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This is the first of a series of four papers describing the
finitely generated modules over all commutative noetherian
rings that do not have wild representation type (with a pos-
sible exception involving characteristic 2). This first paper
identifies the wild rings, in the complete local case. The sec-
ond paper describes the finitely generated modules over the
remaining complete local rings. The last two papers extend
these results by dropping the “complete local” hypothesis.

1. Introduction.

The goal of this project is to describe all finitely generated modules —
including the indecomposables and direct-sum behavior — over as wide as
possible a class of commutative noetherian rings, thus extending Steinitz’s
well-known 1911 theorem on modules over Dedekind domains [S]. Steinitz’s
theorem has been particularly resistant to generalization. In fact, the only
noetherian integral domains (other than Dedekind domains) for which such
a module structure theorem was known prior to completion of this project
seem to be the Dedekind-like domains studied in [L2]. However, for rings
that are not domains, some other results exist [L1, L2, NR, NRSB].

We call a ring Λ finitely generated tame if we can describe all isomorphism
classes of finitely generated Λ-modules. In all cases for which we cannot
obtain such a description (with a possible exception involving characteristic
2), the obstruction is wild representation type; or more precisely, finite-
length wildness.

Informally, a commutative ring Λ is finite-length wild if it has a residue
field k such that any description of all isomorphism classes of Λ-modules of
finite length would have to contain a description of all isomorphism classes
of finite-dimensional modules over all finite-dimensional k-algebras. The
seeming hopelessness of this task is what is behind the name “wild rep-
resentation type.” (The precise definition of finite-length wild is given in
Subsection 2.2.) The notion of tame versus wild representation type has
been important in the study of finite-dimensional algebras for more than 20
years but seems to be relatively new in commutative noetherian rings. So,
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we follow our formal Definition 2.2 by some introductory remarks on the
subject [Remarks 2.3].

One of the surprising facts about finite dimensional algebras is that the
majority of algebras over algebraically closed fields are wild. The well-known
tame-wild theorem of Drozd and Crawley-Boevey [CB, Theorem B] states
that, if k is algebraically closed, then every finite dimensional k-algebra is
either tame or wild, but never both.

One of the main objectives of the present series of papers is to obtain a
similar tame-wild dichotomy for commutative noetherian rings. It is possi-
ble to give a precise definition of “tame” in the context of finite dimensional
algebras over algebraically closed fields. (See, for example, [CB, Defini-
tion 6.5].) In the present series, however, “finitely generated tame” has the
informal meaning stated in the second paragraph of this introduction.

For readability, this project is divided into a series of four papers.

Paper I: Wildness, complete local case. Let (Λ,m, k) be a complete local
commutative noetherian ring, and µΛ(m) the minimal number of generators
of the Λ-module m. We give the spirit of our Main Wildness Theorem [2.10]
without the many definitions that are needed for its precise statement.

If µΛ(m) ≥ 3, then Λ is always finite-length wild. On the other hand, if
µΛ(m) = 1, then Λ is a principal ideal ring, and its tameness was well-known
long before the word “tame” came into use. Thus µΛ(m) = 2 is the dividing
line between tameness and wildness; moreover, the vast majority of rings
with µΛ(m) = 2 are wild. In order to make this dividing line precise, we
need to define several types of rings, which we do in Section 2.

We call Λ an artinian triad if µΛ(m) = 3 and m2 = 0. These are clearly the
“smallest” rings such that µΛ(m) = 3, and they are known to be finite-length
wild. We also define a special kind of local artinian ring Λ of composition
length 5, with µΛ(m) = 2, and call it a Drozd ring. We prove that these are
finite-length wild in Section 4.

Section 3 is devoted to the proof of our Ring-theoretic Dichotomy Theo-
rem [3.1], which states that every complete local ring either (i) maps onto
an artinian triad or a Drozd ring, or (ii) is a homomorphic image of a type
of ring of Krull dimension 1 that we call Dedekind-like or is an exceptional
type of artinian ring that we call a Klein ring. “Dedekind-like rings” are
reduced rings, satisfy µΛ(m) ≤ 2, and are very close to their normalization
(in their total quotient ring), which is either a DVR (discrete valuation ring)
or the direct sum of two DVRs. “Klein rings” have composition length 4
and satisfy µΛ(m) = 2, a special case being the group algebra of the Klein
4-group over a field of characteristic 2. (See Section 2 for precise definitions.)

Our Ring-theoretic Dichotomy Theorem [3.1] is a piece of pure commu-
tative algebra; neither it nor its proof make any use of the notions of tame
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or wild. In order to use this ring-theoretic dichotomy to prove our tame-
wild dichotomy, we need to prove that rings of type (ii) (in the previous
paragraph) are tame. We postpone this to paper II.

Extending earlier terminology of Ringel [R], we think of artinian triads
and Drozd rings as “minimal wild rings,” and Dedekind-like rings and Klein
rings as “maximal tame rings.” Thus, anticipating the results of paper II,
our dichotomy theorem implies that every Λ either maps onto a minimal
wild ring, and hence is finite-length wild, or is a homomorphic image of
a maximal tame ring, and hence is finitely-generated tame. (The possible
exception involving characteristic 2 is described in our discussion of paper
II below.)

Paper I ends with three short sections containing examples and miscella-
neous results:

Section 5 gives an example of a Klein ring that is not an algebra over a
field, and studies when Klein rings are, and when they are not, homomorphic
images of Dedekind-like rings.

Section 6 gives a second, more constructive definition of Drozd rings than
the abstract definition in Subsection 2.4. This section also shows that all of
the ramified complete local orders studied in integral representation theory
are finite-length wild.

Section 7 shows that all complete local orders of infinite lattice type are
finite-length wild.

Remarks on earlier work. Let Λ be a commutative noetherian ring that is a
finitely generated algebra over an algebraically closed field. In this context,
our tame-wild dichotomy for Λ-modules of finite length was obtained by
Drozd [D], and the solution improved by Ringel [R]. The actual module
structure in the tame case for modules of finite length — in fact, for finitely
generated modules — had been given by earlier results of others ([NR],
corrected in [NRSB]). This collection of results was the source of our
interest in the subject.

As Drozd and Ringel were only interested in Λ-modules of finite length,
they were able to assume, without loss of generality, that Λ is a complete
local ring. Since our rings do not have to be algebras over fields and do
not have to be local rings, our results on finitely generated modules apply
to rings of algebraic integers, the rings that originally interested Steinitz.
Our results also appear to be new in the situation that Λ is an artinian ring
that is not an algebra over a field, and in the case of algebras over non-
algebraically-closed fields. (On the other hand, Ringel’s paper does contain
noncommutative results which we do not handle.)

As mentioned above, the original Nazarova-Roiter results in [NR] deal
with finitely generated modules over the local rings that they investigated, a
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special case of our Dedekind-like rings. But since Drozd’s paper, the “finite-
length wild versus finitely-generated tame” aspect of the problem seems to
have been mostly neglected.

In a later paper [D2], Drozd states a tame-wild dichotomy over a class
of rings that can be noncommutative and need not be algebras over a field.
However, most of the statements and all of the proofs of theorems in that
paper assume that the ring is an algebra over an algebraically closed field.
Thus, in the commutative case, the results proved in that paper do not
go beyond those in his earlier paper. Moreover, in the commutative case,
his unproved statement of which rings are tame does not take the simple,
explicit form that is given by our definition of split and unsplit Dedekind-like
rings and Klein rings. (See our §2.)

Paper II: Tameness, complete local case [KL2]. This long paper gives a de-
tailed description of all finitely generated modules over Klein rings and over
complete local Dedekind-like rings, with the possible exception described
in (1.0.1). Except for this possible exception, this completes our finitely-
generated tame versus finite-length wild dichotomy for complete local rings
Λ.
(1.0.1) The possible exception. There are three types of Dedekind-like rings:

split, unsplit, and DVRs (see Definition 2.5 below). Let Λ be a complete,
unsplit Dedekind-like ring, with maximal ideal m and residue field k,
and let Γ be the normalization of Λ. By definition of “unsplit Dedekind-
like,” m is also the unique maximal ideal of Γ, and Γ/m is a quadratic
field extension of k = Λ/m. When the quadratic field extension Γ/m of
k is inseparable, our theory breaks down, and we do not know whether
Λ is tame or wild or neither.

Note, however, that this exception cannot occur for rings of algebraic integers
(whose residue fields are finite) nor for rings of geometric origin (whose
residue fields are algebraically closed).

Paper III: Global Wildness [KL3]. In this short paper we remove the
“complete local” hypothesis from the main wildness theorem of Paper I.
We may assume, without loss of generality, that we are given a commuta-
tive, noetherian, indecomposable ring Ω. Our main result is that, if Ω is
not finite-length wild, then Ω is either a homomorphic image of a “global
Dedekind-like ring” Λ (that is, a reduced ring of Krull dimension 1, all of
whose completions Λ̂m at maximal ideals are the local Dedekind-like rings,
as previously defined), or Ω is a Klein ring.

As in paper I, we postpone the statements and proofs of the corresponding
tameness results to the next paper in the series.

Paper IV: Global Tameness [KL4]. Let Λ be a global Dedekind-like ring,
as defined in the discussion of paper III above. We describe the structure of
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all finitely-generated Λ-modules, provided that no completion Λ̂m is one of
the possible exceptions involving characteristic 2, described in (1.0.1).

Here it is not sufficient to describe the indecomposable Λ-modules. Since
mod-Λ, the category of all finitely generated Λ-modules, is not a Krull-
Schmidt category, we also need to describe the direct-sum relations of finitely
generated Λ-modules. Indeed, this and the local-global relations in mod-Λ
occupy most of this rather long paper.

One additional and possibly surprising complication is that — unlike rings
of number-theoretic or geometric origin — it is not necessarily true that all
but finitely many completions Λ̂m of our non-local Dedekind-like ring Λ be
DVRs. In fact, it is possible for Λ to have infinitely many maximal ideals
and none of its completions be DVRs.

An interesting application of our structure theory is that every ring of the
form Z[

√
n ], with n a square-free integer, is among the tame rings whose

finitely generated modules we describe. (Note that Z[
√

n] is not always the
full ring of algebraic integers in Q[

√
n].)

2. Definitions, main theorem.

In this section we define finite-length wildness and the types of rings that
appear in the statement of our Main Wildness Theorem [2.10], and give
some examples. Then we state the theorem itself and give some additional
examples.

Notation 2.1. Throughout this paper, Λ denotes a commutative noether-
ian ring. We say that (Λ,m, k) is a local ring if Λ is a noetherian ring with
unique maximal ideal m and residue field k. We say that (Λ,m, k) is complete
if it is m-adically complete.

We consistently write functions on the left except when they represent
matrix multiplication. It is typographically simpler to display a row of a
matrix than a column. Therefore our matrices normally act via right multi-
plication, and we write the corresponding functions as right operators. This
occurs throughout this series of papers, and we include a reminder when it
happens.

We let µΛ(M) denote the minimal number of generators required by a
Λ-module M .

Definition 2.2 (Finite-length wildness). Let fdmod-k〈X, Y 〉 denote the
category of finite dimensional right modules over the free noncommutative
k-algebra in two indeterminates X and Y .

We say that Λ is finite-length wild (with respect to k) if k is a residue
field of Λ, and there is a full subcategory W of the category of Λ-modules
of finite length and an additive functor Φ : W → fdmod-k〈X, Y 〉 such that
Φ is a representation equivalence; that is, Φ is: dense (onto all isomorphism
classes), faithful (Φ(M) ∼= Φ(N) ⇐⇒ M ∼= N), and full (a surjection
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on homomorphism groups). Thus, encoded in W we find not only all of
the isomorphism classes in fdmod-k〈X, Y 〉, but (after reducing the homo-
morphism groups in W modulo suitable kernels) all of the hom-structure of
fdmod-k〈X, Y 〉 as well.

Remarks 2.3 (Introduction to wildness).
(i) (Meaning of wildness) Every module over any 2-generator k-algebra A

is also a k〈X, Y 〉-module. Therefore fdmod-k〈X, Y 〉 contains fdmod-A as a
subcategory. Moreover, a well-known simple but clever trick of Brenner [B,
Theorem 3] shows that fdmod-k〈X, Y 〉 contains a copy of fdmod-A, for every
finitely generated k-algebra A. Thus, any classification of all isomorphism
classes in fdmod-k〈X, Y 〉 would contain a classification of all isomorphism
classes of finite dimensional A-modules for every finitely generated k-algebra
A.

Suppose, now, that our commutative ring Λ is finite-length wild, and let
M and N be finite-dimensional modules over some 2-generator algebra A.
We wish to know whether M ∼= N . By density of the functor Φ in our
definition of finite-length wild, we have M ∼= Φ(M ′) and N ∼= Φ(N ′) for Λ-
modules M ′, N ′ ∈ W. Moreover, by faithfulness of Φ we have that M ′ ∼= N ′

as Λ-modules if and only if M ∼= N as k〈X, Y 〉-modules; or equivalently,
as A-modules. Moreover, in this illustration of the meaning of wildness, we
can drop the requirement that A be 2-generated, by using Brenner’s trick.

Thus we see that, if Λ is finite length wild, then any explicit description of
all isomorphism classes of Λ-modules of finite length would have to contain a
description of all isomorphism classes of finite-dimensional A-modules, for
every finite dimensional k-algebra A, as mentioned in the informal definition
of wildness given in the introduction to this paper.

(ii) (Wildness of Λ versus its localizations and completions) Let m be
a maximal ideal of Λ, and suppose that the m-localization Λm or m-adic
completion Λ̂m is finite-length wild. Then Λ is also finite-length wild. The
reason for this is that every Λ̂m-module of finite length and every Λm-module
of finite length is also a Λ-module of finite length.

