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In this article, two families of (almost) homogeneous mixed
Kronecker products of non-faithful and of spin characters of
the double covers of the symmetric groups are described. This
is then applied to classify the irreducible mixed products,
thus completing the classification of all irreducible Kronecker
products of characters of the double covers of the symmetric
groups.

1. Introduction.

Kronecker products of complex characters of the symmetric group Sn have
been studied in many papers. Information on special products and on the
coefficients of special constituents have been obtained but there is no ef-
ficient combinatorial algorithm in sight for computing these products. In
[1], products of Sn-characters with few homogeneous components and ho-
mogeneous products of characters of the alternating group An have been
classified. In particular, there are no non-trivial homogeneous Kronecker
products for Sn, but there are such products for An, when n is a square
number (these are even irreducible).

For the double covers S̃n of the symmetric groups, information about
products of characters is even more sparse. Recently, in [2] some results
have been obtained on products of spin characters of S̃n which led to a
classification of homogeneous spin products. Here, homogeneous products
do occur for all triangular numbers n, but non-trivial irreducible products
occur only for n = 6.

In this article, we consider mixed products of complex characters for the
double covers S̃n, i.e., products of a non-faithful character of S̃n (corre-
sponding to a character of Sn) with a spin character. In this situation, there
are some interesting homogeneous or almost homogeneous mixed products;
finding such mixed products was greatly helped by the special maple pack-
ages SF and QF for dealing with symmetric functions by John Stembridge.
Two families of homogeneous resp. almost homogeneous products are de-
scribed; one for any composite number and the other one for triangular
numbers. The irreducible mixed products are then classified; they occur for
even numbers and triangular numbers satisfying a congruence condition.

257



258 CHRISTINE BESSENRODT

2. Preliminaries.

We denote by P (n) the set of partitions of n. For a partition λ ∈ P (n),
l(λ) denotes its length, i.e., the number of (non-zero) parts of λ. The set
of partitions of n into odd parts only is denoted by O(n), and the set of
partitions of n into distinct parts is denoted by D(n). We write D+(n) resp.
D−(n) for the sets of partitions λ in D(n) with n− l(λ) even resp. odd; the
partition λ is then also called even resp. odd.

We write Sn for the symmetric group on n letters, and S̃n for one of its
double covers; so S̃n is a non-split extension of Sn by a central subgroup
〈z〉 of order 2. It is well-known that the representation theory of these
double covers is ‘the same’ for all representation theoretical purposes. The
spin characters of S̃n are those that do not have z in their kernel. For an
introduction to the properties of spin characters resp. for some results we
will need in the sequel we refer to [5], [10], [11], [13]. Below we collect some
of the necessary notation and some results from [13] that are crucial in later
sections.

For λ ∈ P (n), we write [λ] for the corresponding irreducible character of
Sn; this is identified with the corresponding character of S̃n. The associate
classes of spin characters of S̃n are labelled canonically by the partitions in
D(n). For each λ ∈ D+(n) there is a self-associate spin character 〈λ〉 =
sgn 〈λ〉, and for each λ ∈ D−(n) there is a pair of associate spin characters
〈λ〉, 〈λ〉′ = sgn 〈λ〉. We write

〈̂λ〉 =
{
〈λ〉 if λ ∈ D+(n)
〈λ〉+ 〈λ〉′ if λ ∈ D−(n)

ελ =
{

1 if λ ∈ D+(n)√
2 if λ ∈ D−(n).

In [13], Stembridge introduces a projective analogue of the outer tensor
product, called the reduced Clifford product, and proves a shifted analogue
of the Littlewood-Richardson rule which we will need in the sequel. To state
this, we first have to define some further combinatorial notions.

Let A′ be the ordered alphabet {1′ < 1 < 2′ < 2 < ...}. The letters
1′, 2′, . . . are said to be marked, the others are unmarked. The notation |a|
refers to the unmarked version of a letter a in A′. To a partition λ ∈ D(n)
we associate a shifted diagram

Y ′(λ) = {(i, j) ∈ N2 | 1 ≤ i ≤ l(λ), i ≤ j ≤ λi + i− 1}.

