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We consider the prescribing scalar curvature equation

−∆u +
n(n − 2)

4
u =

n − 2

4(n − 1)
R(x)u

n+2
n−2(1)

on Sn for n ≥ 3. In the case R is rotationally symmetric,
the well-known Kazdan–Warner condition implies that a nec-
essary condition for (1) to have a solution is:

R > 0 somewhere and R′(r) changes signs.
Then,
(a) is this a sufficient condition?
(b) If not, what are the necessary and sufficient conditions?
These have been open problems for decades.
In Chen & Li, 1995, we gave question (a) a negative an-

swer. We showed that a necessary condition for (1) to have a
solution is:

R′(r) changes signs in the region where R is positive.(2)

Now is this also a sufficient condition? In this paper, we prove
that if R(r) satisfies the ‘flatness condition’, then (2) is the
necessary and sufficient condition for (1) to have a solution.
This essentially answers question (b). We also generalized
this result to non-symmetric functions R. Here the additional
‘flatness condition’ is a standard assumption which has been
used by many authors to guarantee the existence of a solution.
In particular, for n = 3, ‘non-degenerate’ functions satisfy this
condition.

Based on Theorem 3 in Chen & Li, 1995, we also show that
for some rotationally symmetric R, (1) is solvable while none
of the solutions is rotationally symmetric. This is interesting
in the studying of symmetry breaking.

1. Introduction.

Given a function R(x) on S2, the well-known Nirenberg problem is to find
conditions on R(x), so that it can be realized as the Gaussian curvature of
some conformally related metric. This is equivalent to solving the following
nonlinear elliptic equation

−∆u+ 1 = R(x)e2u x ∈ S2.(3)
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On a higher dimensional sphere Sn, a similar problem was raised by Kaz-
dan and Warner:

Which functions R(x) can be realized as the scalar curvature of some
conformally related metrics? It is equivalent to consider the existence of a
solution to the following nonlinear elliptic equation

−∆u+
n(n− 2)

4
u =

n− 2
4(n− 1)

R(x)u
n+2
n−2 , u > 0, x ∈ Sn.(4)

Both equations are so-called ‘critical’ in the sense that lack of compact-
ness occurs. Besides the obvious necessary condition that R(x) be positive
somewhere, there are well-known obstructions found by Kazdan and Warner
[26] and later generalized by Bourguignon and Ezin [5]. The conditions are:∫

Sn

X(R)dVg = 0(5)

where dVg is the volume element of the conformal metric g and X is any
conformal vector field associated to the standard metric g0. We call these
Kazdan-Warner type conditions.

These conditions give rise to many examples of R(x) for which (3) and (4)
have no solution. In particular, a monotone rotationally symmetric function
R admits no solution.

In the last two decades, numerous studies were dedicated to these prob-
lems and various sufficient conditions were found (please see the articles
[1], [3], [11], [19], [12], [13], [10], [20], [7], [8], [9], [6], [21], [23], [24],
[27], [28], [29], [30], [31], [32] and the references therein). However, among
others, one problem of common concern was left open, namely, were those
Kazdan-Warner type necessary conditions also sufficient? In the case where
R is rotationally symmetric, the conditions become:

R > 0 somewhere and R′ changes signs.(6)

Then,
(a) is (6) a sufficient condition?
(b) If not, what are the necessary and sufficient conditions?
Kazdan listed these as open problems in his CBMS Lecture Notes [25].
Recently, we answered question (a) negatively [15] [16]. We found some

stronger obstructions. Our results imply that for a rotationally symmetric
function R, if it is monotone in the region where it is positive, then problems
(3) and (4) admit no solution unless R is a constant. In other words, a
necessary condition to solve (3) or (4) is that

R′(r) changes signs in the region(s) where R is positive .(7)

Now is this a sufficient condition?
For Equation (3) on S2, Xu and Yang [32] showed that if R is ‘non-

degenerate’, then (7) is a sufficient condition.
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For Equation (4) on higher dimensional spheres, a major difficulty is that
a multiple blow-ups may occur when approaching a solution by a minimax
sequence of the functional or by solutions of subcritical equations.

