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Let E be an ample vector bundle of rank n − 2 ≥ 2 on
a complex projective manifold X of dimension n having a
section whose zero locus is a smooth surface Z. We determine
the structure of pairs (X, E) as above under the assumption
that Z is a properly elliptic surface. This generalizes known
results on threefolds containing an elliptic surface as a smooth
ample divisor. Among the applications we prove a conjecture
relating the Kodaira dimension of X to that of Z, and we
show that if 0 ≤ κ(Z) ≤ 1, then pg(Z) > 0 unless X is a
Pn−2-bundle over a smooth surface S with pg(S) = 0.

Introduction.

Consider the following set-up.

(∗) X is a smooth complex projective variety of dimension n and E is an
ample vector bundle of rank n− 2 ≥ 2 on X such that there exists a section
s ∈ Γ(E) whose zero locus Z := (s)0 is a smooth surface.

According to a general philosophy coming from the study of ample divisors
[S1], if Z is special, then X has to be special as well. By relying on the
study of the nefness of the adjoint bundle KX + det E [M], the structure
of pairs (X, E) as above is now well understood when κ(Z) ≤ 0 in view of
[LM1] and [L1]. In this paper we investigate the structure of (X, E) when
Z is a properly elliptic surface.

Our result is as follows.

Theorem. Let X, E and Z be as in (∗) and assume further that Z is an
elliptic surface with κ(Z) = 1. Then one of the following conditions holds.

(a) X = PS(F), where F is an ample vector bundle of rank n − 1 over a
smooth surface S, E = π∗V ⊗H, where H = H(F) is the tautological
line bundle on X, V is a vector bundle of rank n− 2 on S, π : X → S
is the bundle projection and its restriction to Z, π|Z : Z → S is a
birational morphism, but not an isomorphism.

(b) There exist a birational morphism f : X → X ′ expressing X as a
projective manifold X ′ blown-up at a finite set B of points (possi-
bly empty) and an ample vector bundle E ′ of rank n − 2 on X ′ such
that E = f∗E ′ ⊗ [−f−1(B)] and that KX′ + det E ′ is nef. The triplet
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X ′, E ′, Z ′ := f(Z)

)
satisfies (∗) and κ(Z ′) = 1. Moreover X ′ is en-

dowed with a morphism ϕ : X ′ → Y onto a smooth curve Y of genus
g(Y ) = h1,0(Z), whose general fibre F is a projective manifold of di-
mension n− 1 satisfying the condition KF + det E ′F = OF ; ϕ induces
on Z ′ the elliptic fibration, and ϕ|Z′ : Z ′ → Y has no multiple fibres.

Pairs (F, E ′F ) of this kind have been classified in [PSW].
In the 80’s Sommese investigated the structure of projective threefolds

containing an elliptic surface as a hyperplane section, or more generally as an
ample divisor [S2, Theorem 3.1]. Our Theorem can be viewed as a complete
generalization of what Sommese and Shepherd-Barron proved in that setting
(see [D, Theorem 0.7]). In the threefold case Sommese proved that the
elliptic fibration cannot have multiple fibres [S2, Claim 3.1.4] (see also [S3,
Lemma 0.5.1]), by relying on a formula he obtained for the plurigenera of
the surface. Our proof of the fact that ϕ|Z′ : Z ′ → Y has no multiple
fibres is conceptually much easier and we derive from this fact a formula
expressing both h0

(
m(KX′ + det E ′)

)
and the m-th genus Pm(Z) for m > 0

as a linear polynomial in m (Corollary (1.3)). Moreover we show that in
case (b) the surface Z must have positive geometric genus, which was not
explicitly noted even in the setting of ample divisors (Corollary (2.2)). In
particular, if pg(Z) = 0 then (X, E) is as in case (a). We show that this
holds also when κ(Z) = 0, which gives some more evidence for a conjecture
stated in [L2]. As a consequence of our Theorem we also see that a product
of an elliptic curve with a smooth curve of positive genus can never occur
as the zero locus of a section of an ample vector bundle (Corollary (1.4)).