Therefore, in order to prove that Λ is finite-length wild, we can assume
that (Λ,m, k) is a complete local ring, the situation considered in this paper.

(iii) (Strict wildness) A k-algebra A is sometimes called strictly wild
if there is a full exact imbedding Ψ: fdmod-k〈X, Y 〉 → fdmod-A. This
means that Ψ is an isomorphism on hom groups, takes exact sequences
in fdmod-k〈X, Y 〉 to exact sequences in fdmod-A, and is an imbedding of
categories.

Definition 2.4 (Artinian triad, Drozd ring). We call the local ring (Λ,m,
k) an artinian triad if µΛ(m) = 3 and m2 = 0. (Since m2 = 0, every artinian
triad is indeed an artinian ring.) In the case of finite dimensional algebras
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over the field k = Λ/m, this ring is Λ = k[X, Y, Z]/(X, Y, Z)2, where X, Y ,
and Z are indeterminates.

We call the local ring (Λ,m, k) a Drozd ring if µΛ(m) = µΛ(m2) = 2,
m3 = 0, and there is an element x ∈ m − m2 such that x2 = 0. (Since
m3 = 0, Drozd rings are artinian.) In the case of finite dimensional algebras
over the field k = Λ/m, this ring is the 5-dimensional k-algebra with k-basis
1, x, y, xy, y2 and all other monomials equal to zero. An example of a Drozd
ring that is not a algebra over a field is the ring Ap in Example 6.1.

We note:
(2.4.1) The composition length of every Drozd ring is 5.
To see this note that the dimensions of Λ/m, m/m2, and m2 as k-vector
spaces are 1, 2, 2 respectively.

The above, abstract definition of Drozd rings is tailored to the needs of
our dichotomy results, but leaves one wondering what these rings really look
like. It turns out that every Drozd ring is a subring of an artinian principal
ideal ring, and we use this fact to give a general, explicit construction of
Drozd rings in Theorem 6.5.

Definition 2.5 (Dedekind-like ring). Let (Λ,m, k) be a local ring. We call
Λ a Dedekind-like ring if Λ is reduced (no nonzero nilpotent elements) and its
normalization Γ (in the total quotient ring of Λ) has the following properties:
Γ is a direct sum of principal ideal domains (necessarily semi-local), m =
rad(Γ) (the Jacobson radical of Γ), and µΛ(Γ) ≤ 2.

We do not consider fields to be principal ideal domains. Therefore: Γ and
Λ have Krull dimension 1.

This abstract definition is tailored to the needs of the proof of our di-
chotomy theorem. For a more constructive definition and examples, see
Notation 2.13 and the lemmas and examples that follow it.

Note that the reduced ring Γ/m is a vector space over k = Λ/m of di-
mension at most 2. Therefore exactly one of the following three possibilities
holds, and we attach the indicated name to Λ.
(2.5.1) We call the Dedekind-like ring Λ:

(i) Split if Γ/m ∼= k × k as rings.
(ii) Unsplit if Γ/m is a 2-dimensional field extension of k. (We usually call

this field F .)
(iii) A DVR (discrete valuation ring) if Γ/m = k; that is, Λ = Γ.

Since Γ/m has k-dimension at most 2 and m = rad(Γ), Γ must be either
an integral domain or the direct sum of two integral domains. We attach
names to the corresponding possibilities as follows.
(2.5.2) We call the split Dedekind-like ring Λ:

(i) Strictly split if Γ is the direct sum of two integral domains (necessarily
DVRs).
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(ii) Nonstrictly split if Γ is an integral domain (necessarily a PID with
exactly two maximal ideals).

We note: If the split Dedekind-like ring Λ is complete, then Λ is strictly
split. To see this, note first that ΛΓ is m-adically complete, since ΛΓ is
finitely generated ([N, Theorem 17.8]). Since the ideal m of Λ also equals
rad(Γ), we see that the semilocal ring Γ is also m-adically complete, and
therefore a direct sum of local rings. The fact that Λ is strictly split now
follows from (2.5.2).

If Λ is unsplit then Γ is a DVR, because Γ/m = Γ/ rad(Γ) is a field.

Remark 2.6 (Consistency with terminology of [L2]). All localizations and
completions at maximal ideals of the rings called “Dedekind-like” in [L2] are
split Dedekind-like, in our present terminology [by Lemma 2.14 below], or
DVRs. Thus, for local rings, our present terminology generalizes that of
[L2]. When we consider the non-local situation in [KL3] and [KL4], our
terminology will again generalize that in [L2].

In order to prove that Dedekind-like rings that are not DVRs lie on the
tame-wild dividing line mentioned in the introduction, we show:

Lemma 2.7. If (Λ,m, k) is Dedekind-like but not a DVR, then µΛ(m) = 2.

Proof. By Nakayama’s Lemma it suffices to show that the k-vector space
m/m2 has dimension 2. Since m is also an ideal of the principal ideal ring Γ,
we have m/m2 ∼= Γ/m as Γ-modules, and hence as Λ-modules, and therefore
as k-vector spaces. This last dimension equals 2 except if Λ is a DVR, by
(2.5.1). �

Definition 2.8 (Klein ring). We call a local ring (Λ,m, k) a Klein ring if
µΛ(m) = 2, µΛ(m2) = 1, m3 = 0, and x2 = 0 (∀x ∈ m). (Since m3 = 0, Klein
rings are artinian and hence definitely not reduced.)

The group algebra of the Klein 4-group over a field of characteristic 2 is
an example of a Klein ring. We also note:

Lemma 2.9. If Λ is a Klein ring with residue field k, then k has charac-
teristic 2, and Λ has characteristic 2 or 4.

Proof. Let m = (x, y). Then 0 = (x + y)2 = x2 + 2xy + y2 = 2xy. Since
µΛ(m2) = 1 and x2 = y2 = 0, we cannot have xy = 0. Therefore 2xy = 0
implies that 2 ∈ m. Since Λ is a Klein ring, this implies that 4 = 22 = 0 in
Λ, completing the proof. �

For an example in which characteristic 4 actually occurs, see Example 5.4.
Having now defined all of the ingredients needed to state our main theo-

rem, we now state the theorem itself.
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Theorem 2.10 (Main Wildness Theorem). Let (Λ,m, k) be a complete lo-
cal ring. Then exactly one of the following holds.

(i) Λ maps onto an artinian triad or a Drozd ring, in which case Λ is
finite-length wild.

(ii) Λ is either a Klein ring or a homomorphic image of a strictly split or
unsplit Dedekind-like ring.

Proof. Our Ring-theoretic Dichotomy Theorem 3.1 states that either (ii)
holds, or else Λ maps onto an artinian triad or onto a Drozd ring. Since finite-
length wildness clearly carries up from homomorphic images, it therefore
suffices to prove that artinian triads and Drozd rings are finite-length wild.

Artinian triads are wild by a theorem of Warfield [GLW, Lemma 3]; and
Drozd rings are wild by Theorem 4.9. �

Remarks 2.11. (i) As previously mentioned, we finish the complete lo-
cal case of our tame-wild project in the second paper of this series [KL2]
by describing the structure of all finitely generated Λ-modules when Λ is
Dedekind-like or a Klein ring and the possible exception (1.0.1) does not
occur.

(ii) There exist Klein rings that are not homomorphic images of Dedekind-
like rings (Theorem 5.2). Therefore, we cannot simplify Theorem 2.10 by
deleting the phrase “Klein ring” from statement (ii). On the other hand,
some Klein rings are homomorphic images of Dedekind-like rings (again,
Theorem 5.2).

(iii) The reason that DVRs can be omitted from the statement of Theo-
rem 2.10(ii) is that every DVR is a homomorphic image of a strictly split
Dedekind-like ring [Lemma 2.19].

(iv) Note that Theorem 2.10 does not state that Λ cannot be both tame
and wild. For finite-dimensional algebras over an algebraically closed field,
the terms “tame” and “wild” are known to be mutually exclusive [CB,
Theorem B]. In the context of commutative noetherian rings, the question
remains open.

Corollary 2.12. Every noetherian ring Λ (not necessarily local ) of Krull
dimension greater than one is finite-length wild.

Proof. Since Λ has dimension greater than 1, Λ has a maximal ideal m such
that the m-localization Λm has dimension greater than 1, and hence [N,
17.12] the m-adic completion Λ̂m has dimension greater than 1. Therefore
we may assume that Λ itself is a complete local ring of dimension greater
than 1 [Remarks 2.3(ii)].

Dedekind-like rings have Krull dimension 1, and Klein rings are artinian,
hence have Krull dimension 0. Therefore, by Theorem 2.10, Λ is finite-length
wild. �
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It is often more informative to view Dedekind-like rings in terms of their
conductor square. The last few results in this section deal with this point
of view.

Notation 2.13 (Conductor Square). Consider the folllowing commutative
diagram of ring homomorphisms, where m is an ideal of both rings Λ and Γ
(a “conductor” ideal).

Λ ⊆ Γyyρ
yyρ (ker ρ = m).

k ⊆ Γ = Γ/m

(2.13.1)

We say that Λ is the pullback of this conductor square if Λ = {x ∈ Γ | ρ(x) ∈
k}.

The next three simple lemmas make clear exactly what ingredients are
needed to construct arbitrary Dedekind-like rings.

Lemma 2.14 (Split Dedekind-like). Let Γ be a principal ideal ring with
exactly two maximal ideals and no artinian ring direct summands. Let
m = rad(Γ) (the Jacobson radical of Γ), and suppose that Γ/m ∼= k × k,
the direct product of two copies of some field k. View k as a subfield of k×k
via the diagonal map x → (x, x), and let Λ be the pullback of square (2.13.1).
Then (Λ,m, k) is a split Dedekind-like ring with normalization Γ, and every
split Dedekind-like ring is isomorphic to such a Λ.

Proof. The only part of this proof that requires explicit mention is perhaps
to note that we have µΛ(Γ) ≤ 2 because the k-dimension of Γ is 2; and
therefore the integrally closed reduced ring Γ is the normalization of Λ. �

The next lemma is particularly useful in when the local ring Λ is complete,
since in that situation all split Dedekind-like rings are strictly split.

Lemma 2.15 (Strictly Split Dedekind-like). Let (V1,m1, k) and (V2,m2, k)
be DVRs with a common residue field k. For each i let fi: Vi→→ k be a
surjective ring homomorphism, and let

Λ = {[v1, v2] ∈ V1 × V2 | f1(v1) = f2(v2)}.(2.15.1)

Then
(
Λ, (m1 × m2), k

)
is a strictly split Dedekind-like ring with normal-

ization Γ = V1 × V2. Moreover, every strictly split Dedekind-like ring is
isomorphic to such a ring Λ.

Proof. To verify the first assertion, build conductor square (2.13.1) as fol-
lows. Let Γ = k × k and view k as a subring of Γ via the diagonal map
x → (x, x). Let m = m1 × m2 and ρ = f1 × f2. Then we can identify ρ(Γ)
with Γ/m. Now use Lemma 2.14 �

The proof of the next lemma is essentially the same as that of Lemma 2.14.
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Lemma 2.16 (Unsplit Dedekind-like). Let Γ be a DVR. Let m = rad(Γ),
suppose that Γ/m is a 2-dimensional field extension of some subfield k,
and let Λ be the pullback of square (2.13.1). Then (Λ,m, k) is an unsplit
Dedekind-like ring with normalization Γ, and every unsplit Dedekind-like
ring is isomorphic to such a Λ.

Although the class of Dedekind-like rings is very small, it contains many
interesting examples; we give a few below. For more examples, and tameness
properties of Dedekind-like rings, see [KL2].

Examples 2.17 (Split).
(i) The simplest example of a strictly split Dedekind-like ring is formed

by taking V1 and V2 to be the p-localization or p-adic completion of the
integers, for some prime number p, in Lemma 2.15. Note that this is not an
algebra over a field.

For the minor modification that is an algebra over any field k, use Lemma
2.15 and take V1 and V2 to be k[[X]] (formal power series).

(ii) The ring k[[X, Y ]]/(X·Y ) is strictly split Dedekind-like. To see this,
note that every element can be represented by an ordered pair of power
series in one variable, where both power series have the same constant term.
Thus this is isomorphic to the example constructed in the second paragraph
of item (i) above.

(iii) Let Λ = Ẑp[[X]]/(pX) where p is any prime number and Ẑp denotes
the p-adic integers. Then Λ is a strictly split Dedekind-like ring. One can
view this as the number-theoretic analog of the ring k[[X, Y ]]/(XY ) in item
(ii).

To prove this, let V1 = Ẑp[[X]]/(X) ∼= Ẑp and V2 = Ẑp[[X]]/(p) ∼= Zp[[X]],
both of which are complete DVRs. The natural map ν: Λ → V1 ⊕ V2 is
clearly one-to-one, and it is not difficult to verify that ν maps Λ onto the
split Dedekind-like ring described in (2.15.1) and Lemma 2.15, with k =
Zp = Z/(p) and f1 and f2 the natural homomorphisms.

(iv) (Nonstrictly split). Let Γ be any principal ideal domain that has
exactly two maximal ideals m1 and m2 with isomorphic residue fields k. (For
example start with the ring of algebraic integers in any quadratic extension
of the rationals, and localize away all but two maximal ideals that lie over
some common rational prime.) Then let Λ be the pullback of diagram
(2.13.1) in which ρ is a surjective ring homomorphism Γ→→ k×k with kernel
m = m1 ∩ m2. Λ is split Dedekind-like by Lemma 2.14, and is not strictly
split since it is an integral domain.

We remind the reader that nonstrictly split Dedekind-like rings can never
be complete local rings.