In dimensions higher than 3, the ‘non-degeneracy’ condition is no longer
sufficient to guarantee the existence of a solution. It was illustrated by
a counter-example in [4] constructed by Bianchi. He found some positive
rotationally symmetric function R on S4, which is non-degenerate and non-
monotone, and for which the problem admits no solution. In this situation, a
more proper condition is called the ‘flatness condition’. Roughly speaking,
it requires that at every critical point of R, the derivatives of R up to
order (n− 2) vanish, while some higher order (< n) derivatives are distinct
from 0. For n = 3, the ‘non-degeneracy’ condition is a special case of
the ‘flatness condition’. Although, up to the present, people wonder if the
‘flatness condition’ is necessary, it is still used widely (see [9], [28], and
[31]) as a standard assumption to guarantee the existence of a solution.
The above mentioned Bianchi’s counter-example seems to suggest that it is
somewhat sharp.

Now a natural question is:
Under the ‘flatness condition’, is (7) a sufficient condition?
In this paper, we answer the question affirmatively. We prove that, in

this situation, (7) is a necessary and sufficient condition for (4) to have a
solution. This is true in all dimensions n ≥ 3 and it applies to functions
R with changing signs. Thus we essentially answer the open question (b)
posed by Kazdan.

There are many versions of ‘flatness conditions’, a general one was pre-
sented in [28] by Y. Li. Here to better illustrate the idea, in the statement
of the following theorem, we only list a typical and easy-to-verify one.

Theorem 1. Let n ≥ 3. Let R = R(r) be rotationally symmetric and satisfy
the following flatness condition near every positive critical point ro:

R(r) = R(ro) + a|r − ro|α + h(|r − ro|), with a 6= 0 and n− 2 < α < n,
(8)

where h′(s) = o(sα−1).
Then a necessary and sufficient condition for Equation (4) to have a

solution is that

R′(r) changes signs in the region(s) where R > 0.

The Theorem is proved by a variational approach. We blend in our new
ideas with other ideas in [32], [1], [28] and [31]. We use the ‘center of mass’
to define neighborhoods of ‘critical points at infinity’, obtain some quite
sharp and clean estimates in those neighborhoods, and construct a maxmini
variational scheme at sub-critical levels and then approach the critical level.
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In one of our previous papers [16], we listed a family of rotationally
symmetric functions R for which Equation (4) has no rotationally symmetric
solutions. This kind of phenomenon is called ‘symmetry breaking’ and is of
independent interest. We can modify that family of functions R in [16] so
that they satisfy the conditions in Theorem 1 here, and hence prove:

Theorem 2. There exists a family of rotationally symmetric functions R
for which Equation (4) is solvable, however none of the solutions are rota-
tionally symmetric.

Using a similar approach as for Theorem 1, we can generalize the existence
result to non-symmetric functions R(x) as stated in the following Theorem.

Theorem 3. Assume that R(x) has at least two positive local maxima and
satisfies the flatness condition:

For any positive critical point xo of R, there exists α = α(xo) ∈ (n−2, n),
such that in some geodesic normal coordinate system centered at xo,

R(x) = R(0) +
n∑

i=1

ai|xi|α + h(x)

where ai = ai(xo) 6= 0,Σai 6= 0, and 5h(x) = o(|x|α−1).
Further assume that for any positive critical point xo below the two least

positive local maxima, holds
n∑

i=1

ai(xo) > 0.

Then Equation (4) has at least one solution.

This Theorem complements the known existence results (see [2] [3], [17],
[7], [8], [28], [29] and [31]).

Outline of the proof of Theorem 1.

Let γn = n(n−2)
4 and τ = n+2

n−2 . We first find a positive solution up of the
subcritical equation

−∆u+ γnu = R(r)up,(9)

for each p < τ and close to τ . Then let p→ τ , take the limit.
To find the solution of Equation (9), we construct a maxmini variational

scheme. Let

Jp(u) :=
∫

Sn

Rup+1dV

and

E(u) :=
∫

Sn

(|5u|2 + γnu
2)dV.
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We seek critical points of Jp(u) under the constraint

S = {u ∈ H1(Sn) | E(u) = γn|Sn|, u ≥ 0},
where |Sn| is the volume of Sn.

