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We investigate the support of the equilibrium measure as-
sociated with a class of nonconvex, nonsmooth external fields
on a finite interval. Such equilibrium measures play an im-
portant role in various branches of analysis. In this paper we
obtain a sufficient condition which ensures that the support
consists of at most two intervals. This is applied to exter-
nal fields of the form −c sign(x)|x|α with c > 0, α ≥ 1 and
x ∈ [−1, 1]. If α is an odd integer, these external fields are
smooth, and for this case the support was studied before by
Deift, Kriecherbauer and McLaughlin, and by Damelin and
Kuijlaars.

1. Introduction.

In recent years, equilibrium measures with external fields have found an
increasing number of applications in a variety of areas. We refer to [2,
3, 4, 5, 8, 10, 14, 15] for these relations, ranging from classical topics as
weighted transfinite diameter and weighted Chebyshev polynomials, to more
recent developments in weighted approximation, orthogonal polynomials,
integrable systems, and random matrix theory.

In the present paper we consider equilibrium problems on the interval
[−1, 1]. With a continuous function Q : [−1, 1] → R, we associate the
weighted energy of a measure µ on [−1, 1] as follows

IQ(µ) =
∫∫

log
1

|s− t|
dµ(s)dµ(t) + 2

∫
Q(t)dµ(t).(1.1)

The equilibrium measure in the presence of the external field Q is the unique
probability measure µQ on [−1, 1] minimizing the weighted energy among
all probability measures. Thus

IQ(µQ) = min{IQ(µ) : µ ∈ P([−1, 1])}(1.2)

where P([−1, 1]) denotes the class

P([−1, 1]) = {µ : µ is a Borel probability measure on [−1, 1]}.
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The determination of the support of the equilibrium measure is a major
step in obtaining the measure. As described by Deift [2, Chapter 6] the in-
formation that the support consists of N disjoint closed intervals, allows one
to set up a system of equations for the endpoints, from which the endpoints
may be calculated. Knowing the endpoints, the equilibrium measure may
be obtained from a Riemann-Hilbert problem or, equivalently, a singular
integral equation.

There are two general useful facts about the equilibrium measure. The
first one, due to Mhaskar and Saff [12], says that for a convex external
field, the support is always one single interval. The other one, due to Deift,
Kriecherbauer and McLaughlin [3], says that for a real analytic external
field, the support always consists of a finite number of intervals. The actual
determination of this number is a nontrivial problem. To illustrate the
difficulties, Deift, Kriecherbauer and McLaughlin considered explicitly the
families of monomial external fields Q(x) = −cxn with c 6= 0, n ∈ N and
x ∈ [−1, 1].

In the even case (n = 2m) the external field is convex if c < 0, and
therefore the support is a single interval. For c > 0, the external field is
concave, and the analysis becomes more involved. Independently from [3],
this case was considered in [9], and it was shown that for every c > 0, there
are at most three intervals in the support of the equilibrium measure. The
same result was also found to be valid for the nonsmooth (i.e., not real
analytic) external fields Q(x) = −c|x|α with α ≥ 1 not necessarily an even
integer.

In the odd case (n = 2m + 1) the external field is an odd function, and,
by symmetry, we may restrict attention to c > 0. In this case the results
of [3] were extended to the full range of parameters in [1]. For all c and all
odd integers n, it was shown that the support of the equilibrium measure
consists of at most two intervals.

It is the aim of the present paper to study the nonsmooth analogues of
−cx2m+1 given by

Qα,c(x) := −c sign(x)|x|α =
{

c|x|α for x ∈ [−1, 0],
−cxα for x ∈ [0, 1],(1.3)

with a real number α ≥ 1 and c > 0. The functions (1.3) are both non-
convex and nonsmooth, and therefore it is of interest to develop methods to
determine the nature of the support of the equilibrium measures associated
with these external fields.

Our first theorem presents a sufficient condition which ensures that the
support of the equilibrium measure is the union of at most two intervals.
To formulate it, we use C1+ε([−1, 1]) to denote the class of differentiable
functions on [−1, 1], whose derivative satisfies a Hölder condition for some
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positive exponent. Thus Q ∈ C1+ε([−1, 1]) if and only if

|Q′(x)−Q′(y)| ≤ C|x− y|ε, x, y ∈ [−1, 1]

for some ε > 0 and some positive constant C independent of x and y.

Theorem 1.1. Let Q ∈ C1+ε([−1, 1]). Suppose that there exists a number
a1 ∈ [−1, 1] such that

(a) Q is convex on [−1, a1], and
(b) for every a ∈ [−1, a1], there is t0 ∈ [a1, 1], such that the function

t 7→ 1
π

–
∫ 1

a

Q′(s)
s− t

√
(1− s)(s− a)ds(1.4)

is nonincreasing on (a1, t0) and nondecreasing on (t0, 1). The integral
in (1.4) is a principal value integral.

