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SPECTRUM AND ASYMPTOTICS OF THE
BLACK–SCHOLES PARTIAL DIFFERENTIAL EQUATION

IN (L1, L∞)-INTERPOLATION SPACES

Wolfgang Arendt and Ben de Pagter

Let E be an (L1, L∞)-interpolation space. Then (TE(t)f)(x)
= f(e−tx) defines a group on E. It is strongly continuous if
and only if E has order continuous norm. In any case, a
generator AE can be associated with TE. It is shown that
its spectrum is the strip {αE ≤ Re λ ≤ αE}, where αE and
αE are the Boyd indices of E. The operator BE = (AE)2

generates a holomorphic semigroup which governs the Black–
Scholes partial differential equation ut = x2uxx + xux, whose
well-posedness, spectrum and asymptotics in E are studied.

0. Introduction.

Let E be an (L1, L∞)-interpolation space on (0,∞), R or T. Then the upper
and lower Boyd indices αE and αE are of great importance. For example,
the Hilbert transform is bounded on E if and only if 0 < αE and αE < 1.
Also norm convergence of the Fourier series can be expressed in terms of the
Boyd indices (see [BS]). In his paper [Bo], Boyd computes the spectrum
of the Cesaro operator in terms of the Boyd indices. Here we consider a
natural one-parameter group of dilations (TE(t))t∈R on E. It turns out that
the Boyd indices are just the growth bounds (or exponential bounds) of this
group.

To be more precise, we consider an (L1, L∞)-interpolation space E on
(0,∞) througout this article. The group TE on E is defined by

(TE(t)f)(x) = f(e−tx)

for all f ∈ E, t ∈ R, x > 0. Now the first problem is that TE is not strongly
continuous, in general. In fact, one of our main results says that TE is a
C0-group if and only if E has order continuous norm.

Still it is possible to associate a generator AE to TE without any further
condition on the space, and we show that its spectrum is the strip

σ(AE) = {λ ∈ C : αE ≤ Reλ ≤ αE}.
Thus the spectrum of AE varies very much in function of the space E. It
turns out that the Cesaro operator is just (1 − AE)−1. Thus it is bounded
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2 WOLFGANG ARENDT AND BEN DE PAGTER

if and only if αE < 1. In that case we obtain its spectrum just by applying
the result above on the spectrum of AE .

Of particular interest is the operator BE = (AE)2. In fact, BE is a degen-
erate elliptic operator given by (BEf)(x) = x2f ′′(x) + xf ′(x) with suitable
domain. As a consequence of the results on AE we obtain much information
on BE . It always generates a generalized holomorphic semigroup VE on E.
So this semigroup gives the solution of the Black-Scholes partial differential
equation

(BS) ut = x2uxx + xux.

We show that the semigroup VE is strongly continuous if and only if E has
order continuous norm. Nevertheless, one of the main results says that TE

as well as VE are always σ(E,E′n)-continuous, where E′n is the Köthe dual
of E; i.e., the space of all functionals given by a measurable function. This
allows us to formulate precisely well-posedness for (BS) in E. Finally, we
consider perturbations of the operator BE . The results imply in particular
well-posedness of the more general equation

ut = αx2uxx + βxux + γu

where α > 0 is a constant and β, γ ∈ L∞(0,∞).

Because of its importance in mathematical finance (see [BlSc]), the Black-
Scholes partial differential equation has been investigated most recently. We
refer to Gozzi, Monte, Vespri [GMV], Barucci, Gozzi, Vespri [BGV] and
Colombo, Giuli, Vespri [CGV] for further information. We would like to
emphasize that the motivation for this work lies in the interesting relations
between properties of interpolation spaces and the semigroups considered
here. It is not at all a contribution to modelling in mathematical finance.

The paper is organized in the following way: After some preliminaries
we show in Section 2 that the semigroup TE is strongly continuous if and
only if E has order continuous norm. In that case we can use a result
of Greiner [G] to determine the spectrum of E. In the less conventional
situation where E does not have order continuous norm we use the theory
of resolvent positive operators and integrated semigroups. Now the situation
is much more complicated, and Section 3 is devoted to the generalization
of Greiner’s decomposition theorem to resolvent bipositive operators. In
Section 4 we prove the results on the spectrum in the general case. Here it
is also shown that the semigroup TE is σ(E,E′n)-continuous. In Section 5
we investigate the Black-Scholes operator BE = (AE)2. Its perturbations
are studied in Section 6.
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1. Preliminaries.

On the interval (0,∞) we consider Lebesgue measure (dm or dx). For a
Borel measurable function f : (0,∞) → C the distribution function is
defined by d|f |(λ) = m{t ∈ (0,∞) : |f(t)| > λ} for λ > 0. We will consider
only functions f for which d|f |(λ) < ∞ for some λ > 0. The space of all
such functions will be denoted by S0(0,∞). For f ∈ S0(0,∞) we define

f∗(t) = inf{λ > 0 : d|f |(λ) ≤ t} for t > 0.

Then f∗ : (0,∞) → (0,∞) is decreasing, right-continuous and equimea-
surable with |f | (i.e., df∗ = d|f |). The function f∗ is called the decreasing
rearrangement of |f | (see e.g., [BS]). In particular we recall that∫ t

0
f∗(s)ds = sup

{∫
A

|f |dm : A ⊂ (0,∞) measurable and m(A) ≤ t

}

(by [BS, Prop. 3.3., p. 53]).

Suppose that E is a linear subspace of S0(0,∞), which is a Banach space
with respect to the norm ‖·‖E . Then E will be called a rearrangement
invariant Banach function space if

f ∈ E , g ∈ S0(0,∞) and g∗ ≤ f∗ imply that g ∈ E and ‖g‖E ≤ ‖f‖E

(see e.g., [KPS]). If E is such a rearrangement invariant space on (0,∞),
we always have the continuous embeddings

L1 ∩ L∞(0,∞) ⊆ E ⊆ (L1 + L∞)(0,∞).

Here the spaces L1 ∩ L∞ and L1 + L∞ are equipped with the norms

‖f‖L1∩L∞ = max {‖f‖1 , ‖f‖∞},
‖f‖L1+L∞ = inf {‖g‖1 + ‖h‖∞ : f = g + h,

g ∈ L1(0,∞), h ∈ L∞(0,∞)},
respectively.

