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Let Ω be a smoothly bounded convex domain of finite type
in Cn. We show that a divisor in Ω satisfying the Blaschke
condition (respectively associated to a current of order a > 0)
can be defined by a function in the Nevanlinna class N0(Ω)
(respectively the Nevanlinna-Djrbachian class Na(Ω)). The
proof is based on L1(bΩ) estimates (resp. weighted L1(Ω)
estimates) for the solution of the ∂̄-equation on Ω.

1. Introduction and statement of results.

Let Ω = {ρ < 0} be a smoothly bounded domain in Cn with ρ a defining
function.

N0(Ω) denotes the Nevanlinna class for Ω and Na(Ω), where a > 0, denote
the Nevanlinna-Djrbachian classes. Recall that a function h is in Na(Ω) if
h is holomorphic on Ω and satisfies the condition

sup
ε>0

∫
bΩε

ln+ |h(z)| dλ2n−1(z) < +∞ if a = 0∫
Ω
|ρ(z)|a−1 ln+ |h(z)| dλ2n(z) < +∞ if a > 0.

Here, Ωε = {ρ < −ε}.
For h holomorphic in Ω consider M the zero set of h and (Mj , νj) the

divisor associated to h. The divisor (Mj , νj) satisfies the condition (Ba) if

(Ba)
∫

M
|ρ(z)|a+1 dλ2n−2(z) =

∑
j

νj

∫
Mj

|ρ(z)|a+1 dλ2n−2(z) < +∞

where dλ2n−k denotes the (2n − k)-dimensional volume element; from now
on we will write dλ for dλ2n for brevity.

(B0) is the Blaschke condition for (Mj , νj) (and for the associated Lelong
current [M ]); (Mj , νj) satisfies (Ba) means exactly that [M ] is a Lelong
current of order a on Ω.

If h is in the class Na, thus its associated divisor (Mj , νj) satisfies (Ba)
(for a > 0 see for instance [DH77]) . Henkin ([H77]) and Skoda ([Sk76])
proved independently that the condition (B0) is a sufficient condition on
a divisor for it being defined by a function belonging to the class N0, in
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the case of a smoothly bounded strictly pseudoconvex domain (under the
topological condition H2(Ω, C) = 0).

Dautov and Henkin ([DH77]) obtained the equivalent result for a > 0.
Recently Bruna, Charpentier and Dupain ([BCD98]) generalized the

Henkin-Skoda’s result to the case of smoothly bounded convex domains
of finite type in Cn which are of strict type i.e., a domain Ω satisfies the
strict-type condition if the following holds:

There exists a constant c such that for all boundary points z, all unit
vectors v in the complex-tangent space T c

z (bΩ) and all small real t, one has

(?) c−1 ρ(z + tv) ≤ ρ(z + itv) ≤ c ρ(z + tv).

In solving the equation i∂∂W = T for T a (1,1) positive closed current
satisfying the Blaschke condition, the authors need the condition (?) only
at the last step of their proof i.e., the step where the equation ∂u = f is
solved on the domain Ω with an L1(bΩ)-estimate on u.

In this paper we treat this problem of characterization of the zero sets of
functions in the classes Na, for a ≥ 0, in smoothly bounded convex domains
of finite type in Cn (without the strict-type condition (?)).

Bruna, Charpentier and Dupain ([BCD98]) have introduced a suitable
non-isotropic norm |||.|||k of forms on a convex domain Ω of finite type; the
definition of this norm is based on geometric quantities introduced by Mc-
Neal ([Mc94]) and is a bit technical; so we do not give it precisely in the
introduction. In terms of this non-isotropic norm, they obtained a new nec-
essary condition on a divisor to be defined by a function in the Nevanlinna
class of Ω, as shown by the first theorem we recall below. As already men-
tioned, two important results in [BCD98] are valid without the condition
(?):

Theorem 1.1 ([BCD98, Theorem 1.1]). Let Ω ⊂⊂ Cn be a convex domain
of finite type m in the d’Angelo sense with a C∞-smooth boundary. There
exists a constant C such that∫

Ω
d(z) |||T (z)|||k dλ(z) ≤ C

∫
Ω

d(z) ||T (z)|| dλ(z)

for all closed positive (1, 1)-currents on Ω.

Here, d(z) means dist(z, bΩ).

