and g ∈ C⊥. By Theorem 3,

〈V Pf, Pf〉 = 〈V k, k〉 = inf
Pg′=0

〈W (k + g′), k + g′〉 ≤ 〈Wf, f〉.

If B satisfies (2), then for any g′ ∈ C⊥ it must be that 〈Bk, k〉 ≤ 〈W (k +
g′), k + g′〉. Thus

〈Bk, k〉 ≤ inf
Pg′=0

〈W (k + g′), k + g′〉 = 〈V k, k〉.

�

Corollary 5. Given W and P in B(L) as in Theorem 4, there exists
a non-negative, non-trivial V ∈ B(C) satisfying (2) if and only if
lim
ε→0+

〈[PW−1
ε |C ]−1k, k〉 > 0 for some k ∈ C.

Corollary 5 is just a slightly weaker reformulation of Theorem 4 that
more accurately parallels the statement of Koosis’ result (Theorem 1). The
next proposition gives a condition sufficient for proving the existence of a
non-trivial weight V . Although it is no longer necessary, this condition is
somewhat easier to verify than the one given in Corollary 5.

Corollary 6. Given W and P in B(L) as in Theorem 4, there exists
a non-trivial, non-negative operator V ∈ B(C) satisfying (2) provided
lim
ε→0+

〈W−1
ε k, k〉 <∞ for some non-trivial k ∈ C.

Proof. Let Pk be the projection onto the one dimensional subspace spanned
by the vector k. A straightforward calculation shows that the operator
PkW

−1
ε |PkL is just multiplication by the constant 〈W−1

ε
k
‖k‖ ,

k
‖k‖〉. Since k ∈

ranP ,
inf
Pf=0

〈W (k + f), k + f〉 ≥ inf
Pkf=0

〈W (k + f), k + f〉.
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Now using Theorem 3 we can write

lim
ε→0+

〈[PW−1
ε |C ]−1k, k〉 ≥ lim

ε→0+
〈[PkW−1

ε |PkL]−1k, k〉 = lim
ε→0+

‖k‖4

〈W−1
ε k, k〉

,

and the result follows from Corollary 5. �

3. Laurent Operators.

The generality of Theorem 4 has a strong appeal; however, the original
Koosis result deals with multiplication operators, and this quality is ignored
in Theorem 4. Consider this example on L2 of the unit circle.

Let w ≥ 0 be a bounded function satisfying (i) logw ∈ L1 and (ii) 1
w /∈ L1,

and define W to be multiplication by w on L = L2. The Hardy space H2 =
{f ∈ L2 : f̂(n) = 0,∀n < 0} is a closed subspace of L2 and the orthogonal
projection PH onto H2 agrees with the Riesz projection P+ on polynomials.
Now condition (i) implies that there exists an h ∈ H2 such that |h|2 = w a.e.
on the unit circle, which means that lim

ε→0+
〈W−1

ε h, h〉 = 1. By Corollary 6,

then, there exists a non-trivial, non-negative operator V ∈ B(H2) satisfying

〈V PHf, PHf〉 ≤
∫
∂D
|f |2w dσ for all f ∈ L2. However, using Theorem 1, we

see that condition (ii) above implies that there is no way to extend V to be
multiplication by some non-negative function v on L2.

This example illustrates that to fully recover Koosis’ theorem from the
abstract setting, we must introduce a bilateral shift U ∈ B(L) and consider
operators that commute with U .

Definition. A unitary operator U ∈ B(L) is a bilateral shift if there exists
a projection P0 ∈ B(L) satisfying

(i) P0U
jP0 = δj,0P0, ∀j ∈ Z; and,

(ii) as n→∞,
n∑

j=−n
U jP0U

∗j converges strongly to the identity on L.

Letting P0 = P0L, we can write L =
∞∑

j=−∞
⊕U jP0. Theorem 7 will deal

specifically with the projection

PH =
∞∑
j=0

U jP0U
∗j

onto the half-space H =
∞∑
j=0

⊕U jP0.

Definition. An operator A ∈ B(L) is Laurent (with respect to U) if AU =
UA.
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In the case of the unit circle, if U ∈ B(L2) is given by Uf = χf , then
A ∈ B(L2) is Laurent if and only if Af = φf for some φ ∈ L∞. An analogous
fact holds in the vector-valued case ([5, p. 110]).

We are now ready to prove:

Theorem 7. Let W ∈ B(L) be non-negative and Laurent. Then there exists
a non-trivial, non-negative Laurent operator V ∈ B(L) satisfying

〈V PHf, PHf〉 ≤ 〈Wf, f〉 ∀f ∈ L(3)

if and only if V0 =wk-lim
ε→0

[P0W
−1
ε |P0 ]

−1 is non-trivial.
Moreover, if V0 is non-trivial, then V can be constructed to satisfy

〈V c, c〉 ≥ 1
4
〈V0c, c〉 ∀c ∈ P0.(4)

Proof. Assume V exists. Then for any f ∈ L,

〈V P0f, P0f〉
1
2 = ‖V

1
2P0f‖ = ‖V

1
2 (PH − UPHU∗)f‖

≤ ‖V
1
2PHf‖+ ‖V

1
2UPHU

∗f‖
≤ ‖V

1
2PHf‖+ ‖V

1
2PHU

∗f‖
≤ 〈Wf, f〉

1
2 + 〈WU∗f, U∗f〉

1
2

= 2〈Wf, f〉
1
2 .

Thus, 1
4〈V P0f, P0f〉 ≤ 〈Wf, f〉 for all f ∈ L, and so by Theorem 4, 1

4P0V |P0

≤ V0. Since V is non-trivial and Laurent, its kernel cannot contain P0 and
it follows that V0 is non-trivial as well.

Conversely, assume V0 =wk- lim
ε→0+

[P0W
−1
ε |P0 ]

−1 is non-trivial. For n ≥ 1,

define Pn =
n∑
j=0

U jP0U
∗j to be the projection onto the subspace Pn = PnL,

and let Vn =wk- lim
ε→0+

[PnW−1
ε |Pn ]−1. By Theorem 4,

〈VnPnf, Pnf〉 ≤ 〈Wf, f〉 ∀f ∈ L,
and the sequence Vn is monotone in the sense that if 0 ≤ m < n and pm ∈ Pm
then

〈Vmpm, pm〉 = inf
Pmf=0

〈W (pm + f), pm + f〉

≤ inf
Pnf=0

〈W (pm + f), pm + f〉 = 〈Vnpm, pm〉.

Roughly speaking, we intend to define V via the limit of the monotone
sequence Vn. The dilemma is that the argument will require each successive
operator to be a dilation of the previous one (i.e., PnVn+1|Pn = Vn) which is
not true of the sequence Vn. Thus, we first need to move to a new sequence
An satisfying 0 ≤ An ≤ Vn which does have this property.
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To this end set A0 = V0, and define An+1 inductively as follows. Write
Pn+1 = Pn ⊕ Un+1P0, and denote Vn+1 ∈ B(Pn+1) by the 2× 2 matrix

Vn+1 =
(

B D
D∗ C

)
where B, C, and D are acting on the appropriate spaces. Now Vn+1 ≥ 0 is
equivalent to B ≥ 0, C ≥ 0 and the existence of a contraction W : ranC →
ranB satisfying D = B

1
2WC

1
2 [3, p. 547]. Letting X = WC

1
2 leads to the

LU-factorization

Vn+1 =
(

B D
D∗ C

)
=

(
B

1
2 0

X∗ Y
1
2

)(
B

1
2 X

0 Y
1
2

)
(5)

where Y = C−X∗X = C
1
2 (I−W ∗W )C

1
2 ≥ 0. By the induction hypothesis,

0 ≤ An ≤ B which implies that An = B
1
2ZB

1
2 for a positive contraction Z

[2, p. 413]. Now it is straightforward to verify that

An+1 =

(
B

1
2 0

X∗ Y
1
2

)(
Z 0
0 I

)(
B

1
2 X

0 Y
1
2

)
satisfies 0 ≤ An+1 ≤ Vn+1, and PnAn+1|Pn = An.

By construction, 〈AnPnf, Pnf〉 ≤ 〈VnPnf, Pnf〉 ≤ 〈Wf, f〉 for all n ≥ 0
and f ∈ L, and the sesquilinear form a(p, q) = lim

n→∞
〈Anp, q〉 is well defined

for p, q ∈ P+ =
⋃∞
n=0 Pn. The operators An are uniformly bounded on

the diagonal by ‖W‖, so a is as well, and hence there exists an operator
A ∈ B(H) such that 〈Ap, q〉 = a(p, q) for all p, q ∈ P+. The operator A
satisfies 〈APnf, Pnf〉 ≤ 〈Wf, f〉 for all f ∈ L from which we can conclude
that 〈APHf, PHf〉 ≤ 〈Wf, f〉.

We now use A to construct a Laurent operator V ∈ B(L) with the re-
quired properties. For k ≥ 0, let Fk be the operator on L defined by

Fk = 1
k+1

k∑
n=0

U∗nAPHU
n. For n ≥ 1 and f ∈ L,

〈AUnPHf, UnPHf〉
1
2 = ‖A

1
2UnPHf‖ = ‖A

1
2 (PH − Pn−1)Unf‖

≤ ‖A
1
2PHU

nf‖+ ‖A
1
2
n−1Pn−1U

nf‖

≤ 2〈Wf, f〉
1
2 .

This implies 〈FkPHf, PHf〉 ≤ 〈4Wf, f〉 for all k ≥ 0. Letting V be a weak
limit point of the set {1

4Fk : k ≥ 0}, it follows that V satisfies (3) and is
Laurent as desired.

It remains to show that V satisfies (4), which will follow if we can demon-
strate that 〈AUnc, Unc〉 ≥ 〈V0c, c〉 for all n ≥ 0 and c ∈ P0. If n = 0,
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A0 = V0 and the result is clear. For a fixed n ≥ 0, the inductive construc-
tion of An+1 yields

〈AUn+1c, Un+1c〉 = 〈An+1U
n+1c, Un+1c〉

= 〈X∗ZXUn+1c, Un+1c〉+ 〈Y Un+1c, Un+1c〉
≥ 〈Y Un+1c, Un+1c〉.

Thus it is sufficient to prove 〈Y Un+1c, Un+1c〉 ≥ 〈V0c, c〉 for all c ∈ P0.
Let z ∈ Pn, so that z + Un+1c ∈ Pn ⊕ Un+1P0 = Pn+1. Using the

LU-factorization for Vn+1 given in (5), we have

〈Vn+1(z + Un+1c), z + Un+1c〉

= 〈Bz, z〉+ 2Re〈B
1
2 z,XUn+1c〉+ 〈CUn+1c, Un+1c〉.

Recall that the operator Vn+1 was generated via Theorem 4. This, together
with the assumption that W is Laurent allows us to write

〈Vn+1(z + Un+1c), z + Un+1c〉
= inf

{
〈W (z + Un+1c+ f), z + Un+1c+ f〉 : Pn+1f = 0

}
≥ inf

{
〈W (Un+1c+ f), Un+1c+ f〉 : Un+1P0U

∗(n+1)f = 0
}

= inf {〈W (c+ f), c+ f〉 : P0f = 0}
= 〈V0c, c, 〉.

Combining these observations we have

〈Bz, z〉+ 2Re〈B
1
2 z,XUn+1c〉+ 〈CUn+1c, Un+1c〉 − 〈V0c, c〉 ≥ 0(6)

for all z ∈ Pn and c ∈ P0. Let r be an arbitrary real number. Since

ranX ⊆ ranB = ranB
1
2 , there exists a sequence zm in Pn such that B

1
2 zm →

rXUn+1c. Substituting into (6) and taking limits we get

r2‖XUn+1c‖2 + 2r‖XUn+1c‖2 +
(
〈CUn+1c, Un+1c〉 − 〈V0c, c〉

)
≥ 0.

Evidently, this quadratic equation in r has at most one real root which means
that its discriminant is not positive. Translating this into a statement about
the coefficients yields ‖XUn+1c‖2 ≤ 〈CUn+1c, Un+1c〉 − 〈V0c, c〉, which is
equivalent to

〈V0c, c〉 ≤ 〈CUn+1c, Un+1c〉 − 〈X∗XUn+1c, Un+1c〉 = 〈Y Un+1c, Un+1c〉.
Altogether then, if c ∈ P0, we have

〈V0c, c〉 ≤ 〈Y Un+1c, Un+1c〉 ≤ 〈AUn+1c, Un+1c〉,
and the lower estimate in (4) follows. �

In the algebraic language of this paper, Treil’s result in [6] essentially
takes the form of:
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Corollary 8 (Treil’). Let W ∈ B(L) be non-negative and Laurent. Then
there exists a non-trivial, non-negative Laurent operator V ∈ B(L) with
P0V |P0 invertible in B(P0) and satisfying

〈V PHf, PHf〉 ≤ 〈Wf, f〉 ∀f ∈ L
if and only if V0 =wk-lim

ε→0
[P0W

−1
ε |P0 ]

−1 is invertible.

Proof. If V exists, then as before, we can show that V0 ≥ 1
4P0V |P0 . It

follows that V0 is bounded below and consequently invertible. Conversely,
the construction in Theorem 7 yields an operator V satisfying (4). Thus, if
V0 is invertible then P0V |P0 is invertible as well. �
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APPLICATION OF RESTRICTION OF FOURIER
TRANSFORMS TO AN EXAMPLE FROM

REPRESENTATION THEORY

L. Barchini and Mark R. Sepanski

This paper uses restriction of Fourier transforms to con-
struct explicit realizations of certain irreducible unitary rep-
resentations of SU(n, n). The realizations begin with general-
izations of the classical Szegö map. Boundary values of these
Szegö maps naturally lead to certain restrictions of Fourier
transforms. The image of these restrictions provide concrete
constructions of unitary representations as L2 spaces on cer-
tain orbits. The SU(n, n) invariance of the L2 spaces and
inner products follows immediately from the restriction maps
and the natural pairing between certain degenerate principal
series.

1. Introduction.

Calculating explicit and natural constructions of unitary representations–
especially singular ones–has been a very fruitful field of study in represen-
tation theory. Consider, for instance, the Metaplectic representation and
its many applications. One of the reasons explicit realizations are so useful
is because detailed knowledge of a representation frequently comes through
use of a good realization. This paper studies and constructs a number of
explicit realizations for certain unitary representations of SU(n, n). The
central technique employs certain restrictions of Fourier transforms ([15])
that arise naturally in the study of the representation theory of SU(n, n).
Our approach is different than the one usually adopted in such studies of
this kind (e.g., [8], [12], [13], [14]) where “extensions” of Fourier transforms
are mainly used.

In our approach, the representations naturally arise from an examination
of various Szegö maps and their boundary values which immediately lead to
certain restrictions of Fourier transforms. There are several advantages to
this line of study. The first is that the invariance of our spaces and inner
products are very natural from this point of view. The second is that precise
knowledge of the K-types is not needed. The third is that the techniques
employed are independent of a multiplicity one assumption on K-types.
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To be more specific about the results of this study, write G = SU(n, n),
K = S(U(n) × U(n)), and G/P for the closed G-orbit in the boundary of
G/K. The unbounded realization of G/K may be identified with D+ =
H + iH+ where H and H+ are the set of n × n Hermitian matrices and
n × n positive definite Hermitian matrices, respectively. More generally,
the semi-definite G-orbits of GC/PC may be described on an open dense set
as H + iOp where

Op = {X ∈ H | signature of X is (p, 0)}.

Op is an orbit under the action of the Levi part of P and comes equipped with
a uniquely defined equivariant measure, dµp. Then the main application of
our study of the restriction of the Fourier transform shows that

L2(Op, dµp)

is an irreducible unitary representation of SU(n, n) (Theorem 10.4). Though
this statement is already known ([12]), we believe the techniques in our
new approach yield a more complete understanding of this representation.
We also expect the same techniques to be applicable to a wider family of
representations–at least including the representations associated to certain
orbits in real semisimple Jordan algebras ([13]).

In more detail, we begin with certain pairs of degenerate principal se-
ries on G/P . For certain parameters, depending on each choice of Op,
the appropriate principal series may be realized in the noncompact pic-
ture as L2(H, det(I + X2)±(n−p) dX) and is denoted by L2(H)±, respec-
tively. Using techniques similar to [11] and [1], we write down a Szegö
map, S : L2(H)+ → C∞(D+). It turns out that S acts on a function
f ∈ L2(H)+ by the particularly easy formula

Sf(η) =
∫
H

det(X − η)−pf(X) dX(1.1)

for each η ∈ D+ (Theorem 5.3). Writing B for the boundary value map
taking D+ to H, it is possible to form a commutative diagram defining an
intertwining map, A : L2(H)+ → L2(H)−, of the form

A
L2(H)+ −→ L2(H)−.

S ↓ ↗
B

C∞(D+)

(1.2)

For functions φ ∈ S(H), the Schwartz functions on H, it is possible to see
that the action of A may be rewritten as

Aφ(X) = inp
∫
Op

ei tr(Xξ) φ̌(ξ) dµp(ξ)(1.3)
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where φ̌ is the inverse Fourier transform of φ on H (Theorem 7.2). Equa-
tion (1.3) suggests a second splitting of the singular integral defining A.
Namely, consider the two maps FR : L2(H)+ → L2(Op, dµp) and FE :
L2(Op, dµp)→ L2(H)− given by

FRφ = φ̌|Op

when φ ∈ S(H), where φ̌|Op denotes restriction of φ̌ to Op, and

FEψ(X) = inp
∫
Op

ei tr(ξX) ψ(ξ) dµp(ξ)

for ψ ∈ Im(FR). The first is a restriction of the Fourier transform and
the second is the more usual “extension” of the Fourier transform. These
maps are proved to be continuous (Theorem 9.1) and yield the commutative
diagram

A
L2(H)+ −→ L2(H)−

↘
FR

↑ FE .

L2(Op, dµp)

(1.4)

This diagram is used to make L2(Op, dµp) into a representation of G by
requiring all maps to be G-maps (Theorem 10.2).

The point of working with L2(Op, dµp) is that it comes equipped with its
own inner product denoted by

〈f1, f2〉Op =
∫
Op

f1(ξ)f2(ξ) dµp(ξ)

for f, g ∈ L2(Op, dµp). In fact, it is proved that this structure makes
L2(Op, dµp) into a irreducible unitary representation (Theorem 10.4) of G.
The key to seeing the invariance of the inner product is to relate it to an
invariant form on L2(H)+. Indeed, consider the natural G-invariant pairing
of L2(H)+ and L2(H)− given by

〈f, g〉A =
∫
H
f(X)Ag(X) dX

for f, g ∈ L2(H)+. The central identity fitting everything together is

〈f, g〉A = 〈FRf, FRg〉Op

(Theorem 10.3). Thus the G-invariance of the L2 inner product follows
directly and immediately.

Finally, denoting the kernel of RF as K (which is the same as the kernel
of 〈·, ·〉A), RF therefore induces a bijective intertwining isometry between
the completion of L2(H)+/K and L2(Op, dµp).
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2. Preliminaries.

Let G = SU(n, n). Breaking up the 2n×2n matrices into four n×n blocks,
write:

J =
(

0 −iIn
iIn 0

)
.

Unless noted otherwise, we will use the following realization throughout the
paper:

G = {g ∈ SL(2n,C) | g∗Jg = J}.

It is useful to gather a few simple facts about G for later use.

Lemma 2.1. Write the 2n×2n matrix g =
(
A B
C D

)
as four n×n blocks.

1) G consists of the matrices g ∈ SL(2n,C) satisfying

A∗C = C∗A, D∗B = B∗D, A∗D − C∗B = I.(2.1)

2) G consists of the matrices g ∈ SL(2n,C) satisfying

AB∗ = BA∗, CD∗ = DC∗, AD∗ −BC∗ = I.(2.2)

3) For g ∈ G,

g−1 =
(

D∗ −B∗
−C∗ A∗

)
.(2.3)

4) K = {g ∈ G | A = D, B = −C} is a maximally compact subgroup of
G. K may also be described as

K =
{(

A B
−B A

) ∣∣∣ (A+ iB,A− iB) ∈ S(U(n)× U(n))
}
.

5) P = {g ∈ G | C = 0} and P = {g ∈ G | B = 0} are parabolic
subgroups of G. P can also be described as

(2.4) P =
{(

A B
0 A∗−1

) ∣∣∣ A ∈ GL(n,C), det(A) ∈ R×,

B ∈ gl(n,C), A−1B = (A−1B)∗
}
.
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6) P admits a Langlands decomposition P = LN with L = MA where

M =
{(

A 0
0 A∗−1

) ∣∣∣ A ∈ GL(n,C), det(A) = ±1
}
,

A =
{(

aI 0
0 a−1I

) ∣∣∣ a ∈ R>0

}
,

N =
{(

I X
0 I

) ∣∣∣ X∗ = X

}
.

Likewise, P = LN where

N =
{(

I 0
X I

) ∣∣∣ X∗ = X

}
.

The the representations of G to be studied will be induced from the
following characters.

Definition 2.1. Let p ∈ Z, 0 ≤ p ≤ n.
1) The character χp : K → S1 acts by

χp

(
A B
−B A

)
= det(A+ iB)p.

2) The character δp : M → {±1} acts by

δp

(
A 0
0 A∗−1

)
= det(A)p.

3) Write a0 = Lie(A). Let ε : a0 → R by

ε

(
aI 0
0 −aI

)
= a

and νp : a0 → R by

νp = n(n− p)ε

(the differential of the character det(A)n−p).
4) Write the Cartan decomposition for Lie(G) as Lie(G) = Lie(K) + p,

write ap for the maximal Abelian subalgebra of p consisting of diagonal
matrices, and ρ : ap → R for the half sum of restricted weights. An
easy calculation shows ρ|a0 = n2ε.

Explicitly, we will study the degenerate principal series induced from the
characters δp ⊗±νp of the maximal parabolic P .

Definition 2.2. Let

I±p = IndGP (δp ± νp)

(smooth, normalized induction).
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In other words,

I±p = {f : G→ C, smooth | f(xman) = δ−1
p (m) e−(±νp+ρ) log(a) f(x)}(2.5)

with a G action of

gf(x) = f(g−1x).

Beginning in Section 5, we will also make use of the noncompact picture
of these induced representations ([9], §7.1). To that purpose, decompose G
as KMAN and write the A part of g as eH(g). Then the associated Hilbert
space for I±p is

L2(N, e±2Re νpH(n) dn)(2.6)

where dn is Haar measure.

Definition 2.3. Let X,Y ∈ gl(n,C).
1) Given a fixed presentation Z = X + iY , define

Z = X − iY,
Z∗ = X∗ + iY ∗

so that Z∗ is the normal transpose complex conjugation.

2) Given g =
(
A B
C D

)
∈ gl(2n,C), let

ηg = (C + iD)(A+ iB)−1

which is well defined for almost all g and let

αg = A+ iB.

3) Write H = H(n) for the set of n× n Hermitian matrices,

H = {X ∈ gl(n,C) | X∗ = X},
and H± for the positive, respectively negative, definite ones,

H± = {X ∈ H | ±X > 0}.
4) Write

D = {X + iY | X,Y ∈ H},
D+ = {X + iY | X ∈ H, Y ∈ H+}
D− = {X + iY | X ∈ H, Y ∈ H−}.

It is easy to check the following.

Lemma 2.2. The mapping

g → ηg

implements an isomorphism between G/K and D+. In particular, η∗g = ηg
and αg is invertible.
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3. The Szegö Map to Sections on G/K.

Definition 3.1. Write C∞(G/K,χp) for the smooth sections on G/K of
the line bundle induced by χp. We will view this as

{f : G→ C, smooth | f(gk) = χ−1
p (k)f(g) ∀g ∈ G, k ∈ K}.

The central tool used to analyze the representations in this paper is the
following Szegö map.

Definition 3.2. Define the Szegö map,

S : I+
p → C∞(G/K,χp),

to be the G-intertwining operator mapping f → Sf given by

Sf(g) =
1

Vol(M
⋂
K)

∫
K
f(gk)χp(k) dk.

In the following, we show that the map S is a kernel operator. This
will permit us to switch to the noncompact picture for I+

p and identify
C∞(G/K,χp) as the set of smooth functions on the tube domain D+.

The first step is to rewrite S as an integral over N . As usual, given
g ∈ G, decompose g according to

G = K exp(m0 ∩ p)AN

where m0 = Lie(M). Therefore write g = K(g)M(g)A(g)N(g), A(g) =
eH(g), and L(g) = M(g)A(g). For future reference, observe δp|exp(m0) = 1
since δp is trivial on the connected component of M .

Theorem 3.1. For f ∈ I+
p ,

Sf(g) =
∫
N

e(νp−ρ)H(g−1n) χp(K(g−1n))f(n) dn.

Proof. This is a standard change of variables. For instance, see [11].

Lemma 3.2. Let g =
(
A B
C D

)
∈ G, n =

(
I 0
X I

)
∈ N , and l =(

A1 0
0 A∗1

−1

)
∈ L. Let η = ηg and α = αg.

1) Then

e2nεH(g−1nl) = det(A∗1A1) det(α∗α) det(X − η) det(X − η).

2) Both det(α∗α) and det(X − η) det(X − η) are in R≥0.
3) As a special case,

enεH(n) = det(I +X2)
1
2 .
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4) Finally,

χ1(K(g−1nl)) = i−n det(A1) det(α∗) det(X − η) e−nεH(g−1nl) .

Proof.

Set x = g−1nl and write x = K(x)M(x)A(x)N(x). Let g =
(
A B
C D

)
,

A(x) =
(
R1 0
0 R2

)
, and L(x) = M(x)A(x) =

(
L1 0
0 L2

)
. Then

e2nεH(x) = det(R1)2 = |det(L1)|2.

On the other hand, if we write x =
(
x1 x2

x3 x4

)
and calculate x∗x and

compare the K(x)L(x)N(x) expansion to straightforward multiplication,
the upper left hand corner yields the equality

L∗1L1 = x∗1x1 + x∗3x3.

But now Equation (2.3) allows us to calculate x = g−1nl and so compute
that x1 = (D∗ −B∗X)A1 and x3 = (−C∗ +A∗X)A1. A simple calculation
using Equation (2.1) and the fact that G/K is fixed by ∗ verifies that

x∗1x1 + x∗3x3 = A∗1(X − η)αα∗(X − η)A1.

Taking determinants finishes the first part.
The second claim follows by observing both terms are complex numbers

times their conjugates. The third is a special case of (1) since (2) allows
square roots. For the fourth claim, set x = g−1nl. Using Equation (2.3)
to calculate g−1 and then expressing the result in the form K(x)L(x)N(x),

it is easy to see that if we write K(x) =
(

a b
−b a

)
, then (a + ib)L1 =

x1 − ix3 by looking at the upper left and lower left entries in the equality
x = K(x)L(x)N(x). A simple calculation then shows that

(a+ ib)L1 = −iα∗(X − η)A1.

Taking determinants, noting that det(L) = |det(L)|, and using Equation
(2.3) finishes the job. �

We are now in a position to rewrite Theorem 3.1.

Definition 3.3. Let f ∈ I+
p and X ∈ H. Define f a function on H by the

restriction to N :

f(X) = f

((
I 0
X I

))
.

Write dX for Haar measure on H.
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Theorem 3.3. Let f ∈ I+
p , g ∈ G, X ∈ H, η = ηg, and α = αg. Then

Sf ∈ C∞(G/K,χp) can be calculated by

Sf(g) = i−np det(α)−p
∫
H

det(X − η)−pf(X) dX.

Proof. From Theorem 3.1, Lemma 3.2 (with l = I), and Definitions 2.1
and 2.3, it is easy to check that

Sf(g) = i−np det(αα∗)−p det(α∗)p
∫
H

det(X − η)−pf(X) dX.

But Equation (2.2) can be used to check that αα∗ = (AA∗ + BB∗) = αα∗

which finishes the proof. �

4. The Szegö Map to Functions on D+.

Taking our cue from Lemma 2.2 and Theorem 3.3, it is reasonable to rewrite
the Szegö map, S, and C∞(G/K,χp) in terms of the tube domain D+.

Definition 4.1. Let g =
(
A B
C D

)
∈ GC. Identify H ∼= N and D ∼= NC

by the map

Z →
(

I 0
Z I

)
.

This implements an embedding D → GC/PC whose image is open and dense.
For almost all Z ∈ D, left multiplication by g in GC/PC may be pulled back
to D by the linear fractional transformation action defined as

gZ = (DZ + C)(BZ +A)−1.

Note that H and D± are G orbits under this action and that ηg from
Lemma 2.2 is simply g acting on iI.

If σ ∈ C∞(G/K,χp) does not vanish, there is an isomorphism

C∞(G/K,χp) ∼= C∞(G/K)(4.1)

established by mapping f ∈ C∞(G/K) to σf ∈ C∞(G/K,χp). If we let

σ(x, g) =
σ(g−1x)
σ(x)

(4.2)

for g ∈ G and x ∈ G/K and define a G action on C∞(G/K) by

gf(x) = σ(x, g) f(g−1x),(4.3)

then the map f → fσ is a G map as well. Below we choose a section σ and
use it to push the Szegö map down to functions on G/K. Finally, identify
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G/K ∼= D+ as in Lemma 2.2 by identifying x ∈ G/K with η = ηx ∈ D+.
Thus

C∞(G/K) ∼= C∞(D+).(4.4)

Definition 4.2. Write η = ηg. Let σ ∈ C∞(G/K,χp) be defined by

σ(g) = e(νp−ρ)H(g−1) χp(K(g−1)) det(−η)p.

To make sure the above definition is valid, we check that

σ(gk) = χp(k)−1σ(g)

for g ∈ G and k ∈ K. But this follows immediately by observing that
H(k−1g−1) = H(g−1), K(k−1g−1) = k−1K(g−1) and that ηgk = ηg.

Lemma 4.1. For g ∈ G, write α = αg. Then

σ(g) = i−np det(α)−p.

Proof. This calculation follows from Lemma 3.2 with n = l = I. �

Since C∞(G/K,χp) ∼= C∞(D+), we may view C∞(D+) as a G space and
view S as the G-map taking I+

p → C∞(D+). We continue to denote the
resulting map as S as the range will remove ambiguity. We now apply
Equations (4.1) and (4.4) and Lemma 4.1 to rewrite Theorem 3.3 in terms
of C∞(D+).

Theorem 4.2. The G intertwining map S : I+
p → C∞(D+) acts by

Sf(η) =
∫
H

det(X − η)−pf(X) dX.

It is useful to write the G action on C∞(D+) explicitly.

Lemma 4.3. Identifying G/K ∼= D+ and writing g =
(
A B
C D

)
∈ G,

σ(η, g) = det(D∗ −B∗η)−p.

Proof. It is enough to compute σ(·, g) on NL. Writing

x =
(

I 0
X I

)(
L 0
0 L∗−1

)
,

it is easy to compute

α(g−1x)α(x)−1 = D∗ −B∗ηx.

Applying Lemma 4.1 to Equation (4.2) finishes the proof. �

Thus using Lemma 3.2 and Equation (4.3), we can write the G action on
C∞(D+).
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Theorem 4.4. For f ∈ C∞(D+), η ∈ D+, and g =
(
A B
C D

)
∈ G,

gf(η) = det(D∗ −B∗η)−p f(g−1η).

5. I±p as Functions on H.

This section looks at an explicit form of the closure of I±p .

Lemma 5.1. Restriction to N ∼= H establishes an isomorphism of G spaces
between the closure of

I±p

and

L2(H, det(I +X2)±(n−p) dX)

where dX is Haar measure on H.

Proof. Apply Lemma 3.2 (with g = l = I) to Equation (2.6) and make the
identification of H with N as in Definition 4.1. �

In this section we explicitly compute the action of G on L2(H, det(I +
X2)±(n−p) dX) and extend the Szegö map accordingly.

Definition 5.1. Write

L2(H)± = L2(H, det(I +X2)±(n−p) dX)

and

L2(H) = L2(H, dX).

Lemma 5.2. L2(H)+ ⊆ L2(H) ⊆ L2(H)−.

Proof. Since 0 ≤ p ≤ n and det(I +X2) ≥ 1,

0 < det(I +X2)−(n−p) ≤ 1 ≤ det(I +X2)+(n−p).

Thus the Lemma follows immediately from the definition of L2(H)+ in Def-
inition 5.1. �

For functions f ∈ I±p , this Lemma can also be proved directly. Since
two formulas arising from this approach will be needed later, we sketch the
idea. For instance, by starting with f ∈ I+

p , applying Equation (2.5) to the
KMAN decomposition, and using Lemma 3.2 (with g = l = I) it is easy to
show

|f(X)|2 ≤ C det(I +X2)p−2n(5.1)
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where C is a constant bounding |f |2 on K. This is enough to finish the
first inclusion since it is known ([7], §2.1, p. 38) that∫

H
det(I +X2)m dX <∞(5.2)

whenever m < −n+ 1
2 . Though not needed immediately, we will also have

recourse to make use of a formula for the Jacobian of the change of variables
on H given by X → gX. It is

det(BX +A)−2n.(5.3)

It is now apparent that Theorem 4.2 may be completed to the following
(remember everything can be written as an integral over K).

Theorem 5.3. The G intertwining map S : L2(H)+ → C∞(D+) acts by

Sf(η) =
∫
H

det(X − η)−pf(X) dX.

We finish this section by writing the G action on L2(H)± explicitly.

Lemma 5.4. If g =
(
A B
C D

)
∈ G and X ∈ H, then det(A + BX),

det(D −XB) ∈ R.

Proof. Recall gX ∈ H by Definition 4.1. Thus

g′ =
(

I 0
−gX I

)
g

(
I 0
X I

)
∈ G.

In fact it is easy to calculate that g′ =
(
A+BX ∗

0 −(gX)B +D

)
and so

g′ ∈ P . Equation (2.4) finishes the theorem. As an additional point we see
that

(A+BX)−1 = D∗ −B∗(gX)

whenever it is invertible. To prove the second assertion, apply the first to
g−1 and then apply (·)∗. �

Theorem 5.5. Let g =
(
A B
C D

)
∈ G. If f± ∈ L2(H)±, then

gf+(X) = det(D −XB)−2n+p f+(g−1X)

and

gf−(X) = det(D −XB)−p f−(g−1X).
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Proof. If we write g−1

(
I 0
X I

)
in the form(

I 0
Y I

)(
L 0
0 L∗−1

)(
I Y ′

0 I

)
,

we can solve

Y = g−1X,

L = D∗ −B∗X,

and Y ′ = (−C∗ + A∗X)−1(I − L∗−1). For f ∈ I+
p , this says that gf(X) =

sgn(det(D∗−B∗X))−p|det(D∗−B∗X)|−2n+p f(g−1X). Equation (2.4) ap-
plied to g−1 shows that det(D∗ − B∗X) ∈ R. We can therefore change
the −p in the previous formula to −2n+ p since the parity does not change
modulo 2. Hence we get that gf(X) = det(D∗−B∗X)−2n+pf(g−1X) which
is equal to det(D −XB)−2n+pf(g−1X). The work for I−p is done similarly
by replacing the −2n+ p by −p. �

6. The Orbits Op.

Let

l =
(
A 0
0 A∗−1

)
∈ L.

When convenient, we make use of the identification

L ∼= {A ∈ Gl(n,C) | det(A) ∈ R×}(6.1)

implemented by l → A above. Definition 4.1 calculates the action of L on
N which pulls down to an action of L on H as

l ·X = A−1∗XA−1(6.2)

for X ∈ H. Hence the L-orbits on H are parameterized by signature. The
study of these orbits will be of fundamental importance.

Definition 6.1. Let Op be the L-orbit in H consisting of Hermitian matri-
ces of signature p, 0.

For general reasons, there exist L-equivariant measures on Op ([13]), but

they are also easy to write explicitly. We briefly outline their construction.
In this paragraph only, write Op(n) for the matrices in H(n) of signature

p, 0. Then there is a smooth emedding Cp(n−p)×Op(p)→Op(n) with dense

open image given by

(Z,X)→
(
Ip 0
Z∗ In−p

)(
X 0
0 0

)(
Ip Z
0 In−p

)
.
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Using this embedding, the desired L-equivariant measure on Op (up to a
scalar multiple) pulls back to

det(X)n−p dZpdXp(6.3)

where dZp is Haar measure on Cp(n−p) and dXp is Haar measure on H(p)
restricted to the open orbit Op(p). We omit the details.

Definition 6.2. Write τ for the character on L acting by τ(l) = det(A).
1) Let

dµp

be the unique (up to scalar multiplication) L-equivariant measure on
Op that transforms by the character τ2p (so the change of variables
l ·X → X multiplies the measure by det(A)2p). The measure dµp will
be normalized below.

2) Write

L2(Op) = L2(Op, dµp).

Normalize dµp so that
∫
Op

e− tr(Y ) dµp(Y ) = 1. This allows us to verify
the following well known identity.

Lemma 6.1. Let Z ∈ D+. Then

inp det(Z)−p =
∫
Op

ei tr(Zξ) dµp(ξ).

Proof. We first show

det(Y )−p =
∫
Op

etr(Y ξ) dµp,0(ξ)

for any Y ∈ H+. Using the L action from (6.2), write Y = A−1∗A−1 with
det(A) ∈ R×. Then, making use of the L-equivariance and normalization,
we calculate:∫

Op

e− tr(Y ξ) dµp(ξ) =
∫
Op

e− tr(A−1∗A−1ξ) dµp(ξ)

=
∫
Op

e− tr(A−1ξA−1∗) dµp(ξ)

= det(A∗)2p
∫
Op

e− tr(ξ) dµp(ξ)

= det(Y )−p.

To finish the Lemma, write Z = X + iY with X ∈ H and Y ∈ H+. We
see −iZ = Y − iX. The statement of the Lemma then follows by analytic
continuation. �
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To apply this Lemma in the setting of our Szegö map, we need the Fourier
transform.

Definition 6.3. Write S(H) for the set of all Schwartz functions on H. As
this space is not G invariant, write S(H)+ for the smallest G invariant space
containing S(H):

S(H)+ = span{gφ | g ∈ G, φ ∈ S(H) ⊆ L2(H)+}.

For φ ∈ S(H), define its Fourier transform, φ̂ ∈ S(H), by

φ̂(ξ) =
∫
H

ei tr(ξX) φ(X) dX

and, up to a scalar multiple, the inverse Fourier transform, φ̌ ∈ S(H), by

φ̌(ξ) =
∫
H

e−i tr(ξX) φ(X) dX.

Since we will eventually be looking at boundary values of the map S, the
following Lemma will be needed.

Lemma 6.2. Let φ ∈ S(H), Z ∈ D+, and Y ∈ H. Then

lim
Z→Y

∫
H

det(X + Z)−pφ(X) dX = i−np
∫
Op

ei tr(Y ξ) φ̂(ξ) dξ.

Proof. We begin by using Lemma 6.1 and compute∫
H

det(X + Z)−pφ(X) dX = i−np
∫
H

∫
Op

ei tr(X+Z)ξ φ(X) dµp(ξ)dX.

To apply Fubini’s theorem, we need to check the L1 condition. Write
Z = X ′ + iY with X ′ ∈ H and Y ∈ H+ and use Lemma 6.1:∫

H

∫
Op

| ei tr(X+Z)ξ φ(X)| dµp(ξ)dX =
∫
H

∫
Op

e− tr(Y ξ) |φ(X)| dµp(ξ)dX

= det(Y )−p
∫
Op

|φ(X)| dX <∞.

Hence∫
H

∫
Op

ei tr(X+Z)ξ φ(X) dµp(ξ)dX =
∫
Op

ei tr(Zξ)
∫
H

ei tr(Xξ) φ(X) dXdµp(ξ)

=
∫
Op

ei tr(Zξ) φ̂(ξ) dµp(ξ).

Since φ̂ is still Schwartz and the measure (see Equation (6.3)) is only of
polynomial growth, the above integrand is an L1 function. Hence, when we
take the limit as Z → Y , we may move the limit past the integral to finish
the Lemma. �
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7. Boundary Values of the Szegö Map.

Definition 7.1. For f ∈ C∞(D+) and X ∈ H, define

Bf (X) = lim
Z→X

f(Z)

where Z ∈ D+.

In general, Bf may not be well defined. However, we see below that it
is at least well behaved on Im(S).

Theorem 7.1. Let φ ∈ S(H) and η ∈ D+. Then

Sφ(η) = inp
∫
Op

ei tr ηξ φ̌(ξ) dξ.

Moreover, B is well defined on S(S(H)) and BSφ is alternately written as
the smooth function

BSφ(Y ) = inp
∫
Op

ei tr(Y ξ) φ̌(ξ) dξ.

Proof. Lemma 6.2 computes that

lim
Z→Y

∫
H

det(X + Z)−pφ(X) dX

= i−np lim
Z→Y

∫
Op

ei trZW φ̂(W ) dµp(W )

= i−np
∫
Op

ei tr(YW ) φ̂(W ) dµp(W ).

Multiplying both sides by (−1)np and making the change of variables X →
−X finishes the identity. Regarding smoothness, recall that φ̂ is still
Schwartz and the measure (see Equation (6.3)) is only of polynomial growth
so that the integrand is an L1 function. �

Definition 7.2. If f ∈ S(H)+, define Af by

Af = BSf.

So far this map is well defined on S(H) by Theorem 7.1.

Theorem 7.2. Let f ∈ S(H)+ and ψ = Sf . Then (1) Af and Bψ are
well defined almost everywhere; (2) Af = Bψ ∈ L2(H)−; and (3) A and B
are G-maps on S(H)+ and S(S(H)+), respectively. Finally, for φ ∈ S(H),
η ∈ D, and Y ∈ H,

Sφ(η) = inp
∫
Op

ei tr ηξ φ̌(ξ) dξ

and

Aφ(Y ) = inp
∫
Op

ei tr(Y ξ) φ̌(ξ) dξ.
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Proof. Begin with any function ψ ∈ C∞(D+) for which Bψ is well defined.
First we check B commutes with the group actions given in Theorems 5.5

and 4.4. Write g =
(
A B
C D

)
∈ G. Then using Theorems 5.5 and 4.4 for

the group action and making use of Lemma 5.4 in the second set of equations
below, we calculate:

gBψ(X) = det(D −XB)−pBψ(g−1X)(7.1)

= det(D −XB)−p lim
Z→g−1X

ψ(Z).

On the other hand, we have

Bgψ (X) = lim
ζ→X

gψ(ζ)(7.2)

=
p

lim
ζ→X

det (D∗ −B∗ζ)−p ψ(g−1ζ)

= det(D −XB)
−p

lim
ζ→X

ψ(g−1ζ)

= det(D −XB)−p lim
Z→g−1X

ψ(Z)

so that gBψ = Bgψ which proves part (3) since S is a G-map (Theorem 5.3).
Coupled with Theorem 7.1, Equations (7.2) show Bgψ is well defined almost
everywhere. Since S is a G-map, this finishes part (1). That the range of B
restricted to S(H)+ is contained in L2(H)− follows from the G action. The
argument is completely analogous to the one around Equation (5.1) (since
each f ∈ S(H)+ comes from the smooth principal series) except that the
final bound will be

|Bf(X)|2 ≤ C det(I +X2)−p.(7.3)

The final equations come from Theorem 7.1. �

Note that though Bf is well defined almost everywhere for ψ ∈ S(S(H)+),
it need not be given by the formula in Theorem 7.1 for ψ /∈ S(S(H)). A
similar cautionary remark applies to A on S(H) versus S(H)+.

Theorem 7.2 establishes the following commutative diagram of G maps:

A
S(H)+ −→ L2(H)−.

S ↓ ↗
B

S(S(H)+)

(7.4)
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8. Functions on Op and an Inner Product.

Definition 8.1. For φ ∈ S(H), define FRφ ∈ L2(Op, dµp) (F for Fourier
transform and R for restriction) by

FRφ(ξp) = φ̌(ξp).

For ψ ∈ Im(FR), define FEψ ∈ L2(H)− (E for extension) by

FEψ (X) = inp
∫
Op

ei tr(ξX) ψ(ξ) dµp(ξ).

First note that φ̂ is still Schwartz and the measure dµp (see Equation (6.3))
is only of polynomial growth so that FEψ is well defined. Second, note that
Theorem 7.2 immediately implies that on S(H),

FE ◦ FR = A|S(H) = B ◦ S|S(H)(8.1)

where A|S(H) denotes the map A restricted to S(H). In other words, there
is a commutative diagram of maps (compare to diagram 7.4)

A
S(H) −→ L2(H)−

↘
FR

↑ FE .

L2(Op)

(8.2)

Also note that L2(Op) comes equipped with its own inner product denoted
by

〈·, ·〉Op .

This pairing can be related to A as follows.

Definition 8.2. If φ1, φ2 ∈ S(H)+, let

〈φ1, φ2〉A = inp
∫
H
φ1(X)Aφ2(X) dX.

Equations (5.1), (7.3), and (5.2) can be used to show that 〈·, ·〉A is well de-
fined for functions coming from the principal series I+

p which includes S(H)+

(see the proof of Lemma 10.1 or a more general result under Definition 10.2
below).

Theorem 8.1. If φ1, φ2 ∈ S(H), then

〈φ1, φ2〉A = 〈FRφ1, FRφ2〉Op.

Moreover, the form 〈·, ·〉A is G-invariant on S(H)+.
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Proof. We make use of Theorem 7.2 to calculate:

〈φ1, φ2〉A = inp
∫
H
φ1(X)Aφ2(X) dX

=
∫
H

∫
Op

φ1(X) e−i tr(Xξ) φ̌(ξ) dξdX

=
∫
Op

∫
H
φ1(X) e−i tr(Xξ) φ̌(ξ) dξdX

=
∫
Op

φ̌1(ξ)φ̌2(ξ) dµp(ξ).

To check G-invariance, write g =
(
A B
C D

)
∈ G. In the following equa-

tions, make use of the actions given in Theorem 5.5, Equation (5.3) for the
change of variables, Lemma 5.4 for conjugation issues, and Equation (2.1)
and Definition 4.1 to check that (D∗ −B∗ gX) = (BX +A)−1:

〈gφ1, gφ2〉 = inp
∫
H
gφ1(X)Agφ2(X) dX

= inp
∫
H

det(D −XB)−2n+pφ1(g−1X)gAφ2(X) dX

= inp
∫
H

det(D −XB)−2nφ1(g−1X)Aφ2(g−1X) dX

= inp
∫
H

det(D∗ −B∗X)−2nφ1(g−1X)Aφ2(g−1X) dX

= inp
∫
H

det(D∗ −B∗ gX)−2n det(BX +A)−2nφ1(X)Aφ2(X) dX

= inp
∫
H
φ1(X)Aφ2(X) dX

= 〈φ1, φ2〉.
�

The equality of the two pairings in the above Theorem will be extended
to a larger domain as soon as the map FR is extended.

9. Continuity of A, FR, and FE.

As it stands, most operators are only defined on dense sets such as S(H) ⊆
L2(H)+. To complete the picture, we need to prove the operators are
continuous.

Theorem 9.1. The maps

A : S(H) ⊆ L2(H)+ → L2(H)−,
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FR : S(H) ⊆ L2(H)+ → L2(Op),
and

FE : Im(FR|S(H)) ⊆ L2(Op)→ L2(H)−

are continuous maps. The notation Im(FR|S(H)) denotes the image of FR
restricted to S(H).

This section is devoted to the proof of Theorem 9.1. The first step is the
following Lemma.

Lemma 9.2. If the operator

FE : Im(FR|S(H)) ⊂ L2(Op)→ L2(H)−

is continuous, then

A : S(H) ⊆ L2(H)+ → L2(H)−

and

FR : S(H) ⊆ L2(H)+ → L2(Op)
are bounded operators as well.

Proof. Suppose the hypothesis of this Lemma is in effect and let f ∈ S(H).
Consider the map A first. Then for some constant C,

||Af ||2L2(H)− = ||FEFRf ||2L2(H)− ≤ C||FRf ||
2
L2(Op).

On the other hand, ||FRf ||2L2(Op) = 〈FRf, FRf〉Op = 〈f, f〉A by Theorem 8.1.
But Definition 8.2 says

〈f, f〉A = |〈f, f〉A| =
∣∣∣∣∫
H
f(X)Af(X) dX

∣∣∣∣
≤
∫
H
|[f(X) det(I +X2)

n−p
2 ] [Af(X) det(I +X2)

−n+p
2 ]| dX

≤ ||f ||L2(H)+ ||Af ||L2(H)− .

Putting these equations together gives

||Af ||2L2(H)− ≤ C||f ||L2(H)+ ||Af ||L2(H)− .

Division finishes the proof for the continuity of A.
Now consider FR. Using the relations above, ||FRf ||2L2(Op) = 〈f, f〉A ≤

||f ||L2(H)+ ||Af ||L2(H)− ≤ C||f ||2L2(H)+ . Division again finishes the proof for
continuity of FR. �

Thus we devote the rest of the section to proving that FE : Im(FR|S(H)) ⊂
L2(Op)→ L2(H)− is a bounded map. This amounts to showing that∫

H
|Af(X)|2 det(I +X2)−n+p dX ≤ C

∥∥f̌∥∥
L2(Op)

(9.1)
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for some constant, C, and all f ∈ S(H). In the special case of p = n, this
statement is trivial to verify using the Plancherel theorem as On is open in
H, dµn = dX|On , and det(I +X2)±(n−p) = 1. In the case of p < n, much
more work is required.

Let Sp be the stabilizer of

Ep =
(
Ip

0n−p

)
in L so that Op ∼= L/Sp and let S̃n−p be the stabilizer of

Ẽn−p =
(

0p
In−p

)
so that On−p ∼= L/S̃n−p.

Lemma 9.3. Given a smooth function of compact support, f , on Op×On−p,
pull and push it to a function f∗ on On using the double fibration:

L
↙ ↘

Op× On−p On
by

f∗(l · En) =
∫
Sn/Sp∩eSn−p

f((ls) · Ep, (ls) · Ẽn−p) ds

for l ∈ L where ds is an Sn-invariant measure. The function f∗ satisfies∫
On

f∗(ξn) dµn(ξn) =
∫
Op×On−p

f(ξp, ξn−p) dµp(ξp)dµn−p(ξn−p).

In particular, if fp and fn−p are functions on Op and On−p, respectively,
then fp × fn−p is a function on Op ×On−p. Define

fp ∗ fn−p
to be the function on On given by (fp × fn−p)∗.

Proof. Easy calculations show that Sn/Sp ∩ S̃n−p ∼= U(n)/U(p)× U(n− p)
so that ds exists since have a quotient of reductive groups. Then it is easy
to see that it suffices to prove the injection

L/Sp ∩ S̃n−p → Op ×On−p
induced by the diagonal action, l→ (l ·Ep, l ·Ẽn−p), has a dense open image.
Using the transitivity of the L-action on Op, it suffices to show that Sp can
be used to conjugate almost all elements in On−p to Ẽn−p. But for this,
it suffices to show that almost all A ∈ Gl(n,C), with det(A) ∈ R×, can be
written as the product of elements from Sp and S̃n−p. But this is an easy
calculation we omit. �
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By previous remarks, the following Lemma will finish the proof of Theo-
rem 9.1.

Theorem 9.4. For some constant, C, and all f ∈ S(H),∫
H
|Af(X)|2 det(I +X2)−n+p dX ≤ C

∥∥f̌∥∥
L2(Op)

.

Proof. By Theorem 7.2, we know
∫
H |Af(X)|2 det(I +X2)−n+p dX is equal

to ∫
H

∣∣∣∣∣
∫
Op

ei tr(Xξ) f̌(ξ) dµp(ξ)

∣∣∣∣∣
2

det(I +X2)−n+p dX.

On the other hand, Lemma 6.1 shows that

|det(iI +X)|−n+p =

∣∣∣∣∣
∫
On−p

ei tr[(iI+X)ξ] dµn−p(ξ)

∣∣∣∣∣ .
Since det(I + X2) = det(iI + X) det(−iI + X) and |det(iI +X)| =
|det(−iI +X)|, we therefore know

det(I +X2)−n+p =

∣∣∣∣∣
∫
On−p

ei tr[(iI+X)ξ] dµn−p(ξ)

∣∣∣∣∣
2

.

Thus
∫
H |Af(X)|2 det(I +X2)−n+p dX is equal to∫

H

∣∣∣∣∣
∫
Op

ei tr(Xξp,0) f̌(ξp) dµp(ξp)
∫
On−p

ei tr[(iI+X)ξn−p] dµn−p(ξn−p)

∣∣∣∣∣
2

dX.

But Lemma 9.3 allows this to be rewritten as∫
H

∣∣∣∣∫
On

(
ei tr(X·) f̌(·) ∗ ei tr[(iI+X)·]

)
(ξn) dµn(ξn)

∣∣∣∣2 dX.
However, it is easy to check that the definition of ∗ in Lemma 9.3 implies(

ei tr(X·) f̌(·) ∗ ei tr[(iI+X)·]
)

(ξn) = ei tr(Xξn)
(
f̌(·) ∗ e− tr ·) (ξn).

Thus
∫
H |Af(X)|2 det(I +X2)−n+p dX is equal to∫

H

∣∣∣∣∫
On

ei tr(Xξn)
(
f̌(·) ∗ e− tr ·) (ξn) dµn(ξn)

∣∣∣∣2 dX
=
∫
H

∣∣∣∣∫
H

ei tr(XY ) χOn(Y )
(
f̌(·) ∗ e− tr ·) (Y ) dY

∣∣∣∣2 dX
where χOn is the characteristic function for the open set On inside H. The
next step uses the Plancherel Theorem on the above integral to rewrite it as∫

H

∣∣χOn(X)
(
f̌(·) ∗ e− tr ·) (X)

∣∣2 dX =
∫
On

∣∣(f̌(·) ∗ e− tr ·) (X)
∣∣2 dX.
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To justify this step, we verify that f̌(·) ∗ e− tr · ∈ L1(On) ∩ L2(On). By the
definition of ∗, we have(

f̌(·) ∗ e− tr ·) (l · En) =
∫
Sn/Sp∩eSn−p

f̌((ls) · Ep) e− tr[(ls)· eEn−p] ds.

So ∫
On

∣∣(f̌(·) ∗ e− tr ·) (X)
∣∣ dX

=
∫
L/Sn

∣∣∣∣∣
∫
Sn/Sp∩eSn−p

f̌((ls) · Ep) e− tr[(ls)· eEn−p] ds

∣∣∣∣∣ dl
≤
∫
L/Sn

∫
Sn/Sp∩eSn−p

∣∣∣f̌((ls) · Ep) e− tr[(ls)· eEn−p]
∣∣∣ ds dl

=
∫
Op×On−p

∣∣∣f̌(ξp) e− tr ξn−p

∣∣∣ dµp(ξp)dµn−p(ξn−p) <∞
and so the L1 condition follows. For the L2 condition, the key observation
is that Sn/Sp ∩ S̃n−p is compact. In fact, recall Sn/Sp ∩ S̃n−p is isomorphic
to U(n)/U(p) × U(n − p). Thus Hölder’s inequality can be made use of
below to check∫

On

∣∣(f̌(·) ∗ e− tr ·) (X)
∣∣2 dX

=
∫
L/Sn

∣∣∣∣∣
∫
Sn/Sp∩eSn−p

f̌((ls) · Ep) e− tr[(ls)· eEn−p] ds

∣∣∣∣∣
2

dl

≤
∫
L/Sn

k

∫
Sn/Sp∩eSn−p

∣∣∣f̌((ls) · Ep) e− tr[(ls)· eEn−p]
∣∣∣2 ds

= k

∫
Op×On−p

∣∣∣f̌(ξp) e− tr ξn−p

∣∣∣2 dµp(ξp)dµn−p(ξn−p) <∞
where k = Vol(Sn/Sp ∩ S̃n−p). Thus the use of the Plancherel Theorem is
valid and we may write∫

H
|Af(X)|2 det(I +X2)−n+p dX =

∫
On

∣∣(f̌(·) ∗ e− tr ·) (X)
∣∣2 dX.

However, the above calculation that checks the L2 condition now implies∫
H
|Af(X)|2 det(I +X2)−n+p dX ≤ C

∫
Op

∣∣f̌(ξp)
∣∣2 dµp(ξp) = C

∥∥f̌∥∥
L2(Op)

as desired where C = k
∫
On−p

e−2 tr ξn−p dµn−p(ξn−p) <∞. �
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10. The Main Theorem.

Theorem 9.1 allows the completion of the maps A, FR, and FE .

Definition 10.1. Let

A : L2(H)+ → L2(H)−

be the continuous extension of A : S(H)→ L2(H)− where we view S(H) ⊆
L2(H)+,

FR : L2(H)+ → L2(Op)
be the continuous extension of FR : S(H)→ L2(Op), and

FE : Im(FR)→ L2(H)−

be the continuous extension of FE : Im(FR|S(H)) → L2(H)+ where Im(FR)
denotes the image of FR on L2(H)+.

Two notes are in order. The first is that Definition 7.2 already gives a def-
inition of A = BS on all of S(H)+ which Theorem 7.2 shows is well defined.
However, it is apriori possible (though not true) that Definition 10.1 defines
A differently on S(H)+\S(H). This ambiguity is removed in Lemma 10.1
below.

The second note is that the closure of Im(FR) is in fact all of L2(Op).
This is shown in Theorem 10.4 below.

Lemma 10.1. When restricted to A : S(H)+ → L2(H)+, both Defini-
tions 7.2 and 10.1 coincide.

Proof. We break the proof of this Lemma up into steps. In this proof only,
write A for the operator defined in Definition 10.1 by extending continu-
ously from S(H) to S(H)+ with respect to the L2(H)+ and L2(Op) norms,
respectively. Likewise for this proof only, write A for the operator defined
in Definition 7.2 as B ◦ S on S(H)+ (Theorem 7.2 shows it is well defined).

(1). The first step is found in [14], Lemma 1. Since the proof is
straightforward and identical to the one in [14], we simply state the result.
Namely, f ∈ C∞(H) has a (unique) smooth extension via the open dense
embedding H ∼= N ↪→ G/P to a function in the smooth principal series I±p
if and only if the function

X → (gf)(X),

initially defined for X ∈ H with det(D−XB) 6= 0 by Theorem 5.5, extends

to a smooth function on H for each g =
(
A B
C D

)
∈ G.

(2). Suppose X0 ∈ H and det(A + BX0) = 0. Choose Xt, t ∈ R, a
smooth path in H with det(D−X(t)B) not identically zero as a function of
t. Let ‖ · ‖ be a norm on H. Then limt→0 ‖ gXt ‖= ∞. This follows by
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the definition of the linear fractional action in Definition 4.1 combined with
expressing the inverse of a matrix in terms of cofactors and its determinant.

(3). Steps (1) and (2) may now be combined with Theorem 5.5 (see also
Definition 4.1 and Equation (2.3)) to show that each φ ∈ S(H) has a smooth
extension to I+

p . In particular, the smooth extension of X → (gφ)(X) is
the map sending X to

det(D∗ −B∗X)−2n+pφ((−C∗ +A∗X)/(D∗ −B∗X)−1)

if det(D∗ − B∗X) 6= 0 and sending X to 0 if det(D∗ − B∗X) = 0. By G
invariance of I+

p , we also conclude that each function in S(H)+ has a smooth
extension to I+

p . Moreover using (1), it is easy to check that if ψ ∈ I+
p is the

extension of an element in S(H)+, then ψ is identically zero on all points of
G/P in the compliment of P .

(4). Each ψ ∈ I+
p is bounded and when restricted to H satisfies the

growth condition |ψ(X)| ≤ C‖X‖−2n+p for some constant C. This follows
easily from Equation (5.1) and unitary diagonalization of X.

(5). Fix ψ ∈ S(H)+. Also denote by ψ its smooth extension to G/P .
For r > 0 choose cut-off functions φr ∈ C∞0 (H) with range in [0, 1] so that
φr is identically 1 on the ball of radius r about the origin and identically 0
outside the ball of radius r+ 1. Then the fact that ψ ∈ L2(H)+ and points
(3) and (4) show that as r → ∞ that φrψ → ψ in the L2-norm and that
φrψ → ψ uniformly as functions on either H or G/P .

(6). S : I+
p → C∞(G/K) is continuous in the smooth topology of uniform

convergence on compact sets. This follows since S is an integral of smooth
functions over a compact set (Definition 3.2).

(7). Suppose that f, fi ∈ S(H)+ so that fi → f uniformly. Then
Afi → Af pointwise. To see this, use the definition of A in the first step
below, uniform convergence in the second, and point (6) in the third to
calculate

lim
i→∞

Afi(X) = lim
i→∞

lim
η∈D+, η→X

Sfi(X)

= lim
η∈D+, η→X

lim
i→∞

Sfi(X)

= lim
η∈D+, η→X

Sf(X)

= Af(X).

(8). We now prove the Lemma. Let ψ ∈ S(H)+ and pick φr as in point
(5). Note that φr ∈ S(H). Thus, by definition,

Aψ = lim
r→∞

Aφrψ

in the L2-sense. We may therefore choose a subsequence so that Aψ =
limr→∞Aφrψ pointwise almost everywhere. But points (5) and (7) imply
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that limr→∞Aφrψ = Aψ pointwise everywhere. In particular, we see Aψ =
Aψ almost everywhere so that A = A in the L2-sense on S(H)+. �

We now show that A remains a G map.

Theorem 10.2. The map

A : L2(H)+ → L2(H)−

is a G map and A = FR ◦ FE.

Proof. It follows from Lemma 10.1 and Theorem 7.2 that A is a G-map
on S(H)+. Theorem 7.2 also shows that A = FR ◦ FE on S(H). The
denseness of S(H) and a continuity argument suffice to finish the proof of
this Theorem. �

We are able to complete Definition 8.2 and Theorem 8.1 as follows.

Definition 10.2. If f1, f2 ∈ L2(H)+, let

〈f1, f2〉A = inp
∫
H
f1(X)Af2(X)dX.

By Hölder’s inequality (multiply by the det and its inverse), the form
〈f1, f2〉A is well defined and bounded by the product of the norm of f1 ∈
L2(H)+ and the norm of Af2 ∈ L2(H)−. Theorem 8.1 and continuity imply
the following.

Theorem 10.3. If f1, f2 ∈ L2(H)+, then

〈f1, f2〉A = 〈FRf1, FRf2〉Op.

Moreover, the form 〈·, ·〉A is G-invariant.

This suggests that we try to make L2(Op) into a G-space in such a way
that FR is a G-map. In turn, this Theorem 10.3 ought to induce a G-
invariant structure on a quotient of the principal series. First observe that
FE is injective (for instance, by the Stone-Weierstrass theorem and the fact
that the characters ei tr(ξ·) separate points). This implies that

ker(A) = ker(FR)(10.1)

and in particular that ker(FR) is G-invariant. Thus there is a G-action on

L2(H)+/ ker(FR)

for which 〈·, ·〉A descends to a G-invariant, positive (by Theorem 10.3), Her-
mitian two-form. Moreover, the following is well defined.

Definition 10.3. For g ∈ G, f ∈ L2(H)+, and h = FRf ∈ L2(Op), define

g (h) = FR(gf)

or equivalently

gh = F−1
E (gFEh).
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This equivalence is trivial to check using Theorem 10.2. This definition
makes Im(FR) ⊆ L2(Op) into a representation of G so that both FR and
FE are now G-maps. In general, we have to take closures to complete the
picture.

Definition 10.4. Let K = {f ∈ L2(H)+ | 〈f, f〉A = 0} = ker(FR) =
ker(A) = {f ∈ L2(H)+ | 〈f, g〉A = 0, ∀g ∈ L2(H)+}. Let

L2(H)+/K

be the completion of L2(H)+/K with respect to 〈·, ·〉A.

We use continuity to extend the G-action to all of L2(H)+/K, continuity
to extend the map

FR : L2(H)+/K → L2(Op),

and the fact that A = FE ◦ FR to extend the map

A : L2(H)+/K → L2(H)−.

Then we have the following.

Theorem 10.4. Im(FR) = L2(Op). Moreover, L2(Op) is an irreducible
unitary representation of G that, in fact, remains irreducible under restric-
tion to P .

Proof. Unitarity follows immediately from Theorem 10.3. The rest of the
argument is entirely classical. Let I = Im(FR). Recall that FR is an
isometry mapping the closure of L2(H)+/K into L2(Op). I is therefore a
closed, non-trivial subspace of L2(Op) since, in particular, φ̌|Op

∈ I for each
φ ∈ S(H). It is easy to check (Definitions 10.3 and 8.1, Theorem 5.5, and
Equation (5.3)) that(

I 0
X I

)
f(ξ) = e−i tr(Xξ)f(ξ),(

A 0
0 A∗−1

)
f(ξ) = det (A)−p f(A−1ξA∗−1)

for each f ∈ I. We can use the same formulas above to extend the action
of P on I to an action on all of L2(Op). It is a fact that this action
is irreducible. We sketch the idea (see [16] §1.2, Theorem 2.1 or [13]
§3.1). It suffices to show that any bounded intertwining operator, T , is
a constant. However, it can be shown that commuting with N implies
that T is multiplication by a bounded function. The transitivity of the L
action then implies that T is a constant. Thus L2(Op) is irreducible under
P . Since I is P -invariant, this implies that I = L2(Op) which finishes the
proof. �
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This Theorem induces a unitary structure on a quotient of the principal
series.

Corollary 10.5. 〈·, ·〉A induces a G-invariant unitary structure on the quo-
tient space L2(H)+/K that is unitarily isomorphic to L2(Op) by FR. In
particular,

〈f1, f2〉A = 〈FRf1, FRf2〉Op.

for all f1, f2 ∈ L2(H)+.

Proof. This is contained in Theorem 10.3, 10.4, and Equation (10.1). �

This completes diagram 8.2 to the following diagram of unitary G-maps
where FR is an isomorphism and A (viewed as a map on the quotient space)
and FE are injective:

A

L2(H)+/K −→ L2(H)−

↘
FR

↑ FE .

L2(Op)

(10.2)

This Diagram then fits into a larger diagram that incorporates Diagram 7.4.
Namely, define F eE : L2(Op)→ C∞(D+) by

F eEf(η) = inp
∫
Op

ei tr ηξ f(ξ) dξ

which is well defined by Hölder’s inequality. It is immediate that we obtain
a commuting diagram of G-maps,

A
L2(H)+/K −→ L2(H)−

S ↓ B FR
↗ ↘ ↑ FE .

Im(S) ←− L2(Op)
F eE

(10.3)

Also note that the injectivity of F eE is enough to strengthen Corollary 10.5
so that B is injective and

K = ker(A) = ker(S) = ker(FR) = ker(〈·, ·〉A).(10.4)
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ON KRONECKER PRODUCTS OF SPIN CHARACTERS
OF THE DOUBLE COVERS OF THE SYMMETRIC

GROUPS

Christine Bessenrodt and Alexander S. Kleshchev

In this article, restrictions on the constituents of Kronecker
products of spin characters of the double covers of the sym-
metric groups are derived. This is then used to classify homo-
geneous and irreducible products of spin characters; as an ap-
plication of this, certain homogeneous 2-modular tensor prod-
ucts for the symmetric groups are described.

1. Introduction.

In recent years, a number of results on Kronecker products of complex Sn-
characters have been obtained. In particular, the rectangular hull for the
constituents in such products was found, and this was used for the clas-
sification of products with few homogeneous components; see [1] for this
classification result and references to related work.

Here, we provide similar results for products of spin characters for the
double covers S̃n of the symmetric groups. The rectangular hull for spin
products is determined in Theorem 3.2; this result serves as a crucial tool
for the classification of homogeneous spin products in Theorem 4.2. (A
module is called homogeneous if all of its composition factors are isomorphic
to each other.) Finally, Theorem 4.2 is applied to prove a recent conjecture
of Gow and Kleshchev describing certain homogeneous 2-modular tensor
products for the symmetric groups (see Theorem 5.1).

2. Preliminaries.

We denote by P (n) the set of partitions of n. For a partition λ ∈ P (n),
l(λ) denotes its length, i.e., the number of (non-zero) parts of λ. The set
of partitions of n into odd parts only is denoted by O(n), and the set of
partitions of n into distinct parts is denoted by D(n). We write D+(n)
(resp. D−(n)) for the sets of partitions λ in D(n) with n− l(λ) even (resp.
odd); the partition λ is then also called even (resp. odd).

We write Sn for the symmetric group on n letters, and S̃n for one of its
double covers; so S̃n is a non-split extension of Sn by a central subgroup
〈z〉 of order 2. It is well-known that the representation theory of these
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double covers is ‘the same’ for all representation theoretical purposes. The
spin characters of S̃n are those that do not have z in their kernel. For an
introduction to the properties of spin characters (resp. for some results we
will need in the sequel) we refer to [6], [10], [11], [13]. Below we collect
some of the necessary notation and some results from [13] that are crucial
in later sections.

For λ ∈ P (n), we write [λ] for the corresponding irreducible character of
Sn; this is identified with the corresponding character of S̃n. The associate
classes of spin characters of S̃n are labelled canonically by the partitions in
D(n). For each λ ∈ D+(n) there is a self-associate spin character 〈λ〉 =
sgn 〈λ〉, and to each λ ∈ D−(n) there is a pair of associate spin characters
〈λ〉, 〈λ〉′ = sgn 〈λ〉. We write

〈̂λ〉 =
{
〈λ〉 if λ ∈ D+(n)
〈λ〉+ 〈λ〉′ if λ ∈ D−(n)

ελ =
{

1 if λ ∈ D+(n)√
2 if λ ∈ D−(n)

.

In [13], Stembridge introduces a projective analogue of the outer tensor
product, called the reduced Clifford product, and proves a shifted analogue
of the LR rule which we will need in the sequel. To state this, we first have
to define some further combinatorial notions.