Then supp (µQ) is the union of at most two intervals.

Remark 1.2. For the special case a1 = −1, Theorem 1.1 was given already
in [9, Theorem 2].

In our second main result we show that the conditions of Theorem 1.1 are
satisfied for the external fields (1.3).

Theorem 1.3. For α ≥ 1 and c > 0, let Qα,c be given by (1.3). Then for
every a ∈ [−1, 0], there exists t0 ∈ [0, 1) such that

1
π

–
∫ 1

a

Q′
α,c(s)
s− t

√
(1− s)(s− a)ds(1.5)

decreases on (0, t0) and increases on (t0, 1). As a result, the support of µQα,c

consists of at most two intervals.

Remark 1.4. For α an odd integer, Theorem 1.3 was established in [1].
The proof for this special case differs from the one given here in several
respects. For example, the function (1.5) is a polynomial in t whenever α
is an odd integer. The proof of the decreasing/increasing property of (1.5)
was based in [1] on the calculation of the polynomial coefficients and the
Descartes’ rule of signs for polynomials.

Another difference between [1] and the present paper is that in [1] the
problem was viewed in terms of the parameter c. Quite complicated per-
turbation arguments were used to obtain from the decreasing/increasing
property of (1.5) the conclusion that the support consists of at most two
intervals. Here we use Theorem 1.1 and this simplifies the arguments con-
siderably, also in the case where α is an odd integer.

Remark 1.5. To view the problem in terms of the parameter c is quite
natural, since there is a monotonicity with respect to c. To be precise,
if Q is fixed then the support supp (µcQ) is decreasing as c increases, see
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[1] or [14]. Using this, we can show the following behavior of the support
depending on the parameter in case α > 1. There exist three critical values
0 < c1 < c2 < c3 depending on α such that:

(a) For 0 < c ≤ c1, the support supp (µQα,c) is equal to the full interval
[−1, 1].

(b) For c1 < c ≤ c2, there exists a ∈ (−1, 0) such that

supp (µQα,c) = [a, 1].

(c) For c2 < c < c3, there exist a1, b1 and a2 such that −1 < a1 < b1 <
a2 < 1, a1 < 0, and

supp (µQα,c) = [a1, b1] ∪ [a2, 1].

(d) For c ≥ c3, there exists a ∈ (0, 1) such that

supp (µQα,c) = [a, 1].

See [1, Theorem 1.1] where this was shown for odd integers α ≥ 3.
Note that for α = 1, the external field (1.3) is convex and the support of

µQ1,c is an interval containing 1 for every c > 0.

Acknowledgement. This work would not have been possible without grants
of our institutions that have allowed for mutual visits. We are grateful for
their support.

2. The Proof of Theorem 1.1.

In this section, we shall prove Theorem 1.1.

2.1. Preliminaries. Let Q ∈ C1+ε([−1, 1]) be fixed. The equilibrium mea-
sure µQ is characterized by the Euler-Lagrange variational conditions asso-
ciated with the extremal problem (1.2), which are

Uµ(x) + Q(x) = F for x ∈ supp (µ),(2.1)
Uµ(x) + Q(x) ≥ F for x ∈ [−1, 1],(2.2)

where F is a constant and

Uµ(x) =
∫

log
1

|x− t|
dµ(t)(2.3)

denotes the logaritmic potential of µ, see [2, 14]. The equilibrium measure
µQ is the only measure from P([−1, 1]) satisfying (2.1) and (2.2) for some
constant F .

If supp (µQ) = Σ and if µQ has a density v, then Equation (2.1) yields∫
Σ

log |x− t| v(t)dt = Q(x)− F, x ∈ Σ.(2.4)
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Then there is a unique constant F , such that the integral equation (2.4) has
a solution v(t) satisfying ∫

Σ
v(t)dt = 1.(2.5)

If Σ consists of a finite number of nondegenerate closed intervals, then (2.4)
may be differentiated for x in the interior of Σ (since Q′ is Hölder continuous)
to give the singular integral equation

–
∫

Σ

v(t)
x− t

dt = Q′(x), x ∈ intΣ.(2.6)

It is well-known, see [7, §42.3], that the general solution of (2.6) depends on
N parameters, where N is the number of intervals in Σ. These parameters
are uniquely determined by the normalization (2.5) and the conditions that
the constant F in (2.4) should be the same on each interval of Σ. We also
recall that the solutions of (2.6) are Hölder continuous on the interior of Σ,
and may become unbounded at endpoints of Σ, cf. [7, §5, §42.3].