Given f, g ∈ S0(0,∞), we say that g is submajorized by f (in the sense
of Hardy-Littlewood-Polya) if∫ t

0
g∗(s)ds ≤

∫ t

0
f∗(s)ds for all t > 0,

which is denoted by g ≺≺ f .
Using this submajorization relation the exact (L1, L∞)-interpolation spaces

can be characterized. In fact, it is a result of A.P. Calderon (e.g., see [BS,
Theorem 2.12]) that a Banach space (E, ‖ ‖E), with E ⊆ (L1 + L∞)(0,∞),
is an exact (L1, L∞)-interpolation space if and only if,

f ∈ E, g ∈ S0(0,∞) and g ≺≺ f imply that g ∈ E and ‖g‖E ≤ ‖f‖E .
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In particular, such interpolation spaces are rearrangement invariant Ba-
nach function spaces. Although some of the results in this paper hold for
more general rearrangement invariant spaces, we will assume that the spaces
we consider are exact (L1, L∞)-interpolation spaces. This class includes
many of the classical function spaces (e.g., Lp-spaces, Orlicz spaces, Lorenz
spaces, Marcinkiewiecz spaces).

If E is a rearrangement invariant Banach function space on (0,∞) which
is monotone complete (i.e., 0 ≤ fn ∈ E, fn ≤ fn+1 a.e., sup

n
‖fn‖E < ∞

implies that there exists 0 ≤ f ∈ E such that fn ↑ f a.e. and ‖f‖E =
sup

n
‖fn‖E), then E is an exact (L1, L∞)-interpolation space (see e.g., [BS,

Theorem 2.2, p. 106]).
Similarly, any rearrangement invariant Banach function space with order

continuous norm is an exact (L1, L∞)-interpolation space.
Since every interpolation space can be renormed in such a way that it

becomes an exact interpolation space (see [BS]), in the following we will
assume that the interpolation space is exact, throughout the paper.

For s > 0 the dilation operator Ds, acting on measurable functions f on
(0,∞), is defined by

Dsf(t) = f(t/s), t > 0.

Clearly, the operators Ds are bounded on any (L1, L∞)-interpolation
space E and satisfy ‖Ds‖E ≤ max (1, s) for all s > 0. Note that (Dsf)∗ =
Dsf

∗ for all s > 0 and all f ∈ E, so in particular ‖Dsf‖E is an increasing
function of s.

For such a space E the upper and lower Boyd indices are defined by

αE = lim
s→∞

log ‖Ds‖
log s

, αE = lim
s↓0

log ‖Ds‖
log s

respectively, and satisfy 0 ≤ αE ≤ αE ≤ 1 (see e.g., [BS], [KPS]). By
way of example, if E = Lp ∩ Lq(0,∞), 1 ≤ p ≤ q ≤ ∞, (equipped with
the norm ‖f‖E = max (‖f‖p , ‖f‖q)), then αE = 1/q, αE = 1/p.

In Section 4 we will use the following result.

Lemma 1.1. Let E be an (L1, L∞)-interpolation space on (0,∞) and µ a
(positive) Borel measure on (0,∞).

Suppose that f ∈ E satisfies
∫∞
0 ‖Dsf‖E dµ(s) < ∞.

Then
∫∞
0 Dsf(x)dµ(s) is absolutely convergent for almost all x > 0,∫ ∞

0
Dsf(·)dµ(s) ∈ E and

∥∥∥∥∫ ∞

0
Dsf(·)dµ(s)

∥∥∥∥
E

≤
∫ ∞

0
‖Dsf‖E dµ(s).

In particular, if
∫∞
0 ‖Ds‖E dµ(s) < ∞, then

Tµf(x) =
∫ ∞

0
Dsf(x)dµ(s), a.e. x ∈ (0,∞),
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defines a bounded linear operator in E satisfying

‖Tµ‖E ≤
∫ ∞

0
‖Ds‖E dµ(s).

Proof. The proof is divided in two parts.

1. Suppose that f ∈ (L1 + L∞)(0,∞) is such that
∫∞
0 Dsf

∗(·)dµ(s) ∈
(L1 + L∞)(0,∞). We claim that

∫∞
0 Dsf(x)dµ(s) is absolutely convergent

for a.e. x ∈ (0,∞), and that∫ ∞

0
Dsf(·)dµ(s) ≺≺

∫ ∞

0
Dsf

∗(·)dµ(s).

Indeed, for any measurable set A ⊆ (0,∞) with m(A) < ∞ we have∫
A

(∫ ∞

0
|Dsf(x)|dµ(s)

)
dx =

∫ ∞

0

(∫
A
Dsf(x)dx

)
dµ(s) ≤

∫ ∞

0

(∫ m(A)

0
Dsf

∗(x)dx

)
dµ(s) =

∫ m(A)

0

(∫ ∞

0
|Dsf

∗(x)|dµ(s)
)
dx < ∞.

This shows in particular that
∫∞
0 |Dsf(x)|dµ(s) < ∞ for a.e. x ∈ (0,∞).

Moreover, ∫ t

0

(∫ ∞

0
|Dsf(·)|dµ(s)

)∗
(x)dx

= sup
{∫

A

(∫ ∞

0
|Dsf(x)|dµ(s)

)
dx : m(A) ≤ t

}
≤
∫ t

0

(∫ ∞

0
Dsf

∗(x)dµ(s)
)
dx for all t > 0,

and since |
∫∞
0 Dsf(x)dµ(s)| ≤

∫∞
0 |Dsf(x)|dµ(s) the claim follows.

2. Now assume that f ∈ E is such that
∫∞
0 ||Dsf ||Edµ(s) < ∞. Since

||Dsf ||E = ||Dsf
∗||E , it follows from [KPS, II.4.7] that

∫∞
0 Dsf

∗(·)dµ(s) ∈
E and ∥∥∥∥∫ ∞

0
Dsf

∗(·)dµ(s)
∥∥∥∥

E

≤
∫ ∞

0
‖Dsf‖E dµ(s).

