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CONFORMALLY INVARIANT NON-LOCAL OPERATORS

Thomas Branson and A. Rod Gover

On a conformal manifold with boundary, we construct con-
formally invariant local boundary conditions B for the con-
formally invariant power of the Laplacian � k , with the prop-
erty that ( � k , B) is formally self-adjoint. These boundary
problems are used to construct conformally invariant non-
local operators on the boundary Σ, generalizing the conformal
Dirichlet-to-Robin operator, with principal parts which are
odd powers h (not necessarily positive) of (−∆Σ)1/2, where
∆Σ is the boundary Laplace operator. The constructions use
tools from a conformally invariant calculus.

1. Introduction.

Conformally invariant differential operators have long been important in
Physics. Since null geodesics depend only on conformal structure, the clas-
sical field equations describing massless particles, for example the Maxwell
and Dirac (neutrino) equations, can be expected to depend only on con-
formal structure [4, 20]. In recent years, much work has been done on the
systematic construction, understanding, and classification of conformally in-
variant differential operators [2, 3, 6, 7, 21, 23, 28, 30, 31, 41, 45, 47].
In the light of string theory and other recent developments [19], the im-
portance of such operators, even beyond those familiar from earlier physical
investigations, has been underlined. New applications to natural geometric
variational principles, and physical least action principles [24, 38, 39, 40],
have shown the importance of non-local objects like pseudo-differential op-
erators and values and residues of spectral zeta and eta functions, and of
boundary value problems.

The construction and classification problems for conformally invariant
boundary value problems, and for conformally invariant pseudo-differential
operators, are quite underdeveloped in comparison to the corresponding
problems for conformally invariant differential operators. Yet there are nat-
ural points of departure for investigations into such questions. For example,
much of the recent work on invariant differential operators has centered con-
ceptually on the corresponding construction of homorphisms between Verma
modules and their generalizations, a central group representation theoretic
problem. The related notion of Harish-Chandra modules and the theory of

19



20 THOMAS BRANSON AND A. ROD GOVER

the Knapp-Stein intertwining operators and their analytic continuation in-
dicate that it is reasonable to expect analogous invariant operators of all
real orders.

For example, the operators

A2r =
Γ
(
B + r

2 + 1
2

)
Γ
(
B − r

2 + 1
2

) , where B =

√
−∆ +

(
n− 2

2

)2

,(1)

are intertwining for the spherical principal series of SO0(n, 1). This is an-
other way of saying that they are conformally invariant, when viewed as
acting between density bundles of the appropriate weights, under the con-
formal transformation group of the standard sphere Sn−1. The differential
operators among these are the cases r = 0, 2, 4, . . . ; the question of their
generalization to conformally invariant operators on arbitrarily curved man-
ifolds has been of much recent interest [31]. The case r = 1, in which the
operator is simply B, is also a familar object: the conformal Dirichlet-to-
Robin operator on Sn. The generalization B of this operator to arbitrarily
curved conformal structures is the most elementary case of the series of
operators we construct in our main theorems.

The operator B is closely related to a fundamental object in the subject of
Electrical Impedance Tomography, where the basic problem is reconstruc-
tion of a conformal factor on a manifold M from the Dirichlet-to-Neumann
operator on its boundary Σ [35, 46]. The conformal factor represents the
density of, for example, a human head, while the Dirichlet-to-Neumann op-
erator represents a response, measured on the skin, to applied current. As a
practical matter, one attaches electrodes to obtain a discrete approximation
to this continuous problem.

The above considerations raise natural questions as to the possible ex-
istence of arbitrarily curved generalizations of the A2r for 2r = 1, 3, . . . ,
and even for arbitrary r. The question of arbitrary r is the subject of [43],
where the existence of such generalizations is shown, modulo an obstruction
at certain orders in even dimensions first identified in [26, 31]. In [43] the
main algebraic objects are asymptotic expansions of pseudo-differential sym-
bols; these are then “promoted” to operators which exist, and are invariant,
modulo operators of order −∞.

The present paper is concerned with operators of odd integer order which
can be described exactly in terms of boundary value problems. Such opera-
tors have already shown their importance in the theory of extremals of the
functional determinant, a fundamental object in String Theory [13, 17].
These series of operators are closely related to series of harmonic ana-
lytic sharp inequalities of Sobolev imbedding and Moser-Trudinger type
(see [5, 11, 16, 18] for manifolds without boundary, and [17, 24, 25] for
manifolds with boundary). The relation to such objects indicates a deep
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connection to geometric information that generalizes, but should go signif-
icantly beyond, the information used in the Yamabe problem, where only
one Sobolev imbedding is involved.

The authors would like to thank Peter Gilkey, C. Robin Graham and Gerd
Grubb for enlightening correspondence. A.R.G. also thanks the Mathemat-
ics Department of the University of Iowa for its hospitality during August-
September of 1997, when the core of this work was done.

2. Background.

The conformally invariant Dirichlet-to-Robin operator (see e.g., [10], Exam-
ple 1.3) on the boundary to a manifold is constructed in two steps. The first
is to extend a density of an appropriate weight off the boundary so that the
resulting density of the same weight on the interior is in the kernel of the
conformally invariant Laplace operator. The second step is to apply to this
density, at the boundary, an invariant first order normal derivative opera-
tor obtained by adding a multiple of the mean curvature of the boundary
imbedding. Such an operator is sometimes called a Robin operator. The
result is a first order pseudo-differential operator on the boundary which by
construction is conformally invariant, and which has the form (−∆Σ)1/2+
(lower order terms).

In this article we produce a family of higher order, and negative order,
analogues of the Dirichlet-to-Robin operator. We explicitly construct con-
formally invariant, formally self-adjoint pseudo-differential operators whose
principal parts are (positive and negative) odd integer powers h of (−∆Σ)1/2.
For even dimensional boundaries we obtain such operators for all odd in-
tegers h, while for odd dimensional boundaries of dimension nΣ ≥ 3, the
construction works for odd integers in the range |h| ≤ nΣ− 2. These results
are given in Theorems 8.1, 8.4, and 8.5. We believe that the odd nΣ range
can eventually be improved to |h| ≤ nΣ. For example, for nΣ = 3, the ex-
istence of a third order invariant operator with the correct leading symbol
follows from the construction used in our theorems, given the construction
in [17] of local boundary conditions for an invariant fourth-order operator.

A conformal manifold is a pair (M, [g]) where M is a smooth manifold
and [g] is a conformal equivalence class of metrics. Two metrics g and ĝ are
said to be conformally equivalent, or just conformal, if ĝ is a positive scalar
function multiple of g. In this case it is convenient to write ĝ = Ω2g for some
positive smooth function Ω. (The transformation g 7→ ĝ, which changes the
choice of metric from the conformal class, is termed a conformal rescaling.)
For present purposes (until elliptic theory comes into play), we shall allow
the metrics in the equivalence class to have any fixed signature.

For n ≥ 3 we will work with conformal n-manifolds with boundary
∂M = Σ and throughout, without further comment, we will assume that
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the conformal structure extends smoothly to a collar of the boundary. Our
results will not depend on the choice of extension. We simply need that
the conformal metric is nondegenerate at the boundary. For the purposes
of constructing differential operators on the boundary we can thus view the
boundary as an embedded hypersurface in the extended conformal mani-
fold. In Section 4 we introduce a conformally invariant calculus for dealing
with hypersurfaces in a conformal manifold. This is applied immediately
in Section 5 to construct series of conformally invariant boundary opera-
tors. The results are presented in Theorem 5.1; to our knowledge this is
the first time such operators have been constructed for the cases of order
greater than 3. In Section 7 it is shown that the boundary operators can be
adjusted to yield, in combination with the interior operators (as described
in Proposition 4.1), formally self-adjoint boundary problems. With the ob-
servation that our boundary problems are also properly elliptic and satisfy
the Lopatinski-Shapiro conditions (as discussed in Section 6) we are able to
perform the main construction in Section 8.

We will write E for the sheaf of germs of smooth functions on M . In line
with this we will often write Ea and Ea for, respectively, the tangent and
cotangent bundles to M (which we will not distinguish from the respective
sheaves of germs of smooth sections). Tensor products of these bundles
will be indicated by adorning the symbol E with appropriate indices. For
example, in this notation ⊗2T ∗M is written Eab. The pairing of vectors
with their duals and the generalization of this to tensors will be indicated
by repeated indices in the usual fashion. Unless otherwise indicated, our
indices will be abstract indices in the sense of Penrose [42]. An index which
appears twice, once raised and once lowered, indicates a contraction. In case
a frame is chosen and the indices are concrete, use of the Einstein summation
convention (to implement the contraction) is understood. Given a choice of
metric, indices will be raised and lowered using the metric without explicit
mention.

For purposes of calculating and producing explicit formulae it is often
useful to choose, arbitrarily, a metric from the conformal equivalence class.
Then the manifold becomes equipped with the canonical Levi-Civita connec-
tion ∇a. This is the unique torsion free connection on the tangent space and
its tensor powers which preserves the chosen metric. The curvature Rab

c
d

of this connection is known as the Riemannian curvature, and is defined by

(∇a∇b −∇b∇a)vc = Rab
c
dv

d.

It is useful to observe that Rabcd can be decomposed into the totally trace-
free Weyl curvature Cabcd and a remaining part described by the symmetric
Rho-tensor Pab, according to

Rabcd = Cabcd + 2gc[aPb]d + 2gd[bPa]c,
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where [· · · ] indicates the skew part over the enclosed indices. The Rho-tensor
is a trace modification of the Ricci tensor Rab.

We define the density bundles E [w] on M as follows. The bundle whose
smooth sections are metrics from the conformal class is a ray subbundle (i.e.,
a fibre subbundle with fibre R+) of Eab. We identify this subbundle with
a ray bundle of scalars, which we denote E+[−2]. For each w ∈ R the ray
bundle E+[w] is then defined to be the

(
−w

2

)th power of E+[−2]. These each
canonically extend to a line bundle E [w] with a distinguished positive axis in
each fibre. Given a choice of metric, the Levi-Civita connection determines a
connection on tensor densities; for example, on Ea[w] = E [w]⊗Ea. Of course,
this connection is not invariant under conformal rescaling, but transforms
by well-known formulae (see for example [1, 42]).

3. Hypersurfaces and operators.

Let (M, [g]) be a conformal manifold of dimension n. Suppose that Σ is a
hypersurface in M , that is Σ is a dimension nΣ = n− 1 imbedded subman-
ifold of M . We shall assume further that in the case of indefinite metrics,
the normal to the hypersurface has nowhere vanishing length. The tangent
bundle to TΣ to Σ is naturally a subbundle of TM |Σ. Via the inclusion
i : Σ → M , Σ inherits a natural conformal structure: For each metric g
from the conformal class [g] of metrics on M , gΣ := i∗g is a metric on Σ. If
ĝ = Ω2g, then clearly ĝΣ = i∗ĝ = (i∗Ω)2gΣ.

The sheaf of germs of smooth functions on Σ will be denoted by EΣ. Since
any section of this may be extended to a smooth function on M , we have
EΣ = E|Σ. Similarly it is clear that EΣ[w] = E [w]|Σ, where EΣ[w] denotes the
bundle of densities of weight w and intrinsic to Σ as a conformal manifold.

We observed that TΣ is a subbundle of TM |Σ. In fact the conformal
structure enables us to split TM |Σ into a direct sum of TΣ with the normal
bundle N a. Let Na be a unit normal field to Σ. Note that this is a section,
over Σ, of Ea[−1].