Theorem 1.2 ([BCD98, Theorem 1.2]). If Ω is as in Theorem 1.1, there
exists a constant C such that the solution of the equation dw = T obtained
by the Poincaré homotopy formula satisfies∫

Ω
|||w(z)|||k dλ(z) ≤ C

∫
Ω

d(z) |||T (z)|||k dλ(z).
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Our aim will thus be to solve the ∂̄-equation with suitable estimates with-
out using the strict-type condition. In [Cu97], [Cu01], we presented ∂̄ solv-
ing integral operator whose kernels are well adapted to the geometry of the
convex domains of finite type. Using such integral operators, we can prove:

Theorem 1.3. Under the assumptions of Theorem 1.1 for the domain Ω,
the equation ∂̄u = f , for f a ∂̄-closed (0, 1)-form with coefficients in C1(Ω)
has a solution u C1-smooth in Ω such that

a)
∫

Ω
d(z)a−1|u(z)| dλ(z) ≤ cst(Ω, a)

∫
Ω

d(z)a|||f(z)|||k dλ(z), for a > 0.

b)
∫

bΩ
|u(z)| dλ2n−1(z) ≤ cst(Ω)

∫
Ω
|||f(z)|||k dλ(z).

From Theorem 1.1 and 1.2 and part b) of Theorem 1.3 follows:

Corollary 1.4. Under the assumptions of Theorem 1.1 on Ω, every divisor
in Ω satisfying the Blaschke condition can be defined by a function in the
Nevanlinna class N0(Ω).

One can prove the analogous of Theorem 1.1 and Theorem 1.2 with
d(z)a+1 in place of d(z) and d(z)a |||w(z)|||k in place of |||w(z)|||k; since
a > 0 there are no difficulties: It just suffices to mimic the proofs given in
[BCD98]. Taking also into account part a) of Theorem 1.3, we thus obtain:

Corollary 1.5. Under the assumptions of Theorem 1.1 on Ω, every divisor
in Ω satisfying the condition (Ba), where a > 0, can be defined by a function
in the Nevanlinna-Djrbachian class Na(Ω).

The plan of the paper is as follows. Section 2 is devoted to the proof
of Theorem 1.3; we also give some comment on the proof of Corollary 1.4.
We use the same kernel as in [Cu97], [Cu01]. We postpone to Section 3
–as an appendix– all the geometrical notions we need regarding the convex
domains of finite type.

In the sequel, we will use the standard notation A . B, for A and B
functions of several variables, to denote that A ≤ C B for a constant C
independent of certain parameters which will be clear in the context. Of
course A ≈ B will mean A . B and B & A.1

The contents of the present paper were distributed as a preprint [Cu98].

2. Proof of Theorem 1.3.

Ω is a bounded convex domain in Cn with a C∞-smooth boundary. Suppose
every p ∈ bΩ is a point of finite type≤ m, in the sense of D’Angelo. Following

1I have heard that K. Diederich and E. Mazzilli have proved part b) of Theorem 1.3
and Corollary 1.4 in a preprint headed “Zero varieties for the Nevanlinna class on all
convex domains of finite type” – they use another kernel based on the support functions
recently constructed by K. Diederich and J.E. Fornaess [DiFo99].
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[BCD98] we may assume that 0 ∈ Ω and will choose as defining function
for Ω the function ρ = g−1, where g is the gauge function of Ω; ρ is of class
C∞ on Ω \ {0}.

2.1. Preliminaries.
• First we recall the definition of the kernel introduced in [Cu97].
B(ζ, z) will denote the Bergman kernel for the domain Ω; B(ζ, z) is holo-

morphic in z, antiholomorphic in ζ; under the assumptions made on Ω,
B(., .) is of class C∞ on Ω × Ω \ ∆bΩ, where ∆bΩ denotes the diagonal of
bΩ× bΩ ([Mc94]).