Let A′ be the ordered alphabet {1′ < 1 < 2′ < 2 < ...}. The letters
1′, 2′, . . . are said to be marked, the others are unmarked. The notation |a|
refers to the unmarked version of a letter a in A′. To a partition λ ∈ D(n)
we associate a shifted diagram

Y ′(λ) = {(i, j) ∈ N2 | 1 ≤ i ≤ l(λ), i ≤ j ≤ λi + i− 1}.
A shifted tableau T of shape λ is a map T : Y ′(λ)→ A′ such that T (i, j) ≤
T (i + 1, j), T (i, j) ≤ T (i, j + 1) for all i, j and the following additional
property holds. Every k ∈ {1, 2, . . . } appears at most once in each column
of T , and every k′ ∈ {1′, 2′, . . . } appears at most once in each row of T .
For k ∈ {1, 2, . . . }, let ck be the number of boxes (i, j) in Y ′(λ) such that
|T (i, j)| = k. Then we say that the tableau T has content (c1, c2, . . . ).
Analogously, we define skew shifted diagrams and skew shifted tableaux of
skew shape λ/µ if µ is a partition with Y ′(µ) ⊆ Y ′(λ). For a (possibly skew)
shifted tableau S we define its associated word w(S) = w1w2 · · · by reading
the rows of S from left to right and from bottom to top. By erasing the
marks of w, we obtain the word |w|.

Given a word w = w1w2 . . . , we define

mi(j) = multiplicity of i among wn−j+1, . . . , wn (for 0 ≤ j ≤ n),

mi(n+ j) = mi(n) + multiplicity of i′ among w1, . . . , wj (for 0 < j ≤ n).
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This function mi corresponds to reading the rows of the tableau first from
right to left and from top to bottom, counting the letter i on the way, and
then reading from bottom to top and left to right, counting the letter i′ on
this way.
The word w satisfies the lattice property if, whenever mi(j) = mi−1(j), then

wn−j 6= i, i′, if 0 ≤ j < n,
wj−n+1 6= i− 1, i′, if n ≤ j < 2n.

For two partitions µ and ν we denote by µ∪ ν the partition which has as
its parts all the parts of µ and ν together.

Theorem 2.1 ([13, 8.1 and 8.3]). Let µ ∈ D(k), ν ∈ D(n− k), λ ∈ D(n),
and form the reduced Clifford product 〈µ〉 ×c 〈ν〉. Then we have

((〈µ〉 ×c 〈ν〉) ↑
eSn , 〈λ〉) =

1
ελεµ∪ν

2(l(µ)+l(ν)−l(λ))/2fλµν ,

unless λ is odd and λ = µ ∪ ν. In that latter case, the multiplicity of 〈λ〉 is
0 or 1, according to the choice of associates.

The coefficient fλµν is the number of shifted tableaux S of shape λ/µ and
content ν such that the tableau word w = w(S) satisfies the lattice property
and the leftmost i of |w| is unmarked in w for 1 ≤ i ≤ l(ν).

We will also use the following result from [13] on inner tensor products
with the basic spin character 〈n〉:

Theorem 2.2 ([13, 9.3]). Let λ ∈ D(n), µ a partition of n. We have

(〈n〉[µ], 〈λ〉) =
1

ελε(n)
2(l(λ)−1)/2gλµ,

unless λ = (n), n is even, and µ is a hook partition. In that case, the
multiplicity of 〈λ〉 is 0 or 1 according to choice of associates.

The coefficient gλµ is the number of “shifted tableaux” S of unshifted shape
µ and content λ such that the tableau word w = w(S) satisfies the lattice
property and the leftmost i of |w| is unmarked in w for 1 ≤ i ≤ l(λ).

3. On bounds for the constituents of spin products.

First we prove a spin version of a result of Dvir [4] (resp. Clausen and Meier
[3]), describing the rectangular hull of the constituents in the Kronecker
product of two spin characters.

Definition 3.1. Let µ, ν ∈ D(n). Define the coefficients dλµν , λ ∈ P (n), by

〈µ〉 · 〈ν〉 =
∑
λ`n

dλµν [λ] .
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Then define the width w and the height h of the product by

w(〈µ〉 · 〈ν〉) = max{λ1 | ∃λ = (λ1, . . . ) : dλµν 6= 0}

h(〈µ〉 · 〈ν〉) = max{l | ∃λ = (λ1, . . . , λl > 0) : dλµν 6= 0}.

The rectangular partition (wh) is then called the rectangular hull R(〈µ〉·〈ν〉)
of the product 〈µ〉 · 〈ν〉.
Remark. Since 〈µ〉′ = sgn · 〈µ〉, we can easily obtain all products of spin
characters if we know the coefficients dλµν above.

Theorem 3.2. Let µ, ν ∈ D(n).
Then the rectangular hull of the product 〈µ〉 · 〈ν〉 is given by

R(〈µ〉 · 〈ν〉) = (|µ ∩ ν||µ∩ν|),
except in the case when µ = ν ∈ D−(n).

In the case µ = ν ∈ D−(n), but µ not a staircase partition (k, k −
1, . . . , 2, 1), we have

R(〈µ〉 · 〈µ〉) =
{

((n− 1)n) if n− l(µ) ≡ 1 mod 4
(nn−1) if n− l(µ) ≡ 3 mod 4 .

More precisely,

|{j | µj > µj+1 + 1}| =
{

(〈µ〉 · 〈µ〉, [n− 1, 1]) if n− l(µ) ≡ 1 mod 4
(〈µ〉 · 〈µ〉, [2, 1n−2]) if n− l(µ) ≡ 3 mod 4 .

Finally, if n =
(
k+1
2

)
is a triangular number with k ≡ 2 or 3 mod 4, and

µ = ν = (k, k − 1, . . . , 2, 1) ∈ D−(n), then we have

R(〈µ〉 · 〈µ〉) =
{

((n− 2)n) if k ≡ 2 or 7 mod 8
(nn−2) if k ≡ 3 or 6 mod 8 .

More precisely,

1 =
{

(〈µ〉 · 〈µ〉, [n− 2, 12]) if k ≡ 2 or 7 mod 8
(〈µ〉 · 〈µ〉, [3, 1n−3]) if k ≡ 3 or 6 mod 8 .

Remark. The number |{j | µj > µj+1 + 1}| is almost the number of boxes
A that can be removed such that the resulting partition µ\A is in D(n−1);
the only exception is that a final part 1 is not counted. This is the reason
for the further exception in the case of staircase partitions.

Proof. Let λ = (λ1, λ2, . . . ) be a partition of n with (〈µ〉 · 〈ν〉, [λ]) 6= 0. Put
k = λ1. Then ([k], [λ] ↓eSk

) 6= 0, and hence

0 6= (〈µ〉 ↓eSk
·〈ν〉 ↓eSk

, [k]) =
(
〈ν〉 ↓eSk

, 〈µ〉 ↓eSk

)
=

{
(〈ν〉 ↓eSk

, 〈µ〉′ ↓eSk
), if n− l(µ) ≡ 1 mod 4

(〈ν〉 ↓eSk
, 〈µ〉 ↓eSk

), else.
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Indeed, the last equation follows since clearly 〈ρ〉 = 〈ρ〉 for each ρ ∈ D+(n),
and for ρ ∈ D−(n) the only possibly non-real values can occur at classes of

cycle type ρ, where 〈ρ〉 takes value i(n−l(ρ)+1)/2

√Q
j ρj

2 (see [6], [10]). Hence
〈ρ〉 = 〈ρ〉 if n− l(ρ) ≡ 3 mod 4, and 〈ρ〉 = 〈ρ〉′ if n− l(ρ) ≡ 1 mod 4. In any
case, there exists α ∈ D(k) such that α ⊆ µ ∩ ν, so k ≤ |µ ∩ ν|.

Multiplying with the sign character, the same argument also gives the
inequality l(λ) ≤ |µ ∩ ν|.

Put m := |µ ∩ ν|. The character 〈µ ∩ ν〉 or its associate is a common
constituent of 〈µ〉 ↓eSm

and 〈ν〉 ↓eSm
(and their associates), unless µ = ν ∈

D−(n), when (〈µ〉, 〈µ〉′) = 0. Hence, if we are not in the exceptional case,
then by the argument above

0 6= (〈µ〉 ↓eSm
·〈ν〉 ↓eSm

, [m]).

Hence there must be a constituent [λ] in the product with first part λ1 ≥ m,
and by what we have already proved, we have in fact equality λ1 = m.
This argument is independent of the choice of associates so we also obtain
h(〈µ〉 · 〈ν〉) = m unless we are in the exceptional case.

We now have to deal with the case that µ = ν ∈ D−(n). If n − l(µ) ≡
1 mod 4, then 〈µ〉 = 〈µ〉′, as we have already noted above, so (〈µ〉·〈µ〉, [n]) =
0. Hence

(〈µ〉 · 〈µ〉, [n− 1, 1]) = (〈µ〉 · 〈µ〉, [n− 1] ↑eSn)
= (〈µ〉 ↓eSn−1

·〈µ〉 ↓eSn−1
, [n− 1])

= (〈µ〉 ↓eSn−1
, 〈µ〉′ ↓eSn−1

)
= |{j | µj > µj+1 + 1}|,

where the last equality follows from the spin branching rule. In particular,
if µ is not the staircase (k, k − 1, . . . , 1), then w(〈µ〉 · 〈µ〉) = n− 1. Since

(〈µ〉 · 〈µ〉, [1n]) = (〈µ〉, 〈µ〉) = 1,

the assertion on the height follows immediately.
If n − l(µ) ≡ 3 mod 4, then 〈µ〉 = 〈µ〉. By a similar reasoning as above

we obtain the assertion in this case except for the height statement in the
case of a staircase partition.

Finally, we have to deal with the case where µ = (k, k−1, . . . , 1) ∈ D−(n).
Here,

n− l(µ) ≡
{

1 mod 4 if k ≡ 2 or 7 mod 8
3 mod 4 if k ≡ 3 or 6 mod 8 .

We consider the case where k ≡ 2 or 7 mod 8; the other case is dual. As
n − l(µ) ≡ 1 mod 4, we already know from the previous arguments that
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w(〈µ〉 · 〈µ〉) ≤ n− 2. Hence

(〈µ〉 · 〈µ〉, [n− 2, 2])

= (〈µ〉 ↓eSn−2,2
, 〈µ〉′ ↓eSn−2,2

)

= (〈k, k − 1, . . . , 3, 1〉 ×c 〈2〉, 〈k, k − 1, . . . , 3, 1〉 ×c 〈2〉′)
= 0,

where the restriction to S̃n−2,2 follows from Theorem 2.1. Thus, using the
spin branching rule we obtain

(〈µ〉 · 〈µ〉, [n− 2, 12]) = (〈µ〉 ↓eSn−2,12
, 〈µ〉′ ↓eSn−2,12

)

= (〈k, k − 1, . . . , 3, 1〉, 〈k, k − 1, . . . , 3, 1〉)
= 1.

Hence R(〈µ〉 · 〈µ〉) = ((n− 2)n) in this case, as claimed. �

For making the previous result slightly more precise, we need spin versions
of some results in [1]:

Lemma 3.3. Let a1, a2, b1, b2 ∈ N0 with a1 > a2, b1 > b2, a1+a2 ≥ b1+b2.
Then

b1 + b2 = min(a1 + a2, b1 + b2) ≤ 2(min(a1, b1) + min(a2, b2))− 1,

and equality holds if and only if (a1, a2, b1, b2) is of the form (a1, 0, b1, b1−1)
or (a1, a2, 1, 0) or (a1, a1 − 1, 2a1 − 1, 0).

Proof. First we consider the case when b1 ≤ a1. Then the right hand side is

2(b1 + min(a2, b2))− 1 ≥ 2b1 − 1 ≥ b1 + b2,

and equality holds if and only if min(a2, b2) = 0 and b1 = b2 + 1. These are
the cases where (a1, a2, b1, b2) is of the form (a1, 0, b1, b1− 1) or (a1, a2, 1, 0).

In the case when a1 < b1, we have b2 < a2 < a1 < b1. Hence the right
hand side is

2(a1 + b2)− 1 = (2a1 − 1) + 2b2 ≥ a1 + a2 + 2b2 ≥ b1 + 3b2 ≥ b1 + b2,

and equality holds if and only if a2 = a1−1, b1+b2 = a1+a2 and b2 = 0. This
is exactly the third situation described in the statement of the lemma. �

We denote by bij(µ) the (i, j)-bar length of µ; in particular, b11(µ) =
µ1 + µ2 for µ = (µ1, µ2, . . . ). The partition µ has an `-bar if bij(µ) = ` for
some (i, j). For details on the combinatorics of bars we refer to [12].

Lemma 3.4. Let µ, ν ∈ D(n). Then

min(b11(µ), b11(ν)) ≤ 2|µ ∩ ν| − 1,

and equality holds if and only if one of µ, ν is (n) and the other one has
first two parts k, k − 1.
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Proof. Let µ = (µ1, µ2, . . . ), ν = (ν1, ν2, . . . ). Then we have b11(µ) =
µ1 + µ2 and b11(ν) = ν1 + ν2. Furthermore, |µ ∩ ν| =

∑
j min(µj , νj) ≥

min(µ1, ν1)+min(µ2, ν2). By the previous Lemma, applied to (a1, a2, b1, b2)
= (µ1, µ2, ν1, ν2), we immediately obtain the assertion. �

We denote by hij(λ) the (i, j)-hook length of λ = (λ1, . . . , λl); in partic-
ular, h11(λ) = λ1 + l − 1.

Theorem 3.5. Let n ≥ 4, µ, ν ∈ D(n), and assume we are not in the case
that one of µ, ν is (n) and the other one has first two parts k, k − 1. Let λ
be a partition such that [λ] is a constituent of 〈µ〉 · 〈ν〉. Then

h11(λ) < 2|µ ∩ ν| − 1.

Proof. Set l = 2|µ ∩ ν| − 1. Take π̃ ∈ S̃n of type (l, 1n−l) ∈ O(n), π the
corresponding element in Sn. By Morris’ recursion formula [11] we have:

〈µ〉 · 〈ν〉(π̃) = 0,

since either µ or ν does not have an l-bar, by Lemma 3.4. By Theorem 3.2,
for any constituent [λ] of 〈µ〉 · 〈ν〉 we have λ1 ≤ |µ∩ ν| and l(λ) ≤ |µ∩ ν|, so
h11(λ) ≤ 2|µ∩ν|−1. Thus λ has an l-hook if and only if λ1 = |µ∩ν| = l(λ),
which is then the hook H11 = H11(λ) of leg length |µ ∩ ν| − 1. So assume
now that [λ] is a constituent which has an l-hook; then by the Murnaghan-
Nakayama formula [8]:

[λ](π̃) = [λ](π) = (−1)|µ∩ν|−1[λ \H11](1) 6= 0.

So all such constituents [λ] contribute a summand of the same sign to 〈µ〉 ·
〈ν〉(π̃). Since this latter value is zero, there can be no such constituent, and
hence h11(λ) < 2|µ ∩ ν| − 1 for all constituents of 〈µ〉 · 〈ν〉. �

Corollary 3.6. Let n ≥ 4, µ, ν ∈ D(n), and assume we are not in the
situation that one of µ, ν is (n) and the other one has first two parts k, k−1.
Then 〈µ〉 · 〈ν〉 has at least two different constituents.

Proof. Clearly, if µ ∈ D−(n), then 〈µ〉 · 〈µ〉 contains one of [n] or [1n] and at
least one further constituent different from these. So we may assume now
that we are not in the exceptional case of Theorem 3.2. Then the assertion
follows from the inequality in Theorem 3.5 as the (1, 1)-hook of the rectangle
(|µ ∩ ν||µ∩ν|) has length 2|µ ∩ ν| − 1. �

4. Homogeneous spin character products.

We start by proving the following combinatorial lemma.

Lemma 4.1. Let k ∈ N, n = k(k + 1)/2, and let λ = (k, k − 1, . . . , 2, 1)
be the staircase partition of height k. Let H(k) be the product of the hook
lengths in λ, and let B(k) be the product of the bar lengths in λ. Then

2n−kH(k) = B(k).
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Proof. We prove the claim by induction on k. For k = 1 the assertion is
clear. Now assume that k ≥ 2 and that the assertion holds for k − 1, i.e.,

2(n−k)−(k−1)H(k − 1) = B(k − 1) .

When the staircase diagram of (k−1, k−2, . . . , 2, 1) is extended by the first
row k, it is clear how the products of hook (resp. bar) lengths change:

H(k) = H(k − 1) ·
k∏
i=1

(2i− 1) , B(k) = B(k − 1) ·
k−1∏
j=0

(k + j) .

As
k−1∏
j=0

(k + j) =
(2k − 1)!
(k − 1)!

=
(1 · 3 · · · (2k − 1))(2 · 4 · · · 2(k − 1))

(k − 1)!

= 1 · 3 · · · (2k − 1) · 2k−1

the result now follows immediately. �

Theorem 4.2. Let n ≥ 4, µ, ν ∈ D(n). Then 〈µ〉 · 〈ν〉 is homogeneous if
and only if n is a triangular number, say n =

(
k+1
2

)
, one of µ, ν is (n) and

the other one is (k, k − 1, . . . , 2, 1). In this case, we have

〈n〉 · 〈k, k − 1, . . . , 2, 1〉 = 2a(k)[k, k − 1, . . . , 2, 1]

where

a(k) =


k−2
2 if k is even

k−1
2 if k ≡ 1 mod 4

k−3
2 if k ≡ 3 mod 4

.

In particular, 〈µ〉 · 〈ν〉 is irreducible if and only if n = 6 and the product
is 〈6〉 · 〈3, 2, 1〉 = [3, 2, 1].

Proof. By Corollary 3.6 we only have to deal with the case µ = (n) and
ν = (k, k − 1, . . . ) for some k, where we have to show that the product is
homogeneous if and only if ν is a staircase partition (k, k−1, k−2, . . . , 2, 1).

First, we assume that the product 〈n〉 · 〈ν〉, with ν = (k, k − 1, . . . ), is
homogeneous. In this case, we use the information given by Stembridge
on products with the basic spin representation 〈n〉, i.e., Theorem 2.2. By
this result, clearly [ν] is a constituent of 〈n〉 · 〈ν〉. On the other hand, by
Theorem 3.2 we know that there is a constituent [λ] in the product with
l(λ) = k = |(n) ∩ ν|. Since the product is assumed to be homogeneous, we
must have ν = λ, but as ν1 = k and ν ∈ D(n), we can only have l(ν) = k if
ν = (k, k − 1, . . . , 2, 1).

Finally, we have to prove the assertion on the products of the special form
〈n〉 · 〈k, k − 1, . . . , 2, 1〉. As we have remarked above, by Theorem 2.2 we
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know that [ν] appears in the product 〈n〉 · 〈ν〉, and for ν = (k, k−1, . . . , 2, 1)
the multiplicity is

1
ενε(n)

2(l(ν)−1)/2gνν =
1

ενε(n)
2(k−1)/2.

One easily checks that this equals 2a(k), with a(k) as given in the statement
of the theorem.

To show that no other constituent occurs, we just check dimensions on
both sides. Let B(k) be the product of the bar lengths in ν = (k, k −
1, . . . , 2, 1), and let H(k) be the product of the hook lengths in ν. Then by
the hook formula (resp. the bar formula) for the character degrees we have
to show that

2[n−1
2 ] · 2[n−k

2 ] n!
B(k)

= 2a(k)
n!

H(k)
with a(k) as in the statement of the theorem. Considering the different cases
depending on k mod 4, this is easily seen to be equivalent to

2n−kH(k) = B(k).

Hence the assertion follows from Lemma 4.1. �

Remark 4.3. A completely different proof of Theorem 4.2 is based on the
observation that the product of two non-associate spin characters gives an
ordinary character of Sn which vanishes on all 2-elements, and is thus the
character of a projective module at characteristic 2. Hence, if the product
is homogeneous, this character is a multiple of an irreducible projective
character of Sn; these irreducible characters are exactly the ones labelled
by 2-cores, i.e., staircase partitions. So the right hand side in Theorem 4.2
comes as no surprise.

5. Application to 2-modular tensor products.

In this section we want to apply the result about spin products for a proof
of a recent conjecture by Gow and Kleshchev [5] describing certain homoge-
neous 2-modular tensor products for the symmetric groups. The argument
for this proof was developed jointly with R. Gow.

Let F be a field of characteristic 2. We denote the irreducible FSn-module
labelled by the partition λ ∈ D(n) by Dλ. We define the spin module S to
be the irreducible FSn-module labelled by (m+1,m− 1) if n = 2m, and by
(m,m− 1) if n = 2m− 1.

Theorem 5.1. Let n =
(
k+1
2

)
be a triangular number, and set µ = (k, k −

1, . . . , 2, 1) and λ = (2k − 1, 2k − 5, 2k − 9, . . . ) ∈ D(n). Then

S ⊗Dλ ' 2[(k−1)/4]Dµ.
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Proof. By Theorem 4.2 we have

〈n〉 · 〈k, k − 1, . . . , 2, 1〉 = 2a(k)[k, k − 1, . . . , 2, 1]

with a(k) described explicitly in Theorem 4.2. We know that the Brauer
character φ of the reduction modulo 2 of the basic spin character 〈n〉 is irre-
ducible, and it is the Brauer character for the spin module S. Furthermore,
µ = (k, k − 1, . . . , 2, 1) is a 2-core, so the corresponding Brauer character
χ of [µ] mod 2 is also irreducible. Let ψ be the Brauer character of the
reduction mod 2 of 〈µ〉.

By the formula above we have

φ · ψ = 2a(k)χ.

Suppose that ψ contains two different irreducible Brauer characters α and
β. Then φα = sχ and φβ = tχ for certain positive integers s and t. But
the basic spin character 〈n〉 and hence also φ is non-zero on every 2-regular
element and therefore α(g) = sχ(g)/φ(g) and β(g) = tχ(g)/φ(g) holds for all
2-regular elements g ∈ S̃n. This implies that α and β are linearly dependent,
contradicting the assumption that they are two different irreducible Brauer
characters.

Hence ψ is a multiple of an irreducible Brauer character. For obtaining
the precise decomposition of ψ we use some results on the 2-decomposition
matrix for S̃n in [2]. First we have to introduce some notation. For a
partition α ∈ D(n) let dbl2(α) be the 2-regular partition obtained as follows.
First “double” α by breaking each part into two halves, i.e., an odd part
2t − 1 is replaced by t, t − 1, and an even part 2t is replaced by t, t. Let β
be the resulting partition. Then we regularize β into the 2-regular partition
βR =: dbl2(α) by pushing up nodes along the diagonal ladders of the 2-
residue diagram (we refer the reader to [8], p. 282 for more details on this
process). Now by [2], Theorem (5.2) we know that the final 2-decomposition
number for each spin character 〈α〉 occurs in the column labelled by dbl2(α),
and this entry is precisely 2[m(α)/2], where m(α) is the number of even parts
of α.

We apply this to µ = (k, k−1, . . . , 2, 1). It is easy to check that dbl2(µ) =
λ. Keeping in mind that the Brauer character ψ corresponding to µ is a
multiple of an irreducible Brauer character, we thus obtain

ψ = 2[m(µ)/2]θ

where θ is the irreducible Brauer character labelled by λ.
As m(µ) = [k/2] we have thus shown that

2[[k/2]/2]φ · θ = 2a(k)χ.

Using the explicit description of a(k), we then obtain

φ · θ = 2[(k−1)/4]χ .
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This is equivalent to the assertion on the tensor product. �
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INNER QUASIDIAGONALITY AND STRONG NF
ALGEBRAS

Bruce Blackadar and Eberhard Kirchberg

Continuing the study of generalized inductive limits of finite-
dimensional C∗-algebras, we define a refined notion of quasidi-
agonality for C∗-algebras, called inner quasidiagonality, and
show that a separable C∗-algebra is a strong NF algebra if and
only if it is nuclear and inner quasidiagonal. Many natural
classes of NF algebras are strong NF, including all simple NF
algebras, all residually finite-dimensional nuclear C∗-algebras,
and all approximately subhomogeneous C∗-algebras. Exam-
ples are given of NF algebras which are not strong NF.

1. Introduction.

This paper is a sequel to Blackadar & Kirchberg [BKb], to which we will
frequently refer. In Blackadar & Kirchberg, we studied a generalized induc-
tive limit construction for C∗-algebras and gave various characterizations of
C∗-algebras which can be written as generalized inductive limits of finite-
dimensional C∗-algebras. We recall the definitions for the convenience of
the reader:

Definition 1.1. A separable C∗-algebra A is an MF algebra if it can be
written as lim−→(An, φm,n) for a generalized inductive system with the An
finite-dimensional. If the connecting maps φm,n can be chosen to be com-
pletely positive contractions, then A is an NF algebra, and A is a strong
NF algebra if the φm,n can be chosen to be complete order embeddings.

There is a close relation between these notions and quasidiagonality and
nuclearity: a (separable) C∗-algebra A is an MF algebra if and only if it has
an essential quasidiagonal extension by the compact operators K [BKb,
3.2.2], and A is an NF algebra if and only if it is nuclear and quasidiagonal
[BKb, 5.2.2]. A number of other characterizations of MF, NF, and strong
NF algebras are given in [BKb].

One major problem left unresolved in [BKb] is whether every NF algebra
is a strong NF algebra. The purpose of this paper is to answer this question.
We will characterize strong NF algebras in terms of a sharpened version of
quasidiagonality we call inner quasidiagonality. The exact definition of inner
quasidiagonality will be given in Section 2; roughly (and possibly not quite
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correctly), a C∗-algebra is inner quasidiagonal if it has a separating family
of quasidiagonal irreducible representations.

As a consequence, we show that “most”, but not all, NF algebras are
strong NF. In particular, we show that the following C∗-algebras are strong
NF:

All (separable) strongly quasidiagonal nuclear C∗-algebras.
All (separable) residually finite-dimensional nuclear C∗-algebras.
All (separable) approximately subhomogeneous C∗-algebras.
All prime antiminimal NF algebras.
All simple NF algebras.

We actually show that a prime strong NF algebra has a strong NF system
(An, φm,n) in which each An is a single matrix algebra.

On the other hand, there are NF algebras which are not strong NF: if
A is a (separable) prime nuclear C∗-algebra containing an ideal isomorphic
to K, then A is strong NF if and only if its (unique) faithful irreducible
representation is quasidiagonal. Thus the examples of [Bn] and [BnD] are
not strong NF. We also show that if A is a separable nuclear C∗-algebra
which is not strong NF, then CA and SA (which are NF by [BKb, 5.3.3])
are not strong NF, answering [BKb, 6.2.3(c)].

2. Inner quasidiagonality.

We begin by noting the following characterization of quasidiagonality from
[Vo2, Theorem 1]:

Proposition 2.1. A C∗-algebra A is quasidiagonal if and only if, for every
x1, . . . , xm ∈ A and ε > 0, there is a representation π of A on a Hilbert
space H and a finite-rank projection p ∈ B(H) with ‖pπ(xj)p‖ > ‖xj‖ − ε
and ‖[p, π(xj)]‖ < ε for all j.

Definition 2.2. A C∗-algebra A is inner quasidiagonal if, for every x1, . . . ,
xm ∈ A and ε > 0, there is a representation π of A on a Hilbert space H
and a finite-rank projection p ∈ π(A)′′ ⊆ B(H) with ‖pπ(xj)p‖ > ‖xj‖ − ε
and ‖[p, π(xj)]‖ < ε for all j.

It obviously suffices in this definition to assume that the xj have norm 1.
The term “inner quasidiagonal” should really be “weakly inner quasidi-

agonal,” but we have rejected this terminology on pedantic grounds.
An inner quasidiagonal C∗-algebra is obviously quasidiagonal. The con-

verse is false (2.7).

Proposition 2.3. In the definition of inner quasidiagonality (2.2), the rep-
resentation π may be taken to be a direct sum of a finite number of mutually
inequivalent irreducible representations.
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Proof. Suppose A is inner quasidiagonal, and let x1, . . . , xm ∈ A and ε > 0.
Choose π and p as in 2.2. Let z be the central support projection for
p in π(A)′′; then π(A)′′z and hence also π(A)′z are type I von Neumann
algebras with finite-dimensional centers. If q is an abelian projection in
π(A)′ with central support z, then π|qH and pq are the desired representation
and projection. �

This will be generalized later (3.7).
The following is an immediate consequence of the definition.

Proposition 2.4. If A has a separating family of quasidiagonal irreducible
representations, then A is inner quasidiagonal. In particular, every residu-
ally finite-dimensional C∗-algebra is inner quasidiagonal.

We do not know whether the converse of 2.4 is true. (See note added
in proof.) But an important special case of the converse is true, even in
stronger form:

Proposition 2.5. If A is separable and prime, then A is inner quasidiag-
onal if and only if some (hence every) faithful irreducible representation of
A is quasidiagonal.

Proof. A C∗-algebra with a quasidiagonal faithful irreducible representa-
tion is obviously inner quasidiagonal. For the converse, consider the cases
A antiliminal (NGCR) and A not antiliminal separately. If A is antilim-
inal, separable, prime, and inner quasidiagonal, then A is quasidiagonal,
so by Voiculescu’s Weyl-von Neumann Theorem [Vo1] every faithful repre-
sentation not hitting the compacts (in particular, every faithful irreducible
representation) of A is quasidiagonal.

Now suppose A is separable, prime, inner quasidiagonal, and not antil-
iminal. Then A has an essential ideal isomorphic to K, and has a unique
faithful irreducible representation π0 on a Hilbert space H0. Let {xi} be a
dense sequence in A, and let {eij} be a set of matrix units in K ⊆ A. For
each n let πn and pn be as in 2.3 for the set {x1, . . . , xn, e11, . . . , enn} and for
ε = 1/n. Then π0 must be one of the irreducible subrepresentations of πn for
each n since ‖πn(e11)‖ > ‖e11‖− 1/n ≥ 0. Let qn be the component of pn in
π0. Then, for any j, limn→∞ ‖qnπ0(ejj)qn‖ = 1 and limn→∞[qn, π0(xj)] = 0,
so qn → 1H0 strongly and π0 is quasidiagonal. �

2.5 will be generalized in 3.18.

Corollary 2.6. Every separable antiliminal quasidiagonal prime C∗-algebra
is inner quasidiagonal. Every separable simple quasidiagonal C∗-algebra is
inner quasidiagonal.

Example 2.7. (a) The examples of [Bn] and [BnD] are quasidiagonal, but
not inner quasidiagonal by 2.5.
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We recall for the reader that the example of [Bn] is an essential exten-
sion of the continuous functions on the real projective plane RP 2 by the
compacts:

0→ K→ A→ C(RP 2)→ 0.
The examples of [BnD] are slight variations of this, and have the additional
feature that the extension has real rank zero.

(b) A similar example is the C∗-algebra generated by the direct sum of
the unilateral shift s and its adjoint. The C∗-algebra is not prime; we have
the extension

0→ K⊕K→ C∗(s⊕ s∗)→ C(T)→ 0.

C∗(s ⊕ s) is quasidiagonal, but has only two irreducible representations
nonzero on the K ⊕K, neither of which is quasidiagonal; hence it is easily
seen not to be inner quasidiagonal.

Proposition 2.8. Let A be a separable C∗-algebra. The following are equiv-
alent:

(i) Every quotient of A is inner quasidiagonal.
(ii) Every primitive quotient of A is inner quasidiagonal.
(iii) Every irreducible representation of A is quasidiagonal.
(iv) A is strongly quasidiagonal, i.e., every representation of A is quasidi-

agonal.

Proof. (iv)⇒ (iii)⇒ (i)⇒ (ii) is trivial, and (ii)⇒ (iii) is 2.5. To show (iii)
⇒ (iv), let π be a representation, which we may assume is nondegenerate, of
A on a Hilbert space H, which we may assume is separable. Let J = π−1(K).
Then π = π1 ⊕ π2, where π1|J is nondegenerate and π2(J) = 0. Then π1 is
a direct sum of irreducible representations, hence quasidiagonal, and π2 is
quasidiagonal by Voiculescu’s Weyl-von Neumann Theorem since π2(A) is a
quasidiagonal C∗-algebra by (i). �

Proposition 2.9. Let A be a C∗-algebra, and J1, J2 ideals of A. Set J =
J1 ∩ J2. If A/J1 and A/J2 are inner quasidiagonal, then A/J is inner qua-
sidiagonal.

Proof. We may clearly assume J = 0. Let x1, . . . , xm ∈ A and ε > 0. Let
ρk (k = 1, 2) be the quotient map from A to A/Jk. Then, for each j, ‖xj‖ =
max(‖ρ1(xj)‖, ‖ρ2(xj)‖). By reordering we may assume ‖ρ1(xj)‖ = ‖xj‖ for
1 ≤ j ≤ r and ‖ρ2(xj)‖ = ‖xj‖ > ‖ρ1(xj)‖ for r + 1 ≤ j ≤ m. We may also
assume ε is small enough that ‖ρ1(xj)‖ < ‖xj‖ − ε for r + 1 ≤ j ≤ m.

Let σk (k = 1, 2) be representations of A/Jk as in 2.3 for {ρk(x1), . . . ,
ρk(xm)} and the given ε, with projections pk. Let σ0 be the subrepresen-
tation of σ2 consisting of those irreducible subrepresentations σ such that
‖pσ(ρ2(xj))p‖ > ‖xj‖− ε for at least one j, r+1 ≤ j ≤ m (where p denotes
the σ-component of p2), and p0 the component of p2 in σ0. Then all of the
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irreducible subrepresentations of σ0, regarded as representations of A, are
disjoint from σ1 ◦ ρ1 since each such σ satisfies ‖σ(ρ2(xj))‖ > ‖ρ1(xj)‖ for
at least one j. Thus π = σ1 ◦ ρ1 ⊕ σ0 ◦ ρ2 and p = p1 ⊕ p0 have the desired
properties from 2.2. �

Corollary 2.10. A C∗-algebra A is inner quasidiagonal if A contains a
collection {Ji} of ideals with A/Ji inner quasidiagonal for all i and ∩Ji = 0.

Proof. A direct proof can be given along the lines of the proof of 2.9. Al-
ternatively, note that the result is immediate from the definition of in-
ner quasidiagonality if the Ji are directed by inclusion. In general, let
Ji1,... ,in = Ji1 ∩ . . . ∩ Jin , and use 2.9 to conclude that A/Ji1,... ,in is inner
quasidiagonal. �

Remark 2.11. It is obvious from the definition that if {Ai, φij} is an (ordi-
nary) inductive system (indexed by any directed set) of inner quasidiagonal
C∗-algebras with injective connecting maps φij , then the inductive limit is
inner quasidiagonal. It is not true that the inductive limit of an inductive
system with noninjective connecting maps is necessarily inner quasidiago-
nal, as the the following example shows. (It is an inductive system with
surjective connecting maps.) The same question can be asked about qua-
sidiagonality, where it appears to have a positive answer; the closely related
classes of MF and NF algebras are closed under (ordinary) inductive limits
with noninjective connecting maps, as well as certain generalized inductive
limits [BKb, 3.4.4 and 5.3.5].

Example 2.12. Let B be a (separable) quasidiagonal C∗-algebra which
is not inner quasidiagonal, e.g., the example of [Bn] (2.7). Let π be a
faithful representation of B of infinite multiplicity on a separable Hilbert
space H0; then π is quasidiagonal. Let 〈Hn〉n≥1 be a sequence of separable
infinite-dimensional Hilbert spaces, with distinguished unit vectors ξn, and
set H(n) = ⊗k≥n(Hk, ξk). If H = H0 ⊗ H(1), define C∗-subalgebras of
B(H) by Cn = K(H0) ⊗ 1H1 ⊗ · · · ⊗ 1Hn−1 ⊗K(H(n)) [C1 = K(H)], Jn =
C1 + · · · + Cn, An = Jn + ρ(B), J = [∪Jn]−, A = J + ρ(B) = [∪An]−,
where ρ = π ⊗ 1H(1) . Then 〈Jn〉 is an increasing sequence of ideals of A.
Each An is inner quasidiagonal by repeated applications of 2.5; thus A is
inner quasidiagonal by 2.11. A/Jn is isomorphic to A for any n, hence inner
quasidiagonal; but A/J ∼= B is not inner quasidiagonal.

3. Variations and technicalities.

A somewhat cleaner alternative definition of inner quasidiagonality can be
given using the socle of the bidual. See [BoD] for the general theory of
socles of Banach algebras.

Definition 3.1. If B is a C∗-algebra, then a projection p ∈ B is in the socle
of B if pBp is finite-dimensional.
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Proposition 3.2. A C∗-algebra A is inner quasidiagonal if and only if, for
any x1, . . . , xm ∈ A and ε > 0, there is a projection p in the socle of A∗∗

with ‖pxjp‖ > ‖xj‖ − ε and ‖[p, xj ]‖ < ε for all j.

Proposition 3.3. Let B be a C∗-algebra, x ∈ B, and p a projection in B.
Then

‖[x, p]‖ = max(‖(1− p)xp‖, ‖px(1− p)‖)

= max(‖px∗xp− px∗pxp‖1/2, ‖pxx∗p− pxpx∗p‖1/2).

Proof. Set a = (1 − p)xp, b = px(1 − p). Then calculation shows that
[x, p]∗[x, p] = a∗a + b∗b, so ‖[x, p]‖2 = ‖a∗a + b∗b‖ = max(‖a∗a‖, ‖b∗b‖)
since a∗a and b∗b are orthogonal. Also, ‖[x, p]‖2 = max(‖a∗a‖, ‖bb∗‖), and
a∗a = px∗xp− px∗pxp and bb∗ = pxx∗p− pxpx∗p. �

The following fact, which is a slight sharpening of the Kadison Transitivity
Theorem, follows immediately from [Pd, 2.7.5 and 3.11.9].

Proposition 3.4. Let A be a C∗-algebra, and p a projection in the socle of
A∗∗. Set Np = {x ∈ A : [p, x] = 0} = {p}′ ∩A. Then

(a) pNp = pNpp = pA∗∗p (= pAp).
(b) The weak closure of Np in A∗∗ is pA∗∗p+ (1− p)A∗∗(1− p).

Corollary 3.5. Let A, p,Np be as in 3.4, and let x ∈ A. Then d(x,Np) =
‖[x, p]‖.

Proof. d(x,Np) = d(x,N∗∗
p ) by the Hahn-Banach Theorem. We have y =

pxp+ (1− p)x(1− p) ∈ N∗∗
p by 3.4, and

‖x− y‖ = ‖(1− p)xp+ px(1− p)‖
= max(‖(1− p)xp‖, ‖px(1− p)‖) = ‖[x, p]‖.

So d(x,Np) ≤ ‖[x, p]‖. Conversely, if y ∈ Np, then

‖[x, p]‖ = ‖[x− y, p]‖
= max(‖(1− p)(x− y)p‖, ‖p(x− y)(1− p)‖) ≤ ‖x− y‖.

�

We now show that in many instances, the study of inner quasidiagonality
can be reduced to the separable case.

Proposition 3.6. Let A be an inner quasidiagonal C∗-algebra, and B a
separable C∗-subalgebra of A. Then there is a separable inner quasidiagonal
C∗-subalgebra E of A containing B.

Proof. We show that if x1, . . . , xm ∈ B and ε > 0, then there is a separable
C∗-subalgebra D of A containing B, and a projection q in the socle of D∗∗

with ‖[q, xj ]‖ < ε and ‖qxjq‖ > ‖xj‖−ε for 1 ≤ j ≤ m. Choose a projection
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p in the socle of A∗∗ with ‖[p, xj ]‖ < ε/2 and ‖pxjp‖ > ‖xj‖ − ε/2 for all
j. Let C be a separable C∗-subalgebra of Np with d(xj , C) = d(xj , Np)
for all j and pC = pNp = pAp, and let D be the C∗-subalgebra of A
generated by B and C. Then D is separable. Regard the homomorphism
π : C → pC = pAp as a representation of C on a finite-dimensional Hilbert
space H, and extend π to a representation p of D on a larger Hilbert space H̃
such that ρ is a direct sum of finitely many mutually inequivalent irreducible
representations (by extending each irreducible subrepresentation of π to an
irreducible representation of D and identifying together equivalent ones if
necessary). If Q is the projection from H̃ onto H, then Q may be regarded
as a projection q in the socle of D∗∗, and C ⊆ Nq. We have by 3.5, for each
j,

‖[q, xj ]‖ = d(xj , Nq) ≤ d(xj , C) = ‖[p, xj ]‖ < ε.

Also, there is an isometry ψ from qDq to pAp induced by ρ, and ψ(qaq) =
pap for a ∈ C. Since d(xj , C) < ε/2, we have, for each j,

‖qxjq‖ > ‖pxjp‖ − ε/2 > ‖xj‖ − ε.

As a consequence, if B = B1 is a separable C∗-subalgebra of A, then there
is a larger separable C∗-subalgebra B2 of A such that, if x1, . . . , xm ∈ B1

and ε > 0, there is a projection q in the socle of B∗∗2 with ‖[q, xj ]‖ < ε and
‖qxjq‖ > ‖xj‖ − ε for 1 ≤ j ≤ m. Iterating this construction, obtain an
increasing sequence 〈Bn〉, and set E = [∪Bn]−. Then E is separable and
inner quasidiagonal. �

Separability is nice because of the following characterizations of inner
quasidiagonality. By a slight extension of usual terminology, we will say an
irreducible representation π of a C∗-algebra A is a GCR representation if
π(A) contains the compact operators.

Proposition 3.7. Let A be a separable C∗-algebra. The following are equiv-
alent:

(i) A is inner quasidiagonal.
(ii) Given x1, . . . , xm ∈ A and ε > 0, there is an irreducible representation

π of A on a Hilbert space H and a finite-rank projection p ∈ B(H) such
that ‖[p, π(xj)]‖ < ε for 1 ≤ j ≤ m and ‖pπ(x1)p‖ > ‖x1‖ − ε.

(iii) There is a sequence of irreducible representations 〈πn〉 of A on Hilbert
spaces Hn, and finite-rank projections pn ∈ B(Hn), such that
‖[pn, πn(x)]‖ → 0 and lim sup ‖pnπn(x)pn‖ = ‖x‖ for all x ∈ A.

(iv) There is a sequence of irreducible representations 〈πn〉 of A on Hilbert
spaces Hn, and finite-rank projections pn ∈ B(Hn), such that
‖[pn, πn(x)]‖ → 0 and lim sup ‖pnπn(x)pn‖ = ‖x‖ for all x ∈ A, such
that any representation occuring more than once (up to equivalence)
in the sequence is quasidiagonal and GCR.
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Proof. (i)⇒ (ii)⇔ (iii) are obvious. To prove (iv)⇒ (i), let x1, . . . , xm ∈ A
and ε > 0, and let 〈(πn, pn)〉 be as in (iv). Choose (πn1 , pn1), . . . , (πnm , pnm)
with ‖pnk

πnk
(xk)pnk

‖ > ‖xk‖ − ε and ‖[πnk
(xj), pnk

]‖ < ε for all j and k.
If there is a subset F of {1, . . . ,m} with |F | > 1 such that πnk

= π0 for
n ∈ F , then π0 is quasidiagonal, so there is a finite-rank projection q in
π0(A)′′ with ‖qπ0(xk)q‖ > ‖xk‖ − ε for all k ∈ F . Replace ⊕mk=1(πnk

, pnk
)

by (π0, q) ⊕ ⊕k∈F (πnk
, pnk

). Repeating the process finitely many times if
necessary, we obtain a representation as in 2.3.

So we need only prove (ii) ⇒ (iv). Let 〈xk〉 be a dense sequence in A,
and choose a doubly indexed sequence 〈ρij〉 (1 ≤ k ≤ j) of irreducible
representations of A on Hjk, and finite-rank projections qjk ∈ B(Hjk), such
that ‖[qjk, ρjk(xi)]‖ < j−1 for 1 ≤ i ≤ j and ‖qjkρjk(xi)qjk‖ > ‖xk‖ − j−1.
(Note that this sequence satisfies the conditions of (iii).) The rest of the
proof will consist of two parts.

(1) We first show that if infinitely many ρjk are equivalent to a single ρ,
then either ρ is quasidiagonal and GCR or the sequence can be modified
to a new sequence in which no ρjk is equivalent to ρ. If ρ(A) ∩K = {0},
then there are infinitely (in fact, uncountably) many mutually inequivalent
irreducible representations of A with the same kernel as ρ (see Appendix),
and if π is any such representation, on a Hilbert space H̃, and ε > 0, then
for any j, k with ρjk ≈ ρ, by [Vo1, Lemma 1] there is a unitary u from Hjk

to H̃ and a finite-rank projection p ∈ B(H̃) such that

‖uqjkρjk(xi)qjku∗ − pπ(xi)p‖ < ε

for 1 ≤ i ≤ j. For sufficiently small ε, (ρjk, qjk) can be replaced by (π, p),
and a different π can be used for each ρjk equivalent to ρ.

Now suppose that ρ is GCR. If J = ker ρ, then there is an ideal K of
A with K/J essential in A/J and isomorphic to K. By identifying Hjk

with H (the Hilbert space on which ρ acts) for each ρjk equivalent to ρ, the
projections qjk become a sequence 〈rn〉 of finite-rank projections in B(H)
which asymptotically commute in norm with ρ(A), and in particular with
K; thus the only possible weak operator limit points of the sequence are
0 and 1 [any limit point must be a scalar by irreducibility, and if λ1 is a
limit point and p a finite-rank projection, then 〈prnp〉 has a subsequence
converging in norm to λp; but prnp is approximately a projection for large
n, so any norm limit point must be a projection]. If 1 is a limit point, then
there is a subsequence of 〈rn〉 converging weakly, hence strongly, to 1, so ρ
is quasidiagonal.

If 1 is not a limit point, then rn → 0 weakly, hence strongly, and so
rnarn → 0 in norm for all a ∈ K, i.e., ‖rnρ(x)rn‖ → 0 for all x ∈ K.
Fix x0 ∈ K of norm 1. We can then find a subsequence 〈ρn〉 of {ρjk}, with
associated Hilbert spaces Hn and projections qn, such that ‖[qn, ρn(x)]‖ → 0
for all x ∈ A, ‖qnρn(x0)qn‖ → 1, and such that ρn is not equivalent to ρ
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for any n. Define φ : A →
∏
qnB(Hn)qn by φ(x) =

∏
qnρn(x)qn. φ then

drops to a *-homomorphism σ from A to (
∏
qnB(Hn)qn)/(⊕qnB(Hn)qn).

Set I = kerσ. Then I ∩ K ⊆ J since x0 /∈ I, so (I + J)/J is an ideal of
A/J orthogonal to K/J . But K/J is essential in A/J , so (I + J)/J = 0,
I ⊆ J , and so ‖σ(x)‖ ≥ ‖ρ(x)‖ for all x ∈ A. Thus the subsequence of {ρjk}
consisting of those which are not equivalent to ρ still satisfies the conditions
of (iii), and a smaller subsequence will have the same specific properties as
the full double sequence {ρjk} if suitably reindexed.

(2) We now construct a doubly indexed sequence 〈(πjk, pjk)〉 satisfying
the conditions of (iv). Suppose {(πjk, pjk)} have been chosen from among
the (ρnr, qnr) for 1 ≤ k ≤ j < m, satisfying the following properties:

(a) ‖[pjk, πjk(xi)]‖ < j−1 for 1 ≤ i ≤ j.
(b) ‖pjkπjk(xi)pjk‖ > ‖xk‖ − j−1.
(c) No irreducible representation occurs more than once among the πjk

chosen so far unless it is quasidiagonal and GCR.

If m = 1, choose (π11, p11) to satisfy (a) and (b). If m > 1, the πjk already
chosen come from the ρnr for n ≤ n0 for some n0. The tail {ρnr : n > n0} can
be modified as in (1), and further truncated by increasing n0 if necessary,
so that none of the {πjk : 1 ≤ k ≤ j < m} occurs in the tail unless it
is quasidiagonal and GCR. Then a suitable element of the modified tail
satisfies (a) and (b) and can be chosen as πm1. After again modifying and
truncating the tail to eliminate subsequent appearances of πm1 if necessary,
πm2 can be chosen. The process can be continued inductively to get the
desired representations and projections.

This completes the proof. �

Lemma 3.8. Let A be a C∗-algebra. Then, for any k, A is inner quasidiag-
onal if and only if Mk(A) = A⊗Mk is inner quasidiagonal. The projections
for A⊗Mk may be chosen of the form p⊗1k, where p is in the socle of A∗∗.

Proof. Suppose A is inner quasidiagonal. It follows from 3.6 that we may
assume A is separable (or the following argument may be easily modified to
apply to the nonseparable case). Let 〈(πn, pn)〉 be a sequence as in 3.7(iii).
The map φ : A→

∏
pnB(Hn)pn given by φ(x) =

∏
pnπn(x)pn drops to an

injective *-homomorphism σ from A to (
∏
pnB(Hn)pn)/⊕pnB(Hn)pn, and

hence σ ⊗ 1k is an injective *-homomorphism from A⊗Mk to[(∏
pnB(Hn)pn

)
/⊕ pnB(Hn)pn

]
⊗Mk

∼=
(∏

(pn ⊗ 1k)[B(Hn)⊗Mk](pn ⊗ 1k)
)
/⊕ (pn ⊗ 1k)

· [B(Hn)⊗Mk](pn ⊗ 1k).

The converse is trivial. �
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Proposition 3.9. Let A and B be C∗-algebras, with A inner quasidiagonal
and B residually finite-dimensional (e.g., commutative). Then A ⊗ B =
A⊗min B is inner quasidiagonal.

Proof. Let {J} be a collection of ideals of B with intersection 0, with B/Ji
finite-dimensional for all i. Then {A⊗ Ji} is a collection of ideals of A⊗B,
with intersection 0, and (A ⊗ B)/(A ⊗ Ji) = A ⊗ (B/Ji) is a finite direct
sum of matrix algebras over A, hence inner quasidiagonal. �

We will prove a partial converse to 3.9 in 3.10 below. We believe that
a tensor product of any two inner quasidiagonal C∗-algebras is inner qua-
sidiagonal, at least if one of the factors is nuclear. This would follow if
the converse to 2.4 is true. (See note added in proof.) Note that a tensor
product of strong NF algebras is strong NF (5.17).

Proposition 3.10. Let A and C be C∗-algebras, with C commutative. If
A⊗ C is inner quasidiagonal, then A is also inner quasidiagonal.

Proof. We reduce to the case where A is separable. If A ⊗ C is inner qua-
sidiagonal, and S is a countable subset of A, then by 3.6 and an obvious
additional construction we may construct an increasing sequence 〈Bn〉 of
separable C∗-subalgebras of A ⊗ C such that Bn is inner quasidiagonal for
n odd and Bn = Dn ⊗En for n even, for separable C∗-subalgebras Dn of A
containing S and En of C. Then B = [∪Bn]− is separable, inner quasidi-
agonal, and equal to D ⊗ E for D = [∪Dn]− ⊆ A, which contains S, and
E = [∪En]− ⊆ C.

Now suppose A is separable. Write C = C0(X) for a locally compact
Hausdorff space X; then A⊗C = C0(X,A). Suppose A⊗C is inner quasidi-
agonal; let x1, . . . , xm ∈ A, all of norm 1, and 0 < ε < 1. Choose δ > 0 such
that δ

1−δ < ε. Let U be an open set in X with compact closure, g ∈ C0(X)
of norm 1 supported in U , and f ∈ C0(X) of norm 1 and identically 1 on
U , with f and g taking values in [0, 1]. Let V = {x : g(x) > 1 − δ} ⊆ U .
Let π be an irreducible representation of A⊗ C = C0(X,A) and p a finite-
rank projection such that ‖pπ(x1 ⊗ g)p‖ > 1 − δ and [p, π(xj ⊗ g)] < δ
for all j. Then π is supported on a point x0 of V , so π may be regarded
as a representation ρ of A by ρ(x) = π(x ⊗ f). For each j, π(xj ⊗ f)
is a scalar multiple of π(xj ⊗ g), with a scalar λ = g(x0)−1 satisfying
1 ≤ λ ≤ (1 − δ)−1; thus ‖[q, π(xj ⊗ f)]‖ ≤ (1 − δ)−1‖[q, π(xj ⊗ g)]‖ < ε,
and ‖pπ(x1 ⊗ f)p‖ ≥ ‖pπ(xj ⊗ g)p‖ > 1 − δ > 1 − ε. Thus ρ and p satisfy
condition (ii) of 3.7, so A is inner quasidiagonal. �

Corollary 3.11. SA is inner quasidiagonal if and only if A is inner qua-
sidiagonal, and similarly for CA.

Proof. Combine 3.10 with 3.9. �
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Remark 3.12. 3.11 shows that unlike quasidiagonality [Vo2], inner qua-
sidiagonality is not a homotopy invariant for C∗-algebras.

We have the following refinement of the notion of inner quasidiagonality:

Definition 3.13. Let A be a C∗-algebra, and z a central projection in A∗∗.
Then A is z-inner quasidiagonal if, for any x1, . . . , xm ∈ A and ε > 0, there
is a projection p in the socle of zA∗∗ with ‖pxjp‖ > ‖xj‖−ε and ‖[p, xj ]‖ < ε

for all j. If Π is a subset of Â, A is Π-inner quasidiagonal if A is z-inner
quasidiagonal, where z is the support projection of Π in the center of A∗∗.

A is inner quasidiagonal if and only if A is 1A∗∗-inner quasidiagonal. A is
z-inner quasidiagonal if and only if A is Πz-inner quasidiagonal, where Πz

is the set of irreducible representations of A with central support ≤ z.

Example 3.14. Let A be a C∗-algebra with a quasidiagonal faithful irre-
ducible representation π, and let z be the support projection of π in A∗∗.
Then A is z-inner quasidiagonal, and zA∗∗ is a type I factor. More generally,
if {πj} is a separating family of quasidiagonal irreducible representations of
A, and z is the support projection of ⊕πj , then A is z-inner quasidiagonal.

There are versions of 3.6-3.8 for z-inner or Π-inner quasidiagonality, al-
though 3.7(iv) must be weakened (but see 3.18). If A is a C∗-algebra, B a
C∗-algebra, and Π a subset of Â, let Π|B be the subset of B̂ consisting of all
irreducible representations (actually, not just weakly) contained in π|B for
some π ∈ Π.

Proposition 3.15. Let A be a C∗-algebra and Π a subset of Â. If A is
Π-inner quasidiagonal and B is separable C∗-subalgebra of A, then there is
a separable C∗-subalgebra E of A, containing B, which is Π|E-inner qua-
sidiagonal.

Proposition 3.16. Let A be a separable C∗-algebra, and Π a subset of Â.
The following are equivalent:

(i) A is Π-inner quasidiagonal.
(ii) Given x1, . . . , xm ∈ A and ε > 0, there is an irreducible representation

π ∈ Π on a Hilbert space H and a finite-rank projection p ∈ B(H) such
that ‖[p, π(xj)]‖ < ε for 1 ≤ j ≤ m and ‖[pπ(xj)p]‖ > ‖x1‖ − ε.

(iii) There is a sequence of irreducible representations 〈πn〉 in Π on Hilbert
spaces Hn, and finite-rank projections pn ∈ B(Hn), such that
‖[pn, πn(x)]‖ → 0 and lim sup ‖pnπn(x)pn‖ = ‖x‖ for all x ∈ A.

(iv) There is a sequence of irreducible representations 〈πn〉 in Π on Hilbert
spaces Hn, and finite-rank projections pn ∈ B(Hn), such that
‖[pn, πn(x)]‖ → 0 and lim sup ‖pnπn(x)pn‖ = ‖x‖ for all x ∈ A, such
that any GCR representation occuring more than once (up to equiva-
lence) in the sequence is quasidiagonal.
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Proposition 3.17. Let A be a C∗-algebra, z a central projection in A∗∗.
Then, for any k, A is z-inner quasidiagonal if and only if Mk(A) = A⊗Mk

is (z ⊗ 1)-inner quasidiagonal. The projections for A ⊗Mk may be chosen
of the form p⊗ 1k, where p is in the socle of zA∗∗.

Actually, z-inner or Π-inner quasidiagonality is not really a stronger con-
dition than inner quasidiagonality for separable C∗-algebras, as the next
result shows. This is a generalization of 2.5, and is closely related to 3.7.

Theorem 3.18. Let A be a separable inner quasidiagonal C∗-algebra, and
Π a separating set of mutually inequivalent irreducible representations of A.
Then A is Π-inner quasidiagonal.

Lemma 3.19. Let A be a C∗-algebra, Π a faithful family of irreducible rep-
resentations of A, π1, . . . , πn ∈ Π, pk a finite-rank projection in πk(A)′′ for
1 ≤ k ≤ n, X a finite subset of A, and η > 0. If ρ is an representation of
A not equivalent to any π ∈ Π, and q a finite-rank projection on Hρ, then
there is a π ∈ Π and finite-rank projection p on Hπ, with p ⊥ pk if π ∼ πk,
and an isometry z from qHρ onto pHπ, such that ‖qρ(x)q− z∗pπ(x)pz‖ < η
for all x ∈ X.

Proof. First suppose π0 ∈ Π is GCR, with kernel J , and let K = π−1
0 (K). If

I = ∩{kerπ : π ∈ Π, π 6∼ π0}, we have I ∩J = 0, so if L ∈ Prim (A), L 6= J ,
then either I ⊆ L or K ⊆ L. Thus if p is any finite-rank projection on Hπ0 ,
and ρ is an irreducible representation of A not equivalent to π0, then for any
x ∈ A we have

‖ρ(x)‖ ≤ max{‖(1− p)π0(x)(1− p)‖, max{‖π(x)‖ : π ∈ Π, π 6∼ π0}}.
This formula also holds if π0 is not GCR, for any ρ and p, since then the
right-hand side is equal to ‖x‖.

Now let ρ and q be as in the statement of the lemma, with r = rank q. By
replacing A by Mr(A) and using the standard identifications of [Pa, §5] (cf.
[BKb, 4.3]), we may assume r = 1. If p1, . . . , pn are given, let S be the set
of vector states coming from representations in Π, where only vector states
from πk coming from vectors orthogonal to pk are included. Then by the
first part of the proof, for any x = x∗ in A we have ‖ρ(x)‖ ≤ supf∈S |f(x)|.
So by the bipolar theorem, the weak-* closure of S contains all pure states
of ρ(A), proving the lemma. �

Proof of Theorem 3.18. Let x1, . . . , xm ∈ A, of norm 1, and 0 < ε < 1.
Choose mutually inequivalent irreducible representations ρ1, . . . , ρn of A and
finite-rank projections q1, . . . , qn such that ‖[qk, ρk(xj)]‖ < ε/2m for all j
and k and such that, for each j, there is at least one k with ‖qkρk(xj)qk‖ >
‖xj‖ − ε/2 (2.3). Define new pairs (πk, pk) for 1 ≤ k ≤ n inductively as
follows, with each πk in Π. Suppose (π1, p1), . . . , (πk−1, pk−1) have been
defined. If ρk is in Π, set (πk, pk) = (ρk, qk). Otherwise, choose π, p, z as
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in 3.19 for η = (ε/2m)2, X = {xj , x∗jxj , xjx∗l : 1 ≤ j ≤ m}, and ρ = ρk,

q = qk, such that p ⊥ pi for all i < k for which π = πi. Then ‖pπ(xj)p‖ >
‖qkρk(xj)qk‖ − ε/2m for all j. Also, for each j,

‖pπ(xj)∗π(xj)p− pπ(xj)∗pπ(xj)p‖
≤ ‖z∗pπ(x∗jxj)pz − qρ(x∗jxj)q‖

+ ‖qρ(x∗jxj)q − qρ(xj)∗qρ(xj)q‖
+ ‖qρ(xj)∗qρ(xj)q − z∗pπ(xj)∗pzqρ(xj)q‖
+ ‖z∗pπ(xj)∗pzqρ(xj)q − z∗pπ(xj)∗pπ(xj)pz‖

<
( ε

2m

)2
+
( ε

2m

)2
+
( ε

2m

)2
+
( ε

2m

)2
=
( ε
m

)2

(see 3.3 for the second term). Similarly, ‖pπ(xjx∗j )p − pπ(xj)pπ(xj)∗p‖ <
(ε/m)2, so ‖[p, π(xj)]‖ < ε/m by 3.3. Set (πk, pk) = (π, p).

We have now obtained a set {(πk, pk) : 1 ≤ k ≤ n} of representations in
Π and finite-rank projections such that ‖[pk, πk(xj)]‖ < ε/m for all j and k
and such that, for each j, there is at least one k for which ‖[pk, πk(xj)pk]‖ >
‖xj‖−ε. The πk are, however, not necessarily distinct. Suppose, for some set
F , each πk for k ∈ F is equal to a representation π0 in Π. Then {pk : k ∈ F}
are mutually orthogonal, and if p0 =

∑
k∈F pk, then

‖[p0, π0(xj)]‖ ≤
∑
k∈F
‖[pk, πk(xj)]‖ <

ε|F |
m
≤ ε

‖p0π0(xj)p0‖ ≥ max
k∈F
‖pkπk(xj)pk‖

for all j, so ⊕(πk, pk) may be replaced by (π0, p0) ⊕ ⊕k∈F (πk, pk). After
finitely many such procedures, a direct sum of mutually inequivalent irre-
ducible representations in Π is obtained, satisfying the definition of Π-inner
quasidiagonality for x1, . . . , xm, ε. �

4. The Main Theorem.

We first show that strong NF algebras are inner quasidiagonal. We begin by
recalling one of the characterizations of strong NF algebras from [BKb]; we
state a slightly refined form for later use. The proof is essentially identical
to the proof of [BKb, 6.1.1] (note that that proof works throughout if the
finite-dimensional algebras are restricted to be in a given class B).

Proposition 4.1. Let B be a set of finite-dimensional C∗-algebras, and A
a separable C∗-algebra. Then the following are equivalent:

(i) A can be written as lim−→(An, φm,n) for a generalized inductive system
(An, φm,n) with each An isomorphic to an algebra in B and each φm,n
a complete order embedding (completely positive complete isometry).
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(ii) For every x1, . . . , xm ∈ A and ε > 0, there is a B ∈ B, elements
b1, . . . , bm ∈ B, and a complete order embedding φ : B → A with
‖xj − φ(bj)‖ < ε for all j.

The strong NF algebras are exactly the A for which these conditions hold
for B the set of all finite-dimensional C∗-algebras. We may take condition
(ii) (with B the set of all finite-dimensional C∗-algebras) to be the definition
of a strong NF algebra even in the nonseparable case.

Proposition 4.2. Every strong NF algebra is inner quasidiagonal.

Proof. Let A be a strong NF algebra, x1, . . . , xm ∈ A, and ε > 0. Choose a
finite-dimensional C∗-algebra B, elements b1, . . . , bm ∈ B, and a complete
order embedding φ : B → A such that if yj = φ(bj), then ‖xj − yj‖ < ε/2
for all j. Let D be the C∗-subalgebra of A generated by φ(B). By [CE1,
4.1] (cf. [BKb, 4.2.2]), there is a *-homomorphism π from D onto B with
π(yj) = bj for all j. If B = B1 ⊕ · · · ⊕ Bn with each Bi a full matrix
algebra, and π = π1 ⊕ · · · ⊕ πn, then πi can be regarded as an irreducible
representation of D on a finite-dimensional Hilbert space Hi. Extend πi to
an irreducible representation π̃i of A on a larger Hilbert space H̃i, and let pi
be the projection of H̃i onto Hi. The π̃i are not in general inequivalent; we
may assume that π̃1, . . . , π̃r are a set of representatives for the equivalence
classes. Set H̃ = H̃1 ⊕ · · · ⊕ H̃r and π̃ = π̃1 ⊕ · · · ⊕ π̃r. For i > r, choose
k ≤ r with π̃i ≈ π̃k and identify H̃i with H̃k, and pi with the corresponding
projection on H̃k. Let p ∈ B(H̃) be the sum of the pi (note that for a fixed
k the pi on H̃k are orthogonal since the πi are disjoint). Then p ∈ π̃(A)′′;
and for each j, [p, π̃(yj)] = 0. so ‖[p, π̃(xj)]‖ ≤ 2‖xj − yj‖ < ε. For each j
we have ‖pπ̃(yj)p‖ = ‖yj‖ (since ‖π(yj)‖ = ‖yj‖); so

‖pπ̃(xj)p‖ ≥ ‖yj‖ − ‖xj − yj‖ > ‖yj‖ − ε/2 > ‖xj‖ − ε.
�

The next proposition gives an important technical characterization of in-
ner quasidiagonality.

Proposition 4.3. Let A be a C∗-algebra, and z a central projection in A∗∗.
Then A is z-inner quasidiagonal if and only if, for any x1, . . . , xm ∈ A,
completely positive contraction φ : A→Mn, and ε > 0, there is a projection
p in the socle of zA∗∗ with ‖[p, xj ]‖ < ε for all j, and a completely positive
contraction ψ : pA∗∗p→Mn with ‖φ(xj)− ψ(pxjp)‖ < ε for all j.

Proof. The “if” part is obvious (consider the case n = 1). Conversely, sup-
poseA is z-inner quasidiagonal; we may assumeA is unital. Fix x1, . . . , xm ∈
A and ε > 0. By 3.15 we may assume A is separable. Then we may assume
there is a set Π of irreducible representations as in 3.16(iv) such that z is the
support projection of Π. Because of 3.17 and the identifications described
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in [Pa, §5] (cf. [BKb, 4.3]), we may assume n = 1. For each δ > 0 let Sδ be
the weak-* closure of the set of all states ω of A of the form ω(x) = ψ(pxp),
where p is in the socle of zA∗∗, ‖[p, xj ]‖ < δ for all j, and ψ is a state on
pA∗∗p. We want to show that Sε is the entire state space of A. For any δ, Sδ
is norming for A, i.e., for x = x∗ ∈ A, sup{|φ(x)| : φ ∈ Sδ} = ‖x‖ by Π-inner
quasidiagonality. Therefore, if ‖x‖ ≤ 1 and φ(x) ≥ 0 for all φ ∈ Sδ, then
φ(1−x) ≤ 1 for all φ ∈ Sδ, so ‖1−x‖ ≤ 1, x ≥ 0. Thus Sδ contains all pure
states of A by [Dx, 3.4.1], so it suffices to show that a convex combination
of two elements of Sδ/2 is in Sδ. So let p1, p2 be projections in the socle of
zA∗∗, ‖[pi, xj ]‖ < δ/2 for i = 1, 2, 1 ≤ j ≤ n, and ωi states on A of the
form ωi(x) = ψi(pixpi) for states ψi on piA

∗∗pi. As in 2.3, there are repre-
sentations πi of A, each of which is a direct sum of mutually inequivalent
irreducible representations in Π, such that πi(pi)πi(A)πi(pi) = piApi, and ωi
is a linear combination of vector states from vectors in the range of π(pi). If
0 < λ < 1 is fixed, we must show that ω = λω1 +(1−λ)ω2 is approximately
of the same form.

The difficulty comes when one or more of the irreducible subrepresen-
tations of π1 is equivalent to a subrepresentation of π2. By the choice of
Π, any such representation ρ is either quasidiagonal or not GCR. We will
separately work within each such ρ, so fix ρ, on a Hilbert space H.

If ρ is quasidiagonal, identify the components of π(pi) (i = 1, 2) in ρ with
qi ∈ B(H). Then, for any η > 0, there is a finite-rank projection r such that
‖qi − rqi‖ < η (i = 1, 2) and ‖[r, ρ(xj)]‖ < ε for 1 ≤ j ≤ m; the component
of ω corresponding to ρ can thus be approximated within η in norm by a
convex combination of vector states in the range of r, and such states are in
Sε.

Now suppose ρ is not GCR, i.e., ρ(A) ∩K = {0}. Identify the subrep-
resentation ρ1 of π1 equivalent to ρ with ρ, giving a projection q1; then
the component of ω1 corresponding to ρ is a convex combination of vec-
tor states in the range of q1. Let ρ2 on H2 be the subrepresentation of π2

equivalent to ρ, and r2 the corresponding projection. By [Vo1, Lemma 1],
for any y1, . . . , yr ∈ A and η > 0, there is a unitary u from H2 to H and
a finite-rank projection q2 ∈ B(H) orthogonal to q1 with q2 = ur2u

∗ and
‖q2ρ(xj)q2 − ur2ρ2(xj)r2u∗‖ < η, ‖q2ρ(yk)q2 − ur2ρ2(yk)r2u∗‖ < η for all
j, k. Thus every weak-* neighborhood of the component of ω2 in ρ2 contains
a state ω̃2 which is a convex combination of vector states in the range of
some such q2, and ω̃2 is in Sδ/2 for sufficiently small η. Then the component
of ω corresponding to ρ is approximated by a convex combination of vector
states in the range of q1 + q2, and ‖[q1 + q2, xj ]‖ ≤ ‖[q1, xj ]‖+ ‖[q2, xj ]‖ < δ
for all j, so ω ∈ Sδ. �

Theorem 4.4. Let A be a nuclear C∗-algebra, and z a central projection in
A∗∗. If A is z-inner quasidiagonal, then A satisfies condition (ii) of 4.1 with
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B = {pAp : p is in the socle of zA∗∗}. So if A is separable, then A can be
written as lim−→(An, φm,n) for a generalized inductive system (An, φm,n) where
each An is isomorphic to pnA∗∗pn for some pn in the socle of zA∗∗, and each
φm,n is a complete order embedding.