If R has only one positive local maximum, then by condition (7), it must
have local minima on both poles. Then similar to the approach in [11],
we seek a solution by minimizing the functional in a family of rotationally
symmetric functions in S.

In the following, we assume that R has at least two positive local maxima.
In this case, the solutions we seek are not necessarily symmetric.

Our scheme is based on the following key estimates on the values of the
functional Jp(u) in a neighborhood of the ‘critical points at infinity’ associ-
ated with each local maximum of R. Let r1 be a positive local maximum of
R. We prove that there is an open set G1 ⊂ S (independent of p), such that
on the boundary ∂G1 of G1, we have

Jp(u) ≤ R(r1)|Sn| − δ,(10)

while there is a function ψ1 ∈ G1, such that

Jp(ψ1) > R(r1)|Sn| − δ

2
.(11)

Here δ > 0 is independent of p. Roughly speaking, we have some kind
of ‘mountain pass’ associated to each local maximum of R. The set G1 is
defined by using the ‘center of mass’.

Let r1 and r2 be two smallest positive local maxima of R. Let ψ1 and ψ2

be two functions defined by (11) associated to r1 and r2. Let γ be a path in
S connecting ψ1 and ψ2, and let Γ be the family of all such paths.

Define

cp = sup
γ∈Γ

min
γ
Jp(u).(12)

For each p < τ , by compactness, there is a critical point up of Jp(·), such
that

Jp(up) = cp.

Obviously, a constant multiple of up is a solution of (9). Moreover, by (10),

Jp(up) ≤ R(ri)|Sn| − δ,(13)

for any positive local maximum ri of R.
To find a solution of (4), we let p → τ , take the limit. To show the

convergence of a subsequence of {up}, we established apriori bounds for the
solutions in the following order.

(i) In the region where R < 0: This is done by the ‘Kelvin Transform’
and a maximum principle.

(ii) In the region where R is small: This is mainly due to the boundedness
of the energy E(up).
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(iii) In the region where R is positively bounded away from 0: First due
to the energy bound, {up} can only blow up at most finitely many points.
Using a Pohozaev type identity, we show that the sequence can only blow up
at one point and the point must be a local maximum of R. Finally, we use
(13) to argue that even one point blow up is impossible and thus establish
an apriori bound for a subsequence of {up}.

In Section 2, we carry on the maxmini variational scheme and obtain a
solution up of (9) for each p.

In Section 3, we establish a priori estimates on the solution sequence {up}.

2. The Variational Approach

In this section, we construct a maxmini variational scheme to find a solution
of

−∆u+ γnu = R(r)up(14)

for each p < τ := n+2
n−2 .

Let
Jp(u) :=

∫
Sn

Rup+1dV

and
E(u) :=

∫
Sn

(|5u|2 + γnu
2)dV.

Let
‖u‖ :=

√
E(u)

be the norm in the Hilbert space H1(Sn).
We seek critical points of Jp(u) under the constraint

S = {u ∈ H1(Sn) | E(u) = E(1) = γn|Sn|, u ≥ 0},
where |Sn| is the volume of Sn.

One can easily see that a critical point of Jp in S multiplied by a constant
is a solution of (14).

We divide the rest of the section into two parts.
In part I, we establish the key estimates (10) and (11).
In part II, we carry on the maxmini variational scheme.

Part I. Estimate the values of the functional.
To construct a maxmini variational scheme, we first show that there is

some kind of ‘mountain pass’ associated to each positive local maximum of
R. Unlike the classical ones, these ‘mountain passes’ are in the neighborhood
of the ‘critical points at infinity.’ (See Proposition 2.1 and 2.2 below.)

