Vol. 199, No. 1, 2001

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Zero sets of functions in the Nevanlinna or the Nevanlinna–Djrbachian classes

Anne Cumenge

Vol. 199 (2001), No. 1, 79–92
Abstract

Let Ω be a smoothly bounded convex domain of finite type in n. We show that a divisor in Ω satisfying the Blaschke condition (respectively associated to a current of order a > 0) can be defined by a function in the Nevanlinna class N0(Ω) (respectively the Nevanlinna-Djrbachian class Na(Ω)). The proof is based on L1(bΩ) estimates (resp. weighted L1(Ω) estimates) for the solution of the -equation on Ω.

Milestones
Received: 18 August 1999
Published: 1 May 2001
Authors
Anne Cumenge
Universite Paul Sabatier
31062 Toulouse Cedex
France