Putting together 4.4 with 4.2 we obtain:

Theorem 4.5. Let A be a separable C∗-algebra. Then A is a strong NF
algebra if and only if A is nuclear and inner quasidiagonal.

Proof of Theorem 4.4. Suppose A is nuclear and z-inner quasidiagonal. Let
x1, . . . , xm ∈ A and ε > 0. Choose a matrix algebra Mn and completely
positive contractive maps α : A → Mn and β : Mn → A such that
‖β ◦ α(xj) − xj‖ < ε/7 for 1 ≤ j ≤ m. Then by 4.3 choose p in the so-
cle of zA∗∗ with ‖[p, xj ]‖ < ε/7 and σ : pAp → Mn a completely positive
contraction such that ‖σ(pxjp)−α(xj)‖ < ε/7 for 1 ≤ j ≤ m. Set B = pAp
and ω = β ◦ σ : B → A. Then ‖ω(pxjp)− xj‖ < ε/7 for all j.

We have d(xj , Np) = ‖[p, xj ]‖ for each j by 3.5; let yj ∈ Np with
‖xj−yj‖ < ε/7. Then ‖ω(pyj)−yj‖ < 4ε/7 for all j. The map x→ px = pxp
is a *-homomorphism from Np onto B; let J be the kernel, ψ : B → Np a
completely positive contractive cross section for the quotient map, and {ei} a
quasicentral approximate identity for J in Np. For each i, define φi : B → A
by

φi(b) = (1− ei)1/2ψ(b)(1− ei)1/2 + e
1/2
i ω(b)e1/2i .

For each i, φi is a complete order embedding since pφi(b)p = b for all b ∈ B.
For i sufficiently large, ‖yj − ((1 − ei)1/2yj(1 − ei)1/2 + e

1/2
i yje

1/2
i )‖ < ε/7

for all j since {ei} is quasicentral. We also have

‖(1− ei)1/2(yj − ψ(pyj))(1− ei)1/2‖ < ε/7

for each j, for i large, since yj − ψ(pyj) ∈ J . Thus, for i sufficiently large,
we have, for all 1 ≤ j ≤ m,

‖xj − φi(pyj)‖

≤ ‖xj − yj‖+
∥∥∥yj − ((1− ei)1/2yj(1− ei)1/2 + e

1/2
i yje

1/2
i

)∥∥∥
+
∥∥∥(1− ei)1/2(yj − ψ(pyj))(1− ei)1/2

∥∥∥+
∥∥∥e1/2i (yj − ω(pyj))e

1/2
i

∥∥∥
<
ε

7
+
ε

7
+
ε

7
+

4ε
7

= ε,

so A satisfies condition (ii) of 4.1. If A is separable, the last statement of
4.4 follows from 4.1.

The following diagram summarizes the maps used in the proof.
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Mn

α

σ

β
A

id−−−−−−−−−−−−−−−−−−→ A

p·p
y x⊆

pA∗∗p
ψ−−−−−−−−−−−−−−−−−→ Np �

5. Corollaries.

Corollary 5.1. A separable nuclear C∗-algebra with a separating family of
quasidiagonal irreducible representations is a strong NF algebra. In partic-
ular, every separable nuclear residually finite-dimensional C∗-algebra is a
strong NF algebra, and every separable nuclear strongly quasidiagonal C∗-
algebra is a strong NF algebra.

Corollary 5.2. Let A be a separable subhomogeneous C∗-algebra, and sup-
pose each irreducible representation of A is of dimension ≤ k. Then A is a
strong NF algebra, and has a strong NF system (An, φm,n) where each An
is a (finite) direct sum of matrix algebras of size not more than k × k.

Since the class of strong NF algebras is closed under inductive limits
[BKb, 6.1.3], we obtain:

Corollary 5.3. Every (separable) approximately subhomogeneous C∗-alge-
bra is a strong NF algebra.

Corollary 5.4. If A is separable, nuclear, and prime, then A is a strong NF
algebra if and only if some (hence every) faithful irreducible representation
of A is quasidiagonal.

Corollary 5.5. Every antiliminal prime NF algebra is a strong NF algebra.
Every simple NF algebra is a strong NF algebra.

Example 5.6. The examples of 2.7 are NF but not strong NF.

Corollary 5.7. Let A be a separable nuclear C∗-algebra. The following are
equivalent:

(i) Every quotient of A is a strong NF algebra.
(ii) Every primitive quotient of A is a strong NF algebra.
(iii) Every irreducible representation of A is quasidiagonal.
(iv) A is strongly quasidiagonal.

Corollary 5.8. Let A be any NF algebra, and let B be a split essential
extension of A by K. Then B is a strong NF algebra. So A can be embedded
as a C∗-subalgebra of a strong NF algebra B with a retraction (homomorphic
conditional expectation) from B onto A. In particular, A is a quotient of a
strong NF algebra. So every separable nuclear C∗-algebra is a quotient of a
strong NF algebra [BKb, 6.1.8].
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We can obtain a refinement of 5.4-5.5.

Definition 5.9. A strong NF algebra is of monomial type if it can be writ-
ten as lim−→(An, φm,n), with each An a single matrix algebra and each φm,n a
complete order embedding.

We have used the terminology “monomial type” instead of “UHF type”
or “matroid type” since the class of AF algebras which are strong NF of
monomial type is considerably larger than the class of UHF or matroid C∗-
algebras. (In fact, an AF algebra is strong NF of monomial type if and only
if it is prime.)

Proposition 5.10 (cf. [Dx, 1.9.13]). A C∗-algebra B is prime if and only
if, for every nonzero x, y ∈ B, there is an irreducible representation π of B
with π(x) and π(y) both nonzero.

Proof. If I and J are nonzero ideals of B with I ∩ J = 0, then every irre-
ducible representation of A must annihilate either I or J , so if x ∈ I and
y ∈ J are nonzero, then no irreducible representation of B can be nonzero
on both x and y. Conversely, if B is prime, and x, y are nonzero elements of
B, then there is a z ∈ B with xzy 6= 0 (otherwise the two-sided ideals gener-
ated by x and y annihilate each other); if π is an irreducible representation
of B with π(xzy) 6= 0, then π(x) and π(y) are both nonzero. �

Remark 5.11. The second half of the proof can be simplified if B is primi-
tive (e.g., if B is separable). It is still an open question whether every prime
C∗-algebra is primitive.

Proposition 5.12. A strong NF algebra of monomial type is prime.

Proof. If A is strong NF of monomial type and x1, x2 are nonzero elements
of A, then by 4.1 there is a complete order embedding φ of a full matrix
algebra B into A such that ‖xj − φ(bj)‖ < ‖xj‖/2 for j = 1, 2, for some
bj ∈ B. φ−1 extends to an irreducible representation π̃ of A as in proof of
4.2, and π̃(xj) 6= 0 for j = 1, 2. �

Theorem 5.13. Let A be a prime separable nuclear C∗-algebra. Then the
following are equivalent:

(i) A is a strong NF algebra.
(ii) A is a strong NF algebra of monomial type.
(iii) For some faithful irreducible representation π, π(A) is a quasidiagonal

C∗-algebra of operators.
(iv) For every faithful irreducible representation π, π(A) is a quasidiagonal

C∗-algebra of operators.
In particular, every antiliminal prime NF algebra and every simple NF al-
gebra is a strong NF algebra of monomial type.
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Proof. (ii) ⇒ (i) and (iv) ⇒ (iii) are trivial; (i) ⇒ (iv) by 2.5 and 4.2, and
(iii) ⇒ (ii) by 4.4, letting z be the support of π in A∗∗ (cf. 3.14). �

We have the following versions of 2.9-2.10:

Proposition 5.14. Let A be a (separable) C∗-algebra, and J1, J2 ideals of
A. Set J = J1 ∩ J2. If A/J1 and A/J2 are strong NF algebras, then A/J is
strong NF.

Proof. In light of 2.9 it suffices to note that if A/J1 and A/J2 are nuclear,
then A/J is nuclear. This can be seen in several ways. Perhaps the easiest
is to use the fact that a separable C∗-algebra B is nuclear if and only if
every factor representation of B generates an injective factor, and note that
every factor representation of A/J factors though either A/J1 or A/J2.
Alternatively, A/J is an extension of A/J1 by J1/J , and J1/J ∼= (J1+J2)/J2,
which is nuclear since it is an ideal in A/J2. �

Corollary 5.15. A separable nuclear C∗-algebra A is a strong NF algebra
if (and only if) A contains a sequence 〈Jn〉 of ideals with A/Jn strong NF
for all n and ∩Jn = 0.

Note that neither of the assumptions that A be separable and nuclear
follow from the other hypotheses of 5.15 (e.g., A =

∏
nMn, Jn the sequences

vanishing in the n’th coordinate).
The situation with an increasing sequence of ideals, and hence with in-

ductive limits with noninjective connecting maps, is quite different. Recall
that an (ordinary) inductive limit, with injective connecting maps, of strong
NF algebras is strong NF ([BKb, 6.1.3]; this is an immediate corollary of
4.1, or of 2.1 and 4.5).

Proposition 5.16. An (ordinary) inductive limit of an inductive system
of strong NF algebras with noninjective connecting maps is not necessarily
strong NF.

Proof. Example 2.12 is a counterexample. �

For completeness, we note the following fact, which should have been
included in [BKb]:

Proposition 5.17. The class of strong NF algebras is closed under tensor
products.

Proof. By 4.1 it suffices to show that, if A1, A2, B1, B2 are C∗-algebras, with
B1, B2 finite-dimensional, and φi : Bi → Ai are complete order embeddings,
then the finite-dimensional subspace φ1(B1)⊗φ2(B2) of A1⊗A2 is completely
order isomorphic to a C∗-algebra. This follows immediately from [CE2,
3.1] (cf. [BKb, 4.2.1]), since if ωi is an idempotent completely positive
contraction from Ai onto φi(Bi), then ω1 ⊗ ω2 is an idempotent completely
positive contraction from A1 ⊗A2 onto φ1(B1)⊗ φ2(B2). �
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Finally, the next proposition is an immediate consequence of 3.11 and
[BKb, 5.3.3].

Proposition 5.18. Let A be a separable C∗-algebra. Then A is a strong
NF algebra if and only if SA is strong NF, and similarly for CA. Thus, if
A is a separable nuclear C∗-algebra which is not strong NF (e.g., if A is not
NF), then SA and CA are NF but not strong NF.

Using 5.18, we get examples of NF algebras which are not strong NF
which are very different from those of 5.6:

Example 5.19. SO2 is an antiliminal NF algebra which is not strong NF.

Appendix A.

This appendix contains a “folklore” result that we have been unable to find
in the literature. The arguments are slight variations of those of Glimm
[Gl], as presented in [Dx]. The word “ideal” will mean “closed two-sided
ideal”.

If J is a primitive ideal in a C∗-algebra A, we will call J a GCR ideal if J
is the kernel of a GCR irreducible representation (one whose image contains
the compact operators). The next proposition is well known and easy to
prove (cf. [Dx, 4.1.10]).

Proposition A.1. Let J be a primitive ideal in a separable C∗-algebra A.
Then the following are equivalent:

(i) J is a GCR ideal.
(ii) There is an ideal K of A, containing J , such that K/J is an essential

ideal of A/J isomorphic to K.
(iii) A/J is not antiliminal.

Theorem A.2. Let J be a primitive ideal in a separable C∗-algebra A.
Then the following are equivalent:

(i) J is not GCR ideal.
(ii) A/J is antiliminal.
(iii) J is the kernel of a non-type I factor representation of A.
(iv) There are two inequivalent irreducible representations of A with kernel

J .
(v) There are uncountably many mutually inequivalent irreducible repre-

sentations of A with kernel J .

Proof. (i) ⇔ (ii) is A.1, (v) ⇒ (iv) is trivial, and (iv) ⇒ (i) follows from
[Dx, 4.1.10].

By replacing A by A/J , we may and will assume that J = 0 in the rest
of the proof, to simplify notation.

(iii) ⇒ (v) by a slight modification of the argument in [Dx, 9.1]: if π
is a faithful non-type-I factor representation of A on a separable Hilbert
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space and C is a masa in π(A)′, the direct integral decomposition of π as∫ ⊕
πxdµ(x) with respect to C has almost all πx faithful and irreducible by

the argument of [Dx, 9.1]. If, for a set E of nonzero measure, each πx
for x ∈ E is equivalent to a fixed representation π0, then by [Dx, 8.1.7]∫ ⊕
E πxdµ(x) is a subrepresentation of π equivalent to a multiple of π0, a

contradiction. Thus, for each x, the set Ex = {y : πy ∼ πx} has measure 0,
so there must be uncountably many such sets.

It remains to prove (ii) ⇒ (iii). This follows from the results of Glimm if
A has a minimal nonzero ideal, but not directly otherwise. However, using
the next three lemmas, Glimm’s argument essentially works in our case.

Lemma A.3. Let A be a separable primitive C∗-algebra. Then A contains
a decreasing sequence 〈Jn〉 of nonzero (not necessarily proper) ideals, such
that every nonzero ideal of A contains Jn for some n.

Proof. This is an immediate consequence of the fact that Prim (A) is a sec-
ond countable T0 space and 0 is a dense point. �

Lemma A.4 (cf. [Dx, 9.3.5]). Let B be an antiliminal C∗-algebra and I an
essential ideal in B. If d ∈ B+ of norm 1 and 0 < τ ≤ 1, then there exist
w,w′, d′ in I satisfying the conclusions of [Dx, 9.3.5].

Proof. The proof is identical to the proof of [Dx, 9.3.5] except that π is
chosen to be an irreducible representation of B which is nonzero on I (this
is possible since I is essential and is itself an antiliminal C∗-algebra), so π|I
is irreducible, and c is chosen in I. Then d0 and hence ν are in I, so d′, w,
and w′ are also in I. �

Lemma A.5 (cf. [Dx, 9.3.7]). Let B be a unital antiliminal C∗-algebra,
〈Jn〉 a decreasing sequence of essential ideals of B, and let (s0, s1, . . . )
be a sequence of self-adjoint elements of B. Then there exist elements
ν(a1, . . . , ak) (k = 1, 2, . . . ) of B satisfying all the conditions of [Dx, 9.3.7],
and in addition ν(a1, . . . , ak) ∈ Jk for all k and all (a1, . . . , ak).

Proof. The proof is identical to the proof of [Dx, 9.3.7], with A.4 used (with
I = Jn+1) in place of [Dx, 9.3.5]. �

Proof of A.2 (ii) ⇒ (iii). Let 〈Jn〉 be a sequence of ideals of A as in A.3.
Choose elements ν(a1, . . . , ak) as in A.5 (if A is nonunital, work in Ã).
Choose the states f and g as in [Dx, 9.4]; then the representation πg is
a type II factor representation of A. If I = kerπg is nonzero, then πg is
zero on Jn for some n; but this is impossible since ν(a1, . . . , ak) ∈ Jn and
πg(ν(a1, . . . , ak)) 6= 0. Thus I = 0 and πg is faithful. �

The same technique can be used to give the following version of Maréchal’s
refinement [Ma, §2] of Glimm’s result:
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Lemma A.6. Let A be a separable unital primitive antiliminal C∗-algebra.
Then there is a unital sub-C∗-algebra B of A and ideal J of B, such that:

(a) B/J is isomorphic to the CAR algebra D (write φ : B → D for the
quotient map).

(b) For any cyclic representation π of D, there is a faithful cyclic represen-
tation ρ of A, and a projection F ∈ ρ(B)′′ ∩ ρ(B)′, of central support
1 in ρ(A)′′, such that the subrepresentation ρ1 of ρ|B defined by F is
equivalent to π ◦ φ and ρ1(B)′′ = Fρ(A)′′F .

Corollary A.7. Let A be a separable C∗-algebra and J a non-GCR primi-
tive ideal of A. If M is any properly infinite injective von Neumann algebra
(in particular, any infinite injective factor) with separable predual, then there
is a representation π of A with kernel J , such that π(A)′′ ∼= M .

Note added in proof. The authors have recently shown that the converse
of 2.4 is true: an inner quasidiagonal C∗-algebra has a separating family
of quasidiagonal irreducible representations. As a consequence, if A and B
are inner quasidiagonal and one of them is nuclear, then A ⊗ B is inner
quasidiagonal (see the comment after 3.9). Some of the other arguments in
this paper can be simplified using this result.
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APPROXIMATION ENTROPIES IN CROSSED PRODUCTS
WITH AN APPLICATION TO FREE SHIFTS

Nathanial P. Brown and Marie Choda

It is shown that for two dynamical approximation entropies
(one C∗ and one W ∗) the implementing inner automorphism
in a crossed product Aoα Z has the same entropy value as the
automorphism α.

Using the techniques in the proof, an example of a highly
ergodic non-asymptotically abelian automorphism with topo-
logical entropy zero is also given. More specifically, it is shown
that the free shifts on the Cuntz algebra O∞ and the reduced
free group C∗-algebra C∗

r (F∞) have topological entropy zero.

1. Introduction.

In this paper we show that for two definitions of dynamical entropy (both
based on Voiculescu’s approximation approach; [Vo2]) getting calculations
for general automorphisms is equivalent to getting calculations for inner
automorphisms. More precisely, we show that if α ∈ Aut(A), η ∈ S(A) is
an α-invariant state and η ◦ E denotes the Adu-invariant state on A oα Z
induced by η (u ∈ A oα Z is the implementing unitary) then the entropies
of α and Adu agree with respect to η and η ◦E, respectively, for the entropy
quantities defined in [Ch3] and [Vo2, Section 3]. (See [St2, Problem 4.2].)

One may regard AoαZ as the closure of the “fibers” Ak = {auk : a ∈ A}.
Then each Ak is globally invariant under Adu and, moreover, the action
of Adu on Ak is precisely that of α. Thus it seems natural to expect the
same entropy value for α and Adu, which we show by constructing explicit
completely positive maps on Aoα Z using the techniques of [SS] as in [Br].

The maps constructed on A oα Z can also be used to estimate entropy
for some outer automorphisms of A oα Z. Since many operator algebras
can be realized as crossed products we get a large class of examples where
these techniques are relevant. Indeed, similar ideas were used in [Ch2, Ch3]
to obtain various entropy values for Cuntz’s canonical endomorphism of the
Cuntz algebra On, 2 ≤ n <∞ [Cu], and Longo’s canonical endomorphism of
type III factors. In this paper we exploit the isomorphism O∞⊗K ∼= FoΦZ,
where K denotes the algebra of compact operators and F is an AF algebra,
to obtain the following result.
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Theorem. The free shift on the Cuntz algebra O∞ has topological entropy
zero in the sense of [Vo2, Br].

The free shift is the automorphism of O∞ = C∗({Si : i ∈ Z}) such that
Si 7→ Si+1. This is a highly ergodic non-asymptotically abelian automor-
phism.

There is a natural embedding C∗r (F∞) ↪→ O∞ of the reduced group C∗-
algebra of the free group in infinitely many generators and hence the above
theorem also holds for the free shift on C∗r (F∞) since topological entropy
decreases in subalgebras (cf. [Br, Prop. 2.1]). In fact, we will obtain the
same results for automorphisms arising from any bijective function Z→ Z.
(See also [St1, St3], [Dy] for related results.)

In Section 2 we observe several consequences of the construction of Sinclair
and Smith [SS]. The reader is encouraged to first go through [SS] as we
will be rather sketchy. In Section 3 we prove that the entropy of α and Adu
agree for the entropies defined in [Ch3] and [Vo2, Section 3]. In Section 4
the topological entropy (in the sense of [Br]) of the free shift is shown to be
zero.

2. Maps on Crossed Products.

We first observe that the techniques of [SS] allow one to construct maps on
AoαG out of maps on A in such a way that the map constructed on AoαG
inherits many nice properties that the map on A may have (e.g., normality,
positivity, invariance with respect to an α-invariant state, approximation
properties). For future reference it will be convenient to separate each of
these observations into individual propositions. However, all of the results
in this section are easy consequences of [SS] and we refer the reader to that
paper for all of the details and notation which appears below.

In this section A will denote a C∗-algebra which is faithfully nondegen-
erately represented in B(H), where H is a separable Hilbert space. We
assume that an action α : G→ Aut(A) is given with G a countable discrete
amenable group. As in [SS], we further assume (without loss of generality)
that α is spatially implemented; i.e., that there exists a unitary represen-
tation G → B(H), g 7→ Ug such that αg(a) = UgaU

∗
g for all a ∈ A and

g ∈ G. We will regard A oα G, the reduced (or full, since G is amenable)
crossed product, as faithfully represented (via the regular representation) in
B(l2(G) ⊗H) and let π : A ↪→ A oα G denote the natural inclusion. Since
α is spatially implemented, the map π makes perfectly good sense on all of
B(H). An easy calculation shows that π : B(H) → B(l2(G) ⊗ H) is both
ultraweak-ultraweak and ultrastrong-ultrastrong continuous. Recall that
there is a natural unitary representation g 7→ λg of G into B(l2(G) ⊗ H)
such that λgπ(x)λ∗g = π(αg(x)) for all x ∈ A and such that the span of
{π(x)λg : g ∈ G, x ∈ A} is norm dense in Aoα G.
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If F ⊂ G is a finite set, we will let pF denote the orthogonal projection
onto the span of {ξg : g ∈ F} (where {ξg}g∈G is the natural orthonormal
basis of l2(G)) and PF : B(l2(G) ⊗ H) → (pF ⊗ I)B(l2(G) ⊗ H)(pF ⊗ I)
be the compression map. If f ∈ l∞(G) has finite support then we let Tf :
B(l2(G)⊗H)→ B(l2(G)⊗H) be the map constructed in [SS, Lem. 3.3].

Definition 2.1. If Λ : A → B(H) is a linear map, f ∈ l∞(G) has finite
support, and F ⊂ G is a finite set we define ΦΛ,f,F : AoαG→ B(l2(G)⊗H)
by

ΦΛ,f,F = Tf ◦ (idF ⊗ Λ) ◦ PF ,
where idF : pF (B(l2(G)))pF → pF (B(l2(G)))pF is the identity map.

It follows from [SS, Lem. 2.1] that PF (A oα G) ⊂ pF (B(l2(G)))pF ⊗ A
and hence ΦΛ,f,F is well defined. Since PF is weakly continuous, this also
shows that when A is a von Neumann algebra, the weak closure of Aoα G
(i.e., the W ∗-crossed product) also gets mapped into pF (B(l2(G)))pF ⊗ A
and hence ΦΛ,f,F is well defined for W ∗-algebras and W ∗-crossed products
as well.

In the following proposition, I will denote the identity operator on both
l2(G) and H and hence I ⊗ I denotes the unit of B(l2(G) ⊗H). For each
finite set F ⊂ G we also let {ep,q}p,q∈F denote the canonical matrix units of
pFB(l2(G))pF .

Proposition 2.2. The following assertions hold.
1) Tf is a completely positive map (cf. [Pa]) with Tf (I ⊗ I) = ‖f‖22I ⊗ I.

Hence ‖Tf‖cb = ‖Tf‖ = ‖f‖22. Also, if F contains the support of f
then Tf (pF ⊗ I) = Tf (I ⊗ I).

2) Tf (ep,q⊗a) = f(p)f(q)π(αp(a))λpq−1 for ep,q⊗a ∈ pFB(l2(G))pF ⊗A.
3) If x ∈ pFB(l2(G))pF ⊗A and {xi} ⊂ pFB(l2(G))pF ⊗A is a net con-

verging to x in the ultraweak (resp. ultrastrong) topology then Tf (xi)→
Tf (x) in the ultraweak (resp. ultrastrong) topology.

4) If Λ is completely bounded (cf. [Pa]) then ΦΛ,f,F is also completely
bounded with ‖ΦΛ,f,F ‖cb ≤ ‖f‖22‖Λ‖cb. If Λ is completely positive then
ΦΛ,f,F is completely positive.

5) If A is a von Neumann algebra, Λ(A) ⊂ A and Λ is ultraweakly (resp.
ultrastrongly) continuous then ΦΛ,f,F is ultraweakly (resp. ultrastrongly)
continuous as a map (Aoα G)′′ → B(l2(G)⊗H).

6) If A is unital, Λ is unital, F ⊃ supp (f) and ‖f‖22 = 1 then ΦΛ,f,F is
unital.

Proof. The first assertion is essentially [SS, Lem. 3.3] and it’s proof. (The
last statement follows easily from the definition of Tf .)

The second assertion follows from Lemmas 2.2 and 3.1 in [SS], together
with the definition of Tf .
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The third assertion follows from the second since we noted that π is
continuous in both the ultraweak and ultrastrong topologies.

The fourth is immediate from the first since PF is a completely positive
contraction and ‖idF ⊗ Λ‖cb ≤ ‖Λ‖cb.

The fifth follows from the third since ΦΛ,f,F = Tf ◦ (idF ⊗ Λ) ◦ PF .
The final assertion follows from the first since

ΦΛ,f,F (I ⊗ I) = Tf (idF ⊗ Λ(pF ⊗ I)) = Tf (pF ⊗ I) = Tf (I ⊗ I) = I ⊗ I.
�

Proposition 2.3. If Λ(A) ⊂ A then

ΦΛ,f,F (π(a)λg) =
∑

t∈F∩(gF )

f(t)f(g−1t)π(αt(Λ(αt−1(a))))λg

for all a ∈ A and g ∈ G. In particular, if Λ(A) ⊂ A then ΦΛ,f,F (Aoα G) ⊂
Aoα G.

Proof. See Lemma 3.2 in [SS]. �

Let 1 denote the unit of G. Then P{1}(A oα G) = p{1} ⊗ A. Identifying
p{1}⊗A with I⊗A ∼= A we let E : AoαG→ A denote the resulting faithful
normal projection such that E(π(a)λg) = 0 for all g 6= 1 and E(π(a)) = a
for all a ∈ A (cf. [Pe, Lem. 7.11.3]). When A is a von Neumann algebra
then we regard E as a map (Aoα G)′′ → A.

Proposition 2.4. If ‖f‖22 = 1, F ⊃ supp (f), η ∈ S(A) is an α-invariant
state (i.e., η ◦ αg = η for all g ∈ G) and Λ : A→ A is a completely positive
map such that η ◦ Λ = η then η ◦E ◦ ΦΛ,f,F = η ◦E (as states on Aoα G).

If A is a von Neumann algebra, η is normal and Λ is ultraweakly contin-
uous then η ◦ E ◦ ΦΛ,f,F = η ◦ E (as states on (Aoα G)′′).

Proof. Evidently Proposition 2.3 implies η ◦ E ◦ ΦΛ,f,F (π(a)λg) =
η ◦ E(π(a)λg) for all a ∈ A, g ∈ G. Thus the proposition follows from
parts 4 and 5 of Proposition 2.2. �

The next proposition is immediate from the definitions and part 1 of
Proposition 2.2.

Proposition 2.5. Assume Λ = ψ ◦ϕ where ϕ : A→ B, ψ : B → B(H) are
linear maps. Letting Φ = (idF ⊗ ϕ) ◦ PF and Ψ = Tf ◦ (idF ⊗ ψ) we have:

1) The diagram

Aoα G
Φψ◦ϕ,f,F//

Φ ((QQQQQQQQQQQQQ B(l2(G)⊗H)

M|F | ⊗B,

Ψ

OO
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is commutative, where M|F | = pFB(l2(G))pF is isomorphic to the ma-
trix algebra of dimension |F |2 = cardinality (F )2.

2) Φ (resp. Ψ) is completely positive whenever ϕ (resp. ψ) is completely
positive.

Let {ep,q}p,q∈F be the canonical matrix units of M|F | = pFB(l2(G))pF .
When ψ(B) ⊂ A we can give an explicit formula for the map Ψ. (There is
always an explicit formula for Φ.)

Proposition 2.6. With the assumptions and notation of Proposition 2.5
we have:

1. Φ(π(a)λg) =
∑

t∈F∩(gF )

et,g−1t ⊗ ϕ(αt−1(a)),

1′. If ϕ is unital then Φ is unital,
2. Ψ(ep,q ⊗ b) = f(p)f(q)π(αp(ψ(b)))λpq−1,
2′. If F ⊃ supp (f), ‖f‖2 = 1 and ψ is unital then Ψ is unital.

Proof. The first assertion follows from [SS, Lem. 2.1] while 2 follows from
the definition of Tf , [SS, Lem. 3.1] and [SS, Lem. 2.2]. 1′ (resp. 2′) is an
easy calculation using 1 (resp. 2). �

We will need the following proposition to compute [Ch3] entropy.

Proposition 2.7. If ϕ and ψ in Proposition 2.5 are unital and completely
positive, ‖f‖22 = 1, F ⊃ supp (f) and η ∈ S(A) is an α-invariant state then

η ◦ E ◦Ψ

∑
q∈F

eq,q ⊗ b

 = η ◦ ψ(b),

for all b ∈ B (i.e., under the natural identifications of B and 1 ⊗ B ⊂
M|F | ⊗B, the states η ◦ ψ and η ◦ E ◦Ψ agree).

Proof. This is an easy calculation using the previous proposition. �

Finally we observe that ΦΛ,f,F has good approximation properties when-
ever Λ does. If K ⊂ G is a finite set and f ∈ l∞(G) has finite support F
then we let

FK,f = F ∪
( ⋃
g∈K

g−1F

)
.

Proposition 2.8. For each finite set K ⊂ G and δ > 0 there exists f ∈
l∞(G) of finite support with ‖f‖2 = 1 and the following property: Let ω ⊂ A
be a finite set with ‖x‖ ≤ 1 for all x ∈ ω. If ‖Λ(y) − y‖ ≤ δ/2 for all y ∈
∪g∈FK,fαg−1(ω) then ‖ΦΛ,f,FK,f (π(x)λk)−π(x)λk‖ ≤ δ for all x ∈ ω, k ∈ K.

Proof. If Λ(A) ⊂ A then this is essentially contained in the proof of [SS,
Thm. 3.4]. However, a slightly different series of estimates handles the gen-
eral case (see the proof of [Br, Lem. 3.4]). �
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Assume that η ∈ S(A) is an α-invariant state and consider the seminorm
‖x‖η = η(x∗x)1/2 for all x ∈ A. Then η ◦ E is a state on A oα G which is
Adλg-invariant for all g ∈ G. An easy calculation shows ‖π(a)λg‖η◦E = ‖a‖η
for all a ∈ A and g ∈ G. Similarly one shows ‖αt(a)‖η = ‖a‖η for all a ∈ A
and t ∈ G. From this it follows that if Λ(A) ⊂ A then

‖Λ(αt−1(a))− αt−1(a)‖η = ‖π(αt ◦ Λ ◦ αt−1(a))λg − π(a)λg‖η◦E ,
for all a ∈ A and g, t ∈ G. However, with this observation the estimates in
the proof of [SS, Thm. 3.4] go through essentially without change. Hence
we get the following analogue of the previous proposition.

Proposition 2.9. For each finite set K ⊂ G and δ > 0 there exists f ∈
l∞(G) of finite support with ‖f‖2 = 1 and the following property: Let
η ∈ S(A) be an α-invariant state and ω ⊂ A be a finite set with ‖x‖η ≤ 1
for all x ∈ ω. If ‖Λ(y) − y‖η ≤ δ/2 for all y ∈ ∪g∈FK,fαg−1(ω) then
‖ΦΛ,f,FK,f (π(x)λk)− π(x)λk‖η◦E ≤ δ for all x ∈ ω, k ∈ K.

3. Entropy and Inner Automorphisms.

We will now establish the analogue of [Br, Thm. 3.5] for the dynamical
entropies defined in [Ch3] and [Vo2, Section 3]. In this section, α will
always denote an action of a countable discrete abelian group G on a given
operator algebra. Crossed products (both C∗ and W ∗) will be regarded as
subalgebras of B(l2(G) ⊗H) (as in the previous section), π : A → A oα G
is the natural inclusion and E : Aoα G→ A is the natural faithful normal
conditional expectation.

We begin with the analogues of [Br, Lem. 3.4]. The next lemma is used
to compute [Ch3] entropy in crossed products. We refer the reader to [Ch3]
and [Vo2, Section 3] for the definitions and notation which appears below.

Lemma 3.1. Let A be a unital nuclear C∗-algebra (cf. [Wa]) and η ∈ S(A)
be an α-invariant state (i.e., η ◦ αg = η for all g ∈ G). For each finite set
K ⊂ G and δ > 0 there exists a finite set F = F (K, δ) ⊂ G such that if
ω ⊂ A is a finite set with ‖x‖ ≤ 1 for all x ∈ ω then

scpη◦E(ωK , δ) ≤ scpη

⋃
g∈F

α−g(ω), δ/2

+ log(|F |),

where ωK = {π(x)λk : x ∈ ω, k ∈ K} and |F | = cardinality (F ).

Proof. Apply Proposition 2.8 with K, δ to get a function f ∈ l2(G) with
finite support, ‖f‖2 = 1 and the property stated in that proposition. We
will show that F = FK,f is the desired finite set.

To prove the inequality we let ε > 0 be arbitrary and choose unital com-
pletely positive maps ϕ : A → B, ψ : B → A such that B is finite di-
mensional, ‖ψ ◦ ϕ(y) − y‖ ≤ δ/2 for all y ∈ ∪g∈Fα−g(ω) and S(η ◦ ψ) ≤
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scpη(
⋃
g∈F α−g(ω), δ/2) + ε. Letting Λ = ψ ◦ ϕ we can factor ΦΛ,f,F (as

Ψ ◦ Φ) through M|F | ⊗ B by Proposition 2.5. Note also that Φ and Ψ
are unital completely positive maps by Propositions 2.5 and 2.6. Proposi-
tion 2.8 says that ‖ΦΛ,f,F (x)−x‖ ≤ δ for all x ∈ ωK and thus (by definition)
scpη◦E(ωK , δ) ≤ S(η ◦ E ◦Ψ). By [OP, Prop. 1.9] we have

S(η ◦ E ◦Ψ) ≤ S(η ◦ E ◦Ψ|1⊗B) + log(|F |).
Finally, from Proposition 2.7, we have S(η ◦ E ◦ Ψ|1⊗B) = S(η ◦ ψ) ≤
scpη(

⋃
g∈F α−g(ω), δ/2) + ε, by our choice of ψ, which proves the lemma

since ε was arbitrary. �

The next lemma allows one to compute the entropy of [Vo2, Section 3]
in crossed products. The proof is similar to the previous one and will be
omitted (see also [Br, Lem. 3.4]). Due to the definitions involved, one uses
Proposition 2.9 instead of Proposition 2.8. The replacement of the inequality

S(η ◦ E ◦Ψ) ≤ S(η ◦ E ◦Ψ|1⊗B) + log(|F |)
is the remark that if rank (C) denotes the dimension of a maximal abelian
subalgebra of C then rank (Mn(C) ⊗ B) ≤ n · rank(B). We also note that
one must appeal to Proposition 2.4 to ensure that the maps used in the
previous proof (i.e., ΦΛ,f,F ) remain η ◦ E-invariant. (Though not explicitly
stated in [Vo2, Section 3], it follows from the assumptions that the state is
faithful and the approximating maps in CPA(M,η) are η-invariant that the
maps in CPA(M,η) are ultraweakly continuous and hence the hypotheses
of Proposition 2.4 are indeed satisfied.)

Lemma 3.2. Let M be a hyperfinite von Neumann algebra with α-invariant
faithful normal state η. For each finite set K ⊂ G and δ > 0 there exists a
finite set F = F (K, δ) ⊂ G such that if ω ⊂M is a finite set with ‖x‖η ≤ 1
for all x ∈ ω then

rcpη◦E(ωK , δ) ≤ |F |rcpη

⋃
g∈F

α−g(ω), δ/2

 ,

where ωK = {π(x)λk : x ∈ ω, k ∈ K} and |F | = cardinality (F ).

As in the previous section, we let λg ∈ AoαG be the unitary implementing
αg ∈ Aut(A). We also remind the reader that G is now assumed to be a
discrete abelian group.

Theorem 3.3. If A is a unital nuclear C∗-algebra with α-invariant state η,
then for all g ∈ G we have htη(αg) = htη◦E(Adλg), where htη(·) is defined
in [Ch3].

Proof. We only sketch the argument as it is similar to the proof of [Br,
Thm. 3.5]. The inequality htη(αg) ≤ htη◦E(Adλg) for all g ∈ G follows from
[Ch3, Prop. 2.2].
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Let δ > 0, ω ⊂ A a finite set with ‖x‖ ≤ 1 for all x ∈ ω, and a finite set
K ⊂ G be given. Choose a finite set F = F (K, δ) according to Lemma 3.1
and define Ω = ∪g∈Fα−g(ω). Since G is abelian, from Lemma 3.1 one may
deduce the inequality

scpη◦E(ωK ∪ . . .∪Adλn−1
g (ωK), δ) ≤ scpη(Ω∪ . . .∪αn−1

g (Ω), δ/2)+ log(|F |),

as in the proof of [Br, Thm. 3.5]. Since this inequality holds for all n ∈ N,
the desired inequality follows from [Ch3, Prop. 2.3]. �

The proof of the following theorem is similar where one uses Lemma 3.2
instead of Lemma 3.1. The analogues of [Ch3, Prop. 2.2] and [Ch3, Prop.
2.3] are [Vo2, Prop. 3.5] and [Vo2, Prop. 3.4], respectively. Of course, Adλg
should now be regarded as an automorphism of the W ∗-crossed product.

Theorem 3.4. Let M be a hyperfinite von Neumann algebra and η be an
α-invariant faithful normal state. For all g ∈ G, we have hcpaη(αg) =
hcpaη◦E(Adλg), where hcpaη(·) is defined in [Vo2, Section 3].

In particular, this theorem generalizes the results of [Vo2, Appendix].

4. Entropy for Automorphisms of O∞.

In this section we will show that ht(α) = 0 (cf. [Br]) for the free shifts on
O∞ and C∗r (F∞). This will follow from a more general result concerning
automorphisms of O∞ induced by bijective mappings α : Z → Z. These
results have also been obtained by K. Dykema (cf. [Dy, Thm. 1 and Example
7]) using directly the free product construction as opposed to the crossed
product construction used here. As mentioned in the introduction, we use
the isomorphism O∞ ⊗K ∼= F oΦ Z and the techniques of the previous two
sections to achieve our calculations.

Recall that the Cuntz algebra O∞ is defined as the universal C∗-algebra
generated by isometries {Si}i∈Z which satisfy the relation

r∑
i=−r

SiS
∗
i ≤ 1

for all r ∈ N. If α : Z → Z is any bijective function, then from the uni-
versality of O∞ we get a well defined automorphism O∞ → O∞ defined by
Si 7→ Sα(i). We will also use α to denote the automorphism of O∞ induced
by α : Z→ Z. If α is the mapping i 7→ i+ 1 then α is called the free shift.

We begin with a technical lemma which should have appeared in [Br] and
will be necessary for our calculations. If A ⊂ B(H) we will let ιA denote
the inclusion A ↪→ B(H). See [Br, Def. 1.1] for the notation which appears
below.
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Lemma 4.1. Let C, D ⊂ B(H) be exact C∗-algebras (cf. [Wa]) and π :
C → D be a *-monomorphism. For each finite set ω ⊂ C and δ > 0,
rcp(ιC , ω, δ) = rcp(ιD, π(ω), δ).

Proof. From the proofs of [Br, Prop. 1.3 and 2.14] we have rcp(ιC , ω, δ) =
rcp(π, ω, δ) and rcp(ιD, π(ω), δ) = rcp(ιπ(C), π(ω), δ). Hence it is sufficient
to show rcp(π, ω, δ) = rcp(ιπ(C), π(ω), δ).

We only show rcp(π, ω, δ) ≥ rcp(ιπ(C), π(ω), δ) as the other inequality is
similar. So choose (ϕ,ψ,B) ∈ CPA(π,C) such that ‖ψ ◦ ϕ(x) − π(x)‖ ≤
δ for all x ∈ ω and rank (B) = rcp(π, ω, δ). Then (ϕ ◦ π−1, ψ,B) ∈
CPA(ιπ(C), π(C)) and ‖ψ ◦ ϕ ◦ π−1(π(x)) − π(x)‖ ≤ δ for all x ∈ ω. But
this implies rcp(π, ω, δ) ≥ rcp(ιπ(C), π(ω), δ) as desired. �

Remark 4.2. In particular, this lemma improves [Br, Lem. 2.4] and hence
the proofs of Propositions 2.5, 2.6 and 2.8 in [Br] are slightly more technical
than they need to be.

Given n ∈ N and a subset I ⊂ Z we let W (n, I) = {µ = (µ1, . . . , µn) :
µj ∈ I for 1 ≤ j ≤ n} and W (0, I) = {∅}. If µ ∈ W (n, I) we define the
operator Sµ ∈ O∞ by Sµ = Sµ1 · · ·Sµn and Sµ = 1 if n = 0. For m ≤ n
we let [m,n] be the integer interval and F([m,n], I) be the C∗-subalgebra
of O∞ generated by

n⋃
j=m

{SµS∗ν : µ, ν ∈W (j, I)}.

It is known that if I is a finite subset of Z then F(n, I) = F([n, n], I) is
isomorphic to the matrix algebra M|I|n(C), where |I| denotes the cardinality
of I, and is isomorphic to the compact operators on an infinite dimensional
separable Hilbert space when I is infinite (cf. [Cu]). If I ⊂ Z is a finite set,
we define for each j ∈ N the projection

Pj =
∑

µ∈W (j,I)

SµS
∗
µ.

Note that Pj ≥ Pj+1.

Lemma 4.3. If I ⊂ Z is a finite set then

F([0, n], I) ∼= C⊕M|I|(C)⊕ . . .⊕M|I|n(C)

with a complete set of pairwise orthogonal minimal projections given by

{Sµ(1− P1)S∗µ, SνS
∗
ν : µ ∈ ∪j∈[0,n−1]W (j, I) and ν ∈W (n, I)}.

In particular, rank (F([0, n], I)) = 1 + |I|+ · · ·+ |I|n.
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Proof. For each j, the set {SµS∗ν : µ, ν ∈W (j, I)} is a complete set of matrix
units for F(j, I) and the unit of F(j, I) is Pj . For each 0 ≤ j ≤ n − 1 we
define

Ej(µ, ν) = Sµ(1− P1)S∗ν ,

where µ, ν ∈W (j, I). For j = n we let

En(µ, ν) = SµS
∗
ν ,

where µ, ν ∈ W (n, I). For each 0 ≤ j ≤ n let Aj = C∗({Ej(µ, ν) : µ, ν ∈
W (j, I)}). (Note that An = F(n, I).) Evidently we have Aj ⊂ F([0, n], I)
for 0 ≤ j ≤ n and hence C∗({Aj : 0 ≤ j ≤ n}) ⊂ F([0, n], I). Note
also that for µ, ν ∈ W (n − 1, I), SµS∗ν = En−1(µ, ν) + SµP1S

∗
ν and hence

SµS
∗
ν ∈ An−1 + An. Similarly one argues that SµS∗ν ∈ Aj + · · · + An for

µ, ν ∈W (j, I) and hence C∗({Aj : 0 ≤ j ≤ n}) = F([0, n], I).
For 0 ≤ j ≤ n − 1 a simple calculation shows Ej(µ, ν)Ej(µ′, ν ′) =

δν,µ′Ej(µ, ν ′) and
∑

µEj(µ, µ) = Pj − Pj+1. One also verifies that for 0 ≤
j ≤ n−1 and µ, ν ∈W (j, I), S∗µPj+1 = P1S

∗
µ. Hence Pj+1SµS

∗
ν = SµS

∗
νPj+1

and
(Pj − Pj+1)SµS∗ν(Pj − Pj+1) = Sµ(1− P1)S∗ν = Ej(µ, ν),

for 0 ≤ j ≤ n − 1 and µ, ν ∈ W (j, I). Thus {Ej(µ, ν) : µ, ν ∈ W (j, I)}
is a complete set of matrix units for Aj = (Pj − Pj+1)F(j, I)(Pj − Pj+1) ∼=
M|I|j (C). This also shows that the Aj are pairwise orthogonal and hence

F([0, n], I) = C∗({Aj : 0 ≤ j ≤ n}) = A0 ⊕ . . .⊕An.

However, this clearly implies the lemma. �

Since F([0, n], [−n, n]) ⊂ F([0, n+ 1], [−n− 1, n+ 1]) ⊂ O∞, the closure
F∞ of ∪nF([0, n], [−n, n]) is an AF subalgebra containing the unit of O∞.

For each i ∈ Z let Bi = F∞ and define *-monomorphisms βi,i−1 : Bi →
Bi−1 by x 7→ S0xS

∗
0 . Let B denote the inductive limit of the sequence

· · ·B1

S0·S∗0
↪→ B0

S0·S∗0
↪→ B−1

S0·S∗0
↪→ · · · ,

and ρi : Bi ↪→ B be the induced embeddings. As in [Cu], there is an
automorphism Φ of B which shifts the above sequence one space to the left
and satisfies the relation

Φj ◦ ρi = ρi+j ,

for all i, j ∈ Z (under the natural identifications Bi ∼= F∞ ∼= Bi+j). Another
important relation that follows immediately from the construction is

ρi(x) = ρi−j(S
j
0xS

∗j
0 ),

for all x ∈ Bi ∼= F∞ ∼= Bi−j , i ∈ Z and j ∈ N.
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Let u be the implementing unitary in the multiplier algebra M(B oΦ Z).
One readily verifies that the elements S̃i = ρ0(SiS∗0)u ∈ B oΦ Z are partial
isometries with support projection ρ0(1) and satisfying

r∑
i=−r

S̃iS̃
∗
i ≤ ρ0(1)

for all r ∈ N. Hence there is an induced *-monomorphism π : O∞ → BoΦ Z
such that π(Si) = S̃i for all i ∈ Z. In [Cu], it is shown that π(O∞) =
ρ0(1)(BoΦ Z)ρ0(1). However, for our calculations, it will only be necessary
to observe that for every x ∈ F∞ we have π(x) = ρ0(x).

We will use this map π (and Lemma 4.1) to estimate the completely
positive δ-rank of certain finite sets in O∞. To compute δ-ranks in crossed
products (i.e., B oΦ Z) we recall [Br, Lem. 3.4] (in a slightly different, but
equivalent, form than the original).

Lemma 4.4 ([Br, Lem. 3.4]). Let A ⊂ B(H) be an exact C∗-algebra (cf.
[Wa]) and α : G → Aut(A) be an action of a discrete abelian group. For
each finite set K ⊂ G and δ > 0 there exists a finite set F = F (K, δ) ⊂ G
such that if ω ⊂ A is a finite set with ‖x‖ ≤ 1 for all x ∈ ω then

rcp(idAoαG, ωK , δ) ≤ |F |rcp

idA, ⋃
g∈F

α−g(ω), δ/2

 ,

where ωK = {π(x)λk : x ∈ ω, k ∈ K} and |F | = cardinality (F ).

Considering the case G = Z, what this lemma roughly says is that to
approximate polynomials in AoαZ it suffices to approximate a finite number
of iterates of the coefficients.

For convenience, we assume both O∞ and B oΦ Z to be faithfully repre-
sented on the same Hilbert space H and use ιO∞ and ιBoΦZ to denote the
inclusions. It will also be convenient to define

ωk,l,I =
k⋃
i=0

( l⋃
j=0

{S∗i0 SµS∗ν , SµS∗νSi0 : µ, ν ∈W (j, I)}
)
.

Lemma 4.5. For each k, l ∈ N with k ≤ l and δ > 0 there is a constant
C = C(k, l, δ) such that rcp(ιO∞ , ωk,l,I , δ) ≤ C|I|C for all finite subsets
I ⊂ Z containing 0.

Proof. Note that π(Si0) = ρ0(Si0S
∗i
0 )ui. Hence for all i ≤ k and µ, ν ∈W (j, I)

we have

π(SµS∗νS
i
0) = ρ0(SµS∗νS

i
0S

∗i
0 )ui = ρ−k(Sk0SµS

∗
νS

i
0S

∗i
0 S

∗k
0 )ui

and
π(S∗i0 SµS

∗
ν) = u∗iρ0(Si0S

∗i
0 SµS

∗
ν).
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Since u∗ρ0(x) = ρ−1(x)u∗ we have

π(S∗i0 SµS
∗
ν) = ρ−i(Si0S

∗i
0 SµS

∗
ν)u

∗i = ρ−k(Sk−i0 Si0S
∗i
0 SµS

∗
νS

∗(k−i)
0 )u∗i.

Thus we see that the “coefficients” of π(ωk,l,I) (i.e., ρ−k(Sk0SµS
∗
νS

i
0S

∗(k+i)
0 )

and ρ−k(Sk0S
∗i
0 SµS

∗
νS

∗(k−i)
0 )) all come from the finite dimensional algebra

ρ−k(F([0, l + k], I)) by reducing the terms S∗νS
i
0 and S∗i0 Sµ.

By virtue of Lemmas 4.1 and 4.4, to estimate rcp(ιO∞ , ωk,l,I , δ) it suffices
to understand a finite number of the iterates (under Φ) of the coefficients
of π(ωk,l,I). But since there is always a conditional expectation onto finite
dimensional subalgebras, we only need to understand a finite number of
iterates of the finite dimensional subalgebra ρ−k(F([0, l + k], I)) (since this
contains the coefficients of π(ωk,l,I)).

So let m ∈ N be arbitrary and consider

Φm
(
ρ−k(F([0, l + k], I))

)
∪ . . . ∪ Φ−m

(
ρ−k(F([0, l + k], I))

)
.

By the relations Φj ◦ ρ−k = ρ−k+j , and ρt(x) = ρt−r(Sr0xS
∗r
0 ) (r ≥ 0) we

have

Φm
(
ρ−k(F([0, l + k], I))

)
∪ . . . ∪ Φ−m

(
ρ−k(F([0, l + k], I))

)
= ρ−k+m

(
F([0, l + k], I)

)
∪ . . . ∪ ρ−k−m

(
F([0, l + k], I)

)

= ρ−k−m

(
S2m

0 F([0, l + k], I)S∗(2m)
0 ∪ . . . ∪ F([0, l + k], I)

)
⊂ ρ−k−m(F([0, l + k + 2m], I)).

Hence, by Lemmas 4.1, 4.4 and our observations above, there exists m =
m(k, δ) ∈ N such that

rcp(ιO∞ , ωk,l,I , δ) ≤ (2m+ 1)rank (ρ−k−m(F([0, l + k + 2m], I)))

= (2m+ 1)rank (F([0, l + k + 2m], I))

= (2m+ 1)(1 + |I|+ · · ·+ |I|(l+k+2m))

≤ C|I|C ,
where C = l + k + 2m+ 1. �

Since O∞ is nuclear, the following theorem holds for the entropy defined
in [Vo2, Section 4] although we will be using the definition in [Br] (cf. [Br,
Prop. 1.4]).

Theorem 4.6. If α ∈ Aut(O∞) is induced by a bijective function α : Z→ Z
then ht(α) = 0.
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Proof. If I ⊂ Z contains 0, µ ∈W (j, I) and ν ∈W (j′, I), where j ≤ j′, then
SµS

∗
ν = S∗i0 SγS

∗
ν with γ ∈ W (j′, I) and i = j′ − j. From this observation

and a similar remark when j > j′, one deduces that the span of the finite
sets ωk,l,I with k ≤ l and 0 ∈ I are norm dense in O∞. Hence it suffices, by
[Br, Prop. 2.6], to show that ht(ιO∞ , α, ωk,l,I , δ) = 0 for all such sets.

If µ, ν ∈W (j, I) then an easy calculation shows α(SµS∗νS
i
0) = SγS

∗
λS

i
0 for

some γ, λ ∈ W (j, {0} ∪ α(I)) if j ≥ i or γ, λ ∈ W (i, {0} ∪ α(I)) if j < i. In
any case, one deduces that α(ωk,l,I) ⊂ ωk,l,{0}∪α(I) whenever k ≤ l. Similarly
one shows

ωk,l,I ∪ . . . ∪ αn−1(ωk,l,I) ⊂ ωk,l,I∪...∪αn−1(I),

for all n ∈ N, whenever k ≤ l and 0 ∈ I ⊂ Z.
Hence

rcp(ιO∞ , ωk,l,I ∪ . . . ∪ αn−1(ωk,l,I), δ) ≤ rcp(ιO∞ , ωk,l,I∪...∪αn−1(I), δ),

for all n and all δ > 0. However, the previous lemma shows that

rcp(ιO∞ , ωk,l,I∪...∪αn−1(I), δ) ≤ C(n|I|)C

for some constant C depending only on k, l and δ. This implies

ht(ιO∞ , α, ωk,l,I , δ) ≤ lim sup
n→∞

n−1(log(C(n|I|)C)) = 0.

�

Remark 4.7. Note that we have never used the fact that α : Z → Z is
surjective. Thus the previous theorem also holds for any endomorphism of
O∞ which is induced by an injective function α : Z→ Z.

The following recovers a special case of [St3, Thm. 2] in the case of CNT
entropy.

Corollary 4.8. Let α ∈ Aut(O∞) be induced by a bijective function α :
Z → Z and ϕ be an α-invariant state. Then hϕ(α) = htϕ(α) = 0, where
hϕ(·) and htϕ(·) are defined in [CNT] and [Ch3], respectively.

Proof. Since O∞ is nuclear we appeal to [Ch3, Thm. 2.6.1] to get the in-
equalities ht(α) ≥ htϕ(α) ≥ hϕ(α). �

If F∞ is the free group on generators {gi}i∈Z then C∗r (F∞) is the C∗-
algebra generated by the left regular representation λ : F∞ → B(l2(F∞)).
If α : Z→ Z is any bijective function then there is a natural automorphism
of C∗r (F∞), also denoted by α, such that λ(gi) 7→ λ(gα(i)). The free shift on
C∗r (F∞) is induced by the mapping i 7→ i+ 1.
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Corollary 4.9. Let α ∈ Aut(C∗r (F∞)) be induced by a bijective function
α : Z→ Z. Then ht(α) = 0.

Proof. By monotonicity of ht(·) (i.e., the fact that topological entropy de-
creases in invariant subalgebras; cf. [Br, Prop. 2.1]) it suffices to provide an
embedding of C∗r (F∞) into O∞ such that α lifts to an automorphism of O∞
of the type considered in Theorem 4.6. That such an embedding exists is
known to the experts so we only sketch the proof. (See also [BD].)

Let {Si}i∈Z generateO∞ and ϕ ∈ S(O∞) be the vacuum state (cf. [VDN,
Ex. 1.5.8]). The restriction of ϕ to Ai = C∗(Si) is denoted by ϕi. Let
Bi ⊂ Ai be the subalgebra generated by the identity and bi = (S∗i + Si)/2.
Then the distribution of bi with respect to ϕi is the semicircular law, γ0,1

(cf. [VDN, Def. 2.6.1]). Thus each Bi is isomorphic to C([−1, 1]) and

ϕi(bni ) =
2
π

1∫
−1

tn
√

1− t2dt,

for all n ∈ N. The unitary v ∈ C([−1, 1]) defined by v(t) = exp(2i(arcsin t+√
1− t2)) satisfies

2
π

1∫
−1

vn(t)
√

1− t2dt = 0,

for all nonzero n ∈ Z. Hence each Bi contains a unitary ui with ϕi(uni ) = 0
for all nonzero n ∈ Z. Then C∗({ui : i ∈ Z}) is isomorphic to C∗r (F∞) and
α lifts to an automorphism of O∞ under this identification. �
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GEOMETRIC PROPERTIES OF JULIA SETS OF THE
COMPOSITION OF POLYNOMIALS OF THE FORM z2 + cn

Rainer Brück

For a sequence (cn) of complex numbers we consider the
quadratic polynomials fcn

(z) := z2 + cn and the sequence
(Fn) of iterates Fn := fcn

◦ · · · ◦ fc1 . The Fatou set F(cn) is by
definition the set of all z ∈ Ĉ such that (Fn) is normal in some
neighbourhood of z, while the complement of F(cn) is called
the Julia set J(cn). The aim of this article is to study geometric
properties, Lebesgue measure and Hausdorff dimension of the
Julia set J(cn) provided that the sequence (cn) is bounded.

1. Introduction.

For a sequence (cn) of complex numbers we consider the quadratic polyno-
mials fcn(z) := z2 + cn and the sequence (Fn) of iterates Fn := fcn ◦ · · · ◦fc1 .
(Note that Fn depends on c1, . . . , cn which we do not indicate explicitly in
the notation.) If cn = c for all n, we write fnc instead of Fn. The Fatou
set F(cn) is by definition the set of all z ∈ Ĉ := C ∪ {∞} such that (Fn)
is normal (in the sense of Montel) in some neighbourhood of z, while the
complement of F(cn) (in Ĉ) is called the Julia set J(cn). A component of the
Fatou set is called a stable domain. For iteration theory of a fixed function
we refer the reader to the books of Beardon [Be], Carleson and Gamelin
[CG], Milnor [M] or Steinmetz [St]. We also mention the survey articles of
Blanchard [Bl], Lyubich [L2] or Eremenko and Lyubich [EL].

We always assume that |cn| ≤ δ for some δ > 0. Then from [Bü2] it is
known that to some extent the sequence (Fn) behaves similar to the sequence
(fnc ). There exists a stable domain A(cn)(∞) which contains the point ∞
and wherein Fn →∞ as n→∞ locally uniformly. This domain need not be
invariant (i.e., fck(A(cn)(∞)) ⊂ A(cn)(∞) for all k) or backward invariant
(i.e., f−1

ck
(A(cn)(∞)) ⊂ A(cn)(∞) for all k), but there exists an invariant

domain M = Mδ ⊂ A(cn)(∞) which contains the point∞ and which satisfies
A(cn)(∞) = { z ∈ Ĉ : Fk(z) ∈ M for some k ∈ N }. Therefore, the filled
Julia set K(cn) := Ĉ\A(cn)(∞) and the Julia set J(cn) are compact in C, and
K(cn) is the set of all z ∈ C such that (Fk(z))∞k=1 is bounded. Furthermore,
we have J(cn) = ∂A(cn)(∞) = ∂K(cn). Also J(cn) and K(cn) are perfect sets.
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Finally, J(cn) and F(cn) are invariant in the sense that F−1
k (Fk(J(cn))) = J(cn)

and F−1
k (Fk(F(cn))) = F(cn) for all k ∈ N. For further results we also refer

to [Brü], [BBR], [Bü1] and [FS].
The Mandelbrot set M is defined as the set of all c ∈ C such that

(fnc (0))∞n=1 is bounded, and M is compact in C. It plays an important role
in iteration of a fixed quadratic polynomial fc. We recall that the largest
disk with center 0 which is contained in M has radius 1

4 .
The plan of this article is as follows. After introducing some notations

and known auxiliary results (Section 2) we show that the Julia set J(cn) is
always uniformly perfect (Section 3).

Our main result (Section 4) states that the Julia set J(cn) is a quasicircle
provided that |cn| ≤ δ for some δ < 1

4 . This is done by proving that F(cn)

consists of two simply connected John domains A(cn)(0) and A(cn)(∞) which
have J(cn) as their common boundaries.

Concerning the two-dimensional Lebesgue measure m2(J(cn)) of Julia sets
(Section 5) we show that it is almost surely zero provided that the cn are
randomly chosen in { z ∈ C : |z| ≤ δ } for some δ > 1

4 . For δ < 1
4 we always

have m2(J(cn)) = 0.
Section 6 deals with Hausdorff dimension dimH J(cn) of Julia sets. We

give a lower estimate for dimH J(cn) depending only on δ which implies that
dimH J(cn) is always positive. For that purpose we prove that the Green
function of A(cn)(∞) (which is known to exist) is Hölder continuous. Fur-
thermore, for δ < 1

4 it follows that dimH J(cn) < 2.
A point ζ ∈ C is called a repelling fixpoint of the sequence of iterates

(Fn) if Fk(ζ) = ζ for some k ∈ N and |F ′k(ζ)| > 1. The set of all those
points is denoted by R(cn). In this general setting it is not necessarily true
that R(cn) ⊂ J(cn). But we prove (Section 7) that if |cn| ≤ δ < 1

4 , then the
derived set of R(cn) coincides with J(cn). In the last section we investigate
the asymptotic distribution of certain predecessors.

2. Notations and auxiliary results.

We introduce a few further notations and collect some known auxiliary re-
sults that are frequently used in the sequel. If E ⊂ C, then E′ denotes
the derived set (that is the set of points z ∈ C such that every neigh-
bourhood of z contains a point w ∈ E \ {z}), E the closure and E◦ the
set of interior points of E. Furthermore, the diameter of E is defined by
diamE := sup { |z − w| : z, w ∈ E }, and the distance of a point z ∈ C from
E by dist (z,E) := inf { |z − w| : w ∈ E }. For a ∈ C and r > 0 we set
Dr(a) := { z ∈ C : |z − a| < r }, Dr := Dr(0), D := D1 and Kr := Dr.
Finally, for R > 0 let ∆R := { z ∈ Ĉ : |z| > R }.
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If (cn) ∈ KN
δ , then the invariant domain M ⊂ A(cn)(∞) may be chosen

as M = ∆R for any

R ≥ Rδ := 1
2

(
1 +
√

1 + 4δ
)
.

More precisely, if R > Rδ, then fc(∆Rδ) ⊂ ∆Rδ and fc(∆R) ⊂ ∆R for all
c ∈ Kδ. This implies that K(cn) ⊂ KRδ . If δ ≤ 1

4 , we set

rδ := 1
2

(
1 +
√

1− 4δ
)
∈
[

1
2 , 1
]
, sδ := 1

2

(
1−
√

1− 4δ
)
∈
[
0, 1

2

]
.

Then we have fc(Dsδ) ⊂ Dsδ , fc(Drδ) ⊂ Drδ and fc(Dr) ⊂ Dr for all
c ∈ Kδ and all r ∈ (sδ, rδ). This implies that there exists a stable domain
A(cn)(0) ⊃ Drδ , and there holds J(cn) ⊂ KRδ ∩∆rδ .

From [FS, Theorem 2.1] it follows that A(cn)(∞) is regular for logarithmic
potential theory which means that the Green function of A(cn)(∞) with pole
at infinity exists. More precisely, the function g(cn) defined by

g(cn)(z) := lim
k→∞

1
2k

log+ |Fk(z)|(2.1)

is continuous in C, g(cn)(z) = 0 for z ∈ K(cn), and it is the Green function
of A(cn)(∞) with pole at infinity.

Furthermore, we introduce the critical set (or set of critical points)

C(cn) := { z ∈ C : Fj(z) = 0 for some j ∈ N0 }
of (Fn), where F0(z) := z. This is motivated by the fact that

F ′k(z) = 2k
k−1∏
j=0

Fj(z)

so that F ′k(z) = 0 if and only if Fj(z) = 0 for some j ∈ {0, 1, . . . , k− 1}. We
call a point w ∈ C a critical value of (Fn), if w = Fk(z) and F ′k(z) = 0 for
some k ∈ N and some z ∈ C. If w ∈ C is not a critical value of Fk, then
in some sufficiently small disk Dε(w) there exist 2k analytic branches of the
inverse function of Fk.

Finally, we recall a result of Büger [Bü1] that the Julia set J(cn) is self-
similar. This means that for any open setD meeting J(cn) there exists k0 ∈ N
such that Fk(J(cn) ∩D) = Fk(J(cn)) for all k ≥ k0.

3. Uniform perfectness of Julia sets.

An open set A ⊂ Ĉ is called a conformal annulus, if it can be mapped
conformally onto an annulus { z ∈ C : 1 < |z| < % } for some % > 1. Then the
number % is uniquely determined and modA := 1

2π log % is called the modulus
of A. Now, let E ⊂ Ĉ be a compact set. A conformal annulus A seperates E,
if both components of Ĉ \A meet E. The set E is called uniformly perfect,
if it is not a single point and if there is a constant α > 0 such that for any
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conformal annulus A which seperates E there holds modA ≤ α. Obviously,
a uniformly perfect set is also perfect (that is E′ = E), and every connected
compact set with at least two points is uniformly perfect. Uniformly perfect
sets were introduced by Beardon and Pommerenke [BeP] (see also [P1]). It
is known that the Julia set of a fixed rational function is always uniformly
perfect [MR] (see also [CG, p. 64]). We show that this result extends to
our situation.

Theorem 3.1. Let δ > 0 and (cn) ∈ KN
δ . Then the Julia set J(cn) is

uniformly perfect.

Proof. We assume that J(cn) is not uniformly perfect. Then there exists a
sequence of conformal annuli Ak ⊂ F(cn) which seperate J(cn) and modAk →
∞ as k →∞. Let Ek be the component of Ĉ \Ak with the smaller chordal
diameter (which we denote by diamχEk). Then we have diamχEk → 0 as
k → ∞. If λk : D → Ak ∪ Ek is a conformal map of D onto Ak ∪ Ek with
λk(0) ∈ Ek, and if Mk := λ−1

k (Ek) ⊂ D, then Mk is compact and connected,
0 ∈Mk and diamχMk → 0 as k →∞.

It is elementary to see that (fcn) satisfies a uniform Lipschitz condition
with respect to the chordal metric χ, that means that there exists a constant
L > 0 (which depends only on δ but not on n) such that χ(fcn(z), fcn(w)) ≤
Lχ(z, w) for all z, w ∈ Ĉ and all n ∈ N. From Lemma 4.1 in [BBR] we
know that diamFk(J(cn)) ≥ 1 for all k ∈ N0 so that diamχ Fk(J(cn)) ≥ C :=
2(1 +R2

δ)
−1.

We choose ε > 0 with ε < C and
C
3 > Lε.(3.1)

Let k0 ∈ N such that diamχEk < ε for all k ≥ k0. Since (Ak∪Ek)∩J(cn) 6= ∅
and since J(cn) is self-similar (cf. [Bü1]), for every k ≥ k0 there exists a
smallest index m(k) ∈ N such that diamχ Fm(k)(Ek) > ε. Setting Gk :=
Fm(k) ◦ λk we obtain

diamχGk(Mk) > ε(3.2)

for all k ≥ k0. By the choice of m(k) we have diamχ Fm(k)−1(Ek) ≤ ε and
thus diamFm(k)(Ek) = diamχ fcm(k)

(Fm(k)−1(Ek)) ≤ Lε for all k ≥ k0.
Because of (3.1) there exist at least three different points a1,k, a2,k, a3,k ∈

Fm(k)(J(cn)) whose chordal distance is greater than Lε. We have Gk(D \
Mk) = Fm(k)(λk(D\Mk)) = Fm(k)(Ak) ⊂ Fm(k)(F(cn)) and diamχGk(Mk) =
diamχ Fm(k)(Ek) ≤ Lε for all k ≥ k0. This implies that Gk omits at least
two of the values a1,k, a2,k, a3,k in D and hence (Gk) is normal in D by a
generalized version of Montel’s theorem (cf. [Be, p. 57]). Since diamχMk →
0 as k → ∞ and 0 ∈ Mk we get diamχGk(Mk) → 0 as k → ∞ which
contradicts (3.2). �
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4. Julia sets and quasicircles.

From iteration theory of a fixed function it is known that J(fc) is a quasicircle
if c is in the interior of the main cardioid of the Mandelbrot set (cf. Yakobson
[Y], see also [CG, p. 103]). The goal of this section is to show that this
result remains valid in our general situation provided that δ < 1

4 . We do
this in several steps, and we first recall some facts on quasicircles and John
domains.

A quasicircle Γ ⊂ C is the image of the unit circle ∂D under a quasicon-
formal homeomorphism of C onto itself. An equivalent geometric definition
is the three-point property, i.e., there exists a constant a > 0 such that if z1,
z2, z3 ∈ Γ and z2 is on the arc between z1 and z3 with the smaller diameter,
then |z1−z2|+ |z2−z3| ≤ a|z1−z3|. A quasicircle may be non-rectifiable but
it has no cusps. For details we refer, for example, to the books of Ahlfors
[A] or Lehto and Virtanen [LV].

A domain G ⊂ Ĉ with ∂G ⊂ C is called a John domain, if there exists a
constant b > 0 and a point w0 ∈ G such that for any z0 ∈ G, there is an arc
γ = γ(z0) ⊂ G joining z0 and w0 and satisfying dist (z, ∂G) ≥ b|z−z0| for all
z ∈ γ. A simply connected John domain G has locally connected boundary
∂G so that by Carathéodory’s theorem (cf. [P2, p. 20]) the Riemann map
from D onto G extends continuously to D. The image of a John domain
under a quasiconformal homeomorphism of Ĉ onto itself is again a John
domain. Thus, the two complementary domains of a quasicircle are John
domains. Conversely, if the two complementary components of a Jordan
curve (a homeomorphic image of the unit circle) Γ are John domains, then
Γ is a quasicircle. For this and further background material we refer to
[NV].

For δ ≤ 1
4 we know that J(cn) is connected [BBR], and since J(cn) =

∂A(cn)(∞), the stable domain A(cn)(∞) is simply connected. Furthermore,
there exists a stable domain A(cn)(0) containing Drδ . We now show:

Theorem 4.1. Let δ ≤ 1
4 , (cn) ∈ KN

δ and sδ ≤ r ≤ rδ. Then there holds
A(cn)(0) =

⋃∞
k=0 F

−1
k (Dr) and ∂A(cn)(0) = J(cn). In particular, A(cn)(0) is

simply connected and F(cn) = A(cn)(0) ∪A(cn)(∞).

Proof. We set A :=
⋃∞
k=0 Uk with Uk := F−1

k (Dr). It is elementary to
see that each Uk is a domain containing Dr, and since Dr is invariant, we
get Uk ⊂ F(cn). Thus, A is a domain with Dr ⊂ A ⊂ F(cn) which gives
A ⊂ A(cn)(0).