From 1. above it follows that
∫∞
0 Dsf(x)dµ(s) is absolutely convergent

for a.e. x ∈ (0,∞), and∫ ∞

0
Dsf(·)dµ(s) ≺≺

∫ ∞

0
Dsf

∗(·)dµ(s).
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Since E is an exact (L1, L∞)-interpolation space, this implies that∫∞
0 Dsf(·)dµ(s) ∈ E and∥∥∥∥∫ ∞

0
Dsf

∗(·)dµ(s)
∥∥∥∥

E

≤
∫ ∞

0
‖Dsf‖Dsf ‖E dµ(s).

Finally it should be observed that the function
∫∞
0 Dsf(·)dµ(s) does not

depend (modulo Lebesgue null sets) on the choice of the representative f .
�

Next we recall some notions and results concerning resolvent positive
operators which will be needed later. Let E be a Banach lattice. An operator
A on E is called resolvent positive if there exists a number λ0 ∈ R such
that (λ0,∞) ⊂ %(A) and R(λ,A) ≥ 0 for all λ > λ0. Denote by

s(A) = sup{Reλ : λ ∈ σ(A)}
the spectral bound of A. It is known that

s(A) = inf{λ ∈ R ∩ %(A) : R(λ,A) ≥ 0}
and that, s(A) ∈ σ(A) if s(A) > −∞. Moreover, one hat

0 ≤ R(µ,A) ≤ R(λ,A) if µ > λ > s(A)(1.1)

and

|R(λ,A)x| ≤ R(Reλ,A)|x|(1.2)

for all x ∈ E , Re λ > s(A). We say that A generates an integrated
semigroup, if there exists a stronlgy continuous increasing function S :
[0,∞) → L(E) satisfying S(0) = 0 such that

R(λ,A) =
∫ ∞

0
e−λt dS(t) (λ > λ0)(1.3)

(as an improper strongly defined Riemann-Stieltjes integral) for some λ0 ≥
%(A). In that case S is called the integrated semigroup generated by
A, and it is known that (1.3) converges whenever Reλ > s(A). Moreover,

R(λ,A) = λ

∫ ∞

0
e−λtS(t) dt (Reλ > max{s(A), 0}).(1.4)

We need the following lemma.

Lemma 1.2. Assume that S is bounded. Then s(A) < 0.

Proof. It follows from [A2] Proposition 6.1 that s(A) ≤ 0. Now (1.4) implies
that ‖R(λ,A)‖ ≤ M = sup

t≥0
‖S(t)‖ for λ > 0. This implies that 0 ∈ %(A)

and R(0, A) = lim
λ↓0

R(λ,A) ≥ 0. Then for small µ < 0

R(µ,A) =
∞∑

n=0

(−µ)nR(0, A)n+1 ≥ 0.
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This implies that s(A) < 0. �

It is known that a resolvent positive operator generates a once integrated
semigroup if D(A) is dense or E has order continuous norm. We refer to
[A2] for this and further information. Without any further assumption, it
is known ([A3, Corollary 4.5]) that every resolvent positive operator A gen-
erates a twice integrated semigroup S2; i.e., S2 : [0,∞) → L(E) is strongly
continuous increasing function such that

R(λ,A) =
∫ ∞

0
λ2e−λtS2(t) dt (Reλ > max{s(A), 0}).

Of course, if A generates a C0-semigroup, then S(t) =
∫ t
0 T (s) ds is the

once-integrated semigroup and S2(t) =
∫ t
0

∫ s
0 T (r)dr ds the twice integrated

semigroup generated by A.

2. The Cesaro operator in spaces with order continuous norm.

In this section we will show that the theory of strongly continuous positive
semigroups provides on efficient framework to compute the spectrum of the
Cesaro operator in certain rearrangement invariant Banach function spaces.
Let E be an (L1, L∞)−interpolation space on (0,∞). For t ∈ R and f ∈ E
let T (t)f(x) = f(e−tx) for a.e. x ∈ (0,∞). This defines a bounded linear
operator T (t) on E satisfying ‖T (t)‖E ≤ max(1, et), and TE = {T (t)}t∈R
is a group. The growth bounds of this group are

ω+
0 (TE) := lim

t→∞

log ‖T (t)‖E

t
= lim

s→∞

log ‖Ds‖
log s

= αE ,

ω−0 (TE) := lim
t→∞

log ‖T (−t)‖E

t
= lim

s↓0

log ‖Ds‖
log s

= −αE .

Now assume in addition that E has order continuous norm. Using that
stepfunctions on bounded intervals are dense in E, it follows immediately
that TE is a strongly continous group. Let AE be the generator of TE . The
spectral bounds of AE are defined by

s+(AE) = sup{Reλ : λ ∈ σ(AE)},

s−(AE) = sup{Reλ : λ ∈ σ(−AE)} = s+(−AE).

Then − ω−0 (TE) ≤ −s−(AE) ≤ s+(AE) ≤ ω+
0 (AE), and

σ(AE) ⊆ {λ ∈ C : −s−(AE) ≤ Reλ ≤ s+(AE)}.

Theorem 2.1. Let E be a rearrangement invariant Banach function space
on (0,∞) with order continuous norm. Then

σ(AE) = {λ ∈ C : αE ≤ Reλ ≤ αE}.
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Proof. The proof is divided in three steps:

1. First we show that σ(AE) is invariant under purely imaginary trans-
lations. To this end, for τ ∈ R we define the isometry Mτ : E → E by
Mτf(x) = xiτf(x) for a.e. x ∈ (0,∞) and all f ∈ E. Then M−1

τ T (t)Mτ =
e−itτT (t) for all t, τ ∈ R, and so M−1

τ AEMτ = AE − iτ for all τ ∈ R.
Hence σ(AE) = σ(M−1

τ AEMτ ) = σ(AE)− iτ for all τ ∈ R.