As another application of our Theorem we prove that if X, E and Z are
as in (∗) and κ(Z) < dimZ, then κ(X) = −∞ (Corollary (2.1)). This fact,
which was conjectured in [LM1], also comes from a recent, more general,
theory of normal pairs with Q-effective normal sheaf, developed by Peternell,
Schneider and Sommese [PSS].
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0. Preliminaries.

In this paper we will work over the complex number field C. We use the
standard notation from algebraic geometry. We make no distinction between
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vector bundles and locally free sheaves. The tensor products of line bundles
are denoted additively, while we use multiplicative notation for intersection
products in Chow rings. The pull-back i∗E of a vector bundle E on X by
an embedding i : Y ↪→ X is denoted by EY . If X is a smooth projective
variety, the canonical bundle of X is denoted by KX and κ(X) stands for the
Kodaira dimension of X. For any m ≥ 1 the m-th plurigenus h0(mKX) is
denoted by Pm(X). In particular, for m = 1, we denote by pg(X) = P1(X)
the geometric genus of X. Moreover, if X is a smooth projective curve, the
genus of X is denoted by g(X) instead of pg(X).

Let X, E and Z be as in (∗). Since Z is smooth of the expected dimension,
we have NZ/X

∼= EZ , where NZ/X denotes the normal bundle of Z in X.
Hence, by adjunction, we get

KZ = (KX)Z + detNZ/X = (KX + det E)Z .

We will use this fact over and over. The following fact follows easily from
[M, Theorem].

Lemma 0.1. Let X, E and Z be as in (∗) and assume that κ(Z) ≥ 0. Then
either KX + det E is nef, or one of the following cases occurs:

(i) X contains an effective divisor E such that

(E,OE(E), EE) ∼= (Pn−1,OP(−1),OP(1)⊕(n−2));

(ii) X = PS(F) for some ample vector bundle F of rank n−1 on a smooth
surface S and E = π∗V ⊗ H for some vector bundle V of rank n − 2
on S, where H is the tautological line bundle on X and π : X → S is
the bundle projection.

We recall the following fact.

Lemma 0.2 ([LM1, Lemma 5.1]). Let E be an ample vector bundle of rank
r ≥ 2 on a smooth projective variety X of dimension n ≥ 2 and assume that
X contains a smooth divisor E such that

(E,OE(E), EE) ∼= (Pn−1,OP(−1),OP(1)⊕r).

Let f : X → X ′ be the blow-down of E to a point x ∈ X ′. Then there exists
an ample vector bundle E ′ of rank r on X ′ such that

(0.2.1) E = f∗E ′ ⊗OX(−E).

In connection with this we prove the following lemma, inspired by [L1,
Lemma 2.2].

Lemma 0.3. Let (X, E), E, f , x and (X ′, E ′) be as above. Then X ′ cannot
contain any submanifold F of positive dimension, such that x ∈ F and

(F, E ′F ) ∼= (Ps,OP(1)⊕r).
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Proof. By contradiction, assume that X ′ contains such an F , and let F̃
be the proper transform of F via f . Note that F̃ is a P1-bundle over
P(N∨

x/F ) = Ps−1, whose fibres are the proper transforms of the lines on

F passing through x. Moreover E ∩ F̃ is a section of this P1-bundle. So, if
l is a fibre of F̃ , then OX(E)l = O eF (E)l = 1. Since E ′F ∼= OP(1)⊕r we thus
get from (0.2.1)

El =
(
f∗E ′ ⊗OX(−E)

)
l
= O⊕r

l ,

contradicting the ampleness of E . �

Remark 0.4. In particular Lemma 0.3 shows that for the pair (X ′, E ′) ob-
tained after the contraction f above,

(1) X ′ cannot be a Ps-bundle, s ≥ 1, over a smooth projective variety
W , dimW ≥ 0, with E ′F = OP(1)⊕r for any fibre F of the projection
X ′ →W , and

(2) if X ′ contains an exceptional divisor E′ such that

(E′,OE′(E′), E ′E′) ∼= (Pn−1,OP(−1),OP(1)⊕r),

then E and f−1(E′) are two disjoint exceptional divisors in X.

The following lemma will be useful in Section 1 to add something more
in case (b) of our Theorem.