We show that J(cn) ⊂ ∂A. For that purpose, let z0 ∈ J(cn) and D :=
Dε(z0) for ε > 0. By Montel’s theorem the set Ĉ \

⋃∞
k=0 Fk(D) contains

at most two points so that there exists w ∈ Dr such that w ∈ Fm(D) for
some m ∈ N0. Therefore, Dr ∩ Fm(D) is a non-empty open set, and this



352 RAINER BRÜCK

implies that there exists ζ ∈ D \ J(cn) with Fm(ζ) ∈ Dr. That means ζ ∈ A,
and since ε > 0 was arbitrary we arrive at z0 ∈ ∂A. Summarizing, we have
A ⊂ A(cn)(0) and ∂A(cn)(0) ⊂ J(cn) ⊂ ∂A which gives the assertion. �

For δ < 1
4 and 1

2 < r < rδ we set V := ∆r ⊃ J(cn). Then V is backward
invariant, and V does not contain any critical value of (Fn) so that in every
disk D ⊂ V there exist 2n analytic branches F−1

n of the inverse function of
Fn. We prove:

Lemma 4.2. Let δ < 1
4 , (cn) ∈ KN

δ and 1
2 < r < rδ. Furthermore, let

γ : [0, 1]→ V be a rectifiable curve in V := ∆r, z := γ(0), w := γ(1) and let
F−1
n be an analytic branch of the inverse function of Fn in some disk D ⊂ V

with center z. Finally, we denote the analytic continuation of F−1
n along γ

also by F−1
n . Then there holds∣∣∣∣ (F−1

n )′(z)
(F−1

n )′(w)

∣∣∣∣ ≤ 1 + α`(γ)eα`(γ),

where α := 4r(2r− 1)−1 and `(γ) denotes the length of γ. In particular, for
any disk D ⊂ V and any analytic branch F−1

n in D there holds∣∣∣∣ (F−1
n )′(z)

(F−1
n )′(w)

∣∣∣∣ ≤ 1 + αeαd|z − w|

for all z, w ∈ D and n ∈ N, where d := diamD.

Proof. For n ∈ N and k = 0, 1, . . . , n−1 we set Fn,k := fcn ◦· · ·◦fck+1
. Since

(F−1
n )′(z) =

1
F ′n(F

−1
n (z))

=
1

2n
n−1∏
j=0

Fj(F−1
n (z))

=
1

2n
n−1∏
j=0

F−1
n,j (z)

and V is backward invariant we have

|(F−1
n )′(z)| ≤ qn (z ∈ V ),

or

|(F−1
n,k)

′(z)| ≤ qn−k (z ∈ V ),

where q := 1
2r < 1. This implies

|F−1
n,k(w)− F−1

n,k(z)| ≤
∣∣∣∣∫ w

z
|(F−1

n,k)
′(ζ)||dζ|

∣∣∣∣ ≤ qn−k`(γ),(4.1)

where we integrate over the curve γ. Furthermore, we have

(F−1
n )′(z)

(F−1
n )′(w)

=
n−1∏
k=0

Fk(F−1
n (w))

Fk(F−1
n (z))

=
n−1∏
k=0

F−1
n,k(w)

F−1
n,k(z)

.
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Writing

F−1
n,k(w)

F−1
n,k(z)

= 1 +
F−1
n,k(w)− F−1

n,k(z)

F−1
n,k(z)

,

we obtain from (4.1) ∣∣∣∣∣F
−1
n,k(w)

F−1
n,k(z)

∣∣∣∣∣ ≤ 1 + 2qn−k+1`(γ).

This implies∣∣∣∣ (F−1
n )′(z)

(F−1
n )′(w)

∣∣∣∣ ≤ n−1∏
k=0

(1 + 2qn−k+1`(γ)) =
n+1∏
k=2

(1 + 2qk`(γ))

≤
∞∏
k=0

(1 + 2qk`(γ)) = exp

( ∞∑
k=0

log (1 + 2qk`(γ))

)

≤ exp

( ∞∑
k=0

2qk`(γ)

)
= eα`(γ),

where α := 2(1 − q)−1. Finally, this gives the assertion since ex ≤ 1 + xex

for x ≥ 0. �

Theorem 4.3. Let δ < 1
4 and (cn) ∈ KN

δ . Then A(cn)(∞) is a John do-
main.

Proof. We first introduce a few notations. For z1, z2 ∈ C let [z1, z2] denote
the line segment joining z1 and z2. If ζ ∈ C, ζ 6= 0, and if Γ is the ray from
0 to ∞ passing through ζ, then let Γζ denote that part of Γ from ζ to ∞.

Let R > Rδ such that R2+δ−R ≤ 1
2 , ε := R−Rδ ≤ 1 and Uk := F−1

k (∆R)
for k ∈ N. Then we have Uk ⊂ Uk+1 ⊂ A(cn)(∞) and A(cn)(∞) =

⋃∞
k=1 Uk.

Furthermore, Uk is a simply connected domain (in Ĉ) bounded by an analytic
Jordan curve. For z ∈ A(cn)(∞) let d(z) := dist (z, J(cn)). We prove a lower
estimate for d(z), if z ∈ Uk for some k ∈ N. We set w := Fk(z). If U denotes
the component of F−1

k (Dε(w)) containing z, there holds U ⊂ A(cn)(∞). Let
% > 0 such that D%(z) ⊂ U . If z′ ∈ D%(z) and w′ := Fk(z′), then

w′ − w = Fk(z′)− Fk(z) =
∫ z′

z
F ′k(ζ) dζ = F ′k(F

−1
k (w))

∫ z′

z

F ′k(ζ)
F ′k(F

−1
k (w))

dζ

= F ′k(z)
∫ z′

z

(F−1
k )′(w)

(F−1
k )′(Fk(ζ))

dζ,
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where we integrate over the line segment [z, z′]. By Lemma 4.2 we obtain∣∣∣∣∣ (F−1
k )′(w)

(F−1
k )′(Fk(ζ))

∣∣∣∣∣ ≤ 1 + αeαε|w − Fk(ζ)| ≤ 1 + αeαεε ≤ 1 + αeα

and thus

|w′ − w| ≤ |F ′k(z)||z′ − z|(1 + αeα) ≤ |F ′k(z)|%(1 + αeα).

Setting

% :=
ε

|F ′k(z)|(1 + αeα)

we obtain D%(z) ⊂ U and thus

d(z) ≥ ε

|F ′k(z)|(1 + αeα)
=

α1

|F ′k(z)|
(z ∈ Uk).(4.2)

In order to prove the John property, let w0 :=∞ and z0 ∈ A(cn)(∞). We
may assume that z0 ∈ Uk\Uk−1 for some k ∈ N. Then R < |Fk(z0)| ≤ R2+δ.
We construct an arc in Uk joining z0 and w0 as follows. First, we join z0
with ∂Uk−1 by an arc γk ⊂ Uk \ Uk−1 such that Fk(γk) ⊂ ΓFk(z0), and
we denote the endpoint of γk on ∂Uk−1 by ζk−1. Then we join ζk−1 with
∂Uk−2 by an arc γk−1 ⊂ Uk−1 \ Uk−2 such that Fk−1(γk−1) ⊂ ΓFk−1(ζk−1),
and we denote the endpoint of γk−1 on ∂Uk−2 by ζk−2. Proceeding in this
way we get an arc in Uk ∩ DR with endpoint ζ0 on ∂DR. Finally, we set
γ = γ(z0) := γk ∪ · · · ∪ γ1 ∪ Γζ0 . We note that the line segments Fj(γj)
(j = 1, . . . , k) all lie in ∆R ∩DR2+δ and thus have lengths at most 1

2 .
We now show that the arc γ has the John property. For that purpose, let

z ∈ γ. We may assume that z ∈ DR. First, let z ∈ Uk \ Uk−1. We deduce
an upper estimate for |z − z0|. There holds

z − z0 = F−1
k (Fk(z))− F−1

k (Fk(z0)) =
∫ Fk(z)

Fk(z0)
(F−1

k )′(ζ) dζ

= (F−1
k )′(Fk(z))

∫ Fk(z)

Fk(z0)

(F−1
k )′(ζ)

(F−1
k )′(Fk(z))

dζ,

where we integrate over the line segment [Fk(z0), Fk(z)]. By Lemma 4.2 we
obtain∣∣∣∣∣ (F−1

k )′(ζ)
(F−1

k )′(Fk(z))

∣∣∣∣∣ ≤ 1 + αeα|Fk(z)− ζ| ≤ 1 + αeα|Fk(z)− Fk(z0)| ≤ 1 + αeα

and thus

|z − z0| ≤ |(F−1
k )′(Fk(z))|(1 + αeα)|Fk(z)− Fk(z0)|(4.3)
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≤ 1 + αeα

|F ′k(z)|
=

α2

|F ′k(z)|
(z ∈ γ \ Uk−1).

Putting (4.2) and (4.3) together we arrive at

d(z) ≥ α1

α2
|z − z0| = α3|z − z0| (z ∈ γ \ Uk−1).

Now, let z ∈ Uk−m \ Uk−m−1 for some m ∈ {1, . . . , k − 1}. By (4.2) we
have

d(z) ≥ α1

|F ′k−m(z)|
.

From the construction of γ and (4.3) we obtain

|z − z0| ≤ |z0 − ζk−1|+ |ζk−1 − ζk−2|+ · · ·+ |ζk−m+1 − ζk−m|+ |ζk−m − z|

≤ α2

(
1

|F ′k(ζk−1)|
+

1
|F ′k−1(ζk−2)|

+ · · ·

+
1

|F ′k−m+1(ζk−m)|
+

1
|F ′k−m(z)|

)
and thus

d(z)
|z − z0|

≥ α3

1 +
m∑
j=1

∣∣∣∣∣ F ′k−m(z)
F ′k−m+j(ζk−m+j−1)

∣∣∣∣∣
.(4.4)

In order to estimate the denominator of the right hand side we consider a
single term

F ′k−m(z)
F ′k−m+j(ζk−m+j−1)

=
1

2jFk−m+j−1(ζk−m+j−1) · · ·Fk−m(ζk−m+j−1)

×
F ′k−m(z)

F ′k−m(ζk−m+j−1)
.

Because of |Fk−m+j−1(ζk−m+j−1)| = R and the invariance of Dr we obtain∣∣∣∣∣ F ′k−m(z)
F ′k−m+j(ζk−m+j−1)

∣∣∣∣∣ ≤ qj
∣∣∣∣∣ F ′k−m(z)
F ′k−m(ζk−m+j−1)

∣∣∣∣∣ ,(4.5)

where q := 1
2r < 1.

Now, we deduce an estimate of the right hand side of (4.5). For abbrevi-
ation we set p := k −m and write

F ′p(z)
F ′p(ζp+j−1)

=
(F−1

p )′(Fp(ζp+j−1))

(F−1
p )′(Fp(z))

.
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From Lemma 4.2 we get∣∣∣∣ F ′p(z)
F ′p(ζp+j−1)

∣∣∣∣ ≤ 1 + α`(σ)eα`(σ),(4.6)

where σ = σp,j is the curve Fp(γ′p∪γp+1∪· · ·∪γp+j−1), and where γ′p is that
part of γp joining ζp with z. Hence, there holds `(σ) ≤ `(Fp(γp)) + · · · +
`(Fp(γp+j−1)). We have `(Fp(γp)) ≤ 1

2 and Fp(γp+ν) = F−1
p+ν,p(sp,ν), where

sp,ν := Fp+ν(γp+ν) is a line segment on ΓFp+ν(ζp+ν) of length at most 1
2 for

ν ≥ 1. Furthermore, we know that Fp(γp+ν) ⊂ ∆r. Therefore, we obtain

`(Fp(γp+1)) =
∫
sp,1

|dw|
2
√
|w − cp+1|

≤ `(sp,1)
2r

≤ 1
4r
.

By induction we get `(Fp(γp+ν)) ≤ 1
2(2r)ν = 1

2q
ν and thus

`(σ) ≤ 1
2
(1 + q + · · ·+ qj−1) ≤ 1

2(1− q)
= α4.

Setting α5 := 1 + αα4e
αα4 we obtain together with (4.4), (4.5) and (4.6)

d(z)
|z − z0|

≥ α3

1 + α5

m∑
j=1

qj
≥ α3(1− q)

α5

which finally shows that γ has the John property. �

Theorem 4.4. Let δ < 1
4 and (cn) ∈ KN

δ . Then A(cn)(0) is a John domain.

Proof. The proof is very similar to the proof of Theorem 4.3. The only
difficulty that arises is that A(cn)(0) contains critical values which all lie in
Dsδ . Therefore, we only give a sketch and omit the details.

Let 1
2 < r < r′ < rδ, ε := r′ − r ≤ 1 and Uk := F−1

k (Dr′) for k ∈ N. Then
we have Uk ⊂ Uk+1 ⊂ A(cn)(0) and A(cn)(0) =

⋃∞
k=1 Uk. For z ∈ A(cn)(0)

let d(z) := dist (z, J(cn)). If z ∈ Uk \ Uk−1 for some k ∈ N, k ≥ 2 and
w := Fk−1(z), then |w| ≥ r′ and thus Dε(w)∩Dr = ∅. Therefore, we obtain

d(z) ≥ α1

|F ′k−1(z)|
(z ∈ Uk \ Uk−1).(4.2a)

In order to prove the John property, let w0 := 0 and z0 ∈ A(cn)(0). We
may assume that z0 ∈ Uk\Uk−1 for some k ∈ N, k ≥ 2. Then |Fk−1(z0)| ≥ r′.
We construct an arc in Uk joining z0 and w0 as follows. First, we join z0
with ∂Uk−1 by an arc γk ⊂ Uk \ Uk−1 such that Fk−1(γk) ⊂ [0, Fk−1(z0)],
and we denote the endpoint of γk on ∂Uk−1 by ζk−1. Then we join ζk−1 with
∂Uk−2 by an arc γk−1 ⊂ Uk−1\Uk−2 such that Fk−2(γk−1) ⊂ [0, Fk−2(ζk−1)],
and we denote the endpoint of γk−1 on ∂Uk−2 by ζk−2. Proceeding in this
way we get an arc in Uk ∩ (C \U1) with endpoint ζ1 on ∂U1. Finally, we set
γ = γ(z0) := γk ∪ · · · ∪ γ2 ∪ [0, ζ1]. We mention that [0, ζ1] ⊂ U1, since U1
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is a starlike domain with respect to 0 bounded by an analytic Jordan curve.
Furthermore, we note that the line segments Fj−1(γj) (j = 2, . . . , k) all lie
in ∆r′ ∩DRδ and thus have lengths at most one.

We now show that the arc γ has the John property. For that purpose,
let z ∈ γ. We may assume that z /∈ U1. First, let z ∈ Uk \ Uk−1. Then we
obtain the upper estimate for |z − z0|

|z − z0| ≤
α2

|F ′k−1(z)|
(z ∈ γ \ Uk−1).(4.3a)

Putting (4.2a) and (4.3a) together we arrive at

d(z) ≥ α3|z − z0| (z ∈ γ \ Uk−1).

Finally, the case that z ∈ Uk−m \ Uk−m−1 for some m ∈ {1, . . . , k − 2} is
handled as in the proof of Theorem 4.3. �

Corollary 4.5. Let δ < 1
4 and (cn) ∈ KN

δ . Then J(cn) is a quasicircle.

Proof. From Theorem 4.1 we know that F(cn) = A(cn)(∞) ∪A(cn)(0). Then
the assertion follows from Theorems 4.3 and 4.4 and the known results men-
tioned at the beginning of this section. �

If (cn) ∈ KN
1/4, then J(cn) need not be a quasicircle. For example, if cn = 1

4

for all n, then it is known that J(f1/4) is still a Jordan curve (see for example
[CG, p. 97] or [St, p. 124]) but it has cusps. Furthermore, Corollary 4.5 does
not hold true in general when all cn are contained in the interior of the main
cardioid of the Mandelbrot set. This can be seen by the simple example
c1 = −1

2 − η and cn = 1
4 − ε for n ≥ 2 with 0 < η < 1

4 and 0 < ε < η2. In
this case we have Fn(0)→∞ as n→∞ so that by Theorem 1.1 in [BBR]
the Julia set J(cn) is even disconnected. It would be of interest whether J(cn)

is also a Jordan curve in our more general setting provided that (cn) ∈ KN
1/4

or what holds when (cn) ∈ DN
1/4.

Furthermore, we consider the dynamics of (Fn) in the stable domain
A(cn)(0) provided that (cn) ∈ KN

1/4. We will show that A(cn)(0) is a con-
tracting domain, that is a stable domain U such that all limit functions of
(Fn) in U are constant. This property is equivalent to diamFn(K) → 0 as
n→∞ for every compact set K ⊂ U .

Theorem 4.6. Let (cn) ∈ KN
1/4. Then A(cn)(0) is a contracting domain.

Proof. Let K ⊂ A(cn)(0) be a compact set. We first assume that (cn) ∈ KN
δ

for some δ < 1
4 , and we choose r ∈

(
sδ,

1
2

)
. Then by Theorem 4.1 there

exists N ∈ N such that FN (K) ⊂ Dr. If z1, z2 ∈ K, then w1 := FN (z1),
w2 := FN (z2) ∈ Dr and thus |fck(w1) − fck(w2)| = |w1 + w2||w1 − w2| ≤
2r|w1−w2| which implies |FN+k(z1)−FN+k(z2)| ≤ (2r)k|w1−w2|. Therefore,
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we obtain diamFN+k(K) ≤ (2r)k diamFN (K) → 0 as k → ∞, and the
assertion follows.

Now, let |cn| ≤ 1
4 for all n ∈ N. Again, by Theorem 4.1 there exists

N ∈ N such that FN (K) ⊂ K1/2, and we obtain as above diamFN+k(K) ≤
diamFN+k−1(K) so that the sequence (diamFN+k(K)) is monotonically
decreasing and thus convergent. In order to deduce diamFN+k(K) → 0 as
k →∞ we need a better estimate. If w1, w2 ∈ FN (K), we obtain

|fck(w1)− fck(w2)| ≤ 2
∣∣∣∣∫ w2

w1

|z| |dz|
∣∣∣∣ .

For the estimate of the right hand side we consider the worst case which
can happen, that is |w1| = |w2| = 1

2 . For simplicity, we may assume that
w2 = w1, and we set % := Rew1 = Rew2 ∈

[
0, 1

2

)
. Then with d := 1

2 |w1−w2|
we get %2 + d2 = 1

4 and thus

2
∣∣∣∣∫ w2

w1

|z| |dz|
∣∣∣∣ ≤ 4

∫ d

0
|%+ it| dt = 4

∫ d

0

√
%2 + t2 dt

= d+ 2%2 log
2d+ 1

2%

=
1
2
|w1 − w2|+

1
4
(1− |w1 − w2|2) log

1 + |w1 − w2|
1− |w1 − w2|

.

This implies with dn := diamFn(K)

dN+k ≤
1
2
dN+k−1 +

1
4
(1− d2

N+k−1) log
1 + dN+k−1

1− dN+k−1
.

Setting α := limk→∞ diamFN+k(K) we see that

α ≤ 1
2
α+

1
4
(1− α2) log

1 + α

1− α
,

and an elementary argument shows that this is possible only for α = 0 which
gives the assertion. �

If (cn) ∈ KN
δ for some δ ≤ 1

4 , we denote by L(cn) the set of (constant) limit
functions of (Fn) in A(cn)(0), that is the set of all ζ ∈ C such that for some
subsequence (Fnk) of (Fn) there holds Fnk → ζ as k →∞ locally uniformly
in A(cn)(0). It is easy to see that L(cn) is a compact set, and from the proof
of Theorem 4.6 it follows that L(cn) ⊂ Ksδ ⊂ K1/2. From Theorem 1.6
in [BBR] we know that the case L(cn) = Ksδ may occur. Moreover, this
phenomenon happens almost surely, that means that the product measure
(cf. Section 5) of the set of these sequences (cn) in KN

δ is one. In a similar
way it is possible to construct sequences (cn) ∈ KN

δ such that L(cn) = ∂Ksδ .
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On the other hand, if L(cn) consists of a single point ζ, then Fn → ζ as
n→∞ locally uniformly in A(cn)(0), and since Fn+1(z) = (Fn(z))2 + cn we
obtain cn → c ∈ Kδ as n → ∞, where c = ζ − ζ2. Therefore, the set Cδ of
all these points ζ is the component of the preimage of Kδ under the map
z 7→ z − z2 which is contained in Ksδ . Therefore, Cδ is a proper subset of
Ksδ and Cδ ∩ ∂Ksδ = {sδ}. It would be of interest to characterize those
compact sets K ⊂ Ksδ such that K = L(cn) for some sequence (cn) ∈ KN

δ .
The stable domain A(cn)(∞) may be viewed as a Böttcher domain. If it

is simply connected, then there exists a conformal map φ of A(cn)(∞) onto
∆1 normalized at infinity by

φ(z) = z + a0 +
a1

z
+
a2

z2
+ · · · .(4.7)

Note that the capacity of K(cn) (cf. Section 8) is equal to one. Like in the
iteration of a fixed polynomial we show that φmay be described dynamically.

Theorem 4.7. Let δ > 0 and (cn) ∈ KN
δ such that A(cn)(∞) is simply

connected. Then the conformal map φ of A(cn)(∞) onto ∆1 with the nor-
malization (4.7) is given by

φ(z) = lim
k→∞

2k
√
Fk(z) = z lim

k→∞

2k

√
Fk(z)
z2k

with locally uniform convergence in A(cn)(∞), and where the branch of the

root is determined by 2k√1 = 1.

Proof. Let R > Rδ such that R2 ≥ 2δ and Um := F−1
m (∆R) for m ∈ N. Then

we have Um ⊂ Um+1 ⊂ A(cn)(∞) and A(cn)(∞) =
⋃∞
m=1 Um. For k ∈ N we

define

φk(z) := 2k
√
Fk(z) = z

2k

√
Fk(z)
z2k

.

Then φk maps Uk conformally onto ∆Rk , where Rk := 2k√
R. For z ∈ Um

and k ≥ m we have ∣∣∣∣ ck
(Fk(z))2

∣∣∣∣ ≤ δ

R2
≤ 1

2
,

and the elementary inequality

| p
√

1 + u− 1| ≤ 1
p (u ∈ K1/2)

yields∣∣∣∣φk+1(z)
φk(z)

− 1
∣∣∣∣ =

∣∣∣∣∣ 2k+1

√
Fk+1(z)
(Fk(z))2

− 1

∣∣∣∣∣ =
∣∣∣∣ 2k+1

√
1 +

ck
(Fk(z))2

− 1
∣∣∣∣ ≤ 1

2k+1
.
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Therefore, the limit

φ(z) := lim
k→∞

φk(z) = z
∞∏
k=0

φk+1(z)
φk(z)

exists uniformly in Um, and φ is the desired conformal map. �

5. Lebesgue measure of Julia sets.

From a result of Lyubich [L2] (see also [CG, p. 90] or [St, p. 144]) it follows
that the Julia set of a hyperbolic rational function has two-dimensional
Lebesgue measure (which we denote by m2) zero. In particular, this is true
for J(fc) provided that c is contained in a hyperbolic component of the
interior of the Mandelbrot set M or c /∈ M. In this section we show that
this is true to a certain extent in our situation.

We begin with δ < 1
4 . Then by Section 4 we know that if (cn) ∈ KN

δ , then
J(cn) is a quasicircle, and from the differentiability properties of quasiconfor-
mal maps it follows that quasicircles always have two-dimensional Lebesgue
measure zero (see for example [LV, p. 165]).

Corollary 5.1. Let δ < 1
4 and (cn) ∈ KN

δ . Then m2(J(cn)) = 0.

Now, we will show that m2(J(cn)) is almost surely zero provided that
the cn are randomly chosen in Kδ for some δ > 1

4 . To be more precise,
let λδ denote the two-dimensional Lebesgue measure on Kδ normalized by
λδ(Kδ) = 1. Then the product space KN

δ carries the usual product measure
λ̃δ :=

⊗∞
k=1 λδ. We set

Nδ := { (cn) ∈ KN
δ : m2(J(cn)) = 0 }.(5.1)

Then the goal is to show that λ̃δ(Nδ) = 1. In order to do this we recall:

Theorem 5.2 ([BBR]). Let δ > 1
4 and R > 0. Then for every z ∈ Ĉ there

exists an open set Uz ⊂ KN
δ with the following properties:

(a) λ̃δ(Uz) = 1,
(b) for every (cn) ∈ Uz there holds |Fk(z)| > R for all sufficiently large k.

Theorem 5.3. Let δ > 1
4 , and let Nδ ⊂ KN

δ be defined by (5.1). Then
λ̃δ(Nδ) = 1.

Proof. Let M = ∆R be an invariant domain and

Ẽ := { ((cn), z) ∈ KN
δ × Ĉ : Fk(z) ∈M for some k ∈ N }.

By Theorem 5.2 we have λ̃δ(Ẽz) = 1 for z ∈ Ĉ, where

Ẽz := { (cn) ∈ KN
δ : ((cn), z) ∈ Ẽ }.
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If σ denotes the two-dimensional Lebesgue measure on Ĉ normalized by
σ(Ĉ) = 1, it follows

(λ̃δ ⊗ σ)(Ẽ) =
∫

bC λ̃δ(Ẽz) dσ(z) = 1.

Now, let

E := { (cn) ∈ KN
δ : σ(Ẽ(cn)) = 1 },

where

Ẽ(cn) := { z ∈ Ĉ : ((cn), z) ∈ Ẽ }.
Since

1 = (λ̃δ ⊗ σ)(Ẽ) =
∫
KN
δ

σ(Ẽ(cn)) dλ̃δ((cn))

we obtain λ̃δ(E) = 1. If (cn) ∈ E, then

σ(A(cn)(∞)) = σ({ z ∈ Ĉ : Fk(z) ∈M for some k ∈ N }) = σ(Ẽ(cn)) = 1

which implies σ(J(cn)) = 0. �

It would be of interest whether Theorem 5.3 remains valid for δ = 1
4 .

Concerning the question whether there exists a sequence (cn) ∈ KN
δ for some

δ ≥ 1
4 such that m2(J(cn)) > 0, the referee mentioned that, recently, a group

of mathematicians around P.W. Jones at Yale University have constructed
such an example. More precisely, there exists a sequence (cn) with cn ∈{
0,±1

4 ,
1
2

}
such that m2(J(cn)) > 0. This result was communicated to the

author by P.W. Jones. The author is grateful to both for bringing this
information to his attention.

Finally, we prove:

Theorem 5.4. Let δ > 2 (which is equivalent to δ > Rδ), and let ε > 0
such that Rδ + ε ≤ |cn| ≤ δ for all n ∈ N. Then m2(J(cn)) = 0.

Proof. We choose R such that Rδ < R < Rδ + ε and η := Rδ + ε − R > 0.
Then we have J(cn) ⊂ DRδ ⊂ D := DR, and D is backward invariant, that
is f−1

cn (D) ⊂ D for all n ∈ N. Furthermore, there holds |fcn(0)| = |cn| ≥
Rδ+ε = R+η and thus |(fcm ◦ · · ·◦fck+1

)(0)| ≥ R+η for k = 0, 1, . . . ,m−1
and all m ∈ N. Therefore, D does not contain any critical value of (Fn)
so that in D there exist 2k analytic branches of the inverse function of
Fk which we denote by Gj,k for j = 1, . . . , 2k and k ∈ N. Furthermore,
we set Dj,k := Gj,k(D) ⊂ D and Dk :=

⋃2k

j=1Dj,k. Then D1,k, . . . , D2k,k

are mutually disjoint simply connected domains, and J(cn) ⊂ Dk+1 ⊂ Dk.
Finally, we set Uk := Dk\Dk+1 and Uj,k := Dj,k\Dk+1 so that U1,k, . . . , U2k,k

are mutually disjoint multiply connected domains, and Uk =
⋃2k

j=1 Uj,k.
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Now, we prove that there exists a constant q > 0 such that

m2(Uk)
m2(Dk)

≥ q(5.2)

for all k ∈ N. For that purpose it is enough to show that

m2(Uj,k)
m2(Dj,k)

≥ q(5.3)

for j = 1, . . . , 2k and all k ∈ N.
Let V1,k and V2,k denote the two components of f−1

ck+1
(D), and let Wk :=

D \ (V 1,k ∪ V 2,k). Then Uj,k = Gj,k(Wk), and we obtain

m2(Uj,k)
m2(Dj,k)

=

∫
Wk
|G′j,k(z)|2 dm2(z)∫

D |G
′
j,k(z)|2 dm2(z)

≥
|G′j,k(zj,k)|2m2(Wk)
|G′j,k(ζj,k)|2m2(D)

,

where zj,k ∈Wk ⊂ D and ζj,k ∈ D such that |G′j,k(zj,k)| = minz∈Wk
|G′j,k(z)|

and |G′j,k(ζj,k)| = maxz∈D |G′j,k(z)|. By the Koebe distortion theorem (see
for example [P2, p. 9]) applied to the disk DR+η there holds∣∣∣∣∣G′j,k(z)G′j,k(ζ)

∣∣∣∣∣ ≥
(

η

η + 2R

)4

for all z, ζ ∈ D. Therefore, it remains to show that there exists a constant
γ > 0 such that

m2(Wk)
m2(D)

≥ γ

for all k ∈ N.
For simplicity we write c = ck+1, and let V ∈ {V1,k, V2,k}. Then

m2(V ) =
1
4

∫
D

dm2(z)
|z − c|

=
1
4

∫ R

0

∫ 2π

0

%

|%eit − c|
dt d%.

By the Cauchy-Schwarz inequality we get∫ 2π

0

dt

|%eit − c|
≤
√

2π
(∫ 2π

0

dt

|%eit − c|2

)1/2

,

and the Poisson integral formula yields∫ 2π

0

dt

|%eit − c|2
=

2π
|c|2 − %2

.

Therefore, we arrive at

m2(V ) ≤ π

2

∫ R

0

%√
|c|2 − %2

d% =
π

2
(|c| −

√
|c|2 −R2) ≤ 1

2
πR.
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This implies m2(V1,k ∪ V2,k) ≤ πR and thus

m2(Wk)
m2(D)

≥ 1− 1
R
≥ 1

2

which proves (5.3).
Finally, (5.2) gives m2(J(cn)) ≤ m2(Dk+1) = m2(Dk) − m2(Uk) ≤ (1 −

q)m2(Dk) so thatm2(J(cn)) ≤ (1−q)km2(D)→ 0 as k →∞ which completes
the proof. �

6. Hausdorff dimension of Julia sets.

We first recall the notion of Hausdorff dimension. Let E ⊂ C be a non-
empty compact set, and denote by (Dj)ε any covering of E by finitely many
open sets Dj with diamDj < ε. Then for t ∈ (0, 2]

mt(E) := sup
ε>0

inf
(Dj)ε

∑
j

(diamDj)t

is called the t-dimensional Hausdorff measure of E. Obviously, mt(E) <∞
implies ms(E) = 0 for s > t, and conversely, mt(E) > 0 implies ms(E) =∞
for s < t. Hence, there exists a unique τ ∈ [0, 2] such that ms(E) = 0 and
mt(E) = ∞ for 0 < t < τ < s ≤ 2. This number τ is called the Hausdorff
dimension of E and is denoted by dimHE.

It is well-known (cf. [G], see also [Be, p. 251] or [St, p. 169]) that
the Hausdorff dimension of the Julia set of any fixed rational function f is
positive. More precisely, if ∞ /∈ J(f) and if d denotes the degree of f , then

dimH J(f) ≥ log d
log maxz∈J(f) |f ′(z)|

.

We show that this estimate holds true in a certain sense in our situation.

Theorem 6.1. Let δ > 0 and (cn) ∈ KN
δ . Then dimH J(cn) > 0. More

precisely, there holds

dimH J(cn) ≥
log 2

log (2Rδ)
=

log 2
log (1 +

√
1 + 4δ)

.

Proof. We show that the Green function g of A(cn)(∞) is Hölder continuous
with exponent

α =
log 2

log 2 + log (2R−Rδ)
for any R > Rδ. Then a result of Carleson [C] gives dimH J(cn) ≥ α. For
that purpose, it suffices to show that there exists a constant γ > 0 such
that g(z) ≤ γ(d(z))α for all z ∈ A(cn)(∞), where d(z) := dist (z, J(cn)). Of
course, we may assume that d(z) is small.
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Let R > Rδ and Uk := F−1
k (∆R) for k ∈ N. Then we have Uk ⊂ Uk+1 ⊂

A(cn)(∞) and A(cn)(∞) =
⋃∞
k=1 Uk. The Green function gk of Uk with pole

at infinity is given by

gk(z) =
1
2k

log
|Fk(z)|
R

(z ∈ Uk).

There holds gk(z) ≤ gk+1(z) ≤ g(z) for z ∈ Uk and gk → g as k →∞ locally
uniformly in A(cn)(∞).

We will show that there exists some constant C > 0 such that g(z) ≤
gk(z)+ C

2k
for z ∈ Uk. There holds |Fk+1(z)| = |(Fk(z))2+ck+1| ≤ |Fk(z)|2+δ

and this gives

gk+1(z) ≤
1

2k+1
log
|Fk(z)|2 + δ

R
.

If a, b > 0, then log+ (a+ b) ≤ log+ a+ log+ b+ log 2, and thus

gk+1(z) ≤
1

2k+1

(
log
|Fk(z)|2

R
+ log+ δ

R
+ log 2

)

=
1

2k+1

(
2 log

|Fk(z)|
R

+ log+ δ

R
+ log (2R)

)

= gk(z) +
C

2k+1
,

where C := log+ δ
R + log (2R). From this we obtain by induction

gk+m(z) ≤ gk(z) + C

(
1

2k+1
+ · · ·+ 1

2k+m

)
≤ gk(z) +

C

2k

for all m ∈ N. Letting m→∞ we get

g(z) ≤ gk(z) +
C

2k
(z ∈ Uk).

Now, let z ∈ Uk \Uk−1 for some k ∈ N. Then |Fk−1(z)| ≤ R which implies
|Fk(z)| ≤ R2 + δ. Hence, we have gk(z) ≤ 1

2k
log
(
R+ δ

R

)
and thus

g(z) ≤ Γ
2k

(z ∈ Uk \ Uk−1),(6.1)

where Γ := C + log
(
R+ δ

R

)
.

Finally, we prove a lower estimate for d(z), if z ∈ Uk for some k ∈ N. We
set w := Fk(z) and η := |w|−Rδ. If U denotes the component of F−1

k (Dη(w))
containing z, there holds U ⊂ A(cn)(∞). Let % > 0 such that D%(z) ⊂ U .
Then Fk(D%(z)) ⊂ Dη(w) ⊂ D|w|+η which implies Fj(D%(z)) ⊂ D|w|+η for
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j = 0, 1, . . . , k and thus |F ′k(t)| ≤ 2k(|w|+η)k for all t ∈ D%(z). If z′ ∈ D%(z)
and w′ := Fk(z′), then

w′ − w =
∫ z′

z
F ′k(t) dt,

where we integrate over the line segment joining z and z′. This yields

|w′ − w| ≤ 2k(|w|+ η)k|z′ − z| < 2k(|w|+ η)k%.

Setting

% :=
η

2k(|w|+ η)

we obtain D%(z) ⊂ U and thus

d(z) ≥ η

2k(|w|+ η)
=

|w| −Rδ
2k(2|w| −Rδ)

≥ R−Rδ
2k(2R−Rδ)

(z ∈ Uk).

We choose q := R−Rδ and

α :=
log 2

log 2 + log (R+ q)

and arrive at

(d(z))α ≥ qα

2k
(z ∈ Uk).(6.2)

Finally, putting (6.1) and (6.2) together we get

g(z) ≤ Γ
qα

(d(z))α (z ∈ Uk \ Uk−1)

which completes the proof. �

Gehring and Väisälä [GV] have shown that quasicircles always have Haus-
dorff dimension less than two and thus by Corollary 4.5 we obtain:

Corollary 6.2. Let δ < 1
4 and (cn) ∈ KN

δ . Then dimH J(cn) < 2.

If 0 < δ ≤ 1
4 and (cn) ∈ KN

δ , then the Julia set J(cn) is connected so that
its Hausdorff dimension is at least one. Moreover, Sullivan [Su] has shown,
that if c 6= 0 is in the interior of the main cardioid of the Mandelbrot set,
then dimH J(fc) > 1. Furthermore, it follows by a result of Shishikura [Sh]
that dimH J(f1/4) = 2. It would be of interest whether dimH J(cn) is almost
surely (in the sense of Section 5) greater than one if (cn) ∈ KN

δ for some
δ < 1

4 . In our general setting, it is clear that we can only expect such an
almost surely statement.
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7. Density of repelling fixpoints.

From iteration theory of a fixed rational function it is well-known that the
repelling periodic points are dense in the Julia set (cf. [Be, p. 148], [CG,
p. 63] or [St, p. 35]). In our setting we consider the set R(cn) of repelling
fixpoints of the sequence of iterates (Fn), i.e.,

R(cn) := { ζ ∈ C : Fk(ζ) = ζ for some k ∈ N and |F ′k(ζ)| > 1 }.
It is not necessarily true that R(cn) ⊂ J(cn). But from a result of Fornæss
and Sibony [FS, Theorem 2.3] it follows that if δ > 0 is sufficiently small
and (cn) ∈ KN

δ , then (R(cn))′ = J(cn). More precisely, we show:

Theorem 7.1. Let δ < 1
4 and (cn) ∈ KN

δ . Then (R(cn))′ = J(cn).

Proof. Since δ < 1
4 we have fc(Dr) ⊂ Dr for all c ∈ Kδ and sδ < r <

rδ. This implies that Fk(z) 6= z for all k ∈ N and sδ < |z| < rδ. Since
F ′k(z) = 2k

∏k−1
j=0 Fj(z) and fc(K1/2) ⊂ K1/2, we have R(cn) ∩ K1/2 = ∅.

Setting K := Kr for some r ∈
(

1
2 , rδ

)
, we also have R(cn) ∩K = ∅. We set

U := C\K. If z ∈ U and Fj(z) ∈ U for all j = 1, . . . , k−1, then |F ′k(z)| ≥ qk
with q := 2r > 1.

We first show that (R(cn))′ ⊂ J(cn). For that purpose let Fk`(z`) = z`,
|F ′k`(z`)| > 1 and z` → ζ as ` → ∞. If ζ ∈ C \ K(cn), then Fk` → ∞ as
` → ∞ uniformly in some neighbourhood of ζ. This gives Fk`(z`) → ∞
as ` → ∞ which is a contradiction. Now, assume that ζ ∈ (K(cn))◦. If
Fj(ζ) ∈ U for all j ∈ N0, then |F ′k(ζ)| ≥ qk → ∞ as k → ∞. But this
is impossible since (Fk) is normal and bounded in (K(cn))◦. Therefore, we
have Fk0(ζ) ∈ K for some k0 ∈ N0, and thus Fk(ζ) ∈ K for all k ≥ k0. By
passing to a subsequence we may assume that Fk` → φ as `→∞ uniformly
in some neighbourhood Uζ of ζ, where φ is holomorphic in Uζ . This implies
z` = Fk`(z`)→ φ(ζ) as `→∞ and thus z` ∈ K for all ` large enough which
is again a contradiction.

Now, we show that J(cn) ⊂ (R(cn))′. Suppose that there exists ζ ∈ J(cn)

and a neighbourhood V of ζ such that Fk(z) 6= z for all z ∈ V and k ≥ k0 =
k0(V ). We set

hk(z) :=
1
2k

log |Fk(z)− z|.

Then hk is harmonic and uniformly bounded above in V . By Eq. (2.1) we
have hk → g(cn) as k → ∞ in V \ K(cn), and thus hk → h as k → ∞ for
some harmonic function h in V . Furthermore, there holds hk → 0 as k →∞
in V ∩K(cn) so that h = 0 in V ∩K(cn). But this is a contradiction to the
minimum principle for harmonic functions.

Therefore, for every ζ ∈ J(cn) there exists a strictly increasing sequence
(k`) in N and z` ∈ U such that z` → ζ as `→∞ and Fk`(z`) = z`. Then we
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have Fj(z`) ∈ U for j = 1, . . . , k` − 1 which gives |F ′k`(z`)| ≥ q
k` > 1 so that

z` ∈ R(cn). �

It would be of interest whether Theorem 7.1 holds for all δ > 0. However,
the proof shows that we always have (R(cn))′ ⊂ K(cn).

8. Asymptotic distribution of predecessors.

If (cn) ∈ KN
δ and if a ∈ ∆Rδ , then the predecessors F−1

k (a) of a are all
contained in A(cn)(∞), and they only accumulate on the Julia set J(cn). In
fact, this follows from the invariance of ∆R for R > Rδ and Fk → ∞ as
k → ∞ locally uniformly in A(cn)(∞). We want to study the asymptotic
distribution of F−1

k (a) as k → ∞. For iteration of a fixed polynomial this
was done by Brolin [Bro].

We first recall some facts from potential theory which are needed in the
sequel and which can be found, for example, in the book of Tsuji [T]. Let
E ⊂ C be an infinite compact set, and let D be its outer domain, that is
the component of Ĉ\E containing the point∞. Furthermore, we denote by
capE ≥ 0 the logarithmic capacity (or transfinite diameter) of E. (We do
not recall the definition of capE because it will not be needed.) We suppose
that the Green function gD of D with pole at infinity exists. Then

gD(z) = log |z|+ V + o(1) as z →∞

and capE = e−V > 0. Note that by Eq. (2.1) this is true for E = J(cn) with
capE = 1. Now, let µ be any probability measure on E. Then the energy
integral

I[µ] :=
∫∫

E×E
log

1
|ζ − ω|

dµ(ζ) dµ(ω)

is finite, and the logarithmic potential

pµ(z) :=
∫
E

log
1

|z − ζ|
dµ(ζ)

is harmonic in D. Furthermore, there exists a unique probability measure
µ∗ on E which minimizes the energy integral I[µ], and there holds

gD(z)− V = −pµ∗(z) (z ∈ D).

This measure µ∗ is called the equilibrium measure on E. In the following µ∗

always denotes the equilibrium measure on the Julia set J(cn), and suppµ∗

denotes its support, that is the set of points z ∈ J(cn) such that µ∗(Dε(z) ∩
J(cn)) > 0 for every ε > 0. Note that suppµ∗ is a closed set.

In order to study the asymptotic distribution of F−1
k (a) for a ∈ ∆Rδ as

k → ∞ we consider the following sequence (µak) of probability measures.
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If δz denotes the Dirac measure concentrated at the point z ∈ C (that is
δz(E) = 1 if z ∈ E and δz(E) = 0 if z /∈ E), then let

µak :=
1
2k

∑
Fk(z)=a

δz.(8.1)

We will show that (µak) is weakly convergent to µ∗, that is µak(E) → µ∗(E)
as k →∞ for every Borel set E ⊂ C with µ∗(E◦) = µ∗(E). For that purpose
we first collect some auxiliary results.

Lemma 8.1 ([Bro, Lemma 15.4]). Let E ⊂ C be a compact set, and let
f be a function defined on E such that for some constant L there holds
|f(z1)−f(z2)| ≤ L|z1−z2| for all z1, z2 ∈ E. If capE = 0, then cap f(E) =
0.

Lemma 8.2. Let δ > 0 and (cn) ∈ KN
δ . Then cap (J(cn) \ suppµ∗) = 0.

Proof. Since J(cn) = ∂A(cn)(∞) and cap J(cn) > 0, the assertion immediately
follows from Theorem III.31 in [T, p. 79]. �

Lemma 8.3. Let δ > 0 and (cn) ∈ KN
δ . Then suppµ∗ = J(cn).

Proof. We assume that J∗ := J(cn) \ suppµ∗ 6= ∅. By Lemma 8.2 we have
cap J∗ = 0. Since J∗ is an open set in J(cn) we may choose z0 ∈ J∗ and
ε > 0 such that Jε := J∗ ∩ Dε(z0) ⊂ J∗. We also have cap Jε = 0. But
by the self-similarity of J(cn) (cf. [Bü1]) there exists m ∈ N such that
Fm(Jε) = Fm(J(cn)). Since |fck(z1)−fck(z2)| = |z1+z2||z1−z2| ≤ 2Rδ|z1−z2|
for all k ∈ N and z1, z2 ∈ J(cn), we obtain capFm(Jε) = 0 by Lemma 8.1. On
the other hand there holds Fm(J(cn)) = J(cn+m) and thus capFm(J(cn)) = 1
which gives a contradiction. �

Lemma 8.4 ([Bro, Lemma 15.5]). Let E, H ⊂ C be compact sets with E ⊂
H and capE = e−V > 0. Furthermore, let (µn) be a sequence of probability
measures on H which converges weakly to a probability measure µ on E. If
un denotes the logarithmic potential with respect to µn and µ∗ denotes the
equilibrium measure on E, then suppose lim infn→∞ un(z) ≥ V for z ∈ E
and suppµ∗ = E. Then there holds µ = µ∗.

Theorem 8.5. Let δ > 0 and (cn) ∈ KN
δ . Then for any a ∈ ∆Rδ the

sequence (µak) of probability measures defined by (8.1) converges weakly to
the equilibrium measure µ∗ on J(cn).

Proof. For k ∈ N let z1,k, . . . , z2k,k be the solutions of the equation Fk(z) = a.
Then we have zj,k ∈ A(cn)(∞) and zj,k ∈ H := K|a| for j = 1, . . . , 2k so that
suppµak ⊂ H. Since |Fk(z)| ≤ Rδ for z ∈ J(cn) and

|Fk(z)− a| =
2k∏
j=1

|z − zj,k|,
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we obtain for z ∈ J(cn)

2k∑
j=1

log |z − zj,k| = log |Fk(z)− a| ≤ log (Rδ + |a|) = C

and thus

uk(z) :=
1
2k

2k∑
j=1

log
1

|z − zj,k|
≥ −C

2k
.

This can be written as

uk(z) =
∫
H

log
1

|z − ζ|
dµak(ζ) ≥ −

C

2k

so that

lim inf
k→∞

uk(z) ≥ 0 = log cap J(cn) (z ∈ J(cn)).(8.2)

By the Selection Theorem (cf. [T, p. 34]) every sequence of probability
measures on H contains a weakly convergent subsequence. Therefore, we
only have to show that for every subsequence of (µak) which converges weakly
to some probability measure ν there holds ν = µ∗. In fact, since the prede-
cessors F−1

k (a) of a do not accumulate in A(cn)(∞) we obtain supp ν ⊂ J(cn),
and because of (8.2) the assertion follows from Lemma 8.3 and 8.4. �

Remark 8.6. If δ < 1
4 and (cn) ∈ KN

δ , then the assertion of Theorem 8.5
also holds for any a ∈ Drδ . This requires only a few simple modifications in
the proof.

Like in the iteration of a fixed function there holds that for any a ∈ J(cn)

the set
⋃∞
k=1 F

−1
k (Fk(a)) is dense in J(cn) (cf. [Bü1]). We also want to study

the asymptotic distribution of F−1
k (Fk(a)) as k →∞. For that purpose, we

consider the following sequence (νak ) of probability measures defined by

νak :=
1
2k

∑
Fk(z)=Fk(a)

δz.(8.3)

Then supp νak ⊂ J(cn), and from iteration theory of a fixed polynomial fc
it is known (cf. [Bro], see also [St, p. 148]) that (νak ) converges weakly to
the equilibrium measure µ∗ on J(fc). We show that this holds true in our
situation.
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Theorem 8.7. Let δ > 0 and (cn) ∈ KN
δ . Then for any a ∈ J(cn) the

sequence (νak ) of probability measures defined by (8.3) converges weakly to
the equilibrium measure µ∗ on J(cn).

Proof. For k ∈ N let z1,k, . . . , z2k,k be the solutions of the equation Fk(z) =
Fk(a). Then we have for z ∈ A(cn)(∞)

1
2k

log |Fk(z)− Fk(a)| =
1
2k

2k∑
j=1

log |z − zj,k| =
∫

J(cn)

log |z − ζ| dνak (ζ).

Again, we only have to show that every weakly convergent subsequence
(λ`) of (νak ) has the limit µ∗. If λ` → λ as ` → ∞ weakly, then for z ∈
A(cn)(∞)

lim
`→∞

∫
J(cn)

log |z − ζ| dλ`(ζ) =
∫

J(cn)

log |z − ζ| dλ(ζ).

On the other hand we have
1
2k

log |Fk(z)− Fk(a)| =
1
2k

log
∣∣∣∣Fk(z)− Fk(a)Fk(z)

∣∣∣∣
+

1
2k

log |Fk(z)| → g(cn)(z) as k →∞.

This implies

g(cn)(z) =
∫

J(cn)

log |z − ζ| dλ(ζ) (z ∈ A(cn)(∞)),

and since µ∗ is unique the assertion follows. �
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[GV] F.W. Gehring and J. Väisälä, Hausdorff dimension and quasiconformal mappings,
J. London Math. Soc. (2), 6 (1973), 504-512.

[LV] O. Lehto and K.I. Virtanen, Quasiconformal Mappings in the Plane, Springer-
Verlag, Berlin, 1973.

[L1] M.Yu. Lyubich, On typical behavior of the trajectories of a rational mapping of
the sphere, Dokl. Akad. Nauk SSSR, 268 (1983), 29-32; English transl. in Soviet
Math. Dokl., 27 (1983), 22-25.

[L2] , The dynamics of rational transforms: The topological picture, Uspekhi
Mat. Nauk, 41 (1986), 35-95; English transl. in Russian Math. Surveys, 41 (1986),
43-117.
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SPECIAL VALUES OF KOECHER–MAASS SERIES OF
SIEGEL CUSP FORMS

YoungJu Choie and Winfried Kohnen

A certain finiteness result for special values of character
twists of Koecher-Maass series attached to Siegel cusp of genus
g is proved.

1. Introduction.

Let f be an elliptic cusp form of even integral weight k on Γ1 := SL2(Z). Let
χ be a primitive Dirichlet character modulo a positive integer N and denote
by L(f, χ, s) (s ∈ C) the Hecke L-function of f twisted with χ, defined by
analytic continuation of the series∑

n≥1

χ(n)a(n)n−s (Re (s)� 0; a(n) = n-th Fourier coefficient of f).

Let g(χ) be the Gauss sum attached to χ. As is well-known, there exists a
Z-module Mf ⊂ C (depending only on f) of finite rank such that all the
special values

is+1(2π)−sg(χ)L(f, χ, s)

(s ∈ N, 1 ≤ s ≤ k − 1;

χ a primitive Dirichlet character modulo N, N ∈ N)

lie in Mf ⊗Z Z[χ], where Z[χ] is the Z-module obtained from Z by adjoining
the values of χ. In fact, if f is a Hecke eigenform, one has rkZMf ≤ 2
[1, 7, 8, 10].

The purpose of this paper is to give a generalization of the above result
to the case of a Siegel cusp form f , where now L(f, χ, s) is replaced by an
appropriate χ-twist of the Koecher-Maass series attached to f .

More precisely, let f be a cusp form of even integral weight k ≥ g + 1
w.r.t. the Siegel modular group Γg := Spg(Z) of genus g and write a(T ) (T
a positive definite half-integral matrix of size g) for its Fourier coefficients.
For χ as above we set

(1) L(f, χ, s) :=
∑

{T>0}/GLg,N (Z)

χ(trT )a(T )
εN (T )(detT )s

(Re (s)� 0),
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where the summation extends over all positive definite half-integral (g, g)-
matrices T modulo the action T 7→ T [U ] := U tTU of the group GLg,N (Z) :=
{U ∈ GLg(Z) |U ≡ Eg (mod N)} and εN (T ) := #{U ∈ GLg,N (Z) |T [U ] =
T} is the order of the corresponding unit group of T (note that εN (T ) = 1
whenever N > 2 by a classical result of Minkowski). Furthermore, trT
denotes the trace of T . Note that χ(trT ) depends only on the GLg,N (Z)-
class of T .

In §2 (Thm. 1) we shall prove that the series L(f, χ, s) have holomorphic
continuations to C and satisfy functional equations under s 7→ k − s. The
proof is fairly standard and follows the same pattern as in [6] for the case
N = 1 (compare also [5]) and [9, §3.6] for g = 1.

The main result of the paper (Thm. 2) which will be proved in §3, states
that all the special values

igs+
g(g+1)

2 π
g(g−1)

4
+[ g

2
] (2π)−gs g(χ)L(f, χ, s)

(
s ∈ N,

g + 1
2
≤ s ≤ k − g + 1

2
;

χ a primitive Dirichlet character moduloN, N ∈ N
)

are contained in Mf ⊗Z Z[χ] where Mf ⊂ C is a finite Z-module depending
only on f . Its rank is bounded by the rank of a certain singular relative
homology group of a toroidal compactification of a quotient space of Hg ×
Cgw, where Hg is the Siegel upper half-space of genus g and w := k−(g+1).
See §3 for details.

For the proof one represents the functions L(f, χ, s) (similar as in the case
g = 1) as finite linear combinations of integrals of certain differential forms
attached to f along certain g(g+1)

2 -dimensional real subcycles of Γg\Hg. Our
assertion then can be deduced if we use results of Hatada given in [2, 3].
More precisely, in [2] it is shown that the space of cusp forms of weight
k ≥ g + 1 w.r.t. a torsion-free congruence subgroup Γ ⊂ Γg is canonically
isomorphic to the space of holomorphic differential forms of highest degree
on a compactification of Γ ∝ Z2gw\Hg ×Cgw, and in [3] using [2] a certain
finiteness statement for a certain family of integrals of Siegel cusp forms is
derived. (Actually, as we think, some of the assertions of [3] have to be
slightly modified, for complete correctness’ purposes; cf. §3.)

Inspecting the proof of Thm. 2, it is quite suggestive or even more or less
clear that a similar finiteness statement as given there can be proved for
special values of Dirichlet series of a much more general type. In fact, such
a result essentially seems to be true for finite linear combinations of all the
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partial series ∑
{T>0}/GL(S)

g (Z)

e2πi tr (TS)a(T )
ε(S)(T )(detT )s

(Re (s)� 0),

where S is any rational symmetric matrix of size g, GL(S)
g (Z) is the subgroup

{U ∈ GLg(Z) |S[U t] ≡ S (mod Z)} and ε(S)(T ) := #{U ∈ GL(S)
g (Z) |T [U ]

= T}. However, we do not want to pursue this point further.

We finally remark that in [4] the Koecher-Maass series of a Siegel-Eisen-
stein series of genus g is explicitly expressed in terms of “elementary” zeta
functions. In particular, if g is odd it is shown to be a sum of products of
Riemann zeta functions. It would be interesting to investigate if a similar
statement as given in Thm. 2 would also hold in this case. In fact, it is
suggestive that such an assertion can be derived directly from the explicit
formulas given in [4].

One can also ask similar questions in the case of a Klingen-Siegel-Eisen-
stein series.

Notations. If A and B are complex matrices of appropriate sizes, we put
A[B] := BtAB. We simply write E = Eg resp. 0 = 0g for the unit resp.
zero matrix of size g if there is no confusion.

We often write elements of the group GSp+
g (R) ⊂ GL2g(R) consisting of

real symplectic similitudes of size 2g with positive scale in the form
(
A B
C D

)
,

understanding that A,B,C and D are real (g, g)-matrices.

If Y ∈ R(g,g), we write Y > 0 if Y is symmetric and positive definite.
The group GLg(R) operates on Pg := {Y ∈ R(g,g) |Y > 0} in the usual way
from the right by Y 7→ Y [U ].

If f(Z) is a complex-valued function on Hg, k a positive integer and

γ =
(
A B
C D

)
∈ GSp+

g (R), we set

(f |kγ)(Z) := det (CZ +D)−kf((AZ +B)(CZ +D)−1) (Z ∈ Hg).

We often write f |γ instead of f |kγ if there is no misunderstanding.

If k is a positive integer, Γ is a subgroup of Γg and χ is a character of Γ of
finite order, we denote by Sk(Γ, χ) the space of Siegel cusp forms of weight
k and character χ w.r.t. Γ. If χ = 1 we simply write Sk(Γ).
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2. Character twists of Koecher-Maass series.

For N a natural number we define

Γ∗g,0(N
2) :=

{(
A B
C D

)
∈ Γg |C ≡ 0 (mod N2),

D ≡ λE (mod N) for someλ ∈ Z
}

(note that λ must necessarily satisfy (λ,N) = 1).

It is easy to see that Γ∗g,0(N
2) is a subgroup of Γg. If χ is a Dirichlet

character modulo N , we extend χ to a character of Γ∗g,0(N
2) by putting

χ(γ) := χ(λ) if γ ≡
(
∗ ∗
0 λE

)
(mod N).

Lemma 1. Let f ∈ Sk(Γg) with Fourier coefficients a(T ) (T > 0 half-
integral). Let χ be a primitive Dirichlet character modulo N . Then the
function

fχ(Z) :=
∑
T>0

χ(trT )a(T )e2πi tr (TZ) (Z ∈ Hg)

belongs to Sk(Γ∗g,0(N
2), χ2).

Proof. Let
g(χ) :=

∑
ν (mod N)

χ(ν)e2πiν/N

be the Gauss sum attached to χ. Since∑
ν (mod N)

χ(ν)e2πi tr(T ) ν
N = χ(trT )g(χ),

we obtain

(2) fχ =
1

g(χ)

∑
ν (mod N)

χ(ν) f |αν ,

where

αν :=
(
E ν

NE
0 E

)
(ν ∈ Z).

Let γ =
(
A B
C D

)
∈ Γ∗g,0(N

2) and put

A′ := A+
ν

N
C,

B′ := B +
ν

N
(E −ADt)D − ν2

N2
CDtD,

D′ := D − ν

N
CDtD.
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Then A′, B′ and D′ are integral matrices, one has D′ ≡ D (mod N) and

ανγ =
(
A′ B′

C ′ D′

)(
E ν

ND
tD

0 E

)
;

in particular
(
A′ B′

C ′ D′

)
∈ Γ∗g,0(N

2), and it follows that

fχ|γ =
1

g(χ)

∑
ν (mod N)

χ(ν) f |
(
E ν

ND
tD

0 E

)

= χ(λ2) · 1
g(χ)

∑
ν (mod N)

χ(ν) f |αν (D ≡ λE (mod N))

= χ2(γ)f.

This proves the claim.

Lemma 2. Let the notations be as in Lemma 1 and put

WN2 :=
(

0 −E
N2E 0

)
.

Then
fχ|WN2 = g(χ)2N−gk−1fχ.

Proof. For (ν,N) = 1 determine λ, µ ∈ Z with λN − µν = 1. Then

ανWN2 = N

(
0 −E
E 0

)(
NE −µE
−νE λE

)
αµ.

Hence

g(χ) · fχ|WN2 = N−gk
∑

ν (mod N),(ν,N)=1

χ(ν)f |αµ

= χ(−1)N−gk
∑

µ (mod N),(µ,N)=1

χ(µ)f |αµ

= χ(−1)g(χ)N−gkfχ.

Since g(χ)g(χ) = χ(−1)N , we obtain our claim.

Theorem 1. Let k be even and let f ∈ Sk(Γg). Let χ be a primitive Dirich-
let character modulo N and define L(f, χ, s) (Re (s)� 0) by (1). Let

γg(s) := (2π)−gs
g∏

ν=1

π(ν−1)/2Γ
(
s− ν − 1

2

)
(s ∈ C)

and set
L∗(f, χ, s) := Ngsγg(s)L(f, χ, s) (Re (s)� 0).
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Then L∗(f, χ, s) extends to a holomorphic function on C, and the functional
equation

L∗(f, χ, k − s) = (−1)
gk
2 g(χ)2

1
N
L∗(f, χ, s)

holds, where g(χ) is the Gauss sum attached to χ.

Proof. Since {(
U 0
0 (U t)−1

)
|U ∈ GLg,N (Z)

}
⊂ Γ∗g,0(N

2)

and k is even, the function fχ(iY ) (Y > 0) is invariant under Y 7→ Y [U ] (U ∈
GLg,N (Z)). Hence it follows in the usual way that

(3) L∗(f, χ, s) =
1
2
Ngs

∫
Fg,N

fχ(iY )(det Y )sdv (Re (s)� 0),

where Fg,N is any fundamental domain for the action of GLg,N (Z) on Pg
and dv = (detY )−(g+1)/2dY is the GLg(R)-invariant volume element on Pg.

We fix a set of representatives U1, . . . , Ur for GLg(Z)/GLg,N (Z) and now
take

(4) Fg,N =
r⋃

ν=1

Rg[Uν ],

where Rg is Minkowski’s fundamental domain for the action of GLg(Z).

Since GLg,N (Z) is closed under transposition, also F−1
g,N is a fundamental

domain for GLg,N (Z).

We let

Pg,+ := {Y ∈ Pg |detY ≥ N−g}, Pg,− := {Y ∈ Pg |detY ≤ N−g},

write
Fg,N =

(
Fg,N ∩ Pg,+

)
∪
(
Fg,N ∩ Pg,−

)
and observe that Fg,N ∩ Pg,− under the map Y 7→ (N2Y )−1 is transformed
bijectively onto F−1

g,N ∩ Pg,+. We also observe that both Fg,N ∩ Pg,+ and
F−1
g,N ∩ Pg,+ are fundamental domains for the induced action of GLg,N (Z)

on Pg,+, the integral in (3) is absolutely convergent and the integrand is
invariant under GLg,N (Z).

Therefore, since by Lemma 2

fχ(i(N2Y )−1) = (−1)
gk
2 g(χ)2Ngk−1(detY )k fχ(iY ),
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we conclude that

L∗(f, χ, s) =
1
2

∫
Fg,N∩Pg,+

(
fχ(iY )(NgdetY )s(5)

+ (−1)
gk
2 g(χ)2N−1fχ(iY )(NgdetY )k−s

)
dv.

Standard arguments and estimates taking into account (4) and properties
of Rg (compare e.g., [5, Chap. VI]) now show that the integral on the right
of (5) is (absolutely) convergent for all s ∈ C and represents a holomorphic
function of s.

Since
g(χ)g(χ) = χ(−1)N,

we also easily see the claimed functional equation. This concludes the proof
of the Theorem.

3. Special values.

In this section we shall prove:

Theorem 2. Let k be even, k ≥ g+1 and let f ∈ Sk(Γg). If χ is a primitive
Dirichlet character modulo N , define L(f, χ, s) (s ∈ C) by holomorphic
continuation of the series (1) (Theorem 1). Let g(χ) be the Gauss sum
attached to χ and let Z[χ] be the Z-module obtained from Z by adjoining the
values of χ.

Then there exists a Z-module Mf ⊂ C depending only on f of finite rank
such that all the special values

igs+
g(g+1)

2 π
g(g−1)

4
+[ g

2
] (2π)−gs g(χ)L(f, χ, s)

where s ∈ N, g+1
2 ≤ s ≤ k − g+1

2 and χ runs over all primitive Dirichlet
characters modulo all positive integers N , are contained in Mf ⊗Z Z[χ].

Proof. From (2) and (3) and the proof of Theorem 1 we find that
(6)

g(χ)γg(s)L(f, χ, s) =
1
2

∑
ν (mod N)

χ(ν)
∫
Fg,N

f
(
iY +

ν

N
E
)

(detY )s−
g+1
2 dY

for all s ∈ C.

Note that the individual integrands on the right of (6) are GLg,N (Z)-

invariant since f(Z) is invariant under
{(

U 0
0 (U t)−1

)
|U ∈ GLg,N (Z)

}
and under translations. Let w ∈ Z, w ≥ 0 and Spg(R) ∝ R2gw be the

semi-direct product of Spg(R) and R2gw ∼= (R2g)w with multiplication given
by

(γ, λ)(γ′, λ′) = (γγ′, λγ′ ↑ + λ′)
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where by γ 7→ γ↑ we denote the diagonal embedding of Spg(R) into
GL2gw(R).

The group Spg(R) ∝ R2gw acts on Hg ×Cgw (with Cgw ∼= (Cg)w) from
the left by

(γ, λ) ◦
(
Z, (ζ1, . . . , ζw)

)
=
(

(AZ +B)(CZ +D)−1,

(
ζ1 + (µ1, ν1)

(
Z
Eg

)
(CZ +D)−1,

. . . , ζw + (µw, νw)
(
Z
Eg

)
(CZ +D)−1

))
where γ =

(
A B
C D

)
and λ =

(
(µ1, ν1), . . . , (µw, νw)

)
with µj , νj ∈ Rg for

all j. The discrete subgroup Γg ∝ Z2gw acts properly discontinuously.

Let Γ ⊂ Γg be any congruence subgroup acting without fixed points on
Hg (e.g., the principal congruence subgroup Γg(`) with ` ≥ 3) and view f
as an element of Sk(Γ).

Put w := k − (g + 1). It was shown in [2] that the map

h(Z) 7→ h(Z)dZdζ

gives an isomorphism between Sk(Γ) and the space of holomorphic differ-
ential forms of degree g(g+1)

2 + gw of (any) non-singular compactification of
the quotient space Γ ∝ Z2gw\Hg ×Cgw.

Using toroidal compactifications, in [3] from this a certain finiteness state-
ment for certain cycle integrals attached to h was derived which we now want
to describe in the special case we need.

Let S be a given rational symmetric matrix of size g and let n be an
integer with 0 ≤ n ≤ w. Define

Tg(S;n) :=
⋃
Y ∈Pg

{S + iY }

×
(
(Rg)w−n × {(µ1iY, . . . , µniY ) |µ1, . . . , µn ∈ Rg}

)
⊂ Hg ×Cgw.

Then Tg(S;n) is a real submanifold of Hg ×Cgw of dimension g(g+1)
2 + gw.

(In the notation of [3, §6] we have taken a1 = a2 = . . . = aw−n ∈
{g + 1, . . . , 2g} and aw−n+1 = . . . aw ∈ {1, . . . , g}. Also note that in the
definition of Tg(a1, . . . , aw;X) in [3, p. 401] we have replaced the “Z” in
W (a1, . . . , aw)[Z] by “iY ”. We think that this is the correct definition,
since otherwise the corresponding integrals in [3, Lemma 6.2 and Thm. 5]
in general would not be convergent.)
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Put

Ug :=
{(

U 0
0 (U t)−1

)
|U ∈ GLg(R)

}
⊂ Spg(R),

Vg,n := {(λ1, . . . , λw−n, (µ1, 0), . . . , (µn, 0)) |λ1, . . . ,

λw−n ∈ R2g, µ1, . . . , µn ∈ Rg}

and
Hg,n := Ug ∝ Vg,n ⊂ Spg(R) ∝ R2gw.

Let

α(S) :=
(
E S
0 E

)
.

Then one easily checks that the conjugate subgroup

H(S)
g,n := (α(S), 0) ·Hg,n · (α(S), 0)−1

leaves Tg(S;n) stable.

Note that H(S)
g,n consists of all pairs((

U S(U t)−1 − US
0 (U t)−1

)
,
(
λ1, . . . , λw−n, (µ1,−µ1S), . . . , (µn,−µnS)

))
with λ1, . . . , λw−n ∈ R2g and µ1, . . . , µn ∈ Rg.

Let
H

(S)
g,n,Γ := H(S)

g,n ∩ Γ ∝ Z2gw.

Write M := Γ ∝ Z2gw\Hg × Cgw and denote by M a fixed toroidal com-
pactification of M . Let ∂M = M \M . Then according to [3, Lemma 6.1]
the closure of the image of H(S)

g,n,Γ\Tg(S;n) in M w.r.t. the usual complex

topology is the support of a singular relative g(g+1)
2 + gw-cycle with integral

coefficients w.r.t. (M,∂M).

Since H g(g+1)
2

+gw
(M,∂M,Z) is of finite rank, one concludes that for any

given h ∈ Sk(Γ) all the numbers∫
H

(S)
g,n,Γ\Tg(S;n)

h(Z)dZdζ (S ∈ Q(g,g), S = St)

are contained in a finite Z-module (depending only on h) whose rank is
bounded by the rank of the above cohomology group ([3, Thm. 5], compare
our above remark).
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On the other hand (compare [3, Lemma 6.2]) one has the equality∫
H

(S)
g,n,Γ\Tg(S;n)

h(Z)dZdζ(7)

=
∫
α(S)·Ug ·(α(S))−1∩Γ\{S+iY |Y ∈Pg}

h(Z) det (Z − S)ndZ.

In particular, now take Γ = Γg(`) with some fixed ` ≥ 3. Then the
integral on the right of (7) is equal to

ign+
g(g+1)

2

∫
Pg/GL(S)

g,` (Z)
h(S + iY ) (detY )ndY,

where
GL

(S)
g,` (Z) := {U ∈ GLg,`(Z) |S[U t] ≡ S (mod `Z)}.

Let S = ν
NE with ν ∈ Z (so α(S) = αν in the notation of §2). Then we

see that GLg,`N (Z) is contained in GL(S)
g,` (Z). Since the index of GLg,`N (Z)

in GLg,N (Z) is bounded by a number depending only on `, the assertion of
Thm. 2 now follows taking into account (6) and the fact that Γ(1

2+ν) ∈ Q
√
π

for ν = 0, 1, 2 . . . .
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AN ABSTRACT
VOICULESCU–BROWN–DOUGLAS–FILLMORE

ABSORPTION THEOREM

George A. Elliott and Dan Kucerovsky

A common generalization is given of what are often re-
ferred to as the Weyl–von Neumann theorems of Voiculescu,
Kasparov, Kirchberg, and, more recently, Lin. (These in turn
extend a result of Brown, Douglas, and Fillmore.)