Examples 2.18. The easiest example of an unsplit Dedekind-like ring is
the ring Λ = R + XC[[X]] of power series whose constant terms are real
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numbers and whose other coefficients are complex numbers. To see this, use
Lemma 2.16 with Γ = C[[X]], Γ = C, and k = R.

For an example that is not an algebra over a field, let Γ′ be the ring of
all integers in any number field such that some residue field F of Γ′ is a 2-
dimensional extension of some subfield k. Then let Γ be the localization or
completion of Γ′ with respect to the kernel of Γ′ → F . Finish the definition
by letting Λ be the pullback of diagram (2.13.1) and using Lemma 2.16.

Finally, for future reference, we record three useful lemmas.

Lemma 2.19. Let Ω be either a DVR or an artinian local principal ideal
ring. Then Ω is a homomorphic image of a strictly split Dedekind-like ring
Λ. Moreover, if Ω is a complete DVR or is artinian, then Λ can be chosen
to be complete.

Proof. Let (V, n, k) be a DVR, and f : V → k the natural homomorphism.
Then let

Λ = {[x, y] ∈ V × V | f(x) = f(y)}.

The ring Λ is strictly split Dedekind-like, by Lemma 2.15, and maps onto
V . Moreover, if V is complete, then Λ is also complete.

Let A be an artinian local principal ideal ring. A theorem of Hungerford
[Hu] states that some complete DVR V maps onto A. Since Λ maps onto
V , the proof is complete. �

Lemma 2.20. Let (Λ,m, k) be a strictly split Dedekind-like ring. Then m
is generated by two elements x, y such that xy = 0.

Proof. View Λ in the notation of Lemma 2.15. Then take generators p1 and
p2 of the maximal ideals of V1 and V2 respectively. Finally, note that the
elements x = [p1, 0] and x = [0, p2] of V1×V2 are elements of Λ and, in fact,
generate m. �

Lemma 2.21. Let (Λ,m, k) be an unsplit or split Dedekind-like ring with
normalization Γ. Then the m-adic completion (Λ̂, m̂, k) is, respectively, an
unsplit or (necessarily strictly) split Dedekind-like ring with normalization
Γ̂, and rad Γ̂ = m̂.

Proof. Since m is an ideal of both rings Λ and Γ, the m-adic completion of
Γ as a Λ-module coincides with the m-adic completion of Γ as a Γ-module.
Therefore we can denote either by Γ̂. Moreover, since Γ is a finitely generated
Λ-module, its m-adic completion as a Λ-module can be identified with Λ̂⊗ΛΓ;
that is, Γ̂ = Λ̂⊗Λ Γ.

Viewing Γ̂ as the m-adic completion as a Γ-module, we see that Γ̂ is a
DVR or the direct sum of two DVRs according as Λ is, respectively, unsplit
or split.
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Now tensor pullback diagram (2.13.1) for Λ by Λ̂ over Λ, remembering
that tensoring a pullback diagram by a flat module yields a pullback diagram
(use the idea in e.g., [K, Proposition 2.10] or [L2, Lemma 6.1]). We claim
that the resulting pullback diagram shows that Λ is the appropriate kind
of Dedekind-like ring. In view of what has already been proved, we only
need to note two more facts: (i) The finite-length modules in the bottom
row of the original pullback diagram are unchanged by completion; and (ii)
ker(ρ̂) = rad(Γ̂). To prove this last fact, call the kernel K. For every x ∈ K,
the element 1− x is invertible since m̂ is the radical of the local ring rad Λ̂,
and therefore K ⊆ rad(Γ̂). The opposite inclusion holds since ρ̂(Γ̂) has
radical zero. �

3. Dichotomy theorem.

The purpose of this section is to prove the following result.

Theorem 3.1 (Ring-theoretic Dichotomy). Let (Λ,m, k) be a complete, lo-
cal ring. Then exactly one of the following two possibilities holds.

(i) Λ has an artinian triad or a Drozd ring as homomorphic image.
(ii) Λ is a Klein ring or a homomorphic image of a complete, strictly split

or unsplit Dedekind-like ring.

The remainder of this section is devoted to the proof of this theorem,
which we accomplish by means of a series of propositions.

Remark 3.2. We begin by noting that, if µΛ(m) ≥ 3, then clearly Λ maps
onto an artinian triad. On the other hand, if µΛ(m) ≤ 1, then by a theorem
of Hungerford [Hu], Λ is a homomorphic image of a complete DVR (Γ,m, k),
and hence a homomorphic image of a complete, strictly split Dedekind-like
ring (Lemma 2.19). Therefore, for the remainder of this section we can
assume that µΛ(m) = 2.

Thus, we can write m = (x, y), so that m2 = (x2, xy, y2), and hence
µΛ(m2) ≤ 3. If in fact µΛ(m2) = 3, then Λ/((x2) + m3) is a Drozd ring.
Therefore, for the remainder of this section, we can also assume that µΛ(m2)
≤ 2.

The argument continues as we attempt to use generators x and y of m
and the relations satisfied by x2, xy, and y2 to construct a strictly split or
unsplit Dedekind-like ring that maps onto Λ.

Lemma 3.3. Let (Λ,m, k) be a complete, local ring, and suppose that µΛ(m)
= 2 and µΛ(m2) ≤ 2. If x and y are generators of the maximal ideal m, and
if xy ∈ m3, then we can find generators u and v of m such that uv = 0.

Proof. Note that for each integer n ≥ 2 we have mn = (xn, xn−1y, . . . , xyn−1,
yn). But xy ∈ m3, so it follows that xn−1y, . . . , xyn−1 ∈ mn+1, and hence
by Nakayama’s Lemma we have mn = (xn, yn).



358 L. KLINGLER AND L.S. LEVY

The strategy is to construct sequences u1, u2, u3, ... and v1, v2, v3, ... of
elements of Λ, such that

m = (un, vn), unvn ∈ mn+2, and un − un+1, vn − vn+1 ∈ mn+1

(3.3.1)

for each index n. It then follows immediately that the sequences are Cauchy
sequences and, if we let u = limn→∞(un) and v = limn→∞(vn), that m =
(u, v) and uv = 0.

The construction of the sequences is by induction on n. For n = 1, set
u1 = x and v1 = y. Now suppose, inductively, that we have selected elements
u1, . . . , un and v1, . . . , vn of Λ satisfying (3.3.1).

As noted above, we have mn+2 = (un+2
n , vn+2

n ). Thus we can write

unvn = aun+2
n + bvn+2

n(3.3.2)

for some a, b ∈ Λ. Rearranging (3.3.2) yields

un(vn − aun+1
n ) = bvn+2

n .(3.3.3)

Therefore setting vn+1 = vn − aun+1
n gives a new pair of generators m =

(un, vn+1) such that vn − vn+1 ∈ mn+1. Now (3.3.3) can be rewritten as

unvn+1 = b(vn+1 + aun+1
n )n+2.

Expanding the right-hand side and rearranging yields

(un − bvn+1
n+1)vn+1 ∈ mn+3.

Therefore setting un+1 = un−bvn+1
n+1 completes the induction, and hence the

proof of the lemma. �

Under the conditions of this technical lemma, we are ready to construct
a complete, strictly split Dedekind-like ring that maps onto Λ.

Proposition 3.4. Let (Λ,m, k) be a complete local ring, such that µΛ(m) =
2, and suppose that x and y are a pair of generators of m such that xy ∈ m3.
Then Λ is a homomorphic image of a complete, strictly split Dedekind-like
ring.

Proof. By Lemma 3.3, we can assume that xy = 0.
By the Structure Theorem of Complete Local Rings [N, Theorem 31.1 and

preceding paragraph], there is a surjective homomorphism φ : V [[X, Y ]] → Λ
such that φ(X) = x and φ(Y ) = y, where V [[X, Y ]] is a formal power series
ring, and either V = k or V is a complete DVR of characteristic 0 with
residue field k. Moreover, in this latter case, k has characteristic p 6= 0, and
the maximal ideal of V is generated by p.

If V is a field, let us set R = V [[X, Y ]], a complete, two-dimensional,
regular local ring.

If V is not a field, we note that V [[X, Y ]] is a complete, local, three-
dimensional domain with maximal ideal (p, X, Y ), so that V [[X, Y ]] is a
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regular local ring (by [AM, Theorem 11.22]) and therefore a unique factor-
ization domain. Now φ(p) ∈ m since k has characteristic p, and hence there
are elements A,B ∈ V [[X, Y ]] such that φ(p− (AX + BY )) = 0. Since p is
irreducible in V , clearly p−(AX+BY ) is irreducible in V [[X, Y ]], and hence
(p−(AX +BY )) is a prime ideal. We set R = V [[X, Y ]]/(p−(AX +BY )), a
complete, local, two-dimensional domain by [AM, Corollary 11.18]. More-
over, the maximal ideal of R is now generated by two elements (the images
of X and Y ), so that R is in fact a regular local ring in this case also (again
by [AM, Theorem 11.22]). Changing notation, we let φ denote the induced
map from R onto Λ, and we denote by X, Y the cosets of the original ele-
ments X, Y , respectively, in R.

Thus, in either case, we have a surjective homomorphism φ : R → Λ such
that φ(X) = x and φ(Y ) = y, where R is a complete, two-dimensional,
regular local ring, (X, Y ) is the maximal ideal of R, and R/(X, Y ) ∼= k.

Now φ(XY ) = xy = 0, so that φ induces a surjective homomorphism
from R/(XY ) onto Λ. But the regular local ring R is a unique factorization
domain, and X and Y are non-associate primes (being generators of the two-
generated maximal ideal of R). Therefore, (XY ) = (X)∩(Y ) as ideals of R.
We set V1 = R/(X) and V2 = R/(Y ). Each of V1 and V2 is a complete, local
domain of Krull dimension one (since X and Y are irreducible), and each
has a principal maximal ideal (since we mod out by the other generator), so
that both V1 and V2 are complete DVRs.

Finally, by [CR1, 2.12], there is a pullback diagram with surjective maps:

R/(XY ) = R/
(
(X) ∩ (Y )

)
−−−→ V2 = R/(Y )y f2

y
V1 = R/(X)

f1−−−→ k = R/
(
(X) + (Y )

)
.

(3.4.1)

That is, R/(XY ) is isomorphic to the pullback

Ω = {[s, t] ∈ V1 × V2 | f1(s) = f2(t)}
of the pair of (natural) maps f1 and f2. Since V1 and V2 are DVRs and k is
a field, the ring R/(XY ) ∼= Ω is strictly split Dedekind-like by Lemma 2.15.
Since φ : R → Λ is a surjective ring homomorphism whose kernel contains
(XY ), our proof is complete. �

Given the result of Proposition 3.4, we can assume that, for every pair of
generators x and y of the maximal ideal m of Λ, xy 6∈ m3. We also recall
that we assume that µΛ(m2) ≤ 2. The next step is to reduce to the case
where µΛ(m2) = 2.

Proposition 3.5. Let (Λ,m, k) be a complete, local ring, such that µΛ(m) =
2, and suppose that xy 6∈ m3 for every pair of generators x and y of m. Then
either µΛ(m2) ≥ 2, or Λ is a Klein ring.
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Proof. Since we assume that xy 6∈ m3 for every pair of generators x and y
of m, clearly µΛ(m2) ≥ 1. Thus, we can assume that µΛ(m2) = 1, and it
suffices to show that Λ is a Klein ring.

Fix a pair of generators x and y of m. By assumption, µΛ(m2) = 1 and
xy 6∈ m3, so that in fact m2 = (xy). Thus, x2 ∈ (xy), say x2 = axy for some
element a ∈ Λ. But then x(x− ay) = 0, and if a were a unit in Λ, then we
could replace y by x− ay to get a pair of generators of m whose product is
0, contrary to assumption. Therefore, a ∈ m, and hence x2 ∈ m3. Similarly,
y2 ∈ m3. But now m3 = (x3, x2y, xy2, y3) ⊆ m4 implies, by Nakayama’s
Lemma, that m3 = 0. In particular, x2 = y2 = 0.

To complete the proof that Λ is a Klein ring, we must show that z2 = 0 for
every element z ∈ m. If we write z = ax+by for some elements a, b ∈ Λ, with
x and y the fixed generators of m from above, then z2 = a2x2+2abxy+b2y2 =
2abxy, so that it suffices to show that the residue field of Λ has characteristic
2. But if the residue field of Λ were not of characteristic 2, then x + y and
x−y would be generators of m, where (x+y)(x−y) = x2−y2 = 0, contrary
to assumption. �

Given the result of Proposition 3.5, we can assume that µΛ(m) = µΛ(m2)
= 2 and that xy 6∈ m3, for every pair of generators x and y of m. If, for some
element x ∈ m − m2, we had x2 ∈ m3, then by definition Λ/m3 would be a
Drozd ring. Therefore, we can also assume that x2 6∈ m3 for every element
x ∈ m − m2. We are now ready to map an unsplit Dedekind-like ring onto
Λ.

Proposition 3.6. Let (Λ,m, k) be a complete local ring such that µΛ(m) =
µΛ(m2) = 2. Suppose that xy 6∈ m3 for every pair of generators x and y of
m, and x2 6∈ m3 for every element x ∈ m − m2. Then Λ is a homomorphic
image of a complete unsplit Dedekind-like ring.

Proof. Fix generators x and y of m. By assumption, µΛ(m2) = 2, and
xy 6∈ m3. Thus, we can choose xy as one of the two generators of m2.
Without loss of generality we can assume that m2 = (x2, xy). Hence we can
write

y2 + sxy + tx2 = 0(3.6.1)

for some elements s, t ∈ Λ. Let s and t denote the images of s and t,
respectively, in k = Λ/m.