Choose a coordinate system in Rn+1, so that the south pole of Sn is at
the origin O and the center of the ball Bn+1 is at (0, · · · , 0, 1). As usual, we
use | · | to denote the distance in Rn+1.
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Define the center of mass of u as

q(u) =:

∫
Sn xu

τ+1(x)dV∫
Sn uτ+1(x)dV

.(15)

We recall some well-known facts in conformal geometry.
Let φq be the standard solution with its ‘center of mass’ at q ∈ Bn+1,

that is, φq ∈ S and satisfies

−∆u+ γnu = γnu
τ .(16)

We may also regard φq as depending on two parameters λ and q̃, where
q̃ is the intersection of Sn with the ray passing the center and the point q.
When q̃ = O (the south pole of Sn), we can express, in the spherical polar
coordinates x = (r, θ) of Sn centered at the south pole (0 ≤ r ≤ π, θ ∈ Sn−1),

φq = φλ,q̃ =

(
λ

λ2 cos2 r
2 + sin2 r

2

)n−2
2

,(17)

with 0 < λ ≤ 1.
Correspondingly, there is a family of conformal transforms

Tq : S 7−→ S; (Tqu) := u(hλ(x))[det(dhλ)]
n−2
2n(18)

with
hλ(r, θ) =

(
2 tan−1

(
λ tan

r

2

)
, θ
)
.

It is well-known that this family of conformal transforms leaves the Equa-
tion (16), the energy E(·), and the integral

∫
Sn u

τ+1dV invariant. In partic-
ular, we have

Tqφq = 1.

The relations between q and λ, q̃ and Tq for q̃ 6= O can be expressed in a
similar way.

We now carry on the estimates near the south pole (0, θ) which we assume
to be a positive local maximum. The estimates near other positive local
maxima are similar. Our conditions on R implies that

R(r) = R(0)− arα, for some a > 0, n− 2 < α < n,(19)

in a small neighborhood of O.
Define

Σ =
{
u ∈ S | |q(u)| ≤ ρo, ‖v‖ := min

t,q
‖u− tφq‖ ≤ ρo

}
.(20)

Notice that the ‘centers of mass’ of functions in Σ are near the south pole
O. This is a neighborhood of the ‘critical points at infinity’ corresponding
to O. We will estimate the functional Jp in this neighborhood.
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We first notice that the supremum of Jp in Σ approaches R(0)|Sn| as
p→ τ . More precisely, we have:

Proposition 2.1. For any δ1 > 0, there is a p1 ≤ τ , such that for all
τ ≥ p ≥ p1,

sup
Σ
Jp(u) > R(0)|Sn| − δ1.(21)

Then we show that on the boundary of Σ, Jp is bounded away from
R(0)|Sn|.

Proposition 2.2. There exist positive constants ρo, po, and δo, such that
for all p ≥ po and for all u ∈ ∂Σ, holds

Jp(u) ≤ R(0)|Sn| − δo.(22)

Proof of Proposition 2.1.
Through a straight forward calculation, one can show that

Jτ (φλ,O) → R(0)|Sn|, as λ→ 0.(23)

For a given δ1 > 0, by (23), one can choose λo, such that φλo,O ∈ Σ, and

Jτ (φλo,O) > R(0)|Sn| − δ1
2
.(24)

It is easy to see that for a fixed function φλo,O, Jp is continuous with
respect to p. Hence, by (24), there exists a p1, such that for all p ≥ p1,

Jp(φλo,O) > R(0)|Sn| − δ1.

This completes the proof of Proposition 2.1.
The proof of Proposition 2.2 is rather complex. We first estimate Jp for

a family of standard functions in Σ.

Lemma 2.1. For p sufficiently close to τ , and for λ and |q̃| sufficiently
small, we have

Jp(φλ,q̃) ≤ (R(0)− C1|q̃|α)|Sn|(1 + op(1))− C1λ
α+δp ,(25)

where δp := τ − p and op(1) → 0 as p→ τ .