We shall take Na to be extended as a unit section of Ea[−1] over a neigh-
bourhood of Σ. Then, over Σ, the map

TM |Σ '−→ TΣ⊕N a

is given by
va 7→ (va −NaNbv

b) +NaNbv
b

for va ∈ Γ(TM). Since we shall always treat TΣ as a subbundle of TM |Σ
in this way, it is reasonable to use the notation Ea

Σ for TΣ. Thus in this
notation we have Ea|Σ = Ea

Σ ⊕N a.
In general with constructions of the above type, we shall write Σ as a

superscript or subscript, whichever is convenient.
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Given bundles F and G and a differential operator B : F → G on M , we
shall need a notion of the normal order of B. Let the order of B be r and
suppose that, in a neighbourhood of a point p, Σ is given by the vanishing
of a defining function σ. We say that B has normal order rN at p if there
exists a section φ of F such that B(σrNφ)(p) 6= 0 but for any section φ′ of F ,
B(σrN+1φ′)(p) = 0. Of course rN ≤ r, and is independent of the particular
choice of defining function σ. An operator which has normal order rN at
each p ∈ Σ will be said to have normal order rN . Note that the differential
operators which are intrinsic to Σ (those that only involve differentiation in
directions within the hypersurface) have normal order rN = 0. On the other
hand the normal derivative Na∇a has normal order 1 on Σ.

Recall that on M there is a series of conformally invariant differential
operators with principal part a power of the Laplacian,

� k : E [k−n
2 ] → E [−k+n

2 ],

{
k = 2, 4, . . . , n (n even),
k = 2, 4, . . . (n odd),

where
� kφ = ∆k/2φ+ lower order terms.

(As mentioned above ∆ is the usual Laplacian, i.e., ∆ = ∇a∇a.) The
existence of such operators in general is due to [31], although the order k = 2
case is the usual Yamabe operator while the k = 4 case is due to Paneitz
[41] and, later but independently, [44, 23]. Before the general result was
known, the k = 6 case was also settled in [47]. In the next section we give
an explicit formula for these (except for the k = n cases) using the tractor-D
operator (as in [1]).

On the other hand, Theorem 5.1 below describes a family of confor-
mally invariant differential operators δ` carrying densities (or, more gen-
erally, weighted tractors) on M to similar objects on Σ. These, or their
modifications as developed in Section 6 (see the proof of Proposition 7.1),
may be composed with conformally invariant operators implementing exten-
sion from the boundary, via solution of appropriate elliptic boundary value
problems, to yield conformally invariant operators on the boundary; this is
Theorem 8.1. This construction is analogous to (and generalizes) that of
the conformal Dirichlet-to-Neumann operator.

4. Hypersurface tractors.

On a conformal n-manifold, n ≥ 3, there is a conformally invariant calculus
based on the so-called tractor bundle. We shall briefly review this here as
it underlies the construction of the invariant operators of Theorem 5.1 and
Proposition 4.1 below. Further details can be found in [1, 21, 30]. In fact
we shall also need a version of this calculus on the 2-dimensional boundary
manifold to a conformal 3-manifold. Thus the final part of this section is
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concerned with developing a tractor calculus for hypersurfaces in conformal
3-manifolds. Throughout this section, the conformal structure may have
any fixed signature.

For a given choice of metric g, the tractor bundle EA may be identified
with a direct sum

[EA]g = E [1]⊕ Ea[−1]⊕ E [−1].

If UA is a section of EA, we can thus write

[UA]g =

 σ
µa

ρ

 ∈ [ΓEA]g.

Under conformal rescaling g 7→ ĝ = Ω2g these quantities transform according
to

[UA]bg =

 σ̂
µ̂a

ρ̂

 =

 σ
µa + Υaσ

ρ−Υbµ
b − 1

2ΥbΥbσ

 ,

where Υa := Ω−1∇aΩ. In analogy with the term tensor (in differential
geometry), we shall also describe any tensor product of the tractor bundle
and its dual, and indeed invariant subbundles of these, as tractor bundles.
If such a bundle is tensored with some bundle of densities E [w] then we
shall describe the result as a weighted tractor bundle. We write EAB[w] for
EA ⊗ EB ⊗ E [w], and so on. In many cases we wish to indicate a weighted
tractor bundle without being specific about the indices of the bundle or
any symmetry these may possess. Thus we write E∗[w] to mean a weighted
tractor bundle which is the tensor product of E [w] with any tractor bundle.
Finally, repeated tractor indices indicate a contraction, just as for tensor
indices.

The invariant projection EA → E [1] may be regarded as a preferred ele-
ment XA ∈ ΓEA[1] so that, with UA again as above, we have σ = UAXA.
It also describes the invariant injection E [−1] → EA according to ρ 7→ ρXA.
This tautological tractor XA is given, for any choice of metric g from the
conformal class, by [XA]g = (1 0 0).

The bundle EA carries an invariant nondegenerate tractor metric hAB,
and a connection ∇a which preserves this. If the signature of the underlying
conformal structure is (p, q), then the signature of hAB is (p+ 1, q+ 1). For
UA as above, this metric is given by hABU

AUB = 2ρσ + µaµa. The tractor
metric will be used to raise and lower indices without further mention. The
connection is given explicitly by the following formula for [∇aU

B]g:

∇a

 σ
µb

ρ

 =

 ∇aσ − µa

∇aµ
b + δa

bρ+ Pa
bσ

∇aρ− Pacµ
c

 .(2)
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Of course this may be extended to a connection on any tractor bundle in
the obvious way. (In fact, these connections are all induced connections of
the canonical Cartan conformal connection.) The use of the same symbol
∇ as for the Levi-Civita connection is no accident. In fact, more generally,
we shall use ∇ to mean the coupled Levi-Civita-tractor connection. This
enables us, for example, to apply ∇ to weighted tractor bundles, although in
this case it is not conformally invariant of course. However, in terms of this
coupled connection, one may construct an invariant second order operator
between weighted tractor bundles,

DA : E∗[w] → E∗[w − 1].

This is called the tractor-D operator and is given explicitly by

DAf = (n+ 2w − 2)D̃Af −XA � f(3)

where

[D̃Af ]g :=

 wf
∇af

0

 and � f := D̃BD̃
Bf = ∇b∇bf + wPf.

(Note that D̃Af and � f are not separately invariant.)
Using these definitions, it is an elementary exercise to show that if f ∈

Γ(E [w]) then

XAD
Af = w(n+ 2w − 2)f,(4)

and

DAXAf = (n+ 2w + 2)(n+ w)f.(5)

Using this and the definition of DA once more, one can obtain the following
explicit construction of conformally invariant powers of the Laplacian (first
observed by Eastwood [22]; see also [30]).

Proposition 4.1. The operators

� k : E∗[k−n
2 ] → E∗[−k+n

2 ], where k ≥ 2 is even,

defined by
� k := DA · · ·DB � DB · · ·DA︸ ︷︷ ︸

(k−2)/2

are conformally invariant differential operators of the form (up to a non-zero
constant scale factor)

∆k/2 + lower order terms

except when n is even and n ≤ k.
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Note that this proposition gives an explicit formula for these operators,
although to rewrite this in terms of the Levi-Civita connection and its curva-
ture is extremely tedious and not practical except in the lowest order cases.
We should also warn the reader at this point that while the operators � k

are sometimes called “conformally invariant powers of the Laplacian”, they
are distinct from the operators ∆k/2 and � k/2. Indeed, the � k/2 are not
conformally invariant when k > 2.

Let us now return to the discussion of a hypersurface Σ in an n-manifold
M as in the previous section. In this case there are two settings for build-
ing a tractor calculus as described above. There is the ambient conformal
manifold M , and there is also the hypersurface Σ regarded as an intrinsic
conformal (n − 1)-manifold. Since the tractor bundle on Σ will have fibres
of dimension n+ 1 as compared to the fibre dimension n+ 2 of the ambient
tractor bundle EA, we should use different indices for the tractor bundle of
Σ. However, there is another approach that we shall adopt instead: We
shall view the intrinsic tractor bundle on Σ as a subbundle of the ambient
tractor bundle restricted to Σ, EA|Σ. This is analogous to, and consistent
with, our treatment of the tangent bundle Ea

Σ to Σ, as described above. First
of all observe that along Σ (and in all dimensions n ≥ 3) there is a natural
conformally invariant normal tractor (see [1]) NA ∈ Γ(EA|Σ), given in any
metric g by

[NA]g :=

 0
Na

−H

 ,

where H = (n− 1)−1∇aN
a is the mean curvature of Σ. (We will later take

Σ to be the boundary of a conformal manifold with positive definite metric
signature, and we will choose the inward unit normal N . This convention
makes the above-defined mean curvature negative on the standard sphere
viewed as the boundary of the standard ball.)

Now under a conformal rescaling, g 7→ ĝ = Ω2g, H transforms to Ĥ =
H +NaΥa. (Note that H is being viewed as a (−1)-density.) Using this it
is easy to see that there is a preferred class of metrics within the conformal
class which have H = 0 along Σ. For rescalings amongst metrics in this
preferred class, NaΥa = 0. If n ≥ 4 then nΣ ≥ 3 and so the manifold Σ
has its own intrinsic tractor bundles, connections and so forth. In these
cases, restricting to metrics from the preferred class, it is easily verified that
the intrinsic tractor bundle to Σ may be identified with the conformally
invariant subbundle EA

Σ of EA|Σ which is orthogonal to the normal tractor
NA. Thus we have an invariant splitting

EA|Σ = EA
Σ ⊕NA

given by
vA 7→ (vA −NANBv

B) +NANBv
B.
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for vA ∈ Γ(EA). Of course this generalizes easily to tensor products of
these bundles, and we shall always view the intrinsic tractor bundles of Σ in
this way; that is, as subbundles of the restrictions to Σ of ambient tractor
bundles, the sections of which are completely orthogonal to NA. As a result,
we need only one type of tractor index. Of course once we have identified
any intrinsic tractor sections with sections of such subbundles, we need no
longer restrict to the special class of metrics with H = 0, as orthogonality
to NA is a conformally invariant condition. We shall use the symbol PΣ

to indicate the orthogonal projection from any ambient weighted tractor
bundle, restricted to Σ, to the corresponding intrinsic-to-Σ weighted tractor
bundle. For example, PΣ(EA|Σ) = EA

Σ . In fact we shall henceforth drop
the explicit restriction to Σ and regard this as implicit in the definition of
PΣ. Thus we shall write, for example, PΣ(EAB[w]) = EΣ

AB[w]; any section
fAB of this bundle has the property that fABN

A = 0 = fABN
B. For the

cases nΣ ≥ 3 the intrinsic-to-Σ tractor-D operator will be denoted DΣ
A, and

similarly the tautological tractor belonging to Σ will be denoted XΣ
A .

According to the definitions of XA and NA, we have XAN
A = 0. Thus

PΣ(XA) = XA|Σ, and it follows from the definition of XΣ
A that in fact

XΣ
A = XA|Σ. If n ≥ 4, then it follows immediately from these observations

and (5) that if f ∈ E∗Σ[w], then, on Σ,

DA
ΣXAf = (nΣ + 2w + 2)(nΣ + w)f = (n+ 2w + 1)(n+ w − 1)f.(6)

As mentioned above, we also wish to treat the n = 3, nΣ = 2 case.
On general 2-dimensional conformal manifolds, one does not expect a natu-
ral tractor calculus analogous to that on the higher dimensional structures
(owing to the vastly different local structure in this case). However, 2-
dimensional hypersurfaces inherit extra local structure from the ambient
3-manifold. As we now show, this rigidity enables the construction of a
natural tractor calculus on such hypersurfaces. For the remainder of this
section let n = 3.