2. Next we will show that σ(AE) ∩ R = [− s−(AE) , s+(AE)]. It is
clear that σ(AE) ∩ R ⊆ [− s−(AE) , s+(AE)]. Moreover, since TE consists
of positive operators, s+(AE) , − s−(AE) ∈ σ(AE) (see e.g., [N], C - III,
Theorem 1.1). Take µ ∈ ρ(AE) ∩ R. We claim that either µ > s+(AE) or
µ < − s−(AE). Indeed, defining

Iµ = {f ∈ E : R(µ,AE)|f | ≥ 0} and
Jµ = {f ∈ E : R(µ,AE)|f | ≤ 0},

it follows from the Theorem on p. 43 in [G] that Iµ and Jµ are TE−invariant
bands satisfying E = Iµ ⊕ Jµ. Since any band in E is of the form {f ∈
E : f = 0 a.e. on B} for some measurable subset B ⊆ (0,∞), it is easy
to see that the only TE−invariant bands are E and {0}. Hence Iµ = E or
Jµ = E. Suppose that Iµ = E. From the definition of Iµ it then follows
that R(µ,AE) ≥ 0, which implies that µ > s+(AE) (see [N, C - III,
Theorem 1.1.]). If Jµ = E, a similar argument shows that µ < − s−(AE),
by which the claim is proved.

3. Finally we show that s+(AE) = αE and s−(AE) = −αE . Take
λ > s+(AE). Then (see e.g., [N, C - III, Theorem 1.2.])

R(λ,AE)f =
∫ ∞

0
e−λtT (t)f dt for all f ∈ E.

Fix f ∈ E. Observe that (T (t)f)∗ = T (t)f∗ and that the function
t 7→ T (t)f∗ is increasing for t ≥ 0. Hence

R(λ,AE)f∗ =
∫ ∞

0
e−λsT (s)f∗ ds ≥

∫ ∞

t
e−λsT (s)f∗ ds ≥ e−λt

λ
T (t)f∗

for all t ≥ 0 (note that λ > s+(AE) ≥ −ω−0 (TE) = αE ≥ 0). This implies
that

‖T (t)f‖E ≤ λeλt ‖R(λ,AE)f∗‖E ≤ λeλt ‖R(λ,AE)‖E ||f ||E
for all t ≥ 0. This shows that ω+

0 (TE) ≤ λ, and consequently ω+
0 (TE) ≤

s+(AE). Hence ω+
0 (TE) = s+(AE), i.e., αE = s+(AE). Via a similar

argument it follows that s−(AE) = −αE . Combining the results of (1), (2)
and (3) we see that

σ(AE) = {λ ∈ C : αE ≤ Reλ ≤ αE}.
�
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Recall that the Cesaro operator C on (0,∞) is given by

Cf(x) =
1
x

∫ x

0
f(u)du , x > 0,

defined for functions f on (0,∞) which are integrable on (0, x) for all x > 0.
If E is a rearrangement invariant Banach function space on (0,∞) such that
Cf ∈ E for all f ∈ E, we denote the induced operator in E by CE . Then
CE is a positive, and so a bounded operator on E.

Corollary 2.2. Let E be a rearrangement invariant Banach function space
on (0,∞) with order continuous norm. Then the Cesaro operator is bounded
on E if and only if αE < 1. In that case the spectrum σ(CE) of CE is given
by

σ(CE) =
{
λ ∈ C : 1 − αE ≤ Re

(
1
λ

)
≤ 1 − αE

}
∪ {0}.

Proof. Assume that αE < 1. Then s(AE) < 1 by Theorem 2.1. Moreover,
we have

(R(1, AE)f)(x) =
(∫ ∞

0
e−tT (t)f dt

)
(x)

=
∫ ∞

0
e−tf(e−tx) dt =

1
x

∫ x

0
f(u)du

for almost all x ∈ E and all f ∈ E.
Conversely, assume that the Cesaro operator is bounded on E. Consider

the operators S(t) =
∫ t
0 e

−sT (s) ds. Then

(S(t)f)(x) =
1
x

∫ x

e−tx
f(u)du ≤ (CEf)(x) a.e.

Hence ‖S(t)‖ ≤ ‖CE‖ (t ≥ 0). This implies that s(AE) < 1 by Lemma 1.2.
Now assume that αE < 1. Then CE = R(1, AE). From the spectral

mapping theorem for resolvents and Theorem 2.1. it follows that

σ(CE) =
{

1
1− z

: z ∈ σ(AE)
}
∪ {0}

=
{
λ ∈ C : 1 − αE ≤ Re

(
1
λ

)
≤ 1− αE

}
∪ {0}.

�

Remark 2.3. 1. For E = Lp(0,∞) , 1 < p < ∞, the result of the above
corollary was obtained by D.W. Boyd in [Bo]. In the same paper the result
of the above corollary is announced but, as fas as we know, a proof was
never published.
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2. For a large class of rearrangement invariant Banach function spaces
E on (0,∞) it is well-known that boundedness of CE is equivalent with
αE < 1. For spaces E with the Fatou property, this result is originally
due to D.W. Boyd [Bo]. Proofs can also be found in e.g., [BS]. In a
later section of the present paper we will discuss this equivalence for general
(L1, L∞)-interpolation spaces.

3. In [A4] the semigroup TE has been used on E = Lp(0,∞) to
produce an example of p-dependent spectrum. It is remarkable that on
Lp ∩ Lq(1,∞) , p 6= q, the type of the semigroup is strictly larger than the
spectral bound [A5].

4. In the proof of Theorem 2.1 it was not necessary to compute the
explicit form of the generator AE of TE . However, it is not difficult to show
that this generator is given by AEf(x) = −xf ′(x), a.e. x ∈ (0,∞), with
domain

D(AE) = {f ∈ E : f ∈ ACloc(0,∞) and xf ′(x) ∈ E}.
We leave the details to the reader.

Crucial in the above approach is the strong continuity of the group TE . As
we have seen, if E has order continuous norm, then TE is strongly continuous.
We will show next that strong continuity of TE implies that E has order
continuous norm. In the theorem which follows we need not assume that
E is an (L1, L∞)-interpolation space. In fact, if E is any rearrangement
invariant Banach function space on (0,∞), then TE is a group of bounded
linear operators in E with ‖T (t)‖ ≤ max(1, et) for all t ∈ R (this follows
from [KPS, Section II, 4.3]).

Theorem 2.4. Let E be a rearrangement invariant Banach function space
on (0,∞). The group TE is strongly continuous if and only if E has order
continuous norm.

In the proof of this theorem we will use a criterion for order continuity
of the norm which is implicit in [KPS, (Section II, 4.5)]. For the sake of
convenience we will state this criterion in the next lemma and provide the
proof.