Denote

Q̃ = Q̃(ζ, z) =
1

B(ζ, ζ)

∫ 1

0
(∂ZB)

(
ζ, ζ + t(z − ζ)

)
dt,(2.1)

where

(∂ZB)
(
ζ, ζ + t(z − ζ)

)
=

n∑
j=1

∂B
∂Zj

(
ζ, ζ + t(z − ζ)

)
dzj

and ∂/∂Zj denotes a derivative with respect to the second variable.
Let N ≥ 2n be a positive integer te be fixed later on. We define for

(ζ, z) ∈ Ω× Ω \∆, where ∆ denotes the diagonal of Cn × Cn

K(ζ, z) =
n−1∑
k=0

c(k,n,N)

(
B(ζ, z)
B(ζ, ζ)

)N−k

(2.2)

×
(
∂z|ζ − z|2) ∧ (∂ζQ̃)k ∧ (d∂z|ζ − z|2

)n−k−1

|ζ − z|2n−2k

=
n−1∑
k=0

c(k,n,N)K
(k)(ζ, z),

where c(k,n,N) = −(−1)n(n−1)/2
(
N
k

)
.

Proposition 2.1 ([Cu97, Proposition 2.1]). If f is a (n, q)-form with co-
efficients in C1(Ω), q ≥ 1, then ∀z ∈ Ω,

f(z) = cst(n, q)
[

∂z

∫
Ω

f(ζ) ∧K(ζ, z)−
∫

Ω
∂f(ζ) ∧K(ζ, z)

]
.

A classical approximation argument reduces the proof of Theorem 1.3 to
the case of forms which have coefficients in C1(Ω). Define, for F a (n,.)-form

ΘF (z) =
∫

Ω
F (ζ) ∧K(ζ, z).(2.3)

ΘF is a solution of the equation ∂̄v = F for F a ∂-closed form in C1
n,q(Ω)

(cf. Proposition 2.1).
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Let f be a (0, 1)-form which is assumed to be C1-smooth in Ω̄.

We denote ω(ζ) = dζ1 ∧ ... ∧ dζn and define f̃(ζ) = f(ζ) ∧ ω(ζ).
Thus Θf̃(z) = u(z)ω(z).

(2.4)

We will choose this solution u of the equation ∂̄u = f and prove that it
satisfies the estimates of Theorem 1.3. Of course, the integer N involved in
the definition of K will be chosen in terms of the constant a for part a) of
Theorem 1.3.

•Now let us recall the definition of the norm |||.|||k on forms (cf [BCD98]).
For η > 0 and v ∈ Cn, |v| = 1, McNeal has introduced the quantity

σ(z, v, η) (where z ∈ Ω, z close to bΩ), which measures the radius of the
largest complex disc, centered at z, in the direction v, which lies entirely in
the domain {ρ < ρ(z) + η}. More precisely

σ(z, v, η) = sup {r > 0 | ρ(z + λv)− ρ(z) ≤ η, |λ| ≤ r}.(2.5)

Bruna, Charpentier and Dupain ([BCD98]) introduced the norm k(z, v, η)
= d(z)/σ(z, v, η); they write k(z, v) when η is d(z)/2 (up to a uniform con-
stant multiple).

With respect to this norm k(z, .), they defined a non-isotropic norm on
forms as follows:

If T is a smooth 2-form on Ω̄, |||T (z)|||k is the smooth function

|||T (z)|||k = sup
{

|T (z)(u, v)|
k(z, u)k(z, v)

;u 6= 0, v 6= 0
}

.

If w is a smooth 1-form on Ω, |||w(z)|||k is the smooth function

|||w(z)|||k = sup
{
|w(z)(u)|
k(z, u)

;u 6= 0
}

.(2.6)

• We want to prove, for f a (0, 1)-form smooth in Ω̄

a

∫
Ω

d(z)a−1|u(z)| dλ(z) ≤ cst

∫
Ω

d(z)a|||f(z)|||k dλ(z), for a > 0,

where the constant remains bounded if a → 0. Part b) of Theorem 1.3 will
be obtained by letting a → 0.

Using Fubini’s Theorem, we have thus to obtain the estimate

a

∫
Ω

d(z)a−1|K(ζ, z) ∧ f(ζ) ∧ ω(ζ)| dλ(z) ≤ C d(ζ)a|||f(ζ)|||k(2.7)

for a > 0 and a constant C uniformly bounded with respect to a if 0 < a < 1.

Remark 2.2. For the case a = 0 there is no problem of regularity for the
solution u defined in (2.4); if f has coefficients in C1(Ω̄), so one can extend
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u continuously up to the boundary since we have proved in [Cu01] the
following

‖Θf̃‖Λ1/m(Ω) . ‖f‖L∞(Ω),

where Λ1/m(Ω) is the usual Lipschitz space and Θf̃ is defined in (2.3) and
(2.4).