A shifted tableau T of shape λ is a map T : Y ′(λ) → A′ such that T (i, j) ≤
T (i + 1, j), T (i, j) ≤ T (i, j + 1) for all i, j, and every k ∈ {1, 2, . . . } appears
at most once in each column of T , and every k′ ∈ {1′, 2′, . . . } appears at
most once in each row of T . For k ∈ {1, 2, . . . }, let ck be the number of boxes
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(i, j) in Y ′(λ) such that |T (i, j)| = k: Then we say that the tableau T has
content (c1, c2, . . . ). Analogously, we define skew shifted diagrams and skew
shifted tableaux of skew shape λ \ µ if µ is a partition with Y ′(µ) ⊆ Y ′(λ).
For a (possibly skew) shifted tableau S we define its associated word w(S) =
w1w2 · · · by reading the rows of S from left to right and from bottom to
top. By erasing the marks of w, we obtain the word |w|.

Given a word w = w1w2 . . . , we define

mi(j) = multiplicity of i among wn−j+1, . . . , wn, for 0 ≤ j ≤ n

mi(n + j) = mi(n) + multiplicity of i′ among w1, . . . , wj , for 0 < j ≤ n.

This function mi corresponds to reading the rows of the tableau first from
right to left and from top to bottom, counting the letter i on the way, and
then reading from bottom to top and left to right, counting the letter i′ on
this way.

The word w satisfies the lattice property if, whenever mi(j) = mi−1(j),
then

wn−j 6= i, i′, if 0 ≤ j < n
wj−n+1 6= i− 1, i′, if n ≤ j < 2n.

For two partitions µ and ν we denote by µ∪ ν the partition which has as
its parts all the parts of µ and ν together.

Theorem 2.1 ([13, 8.1 and 8.3]). Let µ ∈ D(k), ν ∈ D(n− k), λ ∈ D(n),
and form the reduced Clifford product 〈µ〉 ×c 〈ν〉. Then we have(

(〈µ〉 ×c 〈ν〉) ↑
eSn , 〈λ〉

)
=

1
ελεµ∪ν

2(l(µ)+l(ν)−l(λ))/2fλ
µν ,

unless λ is odd and λ = µ ∪ ν. In that latter case, the multiplicity of 〈λ〉 is
0 or 1, according to the choice of associates.

The coefficient fλ
µν is the number of shifted tableaux S of shape λ \ µ and

content ν such that the tableau word w = w(S) satisfies the lattice property
and the leftmost i of |w| is unmarked in w for 1 ≤ i ≤ l(ν).

We will also use the following result from [13] on inner tensor products
with the basic spin character 〈n〉:

Theorem 2.2 ([13, 9.3]). Let λ ∈ D(n), µ a partition of n. We have

(〈n〉[µ], 〈λ〉) =
1

ελε(n)
2(l(λ)−1)/2gλµ ,

unless λ = (n), n is even, and µ is a hook partition. In that case, the
multiplicity of 〈λ〉 is 0 or 1 according to choice of associates.

The coefficient gλµ is the number of “shifted tableaux” S of unshifted shape
µ and content λ such that the tableau word w = w(S) satisfies the lattice
property and the leftmost i of |w| is unmarked in w for 1 ≤ i ≤ l(λ).

As an interesting consequence, this implies
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Corollary 2.3. Let n ∈ N. Then

〈n〉 · 〈̂n〉 = [n] +
n−1∑
i=1

[n− i, 1i] .

Finally, we collect some information about certain constituents in squares
resp. in ‘almost’ squares.

Theorem 2.4 ([12], [14], [15]). Let n ∈ N. Let λ ∈ P (n) with λ 6= (n),
(1n). Define a, b ∈ N0 by

[λ]2 = [n] + a[n− 2, 2] + b[n− 3, 13] + other constituents.

Denote by hi the number of hooks of λ of length i, for i ∈ {1, 2}. Let h21 be
the number of hooks of λ of length 3 and arm length 1. Then we have:

(i) a = h2 + h1(h1 − 2).
In particular, a > 0 if n ≥ 4.

(ii) b = h1(h1 − 1)(h1 − 3) + (h1 − 1)(h2 + 1) + h21.
In particular, b > 0, unless λ is (n− 1, 1) or (n− 1, 1)′.

Theorem 2.5 ([8, Theorem 4.3]). Let n ∈ N, n ≥ 4. Let µ ∈ D(n) with
µ 6= (n) and µ 6= (k, k − 1, . . . , 2, 1). Let s, t ∈ N be defined by

〈µ〉 · 〈µ〉 = [n] + s[n− 1, 1] + t[n− 2, 2] + other constituents.