We claim that the polynomial Z2 +sZ + t is irreducible in the polynomial
ring k[Z]. Suppose it were reducible, say Z2 + sZ + t = (Z + u)(Z + v),
where u and v are the images in k of the elements u, v ∈ Λ, respectively. This
would imply that y2 +sxy+ tx2− (y+ux)(y+vx) ∈ m3. Then by (3.6.1) we
would have (y + ux)(y + vx) ∈ m3. On the one hand, if u− v ∈ Λ−m, then
y + ux and y + vx would be generators of m (because their difference would
be a unit times x), but their product is in m3, contrary to the hypotheses
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of the proposition. On the other hand, if u − v ∈ m, then it would follow
that (y+ux)2 ∈ m3. But x and y are linearly independent modulo m2, since
they generate m and µΛ(m) = 2. Therefore y + ux ∈ m−m2, and this again
contradicts the hypotheses of the proposition. Therefore the claim holds.

We continue as in the proof of Proposition 3.4. Using the Structure
Theorem of Complete Local Rings [N, Theorem 31.1], there is a surjective
homomorphism φ : V [[X, Y ]] → Λ such that φ(X) = x and φ(Y ) = y, where
V [[X, Y ]] is a formal power series ring, and either V = k or V is a complete
DVR of characteristic 0 with residue field k, and where, in this latter case,
k has characteristic p 6= 0 and the maximal ideal of V is generated by p.

If V is a field, we set R = V [[X, Y ]]. If V is not a field, we set R =
V [[X, Y ]]/(p− (AX + BY )), where A,B ∈ V [[X, Y ]] are elements such that
φ(p− (AX +BY )) = 0. In the latter case we change notation: Denote again
by φ the induced map from R onto Λ, and by X and Y the cosets in R of
X and Y , respectively. Then, exactly as in the proof of Proposition 3.4,
φ : R → Λ is a surjective homomorphism such that φ(X) = x and φ(Y ) = y,
where R is a complete two-dimensional regular local ring and mR = (X, Y )
is the maximal ideal of R, and of course φ induces an isomorphism between
the residue fields of R and Λ. Note that (3.6.1) still holds since Λ has not
changed.

Now select elements S, T ∈ R such that φ(S) = s and φ(T ) = t. We claim
that Y 2 + SXY + TX2 is an irreducible element in the unique factorization
domain R. Suppose, by way of contradiction, that Y 2 +SXY +TX2 = CD
in R, where neither C nor D is a unit. We know that µR(m2

R) = 3 (by [AM,
Theorem 11.22]), and m2

R = (X2, XY, Y 2), so that CD = Y 2+SXY +TX2 ∈
m2

R−m3
R. Note that φ(C)φ(D) = φ(Y 2 + SXY + TX2) = 0 by (3.6.1). But

φ(mR) = m, and both maximal ideals require two generators, from which we
get a contradiction as follows. If C and D are linearly independent modulo
m2

R, then they generate mR, so that φ(C) and φ(D) are generators of m
such that φ(C)φ(D) = 0, contrary to the hypotheses of the proposition. If
C and D are linearly dependent modulo m2

R, then they are associates, from
which it follows that φ(C)2 = 0, again contrary to the hypotheses of the
proposition. Therefore the claim holds.

We set Ω = R/(Y 2 + SXY + TX2). Since φ(Y 2 + SXY + TX2) = 0, the
map φ factors through Ω to yield a surjective homomorphism from Ω onto Λ;
moreover, this homomorphism induces an isomorphism of the residue fields
of Ω and Λ. To complete the proof of the proposition, we need only show
that Ω is an unsplit Dedekind-like ring.

First we recall that R is a unique factorization domain, and Y 2 +SXY +
TX2 is irreducible, so that (Y 2 + SXY + TX2) is prime, and therefore Ω is
a (complete local noetherian one-dimensional) domain. Since we need only
concern ourselves with the ring Ω for the remainder of this proposition, let
us denote by x, y, s, and t the images in Ω of the elements X, Y , S, and
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T , respectively, of R. Let us also denote by m the maximal ideal of Ω, and
note that m = (x, y). By the definition of Ω, we have y2 + sxy + tx2 = 0;
that is, (3.6.1) still holds. Therefore (y/x)2 + s(y/x) + t = 0 in the quotient
field of Ω, and hence y/x is integral over Ω in its quotient field. Let us set
Γ = Ω[y/x] = Ω + Ω · y/x (using the fact that (y/x)2 = −s(y/x)− t).

Now Γ is a finite, integral extension of Ω in its quotient field, so that Γ is
a semilocal integral domain. We claim that m is an ideal of Γ. It suffices to
prove that m is closed under multiplication by y/x. We have (y/x)x = y ∈ m
and, by (3.6.1), (y/x)y = −(sxy + tx2)/x = −sy − tx ∈ m, and thus the
claim is proved.

Let F = Γ/m. We claim that F is a 2-dimensional field extension of k.
Since m is an ideal of Γ, F = Γ/m is a ring containing k = Λ/m. Now, F
is generated as a k-algebra by the image α of y/x in F . As proved below
(3.6.1), the polynomial Z2 + sZ + t is irreducible over k. Since the α is a
zero of this polynomial, by (3.6.1), we see that F is a 2-dimensional field
extension of k, as claimed.

Next we claim that m = rad(Γ). For the inclusion (⊆) it suffices to prove
that, for every element m of the ideal m of Γ, 1−m is invertible in Γ; and
this follows from the fact that m = rad(Ω). The inclusion (⊇) holds since
F = Γ/m is a field.

Γ is a local ring since Γ/ rad(Γ) is a field. We have m = Γ(Λx+Λy) = Γx
because y = (y/x)x ∈ Γx. Since the maximal ideal m of the local domain Γ
is principal, we see that Γ is a DVR. Thus Γ is integrally closed and therefore
must be the normalization of Ω. Finally, we note that µΩ(Γ) = 2, so that,
by Definition 2.5, Ω is unsplit Dedekind-like.

We remark that, since Γ is finitely generated as an Ω-module, Γ is com-
plete in the m-adic topology as an Ω-module [N, Theorem 17.8]. But since
m is also an ideal of Γ, this is the same as the m-adic topology on Γ as a
ring. Therefore, (Γ,m, F ) is a complete DVR. �

Remark 3.2 and Propositions 3.4, 3.5, and 3.6 together show that, for a
given complete, local ring (Λ,m, k), at least one of the conditions (i) or (ii)
of Theorem 3.1 must hold. It remains to show that these two conditions
are mutually exclusive, which we show in the final lemma and proposition
of this section.

Lemma 3.7. Let (Λ,m, k) be a complete Dedekind-like ring, but not a DVR.

(i) If w ∈ m−m2 then w2 6∈ m3.
(ii) The (composition) length of the ring Λ/m3 is 5.

Proof. Let Γ be the normalization of Λ.
(i) The important idea here is that m = rad(Γ) and therefore both the

hypothesis w ∈ m − m2 and the conclusion w2 6∈ m3 say the same thing
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whether we consider m to be an ideal of Λ or of Γ. So we work in the ring
Γ instead of Λ.

Case 1: Λ unsplit Dedekind-like. Then Γ is a DVR and hence the desired
conclusion is obvious.

Case 2: Λ strictly split Dedekind-like. Here Γ = V1 × V2, the direct
product of two DVRs and m = rad(Γ) = rad(V1) × rad(V2); and so the
desired conclusion follows easily from the fact that each Vi is a DVR.

(ii) The bottom row of conductor square (2.13.1) shows that Γ/Λ is a
simple Λ-module. Therefore so is (Γ/m3)/(Λ/m3). So it suffices to show
that Γ/m3 has length 6 as a Λ-module.

Since Γ is either a DVR or the direct product of two DVRs, and m =
rad(Γ), it suffices to show that Γ/m has length 2 as a Λ-module; that is, as
a k-vector space. See (2.5.1). �

To show that conditions (i) and (ii) of Theorem 3.1 are mutually exclusive,
clearly it suffices to show that Klein rings and complete, strictly split or
unsplit Dedekind-like rings cannot be mapped onto either an artinian triad
or a Drozd ring. This we show in the final proposition of this section, which
completes the proof of the theorem.

Proposition 3.8. Let (Λ,m, k) be either a Klein ring or a complete, strictly
split or unsplit Dedekind-like ring. Then Λ does not have either an artinian
triad or a Drozd ring as homomorphic image.

Proof. Since µΛ(m) = 2, clearly Λ cannot map onto an artinian triad. Sim-
ilarly, if Λ is a Klein ring, then µΛ(m2) = 1, and hence Λ cannot map onto
a Drozd ring.

Therefore, we can suppose that Λ is a complete split or unsplit Dedekind-
like ring, and we must show that Λ cannot map onto a Drozd ring. Suppose,
by way of contradiction, that φ : Λ −→ A were a homomorphism from Λ
onto the Drozd ring A. Then φ(m3) = φ(m)3 = 0 implies that φ would
induce a map from Λ/m3 onto A. Since both Λ/m3 and A have composition
length five (by Lemma 3.7 and (2.4.1)), we would obtain the isomorphism
Λ/m3 ∼= A. That is, Λ/m3 would be a Drozd ring.

But then Λ would contain an element w whose image w in Λ/m3 satisfies
w ∈ m − m2 and w2 = 0. Therefore w ∈ m − m2 and w2 ∈ m3, contrary to
Lemma 3.7. �

4. Wildness of Drozd rings.

The purpose of this section is to prove its final result, Theorem 4.9, estab-
lishing finite-length wildness of Drozd rings.

Caution. When functions represent matrix multiplication, we write the
functions as right-hand operators. This occurs many times in this section.
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Notation 4.1. Recall (see Definition 2.4) that a Drozd ring is an artinian
local ring (Λ,m, k) such that µΛ(m) = µΛ(m2) = 2, m3 = 0, and (∃x ∈
m−m2) x2 = 0. Since µΛ(m) = 2 we have m = (x, y) for some y ∈ m−m2.
Fix such elements x, y for the rest of this section. Then m2 = (xy, y2), and
the only nonzero monomials in x and y are x, y, xy, y2.

In Drozd’s original paper [D], Λ is a 5-dimensional k-algebra, and 1, x, y,
xy, x2 form a basis of Λ. In our more general setting we partially repair the
lack of a basis by establishing the following standard form for elements of
m.

Lemma 4.2. For all elements c ∈ m, we can express c = u1x+u2y+u3xy+
u4y

2 with each ui a unit or 0. (Note that we do not claim uniqueness of the
coefficients ui.)

Proof. There is an expression c = ax + by. We can write a = u1 + a′x + b′y
where u1 is a unit or 0. (If u1 is a unit, we can take a′ = 0 = b′, but this is
not important.) Similarly, b = u2 + a′′x + b′′y. Then c = u1x + u2y + (b′ +
a′′)xy + b′′y2. Making similar substitutions for b′ + a′′ and b′′ completes the
proof. �

Viewing Λ/(y) and Λ/(xy) as Λ-modules, for λ ∈ Λ we denote by λy

(respectively λxy) the coset of λ in Λ/(y) (respectively Λ/(xy)). Thus,
Λ/(y) = Λ1y has submodule Λxy, etc. The following lemma establishes
some basic facts about Λ and its homomorphic images Λ1y and Λ1xy.

Lemma 4.3. (i) All of the monomials x, xy, xxy, . . . in diagram (4.3.1)
below are nonzero.

(ii) soc Λ1y = Λxy, soc Λ1xy = Λxxy⊕Λy2
xy, and soc Λ = Λxy⊕Λy2 = m2.

(iii) Λx ∩ Λy = Λxy and Λxxy ∩ Λyxy = 0.
(iv) Λx ∼= Λyxy as Λ-modules via the multiplication map cx → cyxy.

Λ1y Λ1xy Λ
� � @ � @

Λxy Λxxy Λyxy
(∼=)�

(mult)
Λx Λy

@ @ � @
Λy2

xy Λxy Λy2.

(4.3.1)

Proof. Λ. Since m2 = (xy, y2) and µΛ(m2) = 2, the monomials displayed in
Λ are nonzero. To prove the nontrivial inclusion in Λx∩Λy = Λxy, assume
that cx = dy. The element c cannot be a unit, since this would imply
µΛ(x, y) = 1. Therefore we can write c in the standard form of Lemma 4.2,
getting cx = u2xy, as desired.
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Next we verify the description of the socle of Λ. Note that, for any Λ-
module M , we have mM = 0 if and only if M is (a k-module hence) a
semisimple Λ-module. Therefore m3 = 0 implies that m2 ⊆ soc Λ. Con-
versely, take c ∈ soc Λ and write c in the standard form of Lemma 4.2.
Then 0 = cx = u2xy shows that u2 is not a unit, and hence u2 = 0.
But then 0 = cy = u1xy, and so u1 = 0, completing the proof that
m2 = soc Λ = Λxy + Λy2. The sum Λxy + Λy2 must be direct since
µΛ(m2) = 2. This completes the proof of the assertions about Λ.

Λ1xy. The second intersection in (iii) holds since Λx ∩ Λy = Λxy. The
monomial xxy is nonzero since otherwise x ∈ Λxy contradicting µΛ(x, y) = 2.
Similarly yxy 6= 0; and y2

xy 6= 0 because µΛ(xy, y2) = 2.
We have soc Λ1xy ⊇ Λxxy+Λy2

xy because the right-hand side is annihilated
by x and y. For the opposite inclusion take c ∈ Λ such that cxy ∈ soc Λ1xy.
Since cxym = 0 we have cm ⊆ Λxy. Now write c in the standard form of
Lemma 4.2. Then cy = u1xy + u2y

2 ∈ Λxy. Since cy ∈ Λxy, directness
of the sum Λxy ⊕ Λy2 shows that u2 cannot be a unit, hence equals zero.
Therefore c = u1x+u3xy+u4y

2, showing that cxy ∈ Λxxy+Λy2
xy. It remains

to prove directness of this last sum; and this follows from Λxxy ∩ Λyxy = 0,
completing the proof of all assertions about Λ1xy.