If we do not know that Σ is the support of µQ, we can still consider the
function v(t) determined by Equations (2.4) and (2.5). Then in general the
function v(t) will not be nonnegative on Σ. Thus v(t) is the density of a
signed measure η that depends on Σ:

dη(t) = dηΣ(t) = v(t)dt.

The signed measure ηΣ satisfies

supp (ηΣ) ⊂ Σ,

∫
dηΣ = 1,(2.7)

and it minimizes the weighted energy IQ(η) amongst all signed measures
satisfying (2.7).

For the special case Σ = [a, 1], with a ∈ [−1, 1), we have that
dηΣ

dt
= v(t) =

1
π
√

(1− t)(t− a)
[1 + G(t)] , a < t < 1,(2.8)

with

G(t) =
1
π

–
∫ 1

a

Q′(s)
s− t

√
(1− s)(s− a)ds,(2.9)

see [7, §42.3] or [16, §4.3]. Note that (2.9) is equal to the function from
(1.4).

Next, we recall the notion of balayage of a measure. The balayage of a
nonnegative measure ν with compact support and continuous potential onto
a set Σ of positive capacity, is the unique measure ν̂ such that supp (ν̂) ⊂ Σ,
‖ν‖ = ‖ν̂‖ and for some constant c,

U ν̂(x) = Uν(x) + c, for quasi every x ∈ Σ.(2.10)
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Here ‘quasi every’ means with the possible exception of a set of capacity
zero. We refer the reader to [11, 13, 14] for these and other notions from
logarithmic potential theory. Instead of ν̂ we also write Bal(ν; Σ). For a
signed measure ν with Jordan decomposition ν = ν+ − ν−, the balayage of
ν onto Σ is

Bal(ν; Σ) = Bal(ν+; Σ)−Bal(ν−; Σ)

provided the balayages of ν+ and ν− exist.
From their defining properties it is then easy to see that the measures ηΣ

are related by balayage. That is, if Σ1 ⊂ Σ2, then

ηΣ1 = Bal(ηΣ2 ; Σ1).(2.11)

The following result will be used in the proof of Theorem 1.1 below. We
say that two sets A and B are quasi-equal, if A \B and B \A have capacity
zero.

Lemma 2.1. Let Σ and Σn, n ∈ N, be closed subsets of [−1, 1] having
positive capacity such that

Σ =
⋂
n

⋃
k≥n

Σk(2.12)

and Σ is quasi-equal to ⋃
n

⋂
k≥n

Σk.(2.13)

Then the following hold.
(a) For every finite measure ν with compact support and continuous po-

tential, we have

lim
n→∞

Bal(ν; Σn) = Bal(ν; Σ)

with convergence in the sense of weak∗ convergence of measures on
[−1, 1].

(b) If Σ and Σn, n ∈ N, are finite unions of closed intervals, then

lim
n→∞

ηΣn = ηΣ

in the sense of weak∗ convergence of signed measures.

Proof. (a) Let us write νn = Bal(ν; Σn). Then by (2.10), we have for some
constant cn,

Uνn(x) = Uν(x) + cn for quasi every x ∈ Σn.

By weak∗ compactness, we may assume that (νn) converges, say with weak∗

limit ν∗. Then ‖ν∗‖ = ‖ν‖ and because of (2.12) we have supp (ν∗) ⊂ Σ.
The lower envelope theorem [14] says that

Uν∗(x) = lim inf
n→∞

Uνn(x) for quasi every x ∈ C.
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Since Σ is quasi-equal to (2.13) it then follows that

Uν∗(x) = Uν(x) + lim inf
n→∞

cn for quasi every x ∈ Σ.

Then lim inf cn is finite and it follows that ν∗ is the balayage of ν onto Σ.
(b) Let η0 = η[−1,1]. The positive and negative parts of η0 in the Jordan

decomposition η0 = η+
0 − η−0 are compactly supported. They also have

continuous potentials. Indeed, the function G from (2.9) (with a = −1)
is continuous, and therefore it is bounded on [−1, 1]. Then it follows from
the representation (2.8)–(2.9) for η0, that both η+

0 and η−0 are bounded
above by a constant times the measure 1/(π

√
1− t2)dt. This measure has

a continuous potential — in fact its potential is constant on [−1, 1] — and
therefore the potentials of η+

0 and η−0 are continuous as well, see [6, Lemma
5.2]. Thus it follows from part (a) that

Bal(η+
0 ; Σn) ∗→ Bal(η+

0 ; Σ)

and

Bal(η−0 ; Σn) ∗→ Bal(η−0 ; Σ).

Then

Bal(η0; Σn) ∗→ Bal(η0; Σ).