Lemma 0.5. Let Z be a minimal elliptic surface with κ(Z) = 1, and let
ψ : Z → Y denote the elliptic fibration over a smooth projective curve Y . If
ψ has no multiple fibres and if KZ = ψ∗M for some ample line bundle M
on Y , then the m-th plurigenus of Z is given by the formula

(0.5.1) Pm(Z) = m
(
χ(OZ) + 2g(Y )− 2

)
+ 1− g(Y ) for every m ≥ 2.

Moreover, (0.5.1) is valid even for m = 1, unless M = KY .

Proof. Assume first that m ≥ 2. We note that χ(mKZ) = χ(OZ), because
K2

Z = 0. Moreover, by Serre duality we have h2(mKZ) = h0
(
− (m−1)KZ

)
.

On the other hand, KZA > 0 for any ample line bundle A on Z, since
κ(Z) = 1. So h2(mKZ) = 0. Consequently

Pm(Z) = h0(mKZ)− h1(mKZ) + h2(mKZ) + h1(mKZ)− h2(mKZ)
(0.5.2)

= χ(mKZ) + h1(mKZ)− h2(mKZ)

= χ(OZ) + h1(mKZ).

From now on, let us calculate h1(mKZ). Since ψ has no multiple fibres,
the canonical bundle formula for elliptic fibrations [F, Theorem 15, p. 176]
tells us that KZ = ψ∗(KY + L), where L is the dual of the line bundle
R1ψ∗OZ . We note that degL = χ(OZ) ≥ 0 [F, Lemmas 13 and 14, p. 176].
Furthermore, since ψ∗OZ = OY , the homomorphism ψ∗ : Pic(Y ) → Pic(Z)
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is injective. Therefore, by assumption, M = KY + L. Now we consider the
exact sequence

0 → H1
(
ψ∗(mKZ)

)
→ H1(mKZ) → H0

(
R1ψ∗(mKZ)

)
→ 0

induced by the Leray spectral sequence

Ep,q
2 = Hp

(
Rqψ∗(mKZ)

)
=⇒ Ep+q = Hp+q(mKZ).

This gives

h1(mKZ) = h1
(
ψ∗(mKZ)

)
+ h0

(
R1ψ∗(mKZ)

)
.

As to the first summand, by the projection formula, we see that ψ∗(mKZ) =
ψ∗ψ

∗(mM) = mM . Moreover, we can write mM = KY + (m − 1)M + L.
Since deg

(
(m − 1)M + L

)
> 0, we get h1

(
ψ∗(mKZ)

)
= h1(mM) = 0. So

it suffices to calculate h0
(
R1ψ∗(mKZ)

)
. From the projection formula, we

obtain

R1ψ∗(mKZ) = R1ψ∗ψ
∗(mM) = R1ψ∗OZ ⊗mM

= mM − L = KY + (m− 1)M.

Since deg
(
(m− 1)M

)
> 0, the Riemann-Roch theorem for KY + (m− 1)M

gives

h0
(
R1ψ∗(mKZ)

)
= h0

(
KY + (m− 1)M

)(0.5.3)

= 2g(Y )− 2 + (m− 1) degM + 1− g(Y )

= 2g(Y )− 2 + (m− 1)
(
2g(Y )− 2 + χ(OZ)

)
+ 1− g(Y ).

Combining (0.5.2) with (0.5.3), we get the desired formula.
When m = 1, an easy calculation shows that the right-hand side of (0.5.1)

is P1(Z) + g(Y )− h1(OZ). If M 6= KY , i.e., L is not trivial, then it follows
from [F, Lemma 14, p. 176] that g(Y ) = h1(OZ). Therefore (0.5.1) is still
true unless M = KY . �

1. The structure of (X, E).

1.1. Proof of the Theorem. Assume first that KX + det E is not nef.
Then, since κ(Z) = 1, (X, E) is either of type (i) or of type (ii) in Lemma 0.1.