More precisely, an intrinsic characterization is obtained of
those extensions of one separable C∗-algebra by another—the
first, i.e., the ideal, assumed to be stable, so that Brown-
Douglas-Fillmore addition of extensions can be carried out—
which are absorbing in a certain natural sense related to this
addition, a sense which reduces to that considered by earlier
authors if either the ideal or the quotient is nuclear. The
specific absorption theorems referred to above can be deduced
from this characterization.

1. Let B be a C∗-algebra, and let C be a C∗-algebra containing B as
a closed two-sided ideal. Let us say that C is purely large with respect
to B if for every element c of C which is not in B, the C∗-algebra cBc∗

(the intersection with B of the hereditary sub-C∗-algebra of C generated
by cc∗) contains a sub-C∗-algebra which is stable (i.e., isomorphic to its
tensor product with the C∗-algebra K of compact operators on an infinite-
dimensional separable Hilbert space) and is full in B (i.e., not contained in
any proper closed two-sided ideal of B).

2. Let A and B be C∗-algebras, and let

0 → B → C → A → 0

be an extension of B by A (i.e., a short exact sequence of C∗-algebras). Let
us say that the extension is purely large if the C∗-algebra of the extension,
C, is purely large with respect to the image of B in it, in the sense described
above.

Note that, if B is non-zero, a purely large extension of B by A is essential
(that is, the image of B in the C∗-algebra of the extension is an essential
closed two-sided ideal—every non-zero closed two-sided ideal has non-zero
intersection with it).
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3. Let A and B be C∗-algebras, with A unital. An extension 0 → B →
C → A → 0 will be said to be unital if C is unital.

In this paper we shall consider primarily the context of unital extensions
(although we shall indicate how to modify our main result, Theorem 6, to
be valid in the non-unital setting).

4. Recall that an extension of B by A is determined by its Busby map—
the naturally associated map from A to the quotient multiplier algebra, or
corona, of B, M(B)/B. (The C∗-algebra of the extension is the pullback of
the Busby map and the canonical quotient map M(B)→ M(B)/B.)

Recall (see e.g., [6]) that, if B is stable, so that the Cuntz algebra O2 may
be embedded unitally in M(B), then the Brown-Douglas-Fillmore addition
of extensions, defined by

τ1 ⊕ τ2 := s1τ1s
∗
1 + s2τ2s

∗
2,

where τ1 and τ2 are (the Busby maps of) two extensions of B by A, and s1
and s2 are (the images in M(B)/B of) the canonical generators of O2 (which
are isometries with range projections summing to 1), is compatible with
Brown-Douglas-Fillmore equivalence (defined as unitary equivalence with
respect to the unitary group of M(B)—or, rather, the image of this group
in M(B)/B), and the resulting binary operation on equivalence classes is
independent of the embedding of O2.

With respect to this operation, the equivalence classes of extensions of
the stable C∗-algebra B by the C∗-algebra A form an abelian semigroup.

Recall that an extension of B by A is said to be trivial if, considered as
a short exact sequence of C∗-algebra maps, it splits. In other words, the
map C → A in the sequence 0 → B → C → A → 0 should have a left
inverse, C ← A. (Equivalently, the Busby map A→ M(B)/B should lift to
a C∗-algebra homomorphism A→ M(B).)

In the setting of unital extensions, we shall understand triviality of an
extension to mean that the splitting can be chosen to be unital.

Recall, furthermore, that, in [8], Kasparov called an extension absorbing
if, in the Brown-Douglas-Fillmore semigroup, it is equal to its sum with any
trivial extension. (Briefly, if it absorbs every trivial extension.) Of course,
a unital extension cannot be absorbing in this sense (unless the quotient
algebra is zero); let us say that a unital extension is absorbing if—in the
subsemigroup of unital extensions—it is equal to its sum with any trivial
unital extension. (Trivial in the sense of admitting a unital splitting.)

5. In order to be able to formulate our main result (Theorem 6, below) for
arbitrary (separable) C∗-algebras A and B (with B stable and A unital)—
i.e., without assuming A or B to be nuclear—we must restrict the notion of
trivial extension as follows.
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Let us say that an extension of C∗-algebras 0 → B → C → A → 0 is
trivial in the nuclear sense if the splitting homomorphism A → C may be
chosen to be weakly nuclear as defined by Kirchberg in [9]: The splitting
homomorphism π : A → C will be said to be weakly nuclear if, for every
b ∈ B ⊆ C, the map

A 3 a 7→ bπ(a)b∗ ∈ B ⊆ C
is nuclear. (Recall that a C∗-algebra map is said to be nuclear if it factors ap-
proximately through finite-dimensional C∗-algebras, by means of completely
positive contractions, in the sense of convergence in norm.)

Let us say, correspondingly, that an extension is absorbing in the nuclear
sense if it absorbs every extension which is trivial in the nuclear sense.
Again, let us say that a unital extension is absorbing in the nuclear sense to
mean that this holds within the semigroup of (equivalence classes of) unital
extensions. (With triviality in the nuclear sense the existence of a unital
weakly nuclear splitting.)

6.

Theorem. Let A and B be separable C∗-algebras, with B stable and A
unital. A unital extension of B by A is absorbing, in the nuclear sense, if,
and only if, it is purely large.

7. Purely large algebras have an approximation property similar to that
of purely infinite algebras. (This is the fundamental ingredient in the proof
of our main result, that an extension that is purely large is absorbing—either
in the unital setting, as in Theorem 6, or, if the extension is non-unital, as
in Corollary 16.)

Lemma. Let C be a C∗-algebra that is purely large with respect to a closed
two-sided ideal B, in the sense of Section 1. Then, for any positive element
c of C which is not in B, any ε > 0, and any positive element b of B, there
exists b0 ∈ B with

‖b− b0cb∗0‖ < ε.

If b is of norm one, and if the image of c in C/B is of norm one, then b0
may be chosen to have norm one.

Proof. Let c ∈ C+ \ B, b ∈ B+, and ε > 0 be given. Multiplying c by a
positive element of the sub-C∗-algebra it generates, and changing notation,
we may suppose that the hereditary sub-C∗-algebra Cc of C on which c acts
as a unit is not contained in B.

By hypothesis, there exists a full, stable sub-C∗-algebra D of B contained
in Cc.

Since D is full in B, there exist d ∈ D+ and b1, . . . , bn in B such that∥∥∥b−∑ bidb
∗
i

∥∥∥ < ε.
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(The set S of such elements
∑
bidb

∗
i is closed under the map x 7→ yxy∗ for

any y ∈ B, and therefore the closure of S is a hereditary subset of B+—
recall that if 0 ≤ s ≤ t in B then s

1
2 = lim ynt

1
2 with yn = s

1
2 (t+ 1

n)−
1
2 ∈ B,

so that s = lim ynty
∗
n. In particular, the closure of S is a subcone of B+, as

the sum of two elements of S, associated with d1 and d2, say, is majorized
by an element associated with the single element d1 + d2, and therefore is a
limit of elements associated with d1 + d2. The closure of S is thus a closed
subcone of B+ closed under the map x 7→ yxy∗ for any y ∈ B. Such a
subset is known to be the positive part of a closed two-sided ideal: as above
it must be a hereditary subset, and it is then the positive part of an ideal
by Theorem 2.7(ii) of [4].)

(Alternatively, to obtain the assertion of the preceding paragraph, ap-
proximate b

1
2 by

∑
b1id0b

∗
2i for some d0 ∈ D+ and b1i, b2i ∈ B. Replacing∑

b1id0b
∗
2i by its self-adjoint part (which has a similar form), and changing

notation, we may suppose that
∑
b1id0b

∗
2i is self-adjoint. (In any case, this

element is almost self-adjoint, which is sufficient.) Write∑
b1id0b

∗
2i = b1(d0)b∗2

where b1 and b2 denote the row vectors (b1i) and (b2i), and (d0) denotes the
square matrix of appropriate size with d0 repeated down the diagonal and
0 elsewhere. Note that b1(d0)b∗2 = b2(d0)b∗1. We then have

‖b− b1(d0)b∗2b2(d0)b∗1‖

= ‖b− b
1
2 b1(d0)b∗2 + b

1
2 b2(d0)b∗1 − b1(d0)b∗2b2(d0)b∗1‖

≤ ‖b
1
2 ‖ ‖b

1
2 − b1(d0)b∗2‖+ ‖b

1
2 − b1(d0)b∗2‖ ‖b2(d0)b∗1‖,

and the right side is arbitrarily small. Finally, noting that (d0)b∗2b2(d0)

belongs to the hereditary sub-C∗-algebra generated by (d
1
2
0 ), we may ap-

proximate this element by the element

((d
1
2
0 )c(d

1
2
0 ))((d

1
2
0 )c(d

1
2
0 ))∗ = (d

1
2
0 )c(d0)c∗(d

1
2
0 )

for some matrix c over B, and then with b′1 = b1(d
1
2
0 )c, the element

b− b′1(d0)b′∗1
is small, i.e., b−

∑
b′1id0b

′∗
1i is small, as desired.)

Since D is stable, we may suppose, changing d by a small amount, that
there exists a multiplier projection e of D such that ed = d and such that
for multipliers u1, . . . , un,

uiu
∗
j = δije.

Hence with di = d
1
2ui,

did
∗
j = δijd.
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Set ∑
bidi = b0.

Then, on the one hand,

b0b
∗
0 =

∑
bidid

∗
jb
∗
j =

∑
bidb

∗
i ,

and, on the other hand, as dic = di and so b0c = b0,

b0b
∗
0 = b0cb

∗
0.

We now have

‖b− b0cb∗0‖ = ‖b− b0b∗0‖ =
∥∥∥b−∑ bidb

∗
i

∥∥∥ < ε.

Now suppose that
‖b‖ = ‖c+B‖ = 1,

and let us show that b0 may be chosen with norm one. The modification
of c in the above construction may then be arbitrarily small, and so, as b0
will be chosen with norm one (see below), we may again suppose that the
hereditary sub-C∗-algebra Cc of C on which c acts as a unit is not contained
in B. Repeating the construction above with ε/2 in place of ε, we have
‖b− b0b∗0‖ ≤ ε/2, and so (as ‖b‖ = 1),

1− ε

2
≤ ‖b‖ − ‖b− b0b∗0‖ ≤ ‖b0b∗0‖ ≤ ‖b‖+ ‖b0b∗0 − b‖ ≤ 1 +

ε

2
.

Hence, ∥∥∥∥b0b∗0(1− 1
‖b0b∗0‖

)∥∥∥∥ = |‖b0b∗0‖ − 1| ≤ ε

2
,

and so ∥∥∥∥b− b0
‖b0‖

c
b∗0
‖b0‖

∥∥∥∥ =
∥∥∥∥b− b0b

∗
0

‖b0b∗0‖

∥∥∥∥ ≤ ε

2
+
ε

2
= ε.

8. Let us recall the generalization of Glimm’s Lemma due to Akemann,
Anderson, and Pedersen (Proposition 2.2 of [1]). Because we shall only need
the unital case, and that case is much easier, let us give a proof in that case.

Lemma. Let C be a separable unital C∗-algebra and let ρ be a pure state of
C. There exists c0 ∈ C+ with ‖c0‖ = 1 such that ρ(c0) = 1 and

lim
n→∞

‖cn0 (c− ρ(c))cn0‖ = 0, c ∈ C.

Proof. With Nρ = {c ∈ C; ρ(c∗c) = 0}, recall that, as ρ is pure, Kerρ =
Nρ +N∗

ρ . Hence,
C = C1 +Nρ +N∗

ρ .

Choose a strictly positive element h of Nρ ∩ N∗
ρ of norm at most one, and

set 1−h = c0. The desired convergence—which is additive—holds obviously
for c ∈ C, and it holds for c ∈ Nρ or N∗

ρ because hcn0 = h(1 − h)n → 0 (as
t(1− t)n → 0 uniformly for t ∈ [0, 1]).
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9. The following consequence of Lemmas 7 and 8 is the main step in the
proof of Theorem 6.

Corollary. Let C be a separable unital C∗-algebra that is purely large with
respect to the closed two-sided ideal B. Let ρ be a pure state of C that
is zero on B, let c1 = (c11, . . . , c1n) be a row vector over C and let b1 =
(b11, . . . , bn1) be a row vector over B. Denote the tensor product of ρ with
the identity on Mn(C),

id⊗ ρ: Mn(C) = Mn(C)⊗ C → Mn(C),

by ρn. The map

C → B

c 7→ b1ρn(c∗1cc1)b
∗
1

can be approximated on finite sets by the maps

c 7→ bcb∗, b ∈ B.

Proof. It is immediate to reduce to the case n = 1. (Considering b1 and c1
as elements of Mn(C), and C as the subalgebra of upper left corner matrices,
extend ρ to a pure state of Mn(C)—necessarily unique, and concentrated in
the upper left corner—and denote this again by ρ. If (bij) ∈ Mn(B) gives
an approximating map for the map

Mn(C) → Mn(B)

c 7→ b1ρ(c∗1cc1)b
∗
1,

which fulfils the hypotheses of the Corollary with n = 1 and with C and B
replaced by Mn(C) and Mn(B) (note that in this case ρ1 = ρ), then b11 ∈ B
gives an approximating map for the given map.)

Let a finite subset F ⊆ C be given. By Lemma 8, there exists c0 ∈
C+ such that ‖c0‖ = 1, ρ(c0) = 1, and c0c

∗
1cc1c0 is arbitrarily close to

c0ρ(c∗1cc1)c0 for each c ∈ F . Namely, c0 may be taken to be a power of the
c0 of Lemma 8; note that 0 ≤ c0 ≤ 1 and ρ(c0) = 1 imply that ρ(ck0) = 1 for
any k.

Since ρ(c20) = 1 and ρ(B) = 0, the element c20 does not belong to B and so
by Lemma 7 there exists b0 ∈ B such that b0c20b

∗
0 is arbitrarily close to any

given positive element of B. In particular, approximating an approximate
unit for B, we may choose b0 ∈ B such that b1(b0c20b

∗
0) is arbitrarily close

to b1. Since the image of c0 in C/B is of norm one, by Lemma 7 we may
suppose that ‖b0‖ = 1. Then, with b = b1b0c0c

∗
1, for each c ∈ F , the element

bcb∗ = b1b0(c0c∗1cc1c0)b
∗
0b
∗
1

is (by choice of c0), arbitrarily close to

b1b0c0ρ(c∗1cc1)c0b
∗
0b
∗
1 = b1b0c

2
0b
∗
0b
∗
1ρ(c

∗
1cc1),
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which in turn (by choice of b0) is arbitrarily close to

b1b
∗
1ρ(c

∗
1cc1) = b1ρ(c∗1cc1)b

∗
1.

In other words, the desired approximation holds.

10. The following lemma, incorporating techniques of Kirchberg, brings
Corollary 9 to bear in the nuclear setting.

Lemma. Let C be a separable unital C∗-algebra and let B be a closed two-
sided ideal of C. Suppose that C is purely large with respect to B. Let ψ be
a completely positive map from C to B which is zero on B. If the map from
the quotient C/B to B determined by ψ is nuclear, and if B is stable, then
ψ can be approximated on finite sets by the maps

c 7→ b∗cb, b ∈ B.

Proof. First, without assuming that C is purely large, let us show, using
ideas of Kirchberg presented in [9], that if the map C/B → B determined by
ψ is nuclear then ψ can be approximated on finite sets by sums of maps of
the kind considered in Corollary 9 (each one corresponding to a row vector
over C, a pure state of C zero on B, and a column vector over B).

By the nuclearity hypothesis, which implies that ψ is the limit of a se-
quence of products of two completely positive maps, the first from C to Mk

for some k, and zero on B, and the second from Mk to B, we may suppose
that ψ itself is the product of two such maps—i.e., a completely positive
map C → Mk, zero on B, and a completely positive map Mk → B.

As B is stable, so that Ok is unitally contained in M(B)—unless B = 0
in which case the assertion is vacuous—, by Lemma 1.1 of [9] a completely
positive map Mk → B is necessarily of the form x 7→ RxR∗ where R is a
row vector over B. (As shown in [9] this holds with R the transpose of the
matrix (e1, . . . , ek)∗—i.e., for R = (e∗1, . . . , e

∗
k), where

(e1, . . . , ek) = (s1, . . . , sk)G
1
2

with s1, . . . , sk the canonical generating isometries of Ok and G the image
in Mk ⊗ B of the positive element (eij) of Mk(Mk) corresponding to the
canonical system of matrix units for Mk.)

It remains to show—in order to verify the assertion above—that a com-
pletely positive map C → Mk, zero on B, can be approximated on finite sets
by sums of maps of the form

c 7→ ρ(F ∗cF )

where F is a row vector over C of length k and ρ is a pure state of C zero
on B. Replacing C by C/B, we see that it is enough to establish this in the
case B = 0. In this case, we may proceed as follows (in a way somewhat
similar to the proof of Lemma 1.2 of [9]—which concerns the special case
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that C is simple and not elementary). By the Krein-Milman theorem, we
may suppose (since we are allowing sums) that the given completely positive
map C → Mk belongs to an extremal ray within the cone of all such maps.
(Consider a compact base for this cone.) By Stinespring’s theorem, the
given map may be expressed as a representation of C on a Hilbert space,
followed by cutting down to a generating subspace of dimension k—with a
specified orthonormal basis identifying the operators on this subspace with
the elements of Mk. By extremality of the ray containing the given map
(just as in the case of a positive linear functional), this representation must
be irreducible. By the Kadison transitivity theorem the specified basis then
has the form Fη where η is an arbitrary nonzero vector in the space of the
representation and F is a row vector over C. With ρ the pure state of C
determined by η, the given completely positive map is now equal to the map
c 7→ ρ(F ∗cF ).

This completes the proof that ψ can be approximated on finite sets by
sums of maps of the kind considered in Corollary 9, say in particular, on the
given finite subset S of C, by the sum

ψ1 + · · ·+ ψn

where each ψi is as in Corollary 9 (and in particular is zero on B, which
of course is no longer necessarily zero). Then—as C is purely large—by
Corollary 9, on a given finite family of elements of C, say S, the map ψ1 can
be approximated by the map c 7→ b1cb

∗
1 for some b1 ∈ B. By Corollary 9

again, the map ψ2 can be approximated by the map c 7→ b2cb
∗
2 for some

b2 ∈ B, not only on S but on any larger finite subset of C, and in particular
on the set

S2 := S ∪ {cb∗1b1c∗; c ∈ S ∪ S∗}.
Since ψ2 is zero on cb∗1b1c

∗, c ∈ S ∪ S∗, it follows that b2cb∗1b1c
∗b∗2 is small

for c ∈ S ∪ S∗, i.e., the norms ‖b2cb∗1‖ = ‖b2cb∗1b1c∗b∗2‖
1
2 and ‖b1cb∗2‖ =

‖b2c∗b∗1b1cb∗2‖
1
2 are small for each C ∈ S. Hence, for each c ∈ S,

(b1 + b2)c(b1 + b2)∗

is close to b1cb∗1 + b2cb
∗
2, and so to (ψ1 + ψ2)(c). Proceeding in this way (as,

for instance, in [2]), we obtain b1, · · · , bn ∈ B such that ψ1 + · · ·+ ψn—and
hence ψ—is approximated (arbitrarily closely) on S by the map

c 7→ (b1 + · · ·+ bn)c(b1 + · · ·+ bn)∗.

11. The following technique is basic in some form to all earlier absorption
results. It was formulated more or less explicitly in special cases in [2], [8],
and [9], and expressed in the following abstract form in a later version of
the preprint [9].
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Lemma (Kirchberg). Let C be a unital separable C∗-algebra and let B be
an essential closed two-sided ideal of C, so that we may view C as a unital
subalgebra of M(B):

B ⊆ C ⊆ M(B); 1 ∈ C.
Let φ : C → M(B) be a completely positive map which is zero on B, and
suppose that, for every b0 ∈ B, the map

b∗0φb0 : C → B

c 7→ b∗0φ(c)b0

can be approximated (on finite sets) by the maps

c 7→ b∗cb, b ∈ B.
It follows that there exists v ∈ M(B) such that

φ(c)− v∗cv ∈ B, c ∈ C.
The element v may be chosen so that the map c 7→ v∗cv also approximates
φ on a given finite subset of C.

Proof. Let us recall, for the convenience of the reader, the argument of (the
extended version of) [9].

First, by a slight reformulation of Theorem 2 of [2] (and its proof), there
exist positive elements w1, w2, . . . of B of norm one such that the series∑
wixiwi converges strictly in M(B) for any bounded sequence (xi) in M(B),

and such that the sum
∑
w2
i φ(c)w2

i ∈ M(B) is equal to φ(c) modulo B for
every c, and approximately equal to φ(c) in M(B) (in norm) for each c in a
given finite subset of C. The sequence w1, w2, . . . may be chosen furthermore
such that the sequence (

∑n
1 w

4
i ) is an approximate unit for B, and such that

w4
n+2 is orthogonal to

∑n
1 w

4
i for each n.

One now proceeds very much as in the proof of Lemma 10 above (which
dealt with a finite sum of maps from C to B) to show that the infinite sum
w2

1φw
2
1 + w2

2φw
2
2 + · · · of maps from C to B (convergent pointwise in the

strict topology of M(B) to a map from C to M(B)—equal to φ modulo B
and equal to φ approximately on the given finite set), each of which is zero
on B and is determined approximately by an element of B, is determined
approximately on the given finite set by a strictly converging sum of elements
of B, and determined by this multiplier exactly modulo B.

More explicitly, one chooses b1 ∈ B such that b∗1cb1 is close to w1φ(c)w1

for c in a finite set S1, to be specified, one then chooses b2 ∈ B such that
b∗2cb2 is close to w2φ(c)w2 for c in a finite set S2, also to be specified—and
depending in addition on the choice of b1, as in the proof of Lemma 10—and
one continues in this way. As we shall show, with suitable choices of the
finite sets S1, S2, · · · and of the approximations at each stage, the series

b1w1 + b2w2 + · · ·
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converges strictly in M(B) to an element v with the desired properties (it
determines the sum of maps w2

1φw
2
1 +w2

2φw
2
2 + · · · , and hence also the map

φ, to within a specified approximation on a given finite set, and exactly,
modulo B, on all of C).

The sets S1, S2, . . . should of course all contain the given finite set, say
S, and their union should be dense in C. They should also all contain the
unit of C (1 ∈ M(B)); then for each i the element b∗i bi (= b∗i 1bi) is close to
wiφ(1)wi and in particular the sequence b1, b2, . . . is bounded. In order for
the series b1w1 + b2w2 + · · · to be strictly convergent, it would be sufficient
in view of the properties of the sequence w1, w2, . . . and the boundedness of
the sequence b1, b2, . . . to ensure that∑

‖bi − w4
i bi‖ < ∞,

as then convergence of the series b1w1 + b2w2 + · · · (in the strict topology)
follows from convergence of the series w4

1b1w1 + w4
2b2w2 + · · · , which holds

as the sequence w3
1b1, w

3
2b2, . . . is bounded.

It would also be sufficient to arrange that, instead of convergence of∑
‖bi − w4

i bi‖, one has convergence of the series∑
‖bi − z4

i bi‖

where z1, z2, . . . is some other sequence of positive elements of B with the
last property mentioned for (wi) (namely, that

∑n
1 z

4
i is an approximate unit

for B, and z4
n+2

∑n
1 z

4
i = 0 for each n). Indeed, this property (for both (wi)

and (zi)) is enough for the series∑
zixiwi

to converge strictly in M(B) for any bounded sequence xi in M(B). While
z4
i may be taken to be the sum of a consecutive group of elements w4

j , it
would not appear to be possible to choose zi = wi.

Let us now elaborate on the choice of the finite sets S1, S2, . . . , and on
the choice of a partition of N into consecutive subsets J1, J2, . . . such that,
with ∑

j∈Ji

w4
j =: z4

i ,

the necessary approximations can be made. (Namely, for
∑
biwi to exist

and have the desired properties; note that the introduction of zi is purely
to ensure convergence of the sum.)

The finite set Si should contain, as well as the given finite set S and the
unit, 1 ∈ C ⊆ M(B), the first i elements of a fixed dense sequence (c1, c2, . . . )
in C. Let us choose

S1 = S ∪ {c1} ∪ {1}.
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In order to ensure convergence of v =
∑
biwi, and negligibility of the cross

terms in the product v∗cv, for c ∈ S or, when working modulo B, for c ∈ C
(it is enough to consider c ∈ {c1, c2, . . . }), we must choose

S2 = (S1 ∪ {c2}) ∪


(

n1∑
1

w4
k

)2
 ∪ {cb1b∗1c∗; c ∈ S1 ∪ S∗1},

where b1 is such that b∗1cb1 is close to w1φ(c)w1 for c ∈ S1, and n1 is such
that the difference (

n1∑
1

w4
k

)
b1 − b1

is small; proceeding in this way, for each i ≥ 2 we must choose

Si+1 = (Si ∪ {ci+1}) ∪


(

ni∑
1

w4
k

)2
 ∪ {cbib∗i c∗; c ∈ Si ∪ S∗i },

where bi is such that b∗i cbi is close to wiφ(c)wi for c ∈ Si, and ni is such that
the difference (

ni∑
1

w4
k

)
bi − bi

is small. By “close”, and “small”, we mean that the sum of all the tolerances
in question should be finite, and smaller than a certain single number (small
enough that the desired approximation of φ occurs on the set S).

Note that, as φ(B) = 0, the element

b∗i+1

(
ni∑
1

w4
k

)2

bi+1,

is small, i.e., (
∑ni

1 w4
k)bi+1 is small. As (

∑ni+1

1 w4
k)bi+1 − bi+1 is small (by

the choice of ni+1), also(ni+1∑
ni+1

w4
k

)
bi+1 − bi+1 is small.

In other words, with

{ni + 1, . . . , ni+1} = Ji+1,

i = 1, 2, . . . , and with, say, J1 = {1, . . . , ni}, setting
∑

j∈Ji
w4
j = z4

i (with
zi ≥ 0), we have a sequence (zi) with the desired properties (including that
z4
i bi − bi is small, in the sense of being summable).
For each i, (biwi)∗c(biwi) is close to w2

i φ(c)w2
i for c ∈ S∪{1, c1, . . . , ci}—in

the summable sense described above. The cross terms in the expression

v∗cv =
(∑

biwi

)∗
c
(∑

biwi

)
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are negligible in the sense described above by the choice of the sequence
S1, S2, . . . (to correlate with the choice of b1, b2, . . . ; cf. proof of Lemma 10).

12. In order to prove that an arbitrary extension (of a stable separable
C∗-algebra by a separable C∗-algebra) which is absorbing in the nuclear
sense is purely large, we must first establish the existence of some purely
large extension, and in fact one which is trivial in the nuclear sense—so that
we can use the absorbing hypothesis. (It follows from the other implication
of Theorem 6 that, in the unital setting, such an extension is necessarily
unique—up to equivalence.)

An extension with these properties (purely large, and trivial in the nu-
clear sense) was constructed by Kasparov in [8]—although Kasparov did not
establish these properties. (What Kasparov proved, in terms of our termi-
nology, was that his extension was absorbing in the nuclear sense.) Let us
now verify the asserted properties.

Lemma. Let A and B be separable C∗-algebras, with B stable and A unital.
There exists a purely large unital extension of B by A which is trivial in the
nuclear sense (as a unital extension).

Proof. We may suppose that both A and B are non-zero. Kasparov in [8]
considered the extension of B ⊗K(H) by A with splitting

A ↪→ 1⊗B(H) ↪→ M(B ⊗K(H)),

where A ↪→ B(H) is a faithful unital representation of A on the separable
infinite-dimensional Hilbert spaceH. Choosing such a representation π of A,
and choosing an isomorphism of B ⊗K(H) with B, we obtain an extension
of B by A—obviously trivial (but a priori depending on the choices made).
Let us denote this extension by τ0.

To show that τ0 is trivial in the nuclear sense, it is sufficient to show that
the given splitting,

A
π−→ 1⊗B(H) ↪→ M(B ⊗K(H)) ∼= M(B),

is weakly nuclear. In other words, given d ∈ B⊗K(H), it is enough to show
that the map

dπd∗ : A 3 a 7→ dπ(a)d∗ ∈ B ⊗K(H)

is nuclear, i.e., factorizes approximately through a finite-dimensional C∗-
algebra by means of completely positive maps. With (en) an approximate
unit for K(H) consisting of projections of finite rank, note that for each n
the completely positive map

(enden)π(enden)∗,

where we write en again for 1⊗en ∈ M(B⊗K(H)), factors through the finite-
dimensional C∗-algebra enK(H)en (as the composition of the completely
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positive maps e 7→ enπ(a)en ∈ enK(H)en and x 7→ (enden)x(enden)∗ ∈
B ⊗K(H)). Since en = 1⊗ en converges to 1 in M(B ⊗K(H)) in the strict
topology, in the topology of pointwise convergence

(enden)π(enden)∗ → dπd∗.

We shall prove below, in Theorem 17(iii), that a considerably more gen-
eral construction than Kasparov’s also gives rise to a purely large extension
(trivial, but not necessarily in the nuclear sense). Therefore, rather than du-
plicating this proof—or omitting it in the more general case, which includes
the interesting class of extensions considered by Lin in [10]—, we shall omit
it in the present case.

13.

Lemma. The sum of any two C∗-algebra extensions one of which is purely
large is again purely large.

Proof. Recall that, by definition, an extension is purely large when the
associated C∗-algebra is purely large, with respect to the canonical closed
two-sided ideal. Recall also, that, in this case, the canonical closed two-sided
ideal is essential—so that the C∗-algebra of the extension may be considered
as a subalgebra of the multiplier algebra of the ideal. It is sufficient to show,
then, that if B is a C∗-algebra, if C is a sub-C∗-algebra of M(B) containing
B, and if there exists a projection e in M(B) commuting with C modulo B,
such that the C∗-algebra eCe is purely large with respect to the ideal eBe,
such that if c ∈ C and ece ∈ B then c ∈ B, and such that eBe is full in B,
then the C∗-algebra C is purely large with respect to the ideal B.

With B and C (and e) as above, let c be an element of C not contained
in B, and let us show that cBc∗ contains a stable sub-C∗-algebra which is
full in B.

Since c 6∈ B, by hypothesis ece 6∈ eBe, and so (eceBec∗e)− contains a
stable sub-C∗-algebra which is full in eBe, and hence also full in B. Hence,
as

eceBec∗e ⊆ ecBc∗e,

the sub-C∗-algebra (ecBc∗e)− of B contains a stable sub-C∗-algebra which
is full in B.

While (ecBc∗e)− may not be contained in (cBc∗)−, there is a natural iso-
morphism of the C∗-algebra (ecBc∗e)− with (c∗eBec)−, which is contained
in the algebra (c∗Bc)−. Furthermore, as this isomorphism consists of the
restriction to (ecBc∗e)− of the map

B∗∗ 3 b 7→ w∗bw ∈ B∗∗,
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where w denotes the partially isometric part of ec ∈ C ⊆ B∗∗, and its inverse
is the restriction to (c∗eBec)− of the map

B∗∗ 3 b 7→ wbw∗ ∈ B∗∗,

the subalgebras (ecBc∗e)− and (c∗eBec)− of B generate the same closed
two-sided ideal. This shows that (c∗Bc)− contains a stable sub-C∗-algebra
which is full in B. It follows by a similar argument (or just by replacing c
by c∗) that (cBc∗)− does, too.

14.

Lemma. Any C∗-algebra extension equivalent to a purely large one is purely
large.

Proof. The property in question is, by definition, a property of the C∗-
algebra of the extension, together with the distinguished ideal, not of the
extension itself. Equivalence of extensions preserves the isomorphism class
of the associated C∗-algebra, with its canonical ideal.

15. Proof of Theorem 6. Let τ be a unital extension of B by A. (We
shall identify τ with its Busby map A→ M(B)/B.)

Suppose that τ is purely large, and let us show that τ is absorbing in the
nuclear sense.

Given a unital extension τ ′ of B by A which is trivial in the nuclear sense,
i.e., which has a unital weakly nuclear splitting, we must show that

τ ∼ τ ⊕ τ ′,

i.e., that τ and τ ⊕ τ ′, considered as maps from A to M(B)/B, are unitarily
equivalent, by means of the image in M(B)/B of a unitary element of M(B).

As in the case of earlier absorption theorems, it is sufficient to prove (for
arbitrary τ ′ as above) that

τ ∼ σ ⊕ τ ′

for some unital extension σ, not necessarily equal to τ . Indeed, as in [2]
(which systematizes [13], and is the model for later absorption proofs, in-
cluding the present one)—see also below—one may construct a trivial ex-
tension τ ′′—trivial also in the nuclear sense, and as a unital extension—such
that

τ ′′ ⊕ τ ′ ∼ τ ′′.

Hence, with σ such that

τ ∼ σ ⊕ τ ′′,
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it follows that

τ ⊕ τ ′ ∼ (σ ⊕ τ ′′)⊕ τ ′

∼ σ ⊕ (τ ′′ ⊕ τ ′)
∼ σ ⊕ τ ′′

∼ τ.

A unital extension τ ′′ such that τ ′′ ⊕ τ ′ ∼ τ ′′, which is trivial in the
nuclear sense—as a unital extension—, is obtained by forming the infinite
multiplicity sum (π′)∞ of a unital weakly nuclear splitting π′ of τ ′ (cf. [2]).
This is defined first as just the map

π′ ⊕ 1 : A → M(B ⊗K)

a 7→ π′(a)⊗ 1.

This map then is transformed into a (unital) map

π′′ : A → M(B)

by identifying B with B⊗ e11 ⊆ B⊗K, and then transforming B⊗ e11 onto
B ⊗K by means of an isometry in M(B ⊗K), which we shall denote by s2,
such that s2s∗2 = 1⊗e11. (Such an isometry exists because B is stable; more
explicitly, with B = B0 ⊗K, we may choose s2 = 1⊗ t2 ∈ M(B0 ⊗ (K⊗K))
where t2 is an isometry in M(K⊗K) with range 1⊗e11.) Choose an isometry
t1 in M(K) with range 1−e11, and set 1⊗ t1 = s1. The (desired) equivalence

π′′ ⊕ π′ ∼ π′′

(unitary equivalence of maps from A to M(B)) then reduces (by transfor-
mation by s2) to the equivalence

(π′ ⊗ 1)⊕ s∗2(π′ ⊗ e11)s2 ∼ π′ ⊗ 1

(unitary equivalence of maps from A to M(B ⊗K)), which may be seen by
using the Cuntz isometries s1 and s2 to compute the left-hand side:

s1(π′ ⊗ 1)s∗1 + s2(s∗2(π
′ ⊗ e11)s2)s∗2 = π′ ⊗ (1− e11) + π′ ⊗ e11

= π′ ⊗ 1.

With τ ′′ the unital extension with splitting π′′, we then have τ ′′ ⊕ τ ′ ∼ τ ′′;
it remains only to note that τ ′′ is trivial in the nuclear sense, as π′ ⊗ 1 and
hence π′′ are weakly nuclear.

To show that τ ∼ σ⊕ τ ′, for some unital extension σ, with τ ′ as given—a
unital extension with a weakly nuclear unital splitting—we shall in fact not
use that this splitting is a C∗-algebra homomorphism, but only that it is
completely positive (and unital, and weakly nuclear, in the sense described
for a homomorphism).
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Since the C∗-algebra, C, of the extension τ is purely large with respect to
the closed two-sided ideal B (canonically contained in it), in particular B is
essential, and so we may write

B ⊆ C ⊆ M(B),

and aim to apply Lemma 11 to the completely positive map φ : C → M(B)
obtained by composing the canonical quotient map from C to A with a
weakly nuclear, unital, completely positive map from A to M(B) lifting τ ′.
(Note that the existence of such a map is clearly equivalent to the existence
of a splitting map with these properties from A to the C∗-algebra of the
extension τ ′, namely, the pullback of A and its preimage in M(B).)

In order to apply Lemma 11, we must verify that for every b0 ∈ B, the
map

b∗0φb0 : C 3 c 7→ b∗0φ(c)b0 ∈ B
can be approximated by the maps

c 7→ b∗cb, b ∈ B.
Fix b0 ∈ B, and set b∗0φb0 = ψ. Since, by construction, the map ψ from C
to B is zero on B, and the associated map from C/B to B is nuclear, the
approximibility of ψ by maps c 7→ b∗cb with b ∈ B is ensured by Lemma 10.

By Lemma 11, there exists v ∈ M(B) such that

φ(c)− v∗cv ∈ B, c ∈ C,
and such that also v∗cv is close to φ(c) for c belonging to any given finite
set, and in particular for c = 1. As φ is unital, v∗v is close to 1, and equal to
1 modulo B. Hence, replacing v by v(v∗v)−

1
2 , we may suppose that v∗v = 1.

The first property of v may be rewritten as

τ ′ = v∗τv

(i.e., τ ′(a) = v∗τ(a)v, a ∈ A, where v denotes the image of v ∈ M(B) in
M(B)/B).

Since τ ′ is multiplicative this in particular implies that the projection
vv∗ ∈ M(B)/B commutes with τ(A). (As v is an isometry, also vτ ′v∗ is
multiplicative, and therefore also (vv∗)τ(vv∗); with vv∗ = e we then have
eτ(a∗)τ(a)e = eτ(a∗a)e = eτ(a∗)eτ(a)e, whence eτ(a∗)(1 − e)τ(a)e = 0,
i.e., (1 − e)τ(a)e = 0; since a is arbitrary, also (1 − e)τ(a∗)e = 0, and so
τ(a)e = eτ(a).)

Since Brown-Douglas-Fillmore addition of (equivalence classes of) exten-
sions is independent of the choice of the unital copy of O2 in M(B) (cf.
above), to show that

τ ∼ σ ⊕ τ ′

it would be sufficient to know that the projection 1 − vv∗ is Murray-von
Neumann equivalent to 1 in M(B). Indeed, with s1 an isometry with range
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1− vv∗, and s2 = v,

τ = (1− vv∗)τ + vv∗τ

= (1− vv∗)τ(1− vv∗) + vv∗τvv∗

= s1s
∗
1τs1s

∗
1 + s2s

∗
2τs2s

∗
2

= s1σs
∗
1 + s2τ

′s∗2

= σ ⊕ τ ′

where σ = s∗1τs1 (recall that τ ′ = v∗τv).
Instead of showing directly that it is possible to choose v above with

1 − vv∗ equivalent to 1, let us choose v with respect to τ ′ ⊕ τ ′ instead of
τ ′—and call this w. (Note that τ ′⊕τ ′ has a unital weakly nuclear completely
positive splitting if τ ′ does.) Then

τ = (1− ww∗)τ + ww∗τ

= (1− ww∗)τ + e1τ + e2τ,

where e1 and e2 are projections equivalent to 1 with e1 + e2 = ww∗, com-
muting with τ(A) modulo B, and e2τ is equivalent (by means of an isometry
with range e2) to τ ′. Provided we show that also (1−ww∗)+e1 is equivalent
to 1, this says that τ = σ ⊕ τ ′.

Let us show, then, using that B is stable, that if e is a projection in
M(B) equivalent to 1, and f is any projection orthogonal to e, then e + f
is equivalent to 1. We shall deduce this from the well known fact that
M(K), and hence M(B), contains an infinite sequence of mutually orthogonal
projections, say e1, e2, . . . , equivalent to 1 and with sum 1 (in the strict
topology). It follows that any sequence of projections (fi) in M(B) with
fi ≤ ei also has convergent sum. Clearly, the projection e2 + e3 + · · · is
equivalent to e1 + e2 + · · · = 1. If f1 is any subprojection of e1, choose
a subprojection fi of ei for i ≥ 2 equivalent to f1, and note that, also,
f1 + f2 + · · · is equivalent to f2 + f3 + · · · . Therefore, by additivity of
equivalence, on adding the single projection (e2 − f2) + (e3 − f3) + · · · to
both of these projections we obtain that f1 + e2 + e3 + · · · is equivalent to
e2 + e3 + · · · , as desired.

(The preceding considerations are superfluous in the case B = K, consid-
ered in [13] and [2].)

Now assume that τ is absorbing, in the nuclear sense, and let us show
that τ is purely large.

By Lemma 12, there exists a purely large unital extension τ0 of B by A
which is trivial in the nuclear sense. By hypothesis,

τ ∼ τ ⊕ τ0.
By Lemma 13, τ ⊕ τ0 is purely large. Hence by Lemma 14, τ is purely large,
as desired.
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16. It follows immediately from Theorem 6 that, if one considers the
non-unital setting (i.e., extensions which are not necessarily unital, or with
a non-unital quotient), then one has the following criterion for an extension
τ of a stable separable C∗-algebra B by a separable C∗-algebra A to be
absorbing in the nuclear sense:

The unital extension τ̃ of B by Ã, the C∗-algebra A with unit adjoined
(i.e., a new unit if A is already unital), naturally corresponding to τ (with
Busby map extending that of τ), should be purely large.

(To see this, note that by Theorem 6, the preceding condition is equiva-
lent to the condition that τ̃ be absorbing in the nuclear sense, as a unital
extension. This, on the other hand, is equivalent to the condition that τ be
absorbing in the nuclear sense (in the non-unital setting): the extensions of
B by A which are trivial in the nuclear sense are in bijective correspondence
with the unital extensions of B by Ã which are trivial in the nuclear sense,
in the unital setting, by the map σ 7→ σ̃. Finally it is clear that τ + σ ∼ τ
if, and only if, τ̃ + σ̃ ∼ τ̃ .)

Let us note that, for the extension τ̃ of B by Ã to be purely large, it is
necessary and sufficient for τ itself to be purely large, and non-unital. (If C
is purely large with respect to B, and non-unital, we must show that also
C̃ is purely large with respect to B. (Clearly, if C̃ is purely large then C
is purely large and non-unital.) In other words, we must show that for any
c ∈ C, ((1 + c)B(1 + c)∗)− contains a full stable sub-C∗-algebra of B. If
(1 + c)C ⊆ B, then the image of −c in M(B)/B is a unit for the image of
C in M(B)/B; hence, the image of C in M(B) contains 1 ∈ M(B); as τ is
essential the map C → M(B) is injective, and hence C is unital, contrary
to hypothesis. This shows that there exists c′ ∈ C with (1 + c)c′ not in B.
Hence, the subalgebra

((1 + c)c′B((1 + c)c′)∗)− ⊆ ((1 + c)B(1 + c)∗)−

contains a stable sub-C∗-algebra which is full in B.) (As a consequence,
Corollary 9 and Lemma 10 hold also in the non-unital case—but we will not
use this.)

Let us summarize:

Corollary. Let B be a stable separable C∗-algebra, and let A be a separable
C∗-algebra. Let τ be an extension of B by A.

The extension τ is absorbing, in the nuclear sense, if and only if τ is
purely large and non-unital.

In particular, if A is non-unital (i.e., does not have a unit element), then
τ is absorbing if and only if τ is purely large.

17. Let us now show directly that those extensions previously known
to be absorbing (in the nuclear sense) are purely large. (We refer to the
absorption theorems of [3], [13], [11], [8], [9], and [10].)
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On the one hand, this yields a new proof—via Theorem 6—of the ab-
sorption property. On the other hand, as pointed out in Section 12, the
proof that an arbitrary extension which is absorbing in the nuclear sense is
purely large depends on first knowing the existence of at least one purely
large extension—which is also trivial in the nuclear sense. This is proved in
Lemma 12, using Theorem 17(iii) below.

Concerning the notion of absorbing extension, note that if an extension is
absorbing in the sense that it absorbs every trivial extension (in the class of
unital extensions, say), then it is certainly absorbing in the nuclear sense; on
the other hand, so far the only known examples of true absorbing extensions
are in the case that either the ideal or the quotient is nuclear, so that the
true sense and the nuclear sense coincide (every trivial extension is trivial
in the nuclear sense).

Theorem. Let A and B be separable C∗-algebras, with B stable. Let τ be
a C∗-algebra extension of B by A. Suppose that τ is essential (i.e., that
the Busby map A → M(B)/B is injective; see Section 2). In each of the
following cases, τ is purely large (in the sense of Section 2).

(i) B = K. (Cf. [3], [13].)
(i)′ B = C0(X)⊗K where X is a finite-dimensional locally compact Haus-

dorff space, and the map from A to the canonical quotient M(K)/K of
M(B)/B corresponding to each point of X is injective (in other words,
τ is homogeneous in the sense introduced for such a B in [11]). (Cf.
[11].) (In [11], X is restricted to be compact.)

(ii) B is simple and purely infinite. (Cf. [9].)
(iii) τ is trivial, with a splitting

π : A→ 1⊗M(B1) ↪→ M(B0 ⊗B1) = M(B)

for some tensor product decomposition B = B0 ⊗ B1, with B0 stable,
such that, for any non-zero a ∈ A, the closed two-sided ideal of B1

generated by π(a)B1 is equal to B1. (This last property is automatic
if B1 is simple—for instance, as in [10], or as in the case B1 = K
considered in [8] and in Lemma 12 above. It is also automatic if A is
simple and π(A)B1 is dense in B1—as considered also in [10].)

Proof. As in the proof of Theorem 6, since the map A→ M(B)/B is injec-
tive, we may suppose that the C∗-algebra of the extension is a subalgebra
of M(B).

Ad (i). For any c ∈ M(K) which is not in K, the hereditary sub-C∗-
algebra (cKc∗)− of K is infinite-dimensional and hence, as it is equal to
eKe for some projection e ∈ M(K) (M(K) being the bidual of K), it is
isomorphic to K and in particular is stable and full.
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Ad (i)′. By hypothesis, for any c ∈ M(B) belonging to the C∗-algebra of
the extension, but not to B, the hereditary sub-C∗-algebra (cBc∗)− of B is
full. (This is a simple reformulation of the hypothesis of homogeneity.)

Let us show, that for any such c the C∗-algebra (cBc∗)− is stable. By
hypothesis, for each point of X, not only is the image of (cBc∗)− in the
quotient K of B at this point non-zero, but (since the C∗-algebra of the
extension contains B, and this property holds with c replaced by c + b for
any b ∈ B) also this image is stable.

Let us show that, more generally, any hereditary sub-C∗-algebra of B the
image of which in each primitive quotient of B is stable (possibly equal to
zero) is itself stable. Here, B is still as above. Let D be such a hereditary
sub-C∗-algebra of B. Note that D is a C∗-algebra with continuous trace—as
B has continuous trace, and this property is preserved (as is easily seen)
under passage to a hereditary sub-C∗-algebra. By Theorem 10.9.5 of [5],
D is determined up to isomorphism, among the class of all separable C∗-
algebras with continuous trace, with all primitive quotients equal to K and
with the same spectrum as D (note that this space has finite dimension),
by its Dixmier-Douady invariant. By inspection of the construction of this
invariant (see 10.7.14 of [5]), one sees that it is unchanged by tensoring by
K. It follows that D is isomorphic to D ⊗K, as desired.

Ad (ii). For any c ∈ M(B) which is not in B, the hereditary sub-C∗-
algebra (cBc∗)− of B is non-zero and therefore (by the definition of purely
infinite simple C∗-algebra that we shall use) contains an infinite projection.
In other words, (cBc∗)− contains a partial isometry v such that vv∗ < v∗v.
The partial isometries vn(v∗v − vv∗), n = 1, 2, . . . , generate a sub-C∗-
algebra of (cBc∗)− isomorphic to K, full in B as B is simple.

(In fact, in the present case, as (cBc∗)− cannot be unital, by [14] this
algebra itself is stable.)

Ad (iii). Recall that, as shown by Hjelmborg and Rørdam in [7], using
the criterion for stability that they established, as B is separable and stable
the hereditary sub-C∗-algebra ((1 + b)B(1 + b)∗)− is stable for any b ∈ B.

Let us begin by noting that a similar, but rather simpler, argument shows
that, also, the hereditary sub-C∗-algebra ((1 + b)B(1 + b)∗)− is full in B for
each b ∈ B. (We are indebted to M. Rørdam for this argument.) With (un)
a sequence of unitary elements of M(B) such that

b1unb2 → 0 for all b1, b2 ∈ B,

as exists by [7] if B is stable (un may be chosen to be 1⊗ vn with (vn) such
a sequence in M(K), in particular a sequence of unitaries corresponding to
finite permutations of an orthonormal basis), one has for each fixed b ∈ B,

un(1 + b)u∗n → 1 strictly in M(B).
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Hence, for each b′ ∈ B,

(un(1 + b)u∗n)b
′(un(1 + b)u∗n)

∗ → b′.

This shows in particular that the closed two-sided ideal generated by (1 +
b)B(1 + b)∗ is dense in B, i.e., ((1 + b)B(1 + b)∗)− is full in B, as asserted.

Now let us show that for any element c of C, the C∗-algebra of the exten-
sion, not contained in B, the C∗-algebra (cBc∗)− contains a stable sub-C∗-
algebra which is full in B. We shall base our argument on the case c = 1+b,
considered above.

The special nature of the present setting may be expressed as follows:
In a certain decomposition of B as B1 ⊗ K, with B1 stable (and hence

isomorphic to B), the given element c ∈ M(B) is decomposed as c1+b where
c1 ∈ 1⊗M(K) and b ∈ B1 ⊗K.

This may then be exploited as follows:
Write B1 as B2 ⊗K, so that c = c1 + b with

c1 ∈ 1⊗ 1⊗M(K) ⊆ M(B2 ⊗K ⊗K)

and b ∈ B2⊗K⊗K. As in [7] (see also above), choose a sequence of unitaries
(un) in M(B2 ⊗K ⊗K) with

b1unb2 → 0 for all b1, b2 ∈ B2 ⊗K ⊗K,

such that, in addition,

un = 1⊗ vn ⊗ 1 with vn ∈ M(K).

Then, as c1 ∈ 1⊗ 1⊗M(K),

unc1u
∗
n = c1.

Hence (cf. above),

uncu
∗
n → c1 strictly in M(B2 ⊗K ⊗K) = M(B).

(This holds as c = c1 + b with unc1u∗n = c1 and unbu∗n → 0 strictly.)
Note also that (c1bc∗1)

− is stable, and full in B, as c1 ∈ 1 ⊗ M(K) ⊆
M(B1 ⊗K) = M(B) and c1 6∈ B. (See proof of Case (i).)

Let us first show that (cBc∗)− is full in B—this is the simpler step. Since

(uncu∗n)b
′(uncu∗n)

∗ → c1b
′c∗1 for all b′ ∈ B,

the closed two-sided ideal of B generated by cBc∗ contains (c1Bc∗1)
−, and

hence is equal to B, as desired.
We are unable to prove that (cBc∗)− is stable, for arbitrary c as above,

i.e., for c equal to c1 + b, with c1 fixed as above, and b arbitrary in B.
Nevertheless, we shall show that, for arbitrary such c, the algebra (cBc∗)−

contains a stable sub-C∗-algebra which is full in B, which is all that is
required. (The subalgebra will be constructed to be (c′Bc′∗)− for some
c′ ∈ C \B; such a subalgebra is full in B by the preceding paragraph.)
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Note that for any x ∈ M(B) the sub-C∗-algebra (xBx∗)− is equal to
(xx∗Bxx∗)−, so that the problem reduces to considering the case that c is
positive—and dividing by B we see that c1 is then positive, too. Of course,
we may also suppose that c and c1 have norm at most one.

Now, set c
1
2 c1c

1
2 = c′ and c

1
2
1 cc

1
2
1 = c′′, and note that, first,

0 ≤ c′ ≤ c, 0 ≤ c′′ ≤ c1,

so that
(c′Bc′)− ⊆ (cBc)−, (c′′Bc′′)− ⊆ (c1Bc1)−,

and, second, the hereditary sub-C∗-algebras (c′Bc′)− and (c′′Bc′′)− are iso-
morphic. (As shown in the proof of Lemma 13, (xBx∗)− is isomorphic to

(x∗Bx)− for any x ∈ M(B), and applying this with x = c
1
2
1 c

1
2 yields

(c′Bc′)− = (xBx∗)− ∼= (x∗Bx)− = (c′′Bc′′)−,

as asserted.)
It now suffices, to complete the proof, to show that (c′′bc′′)− is stable—as

then (c′Bc′)− is a stable sub-C∗-algebra of (cBc)−, full in B by the first part
of the proof.

To simplify notation, let us assume that already c ≤ c1, and let us show
that, at least in this case, (cBc)− is stable. We shall essentially repeat the
proof of Corollary 4.3 of [7].

Recall that b1unb2 → 0 for all b1, b2 ∈ B. Let us verify the criterion (b)
of Proposition 2.2 of [7], shown in Proposition 2.2 and Theorem 2.1 of [7]
to be equivalent to stability for a C∗-algebra with countable approximate
unit (in particular, for a separable C∗-algebra), with (cBc)− in place of A.
Fix 0 ≤ a ∈ (cBc)−. Since (cBc)− ⊆ (c1Bc1)−, there exists a continuous
function (a root) d1 of c1 such that d1a is arbitrarily close to a. Since
c = c1 + b, also d − d1 ∈ B where d is the corresponding function of c.
Therefore, for large n, duna

1
2 is arbitrarily close to d1una

1
2 = und1a

1
2 and

hence also to una
1
2 . Since

(una
1
2 )∗(una

1
2 ) = a,

with an = duna
1
2 ∈ (cBc)− we have that, if n is sufficiently large, the element

a∗nan is close to a, and the product of equivalent elements

(a∗nan)(ana
∗
n) = a∗n(duna

1
2duna

1
2 )an

is close to zero (as a
1
2duna

1
2 → 0), as required in the criterion 2.2(b) of

Hjelmborg and Rørdam.

18. Questions. A number of questions arise naturally in connection
with the notion of purely large extension.
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For instance, is the obvious stronger form of the property that an exten-
sion is purely large in fact the same thing? In other words, if the C∗-algebra
C is purely large with respect to the closed two-sided ideal B, i.e., if (cBc∗)−

always contains a stable sub-C∗-algebra which is full in B for any c ∈ C not
in B, must the subalgebra (cBc∗)− always be stable itself (for such c)?

Again, is it possible to characterize when an extension is purely large
in terms of the image of the Busby map in the corona of B, the quotient
M(B)/B? (Remembering also that the extension is essential—equivalently,
that the Busby map is injective.) Of course, this must mean by some intrin-
sic property of the image, which makes sense more generally—perhaps in
an arbitrary C∗-algebra. (As the image of the Busby map in the corona—if
this is given as the corona—is already enough to reconstruct the C∗-algebra
associated with an essential extension—which by definition contains suffi-
cient information to determine whether the extension is purely large.) For
instance, is it sufficient that every non-zero element of the image be full (i.e.,
not contained in any proper closed two-sided ideal)? This condition is at
least necessary—at least in the separable case—as can be seen by Theorem 6,
together with the (obvious) fact that Kasparov’s extension (17(iii) above)
satisfies this condition—and, as shown in Lemma 12, is trivial in the nuclear
sense (and so, by Theorem 6, is absorbed by a purely large extension).

Note that as (by Theorem 17(iii)) Kasparov’s extension is also absorbing
in the nuclear sense, an extension of one separable C∗-algebra by another is
purely large—equivalently, absorbing in the nuclear sense—precisely when it
absorbs Kasparov’s extension. One might ask whether this characterization
of purely large extensions can be extended to the non-separable case. The
difficulty with this is that Kasparov’s extension, being based on an extension
of K, does not exist if the quotient has too large a cardinality. On the other
hand, the characterization of purely large extensions simply as those which
are absorbing in the nuclear sense (either among unital extensions, if the
extension is unital, or among all extensions if it is not unital—Theorem 6
and Corollary 16), although it is proved using Kasparov’s extension, makes
sense and could conceivably still hold in the non-separable case.

One thing the notion of purely large extension—or, more precisely, the no-
tion of extension which is absorbing in the nuclear sense (cf. Theorem 6 and
Corollary 16)—makes possible is a generalization of Kasparov’s semigroup
description of Ext(A,B) in the setting of nuclear (separable) C∗-algebras.
Namely, for arbitrary (separable) C∗-algebras A and B, with B stable, the
extensions of B by A which are absorbing in the nuclear sense form, as we
have shown, a semigroup with zero element. The invertible elements of this
semigroup are seen—on using Kasparov’s Stinespring Theorem, [8]—to be
precisely the weakly nuclear extensions which are absorbing in the nuclear
sense.
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Here, by a weakly nuclear extension of B by A we mean an extension for
which the Busby mapA→ M(B)/B lifts to a completely positive contraction
A → M(B) which is weakly nuclear, in the sense described in Section 5 for
homomorphisms. (Recall that if A is exact, then by Corollary 5.11 of [9], any
weakly nuclear map with domain A is nuclear.) One should note that the
proof of Kasparov’s Stinespring theorem preserves weak nuclearity: a weakly
nuclear completely positive map dilates to a weakly nuclear homomorphism.
The group of invertible elements of this semigroup with zero (the semigroup
of absorbing extensions in the nuclear sense, i.e., those extensions absorbing
every trivial extension with a weakly nuclear splitting) therefore maps into
the group, which we shall denote by Extnuc(A,B), of all Brown-Douglas-
Fillmore equivalence classes of weakly nuclear extensions of B by A, modulo
extensions trivial in the nuclear sense. Since Kasparov’s extension is weakly
nuclear, and, what is more, trivial in the nuclear sense, and so zero in
Extnuc(A,B), and since the sum of this with any extension is absorbing
in the nuclear sense, this mapping is onto Extnuc(A,B). Since any two
extensions which are both absorbing and trivial in the nuclear sense are
equivalent, this map is injective, and therefore an isomorphism.

It is interesting to consider whether the group Extnuc(A,B) defined above
—and realized as a subset of the Brown-Douglas-Fillmore semigroup—is iso-
morphic in the natural way to the group KKnuc(A,B) defined by Skandalis
in [12]. (With the appropriate dimension shift.) This amounts to the fol-
lowing, perhaps surprising, question:

As pointed out above, any extension which is trivial in the nuclear sense—
i.e., has a weakly nuclear splitting—is weakly nuclear. Is every weakly nu-
clear trivial extension trivial in the nuclear sense?
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[13] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roum. Math.
Pures Appl., 21 (1976), 97-113.

[14] S. Zhang, Certain C∗-algebras with real rank zero and their corona and multiplier
algebras, Pacific J. Math., 155 (1992), 169-197.

Received March 30, 1999 and revised March 1, 2000.

Department of Mathematics
University of Copenhagen
Copenhagen, Denmark;

Department of Mathematics
University of Toronto
Toronto, M5S 3G3
Canada

The Fields Institute for Research in Mathematical Sciences
222 College Street
Toronto, M5T 3J1
Canada
E-mail address: elliott@math.toronto.edu

The Fields Institute for Research in Mathematical Sciences
222 College Street
Toronto, M5T 3J1
Canada

Department of Mathematics
University of New Brunswick
Fredericton, New Brunswick E3B 5A3
Canada
E-mail address: dan@math.unb.ca

mailto:elliott@math.toronto.edu
mailto:dan@math.unb.ca


PACIFIC JOURNAL OF MATHEMATICS
Vol. 198, No. 2, 2001

ON THE DEFORMATION QUANTIZATION OF
COADJOINT ORBITS OF SEMISIMPLE GROUPS

R. Fioresi and M.A. Lledó

To the memory of Moshe Flato

In this paper we consider the problem of deformation quan-
tization of the algebra of polynomial functions on coadjoint
orbits of semisimple Lie groups. The deformation of an orbit
is realized by taking the quotient of the universal enveloping
algebra of the Lie algebra of the given Lie group, by a suitable
ideal. A comparison with geometric quantization in the case
of SU(2) is done, where both methods agree.

1. Introduction.

A system in classical mechanics is given by a symplectic manifold X which
we call phase space and a function on X, H, which we call Hamiltonian.
The points in X represent possible states of the system, the commutative
algebra C∞(X) is the set of classical observables, corresponding to possible
measurements on the system, and the integral curves of the Hamiltonian
vector field XH represent the time evolution of the classical system.

A quantization of the classical system X has three ingredients [Be]:
1. A family of noncommutative complex algebras Ah depending on a real
parameter h, which we will identify with Planck’s constant, satisfying

Ah 7→ A = C∞(X)C when h 7→ 0,

or a suitable subalgebra of C∞(X)C determined by physical requirements,
but enough to separate the points of X. C∞(X)C denotes the complexifi-
cation of C∞(X).
2. A family of linear maps Qh : A 7→ Ah, called the quantization maps
satisfying

Qh(F ) ∗h Qh(G)−Qh(G) ∗h Qh(F )
h

7→ {F,G} when h 7→ 0,

where {, } is the Poisson bracket in A (extended by linearity).
3. A representation of Ah on a Hilbert space HX , R : Ah 7→ End(HX).
The real functions in Ah (belonging to C∞(X)) are mapped into hermitian
operators.
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The elements of Ah are the quantum observables and the rays in HX are
the states of the quantum system. Not every possible realization of Ah on a
Hilbert spaceHX satisfies the physical requirements for the quantum system,
since the set of rays of HX should be in one to one correspondence with the
quantum physical states. So further requirements should be imposed on
HX .

A first step to find a quantization of a physical system is the construc-
tion of a formal deformation of the Poisson algebra classical observables
[BFFLS]. In general, formal deformations do not present a closed solution
to the quantization problem. One needs to see if it is possible to specialize
the deformation to an interval of values of the formal parameter h (includ-
ing 0, so the limit h 7→ 0 is smooth), besides constructing the Hilbert space
where this algebra is represented. Nevertheless having a formal deformation
is a powerful technical tool in the process of quantization.

A first approach to this problem appears in [Be]. Berezin explicitly com-
putes ∗-products for Kähler manifolds that are homogeneous spaces. His
approach provides an explicit integral formula for a ∗-product where h is a
real number. In [RCG] a geometric construction of Berezin’s quantization
is performed.

Later De Wilde and Lecomte [DL] and Fedosov [Fe] separately, con-
structed and classified formal ∗-products on generic symplectic manifolds.
Etingof and Kazhdan [EK] proved the existence of a formal deformation for
another class of Poisson manifolds, the Poisson-Lie groups. Finally, Kont-
sevich [Ko] proved the existence of an essentially unique formal ∗-product
on general Poisson manifolds.

More recently Reshetekhin and Taktajan [RT], starting from Berezin’s
construction, were able to give an explicit integral formula for the formal
∗-product on Kähler manifolds.

It is our purpose to study the deformation quantization of coadjoint orbits
of semisimple Lie groups. In [ALM] it has been proven that a covariant ∗-
product exists on the orbits of the coadjoint orbit that admit a polarization.
We will consider the algebra of polynomials on coadjoint orbits. In the above
mentioned works ∗-products are given on C∞ functions, however there is no
guarantee that there is a subalgebra of functions that is closed under it.
Instead, we will obtain both a formal deformation and a deformation for
any real value of h for the subalgebra of polynomial functions.

In [Ko] Kontsevich briefly describes the algebra of polynomials over the
dual of the Lie algebra (a Poisson manifold) as a special case of his general
formula for ∗-product on Poisson manifolds (this special case was known
long before [Gu]). He does not however consider the restriction of those
polynomials to a coadjoint orbit submanifold and, as he points out later, the
knowledge of ∗-product on a certain domain is far from giving knowledge
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of ∗-product on subdomains of it. The formulation of a star product on
some coadjoint orbits using this deformation of the polynomial algebra was
investigated in the series of works [CG], [ACG] and [Ho] (and references
inside).

Our approach starts also from the fact that the universal enveloping al-
gebra of a complex semisimple Lie algebra is the deformation quantization
of the polynomial algebra on the dual Lie algebra. By quotienting by a
suitable ideal we get a deformation quantization of the polynomial algebra
on a regular coadjoint orbit. Using some known facts on real and complex
orbits this gives us a deformation quantization on the regular orbits of com-
pact semisimple Lie groups. No selection of ordering rule is needed for the
proof, which means that we obtain a whole class of star products on the
orbit. A proof of the analiticity of the deformation in the deformation pa-
rameter is provided here, and the convergence of the deformed product for
polynomials on the orbit is obtained. More general cases, as regular orbits of
non-compact Lie groups, involve some subtleties that are partially explored
in Section 2. Further developments will be given in a subsequent paper.
Also, the extension of the proof to non-regular (although still semisimple)
orbits is non-trivial.

Our construction has the advantage that it is given in a coordinate in-
dependent way. Also the symmetries and its possible representations are
better studied in this framework. The formal deformation is realized using
a true deformation of the polynomials on the complex orbit. We obtain
the deformation quantization as a non-commutative algebra depending on
a formal parameter h containing a subalgebra in which h can be specialized
to any real value.

Geometric quantization is another approach to the problem. The ele-
ments of the quantum system are constructed using the geometric elements
of the classical system. (For an introduction to geometric quantization, see
for example [Pu] and references inside.) In the case when the phase space
is R2n, a comparison between both procedures, deformation and geometric
quantization has been established [GV]. Less trivial systems, as coadjoint
orbits, have been the subject of geometric quantization. The guiding prin-
ciple is the preservation of the symmetries of the classical system after the
quantization. The idea of finding a unitary representation of the symmetry
group naturally attached to the coadjoint orbit is known as the Kirillov-
Kostant orbit principle. The action of the group on the Hilbert space of the
representation should be induced by the action of the group on the phase
space as symplectomorphisms. The algebra of classical observables should
be substituted by a non-commutative algebra and the group should act also
naturally by conjugation on this algebra.
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The procedure we used in constructing the formal deformation, that is
assigning an ideal in the enveloping algebra to the coadjoint orbit, makes the
comparison with geometric quantization easier. In Section 4 we show that in
the special case of SU(2) there is an isomorphism between our deformation
quantization and the algebra of twisted differential operators that appears
in geometric quantization.

The organization of the paper is as follows. In Section 2 we make a review
of the algebraic properties of the coadjoint orbits on which our method of
deformation is based. In Section 3 we prove the existence of the deformation
and describe it explicitly in terms of a quotient of the enveloping algebra by
an ideal. In Section 4 we make a comparison of our results with the results
of geometric quantization for a particularly simple case, the coadjoint orbits
of SU(2).

2. Algebraic Structure of Coadjoint Orbits of Semisimple Lie
Groups.

Let GR be a real Lie group and GR its Lie algebra. The coadjoint action of
GR on GR∗ is given by

〈Ad∗(g)λ, Y 〉 = 〈λ,Ad(g−1)Y 〉 ∀ g ∈ GR, λ ∈ GR∗, Y ∈ GR.
We will denote by CGR(λ) (or simply Cλ if GR can be suppressed without
confusion) the orbit of the point λ ∈ GR∗ under the coadjoint action of GR.

Consider now the algebra of C∞ functions on GR∗, C∞(GR∗). We can
turn it into a Poisson algebra with the so called Lie-Poisson structure

{f1, f2}(λ) = 〈[(df1)λ, (df2)λ], λ〉, f1, f2 ∈ C∞(GR∗), λ ∈ GR∗.
If f ∈ C∞(GR∗), (df)λ is a map from GR∗ to R, so it can be regarded as
an element of GR and [ , ] is the Lie bracket in GR. By writing the Poisson
bracket in linear coordinates, it is clear that R[GR∗], the ring of polynomials
on GR∗, is closed under the Poisson bracket.

The Hamiltonian vector fields define an integrable distribution on GR∗
whose integral manifolds (the symplectic leaves) are precisely the orbits of
the coadjoint action. So all the coadjoint orbits are symplectic manifolds
with the symplectic structure inherited from the Poisson structure on GR∗.

Let G be a connected complex, semisimple Lie group and G its Lie algebra.
We wish to describe the coadjoint orbits of different real forms of G. We
can identify G and G∗ by means of the Cartan-Killing form, so we will work
with the adjoint action instead. We denote by GR an arbitrary real form of
G, and GR its Lie algebra.

We start with the adjoint orbits of the complex group G itself. Let
Zs ∈ GR ⊂ G be a semisimple element. The orbit of Zs in G under G
will be denoted by CG(Zs). It is well known that this orbit is a smooth
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complex algebraic variety defined over R [Bo]. That means that the real
form of CG(Zs), CG(Zs)(R) = CG(Zs)∩GR is a real algebraic variety. If GR
is compact, CG(Zs)(R) coincides with the real orbit CGR(Zs). In general
CG(Zs)(R) is the union of several real orbits CGR(Xi), i ∈ I for some finite
set of indices I [Va2]. Hence the real orbits are not always algebraic vari-
eties. We will give one of such examples later. Still, the algebraic structure
of the closely related manifold CG(Zs)(R) will be useful for the quantization.

The algebra that we want to deform is the polynomial ring on the complex
orbit. When CG(Zs)(R) consists of one real orbit, the complex polynomial
ring is the complexification of the polynomial ring on the real orbit. In this
case, giving a formal deformation defined over R of the polynomial ring of
the complex orbit is completely equivalent to give a formal deformation of
the polynomial ring of the real orbit.

In general I will have many elements. One can always consider the alge-
bra of polynomials on CG(Zs)(R) and restrict it to each of the connected
components. The ∗-product we obtain can also be defined on the algebra
of restricted polynomials without ambiguity, so we have a deformation of
certain algebra of functions on the real orbit. Interesting subalgebras of the
restricted polynomials that still separate the points of the real orbit could
be found, being also closed under the ∗-product. We will see such kind of
construction in an example.

We summarize now the classification of real coadjoint orbits [Va2], [Vo].
The easiest situation is when GR is a compact group. In this case the orbits
are real algebraic varieties defined by the polynomials on G, invariant with
respect to the coadjoint action. These invariant polynomials (or Casimir
polynomials) are in one to one correspondence with polynomials on the
Cartan subalgebra that are invariant under the Weyl group. So every point
in a Weyl chamber determines a value of the invariant polynomials, and
hence, an adjoint orbit.