Λ1y. All assertions here are obvious.
(iv). It suffices to prove that cyxy = 0 ⇐⇒ cx = 0. Since c is not a

unit, we can write it in the standard form of Lemma 4.2. Then cyxy = 0 is
equivalent to u1xy + u2y

2 ∈ Λxy. Directness of the sum in our expression
for soc Λ shows that u2 cannot be a unit, hence equals 0. Therefore cyxy = 0
implies that c = u1x + u3xy + u4y

2, and therefore cx = 0. The converse is
proved similarly. �

Definition 4.4 (S
(
11

2

)
, S(2)). We define an object of the category S

(
11

2

)
,

or more completely, k-S
(
11

2

)
(“one and one-half k-similarity”) to be an

ordered triple (m,n, φ) where m ≤ n are positive integers and φ is an n× n
matrix over k. We define a morphism of S

(
11

2

)
to be a pair of k-linear

maps (σ, τ) (equivalently, matrices of the appropriate sizes) such that the
following diagram commutes.

S
(
1
1
2

)
:

k(m) i = [I 0]−−−−−→ k(n) φ−−−→ k(n)

σ

y τ

y τ

y
k(m′) i′ = [I′ 0]−−−−−−→ k(n′) φ′

−−−→ k(n′).

(4.4.1)

Here k(m) denotes the direct sum of m copies of k, written as row vectors,
and i = im,n denotes the inclusion map b → (b,0), where b denotes an
arbitrary vector in k(m) and 0 denotes the zero vector in k(n−m). The map
i′ is defined analogously.
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Similarly, we define the the category S(2)
(
more completely, k-S(2)

)
to

be “simultaneous similarity” of a pair of matrices over the field k. That is,
the objects of S(2) are ordered triples (n, A,B) where n is a positive integer
and A and B are n × n matrices over k. We define a morphism of S(2) to
be a k-linear map (equivalently, matrix of the appropriate size) τ such that
the following diagram commutes.

S(2):

k(n) A−−−→ k(n) B−−−→ k(n)

τ

y τ

y τ

y
k(n′) A′

−−−→ k(n′) B′
−−−→ k(n′).

(4.4.2)

For the connection between these categories and wildness, first recall [Re-
marks 2.3(i)] that fdmod-k〈X, Y 〉 contains a copy of fdmod-A for every
finitely generated k-algebra A. The remaining (known) facts that we need
are contained in the following lemma.

Lemma 4.5. Let k be a field. Then:

(i) S(2) is equivalent to the category fdmod-k〈X, Y 〉 of finite dimensional
right k〈X, Y 〉-modules.

(ii) S
(
11

2

)
contains a full subcategory that is equivalent to S(2).

(iii) Let k be a residue field of a commutative ring Λ. Suppose that there is
full subcategory W of the category of Λ-modules of finite length and an
additive functor Φ: W → S

(
11

2

)
that is a representation equivalence.

Then Λ is finite-length wild.

Proof. (i) It is easy to see that the category S(2) is equivalent to the category
fdmod-k〈X, Y 〉 of finite dimensional right k〈X, Y 〉-modules by sending the
object (n, A,B) to the k〈X, Y 〉-module consisting of the vector space k(n),
on which X and Y act via right multiplication by the matrices A and B,
respectively.

(ii) This is due to Narazova [Nz, Lemma 1], except for a more functorial
treatment here, and some changes and reversals of notation. For complete-
ness, we include a proof.

Let W ′ be the full subcategory of S
(
11

2

)
consisting of objects of the form

(n, 2n, φ) in which φ =
[
0 I
A B

]
, where A,B are n × n matrices over k

and 0, I are the n × n zero and identity matrices, respectively. Then let
F (n, 2n, φ) = (n, A,B) ∈ S(2).

Let (σ, τ): (n, 2n, φ) → (n′, 2n′, π′) be a morphism in W ′. We claim that τ

has the 2×2 block-diagonal form τ =
[
σ 0
0 σ

]
. To see this, let τ =

[
T1 T2

T3 T4

]
.
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The relation iτ = σi′ (as right operators) yields the equation[
I 0

] [
T1 T2

T3 T4

]
=

[
σ 0

]
which shows that T1 = σ and T2 = 0. Then the relation τφ′ = φτ yields the
equation [

T1 0
T3 T4

] [
0 I
A′ B′

]
=

[
0 I
A B

] [
T1 0
T3 T4

]
which easily completes the proof of the claim. Moreover, the relation τφ′ =
φτ now implies that σA′ = Aσ and σB′ = Bσ, and hence these left and
right multiplications by σ form a morphism F (σ, τ) = σ in S(2).

The block diagonal form of τ together with the relations in the previous
paragraph then show that (σ, τ) is an isomorphism if and only if σ is an
invertible matrix if and only if F (σ, τ) = σ is an isomorphism in S(2). It is
now easy to check that F yields an equivalence between W ′ and S(2).

(iii) In view of statements (i) and (ii), this is an immediate consequence
of the definition [2.2] of finite-length wildness �

Definition 4.6 (Ringel’s Λ-module M(m, n, φ)). Let (Λ,m, k) be a Drozd
ring; given an object (m,n, φ) ∈ S

(
11

2

)
, we define a module M(m,n, φ) as

follows. First, let Q be the Λ-module Q = Λ(m)1y⊕Λ(n)1xy⊕Λ(n) (notation
as in (4.3.1)), where Λ(m) denotes the direct sum of m copies of the Λ-module
Λ, written as row vectors. Next, define three maps i, mult, and φ between
pairs of submodules of Q, as follows. [See diagram (4.6.1).]

The map i: Λ(m)xy → Λ(n)y2
xy. Since the socle of every Λ-module is

annihilated by m, we have Λ(m)xy = k(m); more precisely, this is a canonical
Λ-module isomorphism via bxy → b (where b denotes the vector in k(m)

formed by reducing each entry of b modulo m). Similarly Λ(n)y2
xy = k(n) via

cy2
xy → c. We define i = im,n by (bxy)i = (b,0)y2

xy, the same map i as in
(4.4.1).

The map mult: Λ(n)x → Λ(n)yxy. This is by means of the multiplication
map dx → dyxy. By Lemma 4.3(iv) this is indeed an Λ-module isomor-
phism.

The map φ: Λ(n)xxy → Λ(n)y2. We have Λ(n)xxy = k(n) via cxxy → c.
Therefore we can right-multiply elements of Λ(n)xxy = k(n) by the matrix φ

in our given object (m,n, φ) of S
(
11

2

)
. Also, Λ(n)y2 = k(n) via cy2 → c. For

c ∈ Λ(n) define (cxxy)φ = (cφ)y2.
These three maps are displayed in the following diagram.
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Λ(m)1y Λ(n)1xy Λ(n)

� � @ � @
Λ(m)xy Λ(n)xxy Λ(n)yxy

�
(mult)

Λ(n)x Λ(n)y

@ @ � @
Λ(n)y2

xy Λ(n)xy Λ(n)y2.

6

i

6
φ

(4.6.1)

Finally, we define the Λ-module M = M(m,n, φ) to be Q/R where R
denotes the submodule formed by the following set of relations, that is,
elements of Q.

(bxy,−(bi)y2
xy,0) + (0,−dyxy,dx) + (0, cxxy,−(cφ)y2)(4.6.2)

where b, c,d range over all elements of Λ(m),Λ(n),Λ(n) respectively. (Note
that we can replace b, c,d by b, c,d respectively, whenever convenient, but
we cannot replace c by c in cφ.)

Informally, we form M from Q by identifying elements of Q with their
image under the above “amalgamation” maps i, mult, and φ. (It is possible
that φ have a nontrivial kernel, in which case it is not a true amalgamation
map.)

For every element (m,n, φ) ∈ S
(
11

2

)
we have natural Λ-module surjec-

tions:

ρ:P =Λ(m) ⊕ Λ(n) ⊕ Λ(n) ρ1−→→ Q=Λ(m)1y ⊕ Λ(n)1xy ⊕ Λ(n) ρ2−→→ M(m,n, φ)
(4.6.3)

where (b, c,d)ρ1 = (by, cxy,d) and ρ2 equals reduction modulo the relations
R displayed in (4.6.2). Note that ker ρ ⊆ mP , and therefore:

The map ρ in (4.6.3) is a projective cover.(4.6.4)

Historical Remark. In Drozd’s original paper [D], Λ is a k-algebra and
the modules he uses in place of our M are represented by very large matrices
(32n × 32n, in the notation of 4.4) over k. He assumes that k is an alge-
braically closed field. But, in order to obtain wildness of Λ, the only property
of algebraic closure that he uses is that k has at least 5 elements. (Algebraic
closure is, however, used elsewhere in his paper.) Ringel [R, (3.4)] uses
much smaller matrices over k, by relating M to S

(
11

2

)
rather than directly

to S(2), as Drozd did. The size of Ringel’s matrices is (m+6n)×(m+6n), in
the notation of 4.4. Wildness of the category of Λ-modules that he obtains
holds for any field k.
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Our module M = M(m, n, φ) is a modification of Ringel’s construction,
and follows him by relating Λ-modules to S

(
11

2

)
rather than directly to

S(2). However, since our ring Λ need not be a k-algebra, M need not have a
matrix representation. But we do represent homomorphisms in the category
of modules M(m,n, φ) by matrices over the ring Λ. The critical fact is that
any map of Λ-modules lifts to a map of their projective covers; and since
projective modules over commutative local rings are free, this lifted map can
be represented by a matrix over Λ. Our Λ-matrices are much smaller than
Ringel’s k-matrices. But this is deceptive because an element of Λ holds
more information than a single element of k. There are two consequences
of this: (i) The functor that we obtain, displaying wildness, is a only a
representation equivalence rather than the full exact embedding that Ringel
gets. (ii) Our wildness proof is probably more intricate but shorter than
Ringel’s (omitted) proof.

Morphisms and Matrices. Let f : M = M(m,n, φ) → M ′ = M(m′, n′, φ′)
be any Λ-module homomorphism. We wish to represent f by a matrix F
over Λ. Since P is a projective Λ-module, f lifts to a Λ-homomorphism such
that the following diagram commutes.

P
F−→ P ′yyρ

yyρ′

M
f−→ M ′.

(4.6.5)

Any such F equals right multiplication by a unique (m + 2n) × (m′ + 2n′)
matrix over Λ, and we again call this matrix F .

Block form. We always view F in 3 × 3 block form, where the rows
are partitioned into three blocks of lengths m, n, and n, respectively, and
the columns are partitioned into three blocks of lengths m′, n′, and n′,
respectively.

The crux of our wildness proof is the next lemma, which gives some
information about the form of the matrix F .

Notation 4.7. We denote by ent e the set of entries of any array e.

Lemma 4.8.
(i) The matrix F has the block form

F =

F11 m (x, y2)
∗ F22 m
∗ ∗ F33

 .(4.8.1)

That is, ent F12 ⊆ m, ent F23 ⊆ m, and ent F13 ⊆ (x, y2). Moreover,
when all entries are reduced modulo m, the diagonal blocks satisfy the
following three properties (viewed as right operators).
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(a) F 11im′,n′ = im,nF 22, where im′,n′ and im,n are as in (4.4.1).
(b) F 22 = F 33.
(c) φF 22 = F 22φ

′.
(We make no assertion about the blocks denoted by ∗.)

(ii) If f is an isomorphism, then the diagonal blocks Fii are invertible
matrices.

Proof. Let b, c, d be elements of a local ring with residue field k (e.g., Λ or
its homomorphic images).

If bd = cd and d 6= 0 then b = c (natural images in k)(4.8.2)

because b ≡ c modulo the annihilator of d, and this annihilator is contained
in the maximal ideal of the ring. We use this fact many times in the long,
intricate proof below.

(i) Since F lifts f we must have (ker ρ)F ⊆ ker ρ′. Recall that we factor
ρ = ρ1ρ2 as in (4.6.3). The information that we obtain about F is informa-
tion that can be obtained by dealing separately with five types of elements
of ker ρ. Type 1: Elements (e,0,0) ∈ P such that (e,0,0)ρ1 = 0 ∈ Q;
type 2: Elements (0, e,0) ∈ P such that (0, e,0)ρ1 = 0 in Q; types 3–5:
Elements of P corresponding to the three types of amalgamations that were
used to form M , one type for each term in (4.6.2). We label the five parts
of the proof by the blocks of F about which they give information.

F12, F13. Note that (ey,0,0)ρ1 = 0 for every e because yy = 0. Therefore
(ey,0,0)Fρ′ = 0 and hence (ey,0,0)Fρ′1 ⊆ ker ρ′2. Writing F in block form
and using the definition of ρ′1, it follows that

(0, eF12yxy, eF13y) ∈ ker ρ′2(4.8.3)

for every e. Therefore every element of this form must have an expression
of the form (4.6.2) (more precisely, the version of (4.6.2) that applies to M ′,
hence contains i′ and φ′ in place of i and φ).