Lemma 2.5. Let E be a rearrangement invariant Banach function space
on (0,∞). Then E has order continuous norm if and only if

(i)
∥∥∥f∗χ(0, 1

n
)

∥∥∥
E
→ 0 (n→∞) for all f ∈ E;

(ii)
∥∥∥f∗χ(n,∞)

∥∥∥
E
→ 0 (n → ∞) for all f ∈ E.

Proof. It is clear that order continuity of the norm implies (i) and (ii).
Now assume that E satisfies (i) and (ii). First observe that (ii) implies that
f∗(t) → 0 as t → ∞ for all f ∈ E, i.e., that m{x ∈ (0,∞) : |f(x)| > λ} <
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∞ for all λ > 0 and all f ∈ E. Now suppose that fn ∈ E (n = 1, 2, . . . )
such that fn ↓ 0 a.e. . Let ε > 0 be given. By (i), (ii) there exists N ∈ N such
that

∥∥∥f∗1χ(0,1/N)

∥∥∥
E
< ε and

∥∥∥f∗1χ(N,∞)

∥∥∥
E
< ε. From the above observation

it follows that f∗n(1/N) ↓ 0 as n→∞. Hence there exists n0 ∈ N such that
f∗n(1/N) < ε for all n ≥ n0. For n ≥ n0 we have

‖fn‖E = ‖f∗n‖E ≤
∥∥∥f∗nχ(0, 1

N
)

∥∥∥
E

+
∥∥∥f∗nχ[ 1

N
,N ]

∥∥∥
E

+
∥∥∥f∗nχ(N,∞)

∥∥∥
E

≤
∥∥f∗1χ(0,1/N)

∥∥
E

+ ε
∥∥∥χ[1/N,N ]

∥∥∥
E

+
∥∥∥f∗1χ(N,∞)

∥∥∥
E

≤ 2ε+ εC
∥∥∥χ[1/N,N ]

∥∥∥
L1+L∞

≤ (2 + C)ε,

where C > 0 is the embedding constant of E into (L1 + L∞)(0,∞). This
shows that ‖fn‖E ↓ 0 (n → ∞), and we may conclude that E has order
continuous norm. �

Proof of Theorem 2.4. As observed already above, if E has order continuous
norm, then TE is strongly continuous. Now assume that TE is strongly
continuous. Fix f ∈ E and define g(s) = f∗(s− 1) for s > 1 and g(s) = 0
for 0 < s ≤ 1. Then g∗ = f∗, so g ∈ E. Since T (t)g(s) = 0 for
0 < s ≤ et, it follows that |T (t)g − g| ≥ gχ(1,et] for all t > 0, and
so
∥∥gχ(1,et]

∥∥
E
≤ ‖T (t)g − g‖E for all t > 0. Hence

∥∥gχ(1,et]

∥∥
E
→ 0 as

t ↓ 0. Now (gχ(1,et])∗ = f∗χ(0,et−1] implies that
∥∥f∗χ(0,et−1]

∥∥
E
→ 0 as

t ↓ 0, which shows that
∥∥f∗χ(0,1/n)

∥∥
E
→ 0 (n → ∞). It remains to show

that
∥∥f∗χ(n,∞)

∥∥
E
→ 0 (n → ∞). Define n0 = 0 and nk = 3(nk−1 + 1) for

k = 1, 2, . . . , and let

h(s) =

{
f(s+ k − nk − 1) if nk < s ≤ nk + 1 , k = 1, 2 . . .
0 otherwise.

Then h∗ = f∗, so f ∈ E. Now let ε > 0 be given. By the strong
continuity of TE , there exists 0 < t0 ≤ 1 such that ‖T (− t0)h − h‖E < ε.
Take k0 such that e−t0 < nk (nk + 1)−1 for all k ≥ k0. Now observe

that h is supported on the set
∞⋃

k=1

(nk , nk + 1] and T (− t0)h is supported

on
∞⋃

k=1

(e−t0nk , e
−t0(nk + 1)]. Since, by the definition of the nk’s and by the

choice of k0 , nk−1 + 1 < e−t0nk < e−t0(nk + 1) < nk for all k ≥ k0, it
follows that hχ(nk0

,∞) and T (− t0)χ(nk0
,∞) are disjointly supported. Hence,

|T (− t0)h− h| ≥ |T (− t0)h − h|χ(nk0
,∞) ≥ hχ(nk0

,∞)
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which implies that
∥∥∥hχ(nk0

,∞)

∥∥∥
E
< ε. Now

(hχ(nk0
,∞))

∗ = f∗χ(k0−1,∞) , so
∥∥f∗χ(k0−1,∞)

∥∥
E
< ε.

This shows that
∥∥f∗χ(n,∞)

∥∥
E
→ 0 (n → ∞). Via Lemma 2.5 it now

follows that E has order continuous norm. �

The above theorem shows in particular that it is not possible to compute
the spectrum of the Cesaro operator using the theory of strongly continuous
(semi)groups, as in the proof of Theorem 2.1, if the space E does not have
order continuous norm. This is one of the motivations for the investigations
in the next section. In particular we will need an appropriate substitute for
the spectral decomposition theorem for generators of strongly continuous
groups of G. Greiner [G].

3. Spectral decomposition.

Througout this section we assume that A is an operator on a complex Banach
lattice E such that ±A is resolvent positive (we say that A is resolvent
bipositive). Then we know from the proof of [N, C-III Corollary 1.6] that
σ(A) 6= ∅. Denote by

s(A) = sup{Re λ : λ ∈ σ(A)}
the spectral bound of A. Then we know that

σ(A) ⊂ {λ ∈ C : −s(−A) ≤ Re λ ≤ s(A)};(3.1)
s(A),−s(−A) ∈ σ(A);(3.2)
R(λ,A) ≥ 0 if λ > s(A);(3.3)
R(λ,A) ≤ 0 if λ < −s(−A).(3.4)

Definition 3.1. Let µ ∈ (−s(−A), s(A)). We say that A allows a spec-
tral decomposition with respect to µ if there exists a band decompo-
sition E = E1 ⊕E2 such that R(λ,A)Ei = Ei (i = 1, 2) for all λ ∈ %(A)
and such that the part Ai of A in Ei satisfies

σ(A1) = {λ ∈ σ(A) : Reλ < µ},
σ(A2) = {λ ∈ σ(A) : Reλ > µ}.

In particular, in that case ±Ai is resolvent positive and s(A1) < µ and
−s(−A2) > µ.