The general case is a refinement of this particular one. We will consider
only orbits that contain a semisimple element Zs ∈ GR. There are two special
cases: The elliptic orbits, when the minimal polynomial of the element Ze
has only purely imaginary eigenvalues, and the hyperbolic orbits, when the
minimal polynomial of Zh has only real eigenvalues. The general case Zs =
Zh + Ze can be understood in terms of the special cases.

Let us denote by U a compact real form of G and U its Lie algebra, while
G0 and G0 denote a non-compact form and its Lie algebra. The involution θ :
G0 7→ G0 induces the Cartan decomposition G0 = L0 +P0, and U = L0 +iP0.
K is a maximal compact subgroup of G0 with Lie algebra L0. We denote
by HP0 the maximal abelian subalgebra of P0 and by HL0 a CSA of L0.
W (G0,HL0) and W (G0,HP0) will denote the Weyl groups corresponding to
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the root systems of K (W (G0,HL0)) and the restricted root system of G0

(W (G0,HP0)).
The set of hyperbolic orbits is in one to one correspondence with the set

of orbits of W (G0,HP0) on HP0 , while the set of elliptic orbits is in one
to one correspondence with the set of orbits of W (G0,HL0) on HL0 . In
summary, each point in the Weyl chamber of the corresponding root system
determines a unique semisimple orbit and vice versa.

Example 2.1 (Orbits of SO(2, 1)). We want to show explicitly an example
where the real form of the complex orbit is the union of two real orbits. The
value of the invariant polynomials in this case doesn’t completely determine
a real orbit.

Consider the connected component containing the identity of the non-
compact orthogonal group SO(2,1)= {3 × 3 real matrices Λ/ΛT ηΛ = η},
where

η =

1 0 0
0 1 0
0 0 −1

 .

The Lie algebra so(2,1) is given by so(2,1)= span{G, Ẽ, F̃}, where

G =

 0 1 0
−1 0 0
0 0 0

 Ẽ =

0 0 0
0 0 1
0 1 0

 , F̃ =

0 0 1
0 0 0
1 0 0

 ,

with commutation relations

[G, Ẽ] = F̃ , [G, F̃ ] = −Ẽ, [Ẽ, F̃ ] = −G.
The involutive automorphism associated to this non-compact form of so(3)
is σ(X) = ηXη so the Cartan decomposition is given by L0 = span{G} and
P0 = span{Ẽ, F̃}. L0 is the Lie algebra of SO(2), the maximal compact
subgroup, which in this case is abelian.

The only Casimir polynomial is given in the coordinatesX = xẼ+yF̃+zG
by P (X) = x2 + y2 − z2. The elliptic orbits are classified by the elements
{tG, t ∈ R− {0}}, so the equation describing this orbit is

x2 + y2 − z2 = −t2.
Notice that t and −t define the same equation (the same value for the

Casimir), but they define different orbits. In fact, the solution of the equa-
tion above is a double sheeted hyperboloid, each of the sheets being a dif-
ferent orbit (inside the past and future cone respectively).

Consider now the following automorphism of so(2,1) (in the ordered basis
we gave before)

A =

−1 0 0
0 −1 0
0 0 1

 .
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A can in fact be written as A =Ad(g) with g an element in the complexifi-
cation of SO(2,1). In fact,

g =

−1 0 0
0 1 0
0 0 −1

 ,

belongs to SO(3), the compact real form. Acting on the CSA, span{G}, it
gives the only Weyl reflection (the Weyl group of SO(3) is {Id,−Id}), so g
is a representative of the non-trivial element in the Weyl group of SO(3).

Notice that the CSA of the maximal compact subgroup SO(2) and of
SO(3) have the same dimension, but the automorphism A is just the Weyl
reflection of SO(3) that is “missing” in SO(2). A takes a point in one sheet
of the hyperboloid and sends it to the other sheet, so A is a diffeomorphism
between the two real orbits.

Consider now the subalgebra of polynomials on G that are invariant under
A (since A2 = Id, {Id, A} is a subgroup of automorphisms of so(2,1)). It is
easy to see that it is also a Poisson subalgebra. Moreover, since the Casimir
polynomial is invariant under A, it is also possible to define a subalgebra of
the polynomial algebra of the complex orbit. It is defined over R, since A
leaves the real form so(2,1) invariant. This algebra is contained as subalgebra
in the algebra of polynomial functions over the real orbit (by polynomial
functions we mean polynomials in the ambient space restricted to the orbit).

The implementation of such kind of procedure for more general cases is
still under study and will be written elsewhere.

Hyperbolic orbits are classified by the Weyl chamber of the restricted root
system. One can take HP0 = span{Ẽ}, then H0 = span{Ẽ} so the only root
is the restricted root. The Weyl chamber is {tẼ, t ∈ R+}, so the hyperbolic
orbits are given by

x2 + y2 − z2 = t2.

This is a single sheeted hyperboloid, so in this case the orbit is an algebraic
manifold.

Finally we have the orbits in the light cone (nilpotent orbits) satisfying

x2 + y2 − z2 = 0.

There are three of them, one for z=0, others for z > 0 and z < 0, but we
are not studying nilpotent orbits here.

3. Deformation of the polynomial algebra of regular coadjoint
orbits of semisimple groups.

Definition 3.1. Given a real Poisson algebra P, a formal deformation of P
is an associative algebra Ph over R[h], where h is a formal parameter, with
the following properties:
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a. Ph is isomorphic to P[[h]] as a R[[h]]-module.
b. The multiplication ∗h in Ph reduces mod(h) to the one in P.
c. F̃ ∗h G̃ − G̃ ∗h F̃ = h{F,G} mod (h2), where F̃ , G̃ ∈ Ph reduce to
F,G ∈ P mod(h) and { , } is the Poisson bracket in P.

If X is a Poisson manifold and P = C∞(X) we call Ph a formal defor-
mation of X. Some authors also use the term deformation quantization of
X.

We can also speak of the formal deformation of the complexification A
of a real Poisson algebra. The formal deformation of A will be an asso-
ciative algebra Ah with the same properties (a), (b) and (c) where R has
been replaced by C. We want to note here that this doesn’t convert the
complexification of the symplectic manifold X in a real Poisson manifold of
twice the dimension.

We are going to describe first the formal deformation of the polynomial
algebra on the complex orbit.

In the first place we will consider C[h]-modules, that is, we will restrict
the modules appearing on Definition 3.1 to be modules over C[h], the alge-
bra of the polynomials in the indeterminate h. This will give us immediately
the formal deformation by extending to C[[h]]. Notice that our formal de-
formation will contain a subalgebra that can be specialized to any value of
h ∈ R.

Let G be a complex semisimple Lie group of dimension n, G its Lie algebra
and U the enveloping algebra of G. Let’s denote by TA(V ) the full tensor
algebra of a complex vector space V over a C-algebra A. Consider the
proper two sided ideal in TC[h](G)

Lh =
∑

X,Y ∈G
TC[h](G)⊗ (X ⊗ Y − Y ⊗X − h[X,Y ])⊗ TC[h](G).

We define Uh =def TC[h](G)/Lh. Uh can be interpreted in the following
way:
Let Gh be the Lie algebra over C[h] Gh = C[h]⊗C G with Lie bracket

[p(h)X, q(h)Y ]h = p(h)q(h)[X,Y ]

where [ , ] and [ , ]h denote the brackets in G and Gh respectively. Then, Uh
is the universal enveloping algebra of the algebra Gh.

We will denote with capital letters elements of the tensor algebras and of
Uh, while we will use lower case letters for the elements of the polynomial
algebra over G∗, C[G∗]. The product of two elements A,B ∈ Uh will be
written AB.
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Proposition 3.2 (Poincaré-Birkhoff-Witt theorem for Uh). Let {X1, . . . ,
Xn} be a basis for G. Then

1, Xi1 · · ·Xik 1 ≤ i1 ≤ · · · ≤ ik ≤ n
form a basis for Uh as C[h]-module.

Uh is a free C[h]-module. In particular, Uh is torsion free.

Definition 3.3. Let S(G) = TC(G)/L, with

L =
∑

X,Y ∈G
TC(G)⊗ (X ⊗ Y − Y ⊗X)⊗ TC(G),

be the symmetric algebra of G. The natural homomorphism from TC(G) to
S(G) is an isomorphism if restricted to the symmetric tensors. Let λ be the
inverse of such isomorphism.

The canonical isomorphism G∗∗ ∼= G, can be extended to an algebra iso-
morphism C[G∗] ∼= S[G] where C[G∗] denotes the polynomial algebra over
G∗. The composition of such isomorphism with λ will be called the sym-
metrizer map.

Let {X1, . . . , Xn} be a basis for G and {x1, . . . , xn} the corresponding
basis for G∗∗ ⊂ C[G∗]. Then the symmetrizer map Sym : C[G∗] −→ TC(G)
is given by

Sym(x1 · · ·xn) =
1
p!

∑
s∈Sp

Xs(1) ⊗ · · · ⊗Xs(p)

where Sp is the group of permutations of order p.

Let I ⊂ C[G∗] be the set of polynomials on G∗ invariant under the coad-
joint action,

I = {p ∈ C[G∗] | p(Ad∗(g)ξ) = p(ξ) ∀ξ ∈ G∗, g ∈ G}.
By Chevalley theorem we have that I = C[p1, . . . , pm], where p1, . . . , pm are
algebraically independent homogeneous polynomials and m is the rank of G.

Definition 3.4. We define a Casimir element in TC(G) as the image of an
invariant polynomial under the symmetrizer map. Since T (G) ⊂ TC[h](G)
Casimirs are also elements of TC[h](G). We call Casimir element in U (re-
spectively Uh) an element which is the image of a Casimir element in T (G)
(respectively in TC[h](G)) under the natural projection.

It is well known that the Casimir elements lie in the center of U . We want
now to prove that they also lie in the center of Uh.

Let’s denote by Ũh0 the algebra Uh/((h − h0)1), where h0 ∈ C, and by
evh0 the natural projection Uh −→ Ũh0 .

Lemma 3.5. Let P be a Casimir in Uh. Then evh0(P ) is in the center of
Ũh0.



420 R. FIORESI AND M.A. LLEDÓ

Proof. This is because Ũh0 is the universal enveloping algebra of Gh0 , where
Gh0 is the complex Lie algebra coinciding with G as vector space and with
bracket [X,Y ]h0 = h0[X,Y ] where [ , ] is the bracket in G.

Theorem 3.6. The Casimir elements lie in the center of Uh.

Proof. Let P be a Casimir element and let X1, . . . , Xn be generators for G
hence for Gh. We need to show: PXi = XiP for all 1 ≤ i ≤ n.

PXi −XiP =
∑

1≤i1≤···≤ik≤n
ui1...ik(h)Xi1 · · ·Xik .

Let us apply the evh0 map.

evh0

PXi −XiP −
∑

1≤i1≤···≤ik≤n
ui1...ik(h)Xi1 · · ·Xik


= −

∑
1≤i1≤···≤ik≤n

ui1...ik(h0)Xi1 · · ·Xik = 0

because by Lemma 3.5 ev0(PXi − XiP ) = 0. Since there are no relations
among the standard monomials Xi1 · · ·Xik (Proposition 3.2) we have that
ui1...ik(h0) = 0. Since this is true for infinitely many h0 and since ui1...ik(h)
is a polynomial we have that ui1...ik(h) ≡ 0.

We now restrict our attention to the regular coadjoint orbits, that is the
orbits of regular elements. We recall here the definition of a regular element
in G∗. Consider the characteristic polynomial of ad∗(ξ), ξ ∈ G∗,

det(T · 1− ad∗(ξ)) =
∑
i≥m

qi(ξ)T i

where m = rankG∗. The qi’s are invariant polynomials. An element ξ ∈ G∗
is regular if qm(ξ) 6= 0. The regular elements are dense in G∗ and they are
semisimple. In particular the regular elements in a Cartan subalgebra form
the interior of the Weyl chambers.

The orbits of regular elements are orbits of maximal dimension n − m.
Observe also that the 0-eigenspace coincides with the centralizer of ξ, Zξ.
A semisimple element ξ is regular if and only if dim(Zξ) = m.

Let us fix the coadjoint orbit Cξ of a regular element ξ ∈ G∗. The ideal
of polynomials vanishing on Cξ is given by

I0 = (pi − ci0, i = 1, . . . ,m), ci0 ∈ C,

where the pi have been defined above (see after Definition 3.3). I0 is a
prime ideal or equivalently the orbit Cξ is an irreducible algebraic variety.
(In fact, the orbit of any semisimple element, regular or not, is an irreducible
algebraic variety [Ks]).
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Let’s consider the Casimirs P̂i = Sym(pi), where the p1, . . . , pm are gen-
erators for I that satisfy Chevalley theorem. Let Pi be the image of P̂i in Uh.
Define the two sided ideal generated by the relations Pi−ci(h), i = 1, . . . ,m:

Ih = (Pi − ci(h), i = 1, . . . ,m) ⊂ Uh
for ci(h) =

∑
j cijh

j , cij ∈ C (ci(0) = ci0, the constants appearing in the
definition of I0).

It is our goal to give a basis of the algebra Uh/Ih as C[h]-module. We
need first a couple of lemmas.

Lemma 3.7. Let ξ ∈ G∗ be a regular element of G∗ (or equivalently a point
in which the centralizer has dimension equal to the rank of G∗). Then (dp1)ξ,
. . . , (dpm)ξ are linearly independent.

Proof. See [Va3].

Lemma 3.8. Let r be a fixed positive integer and let all the notation be as
above. Let ∑

1≤i1≤···≤ir≤m
ai1...ir(pi1 − ki1) . . . (pir − kir) = 0

with ai1...ir ∈ C[G∗], ki1 . . . kir ∈ C. Then ai1...ir ∈ (p1 − k1, . . . , pm − km) ⊂
C[G∗].

Proof. By Lemma 3.7 we can choose local coordinates (z1, . . . , zn) in a
neighborhood of ξ so that zi = pi− ki, i = 1, . . . ,m. Since ai1...ir(z1, . . . , zn)
are analytic functions, we can represent them as power series in z1, . . . , zn:

ai1...ir(z1, . . . , zn) =
∑

1≤j1≤···js≤n
0≤s

ai1...ir,j1...jszj1 · · · zjs .

This can be rewritten as:

ai1...ir(z1, . . . , zn) =
∑

m+1≤j1≤···js≤n
0≤s

ai1...ir,j1...jszj1 · · · zjs

+
∑

1≤l1≤···lt≤n
l1<m, 1≤t

ai1...ir,l1...ltzl1 · · · zlt .

By substituting into the given equation we get:∑
1≤i1≤···ir≤m

∑
m+1≤j1≤···js≤n

0≤s

ai1...ir,j1...jszj1 · · · zjszi1 · · · zir

+
∑

1≤i1≤···ir≤m

∑
1≤l1≤···lt≤n
l1<m,1≤t

ai1...ir,l1...ltzl1 · · · zltzi1 · · · zir = 0.
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Notice that, by the way the sums are defined, and being r fixed, both terms
in the above equations have no monomials in common. This implies that∑

1≤i1≤···ir≤m

∑
m+1≤j1...js≤n

ai1...ir,j1...jszj1 . . . zjszi1 . . . zir = 0

from which

ai1...ir,j1...js = 0 ∀ 1 ≤ i1 . . . ir ≤ m, m+ 1 ≤ j1 · · · js.
This implies

ai1...ir(z1 . . . zm) ∈ (z1 . . . zr).
That is, locally

ai1...ir =
∑

bi1...irj(pj − kj).
So we have obtained that for all η in a neighbourhood of ξ:

ai1...ir(η)−
∑

bji1...ir(η)(pj(η)− kj) = 0.

But since this function is algebraic and Cξ is irreducible this means that this
function is identically 0 on Cξ. Hence the Lemma is proven.

Let’s consider the projection π : Uh −→ Uh/(h1) ∼= S(G) ∼= C[G∗]. We
have that π(A) = π(B) if and only if A ≡ B modh. To simplify the notation
we will denote the element of C[G∗] corresponding to π(A) by a (same letter,
but lower case), as we did for the Casimirs Pi before.

Lemma 3.9. Let k be a fixed integer and let∑
i1≤···ik≤m

Ai1...ik(Pi1 − ci1(h)) · · · (Pik − cik(h)) ≡ 0 mod h

where Ai1...ik ∈ Uh and the Pi’s and ci(h)’s have been defined above. Then∑
i1≤···ik≤m

Ai1...ik(Pi1 − ci1(h)) · · · (Pik − cik(h))

= h
∑

i1≤···ik≤m
Bj1...jl,i1...ik(Pj1 − cj1(h)) · · ·

(Pjl − cjl(h))(Pi1 − ci1(h)) · · · (Pik − cik(h)).

Proof. By induction on N =maxi1...ikdegai1...ik , where, using the the con-
vention above, ai1...ik = π(Ai1...ik). Let N = 0. We have:∑

ai1...ik(pi1 − ci10) · · · (pik − cik0) = 0

with ai1...ik ∈ C. By Lemma (3.8) ai1...ik ∈ I0 hence ai1...ik = 0. This implies
that Ai1...ik = hBi1...ik .

Let’s now consider a generic N ,∑
ai1...ik(pi1 − ci10) · · · (pik − cik0) = 0.
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By Lemma (3.8)

ai1...ik =
∑
j

ai1...ikj(pj − cj0)

with maxi1...ikdegai1...ikj < N . Again we have that

Ai1...ik =
∑
j

Ai1...ikj(Pj − cj(h)) + hCi1...ik .

Let’s substitute Ai1...ik∑
Ai1...ikj(Pj − cj(h))(Pi1 − ci1(h)) · · · (Pik − cik(h)) ≡ 0 modh.

By induction we have our result.

Lemma 3.10. If hF ∈ Ih then F ∈ Ih.

Proof. Since hF ∈ Ih and since the Pi are central elements:

hF =
∑

Ai(Pi − ci(h)).

We have
∑
Ai(Pi− ci(h)) ≡ 0 modh. Hence, by Lemma 3.9 and also by the

fact that Uh is torsion free we have our result.

We have shown that Uh/Ih is a C[h]-module without torsion. We are
ready now to show that it is a free module by explicitly constructing a
basis. Let’s fix a basis {X1, . . . , Xn} of G and let x1, . . . , xn be the corre-
sponding elements in C[G∗]. With this choice C[G∗] ∼= C[x1, . . . , xn]. Let
{xi1 , . . . , xik}(i1,...,ik)∈A be a basis in of C[G∗]/I0 as C-module, where A is a
set of multiindices appropriate to describe the basis. In particular, we can
take them such that i1 ≤ · · · ≤ ik.

Proposition 3.11. The monomials {Xi1 · · ·Xik}(i1,...,ik)∈A are linearly in-
dependent in Uh/Ih.

Proof. Suppose that there exists a linear relation among the Xi1 , · · ·Xik ’s,
(i1, . . . , ik) ∈ A and let G ∈ Ih be such relation,

G = G0 +G1h+ · · · , Gi ∈ spanC{Xi1 · · ·Xik}(i1...ik)∈A.

Assume Gi = 0, i < k, Gk 6= 0. We can write G = hkF , with

F = F0 + F1h+ · · · , F0 6= 0.

Since hkF ∈ Ih by hypothesis, using Lemma (3.10) we have that F ∈ Ih,
that is

F =
∑

Ai(Pi − ci(h)),

and reducing mod h,
f =

∑
ai(pi − ci0).
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This would mean that f represents a non-trivial relation among the monomi-
als {xi1 · · ·xik}(i1...ik)∈A in C[G∗]/I0, which is a contradiction, so the linear
independence is proven.

We want to give a procedure to construct a basis on C[G∗]/I0 starting
from a set of generators of C[G∗], S = {xi1 · · ·xik} ∀ 1 ≤ i1 ≤ · · · ik ≤ n.
As a linear space I0 =spanC{xi1 · · ·xik(pi − ci)}. Every element of the set
that spans I0 will provide one relation that will allow us to eliminate at
most one element of the set S. We can choose to eliminate successively the
greatest element with respect to lexicographic ordering. This means that
any monomial in S will be expressed in terms of monomials of degree less
or equal to its degree.

Remarks 3.12. We want to make two remarks that will be used later.
1. An arbitrary monomial xj1 · · ·xjr in C[G∗] can be written as:

xj1 · · ·xjr =
∑
k≤r

(m1,...,mk)∈A

aj1...jrm1...mk
xm1 · · ·xmk +

∑
i,di+gi≤r

bi(pi − ci)

where bi is polynomial of degree gi, di=degpi and aj1...jrm1...mk ∈ C.
2. Let A ∈ Uh, A 6= 0, A ∈ spanC{Xj1 · · ·Xjp}p≤r, j1 . . . jp not necessarily

ordered. If A ≡ 0 modh, then A = hB, B ∈ spanC{Xi1 · · ·Xip} p<r
i1≤···≤ip

.

Next proposition will show the generation, so we will have a basis.

Proposition 3.13. The standard monomials {Xi1 · · ·Xik} with (i1, . . . , ik)
∈ A generate Uh/Ih as C[h]-module.

Proof. By Proposition 3.2 (PBW theorem in Uh) it is sufficient to prove
that

Xj1 · · ·Xjr ∈ spanC[h]{Xi1 · · ·Xik}(i1,...,ik)∈A

where 1 ≤ j1 ≤ · · · jr ≤ n and Xj1 · · ·Xjr denotes also the projection onto
Uh/Ih of the standard monomial.

We proceed by induction on r. For r = 0 it is clear. For generic r we
write (see Remark 3.12)

xj1 · · ·xjr =
∑
k≤r

(m1,...,mk)∈A

aj1...jrm1...mk
xm1 · · ·xmk +

∑
i,di+gi≤r

bi(pi − ci).

Lifting this equation from the symmetric algebra to the enveloping algebra
we have

Xj1 · · ·Xjr −
∑
k≤r

(m1,...,mk)∈A

aj1...jrm1...mk
Xm1 · · ·Xmk −

∑
i

Bi(Pi − ci(h)) = hB

where, by the Remark 2 in 3.12, B ∈ span{Xi1 · · ·Xip}p<r. Applying the
induction hypothesis, we have our result.
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Let Ch[G∗] = C[h] ⊗C[G∗], I ′0 = C[h] ⊗ I0. We are now ready to prove
the following theorem:

Theorem 3.14. Let the notation be as above. We have that Uh/Ih has the
following properties:

1. Uh/Ih is isomorphic to Ch[G∗]/I ′0 as a C[h]-module.
2. The multiplication in Uh/Ih reduces mod(h) to the one in C[G∗]/I ′0.
3. If FG−GF = hP , F,G, P ∈ Uh/Ih, then p = {f, g}, where {, } is the

Poisson bracket on the orbit defined by I0. (We are using the same
convention, f = π(F ).)

Proof.
1. It is a consequence of Propositions 3.11 and 3.13.
2. It is trivial.
3. This property is satisfied by the multiplication in Uh and the Poisson
bracket in C[G∗] (see [Ko], [CP], [Ki]). The Poisson bracket in the C[G∗]/I0
is induced from the one in C[G∗], it is enough to see that p will not depend
on the representative chosen in Uh/Ih, which is trivial.

It is now immediate to obtain the properties of Definition 3.1 when we
consider the extension of C[h] to C[[h]]. We define

C[h][G∗] = C[[h]][G∗] I[0] ⊂ C[h][G∗]

U[h] = TC[[h]](G)/L[h] I[h] ⊂ U[h]

being I[0] and I[h] the ideals obtained by extending I0 and Ih to C[h][G∗] and
U[h] respectively.

Theorem 3.15. U[h]/I[h] is a formal deformation (or a deformation quanti-
zation) of C[h][G∗]/I[0].

We want to note here that whatever is the real form chosen, the deformed
algebra is defined over R, provided cij ∈ R. Care should be taken, never-
theless, in choosing the appropriate generators of I0 with real coefficients
and this is always possible ([Bo]).

Finally we want to come back to Example 2.1 and exhibit the deformed
algebra.

Example 3.16. Let G = SL2(C). The standard basis for G = sl2(C) is
{H,X, Y } with commutation relations

[H,X] = 2X [H,Y ] = −2Y [X,Y ] = H.

We identify G and G∗ via the Cartan Killing form. The only independent
invariant polynomial is:

p =
1
4
h2 + xy
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or, in terms of the compact generators

E =
1
2
(X − Y ) F = i/2(X + Y ) G = i/2H

p = −(e2 + f2 + g2).

The orbit Cξ of the regular semisimple element ξ =
(
ia/2 0

0 −ia/2

)
(see

the fundamental representation in the next section) has coordinate ring
C[h, x, y]/(e2 + f2 + g2 − a2). So we have that

U[[h]]/(E
2 + F 2 +G2 − a2 + c1h+ · · ·+ clh

l)

is a formal deformation of Cξ. If one chooses a, c1, . . . , cl to be real, then
it becomes the complexification of a formal deformation of the real orbit
Cξ ∩ su(2).

To go to the non-compact form it is enough to take the basis {Ẽ = iE, F̃ =
iF,G}. The deformed algebra is

U[[h]]/(−Ẽ2 − F̃ 2 +G2 − a2 + c1h+ · · ·+ clh
l).

A basis for U/I0 is

{gmẽnf̃µ}m,n=0,1,2...
µ=0,1

.

The subalgebra invariant under the automorphism A of Example 2.1, has
instead a basis

{gmẽ2n−mf̃µ}m,n=0,1,2...
µ=0,1

.

We can also express this algebra in terms of the set of commutative gener-
ators

v1 = g2, v2 = ẽ2, v3 = gẽ, v4 = f̃

with relations
v2
3 = v1v2, v1 − v2 − v2

4 = a2.

It is clear that this algebra separates the points of the real orbit. Since the
Casimir element is invariant under the automorphism A (extended to Uh),
it restricts to an automorphism of Uh/Ih. Analogously to the commutative
case, the subalgebra of Uh/Ih invariant under A can be given in terms of
the generators

V1 = G2, V2 = Ẽ2, V3 = GẼ, V4 = F̃

and relations

V 2
3 = V1V2 − hV3V4 − h2V1, V1 − V2 − V 2

4 = c(h),
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in addition to the commutation relations

V4V1 − V1V4 = h(2V3)− h2V4, V4V2 − V2V4 = h(2V3)− h2V4,

V4V3 − V3V4 = h(V1 + V2), V3V1 − V1V3 = −h(2V1V4)− h2V3,

V3V2 − V2V3 = h(V4V2 + V2V4) + h2V3 − h3V4,

V2V1 − V1V2 = −h(2V3V4) + h2(V 2
4 − V2 − V1).

4. Geometric quantization of S2.

The subject of geometric quantization is a very vast one and we do not
intend to make a review here. Many excellent reviews exist in the literature
(see for example [Pu], [Vo]). We will try to explain only what is needed
to understand the geometric quantization of our particular case, S2. Some
of the results we exhibit here date back to [So]. We will follow closely the
scheme of [Vo], because there the importance of constructing the algebra of
observables is emphasized.

Consider a classical system with phase space X and a group G of symme-
tries. This means that G is a group of symplectomorphisms of the symplectic
manifold X,

g ∈ G, g : X 7→ X satisfying g∗ω = ω,

where ω is the symplectic form on X. The Hamiltonian is a G-invariant
function, that is, gH = H, so G is a group of symmetries of the equations
of motion.

We want to find a quantization of the classical system that preserves the
symmetry under the group G. The goal of geometric quantization is to
construct the Hilbert space HX and the algebra of quantum observables Ah

acting on HX using only the geometrical elements of the classical system.
This construction should be “natural”, that is, the action of G on X as
symplectomorphisms should induce a unitary representation of G on HX
and an action of G on Ah. This action should reduce to the conjugation by
the unitary representation on the operators onHX representing the elements
of Ah.

Integral orbit data.

Let ξ ∈ G0
∗ and let Gξ the isotropy group of ξ and G0ξ the corresponding

Lie algebra. It is clear that for Z ∈ G0ξ, ad∗Zξ = 0, which implies

ξ([Z, Y ]) = 0, ∀ Y ∈ G0.(4.1)

Suppose that we have a character τ of Gξ satisfying

τ(eX) = eiξ(X), Z ∈ G0ξ.
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Such character is called an integral orbit datum. Notice that property (4.1)
is essential. Also, ξ must be such that ξ(Z) = 2πm, m ∈ Z whenever
eZ = Id.

From an integral orbit datum we can construct a unitary representation
of G by induction. We consider the induced vector bundle E(G/Gξ,Cτ ) =
(G×C)/τ , where the equivalence relation is given by

(g, v) ≈ (gh−1, τ(h)v), h ∈ Gξ.
We can describe the sections on this bundle by functions f : G 7→ C satis-
fying

f(gh) = τ(h)−1f(g).(4.2)

By considering the compactly supported sections, and from the fact that
there is a a G-invariant measure on G/Gξ the construction of the Hilbert
space is straightforward, with bilinear form

〈f1, f2〉 =
∫
G/Gξ

f1f̄2.

The problem is that this representation is not necessarily irreducible. Nev-
ertheless, in many cases (like for elliptic orbits), it is possible to restrict
naturally the space of sections (4.2) to an irreducible component. We are
then interested in computing the integral orbit data for SU(2).

The Lie algebra of SU(2) is spanned by the matrices

G =
i

2
σ3, E =

i

2
σ2, F =

i

2
σ1

with

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and commutation relations1

[E,F ] = G, [F,G] = E, [G,E] = F.

Consider ξa ∈ G0
∗ such that ξa(xE + yF + zG) = az. The isotropy group is

Gξa = {ezG, z ∈ R} =
{(

eiz/2 0
0 e−iz/2

)
, z ∈ R

}
with Lie algebra G0ξa = span{G}. If z = 4πn, n ∈ Z, then ezG = Id, so in
order to have an integral orbit datum,

ξa(4πnG) = 4πna ∈ 2πZ ∀ n,
which is possible if and only if a ∈ Z/2.

1The spin operators which are used in physics are given by G′ = −i~G, E′ =
−i~E, F ′ = −i~F . We can reintroduce ~ = h/2π in the analysis with this rescaling,
the multiplication by −i changing a representation by antihermitian operators of SU(2)
to hermitian operators.
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The Cartan-Killing form allows the identification of G0 and G0
∗, also in-

tertwining the adjoint and coadjoint representations. It is given by

〈X,Y 〉 = −1
2
Tr(adXadY ), X, Y ∈ G0

that is,
〈E,E〉 = 〈F, F 〉 = 〈G,G〉 = 1

and the rest 0. So ξa ≈ aG, and the orbit is given by the Casimir polynomial

C = x2 + y2 + z2 = a2.

We conclude that only orbits with half integer radius have integral or-
bit data. We will denote by τm the corresponding integral orbit datum,
τm(ezG) = (eiz/2)m.

It is easy to convince oneself that the representation in the space of func-
tions (4.2) is far too large to be irreducible. To overcome this problem we
need to further restrict the space of sections. We will do that with the help
of a complex polarization.

Complex polarization and Hilbert space.

Elliptic orbits have a G-invariant complex structure. We define this com-
plex structure following [Vo]. From now on we use the identification between
G0 and G0

∗ given by the Cartan-Killing form, so we will use alternatively
ξ = ξX ∈ G0

∗ with X ∈ G0.

Theorem 4.1. Let X ∈ G0 be such that adX has only imaginary eigenval-
ues. Let G be the complexified Lie algebra of G0 and let Gt (t ∈ R) be the
t-eigenspace of adiX . Then

G =
∑
t∈R

Gt, (G0X)c = GX = G0

is a gradation of G. We define

PX =
∑
t≥0

Gt, NX =
∑
t>0

Gt.

The following properties are satisfied

a. Gs and Gt are orthogonal unless s = −t.
b. Ḡs = G−s. (Bar means complex conjugation with respect to the real

form G0.)
c. The adjoint action of GX preserves Gt.

G/GX ≈ TξX (G · ξX)c is the complexified tangent space at the identity
coset. The G-invariant complex structure can be characterized by requiring
that PX/GX is the antiholomorphic tangent space at the identity coset.
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Let us write down the standard complex structure on S2 to relate it with
this formalism. Let V = xE + yF + zG = x∂x + y∂y + z∂z ∈ G0. We take a
representative aG for the orbit of radius a,

x2 + y2 + z2 = a2.

Stereographic coordinates are given in terms of the embedding coordinates
by

V1 = S2 − {(0, 0,−a)}, u1 =
ax

z + a
, v1 =

ay

z + a

V2 = S2 − {(0, 0, a)}, u2 =
ax

z − a
, v2 =

ay

z − a
.

The action of SU(2) is the one induced by the adjoint representation of
SU(2).

Let x1 : U1 −→ C, x2 : U2 −→ C be the projective coordinates for the
complex projective space P1 = U1 ∪ U2. If we identify

x1 ≡ −v1 + iu1, x2 ≡ −v2 − iu2,

we obtain a diffeomorphism S2 ≈ P1. This gives to S2 the complex structure
mentioned above. For this particular choice, the action of SU(2) obtained
from the three dimensional representation restricted to S2 coincides with
the one obtained from the fundamental representation with the projective
structure.

We write now the complexification of su(2), sl(2,C), in the standard basis

H = −i2G, X = E − iF, Y = −E − iF.

The eigenvalues of iaG are −a, 0,+a and the corresponding eigenspaces are

G0 = span{G}, Ga = span{Y }, G−a = span{X}.

The tangent space at the North pole (x = y = 0, z = a) is spanned by
∂x, ∂y ∈ G0/G0aG and in terms of the stereographic coordinates,

∂x =
1
2
∂u1 , ∂y =

1
2
∂v1 .

In the complexified tangent space,

X = ∂x − i∂y =
i

2
(−∂v1 − i∂u1), Y = −∂x − i∂y =

i

2
(−∂v1 + i∂u1),

and since the complex coordinate is x1 = −v1 + iu1,

Ga = span{Y } = span{∂x̄1}.

Definition 4.2. A G-invariant complex polarization is a lagrangian sub-
space of the complexified tangent bundle at ξ, Tξ(G · ξ)c ≈ G/Gξ.
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We remind that a subspace is a lagrangian subspace if the symplectic
form is 0 on that subspace and its dimension is half the dimension of the
symplectic manifold. Because of property a in Theorem 4.1, PX/GX is a
lagrangian subspace and then a complex polarization.

Consider now an integral orbit datum, τ . One can prove that dτ extends
to a representation φ of PX .This extension satisfies φ|NX = 0. The induced
bundle associated to the character τ , E(G/GX ,Cτ ) has also a complex
structure and the holomorphic sections are characterized by

Z.f = −φ(Z)f Z ∈ PX(4.3)

where f : G 7→ C satisfies f(gh) = τ(h)−1f(g), g ∈ G, h ∈ GX . We will
see that in our case this construction gives directly the Hilbert space. For
other groups, further corrections are needed.

It is easy to see that for SU(2) the principal bundle E(SU(2)/U(1),U(1))
is only a reduction of the principal bundle given by the natural projection

π : C2 − {0} 7→ S2 ≈ P1

that we call Θ(S2,C∗). The corresponding associated bundles by the repre-
sentation τm (extended to C∗), will be denoted by E(m), Θ(m). Θ(m) is an
holomorphic vector bundle, whose sections satisfy (4.3), which in this case
is simply

∂x̄1f = 0.
Line bundles over S2 are well studied. A holomorphic section on Θ(m)

s : P1 7→ Θ(m)/ π ◦ s = idP1 ,

can be given in terms of a function

s̃ : C2 − {0} 7→ Cm

((λ, ρ) ∈ C2−{0}) satisfying s̃(λ · γ, λ · ρ) = λms̃(γ, ρ) where s̃ is a homoge-
neous polynomial in two variables of degree m. The group SU(2) naturally
acts on this space of sections, constituting the (m+1)-dimensional (unitary)
irreducible representation of SU(2).

We see that geometric quantization associates quite naturally to the orbit
a Hilbert space where the group G acts. The last step now is to find the
algebra of quantum observables.

Quantum observables.
Following [Vo], the algebra of observables is the algebra of “twisted dif-

ferential operators” [Vo] on sections of the bundle given by the polarization
(real or complex). These operators are endomorphisms of the space of sec-
tions of the bundle satisfying certain conditions (which make plausible the
name of “differential operators”). We will not give here the general defini-
tion, but we will work with the SU(2)-bundles using the description given
above.
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Consider the space of functions f : C2 − {0} −→ C, and (γ, ρ) global
coordinates on C2 − {0}. Consider the algebra of differential operators
generated by the elements

γ∂γ , γ∂ρ, ρ∂γ , ρ∂ρ.

We denote this algebra by D. It is a filtered algebra (each of the elements
above has degree 1).

The algebra of twisted differential operators on Θ(m) is

Dm = D/(D −mId)

where D = γ∂γ + ρ∂ρ is an element in the center of D.
We want to give a presentation for Dm and compare it to the algebra

Uh/Ih obtained in Section 3.

Consider now U the universal enveloping algebra of the Lie algebra su(2)C

≈ sl(2,C). Let {X,Y,H} be the standard basis of sl(2,C) (Example 3.16).

Lemma 4.3. The filtered algebra homomorphism p : U −→ D, given by

p(X) = −γ∂ρ, p(Y ) = −ρ∂γ , p(H) = −γ∂γ + ρ∂ρ

is injective.

Proof. Notice that D acts on the space Pm = {homogeneous polynomials of
degree m}. We denote by Rm : D −→ End(Pm) this representation. Notice
that R̃m = Rm ◦ p is the m + 1-dimensional irreducible representation of
su(2). Since we have that R̃m(Z) = 0 Z ∈ U ∀ m⇒ Z = 0 [HC], it follows
that p is an injective map.

Lemma 4.4.

D ∼= U ⊗ span {D}/
(
C − D

2

(
D

2
+ 1
))

where C = 1
2(XY + Y X + 1

2H
2) is the Casimir element in U .

Proof. Define the Lie algebra homomorphism

U ⊗ span {D} S−→ D
as S(W ⊗ D) = p(W )D. Since {p(X), p(Y ), p(H), D} generate D, S is
surjective. We want to show that kerS=I, where I = (C −D/2(D/2 + 1)).
One can check directly that I ⊂ kerS. We prove kerS ⊂ I by contradiction.

Observe first that any element P ∈ U ⊗ span{D}/(C − D
2 (D2 + 1)) can be

written as AD +B. In fact, let P =
∑N

k=0AkDk. By induction on N . The
cases of N = 0, 1 are obvious. Let N > 1.

P = AND
N−2(4C − 2D) +

N−1∑
k=0

AkDk.
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By induction we have our result.

Let PN−1 = B1D + B0 be a non zero element in kerS that is not in I.
Let us construct the combination

P ′N−1 = B1P1 +
1
4
PN−1 =

(
1
4
B0 −

1
2
B1

)
D +B1C

it is clear that P ′N−1 doesn’t belong to I unless it is identically 0, that is,
B0 = B1 = 0. In this case PN−1 is also 0, against the hypothesis. So P ′N−1
is in kerS and not in I. Let us construct now the combination

PN =
(

1
4
B0 −

1
2
B1

)
PN−1 − P ′N−1B1 =

1
4
B2

0 −
1
2
B1B0 −B2

1C.

Since PN ∈ kerS and PN does not contain D, by the injectivity of p we must
have PN = 0, that is

1
4
B2

0 −B2
1C =

1
2
B1B0.

Similarly if we construct

P ′N = PN−1

(
1
4
B0 −

1
2
B1

)
− P ′N−1B1 =

1
4
B2

0 −
1
2
B0B1 −B2

1C.

P ′N must also be 0, so we have that

1
4
B2

0 −B2
1C =

1
2
B0B1.

It follows thatB1 andB0 commute. Lets us rewrite any of these two relations
as

(B0 −B1)2 = (4C + 1)B2
1 .(4.4)

We show that this relation cannot be satisfied unless B0 = B1 = 0 and
this will be a contradiction. Consider the homomorphism from the (filtered)
enveloping algebra to the (graded) symmetric algebra, given by the natural
projections

πn : U (n) −→ Sn = U (n)/U (n−1)

and project (4.4) to the symmetric algebra (isomorphic to the polynomial
algebra). It is obvious that the polynomial πn(4C + 1) is not the square of
another polynomial. It follows that (4.4) cannot be satisfied unless B0 =
B1 = 0.

Theorem 4.5.

Dm = U/
(
C − m

2

(m
2

+ 1
)

Id
)
.
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Proof. Immediate from the definition of D and the Lemma 4.4.

We now want to make an explicit comparison with the result of deforma-
tion quantization, let us make the rescaling

X̃ 7→ ~X, Ỹ 7→ ~Y, H̃ 7→ ~H, D̃ = ~D.(4.5)

In what follows, ~ is a number, not an indeterminate; so we are comparing
the geometric quantization with the specialization for a value of ~ of the
deformation of the polynomial algebra obtained in Section 3. Notice that
with this rescaling we obtain a family of isomorphic Lie algebras

[H̃, X̃] = ~2X̃, [H̃, Ỹ ] = −~2Ỹ , [X̃, Ỹ ] = ~H̃

(and D̃ in the center) except for ~ 7→ 0 (while keeping the generators con-
stant) in which the algebra becomes abelian. U~ is the enveloping algebra
of the Lie algebra for each value of ~.

The Casimir operator is

C̃ =
1
2

(
X̃Ỹ + Ỹ X̃ +

1
2
H̃2

)
.

Using (4.4), the corresponding ideal in U~ is

(C̃ − l(l + ~)), l = ~m/2.

It is enough to take c(~) = l(l + ~) to obtain the result of Section 3.
Since l is the eigenvalue of the central element D/2 in the corresponding

representation, taking the limit ~ 7→ 0 and keeping the generators constant
(abelian Lie algebra) is equivalent to take m 7→ ∞. In the physical picture
one says that the classical limit corresponds to large quantum numbers.

We want to make the following observations. By choosing different poly-
nomials c(h) and different values of h we obtain that the specialized C-
algebras in general are not isomorphic. In fact, it is a known result (see
[Va1]) that U/(C − µ1) has no finite dimensional representations when µ
is not rational, hence different values of µ (that is of c(h)) may give non-
isomorphic algebras.

We also want to remark that our deformation quantization not only gives a
subalgebra that can be specialized for any value of h (namely the subalgebra
of elements that have coefficients that are polynomials in h), but in the
special case of SU(2), SL(2,C), when h is taking certain values, realizes
the subalgebra as a concrete algebra of differential operators on the space
of sections described above.

Finally, comparing with the approach of [BBEW], it is easy to see that
the subalgebra of observables with converging star product is the same as the
one we obtain, that is, the algebra of polynomials on the algebraic manifold.
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NONEXISTENCE OF LOCAL MINIMA OF
SUPERSOLUTIONS FOR THE CIRCULAR CLAMPED

PLATE

Hans-Christoph Grunau and Guido Sweers

In general, superbiharmonic functions do not satisfy a mini-
mum principle like superharmonic functions do, i.e., functions
u with 0 6≡ ∆2u ≥ 0 may have a strict local minimum in an
interior point. We will prove, however, that when a superbi-
harmonic function is defined on a disk and additionally subject
to Dirichlet boundary conditions, it cannot have interior local
minima. For the linear model of the clamped plate this means
that a circular plate, which is pushed from below, cannot bend
downwards even locally.

The simple biharmonic function u(x) := |x|2 shows that there are no
classical local maximum/minimum principles for the biharmonic operator
∆2 (and for higher order elliptic operators at all). On the other hand it is
known that boundary value problems like the clamped plate equation

∆2u = f in Ω,

u|∂Ω =
∂u

∂ν
|∂Ω = 0,

(1)

enjoy some positivity properties. Here Ω ⊂ R2 is a bounded smooth domain
with exterior unit normal ν at ∂Ω. This boundary value problem has an
obvious physical interpretation. The solution u gives the deflection of a plate
of shape Ω from the equilibrium u ≡ 0, which is clamped horizontically and
which is subject to the vertical force f . In this context there exist some
positivity results: If the domain Ω is the unit disk B =

{
x ∈ R2 : |x| < 1

}
(see [Bo]) or if Ω is close to the disk B in a suitable sense (see [GS1]),
then it is known that 0 6≡ f ≥ 0 implies u > 0, i.e., upwards pushing yields
(globally) upwards bending. So, at least in these domains, nonconstant
supersolutions of the clamped plate equation (1) are strictly positive. Here
we call a function u ∈ C4(Ω) ∩ C1(Ω̄) a supersolution of (1), if it solves
(1) with some f ≥ 0. It should be stressed that, in spite of the seemingly
quadratic structure of (1), the so called Dirichlet boundary conditions (1.b)
prevent us from iterating second order methods.
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Although existence/nonexistence of local minima is of no use for proving
positivity of solutions, it would be interesting to have a more precise infor-
mation about the shape of supersolutions to (1). So an interesting question
to ask in this context would be:

May a solution u to the clamped plate boundary value problem
(1) have a local minimum in Ω, although the right hand side is
nonnegative: f ≥ 0 and f 6≡ 0?

There are (highly nontrivial) examples even for arbitrarily smooth convex
domains Ω where the answer is affirmative, the first of which is due to Duffin
[Du]. Subsequently Garabedian could prove a striking result (see [Ga]): In
a long thin ellipse Ω there exists a right hand side 0 6≡ f ≥ 0 such that the
corresponding solution of (1) also has negative values and hence a (global
and local) negative minimum in Ω. For a more extensive survey on positivity
results/nonpositivity examples we refer to [GS1].

In contrast to the examples above, we shall show that it is actually possible
to exclude the existence of local minima, when Ω is a disk:

Theorem 1. Let Ω = B ⊂ R2 be the unit disk. Assume that u ∈ C4(B) ∩
C1(B̄) is a solution of the clamped plate equation (1) with some 0 6≡ f ≥ 0.
Then u has no local minimum in B.

We remark that this is not a one dimensional result, as neither u nor f
are assumed to be radially symmetric. The radial analogue of Theorem 1
can be found in [So, Proposition 1], cf. also [Da, Theorem 2.4].

To prove the result we reduce our nonsymmetric problem to a radial one:
A possible minimum will be moved to the origin by means of a suitable Moe-
bius transform. After radialization one would obtain a radial nonconstant
supersolution, which has an interior local minimum at the origin. Due to
Soranzo’s result just mentioned this is impossible.

We feel that positivity and absence of local minima should be related.
Could one perhaps show that in those domains Ω, where the Green function
for the clamped plate equation (1) is positive, solutions with 0 6≡ f ≥ 0 are
not only strictly positive, but don’t have any local minimum in Ω, too?

However, here we are restricted to the disk. Neither the proof of Theo-
rem 1 below nor the proof of our positivity result for domains close to the
disk in [GS1] seems to give any indication on how to treat such a conjecture.

We finish the introduction with a brief description of a further physical
interpretation of Theorem 1. Let the velocity field (v1, v2) and the pressure p
be a solution of the linear Stokes system in B ⊂ R2 subject to zero boundary
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conditions and an exterior force field (F1, F2):
−∆vj + pxj = Fj in B, j = 1, 2,

v1,x1 + v2,x2 = 0 in B,

vj |∂B = 0 j = 1, 2.

(2)

Then for the stream funtion u : B̄ → R, ux1 = −v2, ux2 = v1, normalized
by the condition u|∂B = 0, Theorem 1 yields: If the vorticity F2,x1 − F1,x2

of the force field is nonnegative (and not identically zero), then the stream
function cannot have a local minimum in B. That means that around an
interior rest point of the velocity field the fluid cannot rotate clockwise
provided the vorticity of the force field is nonnegative. According to the
above mentioned example of Garabedian [Ga] this could actually happen
e.g., in a long thin ellipse.

Moebius transforms. In what follows we will identify R2 and C and use
real and complex notation simultaneously: x = (x1, x2) = x1 + ix2. The dot
“ · ” denotes the multiplication in C: a · x = a1x1 − a2x2 + i(a1x2 + a2x1),
while we use brackets for the scalar product in R2: 〈a, x〉 = a1x1 + a2x2. In
case of holomorphic mappings h we denote the complex derivative by h′.

For a ∈ B we consider the biholomorphic Moebius transform

h : B̄ → B̄, h(x) =
a− x

1− ā · x
(3)

and its inverse h−1 = h. We have h(B) = B, h(∂B) = ∂B, h(0) = a,
h(a) = 0. We know from Loewner [Loe] that Moebius transforms as in
(3) and suitable simultaneous transformations of the dependent variable u
leave the biharmonic equation invariant. As we are interested in biharmonic
inequalities we need a slightly more precise information:

Lemma 1. Let u ∈ C4 (B,R). For some a ∈ B we consider the Moebius
transform h from (3). For the C4-function v defined by

v(x) :=
1

|h′(x)|
u(h(x)), x ∈ B,(4)

we have

∆2v(x) = |h′(x)|3
(
∆2u

)
(h(x)) , x ∈ B.(5)

Proof. Instead of the real variables x1, x2, we use the complex variables x, x̄
and also z = h(x), z̄ = h(x) = ā−x̄

1−a·x̄ .

One has ∂
∂x̄h (x) = 0, ∂

∂xh (x) = 0, h′ = ∂
∂xh (x) = |a|2−1

(1−ā·x)2 and

h′′ (x) =
|a|2 − 1

(1− ā · x)3
2ā =

2ā
1− ā · x

h′ (x) .
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In complex notation we have(
1− |a|2

)
v (x, x̄) = (1− ā · x) (1− a · x̄) u

(
h (x) , h (x)

)
.

Then(
1− |a|2

)
vxx (x, x̄)

= −2ā (1− a · x̄) h′ uz + (1− ā · x) (1− a · x̄)
((
h′
)2
uzz + h′′ uz

)
= (1− ā · x) (1− a · x̄)

(
h′
)2
uzz

and similarly(
1− |a|2

)
vxxx̄x̄ (x, x̄) = (1− ā · x) (1− a · x̄)

(
h′
)2 (

h′
)2
uzzz̄z̄

=
(
1− |a|2

) ∣∣h′∣∣3 uzzz̄z̄
and the relation (5) follows by ∆2u = 16uzzz̄z̄. �

Proof of Theorem 1.
Let u ∈ C4(B) ∩ C1(B̄) be a solution of the clamped plate equation (1)

with Ω = B and 0 6≡ f ≥ 0. We assume by contradiction that u has a local
minimum at a ∈ B.

From u we want to construct a radial superbiharmonic function with
homogeneous Dirichlet boundary conditions, which would also have a local
minimum. According to [So] that will be impossible.

Before we may radialize the solution, we will move the point a, where
u has a local minimum, into the origin. For this purpose we consider the
Moebius transform (3) and define v ∈ C4(B) ∩ C1(B̄) according to (4):

v(x) :=
1

|h′(x)|
u(h(x)), x ∈ B̄.

By means of (5) from Lemma 1 we see that v solves a related clamped plate
equation 

∆2v = |h′|3 (f ◦ h) in B,

v|∂B =
∂v

∂ν
|∂B = 0.

Now we radialize. As radialization and the Laplace operator commute, we
see that the radially symmetric function

w(x) :=
1
2π

∫
|ξ|=1

v (|x|ξ) dω(ξ)(6)

is also in C4(B) ∩ C1(B̄) and solves the Dirichlet problem
∆2w = g in B,

w|∂B =
∂w

∂ν
|∂B = 0.

(7)
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Here we have set

g(x) :=
1
2π

∫
|ξ|=1

(
|h′|3 (f ◦ h)

)
(|x|ξ) dω(ξ).

Obviously we have 0 6≡ g ≥ 0.
Due to the dilation factor 1

|h′| in the definition (4) of v it is not clear
whether or not v has a local minimum in 0. But for the radialization w this
is indeed the case. Using that u has a local minimum in a, we conclude for
|x| small enough:

w(x) =
1
2π

∫
|ξ|=1

1
|h′ (|x|ξ)|

u (h (|x|ξ)) dω(ξ)

≥ u(a)

{
1 + |a|2|x|2

1− |a|2
− |x|
π (1− |a|2)

∫
|ξ|=1
〈a, ξ〉 dω(ξ)

}

=
1 + |a|2|x|2

1− |a|2
u(a) ≥ 1

1− |a|2
u(a) =

1
|h′(0)|

u(h(0)) = w(0).

Here we used that u(a) ≥ 0, which follows from f ≥ 0 and from the positivity
of the corresponding Green’s function in B, see [Bo].

Let us sum up what we have shown. From our assumption that u has a
local minimum in some point a ∈ B we could conclude that there is a radial
supersolution w of the clamped plate equation (7) with 0 6≡ g ≥ 0, which
has a local minimum in 0. (If a 6= 0, this minimum would be even strict.)
We obtain a contradiction by a result of Soranzo [So, Proposition 1] (cf.
also [Da, Theorem 2.4]), according to which w is strictly radially decreasing
in |x| ∈ (0, 1). �

Remark. The same method applies to solutions of the clamped plate equa-
tion 

∆2u = f in B ⊂ R2,

u|∂B = 0,
(
−∂u
∂ν

)
|∂B = ϕ,

(8)

where the boundary datum ϕ, as well as the right hand side f , is assumed
to be nonnegative (and one of these two not identically zero). It may seem
unsatisfactory that the solution itself has to be prescribed homogeneously
on ∂B, but also in [GS2] this boundary datum played a special role. There
we were concerned with a perturbation theory for positivity in generalized
clamped plate equations under inhomogeneous Dirichlet boundary condi-
tions.

Acknowledgment. We are grateful to the referee for his very helpful com-
ments on a first draft of this paper.
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THE SPECTRUM OF AN INTEGRAL OPERATOR IN
WEIGHTED L2 SPACES

Mourad E.H. Ismail and Plamen C. Simeonov

We find the spectrum of the inverse operator of the q-
difference operator Dq,xf(x) = (f(x) − f(qx))/(x(1 − q)) on
a family of weighted L2 spaces. We show that the spectrum
is discrete and the eigenvalues are the reciprocals of the ze-
ros of an entire function. We also derive an expansion of the
eigenfunctions of the q-difference operator and its inverse in
terms of big q-Jacobi polynomials. This provides a q-analogue
of the expansion of a plane wave in Jacobi polynomials. The
coefficients are related to little q-Jacobi polynomials, which
are described and proved to be orthogonal on the spectrum
of the inverse operator. Explicit representations for the little
q-Jacobi polynomials are given.

1. Introduction.

The q-difference operator Dq,x is defined by

Dq,xf(x) :=
f(x)− f(qx)
x(1− q)

.(1.1)

We shall use the following notations for finite and infinite products:

(z; q)0 := 1, (z; q)n :=
n−1∏
j=0

(1− qjz), n > 0 or n =∞,

(z1, z2, . . . , zs; q)n :=
s∏

k=1

(zk; q)n, n ≥ 0 or n =∞.

The infinite product is defined for |q| < 1.
A basic hypergeometric series is defined by

rφs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ q, z) = rφs(a1, . . . , ar; b1, . . . , bs; q, z)

:=
∞∑
n=0

(a1, . . . , ar; q)n
(q, b1, . . . , bs; q)n

zn
(
(−1)nqn(n−1)/2

)1+s−r
.

(1.2)
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Let t = (t1, t2) ∈ R2. The big q-Jacobi polynomials of Andrews and
Askey, [2], are defined by

pn(x, t) = pn(x; t1, t2) := 3φ2

(
q−n, at1t2q

n−1, t1x
t1, at1

∣∣∣∣ q, q) , 0 < q < 1

(1.3)

and are orthogonal with respect to the measure µ(x, t), [3, p. 594], [6],
defined by

µ(x, t) :=
µ(a)(x)

(t1x, t2x; q)∞
,(1.4)

where for a < 0, µ(a) is the discrete probability measure

µ(a) :=
∞∑
n=0

[
qn

(q, q/a; q)n(a; q)∞
δqn +

qn

(q, aq; q)n(1/a; q)∞
δaqn

]
.(1.5)

In (1.5), δz denotes the unit measure supported on {z}. The orthogonality
relation is, [3], [6],∫

R
pm(x, t)pn(x, t) dµ(x, t) = δm,nξn(t),(1.6)

where

ξn(t) =
(q, t2, at2, at1t2qn−1; q)n(at1t2q2n; q)∞

(t1, at1, t2, at2; q)∞(t1, at1; q)n
(−at21)nqn(n−1)/2.(1.7)

Furthermore, (1.3), (1.6), (1.7), and the symmetry of µ in t1 and t2 imply
the symmetry relation

pn(x; t1, t2) =
tn1 (t2, at2; q)n
tn2 (t1, at1; q)n

pn(x; t2, t1).(1.8)

We shall use the following q-analogue of the Chu-Vandermonde sum, [4,
(II.6)],

2φ1(q−n, b; c; q, q) =
(c/b; q)n
(c; q)n

bn,(1.9)

and its special case (b = t2x, c = t2q
1−n/t1)

(t1x; q)n = (t1/t2; q)n2φ1(q−n, t2x; t2q1−n/t1; q, q).(1.10)

Letting t1 →∞ in (1.10) with t2 = t we obtain

tnxn =
n∑
j=0

[
n
j

]
q

(−1)jq(
j
2)−j(n−1)(tx; q)j ,(1.11)

where [
n
j

]
q

:=
(q; q)n

(q; q)j(q; q)n−j
, j = 0, . . . , n
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are the so called q-binomial coefficients.
We shall use Euler’s identities, [6],

eq(z) :=
1

(z; q)∞
=

∞∑
j=0

zj

(q; q)j
, |z| < 1,(1.12)

Eq(z) := (z; q)∞ =
∞∑
j=0

q(
j
2)(−z)j

(q; q)j
,(1.13)

and the terminating version of the q-binomial theorem, [6],

(z; q)n =
n∑
j=0

[
n
j

]
q

q(
j
2)(−z)j .(1.14)

We shall also use the following identity

(q1−n/A; q)k = (−1/A)kq(
k
2)+k(1−n) (A; q)n

(A; q)n−k
.(1.15)

The following theorem of H. Schwartz, [13], plays an important role in the
spectral analysis in Section 2.

Theorem 1.1. Let {pn,ν(x)} be a family of monic polynomials generated by

p0,ν(x) = 1, p1,ν(x) = x+Bν ,(1.16)

pn+1,ν(x) = (x+Bn+ν)pn,ν(x) + Cn+νpn−1,ν(x), n ≥ 1.(1.17)

If both
∞∑
n=0

|Bn+ν − β| <∞ and
∞∑
n=0

|Cn+ν | <∞(1.18)

hold, then xnpn,ν(−β + 1/x) converges uniformly on compact subsets of the
complex plane to an entire function of x.

The paper is organized in six sections. In Section 2, we study the eigen-
functions of the right inverse operator of Dq,x on the space L2(µ(·, qt)).
This right inverse operator will be denoted by Tt. The operator Tt is de-
fined first on the big q-Jacobi polynomials and then extended by linearity
to L2(µ(·, qt)), in which the big q-Jacobi polynomials are complete. The
operator Tt is also a discrete integral operator. The rest of the paper is de-
voted to the study of the properties of Tt and its eigenfunctions. It turns out
that the matrix representation of Tt in the basis formed by the big q-Jacobi
polynomials is tridiagonal. This gives a three-term recurrence relation for
the coefficients in the expansion of the eigenfunctions of Tt in big q-Jacobi
polynomials.

In Section 3, we find the polynomial solution of the recurrence relation
for the coefficients in the expansion of the eigenfunctions of the operator Tt
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from Section 2. The recurrence relation is identified with that of the little
q-Jacobi polynomials.

In Section 4, we find the expansion of the formal eigenfunctions of the
operator Dq,x on the space L2(µ(·, t)) in terms of {pn(x, t)}. The first co-
efficient of the expansion is used to determine the spectrum of the inverse
operator Tt. This eigenfunction expansion gives a discrete q-analogue (on
a q-linear lattice) of the well-known expansion of a plane wave exp(iλx) in
Jacobi polynomials.

Section 5 contains asymptotic properties of the orthogonal polynomials
found in Section 3 and a formula for the Stieltjes transform of the measure of
orthogonality. We prove that the measure of orthogonality is purely discrete
and we identify the location of its masses with the discrete zero-set of an
entire function and show how it is related to the spectrum of the operator
Tt.

The paper concludes with Section 6, where we find the connection coeffi-
cients between families of big q-Jacobi polynomials corresponding to differ-
ent values of the parameter t.

2. The Spectral Analysis.

Let t = (t1, t2). By qt we shall denote the pair (qt1, qt2). The Hilbert space
L2(µ(·, t)) is defined through the standard dot-product

〈f, g〉 =
∫
R
f(x)g(x) dµ(x, t),

and

L2(µ(·, t)) =

{
f : ||f ||L2(µ(·,t)) =

(∫
R
|f(x)|2 dµ(x, t)

)1/2

<∞

}
.

Let Tt denote the right inverse operator of Dq,x on L2(µ(x, t)), that is, Tt
is a linear operator from L2(µ(x, qt)) to L2(µ(x, t)) such that Dq,xTt is the
identity operator on the range of Dq,x acting on L2(µ(x, t)). From (1.3) and
(1.1) we find

Dq,xpn(x, t) =
t1q

1−n(1− qn)(1− at1t2qn−1)
(1− q)(1− t1)(1− at1)

pn−1(x, qt)(2.1)

=: σn(t)pn−1(x, qt).

Thus we require Tt to satisfy

Ttg(x) ∼
∞∑
n=0

(gn/σn+1(t)) pn+1(x, t)(2.2)
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if

g(x) ∼
∞∑
n=0

gnpn(x, qt).

The operator Tt can be expressed as an integral operator as well. From the
orthogonality relation (1.6) we get

gn =
1

ξn(qt)

∫
R
g(u)pn(u, qt) dµ(u, qt).

Substituting in (2.2) and formally interchanging the order of integration and
summation we get

Ttg(x) =
∫
R
g(u)

{ ∞∑
n=0

pn(u, qt)pn+1(x, t)
ξn(qt)σn+1(t)

}
dµ(u, qt).(2.3)

The sum in (2.3) is the kernel of the integral operator Tt.
We now consider the eigenvalue problem for the operator Tt, namely

Ttg = λg, g(x) =
∞∑
n=0

an(λ, t)pn(x, t),(2.4)

with g ∈ L2(µ(·, t))∩L2(µ(·, qt)). The function g can be expanded in terms
of the polynomials {pn(x, t)} since they are dense in L2(µ(·, t)). Further-
more, (2.2) implies a0(λ, t) = 0 since g is in the range of Tt.

We will need a connection coefficient formula of the form

pn(x, t) =
n∑
j=0

cn,j(t)pj(x, qt).

Such formula we can get using a simple duality theorem, [15, Theorem
2.5]. Let µ be a measure, w and ρ, weight functions, and {pn} and {qn},
polynomials orthogonal with respect to wµ and ρµ, respectively. Let αn =∫
|pn|2wdµ and βn =

∫
|qn|2ρdµ. If

w(x)pn(x) ∼ ρ(x)
∞∑
j=n

cn,jqj(x), then qn(x) =
n∑
k=0

(βn/αk)ck,npk(x).

Indeed, if qn =
n∑
k=0

dn,kpk, then dn,k = (1/αk)
∫
qnpkwdµ = (βn/αk)ck,n.

Moreover, if w/ρ is a polynomial of degree s, then cn,j = 0 for j > n + s.
In our case with w(x) = 1/(xqt1, xqt2; q)∞, ρ(x) = 1/(xt1, xt2; q)∞, and
µ = µ(a) we have w(x)/ρ(x) = (1− t1x)(1− t2x). Thus

pn(x, t) =
n∑

m=n−2

cm,n(t) (ξn(t)/ξm(qt)) pm(x, qt), n ≥ 0,(2.5)
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where the coefficients {cm,n(t)} satisfy the equation

(1− t1x)(1− t2x)pn(x, qt) =
n+2∑
k=n

cn,k(t)pk(x, t), n ≥ 0.(2.6)

The coefficients in (2.6) can be computed explicitly. Comparing the coeffi-
cients of xn+2 in (2.6) we get

cn,n+2(t) =
(q−n, at1t2qn+1; q)n

(q−n−2, at1t2qn+1; q)n+2

(t1, at1, q; q)n+2

(qt1, aqt1, q; q)n
qn(−qt1)nq(

n
2)

qn+2(−t1)n+2q(
n+2

2 )
t1t2

=
(1− t1)(1− at1)(1− t1qn+1)(1− at1qn+1)

(1− at1t2q2n+1)(1− at1t2q2n+2)
(t2/t1)qn.

(2.7)

From (1.3) and (1.8) we have pm(1/t1; t1, t2) = 1 and

pm(1/t2; t1, t2) = tm1 (t2, at2; q)m/(tm2 (t1, at1; q)m).

Substituting in (2.6) x first by 1/t1 and then by 1/t2 we obtain

cn,n(t) + cn,n+1(t) + cn,n+2(t) = 0,(2.8)

cn,n(t) + αncn,n+1(t) + αnαn+1cn,n+2(t) = 0,(2.9)

where

αn :=
t1(1− t2qn)(1− at2qn)
t2(1− t1qn)(1− at1qn)

.

From (2.8) and (2.9) we obtain

cn,n(t) =
αn(αn+1 − 1)

αn − 1
cn,n+2(t)(2.10)

=
(1− t1)(1− at1)(1− t2qn)(1− at2qn)

(1− at1t2q2n)(1− at1t2q2n+1)
qn.

Applying Dq,x to both sides of (2.4) and using (2.1) and (2.5) we obtain

Dq,x(λg(x)) = λ

∞∑
n=1

an(λ, t)σn(t)pn−1(x, qt) = g(x)

=
∞∑
m=1

am(λ, t)pm(x, t)

=
∞∑
m=1

am(λ, t)
m∑

j=m−2

(ξm(t)/ξj(qt)) cj,m(t)pj(x, qt).
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The above identity implies that the coefficients {an(λ, t)} are generated by

λan(λ, t)σn(t) =
n+1∑

m=n−1

(ξm(t)/ξn−1(qt)) cn−1,m(t)am(λ, t), n ≥ 1,

(2.11)

a0(λ, t) = 0 and a1(λ, t) 6= 0 is arbitrary. Formula (2.11) and the initial
conditions show that an(λ, t)/a1(λ, t) is a polynomial of degree n − 1. We
set

ãm−1(λ, t) := ξm(t)am(λ, t)/(ξ1(t)a1(λ, t)), m ≥ 1,

ã−1(λ, t) := 0 and cn,m(t) := (1− t1)(1− at1)c̃n,m(t). Since

σn(t)ξn−1(qt)
ξn(t)

=
(1− t1)(1− at1)
−at1(1− q)

,

formula (2.11) can be written in the form

λãn(λ, t) = −at1(1− q)
n+2∑
m=n

c̃n,m(t)ãm−1(λ, t), n ≥ 0.(2.12)

In terms of the variable η and the functions b̃m(η, t) defined by

η := −λ/(at1(1− q)) and b̃m(η, t) := ãm(−at1(1− q)η, t),

formula (2.12) can be written in the form

ηb̃n(η, t) =
n+2∑
m=n

c̃n,m(t)b̃m−1(η, t), n ≥ 0(2.13)

with the initial conditions

b̃−1(η, t) = 0, b̃0(η, t) = 1.

From (2.10), (2.7) and (2.8) for the coefficients we obtain

c̃n,n = c̃n,n(t) =
(1− t2qn)(1− at2qn)

(1− at1t2q2n)(1− at1t2q2n+1)
qn,(2.14)

c̃n,n+2 = c̃n,n+2(t) =
(1− t1qn+1)(1− at1qn+1)t2

(1− at1t2q2n+1)(1− at1t2q2n+2)t1
qn,(2.15)

c̃n,n+1 = c̃n,n+1(t) = −(c̃n,n(t) + c̃n,n+2(t)).(2.16)

It is convenient to have (2.13) written in monic form. Let

b̃m(η, t) := Gm(t)bm(η, t).
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From (2.13) we have

ηbn(η, t) =
c̃n,nGn−1(t)

Gn(t)
bn−1(η, t) + c̃n,n+1bn(η, t)

+
c̃n,n+2Gn+1(t)

Gn(t)
bn+1(η, t), n ≥ 0,

which is a monic equation if the coefficient of bn+1(η, t) is 1, that is, if
Gn+1(t) = Gn(t)/c̃n,n+2. In this case

Gn(t) = G0(t)/
n−1∏
j=0

c̃j,j+2, n ≥ 1, G0(t) 6= 0,

and (2.13) takes the form

ηbn(η, t) = bn+1(η, t) + c̃n,n+1bn(η, t) + c̃n,nc̃n−1,n+1bn−1(η, t), n ≥ 0.
(2.17)

We set b0(η, t) = G0(t) = 1 and b−1(η, t) = 0. When the coefficients in
(2.17) are written explicitly in terms of t1, t2, and n, we obtain

(2.18) bn+1(η, t) =
(
η +

(1− t2qn)(1− at2qn)
(1− at1t2q2n)(1− at1t2q2n+1)

qn

+
(1− t1qn+1)(1− at1qn+1)t2

(1− at1t2q2n+1)(1− at1t2q2n+2)t1
qn
)
bn(η, t)

− (1− t1qn)(1− at1qn)(1− t2qn)(1− at2qn)t2
(1− at1t2q2n−1)(1− at1t2q2n)2(1− at1t2q2n+1)t1

q2n−1bn−1(η, t).

We now apply Schwartz’s theorem (Theorem 1.1). With Bn(t) =
−t1c̃n,n+1(t), Cn(t) = −t21c̃n,n(t)c̃n−1,n+1(t), and b̂n(η, t) = tn1 bn(η/t1, t),
(2.18) takes the form

b̂n+1(η, t) = (η +Bn(t))b̂n(η, t) + Cn(t)b̂n−1(η, t), n ≥ 0.

Furthermore, by (2.14)-(2.16) we have Bn(qνt) = Bn+ν(t), Cn(qνt) =
Cn+ν(t),

∞∑
n=0

|Bn(t)| <∞, and
∞∑
n=0

|Cn(t)| <∞.