Remark 2.3. If one has to solve in Ω the equation i∂∂̄W = T with W
in the Nevanlinna class for T a (1, 1) closed positive current satisfying the
Blaschke condition, it suffices to assume T is smooth up to the boundary
and to prove the estimate∫

bΩ
|W (z)| dλ2n−1(z) .

∫
Ω

d(z)|T (z)| dλ(z).

Then, a classical argument of approximation permits to get a solution W
in the Nevanlinna class of Ω.

Therefore Theorems 1.1, 1.2 and 1.3 b) yield Corollary 1.4. �

2.2. Estimates on the term G = K(n−1). Recall the expression of G:

G(ζ, z) =
(
B(ζ, z)
B(ζ, ζ)

)N ′ (
∂z|ζ − z|2

)
(∂ζQ̃)n−1

|ζ − z|2
(2.8)

where N ′ = N − n + 1.
We refer to Section 3 for the definition of the quantities and notions under

question below (see (3.3), (3.9) for M(z, ζ) and P (z, η)).
There exists a constant β > 0 such that

∀ζ ∈ Ω ∩ U ,∀η, 0 < η � 1,M(z, ζ) < η ⇒ z ∈ P (ζ, βη).

Define

C0 = C0(ζ) := P (ζ, βδ(ζ)) ∩W ∩ Ω, where δ(ζ) = dist(ζ, bΩ),

C` = C`(ζ) := {z ∈ Ω ∩W |2`−1δ(ζ) ≤M(z, ζ) < 2`δ(ζ)} for ` ≥ 1,

where W = 1/2U and U is some U(p) defined in (3.7).
Notation. From now on we will often use the short-hand notations d =
d(z) = dist(z, bΩ) and δ = δ(ζ) = dist(ζ, bΩ).

Let (e(`)
j )j = (e(`)

j (ζ))j be a 2`βδ(ζ)-extremal basis at ζ (cf. Definition 3.1);
if (w1, . . . , wn) is the new system of coordinates with respect to this basis,
we denote L

(`)
j = ∂/∂wj and (L(`)∗

j )j is the basis of T ∗
ζ Cn which is the dual

basis of (L(`)
j )j .

We will use the basis (L(`)∗(z)
j )j (resp. (L(`)∗(ζ)

j )j) in order to express the
forms dzk (resp. dζk) in G(ζ, z) ∧ f(ζ) ∧ ω(ζ) , for z ∈ C`(ζ). (We have
already used this process in [Cu97] and [Cu01, Subsection 4.2.2 ] in order
to estimate derivatives of G.)
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Convention. In any ambiguous case, L(z)Y(., .) means a derivative with
respect to the second variable of Y(., .); Y will be essentially B or some
derivative of B.

Thus we get from (2.8), (2.1) for z ∈ C`(ζ), ζ ∈ U

G(ζ, z) ∧ f(ζ) ∧ ω(ζ) =
B(ζ, z)N ′

B(ζ, ζ)N ′+n−1 |ζ − z|2
[H1 + H2],(2.9)

with

H1(ζ, z)

=
1

B(ζ, ζ)

∑
|I|=n,|J |=n

cst L
(z)
i0

(
|ζ − z|2

)(
L

(ζ)
j1 B

)
(ζ, ζ)

∫ 1

0

(
L

(z)
i1
B

)
(ζ, zt) dt

×
n−1∏
k=2

(∫ 1

0

(
L

(z)
ik

L
(ζ)
jk
B

)
(ζ, zt) dt

) [
f(ζ)(e(`)

jn
)
]

AS(ζ)L∗(z)
I ∧ L

∗(ζ)
J ∧ L

∗(ζ)
S ,

H2(ζ, z)

=
∑

|I|=n,|J |=n

cst L
(z)
i0

(
|ζ − z|2

)
×

n−1∏
k=1

(∫ 1

0

(
L

(z)
ik

L
(ζ)
jk
B

)
(ζ, zt) dt

) [
f(ζ)(e(`)

jn
)
]

AS(ζ)L∗(z)
I ∧ L

∗(ζ)
J ∧ L

∗(ζ)
S ,

where zt = ζ + t(z − ζ), I = (i0, i1, . . . , in−1), J = (j1, . . . , jn) and S =
(s1, . . . , sn) ∈ N∗n; L∗I = L∗i0 ∧ · · · ∧ L∗in−1

, L
∗
J = L

∗
j1 ∧ · · · ∧ L

∗
jn

, L∗S =
L∗s1

∧ · · · ∧ L∗sn
, AS(ζ) is uniformly bounded in Ω , ∀S ∈ N∗n.