The main result of this section is the following:

Theorem 3.2. Let µ ∈ (−s(−A), s(A)) ∩ %(A). Then A allows a spectral
decomposition with respect to µ if one of the following two conditions is
satisfied.
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(a) The operator A satisfies
(Kµ) x ∈ D(A) implies |x| ∈ D(A) and |(µ−A)|x| | ≤ |(µ−A)x|;
(b) The domain D(A) is dense.

The condition (Kµ) is a weak form of Kato’s equality which we will discuss
later.

For the proof we can assume that µ = 0 which we will do in the following.
It is known that for λ ∈ %(A)∩R one has R(λ,A) ≥ 0 if and only if λ > s(A)
(see [N, C-III Theorem 1.1]). In view of this, following Greiner’s idea [N,
C-III Theorem 4.8], we set

E1 = {x ∈ E : R(0, A)|x| ≥ 0};
E2 = {x ∈ E : R(0, A)|x| ≤ 0}.

Lemma 3.3. a) E1 and E2 are closed ideals in E.
b) The operator A allows a spectral decomposition with respect to 0 when-

ever E1 + E2 = E.

Remark 3.4. Lemma 3.3 a) is true without additional hypotheses. Condi-
tions (a), (b) of Theorem 3.2 are used to show that E = E1 +E2. Our point
is to replace in Greiner’s argument the semigroup (which does not need to
exist here, see Example 3.13) by the twice integrated semigroup. Moreover,
we simplify the argument using the following description of the abscissa of
the Laplace transform (see [ANS, Proposition 1.1] or [HP, Sec. 6.2] for a
proof).

Lemma 3.5. Let X be a Banach space and f : [0,∞) → X be continuous.
Then abs (f) ≤ 0 (i.e., f̂(λ) := lim

t→∞

∫ t
0 e

−λsf(s) ds exists whenever Reλ >

0) if and only if

sup
t≥0

e−wt

∥∥∥∥∫ t

0
f(s) ds

∥∥∥∥ <∞, for all w > 0.

Proof of Lemma 3.3. Let S be the twice integrated semigroup generated by
A; that is, S : [0,∞) → L(E) is strongly continuous and there exists ω ≥ 0
such that (ω,∞) ⊂ %(A), sup

t≥0
‖e−ωtS(t)‖ <∞ and,

R(λ,A)x = λ2

∫ ∞

0
e−λtS(t)x dt (Reλ > ω, x ∈ E).

Then S(t) ≥ 0 and S(t)R(λ,A) = R(λ,A)S(t) for all λ ∈ %(A), t ≥ 0 and
for all x ∈ E,∫ t

0
S(s)x ds ∈ D(A) and A

∫ t

0
S(s)x ds = S(t)x− t2

2
x.(3.5)
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See Section 1 and [A3] for these notions and results. We claim that for
x ∈ E,

x ∈ E1 if and only if abs (S(·)|x|) ≤ 0.(3.6)

In fact, if x ∈ E1, then by (3.5) (since 0 ∈ %(A)),∫ t

0
S(s)|x| ds =

t2

2
R(0, A)|x| − S(t)R(0, A)|x|

≤ t2

2
R(0, A)|x| (t ≥ 0).

Hence abs (S(·)|x|) ≤ 0 by Lemma 3.5. Conversely, assume abs (S(·)|x|) ≤ 0.
Then r(λ) = λ2

∫∞
0 e−λtS(t)|x| dt (Re λ > 0) is holomorphic and for

λ > ω one has r(λ) = R(λ,A)|x|, or equivalently, λA−1r(λ)−r(λ) = A−1|x|.
This remains true for Re λ > 0 by the uniqueness of holomorphic extensions.
Hence R(λ,A)|x| = r(λ) ≥ 0 for λ ∈ (0, ε) where ε > 0 such that (0, ε) ⊂
%(A). This implies R(0, A)|x| ≥ 0.

a) It follows from (3.6) and Lemma 3.5 that E1 is an ideal. Closedness
follows from the definition. Replacing A by −A we see that also E2 = {x :
R(0,−A)|x| ≥ 0} is a closed ideal.

b) It is clear that E1 ∩ E2 = {0}. Now assume that E1 + E2 = E. Then
E1 and E2 are projection bands.

Let λ0 > s(A). Since R(λ0, A) ≥ 0 and R(λ0, A)S(t) = S(t)R(λ0, A)
it follows from (3.6) and Lemma 3.5 that R(λ0, A)Ei ⊂ Ei (i = 1, 2).
Hence R(λ0, A)P1 = P1R(λ0, A) where P1 denotes the band projection onto
E1. It follows easily that x ∈ D(A) implies P1x ∈ D(A) and AP1x = P1Ax;
and this in turn implies R(λ,A)P1 = P1R(λ,A) for all λ ∈ %(A). Thus
R(λ,A)Ei ⊂ Ei (i = 1, 2) for all λ ∈ %(A). Hence %(A) = %(A1)∩%(A2).
Finally, by the first part of the proof, Q(λ)x = λ2

∫∞
0 e−λtS(t)x dt exists for

all x ∈ E1 and Reλ > 0. Thus Q(λ) ∈ L(E1), A−1Q(λ) = Q(λ)A−1 and
λA−1Q(λ)x−Q(λ)x = A−1x if Reλ > ω and so for Reλ > 0 by holomorphy.
This implies that λ ∈ %(A1) and Q(λ) = (λ− A1)−1 if Re λ > 0. Similarly,
{λ : Reλ < 0} ⊂ %(A2). �

Lemma 3.6. If (K0) holds, then E = E1 + E2.

Proof. Let 0 ≤ x ∈ E and y = R(0, A)x. Then |y| ∈ D(A) and |A|y| | ≤
|Ay| = x. Thus x1 := 1

2(x−A|y|) ≥ 0 and x2 := 1
2(x+A|y|) ≥ 0. Moreover,

R(0, A)x1 = 1
2(R(0, A)x + |y|) = 1

2(y + |y|) = y+ ≥ 0. Thus y1 ∈ E1.
Similarly, R(0, A)x2 = −y− ≤ 0 so that x2 ∈ E2. Clearly, x = x1 + x2. We
have shown that E+ ⊂ E1+ + E2+. This implies the claim. �

Now we prove Theorem 3.2. Under the hypothesis (a), the proof is com-
plete. Case (b) follows from the following lemma.