Then:
(i) t ≥ 1.
(ii) If n ≥ 5, µ is even and µ is not of the form (k + r, k− 1+ r, . . . , 1+ r)

for some r, then t ≥ 2.
(iii) If µ is not of the form (k + r, k − 1 + r, . . . , 1 + r) for some r, then

s ≥ 1.

We have already considered the exceptional case µ = (n) in Corollary 2.3.
Note that for even n it is not clear which hook characters appear in the
product 〈n〉 · 〈n〉 and which appear in the product 〈n〉 · 〈n〉′, except that each
product contains one out of a pair of conjugate hook characters. Clearly,
both products do not contain [n − 2, 2] as a constituent, i.e., for the basic
spin character we have t = 0 in the notation of the Theorem above.

The exceptional case of a staircase partition µ = (k, k − 1, . . . , 1) will be
treated in the next section in Theorem 3.5.

3. Almost homogeneous mixed products.

We now want to study the case of mixed products, i.e., products of the form
〈µ〉 · [ν]. Of course, if we know all the constituents in the case of products
of spin characters then we also know all the coefficients in the case of mixed
products, since

(〈µ〉〈ν〉, [λ]) = (〈µ〉[λ], 〈ν〉)
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and 〈ν〉 = 〈ν〉 or 〈ν〉′, depending on n − l(ν) mod 4. But it is not clear
how to obtain a classification of the homogeneous mixed products from the
results we know so far. In the following, we will describe some “combinato-
rially homogeneous” mixed products, and we classify the irreducible mixed
products. We call a character of S̃n “homogeneous” if it is of the form c〈λ〉
resp. “almost homogeneous” if it is of the form c〈̂λ〉 for some λ ∈ D(n) and
c ∈ N.

We will need the following combinatorial result (see [2], Lemma 4.1 and
its proof).

Lemma 3.1 ([2]). Let k ∈ N. Let H(k) denote the product of the hook
lengths in ν = (k, k−1, . . . , 2, 1), and let B(k) denote the product of the bar
lengths in ν. Set n = 1

2k(k + 1). Then:

(i) B(k) = 2n−kH(k).

(ii) B(k + 1) = B(k)
k+1∏
j=1

(k + j).

First we want to classify all homogeneous resp. almost homogeneous prod-
ucts with the basic spin character 〈n〉.

Theorem 3.2. Let µ ∈ P (n), µ 6= (n), (1n). Then the product 〈n〉 · [µ] is
almost homogeneous if and only if µ is a rectangle.

Up to conjugation, we may assume in this case that µ = (ba) with 1 <
a ≤ b, and then the product is

〈n〉 · [ba] =


2

a−3
2 ̂〈a + b− 1, a + b− 3, · · · , b− a + 1〉, if a is odd and

b is even

2[a−1
2 ]〈a + b− 1, a + b− 3, · · · , b− a + 1〉, else.

Proof. First assume that µ is not a rectangle. Let hii, i = 1, . . . , d = d(µ),
denote the principal hook lengths in µ. By Theorem 2.2 the product 〈n〉[µ]
always has a constituent 〈h11, h22, . . . , hdd〉 as is illustrated by the following
tableau for µ = (73, 62):

1′ 1 1 1 1 1 1
1′ 2′ 2 2 2 2 2
1′ 2′ 3′ 3 3 3 3
1′ 2′ 3′ 4′ 4 4
1 2 3 4 5 5

.

If µ is not a rectangle, then take j maximal with µj > µj+1 > 0. We can then
replace the final two entries j′ j in the j th column by the entries j j +1 and
still obtain a tableau of the type counted by the coefficients gλµ occurring
in Theorem 2.2, giving a constituent labelled by a partition different from
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(h11, h22, . . . , hdd). Thus if the product 〈n〉 · [µ] is almost homogeneous then
µ has to be a rectangle.

So now we consider the case that µ is a rectangle, and we may assume that
µ = (ba) with a ≤ b. In this situation, we have for the partition considered
above:

λ = (h11, h22, . . . , hdd) = (a + b− 1, a + b− 3, . . . , b− a + 1).

The multiplicity of the constituent 〈a + b− 1, a + b− 3, . . . , b− a + 1〉 in
the product can be calculated by Theorem 2.2; it is easily seen that gλµ = 1,
and hence the multiplicity is

1
ελε(n)

2
a−1
2 =

{
2

a−3
2 , if a is odd and b is even

2[a−1
2 ], else,

as is easily checked. In the first case, the character 〈a + b− 1, a + b− 3, . . . ,
b− a + 1〉 is not self-associate, and the associate character appears with the
same multiplicity as µ is not a hook.