Proof of Lemma 2.1.
Let ε > 0 be small such that (19) holds in Bε(O) ⊂ Sn. We express

Jp(φλ,q̃) =
∫

Sn

R(x)φp+1
λ,q̃ dV =

∫
Bε(O)

· · ·+
∫

Sn\Bε(O)
· · · .(26)
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From the definition of φλ,q̃ (17) and the boundedness of R, we obtain the
smallness of the second integral:∫

Sn\Bε(O)
R(x)φp+1

λ,q̃ dV ≤ C2λ
n−δp

n−2
2 for q̃ ∈ B ε

2
(O).(27)

To estimate the first integral, we work in a local coordinate centered at
O. ∫

Bε(O)
R(x)φp+1

λ,q̃ dV =
∫

Bε(O)
R(x+ q̃)φp+1

λ,O dV(28)

≤
∫

Bε(O)
[R(0)− a|x+ q̃|α]φp+1

λ,O dV

≤
∫

Bε(O)
[R(0)− C3|x|α − C3|q̃|α]φp+1

λ,O dV

≤ [R(0)− C3|q̃|α]|Sn|[1 + op(1)]− C4λ
α+δp .

Here we have used the fact that |x + q̃|α ≥ c(|x|α + |q̃|α) for some c > 0
in one half of the ball Bε(O) and the symmetry of φλ,O.

Noticing that α < n and δp → 0, we conclude that (26), (27) and (28)
imply (25). This completes the proof of the Lemma.

To estimate Jp for all u ∈ ∂Σ, we also need the following two lemmas that
describe some useful properties of the set Σ.

Lemma 2.2. (On the ‘center of mass’).
(i) Let q, λ, and q̃ be defined by (17). Then for sufficiently small q,

|q|2 ≤ C(|q̃|2 + λ4).(29)

(ii) Let ρo, q, and v be defined by (20). Then for ρo sufficiently small,

ρo ≤ |q|+ C‖v‖.(30)

Lemma 2.3 (Orthogonality). Let u ∈ Σ and v = u − toφqo be defined by
(20). Let Tqo be the conformal transform such that

Tqoφqo = 1.(31)

Then ∫
Sn

TqovdV = 0(32)

and ∫
Sn

Tqovx
idV = 0, i = 1, 2, . . . , n,(33)

where xi are coordinate functions on Sn.
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Proof of Lemma 2.2.
(i) From the definition that φq = φλ,q̃, and (17), and by an elementary

calculation, one arrives at

|q − q̃| ∼ λ2, for λ sufficiently small.(34)

Draw a perpendicular line segment from O to qq̃, then one can see that
(29) is a direct consequence of the triangle inequality and (34).

(ii) For any u = tφq + v ∈ ∂Σ, by the definition, we have either ‖v‖ = ρo

or |q(u)| = ρo. If ‖v‖ = ρo, then we are done. Hence we assume that
|q(u)| = ρo. It follows from the definition of the ‘center of mass’ that

ρo =
∣∣∣∣
∫
Sn x(tφq + v)τ+1∫
Sn(tφq + v)τ+1

∣∣∣∣ .(35)

Noticing that ‖v‖ ≤ ρo is very small, we can expand the integrals in (35) in
terms of ‖v‖:

ρo =

∣∣∣∣∣ tτ+1
∫
xφτ+1

q + (τ + 1)tτ
∫
xφτ

qv + o(‖v‖)
tτ+1

∫
φτ+1

q + (τ + 1)tτ
∫
φτ

qv + o(‖v‖)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
xφτ+1

q∫
φτ+1

q

∣∣∣∣∣+ C‖v‖ ≤ |q|+ C‖v‖.

Here we have used the fact that v is small and that t is close to 1. This
completes the proof of Lemma 2.2.

Proof of Lemma 2.3.
Write L = ∆ + γn. We use the fact that v = u− toφqo is the minimum of

E(u− tφq) among all possible values of t and q.

(i) By a variation with respect to t, we have∫
Sn

vLφqodV = 0.(36)

It follows from (16) that ∫
Sn

vφτ
qo
dV = 0.