Since ηΣ is equal to the balayage of η0 onto Σ, and similarly ηΣn is the
balayage of η0 onto Σn, part (b) follows. �

2.2. A lemma on convexity. The convexity assumption (a) of Theo-
rem 1.1 will be used via the following lemma.

Lemma 2.2. Let Q ∈ C1+ε([−1, 1]). Let Σ ⊂ [−1, 1] be a finite union of
nondegenerate closed intervals. Let η = ηΣ be the signed measure associated
with Σ, as described in Section 2.1, and let v be the density of η. Suppose
that [a, b] ⊂ Σ and that

(a) Q is convex on [a, b],
(b) v(a) ≥ 0, and v(b) ≥ 0,
(c) v(t) ≥ 0 on Σ \ [a, b].

Then v(t) > 0 for all t ∈ (a, b).

Remark 2.3. The density v is continuous on the interior of Σ, and may
become unbounded (±∞) at endpoints of Σ. The assumption (b) is also
satisfied if v(a) = +∞ in case a is an endpoint, and similarly for b.

Proof. First, we reduce the problem to the case Σ = [a, b]. Write η = η1+η2,
where η1 is the restriction of η to [a, b] and η2 the restriction to Σ \ [a, b].
From (2.4) we get

Uη1(x) + Q1(x) = F for x ∈ [a, b],
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where

Q1(x) = Uη2(x) + Q(x), x ∈ [a, b].

The measure η2 is nonnegative by assumption (c). Then it is easy to see
from (2.3) that the logarithmic potential Uη2 is convex on [a, b]. Thus Q1 is
convex on [a, b] because of assumption (a). The potential Uη2 is real analytic
on the open interval (a, b), and therefore Q′

1 satisfies a Hölder condition on
(a, b). At the endpoins a and b, Q′

1 could have a singularity of logarithmic
type, but this will not affect the arguments that follow. In particular, the
representation (2.14) below, remains valid, cf. [16, §4.3].

Therefore, we have reduced the proof of the lemma to the case when Σ =
[a, b]. Without loss of generality, we may also assume that [a, b] = [−1, 1].
Then, as in (2.8), the density v is given by

v(t) =
1

π
√

1− t2
[1 + G(t)](2.14)

and

G(t) =
1
π

–
∫ 1

−1

Q′(s)
s− t

√
1− s2ds.

In the principal value integral we remove the singular part as follows

G(t) =
1
π

∫ 1

−1

Q′(s)−Q′(t)
s− t

√
1− s2ds +

Q′(t)
π

–
∫ 1

−1

1
s− t

√
1− s2ds.

The remaining principal value integral we write as

–
∫ 1

−1

1− s2

s− t

ds√
1− s2

=
∫ 1

−1

(1− s2)− (1− t2)
s− t

ds√
1− s2

= −
∫ 1

−1

s + t√
1− s2

ds,

where we used the fact that

–
∫ 1

−1

1
s− t

ds√
1− s2

= 0.

Thus

G(t) =
1
π

∫ 1

−1

Q′(s)−Q′(t)
s− t

√
1− s2ds− Q′(t)

π

∫ 1

−1

s + t√
1− s2

ds.(2.15)

Next, we have that(
1 + t

2

)
G(1) +

(
1− t

2

)
G(−1) = −

(
1 + t

2

)
1
π

∫ 1

−1
Q′(s)(1 + s)

ds√
1− s2

+
(

1− t

2

)
1
π

∫ 1

−1
Q′(s)(1− s)

ds√
1− s2

.

Combining the two integrals, and using

−
(

1 + t

2

)
(1 + s) +

(
1− t

2

)
(1− s) = −(s + t),
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we obtain (
1 + t

2

)
G(1) +

(
1− t

2

)
G(−1) = − 1

π

∫ 1

−1
Q′(s)

s + t√
1− s2

ds.(2.16)

From (2.15) and (2.16) we learn that

G(t)−
(

1 + t

2

)
G(1)−

(
1− t

2

)
G(−1)

(2.17)

=
1
π

∫ 1

−1

Q′(s)−Q′(t)
s− t

√
1− s2ds− 1

π

∫ 1

−1
(Q′(t)−Q′(s))

s + t√
1− s2

ds

=
1
π

∫ 1

−1

Q′(t)−Q′(s)
t− s

√
1− s2ds− 1

π

∫ 1

−1

Q′(t)−Q′(s)
t− s

t2 − s2

√
1− s2

ds

=
1
π

∫ 1

−1

Q′(t)−Q′(s)
t− s

[√
1− s2 − t2 − s2

√
1− s2

]
ds

=
1
π

∫ 1

−1

Q′(t)−Q′(s)
t− s

1− t2√
1− s2

ds.