We now prove the statement of the Theorem by comparing degrees on
both sides.
By the degree formulae for ordinary and spin characters we have for the left
hand side:

〈n〉[ba](1) = 2[n−1
2 ] n!

H(a, b)
,

where we denote by H(a, b) the product of the hook lengths in (ba). For
the right hand side in the statement of the Theorem we obtain by the bar
formula

2[a−1
2 ] · 2[n−a

2 ] n!
B(a, b)

= 2[n−1
2 ] n!

B(a, b)
,

where B(a, b) denotes the product of the bar lengths in (a + b − 1, a + b −
3, . . . , b− a + 1).
Hence we have to prove that for all a ≤ b we have H(a, b) = B(a, b).

For this, we divide the Young diagram resp. the shifted diagram into three
regions:

b− a b− a

The middle region in both diagrams is of width b− a. It is easy to check
that the hook lengths in the middle region of (ba) are exactly the same as
the bar lengths in the middle region of (a+ b−1, a+ b−3, . . . , b−a+1); let
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Hm(a, b) = Bm(a, b) denote the product of the hook lengths resp. bar lengths
in these middle regions. Let Hl(a, b) and Hr(a, b) denote the product of the
hook lengths in the left resp. right region of the diagram for (ba); similarly,
let Bl(a, b), Br(a, b) denote the product of the bar lengths in the left resp.
right region of the diagram for (a + b− 1, a + b− 3, . . . , b− a + 1). The bar
lengths occurring in the left region of (a + b− 1, a + b− 3, . . . , b− a + 1) are
exactly the same as the hook lengths in the left region of (ba) each multiplied
by 2, so

Bl(a, b) = 2(a
2)Hl(a, b) .

In the notation of Lemma 3.1 we have Hr(a, b) = B(a) and Br(a, b) = H(a).
Since by Lemma 3.1 we know that B(a) = 2(a

2)H(a), we obtain

H(a, b) = Hl(a, b)Hm(a, b)Hr(a, b) = Hl(a, b)Bm(a, b) · 2(a
2)Br(a, b)

= Bl(a, b)Bm(a, b)Br(a, b) = B(a, b)

and thus the result is proved. �

Next we deal with the natural character [n−1, 1] and describe some almost
homogeneous products with this character.

Theorem 3.3. Let n be a triangular number, say n =
(
k+1
2

)
. Then

〈k, k − 1, . . . , 2, 1〉 · [n− 1, 1] = ̂〈k + 1, k − 1, k − 2, . . . , 3, 2〉.

Proof. First we check that the character given on the right hand side in the
statement above does indeed appear as a constituent:

(〈k, k − 1, . . . , 2, 1〉 · [n− 1, 1], 〈k + 1, k − 1, k − 2, . . . , 3, 2〉)

= (〈k, k − 1, . . . , 2, 1〉 · 〈k + 1, k − 1, k − 2, . . . , 3, 2〉, [n− 1, 1])

= (〈k, k − 1, . . . , 2, 1〉 ↓eSn−1
, 〈k + 1, k − 1, k − 2, . . . , 3, 2〉 ↓eSn−1

)

= 1

where the last equality follows from the spin branching theorem. Now to
prove the assertion it suffices to check degrees on both sides.

Let again denote B(k) the product of the bar lengths in (k, k−1, . . . , 2, 1),
and let B′(k) denote the product of the bar lengths in (k + 1, k − 1, k − 2,
. . . , 2). Then by the bar formula we have to check whether the following
equation holds:

2[n−k
2 ] n!

B(k)
(n− 1) = 2[n−k+2

2 ] n!
B′(k)

or equivalently,
(n− 1)B′(k) = 2B(k).
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We want to prove the claim by induction on k, starting with k = 3, where
the claim is easily checked. By Lemma 3.1

B(k + 1) = B(k)
2k+1∏

j=k+1

j.

Let N = N(k− 2) be the product of the bar lengths in (k− 1, k− 2, . . . , 2).
Then by considering the shifted diagrams one sees that

B′(k) = N · k(k + 1)
2k∏

j=k+3

j

B′(k + 1) = N · (k − 1)k

 2k−1∏
j=k+2

j

 (k + 1)(k + 2)
2k+2∏
i=k+4

i.

Hence

B′(k + 1) = B′(k)
(k − 1)(k + 2)(2k + 1)(2k + 2)

k + 3

2k−1∏
j=k+2

j.