We define the tractor bundle EA
Σ on Σ to be the subundle of EA|Σ which

is orthogonal to NA. Thus in this case we get a splitting EA|Σ = EA
Σ ⊕NA,

as in the higher dimensional cases. Now a tractor connection ∇Σ on this is
induced from the ambient tractor connection, ∇, in the obvious way. Viz
for vA ∈ ΓEA we take

∇Σ
a v

B := PΣ∇av
B,

where, on the right-hand-side vB is a section of EA in a neighbourhood of Σ
that agrees with vB over Σ and PΣ indicates the projection

PΣ∇av
B = (δa′

a −Na′Na)(δB
B′ −NBNB′)∇a′v

B′
.

It is easily verified that ∇Σ is independent of any choices of extensions off
Σ and satisfies the required Leibniz rule.
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Now, for f , a section of a weighted intrinsic tractor bundle (i.e., a section
of some tensor product involving EA

Σ , its dual and EΣ[w] or a section of a
subbundle of such a bundle) define D̃Σ

Af by

D̃Σ
Af := PΣD̃Af,

where, on the right hand side, f has been extended to a section of a tractor
bundle in a neighbourhood of Σ. Then, in a choice of conformal scale such
that H = 0, we have

[D̃A
Σf ]g :=

 wf
∇a

Σf
0

 ,

and so we have formal agreement with the higher dimensional cases. The
operator DΣ

AP := 2PΣX[P D̃A] = 2X[P D̃
Σ
A] is conformally invariant and ex-

tends the operator DAP as in [29, 30] to such 2-dimensional hypersurfaces.
It satisfies DΣ

APXB = 2X[Ph
Σ
A]B, where hΣ

AB = PΣhAB is the intrinsic trac-
tor metric. This is analogous to the usual result DAPXB = 2X[PhA]B and
using this and some other elementary identities it is readily verified that the
approach to defining the tractor-D as in [29, 30] carries over to this case
to give the tractor-D operator DΣ

A as the (clearly conformally invariant)
operator on weighted tractor bundles on Σ satisfying

hAB
Σ DΣ

A(QD
Σ
|B|P )0

f = −X(QD
Σ
P )0

f,

where (· · · )0 denotes trace-free symmetrization over the enclosed indices.
Furthermore since this agrees formally with the usual definition and since,
as we observed above, XA commutes with PΣ, one can deduce that (6) and
(4) (on Σ) hold in the nΣ = 2 case too. Similarly (3) holds, in that DΣ

A is
given explicitly by DΣ

Af = 2wD̃Σ
Af −XA � Σf , where � Σ := D̃Σ

BD̃
B
Σ .

For the purposes of expanding out the tractor expressions it is useful
to observe that, when working within the preferred scales with H = 0,
the tensor PΣ

ab := (δa′
a − Na′Na)(δb′

b − N b′Nb)Pa′b′ plays the same role in
the tractor formulae on the conformal 2-surface as the usual Rho-tensor
Pab plays in the regular tractor calculus. For example, in such scales, an
explicit formula for the tractor connection ∇Σ is again given by (2) if we
just replace occurences of Pab in that formula by PΣ

ab (and of course take
∇a to mean the intrinsic-to-Σ Levi-Civita connection and so forth). From
another point of view, the conformal transformation properties of PΣ

ab ensure
that we could build, on Σ, a canonical principal bundle with a canonical
Cartan connection that is closely analogous to the usual Cartan bundle
structures on a conformal manifold. (Of course the local structure of this
bundle and connection depends on the embedding.) The operator ∇Σ is the
corresponding covariant derivative on the induced tractor bundles.
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5. Normal operators.

As mentioned above, the operator D̃A is not conformally invariant when
acting on weighted tractors. In fact,

̂̃DAf = D̃Af +XA

(
Υi∇if +

w

2
ΥiΥif

)
,

for f any section of a weighted tractor bundle. On the other hand, since on
Σ we have XAN

A = 0, it follows immediately that the operator

δ : E∗[w] → E∗[w − 1],

given by
δf := NAD̃Af

is invariant on Σ. Recall that E∗[w] indicates any tractor bundle of weight
w. Note that δf = Na∇af −wHf where ∇a is the tractor connection, and
so δ is a Robin operator. The “usual” conformal Robin operator, familiar
from the invariant Neumann-type problem associated with � , is recovered
by this formula in the special case that f is a scalar density of weight 1− n

2 .
Of course the operator δ has normal order 1. In the following theorem,

we use δ together with the tractor-D operators to generate higher order
analogues δ` of δ. These are used to construct invariant boundary conditions
for the interior operator � k, as required for Theorem 8.1 below. The δ`
will also be refined, in the proof of Proposition 7.1, to operators δ′` which,
in tandem with the � k, produce formally self-adjoint boundary problems
except when n is even and k = n.

Theorem 5.1. Let k be a positive even integer. On a hypersurface Σ in
a manifold of dimension n and for each positive integer ` there is a con-
formally invariant differential operator along Σ, δ`, which maps E∗[k−n

2 ] to
E∗Σ[k−n−2`

2 ], given by δ1 = δ, and

δ`ψ =


DB

Σ · · ·DA
ΣPΣ(DA · · ·DB︸ ︷︷ ︸

`/2

ψ) for 2 ≤ ` even,

DB
Σ · · ·DA

ΣPΣ(δ DA · · ·DB︸ ︷︷ ︸
(`−1)/2

ψ) for 3 ≤ ` odd,

for ψ ∈ Γ(E∗[k−n
2 ]). If n is odd then the δ` have order and normal order

r = rN = ` for all ` ∈ Z+. If n is even then the δ` have order and normal
order r = rN = ` if

`+ 1 ≤ k ≤ n− 2 or `+ 2 ≤ k = n.

For our present purposes, we need only the special cases

δ` : E [k−n
2 ] → EΣ[k−n−2`

2 ],
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(i.e., no tractor indices). However these hypersurface differential operators
are strongly invariant in the sense discussed for differential operators on
tensor densities on M in [21]. That is, they remain invariant operators upon
tensoring of the domain and target bundles with any tractor bundle. It is
just required that in the construction, as for densities here, one replaces,
where required, the Levi-Civita connection with the appropriate coupled
Levi-Civita-tractor connection.

Proof of the theorem. The conformal invariance of the displayed operators
in the theorem is clear, since the ingredients DA, δ, PΣ and DA

Σ are all
conformally invariant operators (though PΣ has order 0). The weight of the
target bundle is correct since each of DA, δ, and DA

Σ lowers the weight by
1 unit while PΣ leaves the weight unchanged. From these weights one can
easily deduce that the order of the operators is ≤ `. It is also clear that these
operators are independent of how the normal Na (used in the construction
of δ and PΣ) is extended off the hypersurface, since the DA

Σ involve only
differentiation in directions tangent to the hypersurface. Thus it remains to
establish that the operators have the normal order claimed.

Let us consider first ` odd, and ` and k as in the last part of the theorem.
(That is if n is odd then ` ∈ Z+. If n is even then ` + 1 ≤ k ≤ n − 2 or
`+ 2 ≤ k = n.) Using (3), one quickly establishes that the operator

δ DA · · ·DB︸ ︷︷ ︸
(`−1)/2

ψ(7)

has principal part

XA · · ·XBδ� (`−1)/2ψ.(8)

That is, term (8) has order r = `, and term (7) minus term (8) has or-
der at most ` − 1. At leading order, the operator δ� (`−1)/2ψ agrees with
Na∇a∆(`−1)/2ψ. It is easily verified that the operator Na∇a∆(`−1)/2 has
normal order rN = `. Since, on Σ, PΣ(XA) = XA, it follows that (8) sur-
vives in

PΣ(δ DA · · ·DB︸ ︷︷ ︸
(`−1)/2

ψ),

so that
PΣ(δ DA · · ·DB︸ ︷︷ ︸

(`−1)/2

ψ)−XA · · ·XBδ� (`−1)/2ψ

also has order at most ` − 1. The operator DA
Σ , being intrinsic to the

hypersurface Σ, has normal order 0. Thus the normal order of

DB
Σ · · ·DA

Σ [PΣ(δDA · · ·DBψ)−XA · · ·XBδ� (`−1)/2ψ]
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is at most `− 1. Now it follows from (6) that

DB
Σ · · ·DA

Σ(XA · · ·XBδ� (`−1)/2ψ)

is a multiple of δ� (`−1)/2ψ, and so has normal order rN = ` if it is not zero.
Combining this with the immediately previous observation, we have that
DB

Σ · · ·DA
ΣPΣ(δDA · · ·DBψ) also has normal order ` providedDB

Σ · · ·DA
Σ(XA

· · ·XBδ� (`−1)/2ψ) 6= 0. In fact δ� (`−1)/2ψ has weight k−n−2`
2 , so

DB
Σ · · ·DA

Σ(XA · · ·XBδ� (`−1)/2ψ)

=

(`−1)/2∏
i=1

1
2
(k + 2i− 2`− 1)(n+ k + 2i− 2`− 4)

 δ� (`−1)/2ψ,

which is a non-zero multiple of δ� (`−1)/2ψ as required. (To see this note
that the factors (k+ 2i− 2`− 1) are odd integers. Similarly if n is odd then
the factors (n+ k+ 2i− 2`− 4) are odd numbers. On the other hand if n is
even then the factors (n+k+2i−2`−4) are positive since n+k−2`−2 > 0
for k and ` as in the theorem.)

The proof for ` even is almost identical. In this case, by an analogue of the
arguments above one quickly deduces that the operators have the normal
order claimed in the last part of the theorem if, in general,

DB
Σ · · ·DA

Σ(XA · · ·XB︸ ︷︷ ︸
`/2

� `/2ψ) 6= 0

for ψ ∈ Γ(E∗[k−n
2 ]). In this case we get

DB
Σ · · ·DA

Σ(XA · · ·XB � `/2ψ)

=

`/2∏
i=1

1
2
(k + 2i− 2`− 1)(n+ k + 2i− 2`− 4)

 � `/2ψ

(cf. the case of ` odd). This does not vanish for k and ` as in the last part
of the theorem for precisely the same reasons as for the case of ` odd. �

We now specialize to the case of conformal manifolds of positive definite
metric signature. We would like to use Theorem 5.1 to construct confor-
mally invariant odd-order pseudo-differential operators of boundary type,
via a process analogous to the construction of the conformal Dirichlet-to-
Neumann operator. The idea is that the family of operators δ` should pro-
vide conformally invariant boundary conditions for the � k . The resulting
boundary problems are not a priori formally self-adjoint, but in most cases
admit formally self-adjoint modifications, obtained by replacing the δ` by op-
erators δ′` whose construction is motivated by integration by parts formulas.
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In the next section, we digress briefly to review some analytic considerations
relevant to the construction of these pseudo-differential operators.

6. Boundary problems.

Let M be a Riemannian manifold with boundary Σ. Let k be a positive even
integer. There are some natural boundary problems, based on the interior
operator (−∆)k/2, which admit an elementary description, and which are
quite well-behaved with respect to elliptic theory. Let N be the inward unit
normal vector field, and let

Smu =

{
∆m/2u, m = 0, 2, . . . , k − 2,
∆(m−1)/2∇Nu m = 1, 3, . . . , k − 1,

where ∆0 is understood as 1. Let m = (mj)
k/2
j=1 be a list of k/2 integers from

the range 0, 1, . . . , k−1, with m1 < . . . < mk/2 . For notational convenience,
we shall view m both as a set (so that, for example, m ∈ m makes sense),
and as an ordered k/2-tuple. Let

Sm = (Sm1 , . . . , Smj ).

Then the pair (or problem) ((−∆)k/2, Sm) satisfies several ellipticity prop-
erties. We digress for a moment to describe these properties. Some general
references are [37, 36, 27, 32].