The convexity of Q implies that

Q′(t)−Q′(s)
t− s

≥ 0

for every s and t in (−1, 1). Then for t ∈ (−1, 1), the integral (2.17) is
nonnegative and this proves the inequality

G(t) ≥
(

1 + t

2

)
G(1) +

(
1− t

2

)
G(−1), −1 < t < 1.(2.18)

Actually, we have strict inequality in (2.18), unless Q′ is a constant. Indeed,
if equality holds in (2.18) at a certain t ∈ (−1, 1), then it follows from (2.17)
that

Q′(t)−Q′(s)
t− s

= 0

for almost all s ∈ (−1, 1). Since Q′ is continuous, this can only happen if
Q′(s) = Q′(t) for all s, and this means that Q′ is constant.

Thus, if Q′ is not a constant, we see that

G(t) >

(
1 + t

2

)
G(1) +

(
1− t

2

)
G(−1), −1 < t < 1,(2.19)

and then it follows from assumption (b) and (2.14) that 1 + G(1) ≥ 0 and
1+G(−1) ≥ 0. The right-hand side of (2.19) is a convex combination of G(1)
and G(−1). Thus it follows from (2.19) that 1+G(t) > 0 for all t ∈ (−1, 1).
In view of (2.14), we then have v(t) > 0 in case Q′ is not a constant.
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If Q′ is a constant, say Q′(t) = k, then we obtain from (2.15) that G(t) =
−kt. Hence

v(t) =
1− kt

π
√

1− t2
, −1 < t < 1.

Then from v(−1) ≥ 0 and v(1) ≥ 0, we get |k| ≤ 1, and then clearly v(t) > 0
on (−1, 1). This completes the proof of Lemma 2.2. �

2.3. Proof of Theorem 1.1.

Proof. We write µ = µQ. Let us first assume that supp (µ) ⊂ [a1, 1]. From
the assumption (b) of Theorem 1.1 with a = a1, we have that there exists
t0 ∈ (a1, 1), such that

1
π

∫ 1

a1

Q′(s)
s− t

√
(1− s)(s− a1)ds

is nonincreasing on (a1, t0) and nondecreasing on (t0, 1). As no points of
supp (µ) lie to the left of a1, we may apply [9, Theorem 2] on the restricted
interval [a1, 1] and deduce that supp (µ) is either an interval containing a1,
or an interval containing 1, or the union of an interval containing a1 with
an interval containing 1. This proves the theorem in case the support of µ
is contained in [a1, 1].

For the rest of the proof, we shall assume that supp (µ) is not contained
in [a1, 1]. Let

a := min{x : x ∈ supp (µ)}(2.20)

so that a < a1.
For every pair (p, q) with a < p ≤ q ≤ 1, we let vp,q be the density of the

signed measure ηΣ with Σ = [a, p] ∪ [q, 1] if q < 1 and Σ = [a, p] if q = 1.
See Section 2.1 for the definition of ηΣ.

We introduce the set Z consisting of all pairs (p, q) satisfying the following
four conditions:

(a) a < p ≤ q ≤ 1 and q ≥ a1.
(b) supp (µ) ⊂ [a, p] ∪ [q, 1].
(c) If q < 1 then π

√
(1− t)(t− a)vp,q(t) is nondecreasing for t ∈ (q, 1).

(d) If p > a1 then π
√

(1− t)(t− a)vp,q(t) is nonincreasing for t ∈ (a1, p).

We observe first that Z 6= ∅. Indeed, from the assumption (b) of Theo-
rem 1.1 it follows that there exists t0 ∈ [a1, 1] such that

1
π

–
∫ 1

a

Q′(s)
s− t

√
(1− s)(s− a)ds, a < t < 1
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is nonincreasing on (a1, t0) and nondecreasing on (t0, 1). Since for a < t < 1,
we have

π
√

(1− t)(t− a)vt0,t0(t) = 1 +
1
π

–
∫ 1

a

Q′(s)
s− t

√
(1− s)(s− a)ds,

by (2.8) and (2.9), we see that properties (c) and (d) are satisfied for the
pair (t0, t0). Properties (a) and (b) are trivially satisfied, so that (t0, t0)
belongs to Z. Hence Z is nonempty indeed.

Next, we want to show that Z is closed. To this end, we take (p, q) ∈ Z̄
and we choose sequences (pn) and (qn) such that

(pn, qn) ∈ Z, pn → p, qn → q.