Then by Theorem 1.1, ηnb̂n(1/η, t) = (t1η)nbn(1/(t1η), t), or equivalently,
ηnbn(1/η, t) converges locally uniformly in the complex plane to an entire
function of η.
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3. The Polynomial Solution of the Recurrence Equation for the
Coefficients.

In this section we solve recurrence equation (2.18):

bn+1(η, t) = (η + βnq
n)bn(η, t)− γnq2n−1bn−1(η, t), n ≥ 0,(3.1)

with b−1(η, t) = 0, b0(η, t) = 1, and

βn =
(1− t2qn)(1− at2qn)

(1− at1t2q2n)(1− at1t2q2n+1)
+

(1− t1qn+1)(1− at1qn+1)t2
(1− at1t2q2n+1)(1− at1t2q2n+2)t1

,

(3.2)

γn =
(1− t1qn)(1− at1qn)(1− t2qn)(1− at2qn)t2

(1− at1t2q2n−1)(1− at1t2q2n)2(1− at1t2q2n+1)t1
.

(3.3)

The coefficients βn can be simplified. We have

t1(at1t2q2n; q)3βn = t1(1− t2qn)(1− at2qn)(1− at1t2q2n+2)

+ t2(1− t1qn+1)(1− at1qn+1)(1− at1t2q2n)
= t1

(
1− (1 + a)t2qn + at22q

2n − at1t2q2n+2

+a(1 + a)t1t22q
3n+2 − a2t1t

3
2q

4n+2
)

+ t2
(
1− (1 + a)t1qn+1 + at21q

2n+2 − at1t2q2n

+a(1 + a)t21t2q
3n+1 − a2t31t2q

4n+2
)

= (t1 + t2)(1− a2t21t
2
2q

4n+2)− (1 + a)t1t2qn(1 + q)

+ a(1 + a)t21t
2
2q

3n+1(1 + q)

= (1− at1t2q2n+1)
(
(t1 + t2)(1 + at1t2q

2n+1)

−(1 + a)(1 + q)t1t2qn) .

Therefore,

βn =
(t1 + t2)(1 + at1t2q

2n+1)− (1 + a)(1 + q)t1t2qn

(1− at1t2q2n)(1− at1t2q2n+2)t1
.(3.4)

Recurrence relation (3.1) can be identified with the recurrence relation of
the associated little q-Jacobi polynomials, [5]. The latter work gets the
little q-Jacobi polynomials as limiting cases of the associated big q-Jacobi
polynomials and does not give an explicit representation for the polynomials.
Theorem 4.1 below provides an explicit representation for the little q-Jacobi
polynomials.

We shall use (3.1)–(3.4) to find the coefficient βn,n−1 of ηn−1 in bn(η, t)
and to guess the structure of the polynomials bn(η, t). From (3.1) we get
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βn+1,n = βnq
n+βn,n−1 which implies βn,n−1 =

n−1∑
j=0

βjq
j . From (3.4) we have

a(1− q)t1βjqj = a(t1 + t2)qj
(

1
1− at1t2q2j

− q

1− at1t2q2j+2

)
−(1 + a)

(
1

1− at1t2q2j
− 1

1− at1t2q2j+2

)
=: R(qj)−R(qj+1),

where

R(z) =
a(t1 + t2)z − (1 + a)

1− at1t2z2
.

Then βn,n−1 becomes a telescoping sum and we find

a(1− q)t1βn,n−1

= (R(1) + 1)− (R(qn) + 1)

= −a(1− t1)(1− t2)
(1− at1t2)

+
a(1− t1qn)(1− t2qn)

(1− at1t2q2n)

=
a(1− t1qn)(1− t2qn)

(1− at1t2q2n)

(
1− (1− t1)(1− t2)(1− at1t2q2n)

(1− at1t2)(1− t1qn)(1− t2qn)

)
.

The coefficient βn,n−1 can be written in a form that resembles similar for-
mulas for the Wimp polynomials from [16] and their q-analogue from [8]:

βn,n−1 = − (1− q−n/t1)(1− q−n/t2)
(1− q)(1− q−2n/(at1t2))

(at1)−1(3.5)

×
(

1 +
(q−1, t1, t2, at1t2q

2n; q)1q
(at1t2, t1qn, t2qn, q; q)1

)
.

The analogue of these polynomials that solves (3.1) is defined below.

Theorem 3.1. The polynomials bn(η, t) defined by

bn(η, t) =
n∑
j=0

(q−n/t1, q−n/t2; q)j
(q, q−2n/(at1t2); q)j

(−at1)−jηn−j(3.6)

× 4φ3

(
q−j , t1, t2, at1t2q

2n+1−j

t1q
n+1−j , t2q

n+1−j , at1t2

∣∣∣∣ q, q) , n ≥ 0

are the solutions of the recurrence relation (3.1)-(3.4).

Proof. The proof is similar to the proof of Theorem 4.1 in [9]. Let b̃n(η, t)
denote the polynomial on the right-hand side of (3.6). We shall demonstrate
that b̃n(η, t) satisfies (3.1).
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The polynomials b̃n(η, t) can be written in the form

b̃n(η, t) =
n∑
j=0

ηn−j
j∑

k=0

(−1)j

(at1)j
(t1, t2; q)k

(q, at1t2; q)k
(3.7)

× (q−n/t1, q−n/t2; q)j
(t1qn+1−j , t2qn+1−j ; q)k

(at1t2q2n+1−j ; q)k
(q−2n/(at1t2); q)j

(q−j ; q)kqk

(q; q)j

=
n∑
j=0

ηn−j
j∑

k=0

(−1)j

(at1)j
(t1, t2; q)k

(q, at1t2; q)k
ak

(q−n/t1, q−n/t2; q)j−k
(q, q−2n/(at1t2); q)j−k

=:
n∑
j=0

j∑
k=0

AkB
(n)
j−k(−1/t1)jak−jηn−j ,

where we applied formula (1.15) with A = 1/(t1qn), 1/(t2qn), 1/(at1t2q2n),
and q, and we defined

Ak :=
(t1, t2; q)k

(q, at1t2; q)k
,

B(n)
s :=

(q−n/t1, q−n/t2; q)s
(q, q−2n/(at1t2); q)s

.

We separate the leading term ηn+1 and write b̃n+1(η, t) in the form

b̃n+1(η, t) = η

b̃n(η, t)− n∑
j=1

j∑
k=0

AkB
(n)
j−ka

k−j(−1/t1)jηn−j

(3.8)

+
n+1∑
j=1

j∑
k=0

AkB
(n+1)
j−k ak−j(−1/t1)jηn+1−j

= (η + βnq
n) b̃n(η, t)− r̃n(η, t),
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where

r̃n(η, t) : =
n∑
j=1

j∑
k=0

AkB
(n)
j−ka

k−j(−1/t1)jηn+1−j(3.9)

−
n+1∑
j=1

j∑
k=0

AkB
(n+1)
j−k ak−j(−1/t1)jηn+1−j

+ βnq
n

n∑
j=0

j∑
k=0

AkB
(n)
j−ka

k−j(−1/t1)jηn−j

=
n−1∑
j=0

j+1∑
k=0

AkB
(n)
j+1−ka

k−j−1(−1/t1)j+1ηn−j

−
n∑
j=0

j+1∑
k=0

AkB
(n+1)
j+1−ka

k−j−1(−1/t1)j+1ηn−j

+ βnq
n

n∑
j=0

j∑
k=0

AkB
(n)
j−ka

k−j(−1/t1)jηn−j .

The coefficient of ηn in r̃n(η, t) equals
1∑

k=0

Ak

(
B

(n)
1−k −B

(n+1)
1−k

)
ak−1(−1/t1) + βnq

n

= −
{
B

(n)
1 −B(n+1)

1

}
/(at1) + βnq

n

since A0 = 1 and B(n)
0 = 1. Furthermore,

B
(n)
1 −B

(n+1)
1 = − a

1− q

(
(1− t1qn)(1− t2qn)

1− at1t2q2n
− (1− t1qn+1)(1− t2qn+1)

1− at1t2q2n+2

)
and then

− (at1t2q2n; q2)2((1− q)/a)
{
B

(n)
1 −B(n+1)

1

}
= (1− t1qn)(1− t2qn)(1− at1t2q2n+2)

− (1− t1qn+1)(1− t2qn+1)(1− at1t2q2n)
= −qn

(
(t1 + t2)(1− q)(1 + at1t2q

2n+1)− (1 + a)(1− q2)t1t2qn
)
.

Hence in view of (3.4) we get

−
{
B

(n)
1 −B(n+1)

1

}
/(at1) = −βnqn,(3.10)

which shows that the coefficient of ηn in r̃n(η, t) is zero. Then in (3.9) we
can replace the lower bound of the range of j by 1 and then replace j by
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j + 1. We obtain

r̃n(η, t) = βnq
n
n−1∑
j=0

j+1∑
k=0

AkB
(n)
j+1−ka

k−j−1(−1/t1)j+1ηn−j−1(3.11)

+
n−2∑
j=0

j+2∑
k=0

AkB
(n)
j+2−ka

k−j−2(−1/t1)j+2ηn−j−1

−
n−1∑
j=0

j+2∑
k=0

AkB
(n+1)
j+2−ka

k−j−2(−1/t1)j+2ηn−j−1.

Note that in (3.11) we can first separate the two constant terms, and then
in the last two double sums we can replace the upper bound j + 2 of the
range of k by j + 1 using that B(n)

j+2−k − B
(n+1)
j+2−k = 0 if k = j + 2. Then we

can write

r̃n(η, t) = Kn +
n−2∑
j=0

j+1∑
k=0

Aka
k−j−2(−1/t1)j+24(n)

j+2−kη
n−j−1,(3.12)

where

4(n)
s = B(n)

s −B(n+1)
s − at1βnqnB(n)

s−1, s = 1, . . . , n,(3.13)

and Kn is the constant term of r̃n(η, t).
From (3.10) we get 4(n)

1 = 0.
For s ∈ {2, . . . , n} we have

4(n)
s =

(q−n/t1, q−n/t2; q)s
(q, q−2n/(at1t2); q)s

− (q−n−1/t1, q
−n−1/t2; q)s

(q, q−2n−2/(at1t2); q)s

− q−n−1

t1t2

(
(t1 + t2)(1 + q−2n−1/(at1t2))− (1 + a)(1 + q)q−n−1/a

)
(1− q−2n/(at1t2))(1− q−2n−2/(at1t2))

× (q−n/t1, q−n/t2; q)s−1

(q, q−2n/(at1t2); q)s−1

=
(q−n/t1, q−n/t2; q)s−1

(q; q)s(q−2n−2/(at1t2); q)s+2(1− q−2n/(at1t2))
×
{[

(1− q−n−1+s/t1)(1− q−n−1+s/t2)(q−2n−2/(at1t2); q)2
−(1− q−n−1/t1)(1− q−n−1/t2)(q−2n−2+s/(at1t2); q)2

]
× (1− q−2n/(at1t2))− (q−n−1/(t1t2))(1− qs)
×
(
(t1 + t2)(1 + q−2n−1/(at1t2))− (1 + a)(1 + q)q−n−1/a

)
× (1− q−2n−1/(at1t2))(1− q−2n−1+s/(at1t2))

}
.

(3.14)
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We set x = q−n−1/t1, y = q−n−1/t2, α = qs, β = 1/a, S = x + y, and
P = xy. Let E1 and E2 denote the expressions inside { } and [ ] in (3.14),
respectively. Then

E1 = E2(1− q2βP )

− (1− α) (S(1 + qβP )− (1 + β)(1 + q)P ) (1− qβP )(1− qαβP )

and

E2 = (1− αx)(1− αy)(1− βP )(1− qβP )

− (1− x)(1− y)(1− αβP )(1− qαβP ).

We now simplify E2. We have

E2 = 1− αS + α2P − (1 + q)βP (1− αS + α2P ) + qβ2P 2(1− αS + α2P )

− 1 + S − P + (1 + q)αβP (1− S + P )− qα2β2P 2(1− S + P )

= (1− α) [S − (1 + α)P − (1 + q)βP

+(1 + q)αβP 2 + q(1 + α)β2P 2 − qαβ2P 2S
]

= (1− α)
[
S(1− qαβ2P 2)−(1 + α)(1− qβ2P )P−(1 + q)β(1− αP )P

]
.

(3.15)

From (3.15) and the definition of E1 and E2 we obtain

E1/(1− α) = S
[
(1− qαβ2P 2)(1− q2βP )− (1− q2β2P 2)(1− qαβP )

]
(3.16)

− P
[(

(1 + α)(1− qβ2P ) + (1 + q)β(1− αP )
)
(1− q2βP )

−(1 + q)(1 + β)(1− qβP )(1− qαβP )]
=: B1S −B2P,

where B1 and B2 denote the expressions inside the brackets. We factor B1

and B2:

B1 = 1− qαβ2P 2 − q2βP + q3αβ3P 3 − 1 + q2β2P 2 + qαβP − q3αβ3P 3

(3.17)

= qβP (α+ qβP − q − αβP ) = qβ(α− q)(1− βP )P,
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B2 = (1 + α+ (1 + q)β − β (qβ(1 + α) + (1 + q)α)P ) (1− q2βP )

− (1 + q)(1 + β)
(
1− qβ(1 + α)P + q2αβ2P 2

)
= α− q + β

(
(1 + α)(q(1 + q)(1 + β)− qβ − q2)− (1 + q)(α+ q2β)

)
P

+ q2β2 (q(1 + α)β + (1 + q)α− (1 + q)α(1 + β))P 2

= α− q + β
(
(1 + α)(q + βq2)− (1 + q)(α+ βq2)

)
P + q2(q − α)β3P 2

= −(q − α) + β(q − α)(1− βq2)P + q2(q − α)β3P 2

= −(q − α)(1− βP )(1 + q2β2P ).

(3.18)

From (3.16)-(3.18) we obtain

E1

(1− α)(q − α)(1− βP )
=
(
−qβS + (1 + q2β2P )

)
P(3.19)

=
(
−qβ(x+ y) + 1 + q2β2xy

)
xy = (1− qβx)(1− qβy)xy.

We recall that α = qs, β = 1/a, x = q−n−1/t1, y = q−n−1/t2, and s ∈
{2, . . . , n}.

From (3.14)-(3.19) we get

4(n)
s

=
(q−n/t1, q−n/t2; q)s−1q

(1− α)(q − α)(q; q)s−2(q−2n−2/(at1t2); q)s+2(1− q−2n/(at1t2))
× (1− α)(q − α)(1− βxy)(1− qβx)(1− qβy)xy

=
(q−n+1/t1, q

−n+1/t2; q)s−2

(q, q−2n+2/(at1t2); q)s−2

× (1− q−n/t1)(1− q−n/t2)(1− q−n/(at1))(1− q−n/(at2))q−2n−1/(t1t2)
(q−2n−1/(at1t2); q)3(1− q−2n/(at1t2))

= a2t21γnq
2n−1B

(n−1)
s−2 .

(3.20)

At the end we used formula (3.3) for γn.
From (3.12) and (3.20) we obtain

r̃n(η, t) = γnq
2n−1

n−2∑
j=0

j∑
k=0

AkB
(n−1)
j−k ak−j(−1/t1)jηn−1−j +Kn,(3.21)

where by (3.8), Kn is the constant term of

r̃n(η, t) = (η + βnq
n)b̃n(η, t)− b̃n+1(η, t).(3.22)

We recall that b̃n(η, t) denotes the polynomial on the right-hand side of
(3.6).
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To complete the proof it remains to show that Kn equals γnq2n−1 times
the constant term of b̃n−1(η, t). Let fn denotes the constant term of b̃n(η, t).
From (3.22) we have Kn = βnq

nfn − fn+1. Therefore, it is enough to verify
that

fn+1 = βnq
nfn − γnq2n−1fn−1.(3.23)

From (3.6) and (1.15) we have

fn =
(q−n/t1, q−n/t2; q)n(−1)n

(q, q−2n/(at1t2); q)nantn1
φn =

(t1q, t2q; q)nq(
n
2)

(q, at1t2qn+1; q)ntn1
φn,(3.24)

with

φn = 4φ3

(
q−n, at1t2q

n+1, t1, t2
qt1, qt2, at1t2

∣∣∣∣ q, q) .(3.25)

We shall use a recurrence formula for the Askey-Wilson polynomials (see [8]
or [12]). The Askey-Wilson polynomials pn(x;A,B,C,D | q) are defined by

pn(x;A,B,C,D|q) := 4φ3

(
q−n, ABCDqn−1, Aeiθ, Ae−iθ

AB, AC, AD

∣∣∣∣ q, q) ,
(3.26)

where x = cos θ = (eiθ + e−iθ)/2. They satisfy the recurrence equation

xpn(x;A,B,C,D|q) =
An
2
pn+1(x;A,B,C,D|q)(3.27)

+
Bn
2
pn(x;A,B,C,D | q) +

Cn
2
pn−1(x;A,B,C,D | q), n ≥ 0,

with p−1(x;A,B,C,D | q) = 0, p0(x;A,B,C,D | q) = 1, and coefficients

An =
(1−ABqn)(1−ACqn)(1−ADqn)(1−ABCDqn−1)

A(1−ABCDq2n−1)(1−ABCDq2n)
,(3.28)

Cn =
A(1− qn)(1−BCqn−1)(1−BDqn−1)(1− CDqn−1)

(1−ABCDq2n−2)(1−ABCDq2n−1)
,(3.29)

Bn = A+ 1/A−An − Cn.(3.30)

As in Section 2 recurrence equation (3.27) can be written in monic form in
terms of the polynomials

qm = qm(x;A,B,C,D | q) = pm(x;A,B,C,D | q)2−m
m−1∏
j=0

Aj .

The monic equation is

xqn = qn+1 + (Bn/2)qn + (CnAn−1/4)qn−1, n ≥ 0,(3.31)

q−1 = 0, q0 = 1.
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We select A =
√
t1t2, B = q

√
t1/t2, C = q

√
t2/t1, D = a

√
t1t2 and

eiθ =
√
t1/t2. Then x = cos θ = (t1 + t2)/(2

√
t1t2), and from (3.24)-(3.31)

we obtain

An =
(1− t1qn+1)(1− t2qn+1)(1− at1t2qn)(1− at1t2qn+1)√

t1t2(1− at1t2q2n+1)(1− at1t2q2n+2)
,(3.32)

Cn =
√
t1t2(1− qn)(1− qn+1)(1− at1qn)(1− at2qn)

(1− at1t2q2n)(1− at1t2q2n+1)
,(3.33)

Bn =
√
t1t2 + 1/

√
t1t2 −An − Cn,(3.34)

and

qn = 2−n

n−1∏
j=0

Aj

(3.35)

× pn
(
(t1 + t2)/(2

√
t1t2);

√
t1t2, q

√
t1/t2, q

√
t2/t1, a

√
t1t2 | q

)
=

(t1q, t2q, at1t2, at1t2q; q)n
2n(t1t2)n/2(at1t2q; q)2n

φn =
(t1q, t2q, at1t2; q)n

2n(t1t2)n/2(at1t2qn+1; q)n
φn

=
(q, at1t2; q)n(t1/t2)n/2

2nq(
n
2)

fn.

Furthermore, from (3.31) and (3.34) we have

qn+1 =
(
t1 + t2
2
√
t1t2
− t1t2 + 1

2
√
t1t2

+
An
2

+
Cn
2

)
qn −

CnAn−1

4
qn−1(3.36)

=: (Rn/(2
√
t1t2))qn − (CnAn−1/4)qn−1.

From (3.35), (3.36), (3.32), (3.33), and (3.3) we get

fn+1 =
Rnq

n

(1− qn+1)(1− at1t2qn)t1
fn −

4q2n−1

(qn, at1t2qn−1; q)2t1/t2
(3.37)

× 1
4

(1− qn)(1− qn+1)(1− at1qn)(1− at2qn)
(1− at1t2q2n)(1− at1t2q2n+1)

× (1− t1qn)(1− t2qn)(1− at1t2qn−1)(1− at1t2qn)
(1− at1t2q2n−1)(1− at1t2q2n)

fn−1

=
Rnq

n

(1− qn+1)(1− at1t2qn)t1
fn − γnq2n−1fn−1.

To complete the proof of (3.23) and the theorem we have to show that the
coefficient of fn in (3.37) equals βnqn. From (3.36), (3.32), and (3.33) we
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get

(at1t2q2n; q)3Rn = −(1− t1)(1− t2)(at1t2q2n; q)3
+(1− t1qn+1)(1− t2qn+1)(1− at1t2qn)(1− at1t2qn+1)(1− at1t2q2n)

+(1− qn)(1− qn+1)(1− at1qn)(1− at2qn)(1− at1t2q2n+2)t1t2.

Setting S = t1 + t2, P = t1t2, and α = qn we obtain

(at1t2q2n; q)3Rn = −(1− S + P )(1− aα2P )(1− aqα2P )(1− aq2α2P )

+ (1− qαS + q2α2P )(1− aαP )(1− aqαP )(1− aα2P )

+ (1− α)(1− qα)(1− aαS + a2α2P )(1− aq2α2P )P
=: E1S + E2P + E3P.

(3.38)

The expressions {Ej}3j=1 are defined and factored below:

E1 := (1− aα2P )(1− aqα2P )(1− aq2α2P )(3.39)

− qα(1− aαP )(1− aqαP )(1− aα2P )

− aα(1− α)(1− qα)(1− aq2α2P )P

= (1− aα2P )
[
1− aqα2P − aq2α2P + a2q3α4P 2

−qα+ aqα2P + aq2α2P − a2q2α3P 2
]

− aα(1− α)(1− qα)(1− aq2α2P )P

= (1− qα)
(
(1− aα2P )(1− a2q2α3P 2)

−aα(1− α)(1− aq2α2P )P
)

= (1− qα)(1 + a3q2α5P 3 − aαP − a2q2α4P 2)

= (1− qα)(1− aαP )(1− a2q2α4P 2),

E2 :=
(
−(1− aα2P )(1− aqα2P )(1− aq2α2P )

+ (1− aαP )(1− aqαP )(1− aα2P )
)
/P

= (1− aα2P )aα(αq + αq2 − aq3α3P − 1− q + aqαP )

= aα(1− qα)(1− aα2P ) (−(1 + q) + (1 + qα)aqαP )

= −aα(1−qα)
[
1 + q−aα((1 + q)α+ q(1 + qα))P + a2qα3(1 + qα)P 2

]
,

(3.40)
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and

E3 := −(1− aα2P )(1− aqα2P )(1− aq2α2P )

+ q2α2(1− aαP )(1− aqαP )(1− aα2P )

+ (1− α)(1− qα)(1 + a2α2P )(1− aq2α2P )

= (1− aα2P )
(
−1 + aq(1 + q)α2P + q2α2 − aq2(1 + q)α3P

)
+ (1− α)(1− qα)(1 + a(a− q2)α2P − a3q2α4P 2)

= (1− qα)(1− aα2P )(−1− qα+ aq(1 + q)α2P )

+ (1− qα)(1− α)
(
1 + a(a− q2)α2P − a3q2α4P 2

)
= (1− qα)

[
−(1 + q)α+ aα2

(
q(1 + q) + 1 + qα+ (1− α)(a− q2)

)
P

−a2qα4(1 + q + aq(1− α))P 2
]
.

(3.41)

Combining (3.40) and (3.41) we obtain

(E2 + E3)/(1− qα) = −(1 + q)(1 + a)α

+ aα2
(
aα+ aqα+ aq + aq2α+ q

+1 + qα+ a− aα+ q2α
)
P

− a2qα4(a(1 + qα) + 1 + q + aq(1− α))P 2

= −(1 + q)(1 + a)α+ aα2(1 + q)(aqα+ a+ 1 + qα)P

− a2qα4(1 + q)(1 + a)P 2

= −(1 + q)(1 + a)α
(
1− aα(1 + qα)P + a2qα3P 2

)
= −(1 + q)(1 + a)α(1− aαP )(1− aqα2P ).

(3.42)

Then from (3.38), (3.39), and (3.42) we get

(at1t2q2n; q)3Rn = (1− qα)(1− aαP )(1− aqα2P )(3.43)

×
(
(1 + aqα2P )S − (1 + q)(1 + a)αP

)
.

In terms of α = qn, S = t1 + t2, and P = t1t2, (at1t2q2n; q)3 = (aα2P ; q)3,
hence (3.43) implies

Rn
(1− qn+1)(1− at1t2qn)t1

=
Rn

(1− qα)(1− aαP )t1
(3.44)

=
(1 + aqα2P )S − (1 + q)(1 + a)αP

(1− aα2P )(1− aq2α2P )t1
= βn

in view of (3.4). The proof of Theorem 3.1 is complete. �
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4. The Spectrum of the Inverse Operator.

To find the spectrum of the operator Tt, that is, to solve eigenvalue problem
(2.4) we consider the eigenfunctions of the q-difference operator Dq,x. It is
easy to see that for every λ the equation Dq,xf(x) = λf(x) has solution
fλ(x) = 1/(λ(1 − q)x; q)∞ = eq(λ(1 − q)x). The eigenfunctions of Tt are
also eigenfunctions for Dq,x, in fact if gλ is such that Ttgλ = λgλ, then
gλ = Dq,xTtgλ = λDq,xgλ and therefore, gλ(x) = f1/λ(x) = eq((1 − q)x/λ).
Hence, the eigenvalues of Tt are the reciprocals of the numbers λ such that

fλ(x) =
∞∑
n=0

cn(λ, t)pn(x, t) ∈ L2(µ(·, t)) ∩ L2(µ(·, qt)).(4.1)

From equations Ttgλ = λgλ, gλ = f1/λ, (2.2), and (4.1) we get c0(1/λ, t) = 0.
It turns out that the condition c0(1/λ, t) = 0 completely characterizes the
spectrum of the operator Tt.

We proceed with computing the coefficients {cn(λ, t)} in (4.1). Let λ be
small enough so that |λ(1 − q)| < 1. Using the orthogonality relation (1.6)
and applying Euler’s identity (1.12) to fλ(x) = eq(λ(1− q)x) we obtain

cn(λ, t)ξn(t) =
∫
R
fλ(x)pn(x, t) dµ(x, t) =

∞∑
s=0

(λ(1− q))s

(q; q)s
dn,s(λ, t),(4.2)

where we have defined

dn,s(λ, t) :=
∫
R
xspn(x, t) dµ(x, t).(4.3)

By (1.6), dn,s = 0 if s < n, hence we may assume that s ≥ n.
From (1.11) and (1.3) we have

xs =
1
ts2

s∑
j=0

as,j(t2x; q)j , as,j := (−1)jq(
j
2)−j(s−1)

[
s
j

]
q

,

pn(x, t) =
n∑
k=0

bn,k(t1x; q)k, bn,k :=
(q−n, at1t2qn−1; q)k

(t1, at1, q; q)k
qk.

Then for dn,s(λ, t) we get

dn,s(λ, t) =
s∑
j=0

n∑
k=0

as,jbn,k
1
ts2

∫
R

dµ(a)(x)
(qkt1x, qjt2x; q)∞

(4.4)

=
s∑
j=0

n∑
k=0

as,jbn,k
1
ts2

(at1t2qk+j ; q)∞
(qkt1, qjt2, aqkt1, aqjt2; q)∞

,
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where (6.4) was used to evaluate the integrals. From the formulas for as,j
and bn,k, and (4.4) we obtain

dn,s =
(at1t2; q)∞(q; q)s

(t1, at1, t2, at2; q)∞ts2

×
s∑
j=0

n∑
k=0

(−1)jq(
j
2)−j(s−1)+k(q−n, at1t2qn−1; q)k(t2, at2; q)j
(q; q)j(q; q)s−j(q; q)k(at1t2; q)k+j

= c(1)
s∑
j=0

(−1)jq(
j
2)−j(s−1)(t2, at2; q)j

(q; q)j(q; q)s−j(at1t2; q)j
2φ1

(
q−n, at1t2q

n−1

at1t2q
j

∣∣∣∣ q, q) ,

(4.5)

where c(1) denotes the coefficient of the double sum. By (1.9) the 2φ1 sum
is equal to

(qj+1−n; q)n(at1t2qn−1)n

(at1t2qj ; q)n
,

which is 0 for j < n. Then for s ≥ n we obtain

dn,s = c(2)
s∑

j=n

(−1)jq(
j
2)−j(s−1)(t2, at2; q)j

(q; q)j−n(q; q)s−j(at1t2; q)n+j
,(4.6)

where c(2) = (at1t2qn−1)nc(1) and we used the identity (qj+1−n; q)n = (q; q)j/
(q; q)j−n. Replacing j by n+ l we get

dn,s = c(3)
s−n∑
l=0

(−1)lq(
n+l
2 )−(n+l)(s−1)(t2qn, at2qn; q)l

(q; q)l(q; q)(s−n)−l(at1t2q2n; q)l
, s ≥ n,(4.7)

with c(3) = (−1)n(t2, at2; q)n/(at1t2; q)2nc(2). Next with p = s− n we have

(q; q)p
(q; q)p−l

=
p∏

j=p−l+1

(1− qj) = (−1)lq(
p+1
2 )−(p−l+1

2 )(q−p; q)l

and(
n+ l

2

)
− (n+ l)(s− 1) +

(
p+ 1

2

)
−
(
p− l + 1

2

)
=
(
n

2

)
− n(s− 1) + l.

Substituting these identities in (4.7) we obtain

dn,s = c(4)
3φ2

(
q−(s−n), t2q

n, at2q
n

at1t2q
2n, 0

∣∣∣∣ q, q) , s ≥ n,(4.8)

where

c(4) = c(4)
n,s =

(at1t2q2n; q)∞(t2, at2; q)n(at1t2)n(q; q)sq(
n
2)+n(n−s)(−1)n

(t1, at1, t2, at2; q)∞(q; q)s−nts2
.

(4.9)
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From formula (1.7) for ξn(t) and (4.9) we get

c(4)
n,s =

(t1, at1; q)n(q; q)sqn(n−s)tn−s2

(at1t2qn−1, q; q)n(q; q)s−ntn1
ξn(t).(4.10)

Then from (4.2), (4.8), (4.9), and (4.10) we get

cn(λ, t) =
∞∑
s=n

((1− q)λ)s

(q; q)s
(dn,s/ξn(t)) =

(t1, at1; q)n(1− q)n

(at1t2qn−1, q; q)ntn1
λn(4.11)

×
∞∑
k=0

((1− q)/(t2qn))k

(q; q)k
λk3φ2

(
q−k, t2q

n, at2q
n

at1t2q
2n, 0

∣∣∣∣ q, q) ,
with k = s− n. Applying the transformation, [6],

3φ2

(
q−k, a, b
c, 0

∣∣∣∣ q, q) =
(b; q)kak

(c; q)k
2φ1

(
q−k, c/b
q1−k/b

∣∣∣∣ q, q/a)(4.12)

to the 3φ2 expression in (4.11) we get

3φ2

(
q−k, t2q

n, at2q
n

at1t2q
2n, 0

∣∣∣∣ q, q)
=

(at2qn; q)k(t2qn)k

(at1t2q2n; q)k
2φ1

(
q−k, t1q

n

q1−k−n/(at2)

∣∣∣∣ q, q1−n/t2) .
Then the second sum in (4.11) can be written in the form

∞∑
k=0

(at2qn; q)k(1− q)k

(at1t2q2n, q; q)k
λk

k∑
j=0

(q−k; q)j(t1qn; q)j(q1−n/t2)j

(q1−k−n/(at2); q)j(q; q)j
.(4.13)

Using (1.15) we obtain

(q−k; q)j
(q1−k−n/(at2); q)j

=
(q; q)k(at2qn; q)k−j
(q; q)k−j(at2qn; q)k

(at2qn−1)j .

Hence the double sum in (4.13) equals
∞∑
k=0

((1− q)λ)k

(at1t2q2n, q; q)k

k∑
j=0

[
k
j

]
q

(t1qn; q)j(at2qn; q)k−jaj .(4.14)

The above formulas hold when |(1−q)λ| < 1 since in this range (1.12) can
be applied. To extend the formulas to arbitrary λ we need a meromorphic
continuation of the function in (4.14). We set

αk(a, t1, t2) :=
1

(at1t2, q; q)k

k∑
j=0

[
k
j

]
q

(t1; q)j(at2; q)k−jaj ,(4.15)

A(z; a, t1, t2) :=
∞∑
k=0

αk(a, t1, t2)zk, |z| < 1.(4.16)
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Note that the sum in (4.14) equals A((1−q)λ; a, qnt). For |z| < 1 we consider
the product of the functions (z, az; q)∞ and A(z; a, t1, t2). Using (1.13) we
get

(z; q)∞A(z; a, t1, t2) =
∞∑
n=0

zn

(
n∑
k=0

αk(a, t1, t2)
(−1)n−kq(

n−k
2 )

(q; q)n−k

)
.(4.17)

The coefficient of zn in (4.17) equals

n∑
k=0

 k∑
j=0

[
k
j

]
q

(t1; q)j(at2; q)k−jaj

(at1t2, q; q)k

 (−1)n−kq(
n−k

2 )

(q; q)n−k

(4.18)

=
n∑
j=0

(t1; q)jaj

(at1t2, q; q)j(q; q)n−j

(
n−j∑
ν=0

[
n− j
ν

]
q

(at2; q)ν(−1)n−j−νq(
n−j−ν

2 )

(at1t2qj ; q)ν

)

with ν = k − j. The sum over ν in (4.18) has the form
m∑
ν=0

[
m
ν

]
q

(α; q)ν
(β; q)ν

(−1)m−νq(
m−ν

2 )

= (−1)mq(
m
2 )

m∑
ν=0

(q−m, α; q)ν
(β, q; q)ν

qν

= (−1)mq(
m
2 )2φ1

(
q−m, α
β

∣∣∣∣ q, q)
= (−1)mq(

m
2 ) (β/α; q)m

(β; q)m
αm,

where we first used the identity

(q; q)m/(q; q)m−ν = (−1)νq(
m+1

2 )−(m−ν+1
2 )(q−m; q)ν ,(4.19)

and then (1.9). Then the coefficient of zn in (4.17) given with (4.18) equals
n∑
j=0

(t1; q)jaj

(at1t2, q; q)j(q; q)n−j
(−1)n−jq(

n−j
2 ) (t1qj ; q)n−j(at2)n−j

(at1t2qj ; q)n−j
(4.20)

=
(t1; q)nan

(at1t2, q; q)n

n∑
j=0

[
n

n− j

]
q

q(
n−j

2 )(−t2)n−j =
(t1, t2; q)nan

(at1t2, q; q)n
,

where we applied (1.14). From (4.17) and (4.20) we get

(z; q)∞A(z; a, t1, t2) = 2φ1

(
t1, t2
at1t2

∣∣∣∣ q, az) , |az| < 1.(4.21)
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From (1.13) and (4.21) for z such that max{|z|, |az|} < 1 we have

(z, az; q)∞A(z; a, t1, t2)(4.22)

=
∞∑
m=0

(
m∑
k=0

(t1, t2; q)k
(at1t2, q; q)k

(−1)m−kq(
m−k

2 )

(q; q)m−k

)
amzm

=
∞∑
m=0

(−1)mq(
m
2 )

(q; q)m
3φ2

(
q−m, t1, t2
at1t2, 0

∣∣∣∣ q, q) amzm
=

∞∑
m=0

(−t1)mq(
m
2 )(t2; q)m

(at1t2, q; q)m
2φ1

(
q−m, at1
q1−m/t2

∣∣∣∣ q, q/t1) amzm,
where we applied (4.19) and (4.12). Next, from (1.15) we have

(q−m; q)j
(q1−m/t2; q)j

=
(q; q)m(t2; q)m−j
(q; q)m−j(t2; q)m

(t2/q)j ,

which combined with (4.22) yields

(z, az; q)∞A(z; a, t1, t2) =
∞∑
m=0

(−t1)mq(
m
2 )

(at1t2; q)m

×

 m∑
j=0

(at1; q)j(t2; q)m−j
(q; q)j(q; q)m−j

(t2/t1)j

 amzm.

(4.23)

Clearly (z, az; q)∞ is an entire function of z. Furthermore, the right-hand
side of (4.23) is an entire function of z, and in an open neighborhood of z = 0
it coincides with the function (z, az; q)∞A(z; a, t1, t2). Hence a meromorphic
extension of A(z; a, t1, t2) to the complex plane can be found by dividing the
right-hand side of (4.23) by (z, az; q)∞.

The main results of this section can be described with the following two
theorems.

Theorem 4.1. The coefficients in the expansion formula for the eigenfunc-
tion fλ(x) = eq(λ(1 − q)x) in terms of big q-Jacobi polynomials {pn(x, t)}
are given by

cn(λ, t) =
1

((1− q)λ, a(1− q)λ; q)∞
(t1, at1; q)n(1− q)n

(at1t2qn−1, q; q)ntn1
λn

×
∞∑
m=0

(−t1qn)mq(
m
2 )

(at1t2q2n; q)m

 m∑
j=0

(at1qn; q)j(t2qn; q)m−j
(q; q)j(q; q)m−j

(
t2
t1

)j am(1− q)mλm.

(4.24)
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Furthermore, the coefficients {cn(λ, t)} satisfy the recurrence equation

σn(t)cn(λ, t) = λ
n+1∑

m=n−1

(ξm(t)/ξn−1(qt)) cn−1,m(t)cm(λ, t), n ≥ 1,

(4.25)

where {cn,m(t)}n+2
m=n are the coefficients defined with (2.7)-(2.10).

The spectrum of the inverse operator Tt is described in Theorem 4.2.

Theorem 4.2. The function fλ(x) belongs to the space L2(µ(·, t)) for every
λ that is not a zero of ((1− q)λ, a(1− q)λ; q)∞.

The spectrum of Tt, the inverse operator of the q-difference operator Dq,x,
acting on the space L2(µ(·, t)) ∩ L2(µ(·, qt)) is the set of the reciprocals of
the zeros of the meromorphic function c0(λ, t).

Proof. From (1.6), (1.7), (4.1), and (4.24) it immediately follows that

||fλ||2L2(µ(·,t)) =
∞∑
n=0

cn(λ, t)2ξn(t) <∞

for all λ such that 1/((1− q)λ) /∈ supp
(
µ(a)

)
and all parameters t for which

the function c0(λ, t) is well-defined. This is due to the presence of the factor
q(
n
2) in ξn(t). Furthermore, Ttgλ = λgλ implies gλ = f1/λ and c0(1/λ, t) = 0.

Hence c0(1/λ, t) = 0 is a necessary and sufficient condition for λ to be in
the spectrum of the operator Tt. �

5. Asymptotic Properties of the Polynomials {bn(η, t)}.

In Section 2 we applied Schwartz’s theorem to prove that the sequence
{ηnbn(1/η, t)} converges locally uniformly in the complex plane to an en-
tire function. The recurrence relation (2.17) has bounded coefficients, hence
the polynomials {bn(η, t)} are orthogonal with respect to a unique measure
ϕ(·, t) with compact support, [1], [14]. From Markov’s theorem, [15], the
Stieltjes transform of ϕ(·, t) is given by∫

R

dϕ(u, t)
z − u

= lim
n→∞

b∗n(z, t)
bn(z, t)

, z /∈ R,(5.1)

where {b∗n(η, t)} is the solution of (2.17) or equivalently, (3.1) satisfying the
initial conditions

b∗0(η, t) = 0, b∗1(η, t) = 1.

We observe that βn(t) and γn(t) defined with (3.4) and (3.3) have the prop-
erty

βn−1(qt) = βn(t) and γn−1(qt) = γn(t).(5.2)
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From (3.1) with n, t and η replaced by n − 1, qt and η/q, respectively, we
get

bn(η/q, qt) =
(
η/q + βn−1(qt)qn−1

)
bn−1(η/q, qt)(5.3)

−γn−1(qt)q2n−3bn−2(η/q, qt).

Multiplying (5.3) by qn and using (5.2) we see that

b∗n(η, t) = qn−1bn−1(η/q, qt), n ≥ 0.(5.4)

We now study the limiting behavior of ηnbn(1/η, t) as n→∞. For each
fixed j the 4φ3 expression in (3.6) is bounded by M1(t)1φ0(q−j ;−; q,−q) and
the coefficient of the 4φ3 is bounded by M2(t)|η/t1|jqj(j−1)/2/(q; q)j . Here
both M1(t) and M2(t) are positive and depend only on t. The following
estimate

∞∑
j=0

∣∣∣∣ ηt1
∣∣∣∣j q(

j
2)

(q; q)j
2φ1(q−j ;−; q,−q) ≤

∞∑
j=0

|η/t1|j

(q; q)j

j∑
ν=0

q(
j−ν
2 )

(q; q)j−ν
≤ (−1; q)∞

(|η/t1|; q)∞

holds for η with |η| < |t1|. In the last inequality we used Euler’s identities
(1.12) and (1.13). Hence for |η| < |t1|, Tannery’s theorem (the discrete
version of the Lebesgue dominated convergence theorem) can be applied.
Using formula (3.6) we get

lim
n→∞

ηnbn(1/η, t) =
∞∑
j=0

q(
j
2)(η/t1)j

(q; q)j
3φ2

(
q−j , t1, t2
at1t2, 0

∣∣∣∣ q, q)(5.5)

=
∞∑
k=0

(t1, t2; q)kqk

(at1t2, q; q)k

∞∑
j=k

(q−j ; q)kq(
j
2)(η/t1)j

(q; q)j

=
∞∑
k=0

(t1, t2; q)k(−η/t1)k

(at1t2, q; q)k

∞∑
j=k

q(
j−k
2 )(η/t1)j−k

(q; q)j−k

= (−η/t1; q)∞2φ1

(
t1, t2
at1t2

∣∣∣∣ q, −η/t1) ,
where we also used (1.13).

From (5.1), (5.5), and (5.4) for z /∈ R we get∫
R

dϕ(u, t)
z − u

= lim
n→∞

z−nqn−1bn−1(z/q, qt)
z−nbn(z, t)

(5.6)

= 2φ1(qt1, qt2; at1t2q2; q,−1/(t1z))
z2φ1(t1, t2; at1t2; q,−1/(t1z))

, |z| > 1/|t1|.
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An analytic continuation of (5.6) can be found using the Heine transforma-
tion [4, (III.1)],

2φ1(A,B;C; q, Z) =
(B,AZ; q)∞
(C,Z; q)∞

2φ1(C/B,Z;AZ; q,B), |Z|, |B| < 1.

(5.7)

From (5.6) and (5.7) we obtain

∫
R

dϕ(u, t)
z − u

=
(1− at1t2)(1− at1t2q)

(1− t2)(z + 1)
2φ1(aqt1,−1/(t1z);−q/z; q, qt2)
2φ1(at1,−1/(t1z);−1/z; q, t2)

.

(5.8)

The Heine transformation also provides an analytic continuation of formula
(5.5).

Formulas (4.11)-(4.16), (4.22), and (5.5) imply

c0(λ, t) = A((1− q)λ; a, t) = ((1− q)λ, a(1− q)λ; q)−1
∞(5.9)

×
∞∑
j=0

q(
j
2)(−a(1− q)λ)j

(q; q)j
3φ2(q−j , t1, t2; at1t2, 0; q, q)

=
1

((1− q)λ; q)∞
2φ1

(
t1, t2
at1t2

∣∣∣∣ q, a(1− q)λ) .
From (5.6) and (5.9) we obtain∫

R

dϕ(u, t)
z − u

=
c0(−1/(a(1− q)t1z), qt)
zc0(−1/(a(1− q)t1z), t)

.(5.10)

The c0-functions in (5.10) have no common zeros. This can be seen as
follows: Assume that c0(λ0, t) = c0(λ0, qt) = 0 for some λ0. Formula (4.11)
implies

cn(λ, qt) =
(1− at1t2qn)(1− qn+1)t1
(1− t1)(1− at1)(1− q)λ

cn+1(λ, t).

Then our assumption implies c1(λ0, t) = 0 and from the three term re-
currence equation (4.25) we get cn(λ0, t) = 0 for all n ≥ 0. But then by
Theorem 4.1,

eq(λ0(1− q)x) = (λ0(1− q)x; q)−1
∞ =

∞∑
n=0

cn(λ0, t)pn(x, t) ≡ 0,

which is impossible.
The Perron-Stieltjes inversion formula is

F (z) =
∫
R

dµ(t)
z − t

if and only if(5.11)

µ(x)− µ(y) = lim
ε→0+

∫ x

y

F (t− iε)− F (t+ iε)
2πi

dt.
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This inversion formula shows that ϕ is a purely discrete measure. It is clear
that an isolated point mass m of ϕ located at x = x0 contributes m/(z−x0)
to the left-hand side of (5.8). Thus the isolated point masses of ϕ coincide
with the isolated poles of the right-hand side of (5.8) and the masses are
the corresponding residues. Below we will show that x = 0, which is the
only essential singularity of the right-hand side of (5.8) does not support
a discrete mass, so let us assume this for the time being. Formula (5.10),
Theorem 4.2, and the above discussion describe the relationship between the
support of the measure ϕ(·, t) and the spectrum of the operator Tt.

Theorem 5.1. The support of the measure of orthogonality ϕ(·, t) is the set
of the elements of the spectrum of the operator Tt multiplied by −1/(a(1 −
q)t1).

It remains to show that x = 0 is not a mass point for ϕ. From the theory
of the moment problem [1], [14], it is known that when the measure ϕ is

unique then x = x0 is a mass point for the measure if and only if
∞∑
n=0

pn(x0)2

converges, {pn(x)} being the orthonormal polynomials. From Theorem 3.1
we find

bn(0, t)=
(q−n/t1, q−n/t2; q)n
(q, q−2n/(at1t2); q)n

(−at1)−n4φ3

(
q−n, at1t2q

n+1, t1, t2
t1q, t2q, at1t2

∣∣∣∣ q, q).
(5.12)

Applying (1.15) to (5.12) we get

bn(0, t) =
(qt1, qt2; q)n

(q, at1t2qn+1; q)n
q(
n
2)

tn1
4φ3

(
q−n, at1t2q

n+1, t1, t2
t1q, t2q, at1t2

∣∣∣∣ q, q) .
(5.13)

Ismail and Wilson, [10], determined the asymptotic behavior of the Askey-
Wilson polynomials. They proved that

lim
n→∞

(z/A)n4φ3

(
q−n, ABCDqn−1, Az, A/z

AB, AC, AD

∣∣∣∣ q, q)(5.14)

=
(Az,Bz,Cz,Dz; q)∞
(z2, AB,AC,AD; q)∞

,

for |z| < 1, and that the left-hand side of (5.14) is bounded if |z| = 1 but
z 6= ±1. If z = ±1 then the left-hand side of (5.14) is O(n). The 4φ3

quantity in (5.13) corresponds to the 4φ3 function in (5.14) with A =
√
t1t2,

B = q
√
t1/t2, C = q

√
t2/t1, D = a

√
t1t2, and z =

√
t1/t2 if |t1| ≤ |t2| and

z =
√
t2/t1 otherwise. The orthonormal polynomials associated with the

bn’s are

pm(η, t) = bm(η, t)ξ−1/2
0 (t)

m∏
n=1

u−1/2
n ,
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where −un denotes the coefficient of bn−1(η, t) in (2.18). From (2.18) we get

n∏
k=1

uk =
(qt1, aqt1, qt2, aqt2; q)n
(at1t2q, at1t2q2; q)2n

(t2/t1)nq2(
n+1

2 )−n.

Combining the above formulas we obtain

qnξ0(t)z2npn(0, t)2 =
(qt1, qt2; q)n

(aqt1, aqt2; q)n
(at1t2q; q)2n(1− at1t2q2n+1)

(q; q)2n(1− at1t2q)
z2n

(t1t2)n

(5.15)

× 4φ3

(
q−n, at1t2q

n+1, t1, t2
qt1, qt2, at1t2

∣∣∣∣ q, q)2

→ (qt1, qt2; q)∞(at1t2q; q)2∞
(aqt1, aqt2; q)∞(1− at1t2q)

×
(z
√
t1t2, qz

√
t1/t2, qz

√
t2/t1, az

√
t1t2; q)2∞

(z2, qt1, qt2, at1t2, q; q)2∞
, n→∞,

if |z| ≤ 1 and z 6= ±1. If z = 1 the right-hand side of (5.15) becomes

unbounded. Since |z| ≤ 1 and |q| < 1, (5.15) clearly implies that
∞∑
n=0

pn(0, t)2

diverges.
Equations (3.1)–(3.3) show that the polynomials {bn(η, t)} are constant

multiples of birth and death process polynomials associated with a process
with birth and death rates

(1− t1qn+1)(1− at1qn+1)t2qn

(1− at1t2q2n+1)(1− at1t2q2n+2)
and

(1− t2qn)(1− at2qn)t1qn

(1− at1t2q2n)(1− at1t2q2n+1)
,

respectively. An exposition of the theory of birth and death processes and
orthogonal polynomials can be found in [7].

6. Connection Coefficients for the Big q-Jacobi Polynomials.

In this section we will compute the connection coefficients in the formula

pn(x, t) =
n∑
l=0

an,l(t, s)pl(x, s),(6.1)
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where t = (t1, t2) and s = (s1, s2). From (6.1), (1.6), and (1.10) we get

an,l(t, s)ξl(s)(6.2)

=
∫
R
pn(x, t)pl(x, s) dµ(x, s)

=
∫
R

n∑
k=0

(q−n, at1t2qn−1; q)kqk

(t1, at1, q; q)k

(
(t1/s2; q)k

k∑
ν=0

(q−k, s2x; q)νqν

(s2q1−k/t1, q; q)ν

)

×
l∑

j=0

(q−l, as1s2ql−1; q)jqj

(s1, as1, q; q)j
(s1x; q)j dµ(x, s).

Changing the order of summation in (6.2) we obtain

an,l(t, s)ξl(s) =
n∑
ν=0

(
n∑
k=ν

(q−n, at1t2qn−1; q)kqk

(t1, at1, q; q)k

(t1/s2; q)k(q−k; q)ν
(s2q1−k/t1; q)ν

)
qν

(q; q)ν

×
l∑

j=0

(q−l, as1s2ql−1; q)jqj

(s1, as1, q; q)j

∫
R

dµ(a)(x)
(xs1qj , xs2qν ; q)∞

.

(6.3)

The last integral is evaluated using the q-beta integral evaluation from [6]

∫
R

dµ(a)(x)
(xt1, xt2; q)∞

=
(at1t2; q)∞

(t1, at1, t2, at2; q)∞
.(6.4)

To evaluate the last sum in (6.3) we use (1.9). We get

(6.5)
(as1s2qν ; q)∞

(s1, as1, s2qν , as2qν ; q)∞

l∑
j=0

(q−l, as1s2ql−1; q)j
(as1s2qν , q; q)j

qj

=
(as1s2qν ; q)∞

(s1, as1, s2qν , as2qν ; q)∞
(qν+1−l; q)l
(as1s2qν ; q)l

(as1s2ql−1)l.

Since (qν+1−l; q)l vanishes for ν < l, the first sum in (6.3) is over ν ∈
{l, . . . , n}.
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Let Sn,ν(t, s) denote the sum over k in equation (6.3). Applying (1.15)
to (q−k; q)ν and (s2q1−k/t1; q)ν we obtain

Sn,ν(t, s) =
(q−n, at1t2qn−1; q)νqν

(t1, at1; q)ν

×
n∑
k=ν

(q−(n−ν), at1t2q
n+ν−1; q)k−νqk−ν

(t1qν , at1qν ; q)k−ν

q−ν(t1/s2; q)k−ν
(s2/t1)ν(q; q)k−ν

=
(q−n, at1t2qn−1; q)ν(t1/s2)ν

(t1, at1; q)ν
3φ2

(
q−(n−ν), at1t2q

n+ν−1, t1/s2
t1q

ν , at1q
ν

∣∣∣∣ q, q) .

(6.6)

From (6.3), (6.5), and (6.6) using the identities (qν+1−l; q)l/(q; q)ν =
1/(q; q)ν−l and

(as1s2qν ; q)∞
(as1s2qν ; q)l

= (as1s2qν+l; q)∞ =
(as1s2q2l; q)∞
(as1s2q2l; q)ν−l

we obtain the following result.

Theorem 6.1. The connection coefficients in the expansion of the polyno-
mial pn(x, t) in terms of the polynomials {pl(x, s)} are given by the formula

an,l(t, s) =
1

ξl(s)
(as1s2q2l; q)∞(at1s1ql)l

(s1, as1, s2ql, as2ql; q)∞
(q−n, at1t2qn−1; q)l

(t1, at1; q)l

×
n∑
ν=l

(q−(n−l), at1t2q
n+l−1, s2q

l, as2q
l; q)ν−l(t1q/s2)ν−l

(t1ql, at1ql, as1s2q2l, q; q)ν−l

× 3φ2

(
q−(n−ν), at1t2q

n+ν−1, t1/s2
t1q

ν , at1q
ν

∣∣∣∣ q, q) , l = 0, . . . , n.

(6.7)

The connection coefficient formula (6.7) can be used to find the connec-
tion coefficients in certain special cases. In Section 2, we computed these
coefficients for the case s = qt.

We will now use (6.7) to give another proof of the fact that an,l(t, qt) =
0 for l < n − 2. In view of (1.8) it is enough to consider the case s =
(qt2, qt1) since for every l ∈ N, pl(x; t1, t2) and pl(x; t2, t1), and therefore
the coefficients an,l(t, qt) and an,l(t, qt∗) are linearly dependent, where t∗ =
(t2, t1). So let s = qt∗. In view of (6.7) it is enough to show that S̃n,l(t) = 0
for l < n− 2, where S̃n,l(t) denotes the sum in (6.7) with s = qt∗. For this
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sum by (6.7) we have

(6.8) (1− t1ql)(1− at1ql)S̃n,l(t) =
n∑
ν=l

(q−(n−l), at1t2q
n+l−1; q)ν−l

(at1t2q2l+2, q; q)ν−l

× (1− t1qν)(1− at1qν)

(
1− (1− q−(n−ν))(1− at1t2qn+ν−1)

(1− t1qν)(1− at1qν)

)

=
n−l∑
i=0

(q−(n−l), at1t2q
n+l−1; q)i

(at1t2q2l+2, q; q)i

×
[
(1− t1ql+i)(1− at1ql+i)− (1− q−(n−l)+i)(1− at1t2qn+l+i−1)

]
= ql(−t1 − at1 + q−n + at1t2q

n−1)2φ1

(
q−d, at1t2q

d+2l−1

at1t2q
2l+2

∣∣∣∣ q, q)
+ (at21q

2l − at1t2q2l−1)2φ1

(
q−d, at1t2q

d+2l−1

at1t2q
2l+2

∣∣∣∣ q, q2) ,
with d = n− l. We now show that the 2φ1 expressions in (6.8) vanish.

For integer numbers d > 0, d1 ≥ 0, and d2 > 0 we consider

Ad,d1,d2(α, q) := 2φ1

(
q−d, αqd1

α

∣∣∣∣ q, qd2) .(6.9)

We claim that Ad,d1,d2(α, q) ≡ 0 if d1 + d2 < d. Indeed we have

Ad,d1,d2(α, q) =
d∑
j=0

(q−d, αqd1 ; q)j
(α, q; q)j

qd2j(6.10)

=
d∑
j=0

[
d
j

]
q

(αqd1 ; q)j
(α; q)j

(
−q−d+d2

)j
q(
j
2)

=
d∑
j=0

[
d
j

]
q

(αqj ; q)d1
(α; q)d1

(
−q−(d−d2)

)j
q(
j
2),

where we used the identity

(αqj ; q)d1(α; q)j = (α; q)d1+j = (αqd1 ; q)j(α; q)d1 .
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By the q-binomial theorem (1.14) we have (z; q)l =
l∑

s=0
al,s(q)zs with coeffi-

cients al,s(q) = (−1)sq(
s
2)
[
l
s

]
q

. Then (6.10) can be continued as follows

Ad,d1,d2(α, q) =
1

(α; q)d1

d1∑
s=0

ad1,s(q)α
s

 d∑
j=0

[
d
j

]
q

(
−qs−(d−d2)

)j
q(
j
2)


= (1/(α; q)d1)

d1∑
s=0

ad1,s(q)α
s(qs−(d−d2); q)d = 0, d− d2 > d1,

(6.11)

where at the end we used (1.14). From (6.8) and (6.11) we get S̃n,l(t) = 0
for d = n− l > 2, since in this case it is a linear combination of Ad,d−3,1(α, q)
and Ad,d−3,2(α, q) with α = at1t2q

2l+2. Then an,l(t, qt) = 0 for l < n− 2.
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CANONICAL BUNDLES FOR HAMILTONIAN LOOP
GROUP MANIFOLDS

E. Meinrenken and C. Woodward

We construct canonical bundles for Hamiltonian loop group
actions with proper moment maps. As an application, we
show that for certain moduli spaces of flat connections on
Riemann surfaces with boundary, the first Chern class is a
multiple of the cohomology class of the symplectic form.

1. Introduction.

One of the simplest invariants of a symplectic manifold is the isomorphism
class of the canonical line bundle. Suppose (M,ω) is a symplectic manifold.
For any ω-compatible almost complex structure J one defines the canonical
line bundle KM as the dual to the top exterior power of the tangent bundle
TM ,

KM = detC(TM)∗.

Since the space of ω-compatible almost complex structures on M is con-
tractible, the isomorphism class of KM is independent of this choice. If a
compact Lie group G acts by symplectomorphisms on M , we can take J to
be G-invariant, and KM is a G-equivariant line bundle.

The canonical bundle behaves well under symplectic quotients. If the
G-action is Hamiltonian, with moment map Φ : M → g∗, the symplectic
quotient of M is defined by

M//G := Φ−1(0)/G.

We assume that 0 is a regular value, so that M//G is a symplectic orb-
ifold. The canonical line bundle for the reduced space (symplectic quotient)
M//G = Φ−1(0)/G is related to the canonical bundle on M by

KM//G = KM//G := (KM |Φ−1(0))/G.(1)

The canonical bundle also behaves well under inductions. Let T be a
maximal torus of G with Lie algebra t. Suppose that N is a Hamiltonian
T -manifold with moment map Ψ : N → t∗. The symplectic induction M :=
G×T N has a unique closed two-form and moment map extending the given
data on N . If the image of Ψ is contained in the interior of a positive

477

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2001.198-2


478 E. MEINRENKEN AND C. WOODWARD

chamber t∗+, then M is symplectic and KM is induced from KN , after a
ρ-shift:

KM
∼= G×T (KN ⊗ C−2ρ).

Here C−2ρ is the T -representation with weight given by the sum −2ρ of the
negative roots.

In this paper we develop a notion of canonical line bundle for (infinite-
dimensional) Hamiltonian loop group manifolds with proper moment maps.
The idea is to use the property of the canonical bundle under inductions
as the definition in the infinite-dimensional setting. Just as in the finite
dimensional situation, the canonical bundle of the (finite dimensional) re-
duced spaces are obtained from the canonical bundle KM upstairs. For the
fundamental homogeneous space ΩG = LG/G, our definition agrees with
Freed’s computation [4] of the regularized first Chern class of ΩG.

As an application, we prove the following fact about moduli spaces of
flat G-connections on compact oriented surfaces Σ. Suppose G is simple
and simply connected, and let c be the dual Coxeter number. Suppose Σ
has b boundary components B1, . . . , Bb, and let C1, . . . , Cb be a collection
of conjugacy classes. Let M(Σ, C) be the (finite dimensional) moduli space
of flat G-connections on Σ with holonomy around Bj contained in Cj . The
subsetM(Σ, C)irr of irreducible connections is a smooth symplectic manifold.
Let [ω] be the cohomology class of the basic symplectic form onM(Σ, C)irr.

Theorem 1.1. If the conjugacy classes Cj consist of central elements, then
the first Chern class of KM(Σ,C)irr is equal to −2c[ω].

This was first proved in the special case of SU(2) by Ramanan [11]. In
general it is a consequence of the local family index theorem (Quillen [10],
Zograf and Takhtadzhyan [13]). See also Beauville, Laszlo, and Sorger [3],
and Kumar and Narasimhan [5]. Our application, Theorem 4.2 below, ex-
pands the list of conjugacy classes for which this result holds. It would be
interesting to know which of these are Kähler-Einstein. Our main applica-
tion of the canonical bundle will be given in a forthcoming paper [2], where
it enters a fixed point formula for Hamiltonian loop group actions.

2. Hamiltonian loop group manifolds.

2.1. Notation. Let g be a simple Lie algebra, and G the corresponding
compact, connected, simply connected Lie group. Choose a maximal torus
T ⊂ G, with Lie algebra t, and let Λ ⊂ t resp. Λ∗ ⊂ t∗ denote the integral
resp. (real) weight lattice. Let R be the set of roots and R+ the subset of
positive roots, for some choice of positive Weyl chamber t+. We will identify
g ∼= g∗ and t ∼= t∗, using the normalized inner product · for which the long
roots have length

√
2. The highest root is denoted α0, and the half-sum of
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positive roots ρ = 1
2

∑
α∈R+

α. The integer

c = 1 + ρ · α0

is called the dual Coxeter number of G. The fundamental alcove for G is
the simplex

A = {ξ ∈ t+, α0 · ξ ≤ 1} ⊂ t ⊂ g.(2)

It parametrizes the set of conjugacy classes of G, in the sense that every
conjugacy class contains an element exp(ξ) for a unique ξ ∈ A. The cen-
tralizer Gexp(ξ) depends only on the open face σ containing ξ and will be
denoted Gσ. Introduce a partial ordering on the set of open faces of A by
setting σ ≺ τ if σ ⊂ τ . Then σ ≺ τ ⇒ Gσ ⊃ Gτ .

A similar discussion holds for semi-simple simply-connected groups, with
the alcove replaced by the product of the alcoves for the simple factors.

2.2. Loop groups. Let LG denote the loop group of maps S1 → G of
some fixed Sobolev class s > 1, Lg = Ω0(S1, g) its Lie algebra, and Lg∗ ∈
Ω1(S1, g) the space of Lie algebra valued 1-forms of Sobolev class s − 1.
Integration over S1 defines a non-degenerate pairing between Lg∗ and Lg.
One defines the (affine) coadjoint action of LG on Lg∗ ∈ Ω1(S1, g) by

g · µ = Adg µ− dg g−1(3)

where dg g−1 is the pull-back of the right-invariant Maurer-Cartan form on
G. Let L̂G be the basic central extension [9] of LG, defined infinitesimally
by the cocycle (ξ1, ξ2) 7→

∮
dξ1 · ξ2 on Lg. The adjoint action of L̂G on L̂g

descends to an action of LG since the central circle acts trivially, and for
the coadjoint action of LG on L̂g

∗
= Ω1(S1, g)⊕ R one finds

g · (µ, λ) = (Adg(µ) + λdgg−1, λ).(4)

This identifies Lg∗ with the affine hyperplane Ω1(S1, g)× {1} ⊂ L̂g
∗
.

There is a natural smooth map Hol : Lg∗ → G sending µ ∈ Lg∗, viewed
as a connection on the trivial bundle S1 × G, to its holonomy around S1.
This map sets up a 1-1 correspondence between the sets of G-conjugacy
classes and coadjoint LG-orbits, hence both are parametrized by points in
the alcove.

More explicitly this parametrization is given as follows. View A as a
subset of Lg∗ by the embedding ξ 7→ ξdθ/(2π). Then every coadjoint LG-
orbit passes through a unique point ξ ∈ A. The stabilizer group (LG)ξ
depends only on the open face σ ⊂ A containing ξ and will be denoted
(LG)σ. The evaluation map LG→ G, g 7→ g(1) restricts to an isomorphism
(LG)σ ∼= Gσ; in particular (LG)σ is compact and connected. If σ ≺ τ then
(LG)σ ⊃ (LG)τ . In particular, every (LG)σ contains T = (LG)int A.
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2.3. Hamiltonian LG-manifolds. We begin by reviewing the definition
of a symplectic Banach manifold. A two-form ω on a Banach manifold M
is weakly non-degenerate if the map ω] : TMm → T ∗mM is injective, for all
m ∈M . A Hamiltonian LG-manifold is a Banach manifold M together with
an LG-action, an invariant, weakly non-degenerate closed two-form ω and
an equivariant moment map Φ : M → Lg∗. Equivalently, one can think
of M has a Hamiltonian L̂G-manifold, where the central circle acts trivially
with constant moment map +1.

Example 2.1. 1) For any µ ∈ Lg∗, the coadjoint orbit LG ·µ is a Hamil-
tonian LG-manifold, with moment map the inclusion.

2) Let Σ be a compact oriented surface with boundary ∂Σ ∼= (S1)b. Let
G(Σ) = Map(Σ, G) be the gauge group, and G∂(Σ) be the gauge trans-
formation that are trivial on the boundary.

The space Ω1(Σ, g) of connections carries a natural symplectic struc-
ture, and the action of G∂(Σ) is Hamiltonian with moment map the
curvature. The symplectic quotient M(Σ) is the moduli space of flat
connection up to based gauge transformations. It carries a residual ac-
tion of LGb, with moment map induced by the pull-back of connections
to the boundary.

2.4. Symplectic cross-sections. In the case where the moment map Φ
is proper, a Hamiltonian LG-space with proper moment map behaves very
much like a compact Hamiltonian space for a compact group.1 The reason
for this is that the coadjoint LG-action on Lg∗ has finite dimensional slices,
and the pre-images of these slices are finite dimensional symplectic subman-
ifolds. To describe these slices, we view the alcove as a subset of Lg∗ as
explained above. Let

Aσ :=
⋃
τ�σ

τ.

Then the flow-out under the action of the compact group (LG)σ,

Uσ = (LG)σ · Aσ ⊂ Lg∗

is a slice for the LG-action at points in σ.
For example, if G = SU(2), then the alcove may be identified with the

interval
A = [0, 1/2].

For the three faces {0}, (0, 1/2), {1/2} we have

A{0} = [0, 1/2), A(0,1/2) = (0, 1/2), A{1/2} = (0, 1/2].

1In fact, there is a 1-1 correspondence between Hamiltonian LG-spaces with proper
moment map and compact Hamiltonian G-spaces with G-valued moment maps [1].
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The slice Y(0,1/2) = (0, 1/2), since LG(0,1/2) = T . The other slices Y{0}, Y{1/2}
are open balls of radius 1/2 in Lg∗{0}, resp. Lg∗{1/2}. Note that although
Lg∗{0}, Lg∗{1/2} are isomorphic as G-modules to the Lie algebra g, the inter-
section Lg∗{0} ∩ Lg∗{1/2} = Lg∗(0,1/2).

If M is a symplectic Hamiltonian LG-space with proper moment map Φ,
the symplectic cross-sections

Yσ = Φ−1(Uσ)

are finite-dimensional symplectic submanifolds. In fact, they are Hamilton-
ian (L̂G)σ-manifolds, where the central S1 acts trivially. The moment maps
are the restrictions Φσ = Φ|Yσ : Yσ → Uσ ⊂ (Lg)∗σ ⊂ L̂g

∗
. Here (Lg)∗σ is

identified with the unique (LG)σ-invariant complement to the annihilator of
(Lg)σ in Lg∗, or equivalently with the span of Uσ.

For a proof of the symplectic cross-section theorem for loop group actions,
see [8]. The flowouts LG · Yσ = LG ×(LG)σ Yσ form an open covering of
M . Therefore, the Hamiltonian LG-space (M,ω,Φ) can be reconstructed
from its collection of symplectic cross-sections (Yσ, ωσ,Φσ) and the inclusions
Yτ ↪→ Yσ for σ ≺ τ .

3. Construction of the canonical bundle.

Suppose (M,ω,Φ) is a Hamiltonian LG-manifold with proper moment map.
In this section we contruct an L̂G-equivariant line bundle KM → M which
will play the role of a canonical line bundle.

For any L̂G-equivariant line bundle L→M , the (locally constant) weight
of the action of the central circle S1 ⊂ L̂G is called the level of L. Any L̂G-
bundle L → M is determined by the collection of (L̂G)σ-equivariant line
bundles Lσ → Yσ over the cross-sections, together with (LG)τ -equivariant
isomorphisms ϕσ,τ : Lσ|Yτ ∼= Lτ for all σ ≺ τ , such that

ϕσ,τ ◦ ϕτ,ν = ϕσ,ν(5)

if σ � τ � ν.
Let Kσ → Yσ be the canonical line for some invariant compatible almost

complex (a.c.) structure on Yσ. There exist (LG)τ -equivariant isomorphisms

Kσ|Yτ ∼= Kτ ⊗ detC(νστ )∗(6)

where νστ → Yτ is the symplectic normal bundle to Yτ inside Yσ. We will
therefore begin by describing the complex structure on νστ .

3.1. The normal bundle of Yτ in Yσ. Suppose σ ≺ τ so that Yτ is
an (LG)τ -invariant submanifold of (LG)σ. Since (LG)σ ×(LG)τ Yτ is an
open subset of Yσ, the normal bundle of Yτ in Yσ is (LG)τ -equivariantly
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isomorphic to the trivial bundle (Lg)σ/(Lg)τ . It carries a unique (LG)τ -
invariant complex structure compatible with the symplectic structure. In
terms of the root space decomposition this complex structure is given as
follows. Given a face σ of A, define the positive Weyl chamber t+,σ for
(LG)σ as the cone over A − µ, for any µ ∈ σ. Similarly define t+,τ . Let
R+,σ ⊃ R+,τ the corresponding collections of positive roots.

As complex (L̂G)τ -representations,

(Lg)σ/(Lg)τ =
⊕

α∈R+,σ\R+,τ

Cα.