Let (M,Σ) be a compact Riemannian manifold with boundary, and let A
be a scalar differential operator of order k on M . For purposes of discussing
boundary problems, A is said to be elliptic if its leading symbol ak satisfies

|ak(x, ξ)| ≥ c0|ξ|k on M,

for some constant c0 > 0, where |ξ|2 = gabξaξb . A is strongly elliptic if

Re ak(x, ξ) ≥ c1|ξ|k on M,

for some constant c1 > 0.
If n ≥ 3, any elliptic differential operator has even order ([36], Sec-

tion 6.1). Thus we shall assume from now on that k is even. A is properly
elliptic if for all x ∈ Σ and ηa ∈ Ea not parallel to the inward unit normal
cotangent vector Na at x, the roots of the polynomial equation

ak(x, ηa + τNa) = 0

(τ being the indeterminate) are separated by the real axis; that is, the roots
can be labelled

τ±i , where ± Im τ±i > 0

for i = 1, . . . , k/2.
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Note that operators with principal part (−∆)k/2 are elliptic, strongly
elliptic, and properly elliptic. Indeed,

gab(ηa + τNa)(ηb + τNb) = τ2 + 2bτ + c2,

where
b = ηaN

a, c2 = gabηaηb .

Since ηa is not parallel to Na , we have |b| < c by the Schwarz inequality.
Thus for each j, we have τ±j = −b±

√
−1β, where β =

√
c2 − b2 . (In fact,

strong ellipticity and even order imply proper ellipticity [37].)
The basic well-posedness condition for boundary problems is the so-called

Lopatinski-Shapiro condition. This can be stated in terms of an ordinary dif-
ferential equations problem, or equivalently, as an algebraic problem (which
arises in the study of this ODE problem). We shall state the algebraic form.
Let (Bmj ) be a list of k/2 scalar operators, defined near the boundary, of
orders 0 ≤ m1 < . . . < mk/2 < k. Let bmj be the leading symbol of Bmj .
Let

M± =
k/2∏
i=1

(τ − τ±i ).

Consider the polynomials bmj (x, η + τNx). The Lopatinski-Shapiro (hence-
forth LS) condition is the requirement that these polynomials are linearly
independent in C[τ ] modulo the principal ideal generated by M+. (As be-
fore, η is taken not parallel to Nx .)

A system of boundary operators Bm is normal if bmj (x,Nx) 6= 0 for all
j = 1, . . . , k/2. In the normal case, we may express

Bmj =
mj∑
q=0

Bmj ,q(∇N )q,

where Bmj ,q is a tangential operator of order at most mj − q. In particular,
Bmj ,mj is a function, and

bmj (x,Nx) = Bmj ,mj (x).

Normality is thus just the condition that the functions Bj,mj are nowhere
vanishing.

Note that ellipticity, strong ellipticity, and proper ellipticity are properties
of the operator A alone, while normality is a property of the system of
boundary operators alone. The LS condition, in contrast, is a joint property
of A and the boundary operators. All properties are insensitive to changes
in the operators A and Bmj which preserve the principal part. They are also
insensitive to multiplication of A by a positive constant, or multiplication
of any Bmj by a non-zero constant.
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Remark 6.1. For the problems ((−∆)k/2, Sm), the LS condition amounts
to checking that the polynomials{

((τ − α)(τ − α))mj/2, (mj even),
(τ + b)((τ − α)(τ − α))(mj−1)/2, (mj odd),

where α = −b+
√
−1β, are linearly independent modulo (τ − α)k/2; this is

straightforward. Normality for the Sm is also clear, as each Smj ,mj is ±1 or
±
√
−1.

The pair ((−∆)k/2, SmD), where

m = mD := (0, 2, . . . , k − 2),(9)

is called the iterated Dirichlet problem for (−∆)k/2. This is intuitively related
to its k = 2 special case, the Dirichlet problem for −∆, as follows. A solution
u of {

∆k/2u = 0,
(∆q/2u)|Σ = fq, q = 0, 2, . . . , k − 2,

may be identified with a solution (u0 , u2 , . . . , uk−2) of{
∆uq = uq+2,

uq|Σ = fq,

where we take uk to be 0. The idea is to solve successively for uk−2, uk−4,
. . . , u0. Similar remarks hold for the iterated Neumann problem, which
comes from choosing

m = mN := (1, 3, . . . , k − 1).(10)

Another standard problem is the generalized Dirichlet problem, which comes
from taking

m = m0 := (0, 1, . . . , k/2− 1).(11)

Remark 6.2. The boundary problems in which we are interested have prin-
cipal parts which are closely related to those of the problems ((−∆)k/2, Sm).
After a choice of scale, the interior operator � k has the form ∆k/2 +
(lower order). In fact, by Riemannian invariant theory, “lower order” in
this formula is actually order at most k − 2: The difference � k − ∆k/2 is
a term coupling the Riemann curvature to a derivative of order k − 2, plus
lower-order terms. Some further invariant theory, which also takes account
of invariants of the boundary imbedding, is involved in the study of the
boundary operators. The boundary operators δ` we have constructed (as
well as their modifications δ′` which we shall construct below) have coeffi-
cients which are polynomial in the jets of the metric and its inverse, and in
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the jets of the defining function of Σ. Any operators so constructed, and
which are of normal order q and constructed to scale according to a rule

B(α2g) = α−qB(g)(12)

under uniform dilation g 7→ α2g, 0 < α ∈ R of the metric g, must have the
form

cq(∇N )q +
q−1∑
m=0

Dm(∇N )m(13)

where cq is a non-zero constant, and the Dm are differential operators on Σ
(i.e., tangential differential operators) of order at most q−m. Operators that
arise from conformally invariant constructions are naturally endowed with
a homogeneity condition of the form (12) in each chosen scale g, and q is
in fact the difference between weights of the source and target line bundles.
One uses these homogeneity properties, just as for “ordinary” O(n) invariant
theory, to count derivatives. Another application of invariant theory shows
that the principal part of the operator (13) must have the form{

cq(∇N )q + cq−2∆Σ(∇N )q−2 + . . .+ c0∆
q/2
Σ (q even),

cq(∇N )q + cq−2∆Σ(∇N )q−2 + . . .+ c1∆
(q−1)/2
Σ ∇N (q odd),

(14)

where the ci are constants.

The following result will be useful.

Lemma 6.3. Let A be a properly elliptic scalar differential operator of (po-
sitive even) order k on M , and let Bm and B′

m be systems of boundary
operators, both with the same list of orders m : 0 ≤ m1 < . . . < mk/2 < k,
and with

B′
mj

= cmjBmj +
∑
i<j

Dj,iBmi , j = 1, . . . , k/2,

where the Dj,i are tangential differential operators of orders ≤ mj−mi , and
the cmj are nowhere-vanishing functions. Suppose that Bm satisfies the LS
condition relative to A. Then B′

m also satisfies the LS condition relative to
A.

Proof. The leading symbol b′mj
of B′

mj
, evaluated at (x, η + τNx), is

cmj (x)bmj (x, η + τNx) +
∑
i<j

dj,i(x, η)bmi(x, η + τNx),

where dj,i is the order mj −mi symbol of Dj,i. Thus for a given x, the list
of cosets

b′mj
(x, η + τNx) + C[τ ]M+(τ)
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(arranged, say, as a column vector) is an invertible lower triangular complex
matrix times the list of cosets

bmj (x, η + τNx) + C[τ ]M+(τ).

�

Let (A,B) be a properly elliptic, normal boundary problem satisfying the
LS condition. If (A,B) is in addition formally self-adjoint (see below), it
admits, on a compact manifold, a discrete spectral resolution (φj , λj), in
which the eigenvalues λj are real.

The φj are a complete orthonormal set in L2(M), and satisfy (Bφj)|Σ = 0.
This gives a realization of the boundary problem (A,B) as an unbounded
operator in L2,

AB :
∑

cjφj 7→
∑

cjλjφj .(15)

On the other hand, if Bu := (Bu)|Σ, we may consider the operator (A,B).
For a properly elliptic problem that satisfies the LS condition and is nor-

mal, the index (dim ker minus codim range) of (A,B) agrees with that of
AB ([32], Section 4.3). A key point is that normality guarantees the sur-
jectivity of B. The advantage of having a formally self-adjoint problem is
that, owing to (15), the index must vanish. As a result, the two deficiency
indices (dim ker and codim range) are equal, and thus the vanishing of one
is equivalent to the vanishing of the other. This means that we can guar-
antee unique solvability of a formally self-adjoint problem by making an
elementary assumption of vanishing kernel. Such an assumption is “elemen-
tary” because, by elliptic regularity, a function in the kernel is smooth; thus
kerAB = ker(A,B), and vanishing kernel is a condition that is independent
of choices of function spaces. As a result, for the problem

Au = 0, Bu = β(16)

(with, say, β smooth), we have the following alternative: (1) kerAB = 0,
and solutions to (16) always exist and are unique; or (2) kerAB 6= 0, and
(16) has no solution for some β, and a non-unique solution for some β′. An
example of the second situation is the Neumann problem for the Laplacian.
The function 1 has vanishing Neumann data, and is annihilated by the
Laplacian. As a result, in view of (15), there is no L2 function (thus no
smooth function) with vanishing Neumann data such that ∆u = 1.

We sum up the properties we shall be using in the following proposition;
see [34], Section 20.1 and [32], Section 4.3 for proofs.

Proposition 6.4. Let (A,B) be a properly elliptic, normal boundary prob-
lem satisfying the LS condition on a manifold with boundary (M,Σ). Then
the kernel of (A,B) is finite-dimensional, and consists of smooth functions.
If in addition (A,B) is formally self-adjoint, then
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(a) the codimension of the range of the realization AB of (A,B) in L2(M)
equals the dimension of the kernel of (A,B), and ker(AB) = ker(A,B);

(b) whenever ker(A,B) = 0, the problem Au = 0 with prescribed Bu is
uniquely solvable, and there is a well-defined solution operator carrying
smooth data Bu to smooth u.

Motivated by this, we shall now investigate formal self-adjointness prop-
erties for our conformally invariant boundary problems.

7. Formal self-adjointness.

A boundary problem (A,B) is formally self-adjoint iff∫
M

[(Au)v − uAv] = 0

whenever Bu = Bv = 0 on Σ. A necessary condition for formal self-
adjointness is that the interior operator A be formally self adjoint. Any
such A satisfies ∫

M
[(Au)v − uAv] = −

∫
Σ

skA(u, v)

where sk(u, v) is a skew bilinear form on the Cauchy data and its tangential
derivatives at the boundary Σ. Clearly, at each point, skA(u, v) has maximal
isotropic subspaces of at least half the fiber dimension of the Cauchy data
bundle. Given such an operator A, which is formally self-adjoint on the
interior, if one can demonstrate that the kernel of the boundary operator B
lies inside such an isotropic subspace at each point of the boundary, then
the problem (A,B) is formally self-adjoint.

A good example of this is given by the usual powers of the Laplacian
∆k/2 on Riemannian manifolds. So, for the moment, suppose we have fixed
a choice of scale so that M is a Riemannian manifold with Riemannian
boundary manifold Σ. Then one easily obtains that∫

M
(u∆k/2v − v∆k/2u) = −

∫
Σ

sk∆k/2(u, v),

where

sk∆k/2(u, v) =
k/2−1∑
i=0

[(∆iu)∇N∆k/2−1−iv − (∆iv)∇N∆k/2−1−iu].

Thus the operator is formally self-adjoint with for any of the standard choices
of boundary operators Sm from the beginning of Section 6 with the property
that

{mj | 1 ≤ j ≤ k/2} ∩ {k − 1−mj | 1 ≤ j ≤ k/2} = ∅.(17)
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In particular, we have formal self-adjointness for the iterated Dirichlet prob-
lem (9), the iterated Neumann problem (10), and the generalized Dirichlet
problem (11).

Returning to the conformal setting, the following proposition asserts that
there exist modifications δ′i of the boundary operators δi so that analogous
results on self-adjointness hold for the operators � k. The proposition does
not cover the case k = n even.