Using (3.3), (3.9), (3.4) and (3.5) we have

ε(ζ, zt) ≈ |ρ(ζ)|+ |ρ(zt)|+M(ζ, zt) & δ(ζ) ,
inf0≤t≤1 VolTζ,zt & VolTζ ≈ VolP

(
ζ, δ(ζ)

)
,

(2.10)

where Tζ is a smallest tent (i.e., of smallest volume) containing ζ.
Hence it follows from (3.7), (3.2), (3.1) and (2.10)∣∣∣∣ ∫ 1

0

(
L

(z)
i1
B

)
(ζ, zt) dt

∣∣∣∣ . [Vol P (ζ, δ) σ(ζ, ei1 , δ)]
−1.∣∣∣∣ ∫ 1

0

(
L

(z)
ik

L
(ζ)
jk
B

)
(ζ, zt) dt

∣∣∣∣ . [Vol P (ζ, δ) σ(ζ, ejk
, δ) σ(ζ, eik , δ)]−1.

From the definition (2.6) of |||f |||k we have

|f(ζ)(e(`)
j (ζ))| ≤ |||f |||k δ(ζ)

σ(ζ, e
(`)
j (ζ), δ)

.(2.11)
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Using moreover (3.7), (3.10) and (3.11) we can write

|G(ζ, z) ∧ f(ζ) ∧ ω(ζ)|

.
δN ′+1 |||f(ζ)|||k
ε(ζ, z)N ′ |ζ − z|

 n∏
j=1

σ(ζ, e
(`)
j , δ)

−1 ∑
I

[
n−1∏
k=1

σ(ζ, e
(`)
ik

, δ)

]−1

where I = (i1, . . . , in−1) are multi-indices with 1 ≤ i1 < · · · < in−1 ≤ n.
For all I, let in be chosen such that (1, . . . , n) = (i1, . . . , in). We will

need the following estimates (they are easily deduced respectively from the
definition of C`, (3.9); (3.2); Definition 3.1).

ε(ζ, z) ≈ 2`δ(ζ) if z ∈ C`(ζ) ,(2.12)

σ(ζ, e
(`)
j (ζ), δ) & 2−`/2σ(ζ, e

(`)
j (ζ), β2`δ) uniformly in ζ, j , `,(2.13)

σ(ζ, e
(`)
in

(ζ), β2`δ) ≤ σ(ζ, e
(`)
2 (ζ), β2`δ).

Denoting τ
(`)
j (ζ) = σ(ζ, e

(`)
j (ζ), β2`δ(ζ)), we obtain for z ∈ C`(ζ)

|G(ζ, z) ∧ f(ζ) ∧ ω(ζ)| .
|||f(ζ)|||k τ

(`)
2 (ζ) δ(ζ)

2(N ′−n)` |ζ − z|
∏n

j=1

(
τ

(`)
j (ζ)

)2 .(2.14)

Using (3.4) and (3.6) we have thus to estimate

J` :=
τ

(`)
2 (ζ) δ(ζ)

VolP (ζ, 2`δ)

∫
P (ζ,β2`δ)

d(z)a−1 dλ(z)
|ζ − z|

.(2.15)

We use the system of coordinates associated to the basis (e(`)
k )k and denote

wk = 〈ζ − z, e
(`)
k 〉, for 1 ≤ k ≤ n, t1 = −ρ(z), t2 = =m w1(2.16)

and for 2 ≤ k ≤ n, t2k−1 = <ewk, t2k = =m wk.

We integrate with respect to (t1 + it2, w2, . . . , wn).