Now, apply the conformal transform Tqo to both v and φqo in the above
integral. By the invariant property of the transform, we arrive at (32).
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(ii) To prove (33), we make a variation with respect to q.

0 = 5q

∫
vLφq |q=qo= γn5q

∫
vφτ

q |q=qo

5q

∫
Tqov(Tqoφq)τ |q=qo= 5q

∫
Tqov(φq−qo)

τ |q=qo∫
Tqovφ

τ−1
q−qo

5qφq−qo |q=qo

=
∫
Tqovx.

This completes the proof of the Lemma.

Proof of Proposition 2.2.

Make a perturbation of R(x):

R̄(x) =
{
R(x) x ∈ B2ρo(O)
m x ∈ Sn \B2ρo(O),(37)

where m = R |∂B2ρo(O)
.

Define

J̄p(u) =
∫

Sn

R̄(x)up+1dV.

The estimate is divided into two steps.
In Step 1, we show that the difference between Jp(u) and J̄τ (u) is very

small. In Step 2, we estimate J̄τ (u).

Step 1.
First we show

J̄p(u) ≤ J̄τ (u)(1 + op(1)),(38)

where op(1) → 0 as p→ τ .
In fact, by the Holder inequality∫

R̄up+1 ≤
(∫

R̄
τ+1
p+1uτ+1

) p+1
τ+1

|Sn|
τ−p
τ+1

≤
(∫

R̄uτ+1

) p+1
τ+1

| R(0)|Sn| |
τ−p
τ+1 .

This implies (38).
Now estimate the difference between Jp(u) and J̄p(u).

| Jp(u)− J̄p(u) |≤ C1

∫
Sn\B2ρo (O)

up+1
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≤ C2

∫
Sn\B2ρo (O)

(tφq)p+1 + C2

∫
Sn\B2ρo (O)

vp+1 ≤ C3λ
n−δp

n−2
2 + C3‖v‖p+1.

(39)

Step 2.
By virtue of (38) and (39), we now only need to estimate J̄τ (u). For any

u ∈ ∂Σ, write u = v + tφq. (36) implies that v and φq are orthogonal with
respect to the inner product associated to E(·), and hence

t2 = 1− ‖v‖2

γn|Sn|
.(40)

It follows that∫
Sn

R̄(x)uτ+1 ≤ tτ+1

∫
Sn

R̄(x)φτ+1
q + (τ + 1)

∫
Sn

R̄(x)φτ
qv(41)

+
τ(τ + 1)

2

∫
Sn

φτ−1
q v2 + o(‖v‖)

= I1 + (τ + 1)I2 +
τ(τ + 1)

2
I3 + o(‖v‖2).

To estimate I1, we use (40) and (25),

I1 ≤
(

1− τ + 1
2

‖v‖2

γn|Sn|

)
R(0)|Sn|(1− c1|q̃|α − c1λ

α) +O(λn) + o(‖v‖2),

(42)

for some positive constant c1.
To estimate I2, we use the L2 orthogonality between v and φq (see (36)),

I2 =
∫

Sn

(R̄(x)−m)φτ
qv =

∫
B2ρo (O)

(R̄(x)−m)φτ
qv ≤ C4ρ

α
o ‖v‖.(43)

To estimate I3, we use (32) and (33). It is well-known that the first and
second eigenspaces of −∆ on Sn are constants and coordinates functions xi

corresponding to eigenvalues 0 and n respectively. Now (32) and (33) imply
that Tqv is orthogonal to these two eigenspaces and consequently

‖v‖2 = ‖Tqv‖2 ≥ (γn + n+ c2)
∫

Sn

(Tqv)2,

for some positive constant c2. It follows that

I3 ≤ R(0)
∫

Sn

φτ−1
q v2 = R(0)

∫
Sn

(Tqv)2 ≤
R(0)

γn + n+ c2
‖v‖2.(44)

Now (42), (43), and (44) imply that there is a β > 0 such that

J̄τ (u) ≤ R(0)|Sn|[1− β(|q̃|α + λα + ‖v‖2)].(45)

Here we have used the fact that ‖v‖ is very small and ρα
o ‖v‖ can be controlled

by |q̃|α + λα (see Lemma 2.2). Notice that the positive constant c2 in (44)
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has played a key role, and without it, the coefficient of ‖v‖2 in (45) would
be 0.