BLACK–SCHOLES EQUATION AND INTERPOLATION 15

Lemma 3.7. Assume that D(A) is dense. Then E = E1 + E2.

Proof. We can assume that E is a real Banach lattice.

a) Let x ∈ D(A3), σ = sign q(x) ∈ L(E′′) where q : E → E′′ is the
canonical embedding. We show that

〈σAx, ϕ〉 = 〈|x|, A′ϕ〉 (ϕ ∈ D(A′3)).(3.7)

In fact, it follows from the resolvent equation that R(λ,A) is decreasing
on (s(A),∞). Consequently, λR(λ,A)y = R(λ,A)Ay + y is bounded on
[s(A)+1,∞) and so R(λ,A)y → 0 (λ→∞) for y ∈ D(A). This implies
that λR(λ,A)y → y (λ→∞) if y ∈ D(A2). Finally,

λ2R(λ,A)y − λy = λR(λ,A)Ay → Ay (λ→∞)

if y ∈ D(A3). For the same reason,

λ2R(λ,A)′ϕ− λϕ→ A′ϕ (λ→∞)

if ϕ ∈ D(A′3). Consequently, if 0 ≤ ϕ ∈ D(A′3), then

〈σAx, ϕ〉 = lim
λ→∞

〈σ(λ2R(λ,A)x− λx) , ϕ〉

= lim
λ→∞

〈σ(λ2R(λ,A)x)− λ|x|, ϕ〉

≤ lim sup
λ→∞

〈λ2R(λ,A)|x| − λ|x|, ϕ〉

= lim sup
λ→∞

〈|x|, λ2R(λ,A)′ϕ− λϕ〉

= 〈|x|, A′ϕ〉.

Replacing A by −A gives (3.7) for 0 ≤ ϕ ∈ D(A′3). Let µ0 > s(A). Since
D(A′3) = R(µ0, A)′3E′ = D(A′3)∩E′+−D(A′3)∩E′+ we obtain (3.7) for all
ϕ ∈ D(A′3).

b) Next we assume that µ = 0 ∈ %(A) as before. Given y ∈ D(A2), we
show that there exists z′′ ∈ E′′ such that |z′′| ≤ |y| and

|R(0, A)y| = R(0, A)′′z′′.(3.8)

In fact, let x = R(0, A)y, σ = sign q(x), z′′ = σy. Let ψ ∈ D(A′2), ϕ =
R(0, A)′ψ. Then by (3.7),

〈R(0, A)′′z′′, ψ〉 = 〈z′′, R(0, A)′ψ〉
= 〈z′′, ϕ〉 = −〈σAx, ϕ〉 = −〈|x|, A′ϕ〉
= 〈|x|, ψ〉.

Since D(A′2) = (R(0, A)′)2E′ separates points, (3.8) follows.
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c) Let y ∈ D(A2)+. Then (R(0, A)y)+ ∈ E1. In fact,

(R(0, A)y)+ = 1/2(|R(0, A)y|+R(0, A)y)
= 1/2(R(0, A)′′z′′ +R(0, A)y)
= R(0, A)′′y′′1

where y′′1 = 1/2(y + z′′) ≥ 0. It follows from (3.5) that(∫ t

0
S(s) ds

)′′
= t2/2 R(0, A)′′ − S(t)′′R(0, A)′′.

Hence (∫ t

0
S(s) ds

)′′
y′′1 = t2/2 R(0, A)′′y′′1 − S(t)′′R(0, A)′′y′′1

= t2/2 (R(0, A)y)+ − S(t)(R(0, A)y)+

≤ t2/2 (R(0, A)y)+.

Hence ∥∥∥∥∫ t

0
S(s)(R(0, A)y)+ ds

∥∥∥∥ =
∥∥∥∥∫ t

0
S(s)R(0, A)′′ y′′1 ds

∥∥∥∥
≤ t2/2 ‖R(0, A)‖ ‖(R(0, A)y)+‖.

Thus abs (S(·)(R(0, A)y)+) ≤ 0 by Lemma 3.5.
It follows from (3.6) that (R(0, A)y)+ ∈ E1.

d) Let y ∈ D(A2)+. Then, applying c) to (−A) we have

(R(0, A)y)− = (R(0,−A)y)+ ∈ E2.

Thus R(0, A)y = (R(0, A)y)+ − (R(0, A)y)− ∈ E1 + E2.
Since for µ > s(A), D(A2) = R(µ,A)2E = R(µ,A)2E+−R(µ,A)2E+ one

has D(A2) = D(A2)+ −D(A2)+. Thus D(A3) = R(0, A)D(A2) ⊂ E1 + E2.
Consequently, E = D(A3) ⊂ E1 + E2 = E1 + E2, the sum of closed ideals
being closed [S, III.1.2]. �

Let T ∈ L(E). A band B of E is called reducing for T if TB ⊂ B and
TBd ⊂ Bd (equivalently, T commutes with the band projection onto B).

Corollary 3.8. Let A be an operator on E such that

(a) ±A is resolvent positive;
(b) R(λ,A) has no nontrivial reducing band for some (equivalently all )

λ ∈ %(A).
(c) D(A) is dense or A satisfies (Kµ) for all µ ∈ R.

Then σ(A) ∩ R = [−s(−A), s(A)].
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Next we give several comments concerning the inequality (Kµ). Greiner
[G] (see also [N, C-III Section 4]) uses Kato’s equality

(K) A|x| = Re ((sign x)Ax)

in his proof of the decomposition theorem. It holds for all x ∈ D(A) if A is
the generator of a positive C0-group on a σ-order complete Banach lattice.
In particular, D(A) is a sublattice of E. Here, for x ∈ E, x = Re x− iImx
denotes the complex conjugate of x. Moreover, for x ∈ E, the operator
sign x ∈ L(E) is uniquely determined by the properties

(sign x)x = |x|
|(sign x)y| ≤ |y| (y ∈ E)

(sign x)y = 0 if y ⊥ x.

It is clear that A − µ satisfies (K) for all µ ∈ R if A satisfies (K). Thus
condition (K) implies condition (Kµ) for all µ ∈ R.