Using (3.6), the estimate τ
(`)
1 (ζ) ≈ 2`δ and the fact that d(z) . 2`δ if

z ∈ P (ζ, β2`δ) we obtain

J` .
τ

(`)
2 δ(ζ)

VolP (ζ, 2`δ)

∫
|t1|+|t2|<2`δ, |wj |<τ

(`)
j , j≥2

t a−1
1 dt1 dt2 dλ(w2, . . . , wn)

|w2|

J` . a−1 (δ(ζ))a 2`(a−1).(2.17)

We choose N ′ ≥ n + a; (2.14), (2.15), and (2.17) yield∑
`

a

∫
C`(ζ)

d(z)a−1 |G(ζ, z) ∧ f(ζ) ∧ ω(ζ)| dλ(z) ≤ C (δ(ζ))a |||f(ζ)|||k,

where C remains bounded as a → 0.
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2.3. . We now deal with the other terms of our kernel. Since we have already
treated the case of G = K(n−1), it suffices to give the estimates for K(0) and
K(1) (cf. (2.2)).

Recall N is chosen such that N > 2n + a.

• |K(0)(ζ, z) ∧ f(ζ) ∧ ω(ζ)| ≤ |||f(ζ)|||k |K(0)(ζ, z)|.
We have from (2.2) and (3.11)

∫
Ω∩U

|ρ(z)|a−1|K(0)(ζ, z) ∧ f(ζ) ∧ ω(ζ)| dλ(z)

. δN |||f(ζ)|||k
∫

Ω∩U

|ρ(z)|a−1 dλ(z)
ε(ζ, z)N |ζ − z|2n−1

.

We choose a system of coordinates with respect to a basis (e1, . . . , en)
where e1 = ∇ρ(ζ)/||∇ρ(ζ)||; from (3.8), (3.9), (3.3) we have

ε(ζ, z) ≈ |ρ(ζ)|+ |ρ(z)|+M(ζ, z)

& |ρ(z)|+ |ρ(ζ)|+ |ζ1 − z1| ζ, z ∈ U ∩ Ω.

We integrate in t1 = ρ(z) − ρ(ζ), t2 = =m(ζ1 − z1) and the remaining
variables as done in [DH77, Lemma 2.2 a)] (we give some details about this
lemma in Subsection 3.2); thus we get

∫
Ω∩U

|ρ(z)|a−1 dλ(z)
(ε(ζ, z))N |ζ − z|2n−1

≤ C a−1 (δ(ζ))−N+a

where C is bounded (with respect to a) for 0 < a < 1.

• The term involving K(1) is less regular than the term with K(0). In
[Cu01], we have given results for isotropic norms. Since the norm |||.|||k is
non-isotropic, we have to handle the term with K(1) the same way we have
done to estimate |G(ζ, z) ∧ f(ζ) ∧ ω(ζ)|; we thus proceed as in Section 2.2,
the notations of which we use again.

K(1)(ζ, z) =
(
B(ζ, z)
B(ζ, ζ)

)N−1
(
∂z|ζ − z|2

)
(∂Q̃)

(
d∂z|ζ − z|2

)n−2

|ζ − z|2n−2
.

The form ∂̄ζQ̃(ζ, z)∧f(ζ) is of bidegree (0, 2) in ζ, of bidegree (1, 0) in z; we
express the forms dzj and dζ̄j in other bases as in Section 2.2; moreover we
use (2.1), (3.7), (3.10), (3.11) in a first step, (2.11) and (2.12) in a second



88 ANNE CUMENGE

step; we thus obtain for z ∈ C`(ζ)

|K(1)(ζ, z) ∧ f(ζ) ∧ ω(ζ)|

.
n∑

i,j,p=1
i6=p

|f(ζ)(e(`)
p )| (δ(ζ))N−1

σ(ζ, e
(`)
i , δ) σ(ζ, e

(`)
j , δ) ε(ζ, z)N−1 |ζ − z|2n−3

.
n∑

i,j,p=1
i6=p

|||f(ζ)|||k δ(ζ) 2−`(N−1)

σ(ζ, e
(`)
i , δ) σ(ζ, e

(`)
j , δ) σ(ζ, e

(`)
p , δ) |ζ − z|2n−3

.

