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We give necessary and sufficient conditions for simplicity
of Cuntz-Krieger algebras corresponding to infinite 0–1 ma-
trices and of C∗-algebras corresponding to countable directed
graphs. We show that simple algebras within these two classes
are either purely infinite or AF .

0. Since their invention about twenty years ago Cuntz-Krieger algebras
OA corresponding to finite, square 0–1 matrices [3] have attracted immense
interest. It was remarked in their original paper by Cuntz and Krieger that
the theory may be extended to infinite matrices as well. Unfortunately, no
details were provided at that time. This quite non-trivial task has been
successfully carried out recently by Exel and Laca [5], by means of some
heavy-duty machinery. It turns out that the resulting class of C∗-algebras
is rich enough to encompass, at least up to Morita equivalence, all graph
C∗-algebras [10, 9, 1, 11], as shown in [6], as well as AF -algebras, as shown
in [9, 4]. Despite a lot of interest in the subject and a number of well-aimed
attempts the fundamental question of simplicity of these algebras had not
been settled. Only partial results in this direction, covering various special
cases, have been obtained in [10, 9, 5, 8, 6, 7, 1]. In this article we provide
an easy to check necessary and sufficient condition for simplicity of Cuntz-
Krieger algebras built on infinite matrices. This in turn implies an analogous
criterion for graph algebras. Then, following the ideas of [9], we show that
all simple Cuntz-Krieger algebras are either purely infinite or AF . This
final result gives a good promise of the possibility of classification of these
interesting C∗-algebras.

1. Let N be a countable non-empty set and let A = [A(i, j)]i,j∈N be a matrix
with entries in {0, 1} whose no row is identically zero (which we always
assume in what follows). Ruy Exel and Marcelo Laca define in [5, Theorem
8.6] a Cuntz-Krieger algebra OA corresponding to A as the universal C∗-
algebra generated by a family of partial isometries {Si | i ∈ N}, subject to
the following relations:

[EL1] S∗
i Si and S∗

j Sj commute for all i, j ∈ N ,
[EL2] S∗

i Sj = 0 for all i 6= j in N ,
[EL3] (S∗

i Si)Sj = A(i, j)Sj for all i, j ∈ N ,
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[EL4] for all finite subsets X, Y of N such that

A(X, Y, j) def=
∏
x∈X

A(x, j)
∏
y∈Y

(I −A(y, j))

is non-zero for all but finitely many j’s we have∏
x∈X

S∗
xSx

∏
y∈Y

(I − S∗
ySy) =

∑
j∈N

A(X, Y, j)SjS
∗
j .

I in the formulae above is the identity of the multiplier algebra. This defini-
tion generalizes the one given for finite matrices by Cuntz and Krieger [3].
For X, Y finite subsets of N we denote

PX,Y =
∏
x∈X

S∗
xSx

∏
y∈Y

(I − S∗
ySy).

2. Following [5, Definition 10.5] we associate with A a directed graph EA =
(E0

A, E1
A, s, r) (cf. [10, 9]), defined as follows: E0

A = N ,

E1
A = {(i, j) ∈ N ×N | A(i, j) = 1},

with s(i, j) = i and r(i, j) = j. For α = (α1, . . . , αr) ∈ E∗
A we write

Sα = Sα1 · · ·Sαr . One can show that

OA = span{SαPX,∅S
∗
β | α, β ∈ E∗

A, X ⊆ N finite}.

Here we allow α or β to be empty, i.e., Sα = I or Sβ = I.

3. Universality of OA implies existence of the canonical gauge action γ :
T → Aut(OA), defined on the generators by γt(Si) = tSi, t ∈ T, i ∈ N . We
denote by Γ the corresponding faithful conditional expectation of OA onto
the fixed point algebra Oγ

A, given by integration over T with respect to the
normalized Haar measure

Γ(x) =
∫

t∈T
γt(x)dt.

It is not difficult to verify that for all α, β ∈ E∗
A and finite X ⊆ N we have

Γ(SαPX,∅S
∗
β) = δ|α|,|β|SαPX,∅S

∗
β

with δ the Kronecker symbol and |α| the length of α.

4. In order to give a necessary and sufficient condition for simplicity of OA

we need the concept of a hereditary and saturated subset of the index set N
of A, defined as follows. For j ∈ N we define H0(j) as the union of {j} and
the collection of all those i ∈ N for which there exists a path in EA from
j to i. Then, by induction, we define Hn+1(j) as the union of Hn(j) and
the collection of all those i ∈ N for which there exists a finite K ⊆ Hn(j)
such that A(i, t) ≤ max

k∈K
A(k, t) for all t ∈ N \K. It follows from conditions
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[EL1–EL4] that this is equivalent to S∗
i Si ≤

∑
k∈K

(S∗
kSk + SkS

∗
k). Finally, we

set H(j) =
⋃∞

n=0 Hn(j) and call it the hereditary and saturated subset of N
generated by j.