Proposition 7.1. For n even let k ∈ {0, 2, . . . , n − 2} and for n odd let
k ∈ 2Z+. For each such k and each m satisfying (17), there exist conformally
invariant normal boundary operators δ′m such that ( � k, δ

′
m) is formally self-

adjoint. In particular, this is the case for m = mD = (0, 2, . . . , k − 2),
m = mN = (1, 3, . . . , k − 1), and m = m0 = (0, 1, . . . , k/2− 1).

The last sentence of the proposition indicates that there will be natural
formally self-adjoint problems of iterated Dirichlet, iterated Neumann, and
generalized Dirichlet type.

Before we treat the proposition some preliminary observations are useful.
First we note that the tractor construction of the operators � k produces
operators which are formally self-adjoint on the interior. This observation
was first made by Eastwood [22]. In fact, we could replace any choice of an
invariant � k by the formally self-adjoint operator (� k + � ∗

k)/2 without
disturbing invariance. This is because (1) a conformally invariant operator
D : E [−n

2 + r] → E [−n
2 + s] has D∗ : E [−n

2 − s] → E [−n
2 − r] conformally

invariant; and (2) the weights of � k are symmetric about −n/2. The obser-
vation that the tractor construction of � k is formally self-adjoint, however,
will be valuable to us below: To construct boundary operators that lead
to formally self-adjoint boundary problems, we need at least some explicit
knowledge of the formally self-adjoint interior operator we are using. This
is provided by the explicit formula in Proposition 4.1.

Since the coupled tractor-Levi-Civita connection ∇a satisfies a Leibniz
rule over sections of tractor bundles and tensor bundles, it follows that
it satisfies an obvious generalization of the usual “integration by parts”
formula. For example, if ψaB ∈ ΓEaB[w] and φB ∈ ΓEB[−n−w] then, since
we take Na to be an inward normal, we have∫

M
φB∇aψ

aB = −
∫

Σ
φBNaψ

aB −
∫

M
(∇aφB)ψaB(18)

and this remains true even if instead φ and ψ have further tractor indices
which are contracted together. Using the Leibniz property of the tractor-
Levi-Civita connection one may also easily show that if ψA ∈ ΓEA[w] and
φ ∈ ΓE [1− n− w], then

φDAψ
A = (DAφ)ψA +∇aV

a,(19)
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where, if [ψA]g = (ρ ψa σ), V a is the conformally invariant bilinear operator
given by (φ, ψA) 7→ σ∇aφ− φ∇aσ+ (n+ 2w)φψa. (Note that (18) and (19)
hold on Σ regarded as an intrinsic conformal manifold, except that in the
nΣ = 2 case one must use the special tractor calculus described in Section 4.)
This yields the following integration formula:

(20)
∫

M
φDAψ

A =
∫

M
(DAφ)ψA

−
∫

Σ
[(n+ 2w)φNAψ

A − φδXAψ
A + (δφ)XAψ

A].

Furthermore this equation also is valid even if φ and ψA have other tractor
indices which are contracted together. Combining these results, it is a trivial
exercise to verify that each operator

� k := DA · · ·DB � DB · · ·DA︸ ︷︷ ︸
(k−2)/2

is self-adjoint on the interior.
In fact more follows if we are just a little more observant. Notice that

the term φBNaψ
aB in (18) is conformally invariant. Similarly notice the

conformal invariance of each term in the integrands of the integrals on
the right hand side of (20). It follows immediately that for the operators
� k, (with k as in the proposition) one can produce a pointwise skew form
sk′� k

which is conformally invariant and satisfies
∫
M (u� kv − v� ku) =

−
∫
Σ sk′� k

(u, v). (Of course it was already clear that the global skew form
(u, v) 7→

∫
Σ sk′� k

(u, v) is conformally invariant.)
Let us now turn our attention to the example � 4. Treating this case

illustrates an easy case of the general procedure we use to establish the
proposition. It is easily shown (see e.g., [30]) that if v ∈ ΓE [2 − n

2 ] then
2(4− n) �DAv = XA � 4v. It follows immediately that for u, v ∈ ΓE [2− n

2 ]
one has uDA �DAv = (DAu) �DAv and, in particular∫

M
uDA �DAv =

∫
M

(DAu) �DAv.

Thus ∫
M

(u� 4v − v� 4u) = −
∫

Σ
sk′� 4

(u, v)(21)

where

sk′� 4
(u, v) = (DBu)Na∇aDBv − (DBv)Na∇aDBu

= (DBu)δDBv − (DBv)δDBu.
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Note that the last line expresses sk′� 4
as the difference of two conformally

invariant bilinear operators. Of course (21) really only determines this bilin-
ear operator up to the addition of ∇Σ divergences and in fact it is prudent
to choose a representative that is more closely analogous to sk∆2 . In this
case it is rather elementary to find such a representative. First observe that
for u ∈ ΓE [2− n

2 ] one has

DBu = 2(DB
Σu+NBδu+ (2− n)−1XBδ2u).

So by (20), applied to the DΣ
A of the boundary manifold, one has∫

Σ
(DBu)δDBv = 2

∫
Σ
uDB

ΣPΣδDBv + (δu)NBδDBv

+ (2− n)−1(δ2u)XBδDBv

= 2
∫

Σ
(δ0u)δ3v + (δ1u)NBδ1DBv − (δ2u)δ1v,

where, in the last line, we have written δ0u for u|Σ and δ1 for δ. Thus we
have ∫

Σ
sk′� 4

(u, v) =
∫

Σ
sk� 4

(u, v),

where

(22) sk� 4
(u, v) = 2[(δ0u)δ3v + (δ1u)(NBδ1DBv + δ2v)

− (δ1v)(NBδ1DBu+ δ2u)− (δ0v)δ3u].

This immediately suggests taking δ′mD
= (δ′0, δ

′
2), δ

′
mN

= (δ′1, δ
′
3), or δ′m0

=
(δ′0, δ

′
1), where

δ′0 := δ0, δ
′
1 := δ1, δ

′
2 := (δ2 +NBδ1DB), δ′3 := δ3,

since then it is immediately clear that ( � 4, δ
′
mD or N or 0

) is formally self-
adjoint. In fact these problems are good choices, since they are clearly
conformally invariant, they are well-defined without choosing an extension
of Na (or NA) off Σ, and it is easily verified explicitly that (given now some
arbitrary choice of extension of Na off Σ) the δ′i are of the form

δ′1u = ∇Nu+ lower normal order terms,

δ′2u = −n−4
2 (∇N )2u+ lower normal order terms,

δ′3u = n−4
2 (∇N )3u+ lower normal order terms.

In particular this form implies that (for n 6= 4) the leading-normal-order
part of sk� 4

recovers the leading-normal-order part of sk∆2 up to an overall
factor. In fact there is some choice in constructing the boundary operators.
Note for example that in the right hand side of (22) we could have first re-
expressed NAδDA in terms of δ2, δ1, δ0 and their ∇Σ derivatives. Using this
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observation and rearranging the result appropriately can lead to a different
set of conformally invariant boundary operators.

The alert reader will have noticed that we have not mentioned the bound-
ary operator list complementary to δ′m0

, that being (δ′2 , δ
′
3). One rea-

son is that for the Riemannian problem which this generalizes, ∆2 with
((∇N )2, (∇N )3), the LS condition is not satisfied. In fact, it is easily seen
that for the Riemannian problem (−∆)k with ((∇N )m)m∈m , a necessary
condition for LS is that {0, 1} ∩m 6= ∅.

In the proof of Proposition 7.1 below we describe one ‘once and for all’
choice of such boundary operators (which, for � 4 and the boundary opera-
tor BDor Nor 0 , agrees with the choice above). Before we describe this proof
we need one more preliminary result.

Lemma 7.2. Let V be a vector bundle on the boundary manifold Σ. With k
as in the proposition, any conformally invariant linear differential operator

I : E [k−n
2 ] → V,

of order r and normal order rN ≤ k − 1 determines a canonical bundle
homomorphism

H(I) : ⊕rN
i=0E

Σ
A · · · B︸ ︷︷ ︸

r−i

[k−n−2r
2 ] → V

and the operator I is given as composition of this with the differential oper-
ator

D : E [k−n
2 ] → ⊕rN

i=0E
Σ
A · · · B︸ ︷︷ ︸

r−i

[k−n−2r
2 ]

given by

f 7→ (DΣ
A · · ·DΣ

G︸ ︷︷ ︸
r

δ0f,D
Σ
A · · ·DΣ

F︸ ︷︷ ︸
r−1

δ1f, . . .D
Σ
A · · ·DΣ

B︸ ︷︷ ︸
r−rN

δrN f).

Proof. To simplify the notation let us write U for the bundle

⊕rN
i=0EA · · · B︸ ︷︷ ︸

r−i

[k−n−2r
2 ]

and tfU for its trace-free subbundle,

tfU := ⊕rN
i=0E(A · · · B︸ ︷︷ ︸

r−i

)0 [
k−n−2r

2 ],

where here and below (· · · )0 indicates the trace-free completely symmetric
part over the enclosed indices (and below (· · · ) indicates the completely sym-
metric part over the enclosed indices). We will write tfD for the composition
of D with the projection of U onto tfU .

We will show below that the invariant operator I uniquely determines a
homomorphism H0(I) : tfU → V such that I = H0(I) ◦ tfD. With this
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established H(I) is given canonically as the composition of H0(I) with the
natural projection U → tfU .

For any w ∈ R, each bundle EΣ
(A···C)0

[w] has a natural projection

EΣ
(A · · · C︸ ︷︷ ︸

v

)0
[w] → E [w + v],

given by
bA···C 7→ XA · · ·XCbA···C .

It follows from the elementary representation theory of parabolic subgroups
that if S is a subbundle of EΣ

(A···C)0
[w] that is not in the kernel of this

homomorphism then S = EΣ
(A···C)0

[w]. Now if f ∈ ΓE [k − n
2 ] then

XA · · ·XC DΣ
(A · · ·D

Σ
C)0︸ ︷︷ ︸

r−i

δif = XA · · ·XCDΣ
A · · ·DΣ

Cδif

=
r−i−1∏
j=0

(k−n−2i−2j
2 )(2k − 2i− 2j − 1)δif

which, for i ∈ {0, 1, . . . rN}, is non-vanishing in general. It follows then that
tfD has vanishing cokernel in tfU .

It follows easily from the definition of the basic (valence 1) tractor bundle
and the definition of the tractor metric that, for i ∈ {0, 1, . . . , rN}, each

EΣ
(a · · · b︸︷︷︸

j

)[
k−n−2i

2 ] , j = 0, 1, . . . , r − i

turns up as a component of a composition factor in the composition series
of EΣ

(A···C)0
[(k−n− 2r)/2] and that, given a choice of conformal scale, there

is a surjection
EΣ

(A···C)0
[k−n−2r

2 ] → EΣ
(a···b)[

k−n−2i
2 ].

From classical representation theory and the previous result, the composition
of this epimorphism with the operator DΣ

(A · · ·D
Σ
C)0

on E [k − i− n/2] gives
a differential operator with leading part ∇Σ

(a · · ·∇
Σ
c). Now in turn using

this result, and the normal order of the δi operators, it follows that, on
Σ, any linear differential operator on E [(k − n)/2], of order r and normal
order rN ≤ k − 1, may be written as a composition of a homomorphism
H0(I) : tfU → V with tfD. That this homomorphism is unique follows
immediately from another use of the result above that the image bundle of
tfD is all of tfU . (Any non-zero homomorphism tfU → V when composed
with tfD must yield a nontrivial operator. So if two homomorphisms yield
the same composition operator then the homomorphisms agree.) Thus the
result is established. �
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Remark 7.3. Since a conformally invariant operator I determines the ca-
nonical homomorphism H(I) in the lemma it is clear that this homomor-
phism is conformally invariant. Furthermore, since the operators DΣ

A · · ·
DΣ

Bδi, for i = 0, 1, . . . , rN , are linearly independent it is clear that H(I)
may be expressed as a direct sum of conformally invariant homomorphisms

Hi(I) : EΣ
A · · · C︸ ︷︷ ︸

r−i

[k−n−2r
2 ] → V,

and I is a sum of conformally invariant operators Ii, where Ii is defined to
be the composition of Hi(I) with the appropriate component of D. Each
Hi(I) may be regarded as a conformally invariant section of

EA···C
Σ [2r+n−k

2 ]⊗ V.