Using once again the notation τ
(`)
j = τ

(`)
j (ζ) = σ(ζ, e

(`)
j (ζ), β2`δ(ζ)), j =

1, . . . , n, we deduce from (3.6) and (2.13) for z ∈ C`(ζ)

|K(1)(ζ, z) ∧ f(ζ) ∧ ω(ζ)| .
∑
I,J

|||f(ζ)|||k δ(ζ) τ
(`)
j2

∏n
k=3 τ

(`)
ik

τ
(`)
jk

2`(N−5/2) VolP (ζ, β2`δ) |ζ − z|2n−3
,

(2.18)

where I = (i1, . . . , in), J = (j1, . . . , jn) are such that {i1, . . . , in} =
{j1, . . . , jn} = {1, . . . , n}.

We have thus to estimate

L`,I,J(ζ) :=
δ τ

(`)
j2

∏n
k=3 τ

(`)
ik

τ
(`)
jk

(ζ)
VolP (ζ, β2`δ)

∫
C`(ζ)

d(z)a−1 dλ(z)
|ζ − z|2n−3

.(2.19)

Without loss of generality we can suppose that i1 < i2; we let ν = min(i1, j1)
and µ = max(i1, j1); we thus have ν < i2.

We use the notations (2.16). On the one hand, we consider t1, t2ν , t2i2−1,
t2i2 and on the other hand we call t′ the (2n − 4)-tuple of the remaining
variables.

We denote ri2 = (t 2
2i2−1 + t 2

2i2
)1/2.

Since τ
(`)
1 ≈ 2`δ and δ(ζ) . 2−`τ

(`)
µ , we obtain

δ(ζ)
∫
C`(ζ)

d(z)a−1 dλ(z)
|ζ − z|2n−3

. δ

∫
|t2k−1|+|t2k|<τ

(`)
k

t a−1
1 dt1 . . . dt2n

|t|2n−3

. δ

∫
0<t1<τ

(`)
1

t a−1
1 dt1

∫
ri2

<τ
(`)
i2

, |t2ν |<τ
(`)
ν , |t′|<1

dt2ν ri2 dri2 dλ(t′)
(ri2 + |t′|)2n−3

≤ C a−12(a−1)` δa τ
(`)
i2

τ (`)
ν τ (`)

µ = C a−12(a−1)` δ(ζ)a τ
(`)
i2

τ
(`)
i1

τ
(`)
j1

where C is uniformly bounded with respect to a if 0 < a < 1.
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The latest estimate, (2.18), (2.19) and (3.6) yield the required results
(cf. (2.7)).
Remark. In order to prove part b) of Theorem 1.3, we could have inte-
grated directly on the boundary. We give some precision in Subsection 3.2.

We have chosen another type of proof for Theorem 1.3 b); it allows us to
treat together the case of weighted L1(Ω) estimates and the case of L1(bΩ)
estimates.

3. Appendix.

3.1. . Ω is a smoothly bounded convex domain of finite type m in Cn.
• We will need some properties of the quantities σ(z, v, η) the definition

of which has been recalled in (2.5).
We have uniformly in z, v

σ(z, v, η) = O
(
η1/m

)
and σ(z, v, η) & η.(3.1)

For η1 ≤ η2,
(
η1/η2

)1/2
σ(z, v, η2) . σ(z, v, η1) .

(
η1/η2

)1/m
σ(z, v, η2).

(3.2)

• We recall now the notion of η-extremal basis of McNeal as done in
[BCD98]. Let z ∈ Ω close to bΩ and η > 0 be fixed.

Definition 3.1. A orthonormal basis {v1, . . . , vn} of the tangent space
Tz(Cn) is a η-extremal basis of McNeal at z if it is chosen as follows: The
first vector v1 is the unit vector of the direction of the gradient vector at z;
chosen v1, . . . , vi−1, so vi is a unit vector realizing the maximum of σ(z, v, η)
among the unit vectors orthogonal in Cn to v1, . . . , vi−1.

• The polydisc P (z, η) of McNeal centered at z, with radius η is defined
as follows:

P (z, η) =

w = z +
n∑

j=1

wjvj , where |wj | ≤ c σ(z, vj , η)

(3.3)

where the constant c = c(n) is chosen such that w ∈ P (z, η) =⇒ |ρ(w) −
ρ(z)| ≤ η.

The construction of McNeal’s polydiscs makes Ω a space of “homogeneous
type” with the usual properties.

Let us just recall what we need about these polydiscs (cf. [Mc94],
[BCD98] for details).