Before giving our main result, Theorem 8 below, we need three lemmas. A
tedious but routine proof of Lemma 5 is omitted, while the proof of Lemma 7
is modelled after [9, Section 2].

Lemma 5. If A = [A(i, j)]i,j∈N is a 0−1 matrix with no zero rows, k ∈ N ,
and J is the closed 2-sided ideal of OA generated by Sk, then

J = span{SαPX,∅S
∗
β | (∃t ∈ H0(k)) PX,∅ ≤ S∗

t St}.

Lemma 6. If A = [A(i, j)]i,j∈N is a 0−1 matrix with no zero rows, i, j ∈ N ,
and J is the closed 2-sided ideal of OA generated by Sj, then Si ∈ J if and
only if i ∈ H(j).

Proof. It follows immediately from the inductive definition of H(j) that
i ∈ H(j) implies Si ∈ J . Conversely, suppose that Si ∈ J and, by way of con-
tradiction, that i 6∈ H(j). By Lemma 5 there exist αk = (α1

k, . . . , αak
k ), βk =

(β1
k, . . . , βbk

k ) ∈ E∗
A, λk ∈ C, and finite Xk ⊆ N for k = 1, . . . , n, such that∥∥∥∥∥

n∑
k=1

λkSαk
PXk,∅S

∗
βk
− SiS

∗
i

∥∥∥∥∥ < 1,

α1
k = β1

k = i, and (∃t ∈ H0(j)) PXk,∅ ≤ S∗
t St for all k = 1, . . . , n. Applying

the conditional expectation Γ we may assume that ak = bk for k = 1, . . . , n.
Indeed, ∥∥∥∥∥∥

∑
ak=bk

λkSαk
PXk,∅S

∗
βk
− SiS

∗
i

∥∥∥∥∥∥
=

∥∥∥∥∥Γ
(

n∑
k=1

λkSαk
PXk,∅S

∗
βk
− SiS

∗
i

)∥∥∥∥∥
≤

∥∥∥∥∥
n∑

k=1

λkSαk
PXk,∅S

∗
βk
− SiS

∗
i

∥∥∥∥∥ < 1.

Let Q = I −
∨n

k=1 Sα2
k
S∗

α2
k
. Since∥∥∥∥∥∥Q

∑
ak=1

PXk,∅ − S∗
i Si

Q

∥∥∥∥∥∥ =

∥∥∥∥∥QS∗
i

(
n∑

k=1

λkSαk
PXk,∅S

∗
βk
− SiS

∗
i

)
SiQ

∥∥∥∥∥
< 1
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it follows that

S∗
i Si ≤

n∑
k=1

(Sα2
k
S∗

α2
k

+ PXk,∅).

Since i 6∈ H(j) there is a t ∈ {1, . . . , n} such that α2
t 6∈ H(j). We have∥∥∥∥∥∥

∑
α2

k=α2
t =β2

k

λkSα2
k
· · ·Sα

ak
k

PXk,∅S
∗
β

bk
k

· · ·S∗
β2

k
− Sα2

t
S∗

α2
t

∥∥∥∥∥∥
=

∥∥∥∥∥Sα2
t
S∗

α2
t

(
n∑

k=1

λkSα2
k
· · ·Sα

ak
k

PXk,∅S
∗
β

bk
k

· · ·S∗
β2

k
− S∗

i Si

)
Sα2

t
S∗

α2
t

∥∥∥∥∥
≤

∥∥∥∥∥
n∑

k=1

λkSα2
k
· · ·Sα

ak
k

PXk,∅S
∗
β

bk
k

· · ·S∗
β2

k
− S∗

i Si

∥∥∥∥∥
=

∥∥∥∥∥
n∑

k=1

λkSαk
PXk,∅S

∗
βk
− SiS

∗
i

∥∥∥∥∥ < 1.

Thus, we can repeat the same argument again with i replaced by α2
t . Con-

tinuing inductively in the like manner we conclude that there exists an
m ∈ {1, . . . , n} such that αam

m 6∈ H(j) but S∗
αam

m
Sαam

m
≤
∑n

k=1 PXk,∅. This
contradiction completes the proof. �

Lemma 7. If A = [A(i, j)]i,j∈N is a 0 − 1 matrix with no zero rows and
EA has a loop with no exits then OA contains a closed 2-sided ideal, Morita
equivalent to C(T).