Given these results the proof of the proposition is now quite straightfor-
ward. In the following we will use the terms total order and total normal
order as follows. If Op1u is a linear differential operator of order (resp.
normal order) k1 and Op2u is a linear differential operator of order (resp.
normal order) k2 then the bilinear operator (Op1u)Op2v will be said to have
total order (resp. total normal order) k1 + k2. More generally any bilinear
operator Op(u, v) will be said to have total order (resp. total normal order)
` if there is some expression for it as a sum of products of linear operators
such that each product has total order (resp. total normal order) no greater
than ` but no expression as a sum of such products so that each product
has total order (resp. total normal order) no greater than `− 1.

Proof of the Proposition. Let sk′� k
be the skew bilinear differential operator

on E [(k − n)/2] (along Σ) satisfying∫
M

(u� kv − v� ku) = −
∫

Σ
sk′� k

(u, v)(23)

which is obtained by directly using the formula (20) without any simplifi-
cation. Some comments on the operator sk′� k

are in order at this point. It
is clear that the operator has total order k − 1. Now note that acting on
u ∈ ΓE [(k − n)/2] the operator �DA · · ·DE may be split as follows

� DA · · ·DE︸ ︷︷ ︸
(k−2)/2

u = XA · · ·XEK � ku+WA···Eu

where K 6= 0 is a constant dependent on the dimension n and WA···E is an
invariant order k− 2 differential operator which vanishes on flat structures,
satisfies DE · · ·DAWA···E = 0 and is such that that the operators

DC · · ·DE︸ ︷︷ ︸
j

WA···E j = 0, 1, . . . , k−4
2
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each have order at most k − 2. These results follow without difficulty from
the definition of the tractor-D given above and the result that on conformally
flat structures �DA · · ·DEu = XA · · ·XEK � ku. Using these observations
and (4) it is a straightforward matter to rewrite sk′� k

in the form

sk′� k
(u, v) = (EA · · · C︸ ︷︷ ︸

(k−2)/2

u)FA···Cv − (EA···Cv)FA···Cu,

where EA···C and FA···C are conformally invariant differential operators on
E [(k−n)/2] of orders respectively k−2 and k−1 and such that the contracted
product (EA···Cu)FA···Cv has total order k−1. Now using the Lemma we can
rewrite these in terms of the DΣ

A operators and the δi operators, obtaining

EA···C =
k−2∑
i=0

E(i)
L···M
A···C D

Σ
L · · ·DΣ

Mδi and FA···C =
k−1∑
i=0

F(i)
L···M
A···C D

Σ
L · · ·DΣ

Mδi.

Note that by the Lemma (see also the remark above) the E(i)
L···M
A···C , for

i = 0, . . . , (k − 2), and the F(i)
L···M
A···C , for i = 0, . . . , (k − 1), are confor-

mally invariant sections of (boundary manifold) tractor bundles. We now
re-express sk′� k

(u, v) using the following observations.

(EA···Cu)FA···Cv

=

(k−2)/2∑
0

E(i)
L···M
A···C D

Σ
L · · ·DΣ

Mδiu)F
A···C + (ẼA···Cu

FA···Cv,

where ẼA···C =
∑k−2

i=k/2E(i)
L···M
A···C D

Σ
L · · ·DΣ

Mδi. If we similarly split FA···C ,

FA···C =
(k−2)/2∑

i=0

F(i)
L···M
A···C D

Σ
L · · ·DΣ

Mδi + F̃A···C ,

then we obtain

(EA···Cu)FA···Cv =

(k−2)/2∑
i=0

E(i)
L···M
A···C D

Σ
L · · ·DΣ

Mδiu

FA···Cv

+ (ẼA···Cu)
(k−2)/2∑

i=0

F(i)
L···M
A···C D

Σ
L · · ·DΣ

Mδiv

+ (ẼA···Cu)F̃A···Cv.

Now the operator (ẼA···Cu)F̃A···Cv must vanish since otherwise it is of total
order strictly greater than k−1; this is not possible since it is clearly linearly
independent of the other operators on the right hand side of the above
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display. Thus by repeated use of (19) (applied to the boundary manifold
operator DΣ

A) it is clear that we have

(EA···Cu)FA···Cv =
(k−2)/2∑

0

[(δiu)Fiv + (Eiu)δiv] + a ∇Σ divergence

where
Fi = DΣ

M · · ·DΣ
LE(i)

L···M
A···C F

A···C

and
Ei = DΣ

M · · ·DΣ
LF(i)

L···M
A···C Ẽ

A···C .

Thus defining the operators δ′i and δ′k−1−i, for i = 0, 1, . . . , (k − 2)/2, by

δ′i := δi and δ′k−1−i := (Fi − Ei)

we have

sk′� k
(u, v) = sk� k

(u, v) + a ∇Σ divergence,(24)

where

sk� k
(u, v) =

(k−2)/2∑
i=0

[(δ′iu)δ
′
k−1−iv − (δ′iv)δ

′
k−1−iu].(25)

Now the proposition follows from the following points:
• Each δ′i, i = 0, . . . , (k − 1) is conformally invariant and canonical.

(In particular they are independent of any choice of extension of Na

off Σ.) This is immediately clear from their construction via natural
conformally invariant operators which in turn are defined without a
choice of extension of Na off Σ. (Note also the Ei and Fi above are in
fact separately conformally invariant.)

• Up to a non-zero scalar factor, each operator δ′i, i = 0, . . . , k − 1 is of
the form

δ′i = (∇N )i + lower normal order terms.(26)

Here and below we have assumed some arbitrary extension of Na off
Σ. This result can be seen as follows. For each k the operator � k

has the form ∆k/2 + lower order terms, up to a non-zero scale fac-
tor. Therefore it is clear that up to ∇Σ-divergences and terms of
total order ≤ k − 1, sk� k

must agree with sk∆k/2 . Thus the leading-
normal-order part of sk� k

is (again, up to a non-zero-scale factor)∑(k−2)/2
i=0 [((∇N )iu)(∇N )k−1−iv− ((∇N )iv)(∇N )k−1−iu]. (This is clear

since this term cannot be changed by the adding of ∇Σ-divergences or
lower total order terms to the operator sk∆k/2 .) Now using order and
weight considerations, the claim here follows.
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• If we take δ′m = (δ′m1
, . . . , δ′mk/2

) with m = (m1, . . . ,mk/2) as in
(17), it is immediate from the form of sk� k

, as displayed in (25), that
( � k, δ

′
m) is formally self-adjoint.

�

Let δm = (δm1 , . . . , δmk/2
), and let δ′m = (δ′m1

, . . . , δ′mk/2
).

Theorem 7.4. Let k be a positive even integer, and if n is even, suppose
that k < n. Then the boundary problems ((−1)k/2 � k, δm) and ((−1)k/2 � k,
δ′m) satisfy the LS condition for the choices m = mD = (0, 2, . . . , k−2), m =
mN = (1, 3, . . . , k−1), and m = m0 = (0, 1, . . . , k/2−1). In addition, when
n is even, the LS condition holds for the boundary problems ((−1)n/2 � n, δm)
with m = mD and with m = m0 .

Proof. The statements about m0 are clear from (26), together with the fact
that (up to non-vanishing scale) δi and δ′i differ only at lower normal or-
der. The polynomials in the LS condition have degrees 0, 1, . . . , k/2 − 1
in τ respectively, and thus are linearly independent in C[τ ]/C[τ ]M+(τ),
since degM+ = k/2. For mD and mN , we need to use Lemma 6.3. First
notice that by Remark 6.2, the principal parts of the boundary opera-
tors in the ordinary Riemannian iterated Dirichlet and Neumann problems,
((−∆)k/2, SmD) and ((−∆)k/2, SmN), must take the form (14) with cq = 1.
After normalization, (26) shows that a similar statement holds for the prob-
lems ((−1)k/2 � k, δmD or N) and ((−1)k/2 � k, δ

′
mD or N

), when these problems
are defined. Thus δ′mD or N

(or δmD or N) is related to SmD or N as B′
m is to Bm

in Lemma 6.3. (An important point is that the parities of the mj agree,
so we can adjust at lower order using linear combinations with tangential
differential operator coefficients.) The problems ((−∆)k/2, SmD or N) satisfy
the LS condition by Remark 6.1. Thus Lemma 6.3 gives the conclusion. �

8. Construction of the non-local invariant operators.

So far, we have constructed conformally invariant boundary problems
((−1)k/2 � k , δm) for all even positive integers k, except when n is even
and k > n (Theorem 5.1). We have also constructed conformally invariant,
formally self-adjoint modifications of these problems, the ((−1)k/2 � k , δ

′
m),

as long as m satisfies (17), and k is further restricted by excluding the case
in which n is even and k = n (Proposition 7.1). Furthermore, we have
shown that these problems, in the cases m = mD , mN , or m0 , are elliptic
in the sense of the Lopatinski-Shapiro condition based on a properly elliptic
interior differential operator (Theorem 7.4). The fact that the LS condition
is satisfied allows application of the general results of Proposition 6.4 on ex-
istence and uniqueness of solutions (given vanishing deficiency indices), and
on elliptic regularity. These conformally invariant problems may be called
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the conformal iterated Dirichlet problem (in the case m = mD), the confor-
mal iterated Neumann problem (in the case m = mN), and the conformal
generalized Dirichlet problem (in the case m = m0).

By Proposition 6.4, the problems

((−1)k/2 � k , δ
′
mD or N or 0

),

when defined, have unique smooth solutions for all choices of smooth data,
provided they have vanishing null space. “Vanishing null space” for the even
(resp. odd) problem of this type is the condition that there is no non-trivial
smooth density ψ for which

� kψ = 0 and δ′mj
ψ = 0, all mj .(27)

For the problems which are not known to be formally self-adjoint (those
involving the δm as opposed to the δ′m) we must assume that a realization
of the boundary value problem as an operator is bijective.

Note that for the construction of the classical Dirichlet-to-Neumann op-
erator, only the Dirichlet problem needs to be uniquely solvable – one solves
the Dirichlet problem, and then computes Neumann data of the solution.
The same principle applies, of course, to the problems we study – a “source
problem” needs to be uniquely solvable; a “target problem” is also involved,
but its solvability properties are immaterial. (We will, however, make use of
the ellipticity of the target problem.) We shall now construct our conformal,
higher-order generalizations of the Dirichlet-to-Neumann operator.

Let M be an n-dimensional conformal manifold of positive definite metric
signature, with smooth boundary Σ. Suppose that k is even and, if n is even,
suppose that k < n. Let m = mDorNor 0 , and suppose that the problem
( � k , δ

′
m) has vanishing null space. Take a density u on Σ, and boundary

data

δ′mj
ψ = u, δ′mi

ψ = 0 for all i 6= j,(28)

where j is a chosen element of {1, . . . , k/2}. Let E′
k,mj

be the solution
operator for the system � kψ = 0 with (28); by construction, E′

k,mj
is

an invariant operator carrying EΣ[k−n−2mj

2 ] to E [k−n
2 ]. We can now take

E′
k,mj

u and apply δ′` (or δ`). (` need not be one of the normal orders in m.)
Composing,

EΣ[k−n−2mj

2 ]
E′

k,mj−−−−−→ E [k−n
2 ]

δ′`−−−−−→ EΣ[k−n−2`
2 ],

we obtain invariant operators

P ′
k,m,mj ,` : EΣ[k−n−2mj

2 ] → EΣ[k−n−2`
2 ].