∀C > 0, VolP (z, Cη) ≈ VolP (z, η).(3.4)

We have, with uniform constants,

VolP (ζ, η) ≈ VolP (z, η) if P (z, η) ∩ P (ζ, η) 6= ∅.(3.5)
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If (vj)1≤j≤n is an η-extremal basis of McNeal at z then

VolP (z, η) ≈
n∏

i=1

(
σ(z, vi, η)

)2
.(3.6)

• Using the reformulation given by McNeal and Stein in [McS94], we
give the McNeal’s estimates of the Bergman kernel that we need.

Definition 3.2. For z ∈ bΩ, η > 0, T (z, η) := P (z, η)∩Ω is called the tent
at z of radius η.

For v a unit vector in Cn, ϕ ∈ C∞(Ω), let Dvϕ denote the directional
derivative of ϕ in the direction v.

For every p ∈ bΩ, there exists a neighborhood U(p) such that for ζ, z in
U ∩ Ω, k, s ∈ N, v and v′ unit vectors

|Dk
vD

s
v′B(ζ, z)| ≤ cst(k, s) σ(ζ, v, ε)−k σ(ζ, v′, ε)−s(VolTζ,z)−1(3.7)

where VolTζ,z is the volume of the “smallest” tent containing both
ζ and z, ε = ε(ζ, z) the radius of this tent (“smallest” means
of smallest volume).

ε = ε(ζ, z) ≈ |ρ(ζ)|+ |ρ(z)|+M(ζ, z)(3.8)

where M(ζ, z) is the quasi-distance of McNeal; up to uniform constant mul-
tiples:

M(z, ζ) ≈M(ζ, z) = inf{η, ζ ∈ P (z, η)} for |ζ − z| � 1, ζ close to bΩ.
(3.9)

For every p ∈ bΩ, there exists a neighborhood U ′(p) of p (we may assume
U ′(p) = U(p)) such that

B(ζ, ζ) & (VolP (ζ, δ))−1 , ζ ∈ U ′(p) ∩ Ω, where δ = δ(ζ) = |ρ(ζ)|/2.

(3.10)

• The estimate given below is implicit in [Mc94] and is easy to get
(cf. [Cu01]).

|B(ζ, z)|
B(ζ, ζ)

.
VolP (ζ, δ)

VolP (ζ, ε(ζ, z))
.

δ(ζ)
ε(ζ, z)

, ζ, z ∈ U ∩ Ω.(3.11)

3.2. . We give here some technical results.
• In [DH77, Lemma 2.2], the authors estimate integrals like

Ix,α,M (δ) :=
∫

t1+δ>0, |t|<1

(t1 + δ)α dt1 · · · dt2n

(δ + |t1|+ |t2|+ |t|2)M |t|2n−1−x
,

where x = 0, 2 or 3.
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If x = 0 (part a) of the lemma), they use the inequality δ + |t1|+ |t2|+ |t|2 ≥
δ + |t1|+ |t2|; so we can apply in our context their result i.e.,

I0,α,M (δ) ≤ C (α + 1)−1δ1−M+α, if M − α > 1.

• If one chooses to integrate directly on the boundary in order to prove
part b) of Theorem 1.3 – taking into account Remark 2.2 –, the terms
involving G or K(1) can be handled without difficulty as in Section 2.2.

Thanks to the weight (B(ζ, z)/B(ζ, ζ))N , the integration of |K(0)| on {z ∈
bΩ, |z − ζ| � 1} is less problematic than it looks:

If z ∈ bΩ, we have δ(ζ) ≈ |ρ(ζ)| = |ρ(ζ) − ρ(z)| . |ζ − z|; thus we can
prove using (3.11) that∫

bΩ∩{|z−ζ|�1}
|K(0)(ζ, z)|dλ2n−1(z) .

∞∑
`=0

∫
bΩ∩C`(ζ)

|K(0)(ζ, z)|dλ2n−1(z)

. C

uniformly with respect to ζ.
Note added in proof: Just before correcting the galley proofs of this paper,
I have heard that the paper in question in Footnote 1 will appear in the
Nagoya Journal of Mathematics (cf. [DiM01]).
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des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France, 104
(1976), 225-299.

Received August 18, 1999.

Universite Paul Sabatier
31062 Toulouse Cedex
France
E-mail address: cumenge@picard.ups-tlse.fr

mailto:cumenge@picard.ups-tlse.fr