Assume that (X, E) is of type (ii). Let sF denote the restriction of s to
any fibre F of π. Then, since sF ∈ Γ(OPn−2(1)⊕(n−2)), Z ∩ F = (sF )0 is a
linear subspace of dimension ≥ 0 in F . Hence the restriction π|Z : Z → S
of π to Z is surjective. We thus conclude that π|Z is birational. However,
if π|Z is an isomorphism, then Pic(X) ∼= Pic(Z)× Z, which contradicts the
fact that the restriction homomorphism Pic(X) → Pic(Z) is injective [LM2,
(1.1.6)]. Thus we are in case (a) of the Theorem.
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Now assume that (X, E) is of type (i). Set l = Z ∩ E. Then the same
argument as that in the proof of [LM1, Corollary 5.2] shows that l is a (−1)-
curve in Z. Let f1 : X → X1 be the blow-down of E. Then Z1 := f1(Z)
is a smooth projective surface in X1 because f1|Z : Z → Z1 is nothing but
the contraction of l. In particular κ(Z1) = 1. Moreover, by Lemma 0.2
there exists an ample vector bundle E1 of rank n − 2 on X1 such that E =
f∗1E1 ⊗ OX(−E). If we let s1 ∈ Γ(E1) denote the section corresponding to
s, then (s1)0 = Z1, so that X1, E1 and Z1 also satisfy condition (∗) in the
Introduction. However, note that (X1, E1) is never of type (ii) by virtue of
Remark 0.4 (1). Therefore (X1, E1) must be of type (i), if KX1 + det E1 is
not nef. For this reason, when KX1 +det E1 is not yet nef, we can apply the
same argument as above to X1, E1 and Z1, and continue in this manner. It
should be emphasized that if X1 contains E1 such that

(E1,OE1(E1), E1E1
) ∼= (Pn−1,OP(−1),OP(1)⊕(n−2)),

then E ∩ f−1
1 (E1) = ∅ by Remark 0.4 (2), so that we can contract E and

f−1
1 (E1) at the same time. This procedure must come to an end after a finite

number of repetitions. Therefore we conclude that there exist a birational
morphism f : X → X ′ expressing X as a projective manifold X ′ blown-up
at a finite set B of points and an ample vector bundle E ′ of rank n − 2
on X ′ satisfying condition (∗), such that E = f∗E ′ ⊗ [−f−1(B)] and that
KX′ + det E ′ is nef unless (X, E) is as in case (a) of the Theorem.

From this, in order to complete our analysis, it suffices to investigate the
structure of (X, E) when the adjoint bundle KX + det E is nef. So in what
follows, we assume that KX +det E is nef. Then, by [KMM, Theorem 3-2-1]
there exists a morphism ϕ : X → Y with connected fibres from X onto a
normal projective variety Y such that KX + det E = ϕ∗M for some ample
line bundle M on Y .

If dimY = 0, then KX +det E = OX . Recalling that KZ = (KX +det E)Z ,
we have KZ = OZ , which contradicts our assumption on κ(Z). Hence
dimY ≥ 1. Moreover, since KX +det E is nef in the present case, KZ is nef,
i.e., Z is a minimal surface with κ(Z) = 1. In particular we have K2

Z = 0.
We first claim that dimY = 1. To see this, suppose to the contrary that

dimY ≥ 2. Then we can find effective divisors D1, D2 ∈ |m(KX +det E)| for
some m > 0 such that every irreducible component of D1∩D2 has dimension
n− 2. Applying [BG, Theorem 2.5] to E , D1 and D2, we have

m2K2
Z = m2(KX + det E)2Z = (D1 ∩D2)cn−2(E) > 0,

which gives a contradiction. Hence dimY = 1. As a direct consequence of
this, Y is a smooth curve and ϕ is flat. Take a general fibre F of ϕ. Then,
since KF + det EF = OF , F is a Fano manifold of dimension n − 1 and EF

is an ample vector bundle of rank n− 2 on F .
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Next we claim that ϕ|Z : Z → Y is the elliptic fibration. Indeed,
ϕ|Z is clearly surjective, and satisfies KZ = ϕ∗|ZM . Set f := Z ∩ F for
a general fibre F of ϕ. Then f is a 1-equidimensional smooth fibre of
ϕ|Z . Moreover, f is the zero locus of the section sF ∈ Γ(EF ). Therefore
H0(f,Z) ∼= H0(F,Z) = Z by [LM2, (1.1.1)] (note that its proof is valid
without assuming the connectedness of f). So f is a smooth curve in Z.
Combining this with the fact that KZ = ϕ∗|ZM , we see that f is an elliptic
curve. Since κ(Z) = 1, Z admits a unique elliptic fibration, and so the result
is proved.