We have established the following theorem:
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Theorem 8.1. Let M be an n-dimensional conformal manifold of positive
definite metric signature, with smooth boundary Σ. Suppose that k is even
and, in case n is even, suppose that k < n. Let m = mDor Nor 0 , and suppose
that the problem ( � k , δ

′
m) has vanishing null space. Suppose that ` < k.

Then there exist canonical conformally invariant operators

P ′
k,m,mj ,` : EΣ[k−n−2mj

2 ] → EΣ[k−n−2`
2 ].

We caution that many of these operators (those for which mj + ` 6= k−1)
are “morally zero”, in the sense that they vanish for the standard conformal
class on the unit ball. (See Theorem 8.4 and its proof below. There we
show vanishing of these operators on the unit hemisphere, which is in the
conformal class of the unit ball.) As a consequence, in the case of general M ,
though the construction of P ′

k,m,mj ,` appears to produce a pseudo-differential
operator of order ` −mj , Theorem 8.4 will show that for mj + ` 6= k − 1,
the order of this operator is actually at most `−mj − 1.

We shall show below that the operator P ′
k,m,mj ,k−1−mj

has principal

part (−∆Σ)(k−1−2mj)/2, up to multiplication by a non-zero constant (Theo-
rem 8.4), and is formally self-adjoint (Theorem 8.5).

Theorem 8.1 did not provide a conclusion for n even and k = n, owing
to the fact that we have not constructed formally self-adjoint boundary
problems in this case. Making a stronger assumption, however, we can
cover this case.

Theorem 8.2. Let (M,Σ) be as in Theorem 8.1, and suppose that k is even
and

n is odd and m = mDorNor 0, or
n is even, k < n, and m = mDor Nor 0, or
n is even, k = n, and m = mDor 0.

Suppose further that the problem

� kψ = 0, δmψ prescribed

is uniquely solvable. In case n is even, suppose that ` ≤ n − 2. Then there
exist canonical, conformally invariant operators

Pk,m,mj ,` : EΣ[k−n−2mj

2 ] → EΣ[k−n−2`
2 ].

The proof of Theorem 8.1 above makes it clear how Theorem 8.2 follows
from the stronger assumption; here we use the operators δ` , as opposed to
the δ′` , together with solution operators Ek,mj

based on the (unprimed) δ` .
Again, one cannot expect the Pk,m,mj ,` to be interesting except in the case
mj + ` = k − 1.

If we treat Σ as the fundamental object, we may improve Theorem 8.1
by weakening our assumption involving (27) somewhat. Fixing a conformal
structure on Σ, there are many choices for an extending conformal structure
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on M , and in fact many topological types of M admitting Σ as boundary.
Even if our boundary problem has a kernel on M , it need not have one for
a different choice M ′:

Corollary 8.3. If Σ is a compact conformal manifold of dimension nΣ ≥
2, and M is a compact conformal manifold with boundary Σ′ conformally
diffeomorphic to Σ, and (27) has no non-trivial solutions on (M,Σ′), then
conformally invariant operators with the properties asserted in Theorem 8.1
exist on Σ, subject to that theorem’s constraints on (n, k,m, `).

There is, of course, an analogous corollary to Theorem 8.2.
The Dirichlet-to-Neumann operator is known to be a pseudo-differential

operator with leading symbol |η| = (gab
Σ ηaηb)1/2 [46]. (Here we use η to

denote an indeterminate vector from EΣ
a , to distinguish it from an indeter-

minate vector ξ from Ea, and in harmony with the notation of Section 6.)
In fact, its coordinate-dependent total symbol has a polyhomogeneous ex-
pansion

σ(B)(x, η) ∼ |η|+
∞∑

k=0

p−k(x, η),

where p−k is homogeneous in η of order −k; i.e., for λ > 0,

p−k(x, λη) = λ−kp−k(x, η).

One might imagine that each operator Pk,m,mj ,` has similar properties,
and in particular, has leading symbol a non-zero constant times |η|`−mj .
This, however, is true if and only if the parameters satisfy the condition

mj + ` = k − 1,(29)

as we shall now show. Note that for the previously known operators, namely
the conformal Dirichlet-to-Robin and Robin-to-Dirichlet operators when
they exist, (29) is satisfied: k − 1 = 1, and {mj , `} = {0, 1}.

Theorem 8.4. Each operator P ′
k,m,mj ,` constructed in Theorem 8.1 is pseu-

dodifferential. The coordinate-dependent total symbol of P ′
k,m,mj ,` has a poly-

homogeneous expansion

σ(P ′
k,m,mj ,`)(x, η) ∼ ck,m,mj ,`|η|`−mj +

∞∑
k=0

p`−mj−k(x, η),

where |η|2 = gabηaηb = gab
Σ ηaηb, each pd is homogeneous in η of order d, and

ck,m,mj ,` is a universal (independent of (M,Σ)) constant. Let (m,m′) =
(mD,mN) or (mN,mD), and suppose

mj ∈ m, ` ∈ m′.(30)

Then ck,m,mj ,` is non-zero if and only if mj + ` = k − 1. In particular,
P ′

k,m,mj ,` has order `−mj if and only if mj + ` = k − 1.
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Proof. The pseudo-differential character of P ′
k,m,mj ,` and the existence of a

polyhomogeneous expansion with the orders stated follows just as for the
classical Dirichlet-to-Neumann operator.

Let x be a fixed but arbitrary point of M . Because the construction
of the operators is equivariant with respect to the structure group O(nΣ),
the leading symbol is O(nΣ)-invariant. Thus, when restricted to the unit
sphere in EΣ

a , it is constant. Because of its homogeneity, it thus has the form
f(x)|η|`−mj . On the other hand, the formula for the leading symbol of the
solution operator (our Ek,mj

) given in [36], (6.4.19) shows that, for tangen-
tial ηa, this leading symbol depends only on the roots τ+

j (as in Section 6,
with A = (−1)k/2 � k) and on |η|. Since (−1)k/2 � k has leading symbol |ξ|k,
these τ+

j are all
√
−1|η|, and thus depend only on |η|. The formula as given

in [36] is good for problems of type m0 , but [36], Section 6.5 indicates the
extension of the formula to the case of general m. This shows that f(x) is
a constant function, and in fact a universal constant ck,m,mj ,`.

Now suppose that (m,m′) = (mD,mN) or (mN,mD), and that we are in
the situation of (30). Consider the example in which M is the n-dimensional
unit hemisphere Hn with its standard conformal class (containing the round
n-sphere metric), and the boundary Σ is the equator Sn−1, inheriting its
standard conformal class under pullback by the inclusion. This conformal
class contains the standard round (n − 1)-sphere metric. We first need to
know that the construction of the operators P ′

k,m,mj ,` applies to this case;
i.e., that the kernel of ( � k, δ

′
m) vanishes on the hemisphere. First note that

(−1)k/2( � k)Sn =
Γ
(
A+ k

2 + 1
2

)
Γ
(
A− k

2 + 1
2

)
=

(
A− k−1

2

)
. . .
(
A− 1

2

) (
A+ 1

2

)
. . .
(
A+ k−1

2

)
,

where

A =

√
−∆Sn +

(
n− 1

2

)2

.

(See [8], Remark 2.23.) In particular, the spherical harmonic decomposi-
tion of functions on Sn gives a spectral resolution of (−1)k/2 � k there; the
eigenvalues are

λj = 2j+n−k
2

(
2j+n−k

2 + 1
)
. . .
(

2j+n+k
2 − 1

)
.

If n is odd, these are products of proper half-integers; if n is even, the bottom
eigenvalue is

n−k
2

(
n−k

2 + 1
)
. . .
(

n+k
2 − 1

)
> 0.

In particular, all eigenvalues are non-zero.
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We now claim that on Hn, the operator δ′` has the form{
c`(∇N )` +D`−2(∇N )`−2 + · · ·+D0 (` even),
c`(∇N )` +D`−2(∇N )`−2 + · · ·+D1∇N (` odd),

(31)

where c` is a non-zero constant, and the Di are tangential differential op-
erators. The leading normal order term has already been established for
general M . The hemisphere is locally symmetric (i.e., has ∇R = 0) with
totally geodesic boundary (vanishing second fundamental form L). A check
of parity considerations in the local invariant theory shows that under these
circumstances, there can be no terms in δ′` with a normal derivative count
of the “wrong” (opposite to `) parity. (Coefficients of terms with the wrong
parity must involve the second fundamental form and/or its derivatives, odd
derivatives of the Riemann tensor, or the quantity RabcN , where a, b, c are
concrete tangential indices and N the unit normal index. However, in gen-
eral, RabcN = ∇Σ

b Lac − ∇Σ
aLbc on Σ. Thus RabcN vanishes in the present

setting.)
As a consequence, the system

(δ′mu = 0)m∈m(32)

is equivalent to the system

((∇N )mu = 0)m∈m.(33)

Indeed, using (32), we get (33) by induction on m using (31). Given (33),
(32) is immediate by (31). Thus we may replace the system � ku = 0 with
(32) with the system � ku = 0 with (33). By the O(n+1) invariance of � k

on Sn, we can write explicit spectral resolutions of the problems � k with
(33): The eigensections are the f |Hn for spherical harmonics f which are
odd (resp. even) under reflection across the equator when m = mD (resp.
m = mN). (The spherical harmonics give a complete orthonormal set in
L2(Sn), and thus in L2(Hn).) Equivalently, these are spherical harmonics of
odd (resp. even) degree; i.e., degree of parity opposite to that of the elements
of m). We computed above, however, that the eigenvalue of � k > 0 on
each spherical harmonic degree is non-zero. This shows that the systems in
question have no kernel, and thus the choice (M,Σ) = (Hn, Sn−1) provides
us with conformally invariant operators P ′

k,m,mj ,` on densities over Sn−1.
Conformally invariant operators are in particular invariant under the

identity component of the conformal diffeomorphism group of Sn−1, viz.
SO0(n, 1). Thus the realization of P ′

k,m,mj ,` on the sphere is intertwining
between the spherical principal series representations carried by the source
and target spaces,

ESn−1

[
k−n−2mj

2

]
and ESn−1

[
k−n−2`

2

]
.(34)
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For this intertwinor to be non-zero, the values of the Casimir operator of
so(n, 1) in these two representations,

(
k−n−2mj

2 + n−1
2

)2
−
(

n−1
2

)2 and
(

k−n−2`
2 + n−1

2

)2 − (n−1
2

)2
,

(35)

must agree. (See, e.g., [14], Lemma 4.1 and Example 3.a.) This condition
is equivalent to

k − 1− 2` = ±(k − 1− 2mj).(36)

The two solutions are ` = mj , and (29). The first of these is not available
to us, since mD ∩mN = ∅, and thus on (Hn, Sn−1), we have P ′

k,m,mj ,` 6=
0 ⇒ (29). In particular, the universal constants ck,m,mj ,` vanish when (29)
is not satisfied.