Since n =
(
k+1
2

)
, we know by induction that

(k2 + k − 2)B′(k) = 4B(k),

and we have to show that

(k2 + 3k)B′(k + 1) = 4B(k + 1).

Using the relations given above this is a straightforward calculation.
Hence the assertion of the Theorem is proved. �

Theorem 3.4. Let n ∈ N, n ≥ 3, and let µ ∈ D(n). Then the product
〈µ〉 · [n − 1, 1] is irreducible if and only if n is a triangular number, say
n =

(
k+1
2

)
, with k ≡ 2 or 3 mod 4, and µ = (k, k − 1, . . . , 2, 1). In this case,

〈k, k − 1, . . . , 2, 1〉 · [n− 1, 1] = 〈k + 1, k − 1, k − 2, . . . , 3, 2〉.

Proof. If µ and k are as stated, then µ is odd and (k+1, k−1, k−2, . . . , 3, 2)
is even, and so by the previous Theorem the stated product is indeed irre-
ducible.

Now assume that the product 〈µ〉 · [n − 1, 1] is irreducible. By the clas-
sification result for products with the basic spin character, we know that
µ 6= (n).

So assume now µ 6= (k, k − 1, . . . , 1). Then by Theorem 2.5 resp. by
Theorem 2.4 both [n− 2, 2] and [n] are constituents of the product 〈µ〉 · 〈µ〉
as well as of the square [n− 1, 1]2. Hence

([n− 1, 1] · 〈µ〉, [n− 1, 1] · 〈µ〉) = (〈µ〉 · 〈µ〉, [n− 1, 1] · [n− 1, 1]) ≥ 2,

so the product is not irreducible. �
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For the classification of the irreducible mixed products, we will need some
further information in the special case of staircase partitions.

Theorem 3.5. Let k ∈ N, n =
(
k+1
2

)
. Define the coefficients a1, a2, a3, b2,

b3, c3 by

〈k, . . . , 1〉 · 〈k, . . . , 1〉 = [n] + a1[n− 1, 1] + a2[n− 2, 2] + a3[n− 3, 3]

+ b2[n− 2, 12] + b3[n− 3, 13] + c3[n− 3, 2, 1]

+ other constituents.

Then:

(i) a1 = a2 = c3 = 0.

(ii) b2 =
{

1 if k ≡ 0 or 1 mod 4
0 if k ≡ 2 or 3 mod 4.

(iii) a3 = b3 = 1.

Proof. Set ρk = (k, . . . , 1) and ϕk = 〈k, . . . , 1〉. Note that ρk ∈ D+ if and
only if k ≡ 0 or 1 mod 4. Also, let πα = 1Sα ↑Sn= 1eSα

↑eSn . So

(ϕk · ϕk, πα) = (ϕk ↓eSα
, ϕk ↓eSα

),

and for computing the restriction we use the spin branching theorem resp.
the shifted Littlewood-Richardson Rule provided by Theorem 2.1.

Since ϕk ↓eS(n−1,1)
= 〈k, . . . , 2〉, (ϕk · ϕk, π(n−1,1)) = 1. As [n − 1, 1] =

π(n−1,1) − [n], this yields

a1 = (ϕk · ϕk, [n− 1, 1]) = 0.

Next, ϕk ↓eS(n−2,2)
is the irreducible character 〈k, . . . , 3, 1〉×c 〈2〉 (up to the

choice of associates in the case k ≡ 0 or 1 mod 4), hence (ϕk ·ϕk, π(n−2,2)) = 1.
As [n− 2, 2] = π(n−2,2) − π(n−1,1), this implies

a2 = (ϕk · ϕk, [n− 2, 2]) = 0.

The restriction ϕk ↓eS(n−3,3)
has the two irreducible constituents 〈k, . . . , 4,

2, 1〉×c 〈3〉 and 〈k, . . . , 3〉×c 〈2, 1〉 (up to the choice of associates in the case
k ≡ 2 or 3 mod 4). Hence (ϕk · ϕk, π(n−3,3)) = 2, and from the equation
[n− 3, 3] = π(n−3,3) − π(n−2,2) we now deduce

a3 = (ϕk · ϕk, [n− 3, 3]) = 1.