Next we claim that Y has genus

(1.1.1) g(Y ) = h1(OZ).

To see this, take a general fibre F of ϕ. Then hi(OF ) = 0 for all i > 0,
because F is Fano. Hence Riϕ∗OX = 0 for all i > 0. Since ϕ∗OX = OY , we
have

H1(OX) = H1(ϕ∗OX) = H1(OY ).
On the other hand, it follows from [LM2, (1.1.3)] that H1(OX) ∼= H1(OZ).
Thus h1(OY ) = h1(OZ), as required.

Finally we show that ϕ|Z has no multiple fibres. First note that m(KX +
det E) = ϕ∗(mM) for every m ≥ 1. As we have seen, Riϕ∗OX = 0 for all i >
0. Combining this with the projection formula, we have Riϕ∗ϕ

∗(mM) = 0
for all i > 0. Moreover, since ϕ∗OX = OY , the projection formula also tells
us that ϕ∗ϕ∗(mM) = mM . Therefore
(1.1.2)

h0
(
m(KX + det E)

)
= h0

(
ϕ∗(mM)

)
= h0(mM) for every m ≥ 1.

Furthermore, by the Kodaira vanishing theorem,

(1.1.3) 0 = h1
(
m(KX + det E)

)
= h1(mM) for each m ≥ 1,

since m(KX +det E) = KX +
(
(m−1)(KX +det E)+det E

)
and KX +det E

is nef. In particular, from (1.1.3) we get

(1.1.4) h0(mM) = mdegM + 1− g(Y ) for every m ≥ 1.

Now we consider the exact sequence

0 → m(KX + det E)⊗ IZ → m(KX + det E) → mKZ → 0,

where IZ is the ideal sheaf of Z. We know that ϕ|Z is surjective. In other
words, Z is not contained in a finite union of fibres of ϕ. This implies that
h0(m(KX + det E) ⊗ IZ) = 0 for every m ≥ 1, because m(KX + det E) =
ϕ∗(mM) and every global section of m(KX + det E) is the pullback of a
global section of mM by (1.1.2). Thus we have from the exact sequence
above

(1.1.5) h0
(
m(KX + det E)

)
≤ h0(mKZ) for all m ≥ 1.
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In particular, combining (1.1.2) with (1.1.5) for m = 1, we get

(1.1.6) h0(M) ≤ h0(KZ)
(

= h2(OZ)
)
.

Hence, by recalling (1.1.1),
(1.1.7)
h0(M) ≤ h2(OZ)−h1(OZ)+h0(OZ)+h1(OZ)−h0(OZ) = χ(OZ)+g(Y )−1.

Furthermore, from (1.1.7) and (1.1.4) for m = 1,

(1.1.8) degM ≤ χ(OZ) + 2(g(Y )− 1).

On the other hand, as mentioned previously, KZ = ϕ∗|ZM . So, by (1.1.8)
and the canonical bundle formula for elliptic fibrations, we conclude that
ϕ|Z has no multiple fibres. This completes the proof. �

Remarks 1.2. (i) As we have shown in the proof of the Theorem, ϕ|Z has
no multiple fibres. Hence the equality holds in (1.1.8). This directly implies
that the equalities also hold in (1.1.7) and (1.1.6). In particular, it follows
from (1.1.6) that

(1.2.1) h0(M) = pg(Z) if KX + det E is nef.

(ii) The morphism ϕ : X → Y considered above comes from the Stein
factorization of the morphism associated with |m(KX + det E)| for m large
enough, when KX + det E is nef. Since K2

Z = 0, we see that KX + det E is
not ample. At this point we could refer to a result of Andreatta and Mella
listing the possible structures of (X, E), depending on whether KX +det E is
big or not [AM, Theorem 5.1, parts 2) and 3) respectively]. Checking which
of these structures is compatible with condition (∗) and our assumption that
Z is a minimal surface with κ(Z) = 1 leads to subcase (ii) in [AM, Theorem
5.1, part 2)]. This gives an alternate proof to our first claim that dimY = 1,
with the general fibre F of ϕ satisfying the condition KF + det EF = OF .

