Vol. 200, No. 1, 2001

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Techniques for approaching the dual Ramsey property in the projective hierarchy

Lorenz Halbeisen and Benedikt Löwe

Vol. 200 (2001), No. 1, 119–145
Abstract

We define the dualizations of objects and concepts which are essential for investigating the Ramsey property in the first levels of the projective hierarchy, prove a forcing equivalence theorem for dual Mathias forcing and dual Laver forcing, and show that the Harrington-Kechris techniques for proving the Ramsey property from determinacy work in the dualized case as well.

Milestones
Published: 1 September 2001
Authors
Lorenz Halbeisen
Queen’s University Belfast
Belfast BT7 1NN
Northern Ireland
Benedikt Löwe
Mathematisches Institut
Rheinische Friedrich-Wilhelms-Universität Bonn
Beringstraße 6
53115 Bonn
Germany