Comparing coordinate 1 in (4.6.2) and (4.8.3) yields entb ⊆ m. There-
fore the first of the three terms in (4.6.2) equals zero, and can be ignored.
Looking at coordinate 3 shows that

eF13y = dx− (cφ)y2.(4.8.4)

Therefore entd ⊆ m (otherwise x ∈ Λy and µΛ(m) ≤ 1). On the other
hand, looking at coordinate 2 shows that eF12yxy = −dyxy + cxxy. But
Λxxy∩Λyxy = 0 by (4.3.1). Therefore ent c ⊆ m. A second look at coordinate
2 therefore shows that ent(eF12yxy) ⊆ m2 for every e. Hence ent F12 ⊆ m as
desired.

Since ent c ⊆ m, we have c = 0. But entd ⊆ m also, so (4.8.4) now yields

ent eF13y ⊆ entdx ⊆ mx = Λxy
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for every e. Let c be any element of entF13. Then cy ∈ Λxy, so that c ∈ m.
Write c in the standard form of Lemma 4.2. Then

cy = u1xy + u2y
2 ∈ Λxy.

Directness of the sum Λxy+Λy2 then shows that u2 is not a unit, and hence
u2 = 0. Therefore c ∈ (x, y2) and hence entF13 ⊆ (x, y2) as desired.

F23. Note that (0, exy,0)ρ1 = 0 for every e because (xy)xy = 0. There-
fore, as before, (0, exy,0)Fρ′1 ⊆ ker ρ′2 and hence

(0,0, eF23xy) ∈ ker ρ′2(4.8.5)

for every e. As before, this triple must have the form (4.6.2). Looking at
coordinate 1 in both triples shows that entb ⊆ m, hence term 1 of (4.6.2)
equals zero and we can ignore it. Coordinate 2 then yields −dyxy+cxxy = 0.
Since Λxxy ∩ Λyxy = 0 we have

cxxy = 0 and dyxy = 0.(4.8.6)

In particular, ent c ⊆ m and entd ∈ m. Write an arbitrary entry d of
d in standard form d = u1x + u2y + u3xy + u4y

2. Then (4.8.6) yields
0 = dyxy = u2y

2
xy. Therefore u2 is not a unit, and hence u2 = 0. We

conclude that d ∈ (x, y2). That is, entd ⊆ (x, y2), from which it follows
that dx = 0. Since ent c ⊆ m we have c = 0 and hence coordinate 3 of
(4.6.2) equals 0. Therefore (4.8.5) yields eF23xy = 0 for every e. This, in
turn, implies that ent F23 ⊆ m, as desired.

F 11im′,n′ = im,nF 22. The first amalgamation term in (4.6.2) is carried by
ρ to zero: (ex,−(eim,n)y2,0)ρ = 0 for every e. Therefore

(ex,−(eim,n)y2,0)Fρ′1 ∈ ker ρ′2.

Writing F in block form and using the definition of ρ′2 then shows

(eF11xy − (eim,n)F21y
2
y , eF12xxy − (eim,n)F22y

2
xy,

eF13x− (eim,n)F23y
2) ∈ ker ρ′2.

Since yy = 0, F12xxy ∈ mxxy = 0, entF13 ⊆ (x, y2), and ent F23 ⊆ m this
simplifies to

(eF11xy,−(eim,n)F22y
2
xy,0) ∈ ker ρ′2.(4.8.7)

We have Λx∩Λy2 = Λx∩Λy∩Λy2 = Λxy∩Λy2 = 0 by (4.3.1). Comparing
coordinate 3 of (4.8.7) with coordinate 3 of (4.6.2) yields dx− (cφ)y2 = 0;
therefore dx = 0, and hence entd ⊆ m. Then writing a typical entry of d
in standard form of Lemma 4.2, together with the relation dx = 0, shows
that entd ⊆ (x, y2). Therefore term 2 in (4.6.2) equals zero.

Coordinate 2 of (4.8.7) and (4.6.2) now yields

−(eim,n)F22y
2
xy = −(bim′,n′)y2

xy + cxxy.
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Then Λxxy ∩ Λy2
xy = 0 yields

(eim,n)F22y
2
xy = (bim′,n′)y2

xy.(4.8.8)

Coordinate 1 yields eF11xy = bxy. Then (4.8.2) yields eF 11 = b and
hence eF 11im′,n′ = bim′,n′ . But (4.8.8) yields (eim,n)F 22 = bim′,n′ (also
by (4.8.2)). We conclude that eF 11im′,n′ = (eim,n)F 22 for every e, and
therefore F 11im′,n′ = im,nF 22, proving (a).

F 22 = F 33. We use the second amalgamation term in (4.6.2): (0,−ey, ex)ρ
= 0 and therefore (0,−ey, ex)Fρ′1 ⊆ ker ρ′2 for every e. Writing F in block
form and applying the definition of ρ′1 yields

(. . . ,−eF22yxy + eF32xxy,−eF23y + eF33x) ∈ ker ρ′2.(4.8.9)

Comparing coordinate 2 in this and (4.6.2) and multiplying by y yields
eF22y

2
xy = dy2

xy. Then (4.8.2) yields eF 22 = d.
Comparing coordinate 3 and multiplying by y yields −eF23y

2 +eF33xy =
dxy. Since Λxy ∩ Λy2 = 0, this yields eF 33 = d (by (4.8.2)). Therefore
eF 22 = eF 33 for every e, and hence F 22 = F 33, proving (b).

φF 22 = F 22φ
′. Use the third amalgamation term in (4.6.2): (0, ex,

−(eφ)y2)ρ = 0 and hence (0, ex,−(eφ)y2)Fρ′1 ⊆ ker ρ′2. As before this
yields

(. . . , eF22xxy − (eφ)F32y
2
xy, eF23x− (eφ)F33y

2) ⊆ ker ρ′2(4.8.10)

and this therefore has the form (4.6.2) for all e. Comparing coordinate 2 in
these expressions yields

eF22xxy − (eφ)F32y
2
xy = −(bi′)y2

xy − dyxy + cxxy.(4.8.11)

Since Λxxy ∩ Λyxy = 0, comparing the xxy-terms on both sides yields
eF22xxy = cxxy, and therefore eF 22 = c (by (4.8.2)). We conclude that

eF 22φ
′ = cφ′(4.8.12)

for all e.
Comparing coordinate 3 in (4.8.10) and (4.6.2) yields

eF23x− (eφ)F33y
2 = dx− (cφ′)y2.(4.8.13)

As already observed, Λx ∩ Λy2 = 0. Therefore (eφ)F33y
2 = (cφ′)y2, so

that by (4.8.2) we get (eφ)F 33 = cφ′. Comparing this with (4.8.12) yields
(eφ)F 33 = eF 22φ

′ for every e, and hence φF 33 = F 22φ
′. Since F 33 = F 22,

statement (c) follows, and the proof of part (i) of the lemma is now complete.
(ii) We assume that f is an isomorphism. Since ρ and ρ′ are projective

covers (see (4.6.4)), the map F is again an isomorphism, and therefore the
matrix F is invertible. Hence F is invertible. But F is a block-triangular
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matrix over the field k, by part (i) of this proof, and hence each diagonal
block F ii is invertible. Therefore Fii is also invertible. �

Theorem 4.9 (Wildness of Drozd Rings). Every Drozd ring is finite-length
wild.

Proof. Let the Drozd ring be (Λ,m, k). Since the Λ-modules M(m,n, φ)
have finite length, by Lemma 4.5(iii) it suffices to show:

(4.9.1) Let W the full subcategory of modΛ consisting of all modules of the
form M(m,n, φ). Then there is an additive functor E : W → S

(
11

2

)
that

is a representation equivalence.

For each M = M(m,n, φ) ∈ W fix a pair of surjective homomorphisms
ρ1: P = Λ(m) ⊕ Λ(n) ⊕ Λ(n)→→ Q and ρ2: Q→→ M , and let ρ be their com-
position as in (4.6.3). In particular, ker(ρ2) is given by (4.6.2), and the
matrix φ acts as shown in (4.6.1). These choices remain in effect through-
out this proof, and our definition of E depends on them. In particular, set
E(M) = (m,n, φ) ∈ S

(
11

2

)
.

Next let f : M → M ′ be a Λ-homomorphism, where M = M(m, n, φ) and
M ′ = M(m′, n′, φ′). We wish to define the morphism E(f) = (σ, τ); that is,
we wish to define σ and τ in diagram (4.4.1).

Recall that ρ: P → M and ρ′ : P ′ → M ′ are projective covers. Therefore
f lifts to a homomorphism F : P → P ′ such that diagram (4.6.5) commutes.
The matrix of F (again called F ) has a 3 × 3 block upper triangular form,
as displayed in (4.8.1). Then we define

E(f) = (F 11, F 22).(4.9.2)

We proceed to prove that E has the required properties.
First we claim that E(f) is well-defined; that is, choosing a different lifting

F of f does not change E(f). It suffices to show that if f = 0 then F 11 and
F 22 equal 0. But f = 0 implies that F (P ) ⊆ ker ρ′ ⊆ mP ′, and hence all
entries of the matrix F are elements of m. Hence the entire matrix F equals
0, proving the claim.

Next, we claim that E(f) is a morphism in S
(
11

2

)
, that is, that diagram

(4.4.1) commutes. For that, we must show that, for every b ∈ Λ(m) and c ∈
Λ(n), both biF 22 = bF 11i

′ and cφF 22 = cF 22φ
′. But these two equations

follow immediately from parts (i)(a) and (i)(c) of Lemma 4.8.
Since E is well-defined on morphisms, it is now easy to complete the proof

that E is an additive functor. For example the identity map on a module can
be lifted to the identity map on its projective cover and then again becomes
an identity map modulo m, showing that E(1) = 1. Similarly E preserves
compositions and sums of morphisms.

We now check the three defining properties of a representation equiva-
lence.
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Dense, that is, E maps onto all isomorphism classes.
This is clear from the definition of W as the full subcategory of modΛ

consisting of all modules of the form M(m,n, φ).
Full, that is, E is a surjection on hom groups.
Let (σ, τ) be a morphism in S

(
11

2

)
, as displayed in (4.4.1). Each of σ, τ

equals right multiplication by a k-matrix that we again call σ, τ respectively.
Let F be a block diagonal matrix over Λ such that F 11 = σ, F 22 = τ ,
F33 = F22, and all other entries of F are zero. Right multiplication by F is
a homomorphism of free Λ-modules P → P ′. To show that F induces an
Λ-homomorphism M → M ′ it suffices to check that (ker ρ)F ⊆ ker ρ′. The
block diagonal form of F shows that F induces an Λ-module homomorphism
F ′: Q = Pρ1 → Q′ = P ′ρ′1. Thus it now suffices to check that the induced
map F ′ induces a homomorphism M → M ′. For this, it suffices to check
that F ′ takes each of the three terms of (4.6.2) to terms of the same form
with respect to M ′. First we have

(bxy,−(bi)yxy,0)(F11 ⊕ F22 ⊕ F33) = (bF11xy,−(bi)F22yxy,0).

Since we are working in socles of Λ-modules, we can replace F11 and F22

by their images mod m. Moreover, since (F 11, F 22) = (σ, τ) is a mor-
phism in S

(
11

2

)
, we have iF 22 = F 11i

′, and this shows that the form of
(bxy,−(bi)yxy,0) is preserved.

The form of the second term in (4.6.2) is preserved because F22 = F33.
For the third term we have

(0, cxxy,−(cφ)y2)(F11 ⊕ F22 ⊕ F33) = (0, cF22xxy,−(cφ)F33y
2).

Since xxy and y2 are in the socles of their respective modules, we can replace
each of F22 and F33, on the right-hand side, by their respective images (both
τ) modulo m. Since φτ = τφ′ it is clear that the form of (0, cxxy,−(cφ)y2)
has been preserved.

Faithful, that is, E(M) ∼= E(M ′) if and only if M ∼= M ′.
Since E is a functor, clearly E(M) ∼= E(M ′) if M ∼= M ′.
For the converse, suppose that (σ, τ) is an isomorphism from E(M) to

E(M ′) in the category S
(
11

2

)
. Let F be a block diagonal matrix over Λ

such that F 11 = σ, F 22 = τ , F33 = F22, and all other entries of F are
zero; as in the proof of “full” above, right multiplication by F induces a
Λ-homomophism f : M → M ′ such that E(f) = (σ, τ). But (σ, τ) is an
isomorphism in the category S

(
11

2

)
, and so σ and τ are invertible matrices

over the field k. Then the matrix F is invertible, too. The same argument
shows that the (block diagonal) matrix F−1 induces a Λ-homomorphism
g : M → M ′ such that E(g) = (σ−1, τ−1) = (σ, τ)−1. Moreover, since FF−1

is the identity map on P (the projective cover of M), it follows that the
induced map fg is the identity map on M . Similarly, gf is the identity map
on M ′, and hence f is an isomorphism between M and M ′. �
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5. Klein and Dedekind-like rings.

In this section, we show that a Klein ring is a homomorphic image of a
Dedekind-like ring if and only if its residue field is imperfect (Theorem 5.2).
Thus, there are Klein rings which are homomorphic images of Dedekind-like
rings, and others which are not. For example, the group algebra kG, of
the Klein 4-group G over a field k of characteristic 2, is a Klein ring (with
residue field k); and kG is a homomorphic image of a Dedekind-like ring
if and only if k is imperfect. Thus, as remarked in §2, we cannot simplify
Theorem 2.10 by omitting Klein rings from its statement.

We conclude this section with an example of a Klein ring of characteristic
4.

We begin by determining which Dedekind-like rings can be mapped onto
Klein rings.

Theorem 5.1. Let (Λ,m, k) be a Dedekind-like ring.
(i) If Λ is split or a DVR, then Λ cannot map onto a Klein ring.
(ii) If Λ is unsplit with normalization (Γ,m, F ), then Λ maps onto a Klein

ring if and only if F is an inseparable extension of k.