Proof. Let i1, . . . , in ∈ N (and we also write in+1 = i1) be such that L =
((i1, i2), (i2, i3), . . . , (in, i1)) is a simple loop without exits in EA, and let
J be a closed 2-sided ideal of OA generated by Si1 , . . . , Sin . Since L has
no exits, we have A(im, j) = δj,im+1 for all j ∈ N , m = 1, . . . , n and,
hence, [EL4] implies that S∗

im
Sim = Sim+1S

∗
im+1

. From this and Lemma 5
we conclude that

J = span{SαS∗
β | r(α) = r(β) ∈ {i1, . . . , in}}.

We define K, a closed right ideal of OA, as

K = span{SimS∗
β | m ∈ {1, . . . , n}, r(β) = im+1}.

Since KK∗ = C∗(Si1 , . . . , Sin) and K∗K = J we see that C∗(Si1 , . . . , Sin)
and J are Morita equivalent [12]. By [11, Lemma 2.2] C∗(Si1 , . . . , Sin) is
isomorphic to the C∗-algebra of a directed graph F which consists of a single
loop with n vertices. An easy argument as in the proof of [9, Theorem 2.4]
shows that C∗(F ) is isomorphic to Mn ⊗ C(T). Consequently, J is Morita
equivalent to C(T), as required. �
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Theorem 8. If A = [A(i, j)]i,j∈N is a 0− 1 matrix with no zero rows then
OA is simple if and only if H(k) = N for all k ∈ N and all loops in EA

have exits.

Proof. Sufficiency. Let J 6= 0 be a closed 2-sided ideal in OA. Since all loops
in EA have exits, [5, Theorem 13.1] implies that there exists a k ∈ N such
that Sk ∈ J . Since H(k) = N , by hypothesis, it follows from Lemma 6 that
Si ∈ J for all i ∈ N and, hence, J = OA, as required.

Necessity. Suppose that OA is simple. Then Lemma 7 implies that all loops
in EA have exits, and Lemma 6 implies that H(k) = N for all k ∈ N , as
required. �

9. The above theorem generalizes a number of earlier results, most notably
the Cuntz and Krieger simplicity criterion [3, Theorem 2.14]. For infinite
matrices Exel and Laca show in [5, Theorem 14.1] that OA is simple if
EA is transitive. This is of course a very special case of one direction of
our Theorem 8. Furthermore, it is shown in [11, Example 2.4] that the
crossed product C∗-algebras corresponding to free products of cyclic groups
Γ and trivial subgroups ΓΛ, as considered by Zhang and the author [13], can
be described as Cuntz-Krieger algebras with suitable infinite 0–1 matrices.
Thus, for such crossed products [13, Theorem 3.1] is a consequence of our
present result.

10. It is shown in [6, Theorem 10] that up to Morita equivalence all graph
C∗-algebras may be realized as Cuntz-Krieger algebras in the sense of Exel
and Laca. Thus, Theorem 8 implies a simplicity criterion for this important
and widely investigated class of C∗-algebras. For reader’s convenience we
recall the definition of the C∗-algebra C∗(E) of a directed graph E, as given
in [6]. For explanations of basic terminology related to directed graphs and
their path spaces we refer the reader to one of [9, 1, 11].

Let E = (E0, E1, s, r) be a countable directed graph, with E0 the set of
vertices, E1 the set of edges, and s, r : E1 → E0 the source and range func-
tions, respectively. C∗(E) is the universal C∗-algebra generated by pairwise
orthogonal projections {pv | v ∈ E0} and partial isometries {se | e ∈ E1}
with pairwise orthogonal ranges, subject to the following relations:
[G1] s∗ese = pr(e),
[G2] ses

∗
e ≤ ps(e),

[G3] pv =
∑

s(e)=v ses
∗
e if s−1(v) is finite and non-empty.

11. In order to formulate our simplicity criterion for graph algebras we must
recall the definition of a hereditary and saturated subset of E0 (e.g., cf. [1]).
For v ∈ E0 we define H0(v) as the union of {v} and all those vertices
w ∈ E0 for which there is a path from v to w. And then, inductively,
Hn+1(v) as the union of Hn(v) and all those vertices w ∈ E0 such that
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s−1(w) is finite and non-empty and r(e) ∈ Hn(v) for all e ∈ s−1(w). Finally,
we set H(v) =

⋃∞
n=0 Hn(v) and call it the hereditary and saturated subset

of E0 generated by v.

Theorem 12. If E is a countable directed graph then C∗(E) is simple if
and only if H(v) = E0 for all v ∈ E0 and all loops in E have exits.

Proof. At first we assume that E contains no sinks or sources. We consider
the edge matrix AE of E (cf. [10]) with rows and columns indexed by E1

and such that AE(e, f) = δr(e),s(f). It is shown in [6, Theorem 10] that
{se | e ∈ E1} generate C∗(E), satisfy the relations [EL1]-[EL4] for OAE

,
and that identity gives an isomorphism between C∗(E) and OAE

. For all
e ∈ E1 we have s∗ese = pr(e) by [G1] and all vertices E0 occur as ranges of
the edges E1. It is not difficult to verify that H(e) = E1 for AE , in the sense
of Section 4, if and only if H(r(e)) = E0 for E, in the sense of Section 11.
Furthermore, EAE

is nothing but the dual graph Ê (cf. [1, Corollary 2.5])
and, hence, all loops in E have exits if and only if the same holds true for
EAE

. Consequently, for graphs without sinks or sources Theorem 8 implies
Theorem 12.