Now (22) is an immediate consequence of (38), (39), and (45). This
completes the proof of the Proposition.

Part II. The Variational Scheme.
In this part, we construct variational schemes to show the existence of a

solution to Equation (14) for each p < τ .
Case (i): R has only one positive local maximum.

In this case, condition (7) implies that R must have local minima at both
poles. Similar to [11], we seek a solution by maximizing the functional Jp

in a class of rotationally symmetric functions:

Sr = {u ∈ S | u = u(r)}.(46)

Obviously, Jp is bounded from above in Sr and it is well-known that the
variational scheme is compact for each p < τ . Therefore any maximizing
sequence possesses a converging subsequence in Sr and the limiting function
multiplied by a suitable constant is a solution of (14).
Case (ii): R has at least two positive local maxima.

Let r1 and r2 be the two least positive local maxima of R. By Proposi-
tion 2.1 and 2.2, there exist two disjoint open sets Σ1,Σ2 ⊂ S, ψi ∈ Σi, po < τ
and δ > 0, such that for all p ≥ po,

Jp(ψi) > R(ri)|Sn| − δ

2
, i = 1, 2;(47)

and

Jp(u) ≤ R(ri)|Sn| − δ, ∀u ∈ ∂Σi, i = 1, 2.(48)

Let γ be a path in S joining ψ1 and ψ2. Let Γ be the family of all such
paths. Define

cp = sup
γ∈Γ

min
u∈γ

Jp(u).(49)

For each fixed p < τ , by the well-known compactness theorem, there
exists a critical (saddle) point up of Jp with

Jp(up) = cp.

Moreover, due to (48) and the definition of cp, we have

Jp(up) ≤ min
i
R(ri)|Sn| − δ.(50)

One can easily see that a critical point of Jp in S multiplied by a constant
is a solution of (14) and for all p close to τ , the constant multiples are
bounded from above and bounded away from 0.



74 WENXIONG CHEN AND CONGMING LI

3. The Apriori Estimates

In the previous section, we showed the existence of a positive solution up to
the subcritical Equation (14) for each p < τ . In this section, we prove that
as p → τ , there is a subsequence of {up}, which converges to a solution uo

of (4). The convergence is based on the following apriori estimate.

Theorem 3.1. Assume that R satisfies condition (8) in Theorem 1, then
there exists po < τ , such that for all po < p < τ , the solution of (14)
obtained by the variational scheme are uniformly bounded.

To prove the theorem, we estimate the solutions in three regions where
R < 0, R close to 0, and R > 0 respectively.
Part I. In the region where R < 0.

The apriori bound of the solutions is stated in the following proposition,
which is a direct consequence of Proposition 2.1 in our previous paper [17].

Proposition 3.1. For all 1 < p ≤ τ , the solutions of (14) are uniformly
bounded in the regions where R ≤ −δ, for every δ > 0. The bound depends
only on δ, dist ({x | R(x) ≤ −δ}, {x | R(x) = 0}), and the lower bound of
R.

Part II. In the region where R is small.
In [17], we also obtained estimates in this region by the method of moving

planes. However, in that paper, we assume that 5R be bounded away from
zero. In [18], for rotationally symmetric functions R on S3, we removed this
condition by using a blowing up analysis near R(x) = 0. That method may
be applied to higher dimensions with a few modifications. Now within our
variational frame in this paper, the apriori estimate is simpler. It is mainly
due to the energy bound.

Proposition 3.2. Let {up} be solutions of Equation (14) obtained by the
variational approach in Section 2. Then there exists a po < τ and a δ > 0,
such that for all po < p ≤ τ , {up} are uniformly bounded in the regions
where |R(x)| ≤ δ.