Proof. (i) Clearly a DVR, whose maximal ideal is principal, cannot map
onto a Klein ring, whose maximal ideal requires two generators.

Thus let (Λ,m, k) be a split Dedekind-like ring and Ω a Klein ring, and
suppose, by way of contradiction, that there is a surjective ring homomor-
phism φ : Λ→→ Ω. Then there would be a surjective homomorphism of the
completion Λ̂ onto Ω, since artinian rings are already complete. Moreover,
Λ̂ is again split Dedekind-like, by Lemma 2.21. Therefore we may assume
that Λ is complete. As noted after (2.5.2), it follows that Λ is strictly split.

Since Λ is strictly split, its maximal ideal can be generated by two ele-
ments whose product is zero [Lemma 2.20]. Therefore the same is true of
the maximal ideal n of Ω; say n = (x, y). Since xy = 0 and the square of
every element of the maximal ideal of any Klein ring is zero, we have n2 = 0.
This is the desired contradiction, since the definition of “Klein ring” requires
that µΩ(n2) = 1.

Before considering statement (ii) we prove two lemmas:

(5.1.1) Let Λ be a Dedekind-like ring with normalization Γ, and ε any ele-
ment of Γ− Λ. Then Γ = Λ + Λε.

Since m is an ideal of both rings Λ and Γ, it suffices to prove this modulo
m, whence it follows from the fact that Γ/m is a 2-dimensional vector space
over the field Λ/m = k.

(5.1.2) Let (Λ,m, k) be an unsplit Dedekind-like ring with normalization
(Γ,m, F ), and ε ∈ Γ−Λ. If F has characteristic 2 and is separable over
k, we have Γ = Λ + ε2Λ.
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To prove this it suffices, in view of (5.1.1), to prove that ε2 6∈ Λ. Suppose,
therefore that ε2 ∈ Λ. Then we have F = k[ε] where ε is the image of ε in
F , and ε2 ∈ k. Since F has characteristic 2, we get the contradiction that
F is inseparable over k.

(ii) By Lemma 2.9, we can assume that k and F have characteristic 2.
Choose any ε ∈ Γ − Λ, recall that Γ is DVR, and let x be any Γ-generator
of m (i.e., m = Γx).

First suppose that F is separable over k. Multiplying the equation at the
end of (5.1.2) by x2 yields m2 = Λx2+Λ(εx)2. If there were a homomorphism
of Λ onto a Klein ring (Ω, n, k), the fact that the square of every element of
n is zero would then yield the contradiction n2 = 0.

Suppose instead that F is inseparable over k. We claim that Ω = Λ/(m3+
Λx2) is a Klein ring.

Let n be the maximal ideal of Ω. Then we have µΩ(n) = 2 since µΛ(m) = 2
[Lemma 2.7], and m3 + Λx2 ⊆ m2 = (radΛ)m.

Next we show that µΩ(n2) = 1. Since Γ is a DVR with residue field F ,
we have m2/m3 ∼= F as Γ-modules, and hence as k-vector spaces, so that
m2/m3 has dimension 2 as a vector space over k. Again, since Γ is a DVR,
we have x2 ∈ m2−m3, and therefore the dimension of the k-vector subspace
(m3 +Λx2)/m3 of m2/m3 equals 1. But n2 = m2/(m3 +Λx2), so it also must
have dimension 1 as a vector space over k, and therefore µΩ(n2) = 1, as
desired.

Obviously n3 = 0. We claim that every element of n has square zero.
First note that m = Γx = Λx+Λεx and m2 = Γx2 = Λx2 +Λεx2, by (5.1.1).
Then take a, b ∈ Λ. Since 2 ∈ m (because F has characteristic 2) and ε2 ∈ Λ
(because F = k[ε] is inseparable over F ) we have

(ax + bεx)2 = a2x2 + 2(abx)(εx) + b2ε2x2 ∈ Λx2 + m3 + Λx2

which proves the claim. �

Taking the opposite point of view, we determine which Klein rings are
homomorphic images of Dedekind-like rings.

Theorem 5.2. If (Ω,m, k) is a Klein ring, then Ω is a homomorphic of a
(necessarily unsplit) Dedekind-like ring if and only if its residue field k is
imperfect.

Proof. If the Klein ring (Ω,m, k) is a homomorphic image of the Dedekind-
like ring Λ, then k is the residue field of Λ. By Theorem 5.1, Λ must be
unsplit, and k must be imperfect.

Conversely, suppose that k is the imperfect residue field (necessarily of
characteristic 2, by Lemma 2.9) of the Klein ring (Ω,m, k). We use the same
idea as in the proofs of Propositions 3.4 and 3.6 to construct an unsplit
Dedekind-like ring that maps onto Ω.
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Fix generators x and y of m. By assumption x2 = y2 = 0 and m2 = Ωxy 6=
0. Using the Structure Theorem of Complete Local Rings [N, Theorem 31.1],
there is a surjective homomorphism φ : V [[X, Y ]] → Ω such that φ(X) = x
and φ(Y ) = y, where V [[X, Y ]] is a formal power series ring, and either
V = k, or V is a complete DVR of characteristic 0 with residue field k of
characteristic 2 and the maximal ideal of V is generated by 2.

As in the proofs of Propositions 3.4 and 3.6, if V is a field, we set R =
V [[X, Y ]], while if V is not a field, we set R = V [[X, Y ]]/(2− (AX + BY )),
where A,B ∈ V [[X, Y ]] are elements such that φ(2 − (AX + BY )) = 0,
changing notation so that φ is still the map from R onto Ω. Again, φ :
R → Ω is a surjective homomorphism such that φ(X) = x and φ(Y ) = y,
where R is a complete two-dimensional regular local ring with maximal ideal
mR = (X, Y ), and φ induces an isomorphism between the residue fields of
R and Ω.

Because k is imperfect of characteristic 2, not every element of k is a
square in k, so we can choose C ∈ R whose coset modulo mR is not a square
in k. We claim that CX2 + Y 2 is an irreducible element in the unique
factorization domain R. Suppose, by way of contradiction, that CX2 + Y 2

is the product of two elements of mR:

CX2 + Y 2 = (SX + UY )(TX + V Y ) = STX2 + (SV + UT )XY + UV Y 2

(5.2.1)

where S, T, U, V ∈ R. We know that µR(m2
R) = 3 (by [AM, Theorem

11.22]), and m2
R = (X2, XY, Y 2). Therefore the images of X2, XY , and

Y 2 in m2
R/m3

R are k-linearly independent. Comparing the coefficients of Y 2

on both sides of (5.2.1) therefore shows that UV ≡ 1 (all congruences in
this part of the proof are modulo mR). Therefore U and V are units in R.
After multiplying the first and second factors in the middle part of (5.2.1)
by U−1 and U respectively, and changing notation, we now have U = 1 and
V ≡ 1. Comparing coefficients of XY then shows that S + T ≡ 0, which is
equivalent to S ≡ −T . But since k has characteristic 2, this is equivalent to
S ≡ T . Comparing coefficients of X2 therefore shows that C ≡ S2, contrary
to our choice of C as an element of R whose coset modulo mR is not a square.
Thus, the claim is proved.

Set Λ = R/(CX2 + Y 2), an integral domain because CX2 + Y 2 is an
irreducible element of the unique factorization domain R. We claim that Λ
is unsplit Dedekind-like.

Let c, x, and y (∈ Λ) denote the cosets in Λ of C, X, and Y , respectively,
so that cx2 + y2 = 0 in Λ. (Since we have no further need of Ω, this
duplication of earlier notation will cause no harm.) Let Γ = Λ[y/x], a
subring of the total quotient ring of Λ. Since (y/x)2 = c ∈ Λ, Γ is an
integral extension of Λ; in fact, µΛ(Γ) ≤ 2.
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We claim that mΛ, which we write as m from now on, is an ideal of Γ.
Since m = Λx+Λy, it suffices to check that x(y/x) and y(y/x) are elements
of m. The former is obvious, and the latter equals (y2/x2)x = cx ∈ m.

Let F = Γ/m, an algebra over its subfield k = Λ/m. We claim that
F is a 2-dimensional field extension of k. Let ε = y/x, and denote the
natural images of ε and c in F by ε and c respectively. Then c ∈ Λ/m = k
and ε2 − c = 0. By our choice of C, the element c is a nonsquare in k,
and therefore the polynomial Z2 − c is irreducible over k. This shows that
F = k[ε] is a 2-dimensional extension field of k as claimed.

Next we claim that m = rad(Γ). Since m is an ideal of Γ the inclusion
(⊆) holds if we show that 1−m is invertible for every m ∈ m, and this holds
since m = rad(Λ). The opposite inclusion holds because F is a field.

Finally we claim that Γ is a DVR (and is therefore the normalization of
Λ). Γ is a local ring because Γ/ rad(Γ) is a field. Therefore it suffices to
show that m is a principal ideal of Γ. But m = Λx + Λy, so it suffices to
observe that y = (y/x)x ∈ Γx. �

Remark 5.3 (Maximal tame?). Recall that, in the introduction, we called
a ring “maximal tame” (following Ringel) if it is tame but not a proper
homomorphic image of any other tame ring. In the commutative part of the
situation considered by Ringel [R] — complete local rings that are algebras
over their algebraically closed residue field — Klein rings turned out to be
maximal tame. We compare this to the corresponding result in our more
general situation.

Let (Ω,m, k) be a Klein ring, not necessarily an algebra over a field.
Then Ω remains tame, by [KL2]. Moreover, Ω remains maximal tame if k
is perfect, because by our Theorem 5.2 Ω is not a homomorphic image of a
Dedekind-like ring.

On the other hand, if k is imperfect of characteristic 2, then the re-
sult might change. In this case Ω is a homomorphic image of an unsplit
Dedekind-like ring, say (Λ,m, k), with normalization (Γ,m, F ) and F insep-
arable over k. Here we are in the exceptional situation (1.0.1), in which we
do not know whether Λ is tame, wild, or neither. Thus, if k is imperfect of
characteristic 2, we do not know whether Ω is maximal tame, although it is
both tame and a homomorphic image of a Dedekind-like ring.

Example 5.4 (Klein ring of characteristic 4). Let Λp = Z[X]/(X2, p2),
where p is a prime number. In the case p = 2, we claim that Λ2 is a
Klein ring of characteristic 4.

For every p, Λp is a local artinian ring with maximal ideal mp = (x, p),
where x and p denote the images of X and p respectively, in Λp. Clearly,
m3

p = 0, µΛ(mp) = 2, and µΛ(m2
p) = 1 (generated by px).
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We check that the square of every element of m2 is zero. For any w =
ax + 2b ∈ m2 we have w2 = (ax + 2b)2 = a2x2 + 4abx + 4b2 = 0 in Λ2 =
Z[x]/(x2, 4).

Note that Λp cannot be a Klein ring when p 6= 2, because its characteristic
is neither 2 nor 4 [Lemma 2.9]. In fact, Λp is a homomorphic image of a
Dedekind-like ring when p 6= 2. To prove this, note that Λp does not map
onto an artinian triad since µ(mp) = 2, and does not map onto a Drozd ring
since µ(m2

p) = 1. Therefore, by our Ring-theoretic Dichotomy Theorem 3.1,
Λp is either a Klein ring (which we already know it is not) or a homomorphic
image of a Dedekind ring (as claimed).

6. Drozd rings and ramification.

This section begins with two simple examples: A Drozd ring that is not an
algebra over a field, and a ring that we call “superwild,” something that
cannot happen for algebras over fields. The main theorem of this section
[Theorem 6.4] shows that every Drozd ring is a homomorphic image of a
complete ramified order. Conversely, every complete ramified order is finite-
length wild [Proposition 6.3]. We apply this to give the promised construc-
tive definition of Drozd rings as a certain type of subring of local artinian
principal ideal rings. Finally, we display in this form the two Drozd rings
previously discussed.

Example 6.1. The simplest example of a Drozd ring that is not an algebra
over a field, is the ring Ap = Z[X]/(X2, p3, p2X), where p denotes any prime
number.

Example 6.2 (Superwild). The innocuous-looking (non-local) ring Λ =
Z[X]/(X2) of Krull dimension 1 is superwild in the following sense: For
every prime number p, Λ is finite-length wild with respect to some residue
field of characteristic p.

This holds because, for each prime number p, the ring Ap in Example 6.1
is a Drozd ring with residue field Z/(p), and Ap is a homomorphic image of
Λ.

Three basic concepts in algebraic number theory, relating an order to an
overorder, are those of splitting, residue-field growth, and ramification of a
maximal ideal. The first two of these concepts occur in the present paper
in the definitions of split and unsplit Dedekind-like rings, but ramification
has yet to make an appearance. In fact, for orders ramification leads to
wildness.

Proposition 6.3 (Ramification). Let (Λ,m,k) be any complete local reduced
ring that ramifies in its normalization Γ, in the sense that m is contained in
the square of some maximal ideal of Γ. Then Λ is finite-length wild.
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Proof. Suppose that Λ is not finite-length wild. First note that Λ is not
artinian, since then it would be a field. Therefore, by our Main Wildness
Theorem 2.10, Λ is a homomorphic image of a Dedekind-like ring, say Ω.
Moreover, Λ 6∼= Ω because the maximal ideal of a Dedekind-like ring never
ramifies in its normalization. Thus the homomorphism Ω→→ Λ is proper.

The Dedekind-like ring Ω cannot be unsplit, since then it is an integral
domain; and all proper homomorphic images of noetherian domains of di-
mension 1 are artinian. Thus the only remaining possibility is that Ω is
strictly split.