Corollary 1.3. Let X ′ and E ′ be as in case (b) of the Theorem. Then

h0
(
m(KX′ + det E ′)

)
= Pm(Z) = m

(
χ(OZ) + 2g(Y )− 2

)
+ 1− g(Y )

for all m ≥ 1.

Proof. Since Pm(Z) and χ(OZ) are birational invariants, it is enough to
prove the formula for Z ′ instead of Z. Since KX′ + det E ′ is nef, combining
(1.1.2) with (1.1.4) gives h0

(
m(KX′ + det E ′)

)
= mdegM + 1 − g(Y ) for

m ≥ 1. Moreover, by Remark 1.2 (i) we know that the equality holds in
(1.1.8). In other words, degM = χ(OZ′) + 2g(Y )− 2. Therefore

h0
(
m(KX′ + det E ′)

)
= m

(
χ(OZ′) + 2g(Y )− 2

)
+ 1− g(Y )

for all m ≥ 1. Next we consider Pm(Z ′). As we showed in 1.1, Z ′ is a
minimal surface with κ(Z ′) = 1, the elliptic fibration ϕ|Z′ : Z ′ → Y has



ELLIPTIC SURFACES AND AMPLE VECTOR BUNDLES 155

no multiple fibres, and KZ′ = ϕ∗|Z′M for some ample line bundle M on Y .
Hence, by Lemma 0.5

(1.3.1) Pm(Z ′) = m
(
χ(OZ′) + 2g(Y )− 2

)
+ 1− g(Y )

for every m ≥ 2. Now assume that M = KY . Then h1(M) = 1. However,
this contradicts (1.1.3). Thus (1.3.1) is also valid for m = 1 by Lemma 0.5
again. �

Corollary 1.4. Let X, E and Z be as in (∗). Then Z cannot be the product
of an elliptic curve E and a smooth curve Y of genus g(Y ) ≥ 1.

Proof. By contradiction, assume that Z = E × Y . If g(Y ) = 1, then Z is
an abelian surface, which cannot occur in view of [L1, Corollary 1.5]. If
g(Y ) ≥ 2, then KZ = p∗KY , where p : Z → Y denotes the projection,
hence Z is a minimal surface with κ(Z) = 1 and our Theorem applies.
Case (a) cannot hold, since Z is minimal. On the other hand, in case (b)
we have h1(OZ) = g(Y ) by (1.1.1). But this gives a contradiction, since
h1(OE×Y ) = g(E) + g(Y ) = 1 + g(Y ). �

This generalizes a well-known fact in the setting of ample divisors [S1,
Proposition IV]. We would like to point out that by the same argument as
in the proof of Corollary 1.4 we can also exclude the case where Z is an
elliptic fibre bundle over a smooth curve of positive genus.

2. Kodaira dimensions.

Let things be as in the Introduction. In [LM1] we conjectured that if Z has
Kodaira dimension κ(Z) < 2 then κ(X) = −∞. The fact that κ(X) = −∞
was proved when κ(Z) = −∞ in [LM1, Corollary 5.2] and when κ(Z) = 0 in
[L1, Corollary 4.3]. At present our conjecture follows from a more general
result of Peternell, Schneider and Sommese on the Kodaira dimension of
subvarieties, obtained in connection with the theory of normal pairs (X,A)
with Q-effective normal sheaf NA/X [PSS, Theorem 4.13]. Here we apply
our Theorem to give an elementary proof of the conjecture above.

Corollary 2.1. Let X, E and Z be as in (∗) and assume that κ(Z) < 2.
Then κ(X) = −∞.

Proof. By what we mentioned before we can assume that κ(Z) = 1. Then
(X, E) is as in the Theorem. In case (a), X is a Pn−2 bundle over a smooth
surface S. Hence by the easy addition theorem we get κ(X) ≤ κ(Pn−2) +
dimS = −∞. In case (b), up to the birational morphism f , which does not
affect the Kodaira dimension, we can suppose that X fibres over a smooth
curve Y , with the general fibre being a smooth projective variety F such
that KF + det EF = OF . In particular F is Fano and so κ(F ) = −∞. Then
the easy addition theorem again gives κ(X) ≤ κ(F ) + dimY = −∞. �
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Another consequence of Section 1 is the following:

Corollary 2.2. Let X, E, Z be as in case (b) of the Theorem. Then
pg(Z) > 0.