Proof. It is easy to see that the energy E(up) are bounded for all p. Now
suppose that the conclusion of the Proposition is violated. Then there exists
a subsequence {ui} with ui = upi , pi → τ , and a sequence of points {xi},
with xi → xo and R(xo) = 0, such that

ui(xi) →∞.

We will use a rescaling argument to derive a contradiction. Since xi may
not be a local maximum of ui, we need to choose a point near xi, which is
almost a local maximum. To this end, let K be any large number and let

ri = 2K[ui(xi)]−
pi−1

2 .
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In a small neighborhood of xo, choose a local coordinate and let

si(xi) = ui(xi)(ri − |x− xi|)
2

pi−1 .

Let ai be the maximum of si(x) in Bri(xi). Let λi = [ui(ai)]−
pi−1

2 . Then
from the definition of ai, one can easily verify that the ball BλiK(ai) is in
the interior of Bri(xi) and the value of ui(x) in BλiK(ai) is bounded above
by a constant multiple of ui(ai).

Now we can make a rescaling.

vi(x) =
1

ui(ai)
ui(λix+ ai).

Obviously vi is bounded in BK(0), and it follows by a standard argument
that {vi} converges to a harmonic function vo in BK(0) ⊂ Rn, with vo(0) =
1. Consequently for i sufficiently large,∫

BK(0)
vi(x)τ+1dx ≥ cKn,(51)

for some c > 0.
On the other hand, the boundedness of the energy E(ui) implies that∫

Sn

uτ+1
i dV ≤ C,(52)

for some constant C. By a straight forward calculation, one can verify that,
for any K > 0, ∫

Sn

uτ+1
i dV ≥

∫
BK(0)

vτ+1
i dx.(53)

Obviously, (52) and (53) contradict with (51). This completes the proof
of the Proposition.

Part III. In the regions where R > 0.

Proposition 3.3. Let {up} be solutions of Equation (14) obtained by the
variational approach in Section 2. Then there exists a po < τ , such that for
all po < p ≤ τ and for any δ > 0, {up} are uniformly bounded in the regions
where R(x) ≥ δ.

Proof. The proof is divided into 3 steps. In Step 1, we argue that the
solutions can only blow up at finitely many points because of the energy
bound. In Step 2, we show that there is no more than one point blow up
and the point must be a local maximum of R. This is done mainly by using
a Pohozaeve type identity. In Step 3, we use (50) to conclude that even one
point blow up is impossible.

Step 1. The argument is standard. Let {xi} be a sequence of points such
that ui(xi) → ∞ and xi → xo with R(xo) > 0. Let ri, si(x), and vi(x) be
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defined as in Part II. Then similar to the argument in Part II, we see that
{vi(x)} converges to a standard function vo(x) in Rn with

−∆vo = R(xo)vτ
o .

It follows that ∫
Bri (xo)

uτ+1
i dV ≥ co > 0.

Because the total energy of ui is bounded, we can have only finitely many
such xo. Therefore, {ui} can only blow up at finitely many points.

Step 2. We have shown that {ui} has only isolated blow up points. As a
consequence of a result in [28] (also see [17] or [31]), we have:

Lemma 3.1. Let R satisfy the ‘flatness condition’ in Theorem 1, Then {ui}
can have at most one simple blow up point and this point must be a local
maximum of R. Moreover, {ui} behaves almost like a family of the standard
functions φλi,q̃, with λi = (maxui)

− 2
n−2 and with q̃ at the maximum of R.

Step 3. Finally, we show that even one point blow up is impossible. For
convenience, let {ui} be the sequence of critical points of Jpi we obtained in
Section 2. From the proof of Proposition 2.2, one can obtain

Jτ (ui) ≤ min
k
R(rk)|Sn| − δ,(54)

for all positive local maxima rk of R. Now if {ui} blow up at xo, then by
Lemma 3.1, we have

Jτ (ui) → R(xo)|Sn|.
This is a contradiction with (54).

Therefore, the sequence {ui} is uniformly bounded and possesses a sub-
sequence converging to a solution of (4). This completes the proof of Theo-
rem 1.
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