We verify that the properties (a)–(d) hold for the pair (p, q). Since (pn, qn)
belongs to Z, we have by (b) that [a, pn] ∪ [qn, 1] contains the support of µ
for every n. It then follows that [a, p] ∪ [q, 1] contains supp (µ). Thus (b)
holds. Since a ∈ supp (µ) and supp (µ) does not have isolated points, we
find that p > a. The other inequalities of (a) are immediate. To establish
(c) and (d), we first note that by Lemma 2.1 we have in the sense of weak∗

convergence of signed measures

vpn,qn(t)dt
∗→ vp,q(t)dt.(2.21)

Now suppose that (c) does not hold. Then there exist t1 and t2 with q <
t1 < t2 < 1 such that

π
√

(1− t1)(t1 − a)vp,q(t1) > π
√

(1− t2)(t2 − a)vp,q(t2).

Since v is continuous, there exists ε > 0 such that

π

∫ t1+ε

t1−ε

√
(1− t)(t− a)vp,q(t)dt > π

∫ t2+ε

t2−ε

√
(1− t)(t− a)vp,q(t)dt.

We may assume that ε is chosen sufficiently small so that [t1− ε, t1 + ε] and
[t2 − ε, t2 + ε] are disjoint intervals that are both contained in (q, 1). From
the weak∗ convergence (2.21) it then easily follows that we must have for n
large enough,

π

∫ t1+ε

t1−ε

√
(1− t)(t− a)vpn,qn(t)dt > π

∫ t2+ε

t2−ε

√
(1− t)(t− a)vpn,qn(t)dt.

For n large enough, we also have qn < t1 − ε. Then we arrive at a con-
tradiction, since (c) holds for the pair (pn, qn). Thus property (c) holds for
the pair (p, q). In a similar way, it follows that (d) holds. Therefore Z is a
closed set.

Since Z is a closed nonempty subset of [a, 1]× [a1, 1], we can find a pair
in Z for which the difference q − p is maximal. Such a maximizer may not
be unique (when we have finished the proof, we will see that it is), but we
take any such pair and denote it by (p∗, q∗). Let Σ = [a, p∗] ∪ [q∗, 1] in case
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q∗ < 1, and Σ = [a, p∗] in case q∗ = 1. For brevity, we write v∗ instead
of vp∗,q∗ . Our aim is to show that supp (µ) = Σ. Having established that,
it will follow from the uniqueness of µ that (p∗, q∗) is the only maximizer
for the difference q − p. We prove that supp (µ) = Σ by showing that v∗ is
positive on the interior of Σ.

We consider several cases. First we assume q∗ < 1 and we consider the
interval (q∗, 1). Suppose that v∗ is nonpositive somewhere on (q∗, 1). Then
by property (c) it follows that there exists ε ∈ (0, 1 − q∗) such that v∗ is
nonpositive on [q∗, q∗+ ε]. We claim that (p∗, q∗+ ε) satisfies the conditions
(a)–(d). It is clear that (a) is satisfied. For (b), we recall from [9, Lemma
3] that

supp (µ) ⊂ {x : v∗(x) > 0} ⊂ [a, p∗] ∪ [q∗ + ε, 1].

To see (c) and (d), we note that vp∗,q∗+ε is obtained from v∗ by taking the
balayage of v∗ onto [a, p∗] ∪ [q∗ + ε, 1]. Since v∗ is nonpositive on the gap
(p∗, q∗ + ε), we see using [9, Lemma 4 (2)], that this process preserves the
properties (c) and (d). Thus (p∗, q∗ + ε) ∈ Z. However, this contradicts
the maximality of q∗ − p∗. Thus our assumption that v∗ is nonpositive
somewhere in (q∗, 1) is incorrect, and it follows that v∗ is positive on the
interval (q∗, 1).

Now consider the case p∗ > a1. In a similar way as above it follows that
v∗ is positive on (a1, p

∗). Because of property (d) and the continuity of v∗,
we find v∗(a1) > 0. Since

supp (µ) ⊂ {x : v∗(x) > 0},
see [9, Lemma 3], and a ∈ supp (µ), we also have v∗(a) ≥ 0. Since Q is
convex on [a, a1] and v∗ ≥ 0 outside [a, a1], it follows from Lemma 2.2 that
v∗ > 0 on (a, a1). So we have shown that v∗ > 0 on the interval (a, p∗) in
case p∗ > a1.

What remains is the case p∗ ≤ a1. If v∗(p∗) < 0, then v∗ is negative on
[p∗ − ε, p∗] for some ε > 0 with ε < p∗ − a. Then we may take the balayage
of this negative part onto [a, p∗− ε]∪ [q∗, 1] and it follows as above that the
pair (p∗ − ε, q∗) belongs to Z. This is a contradiction. Thus v∗(p∗) ≥ 0.
Since Q is convex on [a, p∗] with v∗(a) ≥ 0, v∗(p∗) ≥ 0, and v∗ ≥ 0 outside
of [a, p∗], it follows again from Lemma 2.2 that v∗ is positive on (a, p∗).