Proof. In view of the birational invariance of pg we can assume that Z = Z ′.
Thus, we know by 1.1 that the elliptic fibration of Z is given by ϕ|Z : Z → Y
with KZ = ϕ∗|ZM for some ample M ∈ Pic(Y ). In particular, degM > 0.
Moreover, by (1.2.1) we have pg(Z) = h0(M). Since κ(Z) = 1, we know by
the Castelnuovo–de Franchis theorem that χ(OZ) ≥ 0. On the other hand,
by (1.1.1) we have g(Y ) = h1,0(Z). So, if pg(Z) = 0, combining this equality
with the inequality above implies 1 − g(Y ) ≥ 0. But then, by (1.1.4) for
m = 1, we get

pg(Z) = h0(M) = degM + 1− g(Y ) ≥ 1,

a contradiction. �

Note that the same property expressed by Corollary 2.2 still holds if Z
is a surface of Kodaira dimension zero. Actually, in this case, if X, E and
Z are not as in case (a) (case (1) in [L1, Theorem]), after contracting a
finite number of (−1)-hyperplanes we get a new triplet (X ′, E ′, Z ′) satisfying
(∗), with KX′ + det E ′ nef and Z ′ a minimal surface with κ(Z ′) = 0. In
particular, 12KZ′ = OZ′ . The injectivity of the restriction homomorphism
Pic(X ′) → Pic(Z ′) [LM2, (1.1.6)] combined with the fact that (KX′ +
det E ′)Z′ = KZ′ implies that 12(KX′ +det E ′) = OX′ . Hence X ′ is Fano, but
since Fano manifolds have no torsion in their Picard groups, we conclude
that KX′ + det E ′ = OX′ . Hence, by adjunction, KZ′ = OZ′ , which gives
pg(Z) = pg(Z ′) = 1.

In [L2, (4.2)] the first author formulated the following conjecture: Let X,
E and Z be as in (∗). If pg(Z) = 0 and κ(Z) ≥ 0, then (X, E) is as in case
(a) of the Theorem. Corollary 2.2 and the discussion above show that this
conjecture is true when κ(Z) = 0 or 1.
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Università degli Studi di Milano
Via C. Saldini, 50
I-20133 Milano
Italy
E-mail address: lanteri@mat.unimi.it

Department of Mathematical Sciences
School of Science and Engineering
Waseda University
3-4-1 Ohkubo, Shinjuku
Tokyo 169-8555
Japan
E-mail address: hmaeda@mse.waseda.ac.jp

http://www.ams.org/mathscinet-getitem?mr=89e:14015
http://www.emis.de/cgi-bin/MATH-item?672.14006
http://www.ams.org/mathscinet-getitem?mr=99a:14066
http://www.emis.de/cgi-bin/MATH-item?910.14022
http://www.ams.org/mathscinet-getitem?mr=1794902
http://www.ams.org/mathscinet-getitem?mr=97i:14027
http://www.emis.de/cgi-bin/MATH-item?876.14026
http://www.ams.org/mathscinet-getitem?mr=98h:14051
http://www.emis.de/cgi-bin/MATH-item?891.14011
http://www.ams.org/mathscinet-getitem?mr=97f:14042
http://www.emis.de/cgi-bin/MATH-item?865.14024
http://www.ams.org/mathscinet-getitem?mr=1739364
http://www.ams.org/mathscinet-getitem?mr=93h:14030
http://www.emis.de/cgi-bin/MATH-item?786.14027
http://www.ams.org/mathscinet-getitem?mr=53:8503
http://www.emis.de/cgi-bin/MATH-item?316.14006
http://www.ams.org/mathscinet-getitem?mr=91h:14013
http://www.emis.de/cgi-bin/MATH-item?675.14005
mailto:lanteri@mat.unimi.it
mailto:hmaeda@mse.waseda.ac.jp