In particular,

detC(νστ )∗ =
⊗

α∈R+,σ\R+,τ

Cα = C−2(ρσ−ρτ ),(7)

where ρσ, ρτ are the half-sums of positive roots of R+,σ,R+,τ respectively.

3.2. Compatibility condition. Our candidate for Lσ = (KM )|Yσ will be
of the form Kσ ⊗ Cγσ , for suitable weights γσ ∈ Λ∗ × Z. The key point
which makes the problem non-trivial is that in order for Cγσ to give L̂Gσ-
representations, the weight γσ should be fixed under the (L̂G)σ-action on
L̂g

∗
. According to (6) and (7) these weights should satisfy

γσ − γτ = 2(ρσ − ρτ )
for all faces σ ≺ τ .

The following Lemma gives a solution to this system of equations.

Lemma 3.1. For all faces σ ⊂ A, the difference 2ρ − 2ρσ ∈ Λ∗ is the
orthogonal projection of 2ρ to the affine span of the dilated face 2cσ. In
particular the weight

γσ := −(2ρ− 2ρσ, 2c) ∈ Λ∗ × Z

is fixed under (L̂G)σ.

Proof. The weight 2ρσ is characterized by the property

2ρσ · α = α · α
for every simple root α of (LG)σ. Letting {α1, . . . , αl} be the simple roots
for G, the simple roots for (LG)σ are precisely those roots in the collection
{α1, . . . , αl,−α0} which are perpendicular to the span of σ − µ (where µ ∈
σ). In particular −α0 is a simple root for (LG)σ precisely if 0 6∈ σ.

If α ∈ {α1, . . . , αl} is a simple root of (LG)σ then 2ρ ·α = 2ρσ ·α = α ·α
so that (2ρ − 2ρσ) · α = 0. If 0 6∈ σ so that −α0 is among the set of simple
roots for (LG)σ, we also have

(2ρ− 2ρσ) · α0 = 2(c− 1) + α0 · α0 = 2c,
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as required. �

The solution given by the lemma is unique, since for σ = {0} the group
LGσ = G has the unique fixed point γ0 = (0,−2c).

3.3. Gluing. Let Lσ = Kσ ⊗Cγσ . We still have to construct isomorphisms
ϕσ,τ : Lσ|Yτ → Lτ satisfying the cocycle condition. If the compatible a.c.
structures on Yσ can be chosen in such a way that for σ ≺ τ , Yτ is an
a.c. submanifold of Yσ, the isomorphisms would be canonically defined and
the cocycle condition would be automatic. Unfortunately, it is in general
impossible to choose the a.c. structures to have this property.

To get around this difficulty we replace the sets Yσ with smaller open sub-
sets. The compact set M/LG is covered by the collection of sets Yσ/(LG)σ
with σ a vertex of A, since A is covered by the (relative) open subsets Aσ.
It is therefore possible to choose for each vertex σ of A, an (LG)σ-invariant,
open subset Y ′σ ⊂ Yσ, such that the collection of these subsets has the fol-
lowing two properties:

a. The collection of all Y ′σ/(LG)σ covers M/LG.
b. The closure of Y ′σ is contained in Yσ.
Given such a collection of subsets {Y ′σ} we define, for any open face τ of

A,
Y ′τ =

⋂
σ�τ, dimσ=0

Y ′σ.

Then Y ′τ is an (LG)τ -invariant open subset of Yτ , with the property that its
closure in M is contained in Yτ .

Lemma 3.2. There exists a collection of (LG)σ-invariant compatible a.c.
structures on the collection of Y ′σ, with the property that for all σ � τ ,
the embedding Y ′τ ↪→ Y ′σ is a.c.. Moreover, any two a.c. structures on the
disjoint union

∐
σ Y

′
σ with the required properties are homotopic.

Proof. We construct a.c. structures Jσ on Y ′σ with the required properties
by induction over dimension of the faces σ, starting from the interior of the
alcove A and ending at vertices.

Given k ≥ 0, suppose that we have constructed compatible a.c. structures
on all Yσ with dimσ > dim t−k, in such a way that if σ � τ , the embedding
Yτ ↪→ Yσ is a.c. on some open neighborhood of the closure of Y ′τ . Let ν be
a face of dimension dim t− k. Each of the a.c. structures on Yτ with τ � ν
defines an invariant compatible a.c. structure on Yν , and by hypothesis
these complex structures match on some open neighborhood of

⋃
ν≺τ (LG)ν ·

Y ′τ . We choose an invariant a.c. structure on Yν such that it matches
with the given a.c. structures over a possibly smaller open neighborhood
of
⋃
ν≺τ (LG)ν · Y ′τ . This can be done by choosing a Riemannian metric on

Yν which matches the given one in a possibly smaller neighborhood, and
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taking the compatible almost complex structure defined by the metric in
the standard way (see e.g. [6]).

Now let {J0
σ}, {J1

σ} be two collections of a.c. structures with the required
properties. They define Riemannian metrics g0

σ, g
1
σ. Let gtσ = (1−t)g0

σ+t g1
σ,

and let J tσ be the compatible a.c. structure which it defines. For σ ≺ τ , the
metric gtτ on Y ′τ is the restriction of gtσ and the symplectic normal bundle of
Y ′τ in Y ′σ coincides with the Riemannian normal bundle. This implies that
the embedding Y ′τ → Y ′σ is a.c.. �

Choose a.c. structures on Yσ as in the Lemma, and define (L̂G)σ-equi-
variant line bundles L′σ = K ′

σ ⊗Cγσ . We then have canonical isomorphisms

φσ,τ : L′σ|Y ′τ = L′τ

and they automatically satisfy the cocycle condition. It follows that there is
a unique L̂G-equivariant line bundle KM →M with KM |Y ′σ = L′σ. By con-
struction, the collection of line bundles L′σ, hence also KM , is independent
of the choice of a.c. structures up to homotopy.

Lemma 3.3. The isomorphism class of KM is independent of the choice of
“cover” Y ′σ.

Proof. Given two choices Y 1
σ and Y 2

σ labeled by the vertices of A, let Y 3
σ =

Y 1
σ ∪Y 2

σ . Given a.c. structures J jσ on Y j
σ and the canonical line bundles Kj

M

constructed from them, we have an equivariant homotopy K1
M ∼ K3

M ∼ K2
M

(because J3
σ restricts to a.c. structures on Y 1

σ and Y 2
σ ). �

This completes our construction of the canonical bundle. The central
circle in L̂G acts with weight −2c, that is, KM is a line bundle at level −2c.

3.4. Examples.

3.4.1. Coadjoint orbits. Let M = LG · µ be the coadjoint orbit through
µ ∈ A, and let σ ⊂ A denote the open face containing µ. Thus M ∼=
LG/(LG)σ. Since Yσ = {µ}, the canonical line bundle KM is the associated
bundle

KLG/(LG)σ := L̂G×
(dLG)σ

C−2(ρ−ρσ ,c).(8)

This definition of canonical bundle agrees with Freed’s computation [4] of a
regularized first Chern class of the fundamental homogeneous space ΩG =
LG/G. In this paper, Freed provides further evidence for this being the
correct definition of a first Chern class, the simplest being that since ρ̂ =
(ρ, c) is the sum of fundamental affine weights (cf. [9]), the canonical bundle
for LG/T is expected to beKLG/T = L̂G×bTC−2ρ̂. and that for LG/G should
be L̂G× bG C−2(0,c).
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Since LG/(LG)σ is a homogeneous space the canonical line bundle carries
a unique L̂G-invariant connection. Its curvature equals −2πi times the
symplectic form for the coadjoint orbit (at level−2c) through−2(ρ−ρσ, c) =
−γσ. Recall that (ρ−ρσ)/c ∈ A is the orthogonal projection of ρ/c onto the
affine subspace spanned by σ. Therefore:

Lemma 3.4. If (M,ω) is the coadjoint LG-orbit (at level 1) through the
orthogonal projection µ of ρ/c onto some face σ of A, the curvature of the
canonical line bundle is given by i

2π curv(KM ) = −2cω. In particular, this
is true for µ = ρ and for µ a vertex of A.
3.4.2. Moduli spaces of flat connections. Let Σ be a compact, oriented
surface with boundary ∂Σ ∼= (S1)b and (M(Σ), ω) the corresponding moduli
space. From now on, we assume that b = 1, although the more general case
is only more difficult notationally. By Corollary 3.12 of [7] there is a unique
L̂G-equivariant line bundle at each level, so that every L̂G-equivariant line
bundle overM(Σ) at level k is isomorphic to the kth tensor power of the pre-
quantum line bundle L(Σ).2 In particular the canonical bundle KM(Σ) →
M(Σ) carries an invariant connection such that i

2π curv(KM(Σ)) = −2cω.

4. Quotients of canonical bundles.

In this section, we show that the bundles KM behave well under symplectic
quotients, that is, that the symplectic quotient of KM is the usual canoni-
cal bundle on the quotient. For any Hamiltonian LG-space (M,ω,Φ) with
proper moment map, and any coadjoint LG-orbit O ⊂ Lg∗, the reduced
space MO at level O is a compact space defined as the quotient

MO := Φ−1(O)/LG.

Let µ ∈ A is the point of the alcove through which O passes, σ the open
face containing µ, and

Oσ := O ∩ Uσ = (LG)σ · µ.
Then

MO = Φ−1(µ)/(LG)σ = (Yσ)Oσ
which identifies MO as a reduced space of the symplectic cross-section (Yσ,
ωσ,Φσ). It follows that the standard theory of symplectic reduction applies:
If µ is a regular value then MO is a finite dimensional symplectic orbifold,
and in general it is a finite dimensional stratified symplectic space in the
sense of Sjamaar-Lerman [12].

2A sketch of the argument is as follows: Two line bundles at the same level differ by
a line bundle at level 0, which descends to the quotient M(Σ)/ΩG by the based loop
group. From the holonomy description of the moduli space we have M(Σ)/ΩG ∼= G2g.
Since H2

G(G2g) is trivial, the descended line bundle is trivial, so the two line bundles are
isomorphic.



486 E. MEINRENKEN AND C. WOODWARD

Over the level set Φ−1(O) we have two line bundles at level −2c, the re-
striction of the canonical bundle ofM and the pull-back by Φ of the canonical
bundle KO on the coadjoint orbit. They differ by an LG-equivariant line
bundle (that is an L̂G-bundle at level 0),

KM |Φ−1(O) ⊗K∗
O.

Proposition 4.1. Suppose O consists of regular values of Φ. The canonical
line bundle for the reduced space MO is the quotient,(

KM |Φ−1(O) ⊗ Φ∗K∗
O
)
/LG.

Proof. Since

KM = L̂G×
(dLG)σ

(Kσ ⊗ Cγσ), KO = L̂G×
(dLG)σ

(KOσ ⊗ Cγσ)

we have
KM |Φ−1(O) ⊗ Φ∗K∗

O = L̂G×
(dLG)σ

(Kσ ⊗ Φ∗σK
∗
Oσ).

Taking the quotient by LG we obtain(
KM |Φ−1(O) ⊗ Φ∗K∗

O
)
/LG =

(
Kσ|Φ−1

σ (Oσ) ⊗ Φ∗σK
∗
Oσ)/(LG)σ

which is the canonical bundle for the reduced space (Yσ)Oσ = MO. �

Theorem 4.2. LetM(Σ) be the moduli space of flat connections on a com-
pact oriented surface with boundary, and Cµ the conjugacy class correspond-
ing to the projection µ of ρ/c onto σ for some face σ. Suppose µ is a regular
value for the moment mapM(Σ), soM(Σ, Cµ) the moduli space of flat con-
nections with holonomy in Cµ is a compact symplectic orbifold. Then the
Chern class c1(KM ) for M =M(Σ, Cµ) is −2c times the cohomology class
of the reduced symplectic form.

Proof. Let O be the a coadjoint orbit through the element ρσ/c. By Sec-
tion 3.4, KM(Σ) resp. KO are isomorphic to the −2c-th tensor power of
the pre-quantum line bundles on M(Σ) resp. O. By Proposition 4.1, the
canonical line bundle on the quotient is isomorphic to the −2c-th power
of the quotient of the pre-quantum line bundle on the product, which is a
pre-quantum line bundle on the quotient. �
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SUPERSINGULAR PRIMES AND p-ADIC L-FUNCTIONS

Luis Manuel Navas Vicente

We discuss the problem of finding a p-adic L-function at-
tached to an elliptic curve with complex multiplication over an
imaginary quadratic field K, for the case of a prime where the
curve has supersingular reduction. While the case of primes of
ordinary reduction has been extensively studied and is essen-
tially understood, yielding many deep and interesting results,
basic questions remain unanswered in the case of supersingu-
lar reduction. We will discuss a conjecture, related to another
in Rubin, 1987, and some ideas related to the problem in gen-
eral. The basic tools originate with the work of J. Coates and
A. Wiles in 1977 and 1978, and are developed in the work of
K. Rubin.

1. Set-up.

The analytic theory of L-functions and arithmetic properties of their special
values goes back to the 19th-century work of Kummer on the arithmetic of
cyclotomic fields. His congruences for Bernoulli numbers were re-cast more
than a century later as the p-adic interpolation of Riemann’s Zeta Function
and Dirichlet L-series, whose known special values are basically Bernoulli
numbers. Kummer himself introduced logarithmic differentiation modulo
a prime p and the use of cyclotomic units as a method of uncovering the
rich arithmetic structure of cyclotomic fields. In the modern theory, these
classical p-adic L-functions arise as a relation between the Zp[[t]]-module
of cyclotomic units and that of local p-adic units. The element relating
them is essentially the interpolating L-function, and the precise interpolation
result is obtained by a suitable logarithmic differentiation homomorphism.
The theory generalizes to the arithmetic of abelian extensions of imaginary
quadratic fields via the consideration of an elliptic curve as the arithmetic
object. Technical complications arise at primes p which do not split in the
quadratic extension, and relatively few results are known compared to the
ordinary split case. The main objective of this paper is to suggest a way
(§2) by which interesting two-variable p-adic L-functions may arise from an
elliptic curve with CM, at primes of supersingular reduction.

The relative complexity of the method hinges on the relation between the
arithmetic “elliptic” units and p-adic local units in the supersingular case,
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to the author’s knowledge as yet unclarified, and perhaps worthy of separate
interest in itself. Propositions 2.1 and 2.2 contain preliminary suggestions on
this problem. Theorem 5.5 expresses the L-values which we believe should
be interpolated by a “supersingular” p-adic L-function, in terms of p-adic
logarithmic derivatives on elliptic units. These are values twisted by a char-
acter of p-power order. §6 generalizes this to higher-order derivations of a
two-variable formal power series, showing how the p-character and the local
grossencharacter act together. Finally, Theorems 7.4 and 7.6 are local com-
putations with logarithmic derivatives analogous to those done by Coates
and Wiles in [1, 2] for primes of ordinary reduction, hopefully of use to those
who may wish to obtain explicit results on the p-adic growth properties of
L-values, for example. We prove the relevant properties of the logarith-
mic differentiation homomorphisms used for these computations. The form
of these results given supersingular reduction is similar to, but rather less
transparent than in the ordinary case, as far as taking p-adic valuations is
concerned.

Let E be an elliptic curve over an imaginary quadratic field K, with
complex multiplication by the ring of integers OK . The following notation
is standard. Let ψ be the Hecke grossencharacter attached to E, and f its
conductor. Pick a prime p of K not dividing 6f, and let p 6= 2, 3 be the
prime of Z below p. Assume that p remains prime in K. This implies that
E has good supersingular reduction at p. Let π = ψ(p). This is the unique
generator of p that reduces to Frobenius modulo p. Note that p and π differ
only by a unit of OK .

Consider for n ≥ 0 the abelian extensions K(Eπn+1)/K obtained by ad-
joining the coordinates of the pn+1-division points on E. Define Eπ∞ =⋃
n≥0Eπn+1 and consider the Galois groups Gn = G(K(Eπn+1)/K) G∞ =

G(K(Eπ∞)/K). Denote by Kp the completion of K at p and by Op its
local ring of integers. We use the same symbol p for the prime ideal of
Op. Let K̄p be a fixed algebraic closure of Kp. Let Kn = Kp(Eπn+1) and
K∞ =

⋃∞
n=0Kn = Kp(Eπ∞). One has canonically Gn = G(Kn/Kp) and

G∞ = G(K∞/Kp). The structure of these extensions is described by the
theory of Lubin-Tate formal groups. This is a very useful fact, since all
Lubin-Tate formal groups over Op are isomorphic and one can choose among
them one well suited for computations. This idea is illustrated in [1, 2].

In our case, the hypothesis of supersingular reduction is equivalent to this
formal group having height 2 and not 1 as in the case of ordinary reduction.

The p-part of the grossencharacter corresponds to the character κ : G∞ →
O∗p which gives the action of G∞ on p-power division points of any of the
Lubin-Tate formal groups associated to π over Op. If E is such a group, then

ωσ = [κ(σ)](ω) ∀ω ∈ Ep∞ , σ ∈ G∞,(1)
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where [α] is the Op-endomorphism of E corresponding to α ∈ Op. κ estab-
lishes isomorphisms Gn ∼= O∗p/(1+pn+1Op) ∼= µq−1×(1+pOp)/(1+pn+1Op),
and G∞ ∼= O∗p ∼= µq−1 × (1 + pOp) where q = p2 in the supersingular case.
These correspond to the decompositions Gn ∼= ∆×Γn G∞ ∼= ∆×Γ∞ where
∆ = G0 = G(Kp(Ep)/Kp),Γn = G(Kn/K0),Γ∞ = G(K∞/K0). In the case
of supersingular reduction we have κ : Γ∞ ∼= 1 + pOp

∼= Z2
p. These are

therefore Iwasawa Z2
p extensions, not Zp extensions as in the ordinary case,

which complicates matters. We let κ0 be the restriction of κ to ∆ = G0. It
establishes an isomorphism ∆ ∼= µq−1.

Let Λ = Zp[[G∞]] = lim←−Zp[Gn] be the Iwasawa algebra. Let ρ be, as in [5],
the Zp-representation of ∆ that reduces modulo p to the Fp-representation of
∆ giving the action on Ep. Lemma 11.5 of [5] shows that this is an irreducible
representation, and in the supersingular case, its degree is 2. In particular,
Λρ = Op[[Γ∞]] ∼= Op[[S, T ]] since Γ∞ ∼= Z2

p, although the isomorphism is
not canonical, depending on a choice of topological generators for Γ∞. For
this reason p-adic L-functions in the supersingular case will be 2-variable
L-functions.

We need the following facts. If ∗ denotes the action of the non-trivial
automorphism of Kp/Qp, then ρ ∼= κ0⊕κ0

∗ over Kp and κ0
∗ = κ0

p because
∗ gives the Frobenius element of Kp/Qp, and p is inert.

2. Iwasawa Structure of Local Units.

Let Un be the group of units of Kn congruent to 1 modulo the unique prime
ideal above p, and Cn the closure in Kn of the group of Robert elliptic units
of Kn. One has Cn ⊆ Un. Let U∞ = lim←−Un and C∞ = lim←−Cn, where the
limits are with respect to the norm maps. In [5], Lemma 11.9, it is shown
that Uρ∞ ∼= (Λρ)2 and Cρ∞ ∼= Λρ. Furthermore, one can decompose Uρ∞ into
a direct sum

Uρ∞ = U1 ⊕ U2(2)

such that δ(U1) = Op and δ(U2) = 0, where δ is the “reciprocity law map”
δ : Uρ∞ → Op. δ is a “κ-homomorphism,” meaning δ(uσ) = κ(σ)δ(u) ∀σ ∈
G∞, and δ maps Λρ-submodules of Uρ∞ to ideals of Op. (See [5], Prop. 11.7.)

We come now to a problem of central interest. In [8] it was stated that
one could choose a decomposition as in (2) in which Cρ∞ would be contained
in one of the two free components U1, U2. The truth of this statement seems
still not to be known at this time. We will refer to this conjecture as (C).

If (C) is true, then a generator c of Cρ∞ and a generator u of the free
component that Cρ∞ would lie in are related by c = f · u, where f is an
element of Λρ; now f can be viewed as a power series in two variables with
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coefficients in Op. This would be a natural candidate for a two-variable p-
adic L-function, since this procedure is completely analogous to the way one-
variable p-adic L-functions arise in the ordinary case and in the “classical”
case over Q.

The question (see [8]) would then also be to find a generator u of suffi-
ciently explicit form that the Coates-Wiles logarithmic differentiation map
and its generalizations, which yield L-values when applied to elliptic units,
yield a sufficiently explicit factor when applied to u. This is what Coates
and Wiles do in the ordinary case [1, 2], using the basic Lubin-Tate formal
group. This in turn leads to an understanding of the p-adic interpolation
properties of those L-values. Over Q this theory gives the classical congru-
ences of Kummer, Clausen and Von Staudt.

We study to what extent a decomposition of Uρ∞ as in (2) can be “per-
turbed.”

Proposition 2.1. If u ∈ Uρ∞, then:
(i) δ(Λρu) = Op if and only if δ(u) 6≡ 0 mod π.
(ii) If u1, u2 ∈ Uρ∞ with Λρu2 ⊆ Λρu1, and δ(u1), δ(u2) 6= 0, then Λρu2 =

Λρu1 if and only if ordp(δ(u2)) = ordp(δ(u1)).

Proof. (i) is straightforward from the properties of δ. In general, δ(Λρu) =
Opδ(u). For (ii), write u2 = f · u1 and apply δ. Since δ(u2) = f(κ(γ1) −
1, κ(γ2)−1)δ(u1), (see [1]), Λρu2 = Λρu1 if and only if f is a unit in Λρ, and
this is so if and only if f(0, 0) is a unit at p. Since f(κ(γ1)− 1, κ(γ2)− 1) ≡
f(0, 0) mod π, we see that this is the case if and only if the quotient of
δ(u1), δ(u2) is a unit at p. �

Proposition 2.2. Suppose we have Uρ∞ = U1 ⊕ U2 with δ(U2) = 0, and
hence δ(U1) = Op. Let u ∈ Uρ∞ such that δ(u) ∈ O∗p. Using additive notation,
let u = u1+u2, with u1 ∈ U1, u2 ∈ U2. Then U1 = Λρu1 and Uρ∞ = Λρu⊕U2.

Proof. For the first part, note that δ(u1) = δ(u) ∈ O∗p and, since Λρu1 ⊆ U1,
by the remarks above, equality must hold. As for the second, clearly u1 =
u − u2 ∈ Λρu + U2, therefore U1 ⊂ Λρu + U2, and hence Uρ∞ = Λρu + U2.
The sum is direct: If v ∈ Λρu ∩ U2 then v = f · u = v2 for some f ∈ Λρ

and v2 ∈ U2. Thus f · u1 = v2 − f · u2 ∈ U1 ∩ U2 = 0, and so f = 0 and
v2 = 0. �

Hence if we find an element u in Uρ∞ such that δ(u) is a unit, and we start
with a given decomposition Uρ∞ = U1 ⊕ U2, where δ(U2) = 0, then we can
replace our U1 with Λρu (i.e., assume that U1 is generated by u) without
changing U2. There is then a relation c = f · u + f̃ · v, where c generates
Cρ∞, δ(v) = 0 and f, f̃ are two-variable power series with coefficients in Op.

A natural u having a particularly “simple” form was already used by
Wiles in [2] for the ordinary case, and works also in the supersingular case.
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The more explicit the evaluation of the Coates-Wiles derivations on u, v is,
the more explicit the relation becomes.

If (C) holds, then the second term with f̃ and v disappears. If (C) is
false, then one must also study the “extra factor” v. We know that δ(v) = 0,
but the generalized δ-maps need not vanish at v. The nature of these is
connected with explicit reciprocity laws. If (C) is true, this would raise
the further question (C′) of whether the elliptic units Cρ∞ lie in the free
component U1 having as generator the “special” sequence of local units u
discovered by Coates and Wiles, in which case we would get an explicit
relation of the form f(∗, ∗) = (L− value) · (explicit factors) , but this may
be too good to be true. Nevertheless, see [9] for a different approach to this
problem and evidence that in any case makes investigation of the problem
interesting.

3. The Basic Lubin-Tate Formal Group.

See [3] for details or proofs of the following facts. The basic Lubin-Tate
formal group associated to π is the formal group E in which multiplication
by π is given by the polynomial [π](X) = πX + Xq. It is the simplest
series over Op satisfying the Lubin-Tate conditions f(X) ≡ X mod X2 and
f(X) ≡ πX mod p, and is simpler to work with computationally. In general
we let [α] denote the power series representing the Op-endomorphism of E
given by the action of α.

Let Nm,n,Tm,n,Nn,Tn represent the norm and trace maps from Km to
Kn and from Kn to Kp respectively. Let u denote addition in E and λ the
logarithm (normalized isomorphism with the additive formal group Ga).

We fix a generator (ωn) of the Tate module, that is, a sequence with
ωn in the ring of integers of Kn such that [π](ωn+1) = ωn for all n ≥ 0.
Then Kn = Kp(ωn) and in fact this sequence is also norm compatible:
Nn+1,n(ωn+1) = ωn.

If u = (un)n≥0 ∈ U∞, denote by gu the Coleman power series associated
to u, that is, the unique series gu ∈ Op[[T ]]∗ such that gu(ωn) = un for
all n ≥ 0. For σ in G∞, given the definition of κ, we have the relation
guσ = gu ◦ [κ(σ)].

4. L-values.

Over the complex numbers C, special values of Hecke L-functions at the
integers may be expressed as logarithmic derivatives of theta functions. One
may obtain an analogous p-adic relationship. Details of these facts may be
found in [6], which draws from [1, 2]. To get L-values, one uses the Robert
elliptic units, which are defined by picking a suitable theta function Θ. One
can find a sequence c = (cn) of elliptic units whose projection onto the ρ-
eigenspace generates Cρ∞ over the Iwasawa algebra Λ. ([6] Theorem 12.11.)
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Let Φ be the Coleman power series corresponding to c. Let Ω be an OK-
generator for the period lattice of a suitable Weierstrass model of E/C. The
central relation is contained in the following result of Rubin [6], §12.

Theorem 4.1. Let Q ∈ E(K̄) be of exact order fpn+1. Then for k ≥ 1, and
χ a character of Gn of p-power order,∑

σ∈Gn

χ(σ)Dk log Φσ
∣∣
T=ωnσ

=
∑
σ∈Gn

χ(σ)
(
d

dz

)k
log Θ(z)|z=Qσ

= B · πn+1 · Ω−1Lfp

(
ψ̄kχ, k

)
where Df = 1

λ′
f ′

f is the Coates-Wiles logarithmic derivation ([9], §2) and
B = Bk may be chosen to be a unit over p, at least for 1 ≤ k ≤ q − 1.

5. Formal logarithmic derivatives.

Definition 5.1. Let L denote the “formal logarithmic derivative” onO[[T ]],
given by Lf = 1

λ′(T )D log(f) = 1
λ′(T )

f ′

f for f in O[[T ]].

It is easily seen to satisfy Lf1f2 = Lf1 + Lf2 for f1, f2 ∈ O[[T ]] and
L(f ◦ [α]) = α · (Lf ◦ [α]) for f ∈ O[[T ]] and α ∈ Op.

Definition 5.2. Let u = (un)n≥0 ∈ U∞, and define δm(u) =
π−mTmLgu(ωm). Then δm(u) = δn(u) for all m,n ≥ 0. Let δ(u) be the
common value.

Lemma 5.3. We have δ(u) = (π−1)Lgu(0) for all n ≥ 0. Thus δ(u) ∈ Op.

Proof. See [3], §8. �

Definition 5.4. For a character χ of Gn, taking values in K̄p
∗
, define a

map δn,χ : U∞ → K̄p by the formula δn,χ(u) =
∑

σ∈Gn χ(σ)Lgu(ωσn).

We list the basic properties of the maps δn,χ from [9], §2, and some others.
1) δn,χ(u1 · u2) = δn,χ(u1) + δn,χ(u2) for u1, u2 ∈ U∞.
2) By continuity, δn,χ(ua) = aδn,χ(u) if a ∈ Op.
3) If χ = 1, then δn,χ = πnδ.
4) If χ is a character of Gn, and τ is any element of G∞, then lifting χ

to G∞, one has δn,χ(uτ ) = κχ−1(τ)δn,χ(u).
5) Let γ1, γ2 be Zp-generators of Γ∞. Then for all χ of p-power order,

u ∈ Uρ∞ and f ∈ Λρ, δn,χ(f ·u) = f
(
κχ−1(γ1)−1, κχ−1(γ2)−1

)
δn,χ(u)

(this is slightly different from [9] but is proved similarly using that the
character values are congruent to 1 modulo the prime above p in K̄p).

In light of this definition and 4.1 we have the following:

Theorem 5.5. For n ≥ 0, δn,χ(c) = B · πn+1 · Ω−1Lgp(ψ̄χ, 1), where B is
a p-unit.
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We determine the action of δn,χ on an element in the ρ-eigenspace Uρ∞ and
prove some additional properties of these maps. If u is any element in U∞,
let uρ denote the ρ-component of u in Uρ∞. Note Tr(ρ) = κ0 +κ0

∗ = κ0 +κp0.

Proposition 5.6. If χ ∈ Ĝn and χ = 1 on ∆, then δn,χ(uρ) = δn,χ(u).

Proof.

δn,χ(uρ) = δn,χ

(
u

1
q−1

P
σ∈∆ Tr(ρ(σ−1))σ

)
=

1
q − 1

∑
σ∈∆

κ0χ
−1(σ)

(
κ0
−1(σ) + κ0

−p(σ)
)
δn,χ(u)

=
1

q − 1

(∑
σ∈∆

χ−1(σ) +
∑
σ∈∆

χ−1κ0
1−p(σ)

)
δn,χ(u).

From the above we see that

δn,χ(uρ) =

{
δn,χ(u) if χ = 1 or κ1−p

0 on ∆
0 otherwise.

(3)

�

Note that the condition χ = 1 on ∆ is equivalent to χ having p-power
order, and in fact to really being a character on Γn. This is clear from the
decomposition Gn ∼= ∆ × Γn and #∆ = p2 − 1,#Γn = p2n. From now on,
let us assume that the characters χ have p-power order.

Proposition 5.7. Let Γm,n = G(Km/Kn) for m ≥ n. If χ ∈ Γ⊥m,n (i.e.,
χ = 1 on Γm,n ⊆ Γn), then δm,χ = πm−nδn,χ.

Proof. Using the basic properties of L and gu as in [3],

δm,χ(u) =
∑

σ∈Γm/Γm,n

∑
τ∈Γm,n

χ(στ)Lgu(ωστm )(4)

=
∑

σ∈Γm/Γm,n

χ(σ)
∑

τ∈Γm,n

Lgu(ωτm)σ

=
∑

σ∈Γm/Γm,n

χ(σ)
(
Tm,nLgu(ωm)

)σ
= πm−n

∑
σ∈Γn

χ(σ)Lgu(ωσn)

= πm−nδn,χ(u).

�

Corollary 5.8. For χ ∈ ˆΓn+1, δn+1,χp = πδn,χp .
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Proof. From the structure of the local extensions Kn one sees immediately
that Γ⊥n+1,n is the subgroup of p-th powers. It follows that for any χ ∈ ˆΓn+1,

we have χp ∈ Γ⊥n+1,n, and so we can view χp as a character of Γn. �

Thus in calculations we can assume that the character χ has maximum
order.

6. Higher Derivatives.

We may easily generalize the maps δn,χ so that we obtain information con-
cerning the values Lfp(ψ̄kχ, k).

Definition 6.1. For u ∈ U∞, n ≥ 0, k ≥ 1, define

δkn,χ(u) =
∑
σ∈Gn

χ(σ)Dk−1Lgu(ωσn),

where D is the derivation 1
λ′(X)

d
dx .

By Theorem 4.1, we have δkn,χ(c) = πn+1 ·B ·Ω−1Lfp(ψ̄kχ, k), where B is
a unit, if 1 ≤ k ≤ q − 1. In his paper [4], Katz has shown that a family of
derivations Dn may be defined by the formula f(XuY ) =

∑∞
n=0Dnf(X)Y n

and in addition, if 0 ≤ m ≤ q − 1, then Dm = 1
m!D

m. Since gu ≡ 1
mod (π,X), log gu converges formally, and we may write Dk−1L = Dk log .
Substituting f = log gu above gives log gu(tu s) =

∑∞
k=0Dk log gu(t)sk. We

may then define a power series, given a character χ of Gn and a sequence of
units u ∈ U∞, by

g(u, χ, t, s) =
∑
σ∈Gn

χ(σ) log gu([κ(σ)](t) u s)

=
∞∑
k=0

(∑
σ∈Gn

χ(σ)(Dk log gu) ◦ [κ(σ)](t)

)
sk.

It is readily seen from the above remarks that

δkn,χ(u) =
(
d

ds

)k
g(u, χ, ωn, s)

∣∣
s=0

if 1 ≤ k ≤ q − 1.

In particular, g(c, χ, ωn, s) yields L-values.

7. Special Local Units.

As was done in [2] for the ordinary case, we now describe a sequence of local
units which will give elements of U∞ with simple Coleman power series. As
usual, q = p2. Let β inOp be such that βq−1 = 1−π and β ≡ 1 mod π. Such a
β exists by Hensel’s Lemma applied to the polynomial f(X) = Xq−1−(1−π).
If ζ is any one of the q − 1 roots of unity in Kp, then f(ζ) = π ≡ 0 mod p
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and f ′(ζ) = (q − 1)ζ−1 6≡ 0 mod p, so that there is a lifting of ζ to a root
in Op.

Lemma 7.1. NKn+1/Kn(β − ωn+1) = (β − ωn) for all n ≥ 0.

Proof. The minimal polynomial of ωn+1 over Kn is P (X) = Xq + πX − ωn,
and hence the minimal polynomial of β − ωn+1 over Kn is −P (β − X). It
follows that Nn+1,n(β − ωn+1) = −(−1)qP (β) = P (β) = βq + πβ − ωn =
β − ωn. �

Theorem 7.2. For each d dividing q − 1, we have Nn+1,n(βd − ωdn+1) =
(βd − ωdn).

Proof. The lemma is valid for any β such that βq−1 = π, in particular with
β changed to ζβ where ζq−1 = 1. Taking the product over ζd = 1 gives the
result. �

We obtain a sequence of units u(d) = (u(d)
n ) ∈ U∞ for d|q − 1 whose

Coleman power series is βd −Xd.

Corollary 7.3. δ(u(d)) = 0 if d 6= 1. δ(u(1)) = (1− π)β−1 6≡ 0 mod π.

Proof. Explicit calculation, using Lemma 5.3. �

Theorem 7.4. u(d)ρ = 1 unless d = 1.

Proof. We calculate the Coleman power series of the projections. First we
compute the ρ-part of the unit u(d) = (u(d)

n ):

u(d)ρ
n =

∏
σ∈∆

u(d)
n

1
q−1

Tr(ρ(σ−1))σ
=
∏
σ∈∆

(βd − κd0(σ)ωdn)
1
q−1

Tr(ρ(σ−1))
.

We have used the fact that [κ0(σ)](X) = κ0(σ)X in the basic Lubin-Tate
formal group. The Coleman power series for u(d)ρ must then be

G(X) =
∏
σ∈∆

(βd − κd0(σ)Xd)
1
q−1

Tr(ρ(σ−1))
.

Note that 1
q−1Tr(ρ(σ−1)) is an element of Zp and that βd − κd0(σ)Xd ≡

1 mod (π,X), so this expression indeed defines a power series in Op[[X]],
satisfying G(ωn) = un

e(ρ) for all n ≥ 0. Furthermore, G(X) ≡ 1 mod (π,X).
Writing (βd − κd0(σ)Xd) = βd · (1− (κ0(σ)X/β)d) we compute

log G(X) =
∑
σ∈∆

1
q − 1

Trρ(σ−1) logp(β
d)

+
∑
σ∈∆

1
q − 1

Trρ(σ−1) log
(

1− κd0(σ)
βd

Xd

)
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where logp is the p-adic logarithm, and the logarithm of a power series which
is congruent to 1 modulo (π,X) is given by the usual series expansion for
log(1 +X). Then

log G(X) = −
∑
σ∈∆

1
q − 1

Trρ(σ−1)
∞∑
k=1

κdk0 (σ)
βdk

Xdk

k
(5)

= −
∞∑
k=1

(
1

q − 1

∑
σ∈∆

Trρ(σ−1)κdk0 (σ)

)
Xdk

kβdk
.

We have Trρ(σ−1)·κdk0 (σ) =
(
κ0(σ−1) + κ∗0(σ

−1)
)
κdk0 (σ) and, since κ∗0 = κp0,

when we sum over ∆ the result is
∑

σ∈∆(κdk−1
0 (σ) + κdk−p0 (σ)), which is 0

unless dk − 1 ≡ 0 mod q − 1 or dk − p ≡ 0 mod q − 1, in which cases it
is equal to q − 1. However, since d|q − 1, we see that unless d = 1 these
congruences are impossible, and hence log G(X) = 0, so that G(X) = 1 and
thus ud projects trivially. �

For d = 1, we have log G(X) = −
∑

k≡1,pmodq−1X
k/kβk. It is easy to

compute

Q = LG =
1

λ′(X)
d

dx
log G(X) = − 1

λ′(X)

∑
k≡1,p

Xk−1

βk

= − 1
λ′(X)

β−1
∑

k≡0,p−1

Xk

βk
.

Compare this to the result in the ordinary case in [1, 2]. We may sum the
series,

Q(X) = − 1
λ′(X)

β−1

(
1 +

[
X

β

]p−1
)

1

1− Xq−1

1− π

.

We could further modify this, by employing the definition of β and the
formula (1−X2ma)(1 +Xa)−1 =

∑2m−1
n=0 (−1)nXan. This gives

Q(X) = − 1
λ′(X)

· β−1

1−
(
X
β

)p−1
+
(
X
β

)2(p−1)
+ · · · −

(
X
β

)p(p−1)
.

Note that δn,χ(uρ) =
∑

σ∈Gn χ(σ)Q(ωσn), although this does not simplify the
expression δn,χ(uρ) = δn,χ(u) = −

∑
σ∈Gn χ(σ) 1

λ′(ωnσ) ·
1

β−ωnσ . We compute
λ′(ωn).
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Lemma 7.5. For all n ≥ 0, we have λ′(ωn) =
n∏
k=0

(
1 +

q

π
ωk

q−1
)
.

Proof. By differentiating the relation λ ◦ [πn+1](X) = πn+1λ(X) we obtain
[πn+1]′(X)λ′ ◦ [πn+1] = πn+1λ′(X). Substitute X = ωn and λ′(0) = 1 to

get [πn+1]′(ωn) = πn+1λ′(ωn). If f is a function and fn = f ◦ n times◦ f then
f ′m(X) =

∏m−1
n=0 f

′(fn(X)) for every m ≥ 1. Applying this to f = [π] gives

[πn+1](ωn) =
n∏
k=0

[π]′([πk](ωn)) =
n∏
k=0

[π]′(ωn−k) =
n∏
k=0

[π]′(ωk).

Since [π]′(X) = π + qXq−1 we conclude

λ′(ωn) = π−(n+1)[πn+1]′(ωn) = π−(n+1)
n∏
k=0

(π+qωq−1
k ) =

n∏
k=0

(
1 +

q

π
ωk

q−1
)
.

�

We finish by mentioning a connection to sums Sn(χ, k)=
∑

σ∈Γn
χ(σ)(ωσn)k.

A straightforward calculation gives:

Theorem 7.6. Let λ′(X)−1 =
∑∞

i=0 biX
(q−1)i, with bi ∈ Op. Then δn,χ(uρ)

= (1− q)β−1
∑∞

m=0 cmSn (χ, (q − 1)m) , where cm =
∑

i+j=m
bi

(1−π)j
.

References

[1] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Inventiones
Mathematicae, 39 (1977), 223-251.

[2] , On p-adic L-functions and elliptic units, J. Aust. Math. Soc., 26, (1978)
1-25.

[3] K. Iwasawa, Local Class Field Theory, Oxford University Press (1986).

[4] N. Katz, Divisibilities, congruences, and Cartier duality, J. Fac. Sci. Univ. Tokyo, 28
(Sec 1a) (1982), 667-678.

[5] K. Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields,
Inventiones Mathematicae, 103 (1991), 25-68.

[6] , Tate-Shafarevitch groups and L-functions of elliptic curves with complex mul-
tiplication, Inventiones Mathematicae, 89 (1987), 527-560.

[7] , Congruences for special values of L-functions of elliptic curves with complex
multiplication, Inventiones Mathematicae, 71 (1983), 339-368.

[8] , Iwasawa Theory and Elliptic Curves: Supersingular Primes, Journées Arith-
métiques, 1980, London Math. Soc. LN series, 56.

[9] , Local units, elliptic units, Heegner points and elliptic curves, Inventiones
Mathematicae, 88 (1987), 405-422.



500 LUIS M. NAVAS

[10] A. Wiles, Higher explicit reciprocity laws, Ann. Math., 107 (1978), 235-254.

Received July 20, 1999.

Departamento de Matemáticas
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THE MODULE OF DERIVATIONS FOR AN
ARRANGEMENT OF SUBSPACES

Jonathan Wiens

This paper examines the module of derivations for a sub-
space arrangement. In particular, we consider those subspace
arrangements consisting of elements of the intersection lattice
of a generic hyperplane arrangement. We determine gener-
ators for the associated module of derivations. These gen-
erators are indexed by certain elements of the intersection
lattice.

1. Introduction.

Let V be a linear space of dimension ` over a field K. By an arrangement we
shall mean a finite collection of affine subspaces of V . If all of the subspaces
in an arrangement A have codimension k then we say that A is an (`, k)-
arrangement. If k = 1 and so A is a hyperplane arrangement then we shall
say that A is an `-arrangement.

Let A be an arrangement and S the coordinate ring for V . For each H ∈ A
let IH = V(H), the ideal of S which vanishes on H, and call it the defining
ideal for H. If H is a hyperplane, then we can choose a linear functional
αH ∈ S such that IH = (αH).

We now introduce the main character of this paper. IfA is an arrangement
then the module of A-derivations is D(A), the set of all K-linear derivations
of S which map each defining ideal to itself. Equivalently, one could define
D(A) to be the set of all polynomial vector fields which, at each subspace, are
parallel to that subspace. [1] contains an extensive review of the properties
of D(A) for hyperplane arrangements, especially for free arrangements. We
shall review the situation for generic arrangements in Section 3.

Recently interest has arisen in arrangements of subspaces of codimension
greater than one. The goal of this paper is to examine D(A) in this case.
In particular we investigate subspace arrangements consisting of elements of
the intersection lattice of a generic hyperplane arrangement, where we find
generators for D(A) as an S-module.

In Section 2 we list several elementary properties of D(A). In Section 3
we find generators of D(A) for generic arrangements. In Section 4 we discuss
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subspace arrangements arising from hyperplane arrangements and in Sec-
tion 5 we find generators for D(A) for those subspace arrangements arising
from generic hyperplane arrangements.

The author would like to thank Sergey Yuzvinsky for valuable suggestions
during the preparation of this paper.

2. Subspace Arrangements.

In this section we define our terminology and give some elementary results.
Let A = {H1, . . . ,Hn} be an arrangement with defining ideals {IH1 , . . . ,
IHn}. An element H of A is maximal if it is not contained in any other
subspace of A. A is central if T = ∩ni=1Hi is non-empty. In this case we
choose coordinates so that 0 ∈ T . We say that A is essential if T = 0. We
shall primarily concern ourselves with central arrangements.

Let S be the coordinate ring for V . Let DerK(S) denote the set of K-
linear derivations of S, that is, K-linear maps θ : S → S such that θ(fg) =
fθ(g) + gθ(f) for all f, g ∈ S.

Definition 2.1. Let A be an arrangement in V . The module of A-deriva-
tions is

D(A) = {θ ∈ DerK(S) | θ(IH) ⊆ IH ∀ H ∈ A}.

One obvious consequence of the definition of D(A) is the following lemma.

Lemma 2.2. If B ⊆ A are a pair of arrangements then D(A) ⊆ D(B).

If A is central, then the defining ideals of A are all homogeneous with
degree one generators and hence D(A) is a graded S-module. In this case let
V ∗ denote the dual space of the vector space V and S+ denote the maximal
graded ideal of S. We shall abbreviate ∂

∂xi
by Di. The Euler derivation

is θE =
∑`

i=1 xiDi and has the property that if f ∈ S is homogeneous of
degree n then θE(f) = nf . As a result we have:

Lemma 2.3. If A is a central arrangement then θE ∈ D(A).

The Euler derivation plays a deeper role in some arrangements.

Lemma 2.4. If A is central and contains a hyperplane then SθE is a direct
summand of D(A).

Proof. If H ∈ A is a hyperplane choose a linear functional α ∈ V ∗ so that
H = V (α). If θ ∈ D(A) then α divides θ(α) and hence we can define the
function φ : D(A)→ S by φ(θ) = θ(α)/α. Since θE ∈ D(A), φ is surjective
with section s : S → D(A) given by s(f) = fθE . This shows SθE is a direct
summand of D(A). �

While freeness is an important property for hyperplane arrangements, it
rarely occurs in more general arrangements.
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Theorem 2.5. If A contains a maximal subspace of codimension greater
than 1, then D(A) is not a free S-module.

Proof. Suppose that D(A) is free, with basis θ1, . . . , θm. Let H ∈ A be
maximal with codimension k > 1. Choose a basis {x1, . . . , x`} for V so that
IH = (x1, . . . , xk). Since H is maximal, for each K 6= H in A there exists
βK ∈ IK such that βK 6∈ IH. Let β =

∏
{βK |K 6= H} and note that β 6∈ IH.

Hence βD1 6∈ D(A), but x1βD1, x2βD1 ∈ D(A). Now x1βD1 =
∑m

i=1 piθi
and x2βD1 =

∑m
i=1 qiθi and hence x2pi = x1qi for all i. This shows that

x1|pi for all i and hence βD1 ∈ D(A). This is a contradiction, and hence
D(A) is not free. �

Different arrangements can yield the same module of derivations, as the
next theorem shows.

Theorem 2.6. If A is any arrangement, H1, . . . ,Hk ∈ A and B = A ∪
{H1 ∩ · · · ∩Hk} then D(A) = D(B).

Proof. This result follows since if J = H1 ∩ · · · ∩ Hk then IJ = IH1 + · · · +
IHk

. �

Hence one could routinely assume that an arrangement is closed under
intersections, as some authors do. In this paper, however, we shall not make
this assumption.

3. Generic hyperplane arrangements.

In this section we review the case where A is a generic hyperplane arrange-
ment. In particular, we find a minimal list of generators for D(A) if A is
a generic hyperplane arrangement, and then compute the projective dimen-
sion of D(A) as an S-module. Much of what is found here can be gleaned
from [2] and [4]. Here we give a straight-forward derivation of those results.

An essential `-arrangement A is generic if ` > 1 and every collection of
` hyperplanes from A is also essential. A boolean arrangement is a generic
arrangement with exactly ` hyperplanes. Every 2-arrangement is generic.

For the rest of this section we shall assume thatA is generic. Furthermore,
since each hyperplane is determined by an element of V ∗ we shall describe
each arrangement by listing functionals corresponding to each hyperplane.
To this end we shall always choose a basis {x1, . . . , x`} for V ∗ such that
A = {α1 = x1, . . . , α` = x`, α`+1, . . . , αn} and we let Q =

∏
αH and call

it a defining polynomial for A. If ` < 5 we shall often use x, y, z and w for
x1, . . . , x4.

The following two results are well-known.

Lemma 3.1. If A is a 2-arrangement then D(A) is a free S-module with
basis

{
θE ,

Q
xDy

}
.
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Lemma 3.2. If A is a boolean `-arrangement then D(A) is a free S-module
with basis {x1D1, . . . , x`D`}.

If ` > 3 and A is generic but not boolean, then D(A) is not free. To
find generators of D(A) in this case we consider the intersection poset L(A).
L(A) consists of all intersections of the elements of V , including the empty
intersection V . Let L(A)k be the elements of L(A) of dimension k. If
X ∈ L(A) let AX = {H ∈ A |X ⊆ H}, QX be a defining polynomial for AX
and πX = Q

QX
. If X ∈ L(A)1 choose γX =

∑
biDi non-zero with bi ∈ K

such that γX(αH) = 0 for all H ∈ AX . This derivation may be identified
with a vector parallel to X and is projectively unique. Let θX = πXγX .
One can easily see that θX ∈ D(A). These derivations, together with θE ,
will be generators of D(A). To prove this we need to introduce the concept
of deletion and restriction.

Let A be any hyperplane arrangement and choose H ∈ A. Let A′ =
A \ {H} and call it the deletion of A with respect to H. Let A′′ be the
hyperplane arrangement in H with hyperplanes {H′ ∩ H |H′ ∈ A′} and call
it the restriction of A to H. (A,A′,A′′) is called a triple of arrangements.

If A is generic and non-boolean then A′ is also generic. If ` > 2 and A
is generic then A′′ is also generic. Furthermore, if A is generic then L(A′′)
may be identified with those elements of L(A) contained in H.

Next, we recall the short exact sequence of [1, Prop. 4.45]. If we choose
coordinates for V so that the functional associated with H is x1, then mul-
tiplication by x1 yields an injective homomorphism µ : D(A′) → D(A).
We can also restrict derivations to H. We identify the coordinate ring of
H with S′′ = K[x2, . . . , x`]. The canonical surjection S → S′′ then pro-
vides an S-module structure for D(A′′). If θ ∈ D(A) and f ∈ S′′ then
let r(θ)(f) = θ(f)|x1=0. It was shown in [1] that r(D(A)) ⊆ D(A′′) and
that the sequence 0 → D(A′) → D(A) → D(A′′) is an exact sequence of
S-modules. We shall show that the last map is surjective in the case of
generic arrangements, and in the process find a minimal generating set of
D(A).

Let A be a hyperplane arrangement and fix K ∈ A. Let F (A) denote the
submodule of D(A) generated by θE and {θX |X ∈ L(A)1, X ⊆ K} and
F (A′′) the submodule of D(A′′) generated by θ′′E = r(θE) and {θX′′ |X ′′ ∈
L(A′′)1, X ′′ ⊆ K ∩H}.
Lemma 3.3. Let A be a generic arrangement and K ∈ A. If H ∈ A and
H 6= K then r(F (A)) = F (A′′).
Proof. The θX with X ⊆ K fall into two categories. If X 6⊆ H then x1|πX
and so r(θX) = 0. If X ⊆ H then H ∈ AX and x1 is not a factor of πX . If
X ′′ = ∩{J | J ∈ AX} then X ′′ ∈ L(A′′) and since A and A′′ are generic, one
can see that r(θX) = θX′′ . Furthermore, since A is generic, each element of
L(A′′) containing K∩H arises in this fashion; and hence, r is surjective. �
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Theorem 3.4. If A is a non-boolean generic `-arrangement then

0 −−→ D(A′) µ−−→ D(A) r−−→ D(A′′) −−→ 0

is a short exact sequence of S-modules. Furthermore, for any K ∈ A, D(A)
is generated by θE ∪ {θX |X ∈ L(A)1, X ⊆ K}.

Proof. We shall prove the theorem by induction on `. The base case ` = 2 is
Lemma 3.1. Now let ` > 2. We shall prove this by induction on the number
of hyperplanes of A. For this inner induction, we shall prove the base case
together with the inductive step.

Let A be a non-boolean generic `-arrangement. Since A is generic and
non-boolean, A′ and A′′ are generic and by induction, Lemma 3.1 or
Lemma 3.2, have generators listed by the theorem. Since

D(A′′) = r(F (A)) ⊆ r(D(A)) ⊆ D(A′′),

we see that r is surjective.
Now suppose that θ ∈ D(A). Since D(A′′) = F (A′′) we can, by Lemma 3.3,

choose η ∈ F (A) so that r(η) = r(θ). By exactness we have θ−η ∈ µ(D(A′)).
But by induction D(A′) is generated by the forms θ′X where X ′ ⊆ K. Now
A is generic so each X ′ ∈ L(A′) is also an element of L(A) where we denote
it by X. By definition we then have x1θX′ = θX and so µD(A′) ∈ F (A) and
hence θ ∈ F (A). �

The above theorem shows that if |A| = n and A is generic, then at most(
n−1
`−2

)
+ 1 generators are needed. The short exact sequence given above

allows us to compute the projective dimension of D(A).

Corollary 3.5. If A is generic and non-boolean then the projective dimen-
sion of D(A) as an S-module is `− 2.

Proof. We proceed by induction on `. If ` = 2 then D(A) is free, so the
result holds. Now assume ` > 2. We proceed by induction on the number
of hyperplanes in A. If |A| = ` + 1 then A′ is boolean and so D(A′) is
free. Now consider the exact sequence of Theorem 3.4. A′′ is generic and
non-boolean, thus pdimS′′D(A′′) = ` − 3. But S′′ ' S/αHS and hence, by
[3, Theorem 4.3.3], pdimSD(A′′) = `− 2. As a result, by [3, Exercise 4.1.2],
if ` 6= 3 we have pdimSD(A) = `− 2. If ` = 3 then our arrangement is that
of [1, Example 4.34], which was shown to not be free, which implies that
pdimSD(A) in this case is also `− 2.

If |A| > ` + 1 then pdimSD(A′) = pdimSD(A′′) = ` − 2 and again [3,
Exercise 4.1.2] shows that pdimD(A) = `− 2. �

[4] provides a minimal projective resolution of D(A) which also shows
that the minimal number of generators of D(A) is exactly

(
n−1
`−2

)
+ 1.
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4. Arrangements arising from L(A).

In this section we discuss arrangements which consist of a subset of L(A)
for a hyperplane arrangement A. In particular, choose k ≥ 2 and let Ak be
the (`, k)-arrangement consisting of those elements of L(A) of codimension
k. Note that A1 = A. The next result gives a filtration which may be an
interesting object of study.

Theorem 4.1. If A is a hyperplane arrangement, then

D(A) ⊆ D(A2) ⊆ · · · ⊆ D(A`).

If A is essential then D(A`) = S+DerK(S).

Proof. If θ ∈ D(A)k then θ(I(X)) ⊆ SI(X) for each X ∈ L(A)`−k. If
Y ∈ L(A)`−k−1 then Y = X1∩X2 whereX1 andX2 are elements of L(A)`−k;
but then V (Y ) = V (X1) + V (X2) and hence θ(Y ) ⊆ Y and θ ∈ D(A)k+1.
If A is essential then L(A)0 = {0} and since V (0) = S+ it is clear that
D(A)` = S+DerK(S). �

Next we apply the notion of deletion and restriction to these modules.
One easy result is the following:

Lemma 4.2. If A is an `-arrangement and H ∈ A with defining functional
αH then αHD(A′k) ⊆ D(Ak).

Next we consider the restriction map of Section 3.

Lemma 4.3. If A is a hyperplane arrangement, H ∈ A, and A′′ is the
restriction of A to H, then r (D(Ak)) ⊆ D(A′′k−1) for every 2 ≤ k ≤ `.

Proof. First choose coordinates so that αH = x1 = x. We identify S′′ with
K[x2, . . . , x`]. Let θ ∈ D(Ak). If X ∈ L(A′′)`−k then I(X) = (β1, . . . , βk−1)
where the βi are linear functionals associated to the elements of A′′. There
exist a1, . . . , ak−1 ∈ K such that αi = aix + βi are functionals defin-
ing elements of A. But note that there exists Y ∈ Ak such that IY =
(x, α1, . . . , αk−1) = (x, β1, . . . , βk) and so θ(I(X)) ⊆ (x, β1, . . . , βk−1) and
hence r(θ)(I(X)) = θ(I(X))|x=0 ⊆ (β1, . . . , βk−1). Since this holds true for
all X ∈ L(A′′) we see that r(θ) ∈ D(A′′k−1). �

These two results will be used later when we find generators of D(Ak)
when A is generic. If A is boolean, the D(Ak) are easily described. Let V
be a vector space of dimension `. Let us say that a subset T of V ∗ is generic
if every subset of T of size at most ` is linearly independent.

Lemma 4.4. Let V be a vector space of dimension `, S = SV ∗ and A =
{α1, . . . , αn} be a generic subset of V ∗. Let Q =

∏n
i=1 αi and if X ⊆
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{1, . . . , n} let πX =
∏
j∈X αj. For each 1 ≤ k < ` the ideal

⋂
i1<···<ik(αi1 ,

. . . , αik) is generated by{
Q

πX

∣∣∣∣∣X ⊆ {1, . . . , n}, |X| = k − 1

}
and the ideal

⋂
1<i2<···<ik(α1, . . . , αik) is generated by

{α1} ∪

{
Q

α1πX

∣∣∣∣∣X ⊆ {2, . . . , n}, |X| = k − 2

}
.

Proof. Let N =
⋂

2≤i2<···<ik(α1, αi2 , . . . , αik) and L =
⋂

2≤i1<···<ik(αi1 ,
. . . , αik). Our goal is to show that I = N ∩ L. To prove this we shall
induct on k. If k = 1 then the result is clear. Now assume k > 1. To prove
the inductive step we shall induct on n. If n = k, then again the result is
clear. Now assume n > k.

Let φ : S → S/(α1) and denote φ(f) by f . Since φ is surjective and ker(φ)
is a subset of every (α1, αi2 , . . . , αik) we have

φ(N) =
⋂
φ (α1, αi2 , . . . , αik) =

⋂
(αi2 , . . . , αik) .

Since A is generic Q′′ = φ(Q/α1) is square free and so, by induction on
k, φ(N) is generated by the Q′′

πX
= φ

(
Q

α1πX

)
where X ⊆ {2, . . . , n} and

|X| = k − 2. This shows that

N = (α1) +

({
Q

α1πX

∣∣∣∣∣X ⊆ {2, . . . , n}, |X| = k − 2

})
.

Denote the first ideal on the right by J and the second by K. By induction
on n we see that

L =

({
Q

α1πX

∣∣∣∣∣X ⊆ {2, . . . , n}, |X| = k − 1

})
.

Thus I is an intersection of the form (J +K) ∩ L with K ⊆ L and whence
I = J ∩ L+K.

We claim that

J ∩ L+K =

({
Q

πX

∣∣∣∣∣X ⊆ {1, . . . , n}, |X| = k − 1

})
and denote the latter ideal by M . Clearly M ⊆ I and K ⊆ M . It remains
to show that J ∩ L ⊆ M . If g ∈ J ∩ K then g = hα1 =

∑
X fX

Q
α1πX

. If
Y ⊆ {2, . . . , n} with |Y | = k − 1 and IY = ({αi | i ∈ Y }) then consider
ψ : S → S/IY and again denote ψ(f) by f . Since k < `, this is an integral
domain. Note that g = hα1 = fY

Q
α1πY

and hence there exists hY such that
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fY = α1hY and so fY = α1hY + gY where gY ∈ IY , but then fY Q
α1πY

∈M .
Since this holds for all Y we see that J∩L ⊆M and the result is proven. �

We can use the above result to determine generators for D(Ak) if A is
essential and boolean.

Theorem 4.5. Let A = {H1, . . . ,H`} be a boolean `-arrangement with Hi =
V (xi) and let Q =

∏`
i=1 xi then, for each k > 1, D(Ak) is generated as an

S-module by

{xiDi}`i=1

⋃{
Q

QX
Di

∣∣∣∣∣X ∈ L(A)`−k+1, X ⊆ Hi, 1 ≤ i ≤ `

}
.

Proof. Let θ ∈ D(Ak) and write θ =
∑
piDi. Choose 1 ≤ j ≤ ` and

let J = {1, . . . , n} \ {j}. Now pj = θ(xj) ∈
⋂

Y⊆J
|Y |=k−1

(αj , {αm}m∈Y ) =(
αj ,

{
Q

αjπY

∣∣∣∣∣Y ⊆ J, |Y | = k − 2

})
. But each αjπY is the defining polyno-

mial of a subarrangement of A of size k − 1 corresponding to an element of
L(A) of dimension `− k + 1. The result follows. �

Note that as k increases the modules pick up smaller and smaller “factors”
of the QDi. This pattern will also hold for generic arrangements. The above
result also allows us to compute the projective dimensions of D(A2) for a
boolean arrangement.

Theorem 4.6. If A is boolean then the pdimS(D(A2)) = 1.

Proof. It suffices to consider the case where A is essential. Let P0 be the
free S-module with generators α1, . . . , α`, β1, . . . , β`. Let ψ : P0 → D(A) be
the map define by ψ(αi) = xiDi and ψ(βi) = Q

xi
Di. We will show that kerψ

is a free S-module.
Suppose ψ(

∑
fiαi +

∑
giβi) = 0, then for each i we have xifi + Q

xi
gi = 0.

Thus there exists hi so that fi = Q
xi
hi and gi = −xihi. Thus kerψ ={∑(

Q
xi
αi − xiβi

)
hi |hi ∈ S

}
is a free S-module of rank `. �

5. Generic (l, k) arrangements.

In this section we assume that A is a generic `-arrangement and work with
the associated (`, k) arrangements. We begin by finding generating sets for
D(A2) using elements of L(A). It is useful to consider some examples of
(`, 2)-arrangements arising in this fashion. It is convenient to describe the
subspaces using their corresponding ideals.

Example 5.1. In K3 let A = {x, y, z, x+ y + z}, so that

A2 = {(x, y), (x, z), (x, x+ y + z), (y, z), (y, x+ y + z), (z, x+ y + z)}.
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D(A2) has generators

θE , yz(x+ y + z)Dx, xy(Dx −Dy), xyzDz

y(x+y+z)Dy, xz(x+y+z)Dy, z(x+y+z)Dz, xy(x+y+z)Dz.

In K3 if B = {x, y, x+ y, z, x+ y + z} then D(B) is a free S-module but
B2 is the same arrangement as A2 listed above. Hence a free arrangement
and a generic arrangement may yield identical (`, 2)-arrangements.

Example 5.2. In K4 let A = {w, x, y, z, w + x+ y + z}, so that

A2 = {(w, x), (w, y), (w, z), (w,w + x+ y + z), (x, y),

(x, z), (x,w + x+ y + z), (y, z), (y, w + x+ y + z), (z, w + x+ y + z)}
D(A2) has generators

θE , xyz(w + x+ y + z)Dw, wyz(w + x+ y + z)Dx

wxz(w + x+ y + z)Dy, wxy(w + x+ y + z)Dz, xy(Dx −Dy)

yz(Dy −Dz), wx(Dw −Dx), xyzwDy

y(w + x+ y + z)Dy, z(w + x+ y + z)Dz.

These examples motivate the following definition. As usual, choose a basis
{x1, . . . , x`} of V ∗. Let H ∈ A with αH its defining functional and write
αH =

∑
aixi. Let ηH = Q

αH

∑
aiDxi . One can easily see that ηH ∈ D(A2).

Our goal is to show that the θX and ηH together with θE generate D(A2)
for a generic arrangement.

To prove this we will induct on the number of hyperplanes of A using the
method of deletion and restriction. An examination of the examples listed
above leads us to the following lemma.

Lemma 5.3. If A is generic, then r : D(A2)→ D(A′′) is surjective.

Proof. The result is clear if ` = 2. If ` > 2 and A is generic, then so is A′′.
One then notes that {r(θX)}X∈L(A)1

∪ r(θE) is the generating set of D(A′′)
given in Theorem 3.4. �

We can now state one of our main results:

Theorem 5.4. Let A be a generic `-arrangement with ` > 2 and H ∈ A.
The sequence

D(A′2)⊕ S
φ→D(A2)

r→D(A′′)→ 0

is exact where φ(θ, f) = αHθ + fηH.
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Proof. Since r(ηH) = 0 we only need to show that ker(r) ⊆ imφ. Let
A = {H,H2, . . . ,Hn} and choose coordinates so H = V (x1). Let θ ∈ ker(r)
and write θ =

∑`
i=1 piDi. Since r(θ) = 0, pi = xiqi for i > 1.

Since A is generic the ideals {(x1, αi)}i>1 are distinct, hence θ(x1) ∈
∩ni=2(x1, αi) = (x1,

∏n
i=2 αi) = (x1,

Q
x1

). So write p = x1q1 + Q
x1
s, and

τ =
∑`

i=1 qiDxi so that θ = x1τ + sηX . It suffices to show τ ∈ D(A′2). Let
X ∈ L(A′)2, then since Q

x1
∈ IX we see that θ(IX) ⊂ IX iff x1µ(IX) ⊆ IX .

But since x1 6∈ IX (as A is generic), we see that x1µ(IX) ⊆ IX iff µ(IX) ⊆
IX , hence µ ∈ D(A′2). �

With the above exact sequence we can prove the following result.

Theorem 5.5. Let A be a generic arrangement, ` > 2 and K ∈ A. D(A2)
is generated by {θE} ∪ {θX |X ∈ L(A)1, X ⊆ K} ∪ {ηH |H ∈ A}.

Proof. The proof here is very similar to that of Theorem 3.4. We induct
on `. We shall prove the base case together with the inductive step. To
show these we induct on |A|. If A is boolean then the result follows from
Theorem 4.5. If |A| > ` then we use the exact sequence of the previous
theorem. If θ ∈ D(A2) then since r is surjective and A′′ is generic we can
choose η ∈ D̃(A) so that r(η) = r(θ). Hence θ − η is in the image of φ.
But A′ is generic or boolean, so by induction its generators are given by the
theorem. As in the proof of Theorem 3.4 one sees that when the generators
of D(A′) are multiplied by αH they become the generators postulated for
D(A). The result follows. �

Now assume k > 2. For each H ∈ A write αH =
∑
aixi. Now let

Y ∈ L(A)`−k+1 with Y ⊆ H and let ηH,Y = Q
πY

∑
aiDxi . Let F (Ak) be the

S-submodule of D(Ak) generated by θE together with the θX and the set of
all ηH,Y .

The rest of this section is devoted to the proof of the following theorem.

Theorem 5.6. Let ` > 2, A be a generic `-arrangement, 2 ≤ k < ` and
K ∈ A. D(Ak) is generated as an S-module by

{θE} ∪ {θX |X ∈ L(A)1, X ⊆ K}
∪ {ηH,Y |H ∈ A, Y ∈ L(A)`−k+1, Y ⊆ H}.

We shall prove this by induction on `. The base case ` = 3 is Theorem 5.5.
Now assume ` > 3. To prove this we induct on k. The case k = 2 is also
Theorem 5.5, so assume k > 2. To show this we induct on the number of
hyperplanes of A. If |A| = `, then the result follows from Theorem 4.5.
Hence, we assume that |A| > `.

We begin by choosing H ∈ A with H 6= K, and choose coordinates so
that αH = x1. Let A′ be the deletion of A with respect to H and A′′
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the restriction of A to H. Let F (Ak) be the S-module generated by the
derivations given in the theorem. Our goal is to show that F (Ak) = D(Ak).

Lemma 5.7. If A is generic, then r : F (Ak)→ D(A′′k−1) is surjective.

Proof. Since A is generic, so is A′′ and, by induction on `, D(A′′k−1) has
generators given in the theorem. One then notes that restriction of the
generators of F (Ak) are either zero or precisely the generators given for
D(A′′k−1). In particular, let H′′ ∈ A′′ and Y ′′ ∈ L(A′′)`−k+1 then there is
a unique Y ∈ L(A) so that Y = Y ′′. Since Y ⊂ H we have x1|πY . Now
ηH,Y = Q

πY

∑`
k=1 aiDi = Q/αH

πY /αH

∑`
i=1 aiDi and since Q

αH
|x1=0 = Q′′ and

πY
αH
|x1=0 = πY ′′ we see that r(ηH,Y ) = Q′′

πY ′′

∑`
i=2 aiDxi = ηH′′,Y ′′ . �

Lemma 5.8. Let A be a generic arrangement and H ∈ A, then the sequence

D(A′k)
⊕

Y ∈L(A)k−1
Y⊆H

S
φ−−→ D(Ak)

r−−→ D(A′′k−1) −−→ 0

is exact where φ (θ, (fY )) = αHθ +
∑

Y fY ηH,Y .

Proof. We only need to show that ker(r) ⊆ imφ. Let A = {H,H2, . . . ,Hn}
and choose coordinates so that H = V (x1). Let θ ∈ ker(r) and write θ =∑`

i=1 piDi. If r(θ) = 0 then pi = x1qi for each i > 1.
Since A is generic the ideals {(x1, αi2 , . . . , αik) | 2 ≤ i2 < · · · < ik} are

distinct, hence by Lemma 4.4

θ(x1) ∈
⋂

2≤i2<···<ik

(x1, αi2 , . . . αik)

=

(
x1,

{
Q

x1πX

∣∣∣∣∣X ⊂ {2, . . . n} |X| = k − 2

})
.

Write p1 = x1q1 +
∑

X sX
Q

x1πX
s, and let τ =

∑`
i=1 qiDi so that θ = x1τ +∑

sXηX . Hence, it suffices to show τ ∈ D(A′k). Let Y ∈ L(A′)k, then since
Q

x1πX
∈ IY for each X 6= Y we see that θ(IY ) ⊂ IY iff x1τ(IY ) ⊆ IY . But

since x1 6∈ IY (as A is generic), we see that x1τ(IY ) ⊆ IY iff τ(IY ) ⊆ IY ,
hence τ ∈ D(A′k). �

With the above exact sequence we can finish the proof our main result.
If θ ∈ D(Ak) then choose η ∈ F (Ak) so that r(θ) = r(η), in which case
θ − η ∈ imφ. But by induction D(A′k) = F (A′k) and since φ sends the
generators of D(A′k) to generators of F (Ak), we see that θ ∈ F (Ak).

An interesting result would be to compute minimal resolutions of these
modules.
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