We now claim that P ′
k,m,mj ,k−1−mj

6= 0 on (Hn, Sn−1). For if
P ′

k,m,mj ,k−1−mj
= 0, the vanishing of the P ′

k,m,mj ,` for ` 6= k − 1 − mj

established above shows that for all u ∈ ΓE [k−n−2mj

2 ], all the m′ data of
E′

k,mj
u vanish. This is a contradiction, as it puts the infinite-dimensional

space E′
k,mj

ΓE [k−n−2mj

2 ] inside the space ker( � k , δ
′
m′) which, as the kernel

of an elliptic boundary problem, is finite dimensional. (In fact, this last space
is 0, as shown above. Since the boundary data of a section may be recovered
from the section itself, E′

k,mj
is injective. E′

k,mj
ΓE [k−n−2mj

2 ] is infinite di-

mensional because it is the injective image of ΓE [k−n−2mj

2 ].) However, there
is a unique (up to a constant factor) principal series intertwinor between the
line bundles in question when (29) holds, viz. (1) for 2r = ` − mj . Since
`−mj = k − 1− 2mj is odd, this takes the form

Ak−1−2mj
=



(
B − k−2−2mj

2

)
. . . (B − 1)B(B + 1) . . .

(
B + k−2−2mj

2

)
,

2mj < k − 1,[(
B + k−2−2mj

2

)
. . . (B − 1)B(B + 1) . . .

(
B − k−2−2mj

2

)]−1
,

2mj > k − 1.

(37)

(See [14], Example 3.a for the derivation of (1). Uniqueness is a special case
of [9], Lemma 3.5. The formula (37) first appeared in [8], Remark 2.23.)
Thus P ′

k,m,mj ,k−1−mj
= ak,m,mj ,k−1−mj

A`−mj
, with ak,m,mj ,k−1−mj

6= 0.
The leading symbol of A`−mj

is |η|`−mj , and thus the universal constant
ck,m,mj ,k−1−mj

is identical with ak,m,mj ,k−1−mj
. �

Theorem 8.5. The operators P ′
k,m,mj ,k−1−mj

of Theorem 8.1 are formally
self-adjoint.
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Proof. Proof If u, v ∈ ΓEΣ[k−n−2mj

2 ], then by (23), (24), and (25),∫
Σ
{uP ′

k,m,mj ,k−1−mj
v − (P ′

k,m,mj ,k−1−mj
u)v}

=
∫

Σ
{(δ′mj

E′
k,mj

u)δ′k−1−mj
E′

k,mj
v − (δ′k−1−mj

E′
k,mj

u)δ′mj
E′

k,mj
v}

=
∫

Σ
sk′� k

(E′
k,mj

u,E′
k,mj

v)

= −
∫

M
{(E′

k,mj
u) � kE

′
k,mj

v − ( � kE
′
k,mj

u)E′
k,mj

v}

= 0,

since � kE
′
k,mj

u = � kE
′
k,mj

v = 0. �

9. Final remarks.

The operators we construct have an interesting relation to the Poisson trans-
form on symmetric spaces [33]. (We thank Gestur Ólafsson and Bent Ørsted
for enlightening discussions on this point.) Given a semisimple Lie group G,
the Poisson transform Pλ carries functions on the generalized boundary G/P
of the symmetric space G/K (K a maximal compact subgroup, P a mini-
mal parabolic subgroup). More precisely, for λ ∈ a∗ (where k + a + n is the
Iwasawa decomposition), we get a transform Pλ carrying the spherical prin-
cipal series representation space with a∗-parameter λ to a joint eigenspace of
the invariant differential operators on G/K; the eigenvalues involved being
determined by λ.

In the relevant special case of this situation, G = SO0(n, 1), the symmetric
space G/K is the n-dimensional hyperboloid Hn, and G/P is the (n − 1)-
dimensional sphere Sn−1. Assigning the standard metrics (of |sectional
curvature| one) to both spaces, the pair (Hn, Sn−1), as a manifold with
boundary, now has the same conformal structure as our previous exam-
ples (Bn, Sn−1) and (Hn, Sn−1). The metric pair (gHn , gSn−1) cannot be
related to the pair (gBn , gSn−1) by a smooth conformal factor, however, as
gBn = Ω2gHn with Ω → ∞ as we approach the boundary; this, in fact, is a
commonplace occurrence in the setting of conformal structure on manifolds
with boundary. One way to handle this and still describe things in terms of
a scale (choice of Riemannian metric) is to think of the Poisson transform
as a composition

boundary data on Sn−1 extension op.−−−−−−−−→ densities on Bn

rescaling−−−−−−−−→ densities on Hn,

where in the last step we have exploited the conformal invariance of the
interior operators.
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Consider the interior operator � k, where, in case n is even, we assume
k < n. From [8], Remark 2.23, we know this operator on Sn to be

k/2∏
a=1

(
−∆−

(
a− 1

2

)2

+
(
n− 1

2

)2
)
.

The constants involved come from curvatures in the arbitrarily curved ex-
pression for � k, so they are sign-reversed upon passage from Sn to Hn.
Thus

� k =
k/2∏
a=1

(
−∆ +

(
a− 1

2

)2

−
(
n− 1

2

)2
)

on Hn.

In particular, any µ-eigenfunction of ∆ with

µ =
(
a− 1

2

)2

−
(
n− 1

2

)2

a = 1, . . . , k/2

is annihilated by � k.
Suppose now that we start with boundary data on Sn−1 that is focused at

normal order m. That is, we take boundary data of some type m 3 m, and
assume the non-m entries vanish. As noted in (35), the Casimir operator of
so(n, 1) takes the value

µn,k,m :=
(
k − n− 2m

2
+
n− 1

2

)2

−
(
n− 1

2

)2

on the space of such data. Since the Casimir is represented by ∆ on the
interior and our extension operators are G-maps by conformal invariance,
we have

E
[
k − n− 2m

2

]
extension−−−−−→ Eig (∆, µn,k,m) .

For this extension ϕ 7→ Eϕ, it is natural to ask where our focused data ϕ
land upon restriction to m′-data on Sn. As noted in the discussion of (36),
by looking at Casimir values again, the only possibility is to land in data
focused at normal order k − 1 −m. Since the restriction operator is non-
zero, it provides an inverse Poisson transform for a value of the a∗ parameter
which is dual to the original one. In addition, the Knapp-Stein intertwining
operator from (37),

Ak−1−2m : E
[
k − n− 2m

2

]
→ E

[
−k − n+ 2m+ 2

2

]
has now been factored into Poisson and inverse Poisson transform operators
(an extension and a restriction):

Ak−1−2m = P−1
(k−1−2m)/2P−(k−1−2m)/2,(38)

where the subscripts denote rho-shifted a∗ parameters, and the factorization
is through the interior eigenspace Eig (∆, µn,k,m).
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There are known problems with the generalization of the classical pro-
cess corresponding to (38) to the symmetric space case for more general
orders; i.e., more general q in P−1

q P−q . The values of q giving problems are
determined by the location of the zeros of the Harish-Chandra c-function;
these may be read off from the Gindikin-Karpelevič formula (see, e.g., [15],
Theorem 2.4). By [15], Remark 2.6, for SO0(n, 1), there are no such zeros
for n odd; and for n even, the zeros do not come into play for the values
of q involved in the above remarks. As a result, the intertwinors Ak−1−2m

from (38) are indeed successfully factored into Poisson and inverse Poisson
transforms.

We conclude with the following short remarks:
In the proof of Theorem 8.4, we have used the ellipticity of the target prob-

lem ((−1)k/2 � k, δ
′
m′), as well as that of the source problem ((−1)k/2 � k, δ

′
m).

If we run an analogous argument with non-complementary source and tar-
get problems, we may encounter the solution ` = mj of (36). The operator
P ′

k,m,mj ,mj
that we get in this case is simply the identity.

In the case of the sphere Sn−1 bounding the hemisphere Hn used in
the proof of Theorem 8.4, B2 is a differential operator with principal part
−∆Sn−1 . Either Ak−1−2mj

or its inverse thus a composition of B with |k −
2− 2mj |/2 differential operators of the form B2 − p2.

In the conformally flat case,

DA · · ·DB︸ ︷︷ ︸
k

u = XA · · ·XB � ku

(see [29]). It follows from this and the definition of δ` that the operators
Pk,m,mj ,` for ` ≥ k vanish on conformally flat structures.

In general, for a given odd integer h, we get several constructions of
pseudo-differential operators with principal part (−∆Σ)h/2, corresponding
to the different values of k > h allowed by Theorem 8.1.

Of course we also have conformally invariant operators with principal
parts which are even powers of (−∆Σ)1/2, namely the � Σ

k intrinsic to Σ.
When these have trivial null space, their inverses are also conformally in-
variant pseudo-differential operators, and the range of orders for which we
have conformally invariant, formally self-adjoint operators thus extends: If
nΣ is odd, we get operators with principal part (−∆Σ)h/2 for all even h, and
for odd |h| < nΣ. If nΣ is even, we get operators for all odd h, and for even
|h| ≤ nΣ.

The operators described in Corollary 8.3 are heavily dependent on the
choice of interior M . It may be possible to construct operators which are
somewhat more intrinsic, by demanding that our choice of M contain a
given collar around the boundary, with a given conformal structure. This
assures the preservation of invariant local constructions that use the bound-
ary embedding. Under these circumstances, we would conjecture that the
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operators P ′
k,m,mj ,k−1−mj

still depend on the choice of M , but that any fi-
nite part of the expansion in Theorem 8.4, is independent of this choice, the
coefficients being invariants of the boundary and boundary embedding.

Finally, in some situations, the following repackaging of the information in
Theorem 8.1 might be useful. Suppose that both (� k , δmD) and ( � k , δmN)
have vanishing null space on (M,Σ). Then one can collect the P ′

k,m,mj , emi

for mj ∈ mD and m̃i ∈ mN into an operator PDto N with a (k/2) × (k/2)
block decomposition. For any ψ ∈ E [k−n

2 ] with � kψ = 0, this operator
carries the conformal iterated Dirichlet data of ψ to the conformal iterated
Neumann data of ψ. There is a similarly defined operator PNtoD , and in
fact PDto N and PNtoD are inverse to each other. One can combine these
operators in the obvious way to get a natural (non-local) involution on the
Cauchy data space. In the model case of the hemisphere with its bounding
equator, the proof of Theorem 8.4 shows that, if we keep the ordering mD =
(0, 2, . . . , k − 2) but reverse the ordering of the odd Cauchy data so that
mN = (k − 1, k − 3, . . . , 1), then the above-mentioned (k/2) × (k/2) block
representations have non-zero entries only on the diagonal. As a result, in
the case of general (M,Σ), the graded leading symbols of these operators
are supported on the diagonal. These operators are, moreover, formally
self-adjoint: If u, v are lists of conformal iterated Dirichlet data, then∫

Σ
{uPDto Nv − (PDto Nu)v} = 0,

since the expression on the left is a sum of terms of the form calculated (to
be zero) in the proof of Theorem 8.5. A similar statement holds for PNtoD .
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les mathématiques d’aujourd’hui’, Astérisque, (1985), 95-116, MR 87g:53060,
Zbl 602.53007.



CONFORMALLY INVARIANT NON-LOCAL OPERATORS 59

[27] P.B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index The-
orem, CRC Press, Boca Raton, 1995, MR 98b:58156, Zbl 856.58001.

[28] A.R. Gover, Conformally invariant operators of standard type, Quart. J. Math., 40
(1989), 197-207, MR 90k:58254, Zbl 683.53063.

[29] , Invariants and calculus for conformal geometry, to appear in Advances in
Mathematics.

[30] , Aspects of parabolic invariant theory, Supp. Rend. Circ. Matem. Palermo,
Ser. II, Suppl., 59 (1999), 25-47, MR 2001a:58047.

[31] C.R. Graham, R. Jenne, L. Mason and G. Sparling, Conformally invariant powers of
the Laplacian, I: Existence, J. Lond. Math. Soc., 46 (1992), 557-565, MR 94c:58226,
Zbl 788.53011.

[32] G. Grubb, Functional Calculus of Pseudodifferential Boundary Problems, Second Edi-
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