Thus in both cases, we find that v∗ > 0 on (a, p∗). We also proved that
v∗ > 0 on (q∗, 1) in case q∗ < 1. Thus v∗ is positive on the interior of Σ. It
follows that supp (µ) = Σ. This completes the proof of Theorem 1.1, since
Σ is the union of at most two intervals. �

3. The Proof of Theorem 1.3.

Proof. We write Q = Qα,c. Clearly Q is convex on [−1, 0]. Let us set for
a ∈ [−1, 0] and for t ∈ [0, 1],
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Gα(t) :=
1

cαπ
–
∫ 1

a

Q′(s)
s− t

√
(1− s)(s− a)ds(3.1)

= − 1
π

∫ 0

a

|s|α−1
√

(1− s)(s− a)
s− t

ds

− 1
π

–
∫ 1

0

sα−1
√

(1− s)(s− a)
s− t

ds

=: I1 + I2.

Here the second integral I2 is a principal value integral.
We have to prove that there exists tα ∈ [0, 1) so that Gα decreases in

(0, tα) and increases in (tα, 1) (if tα = 0 then the first condition is an empty
one). We establish the following properties:

(i) Gα(0) ≤ 0;
(ii) Gα(1) > 0;
(iii) For every α > 1, there is tα ∈ [0, 1), such that G′

α(t) < 0 on (0, tα),
G′

α(t) > 0 on (tα, 1), and G′′
α(t) ≥ 0 on (tα, 1).

Clearly, then (iii) implies the decreasing/increasing property of Gα.
To show (i), we write

Gα(0) = − 1
π

[∫ 1

0
sα−2

√
(1− s)(s− a)ds−

∫ 0

a
|s|α−2

√
(1− s)(s− a)ds

]
and in the second integral we make the change of variables s 7→ as, to find

Gα(0) = − 1
π

∫ 1

0
sα−2

√
1− s

(√
s− a− |a|α−

1
2

√
1− as

)
ds.

Since
√

s− a is greater than or equal to |a|α−
1
2
√

1− as for s in the interval
[0, 1], we find that Gα(0) ≤ 0, as claimed in (i). Note that Gα(0) = 0 if and
only if a = −1.

Next, it is easy to see from (3.1) that

Gα(1) =
1
π

∫ 1

a

|s|α−1
√

s− a√
1− s

ds > 0,(3.2)

which establishes (ii) for all α ≥ 1.
We now prove (iii) by induction on k = [α], where [α] denotes the integer

part of α.
For α = 1, we find by explicit calculation

G1(t) = − 1
π

∫ 1

a

√
(1− s)(s− a)

s− t
ds = t− 1 + a

2
.
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Then (iii) is satisfied with t1 = tα = 0. Suppose now 1 < α < 2. Consider
the analytic function

f(z) := zα−1 [(z − 1)(z − a)]1/2

defined for z ∈ C \ (−∞, 1], where that branch of the square root is chosen
which is positive for real z > 1. Then the principal value integral I2 may be
written as

I2 = − 1
2πi

∫
γ

f(z)
z − t

dz

with the contour γ going from 0 to 1 on the upper side of the cut (−∞, 1]
and back from 1 to 0 on the lower side.

Figure 1. The contours γ and ΓR.

We transform γ into the contour ΓR going from 0 to −R on the upper
side of the cut, continuing along the big circle CR of radius R going to −R
on the lower side of the cut, and then going from −R to 0 on the lower side
of the cut. We choose R > 1. See Figure 1 for γ and ΓR.

The contribution from the upper and lower sides of the cut comes from
the imaginary part of f , which is

=f(x + i0) =

 sin(απ)|x|α−1
√

(1− x)(a− x) for x < a,

− cos(απ)|x|α−1
√

(1− x)(x− a) for a < x < 0,
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and =f(x− i0) = −=f(x + i0). Therefore

I2 = − 1
2πi

∫
CR

f(z)
z − t

dz

+
sinαπ

π

∫ a

−R

|x|α−1
√

(1− x)(a− x)
x− t

dx

−cos απ

π

∫ 0

a

|x|α−1
√

(1− x)(x− a)
x− t

dx.

Thus we have shown that

Gα(t) = − 1
2πi

∫
CR

f(z)
z − t

dz(3.3)

+
sinαπ

π

∫ a

−R

|x|α−1
√

(1− x)(a− x)
x− t

dx

−
(

1 + cos απ

π

) ∫ 0

a

|x|α−1
√

(1− x)(x− a)
x− t

dx.