Now ϕk ↓eS(n−2,12)
= ̂〈k, . . . , 3, 1〉. Thus,

(ϕk · ϕk, π(n−2,12)) =
{

1 if k ≡ 2 or 3 mod 4
2 if k ≡ 0 or 1 mod 4.
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As [n− 2, 12] = π(n−2,12) − π(n−2,2) − [n− 1, 1], we obtain

b2 = (ϕk · ϕk, [n− 2, 12]) =
{

0 if k ≡ 2 or 3 mod 4
1 if k ≡ 0 or 1 mod 4.

For the restriction ϕk ↓eS(n−3,2,1)
we obtain

̂〈k, . . . , 4, 2, 1〉 ×c 〈2〉+ 〈k, . . . , 4, 3〉 ×c 〈2〉
if k ≡ 0 or 1 mod 4, and

〈k, . . . , 4, 2, 1〉 ×c 〈2〉+ 〈k, . . . , 4, 3〉 ×c 〈2〉
up to a choice of associates for the second summand, if k ≡ 2 or 3 mod 4.
Hence

(ϕk · ϕk, π(n−3,2,1)) =
{

3 if k ≡ 0 or 1 mod 4
2 if k ≡ 2 or 3 mod 4.

As

[n− 3, 2, 1] =
1
2

(π(n−3,2,1) − π(n−3,3) − [n− 2, 2]− [n− 1, 1]− [n− 2, 12]),

we obtain
c3 = (ϕk · ϕk, [n− 3, 2, 1]) = 0.

Finally, we have

ϕk ↓eS(n−3,13)
=

{
̂〈k, . . . , 3〉+ 2〈k, . . . , 4, 2, 1〉 if k ≡ 0 or 1 mod 4

〈k, . . . , 3〉+ ̂〈k, . . . , 4, 2, 1〉 if k ≡ 2 or 3 mod 4.

Thus

(ϕk · ϕk, π(n−3,13)) =
{

6 if k ≡ 0 or 1 mod 4
3 if k ≡ 2 or 3 mod 4.

As

[n− 3, 13] = π(n−3,13) − π(n−3,2,1) − [n− 1, 1]− [n− 2, 2]− 2[n− 2, 12],

we obtain
b3 = (ϕk · ϕk, [n− 3, 13]) = 1.

�

Theorem 3.6. Let λ ∈ P (n), λ 6= (n), (1n). Let µ ∈ D(n). Then [λ] · 〈µ〉
is irreducible if and only if one of the following occurs:

(i) n = 2k, λ = (k, k) or (2k) and µ = (n).
Here the products are

[k, k] · 〈n〉 = [2k] · 〈n〉 = 〈k + 1, k − 1〉 .

(ii) n =
(
k+1
2

)
for some k ∈ N with k ≡ 2 or 3 mod 4, λ = (n − 1, 1) or

(2, 1n−2) and µ = (k, k − 1, . . . , 2, 1).
Here the products are

[n− 1, 1] · 〈k, . . . , 1〉 = [2, 1n−2] · 〈k, . . . , 1〉 = 〈k + 1, k − 1, k − 2, . . . , 2〉 .



MIXED PRODUCTS OF CHARACTERS OF eSn 267

Proof. In the cases (i) and (ii) described above, the product is irreducible
by Theorem 3.2 resp. Theorem 3.4. In the following we may assume that
n ≥ 4.

Now assume that [λ] · 〈µ〉 is irreducible. Then

1 = ([λ] · 〈µ〉, [λ] · 〈µ〉) = ([λ]2, 〈µ〉 · 〈µ〉).
As both [λ]2 and 〈µ〉·〈µ〉 have [n] as a constituent, it suffices to find a further
common constituent in all situations not covered by (i) and (ii).

By Theorem 2.4, [λ]2 always contains a constituent [n − 2, 2], and by
Theorem 2.5, also 〈µ〉 · 〈µ〉 contains a constituent [n − 2, 2], unless µ = (n)
or µ = (k, k−1, . . . , 1). So we only have to consider mixed products [λ] · 〈µ〉
with µ of these two exceptional types.

For µ = (n), this was done in Theorem 3.2, giving the products described
in case (i) as the only irreducible mixed products with the basic spin char-
acter.

So it remains to deal with the case of a staircase µ = (k, k− 1, . . . , 1). By
Theorem 2.4 and Theorem 3.5 we then find a common constituent [n−3, 13]
in [λ]2 and 〈µ〉 · 〈µ〉, unless λ is (n − 1, 1) or (n − 1, 1)′. But in this latter
situation, we can apply Theorem 3.3 which leads exactly to the irreducible
mixed products given in (ii). �
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