The normalization of Ω is therefore the direct sum of two DVRs, say
V1 ⊕ V2. The imbedding Ω ⊆ V1 ⊕ V2 is described in detail in Lemma 2.15.
In particular, it is easy to see that Ω has only two dimension 1 prime ideals
— the two projection maps Ω→→ Vi — and therefore the only possible non-
artinian, reduced homomorphic images of Ω are the coordinate rings Vi. But
since Vi is its own normalization, the maximal ideal of Vi does not ramify in
its normalization. This contradiction completes the proof. �

It is an interesting fact that all Drozd rings arise in this way; that is,
every Drozd ring is a homomorphic image of a ramified order.

Theorem 6.4 (Ramified onto Drozd). Let (Λ, n, k) be a Drozd ring. Then
Λ is a homomorphic image of a completely ramified integral domain Ω. In
more detail, there is a commutative diagram of ring homomorphisms (6.4.1)
in which:

(i) (Ω,m, k) is a complete local domain whose normalization is a DVR
(Γ, (z), k) such that m = Γz2;

(ii) The vertical maps are surjections; and the left-hand vertical maps are
the restrictions of ρ′ and ρ′′.

Ω ⊆ Γ (m = Γz2)yy yyρ′ (ker = m3 = Γz6)

Λ ⊆ Γ/(z6) (n = Γz2/Γz6)yy yyρ′′ (ker = n)

k ⊆ k + kz (z2 = 0, z 6= 0).

(6.4.1)

Proof. The approach is similar to that in the proofs of Propositions 3.4
and 3.6. We can write the maximal ideal of the Drozd ring Λ as n = (x, y),
where x2 = y3 = 0 and xy 6= 0. As in the proofs of Propositions 3.4 and 3.6,
by the Structure Theorem of Complete Local Rings [N, Theorem 31.1], there
is a surjective homomorphism φ : V [[X, Y ]] → Λ such that φ(X) = x and
φ(Y ) = y, where V [[X, Y ]] is a power series ring and either V = k or V
is a complete DVR of characteristic 0 with residue field k. Moreover, in
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this latter case, k has characteristic p 6= 0 and the maximal ideal of V is
generated by p.

If V is a field, we set R = V [[X, Y ]], a complete, two-dimensional, regular
local ring, with maximal ideal (X, Y ). If V is a DVR, then again exactly as in
the proofs of Propositions 3.4 and 3.6, we note that there are elements A,B ∈
V [[X, Y ]] such that φ(p− (AX + BY )) = 0, and we set R = V [[X, Y ]]/(p−
(AX + BY )), a regular local ring by [AM, Theorem 11.22]. In this latter
case, we change notation and let φ denote the induced map from R onto Λ,
and we let X and Y denote the cosets of X and Y , respectively, in R. Thus,
in either case we have a surjective homomorphism φ : R → Λ such that
φ(X) = x and φ(Y ) = y, where R is a complete two-dimensional regular
local ring and (X, Y ) is the maximal ideal of R.

Now φ(X2 − Y 3) = x2 − y3 = 0, and so φ induces a surjective homomor-
phism from Ω = R/(X2−Y 3) onto Λ. We claim that X2−Y 3 is irreducible
in R, so that Ω is an integral domain.

Suppose, by way of contradiction, that X2 − Y 3 were reducible, say

X2 − Y 3 = (aX + bY )(cX + dY ) = acX2 + (ad + bc)XY + bdY 2(6.4.2)

for some elements aX + bY and cX + dY of the maximal ideal (X, Y ), with
a, b, c, d ∈ R. Note that (X, Y )2 = (X2, XY, Y 2) and, since R is a regular
local ring of dimension 2, the elements X2, XY , and Y 2 form a basis of
(X, Y )2/(X, Y )3. Thus reading (6.4.2) modulo (X, Y )3, we see that ac is a
unit in R, and hence a and c are units. Moreover, by this same reasoning,
1− ac ∈ (X, Y ).

Similarly, looking at the coefficient of Y 2 and reading (6.4.2) modulo
(X, Y )3 shows that bd ∈ (X, Y ), and hence at least one of b and d is in
(X, Y ). But then both b and d must be in (X, Y ), because otherwise, (using
the fact that a and c are both units) the coefficient of XY would be a unit
on the right-hand side of (6.4.2) but zero on the left-hand side.

We have (X, Y )3 = (X3, X2Y, XY 2, Y 3) and the elements X3, X2Y ,
XY 2, and Y 3 form a basis of (X, Y )3/(X, Y )4 (again because R is a regular
local ring of dimension 2). Rearranging (6.4.2), we get that

(1− ac)X2 − Y 3 − (ad + bc)XY ≡ 0 (mod(X, Y )4)(6.4.3)

since b and d are in (X, Y ), so that bdY 2 ∈ (X, Y )4. Since 1−ac, b, and d are
all in (X, Y ) we can substitute expressions of the form 1−ac = eX +fY and
ad+bc = gX+hY into (6.4.3). Since the coefficient of Y 3 is a unit, this gives
a nontrivial linear relation among the basis elements of (X, Y )3/(X, Y )4,
and this contradiction proves our claim that X2 − Y 3 is irreducible in R.
Therefore Ω is an integral domain.

Let s and t denote the cosets of X and Y , respectively, in Ω = R/(X2 −
Y 3), and recall that m denotes the maximal ideal of Ω, so that m = (s, t).
Since s2 = t3, we have (s/t)2 = t in the quotient field of Ω. It follows that
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z = s/t is integral over Ω, and hence Γ = Ω[z] is an integral extension of Ω.
Moreover, since z · t = s ∈ m and z · s = s2/t = t3/t = t2 ∈ m, we have that
m is an ideal of Γ also. Since m is the maximal ideal of Ω, it follows that m
is the conductor from Γ to Ω. Also, m = rad(Ω), and Γ is finitely generated
as an Ω-module, so m ⊆ rad(Γ). We claim that

µΩ(m) = 2, z2 ∈ m, z 6∈ m.(6.4.4)

We already have that m = (s, t) as an ideal of Ω. The fact that two genera-
tors are required follows from the fact that m maps onto the maximal ideal
of the Drozd ring Λ. Next, note that z2 = (s/t)2 = t ∈ m. Finally, if z were
an element of m, then s/t = z would imply that s = tz ∈ m2, which would
make the ideal m = (s, t) of Ω principal, contrary to what was just shown.

Since Γ = Ω[z], (6.4.4) yields

Γ/m = k + kz with z2 = 0 and z 6= 0.(6.4.5)

This yields the first equality in

rad(Γ) = m + Γz = Γz.(6.4.6)

The second equality holds since s = z · t ∈ Γz and t = z2 ∈ Γz.
The fact that rad(Γ/m) = (z) is the maximal ideal of Γ/m now shows

that rad(Γ) = Γz is the maximal ideal of Γ; that is, Γ is a local domain
with principal maximal ideal Γz. Therefore Γ is a DVR and hence is the
normalization of Ω.

Next we note that, since Γ is a DVR with maximal ideal Γz, (6.4.4) implies
that m = Γz2.

We have now completed the proof of the top line in diagram (6.4.1).
We also have established the existence of a surjective ring homomorphism
ρ′: Ω→→ Λ. The map ρ′ takes m = mΩ onto n = mΛ; and n3 = 0 since Λ is a
Drozd ring. We conclude that m3 ⊆ ker ρ′; we claim that equality holds.

It suffices to prove that the composition length of Ω/m3 equals the length
of Λ, namely 5. The length of Ω/m3 is at least 5, since Ω maps onto Λ.
Therefore it suffices to prove that the length of the Ω-module Ω/m3 is less
than 6.

Since Ω is properly contained in Γ, it suffices to show that the length of
the Ω-module Γ/m3 equals 6. Now, the simple Γ-module k remains simple
as an Ω-module, by (6.4.5) and the fact that Ω/m = k. Therefore, it suffices
to show that the length of the Γ-module Γ/m3 equals 6. This follows from
the fact that Γ is a DVR whose maximal ideal Γz satisfies Γz2 = m.

We have now established the existence of the top commutative square
in (6.4.1). The existence of the bottom commutative square now follows
immediately from (6.4.5), completing the proof of the theorem. �

By an AVR (artinian valuation ring) of length n we mean a local principal
ideal ring (V, (z), k), with lattice of ideals V ⊃ V z ⊃ V z2 ⊃ . . . ⊃ V zn = 0
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for some n. We say that V contains its residue field if V contains a subfield
that maps isomorphically onto k via the natural homomorphism V→→ k.

We are now ready to give our constructive definition of “Drozd ring” as
a certain type of subring of an AVR of length 6. This AVR seems to be
a kind of “artinian normalization” of the Drozd ring. In more detail, the
Drozd ring Λ is the pullback of square (6.5.1), and if we replace the AVR by
a DVR that contains its residue field (and delete the condition “x2 = 0”),
we get the ordinary conductor square for a simple cusp whose normalization
is the DVR.

Theorem 6.5 (Constructive Definition of Drozd Rings). Let (V, (z), k) be
an AVR of length 6 such that the ring V/(z2) contains its residue field (and
hence V/(z2) = k + kz with z2 = 0 and z 6= 0), and let Λ be the pullback of
diagram (6.5.1). Then:

(i) Λ is a Drozd ring, and every Drozd ring arises in this way.
(ii) V = Λ + Λz and mΛ = Λx + Λy, where x = z3, y = z2, x ∈ mV −m2

V ,
and x2 = 0.

Λ −→ Vyy yyρ (ker = V z2).

k −→ k + kz

(6.5.1)

Proof. The fact that every Drozd ring arises in this way is expressed in the
bottom square of diagram (6.4.1).

Conversely, given that Λ is the pullback of diagram (6.5.1), we want to
prove that Λ is a Drozd ring satisfying conditions (ii).

Since the image of the left-hand vertical map in (6.5.1) is the field k and
the kernel of this map is nilpotent, we see that Λ is a local ring with maximal
ideal mΛ = V z2 and residue field k. Moreover, V = Λ + Λz holds because it
obviously holds modulo V z2. Multiplying by z2 then shows

mΛ = Λz2 + Λz3.(6.5.2)

To see that mΛ requires two generators (as a Λ-module), note that mΛ/m2
Λ =

(V z2)/(V z4). Since V is an AVR, this is V -isomorphic to V/(V z2), a k-
vector space of dimension 2 by (6.5.1). Similarly, to see that m2

Λ requires
two generators as a Λ-module, we note that m2

Λ/m3
Λ = V z4 has k-dimension

2.
Thus, to complete the proof that Λ is a Drozd ring, it suffices to note that

x = z3 is an element of m−m2 = V z2 − V z4 (obvious, since V is an AVR),
x2 = 0, and m3

Λ = V z6 = 0. �

Examples 6.6. We display, as subrings of their AVR “normalization” V ,
the two Drozd rings explicitly discussed in this paper:
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(i) Λ = k + kx + ky + kxy + ky2, the Drozd k-algebra originally studied
by Drozd. Here k is any field, and all monomials in x and y other than
the displayed ones equal 0. Choose V = k[z] where z satisfies the defining
relation z6 = 0. Then Λ is the k-subalgebra with basis 1, z2 = y, z3 =
x, z4 = y2, z5 = xy.

(ii) Λ = Z[X]/(X2, p3, p2X), the Drozd ring in Example 6.1.
Choose V = Zp3 [W ]/(W 6,W 2−p) where Zp3 denotes the integers modulo

p3 and W is an indeterminate. Letting w be the natural image of W in V ,
we see that V is an AVR of length 6 with composition series

V ⊃ V w ⊃ V w2 = V p ⊃ V w3 = V pw ⊃ V w4 = V p2 ⊃ V w5 = V p2w ⊃ 0
(6.6.1)

and V/V w2 contains its residue field Zp.
The subring of V additively spanned by the monomials 1, w2 = p, w3 =

pw, w4 = p2, w5 = p2w is isomorphic to Λ, under the correspondence p → p
and pw → x.

7. Infinite lattice type.

If a local ring Λ is reduced (no nonzero nilpotent elements), then submodules
of free Λ-modules of finite rank are often called lattices. (This is equivalent
to the definition of “lattice” used in integral representation theory.) Λ is
said to have infinite lattice type, or less precisely, “infinite representation
type,” if it has infinitely many indecomposable lattices. There exist many
such Λ with infinite but tame lattice type. However, in the present context,
such commutative noetherian rings are finite-length wild.

Theorem 7.1. Let (Λ,m, k) be a complete local reduced ring. If Λ has in-
finite lattice type, then Λ is finite-length wild.

Proof. First recall that a reduced, non-artinian, proper homomorphic image
of a strictly split or unsplit Dedekind-like ring must be a DVR.

Next note that Λ is not artinian, since then it would be a direct product
of fields, and hence have finite lattice type.

It is easiest to prove the contrapositive of our theorem, so suppose that Λ
is not finite-length wild. Then by our Main Wildness Theorem 2.10 and the
fact that Λ is not artinian, Λ must be a homomorphic image of a complete
split (and hence strictly split) or unsplit Dedekind-like ring Ω. Since Λ is
reduced, it must therefore be either one of these types of Dedekind-like rings
or else (see the first paragraph of this proof) a DVR.

Since DVRs are well-known to have finite lattice type, we may sup-
pose that Λ is split or unsplit Dedekind-like, with normalization Γ. Then
µΛ(Γ/Λ) = 1 and µΛ(rad(Γ/Λ)) = 0 (since m · Γ/Λ = 0, so that Γ/Λ is
a k-module, hence a simple Λ-module). Therefore Λ satisfies the Drozd-
Roiter conditions and hence, by a result of Cimen and Wiegand (extending
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earlier results of Drozd, Roiter, Jacobinski, Green, and Reiner on lattices
over orders) must have finite lattice type [CWW]. �
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