From (3.3), we obtain for the second derivative

G′′
α(t) = − 1

πi

∫
CR

f(z)
(z − t)3

dz(3.4)

+
2 sinαπ

π

∫ a

−R

|x|α−1
√

(1− x)(a− x)
(x− t)3

dx

−2 (1 + cos απ)
π

∫ 0

a

|x|α−1
√

(1− x)(x− a)
(x− t)3

dx.

We let R →∞ in (3.4). Then the integral over the circle CR tends to 0, since
the integrand behaves like zα−3 as |z| → ∞. Then we get the representation

G′′
α(t) =

2 sinαπ

π

∫ a

−∞

|x|α−1
√

(1− x)(a− x)
(x− t)3

dx(3.5)

−2 (1 + cos απ)
π

∫ 0

a

|x|α−1
√

(1− x)(x− a)
(x− t)3

dx.

Note that the improper integral is convergent because α < 2. Since 1 < α <
2, we have sin απ < 0. Also (x − t)3 < 0 whenever x < 0 < t. Thus we
conclude that

G′′
α(t) > 0, for t ∈ (0, 1),(3.6)

in case 1 < α < 2. Thus Gα is strictly convex on (0, 1). Since Gα(0) < Gα(1)
by properties (i) and (ii) the property (iii) follows for α ∈ (1, 2). Thus we
have established (iii) whenever k = [α] = 1.
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Now let k ≥ 2 and suppose that (iii) is true for all α with [α] = k − 1.
Let α ∈ [k, k + 1). From (3.1) we obtain for 0 < t < 1,

Gα(t) = − 1
π

–
∫ 1

a

|x|α−1 − t|x|α−2 + t|x|α−2

x− t

√
(1− x)(x− a) dx(3.7)

= − 1
π

∫ 1

a

|x|α−1 − t|x|α−2

x− t

√
(1− x)(x− a) dx + tGα−1(t)

=: F (t) + tGα−1(t).

We can write that

F (t) := − 1
π

∫ 1

a

|x| − t

x− t
|x|α−2

√
(1− x)(x− a) dx

=
1
π

∫ 0

a

x + t

x− t
|x|α−2

√
(1− x)(x− a) dx

− 1
π

∫ 1

0
|x|α−2

√
(1− x)(x− a) dx,

from which we obtain

F ′(t) =
1
π

∫ 0

a

2x

(x− t)2
|x|α−2

√
(1− x)(x− a) dx < 0, 0 < t < 1(3.8)

and

F ′′(t) =
1
π

∫ 0

a

4x

(x− t)3
|x|α−2

√
(1− x)(x− a) dx > 0, 0 < t < 1.(3.9)

Differentiating (3.7) we get

G′
α(t) = F ′(t) + Gα−1(t) + tG′

α−1(t)(3.10)

and

G′′
α(t) = F ′′(t) + 2G′

α−1(t) + tG′′
α−1(t).(3.11)

By the inductive hypothesis, there exists tα−1, such that G′
α−1(t) is nega-

tive on (0, tα−1) and positive on (tα−1, 1), as well as G′′
α−1(t) ≥ 0 on (tα−1, 1).

Suppose first that tα−1 > 0. Since Gα(0) ≤ 0 and G′
α−1(t) < 0 on

(0, tα−1), we have that Gα−1(t) is strictly decreasing on (0, tα−1), and there-
fore is negative there. This, together with (3.8) and (3.10), implies that
G′

α(t) < 0 on (0, tα−1]. On the other hand from (3.9), (3.11) and the induc-
tive hypothesis, we obtain that G′′

α(t) > 0 on [tα−1, 1). This implies that Gα

is strictly convex on (tα−1, 1). Since Gα and G′
α are negative on (0, tα−1],

and Gα(1) > 0, we see that there exists tα ∈ (tα−1, 1), such that G′
α(t) is

negative on (0, tα) and positive on (tα, 1). It is clear also that G′′
α(t) > 0 on

(tα, 1). Thus property (iii) holds in case tα−1 > 0.
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If tα−1 = 0, then we still use (3.9) and (3.11) to derive G′′
α(t) > 0 on (0, 1),

which implies that Gα is strictly convex on [0, 1]. Since Gα(0) < Gα(1), the
property (iii) follows as well.

The property (iii) is now established whenever [α] = k. By induction
we derive that it is true for every k ≥ 1, that is it holds for every α ≥ 1.
Thus there exists t0 ∈ [0, 1) such that (1.5) decreases on (0, t0) and increases
on (t0, 1). Since Q is convex on [−1, 0], the conditions of Theorem 1.1 are
satisfied with a1 = 0. It follows from Theorem 1.1 that the support of the
equilibrium measure consists of at most two intervals. �
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