Let now E be an arbitrary countable directed graph and let E′ be the
graph obtained from E by adding tails and heads to sinks and sources,
respectively, as described in [1, Section 1], [6], or [11, Section 1]. The
algebras C∗(E) and C∗(E′) are Morita equivalent and, obviously, E satisfies
the two conditions of our theorem if and only if E′ does. Therefore the
general case follows from the previously considered one. �

13. The above theorem finally achieves a previously elusive goal, pursued
by various authors with help of quite powerful and sophisticated tools. For
example, with essential help of the groupoid machinery of Jean Renault an
analogous simplicity criterion was given in [10, Corollary 6.8] for locally
finite graphs satisfying a rather restrictive condition (K). For locally finite
graphs without sinks or sources and satisfying a restrictive condition (I)′

a similar result was obtained in [8, Theorem 18] by means of the Pimsner
bimodule approach. For arbitrary row-finite graphs a simplicity criterion
was given in [1, Proposition 5.1] by more elementary methods. One should
also note that in view of [4, Theorem 1], which says that any AF -algebra
is Morita equivalent to a graph algebra, Theorem 12 also includes Bratteli’s
characterization of simplicity of AF -algebras [2, Corollary 3.5] as a very
special case.

It is shown in [11] that for an arbitrary 0–1 matrix A = [A(i, j)]i,j∈N

there is a natural imbedding φA : C∗(EA) → OA such that SiS
∗
i ∈ imφA for

all i ∈ N . The precise relationship between these two algebras is not yet
clear, though the following proposition may shed some light on this problem.
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Proposition 14. If A = [A(i, j)]i,j∈N is a 0 − 1 matrix with no zero rows
and C∗(EA) is simple then so is OA.

Proof. Suppose that C∗(EA) is simple and J 6= 0 is a closed 2-sided ideal
of OA. Since all loops of EA have exits by Theorem 12, [5, Theorem 13.1]
implies that J contains at least one of the generators, say Si. Thus SiS

∗
i ∈

J∩ imφA. Since C∗(EA) is simple this implies that imφA ⊆ J . Consequently
all SjS

∗
j , and hence Sj , are in J . Thus J = OA, as required. �

15. We observe that most previously obtained simplicity criteria for Cuntz-
Krieger algebras OA, e.g., [5, Theorem 14.1], were in fact results about
simplicity of the corresponding graph algebras C∗(EA). However, the im-
plication from Proposition 14 cannot be reversed. For example, if A is an
infinite matrix with zero first column and all other entries 1 then OA is
simple while C∗(EA) is not.

16. In view of Theorem 12 it seems reasonable to divide vertices of a directed
graph into two types. Namely, we say that a vertex v is of type I if v
emits finitely many (and at least one) edges, none of which ends in v itself.
Otherwise we say that v is of type II. The following sharpening of [7,
Corollary 4.5] follows immediately from Section 11 and Theorem 12.

Corollary 17. Let E be a countable directed graph. If C∗(E) is simple and
v ∈ E0 is of type II then for all w ∈ E0 there exists a path from w to v. If
all vertices of E are of type II then C∗(E) is simple if and only if the graph
E is transitive (and different from a single loop).

It was observed in [9, Corollary 3.10] for locally finite graphs without sinks
or sources and in [1, Remark 5.6] for arbitrary row-finite graphs that a
simple graph C∗-algebra must be either AF or purely infinite. Our simplicity
criteria allow us to extend this dichotomy to all Cuntz-Krieger algebras and,
hence, to all graph algebras as well.

Theorem 18. Any simple Cuntz-Krieger algebra corresponding to a 0 − 1
matrix without zero rows and any simple graph C∗-algebra is either AF or
purely infinite.

Proof. First consider a 0–1 matrix A = [A(i, j)]i,j∈N without zero rows, and
suppose that OA is simple. If there are no loops in EA then OA is AF
by the approximation argument of [11]. Otherwise all loops have exits by
Theorem 8. Furthermore, in the latter case, if i, j ∈ N and j lies on a loop
in EA then it follows from Section 4 that j ∈ H(i) if and only if there is a
path in EA from i to j. Thus, Theorem 8 implies in this case that every
vertex of EA connects to a loop. Consequently, OA is purely infinite by [5,
Theorem 16.2]. The claim for graph algebras is a corollary of the above and
[6, Theorem 10]. �
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