However, the converse is not true. In fact, in the following proposition we
show that the adjoint A′ of the generator A of a positive C0-group always
satisfies (Kµ) for all µ ∈ R. However, we show by an example that (K) may
be violated.

Proposition 3.9. Let B be the generator of a positive C0-group T on a
Banach lattice F and let A = B′ on E = F ′. Then A satisfies (Kµ) for all
µ ∈ R.

Proof. We can assume µ = 0. Recall that D(B′) = Fav (B′) = {ϕ ∈ F ′ :
lim supt↓0 1/t‖T (t)′ϕ − ϕ‖ < ∞}, see [EN, Chapter II.5.19] or [CH]. Let
ϕ ∈ D(B′). Let 0 ≤ x ∈ E , 1 ≥ t ≥ 0. Then

〈|T (t)′ϕ− ϕ|, x〉 = sup
|y|≤x

|〈T (t)′ϕ− ϕ, y〉|

= sup
|y|≤x

∣∣∣∣∫ t

0
〈B′ϕ, T (s)y〉 ds

∣∣∣∣
≤
∫ t

0
〈|B′ϕ|, T (s)x〉 ds.

It follows that〈
1
t
(T (t)′|ϕ| − |ϕ|), x

〉
=

〈
1
t
(|T (t)′ϕ| − |ϕ|), x

〉
≤

〈
1
t
|T (t)′ϕ− ϕ|, x

〉
≤ 1

t

∫ t

0
〈|B′ϕ|, T (s)x〉 ds

≤ ‖B′ϕ‖ sup
0<t≤1

‖T (s)x‖.
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Thus, |ϕ| ∈ Fav (B′) = D(B′). Moreover,

〈B′|ϕ| , x〉 = lim
t↓0t

1
t
〈T (t)′|ϕ| − |ϕ| , x〉

≤ lim
t↓0t

1
t

∫ t

0
〈|B′ϕ| , T (s)x〉 ds

≤ 〈|B′ϕ|, x〉.
Hence B′|ϕ| ≤ |B′ϕ|. �

Remark 3.10. It follows from Proposition 3.9 that Theorem 3.2 also holds
if A is the adjoint of a generator B of a positive C0-group. But of course,
this can be directly seen by applying Theorem 3.2 to B.

Next we show that in the situation of Proposition 3.7 it can happen that
|B′|ϕ| | 6= |B′ϕ| for some ϕ ∈ D(B′); in particular, B′ does not satisfy (K)
in general.

Example 3.11. Consider in the space E = C0(R), equipped with the sup-
norm, the C0-group (T (t))t∈R given by T (t)f(x) = f(x+ t) for all x, t ∈ R.
The generator B of this group is given by Bf = f ′ with D(B) = {f ∈
C1

0 (R) : f ′ ∈ C0(R)}. Identifying the dual space C0(R)′ with the space
Mb(R) of all bounded Borel measures on R, it is easy to see that D(B′) =
{µ ∈ Mb(R) : Dµ ∈ Mb(R)} and B′µ = −Dµ for all µ ∈ D(B′), where
Dµ denotes the distributional derivate of the measure µ. As is well-known,
every µ ∈ D(B′) is absolutely continuous with respect to Lebesgue measure
and is of the form µ = fdx with f ∈ L1(R) ∩ BV (R). Moreover, for such
measures µ we have Dµ = df (where df denotes the Borel measure induced
by f). Now take f = −1(−1,0] + 1(0,1] and µ = fdx. Then µ ∈ D(B′)
and B′µ = −Dµ = δ−1 − 2δ0 + δ1, hence |B′µ| = δ−1 + 2δ0 + δ1 (here δp
denotes the Dirac measure at the point p). Since |µ| = |f |dx, it follows that
B′|µ| = −D|µ| = −δ−1 + δ1, hence |B′|µ|| = δ−1 + δ1. This shows that
|B′|µ|| 6= |B′µ|, so B′ does not satisfy the Kato equality.

Remark 3.12. a) In Example 3.11 one has D(B′) = L1(R), and the part
A of B′ in L1(R) generates a positive C0-group (given by the right shift).
Thus the part of B′ in D(B′) does satisfy (K).

b) More generally, D(A) is a band if A is a resolvent positive operator on
a KB-space ([AB, Appendice]).

We conclude giving an example where ±A is resolvent positive, E is a
reflexive Banach lattice, but neither A nor −A generate C0-semigroups.

Example 3.13. a) Let (F, ‖ ‖F ) be a Banach function space on (0,∞)
corresponding to the function norm ‖ ‖F given by

‖f‖F = ‖f‖Lp(0,∞) + ‖f‖Lq(1,∞)
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where 1 < p < q < ∞. Then (T (t)f)(x) = f(etx) defines a lattice
C0-semigroup on F . Let B be its generator. Then σ(B) = {λ ∈ C : Re λ =
−1

p} and R(λ,B) ≥ 0 for λ > −1
p , R(λ,B) ≤ 0 for λ < −1

p . But −B is not
generator of a C0-semigroup.

b) Taking E = F⊕F and A = B⊕(−B) one obtains the desired example.

Proof of a). Let G = Lp(0,∞). Then (U(t)f)(x) = f(etx) defines a positive
C0-group on G. Let A be its generator. Then σ(A) = {λ ∈ C : Re λ = −1

p}
and (R(λ,A)f)(x) =

∫∞
0 e−λtf(etx) dt = xλ

∫∞
x f(s)s−λ−1 ds for λ > −1

p .
One has U(t)F ⊂ F and T (t) = U(t)|F (t ≥ 0). Thus B is the part

of A in F .
Observe that R(λ,A)G ⊂ F (λ > −1

p). In fact, let 0 ≤ f ∈ G, g(x) =
(R(λ,A)f)(x) = xλ

∫∞
x f(s)s−λ−1 ds. Then

g(x) ≤ xλ‖f‖p

(∫ ∞

x
s(−λ−1)p′ ds

) 1
p′

≤ const · ‖f‖p · x−
1
p

for x ≥ 1 (where 1
p + 1

p′ = 1). Thus g · 1(1,∞) ∈ L∞(1,∞) ∩ Lp(1,∞) ⊂
Lq(1,∞).

It follows that (−1
p ,∞) ⊂ %(B) and R(λ,B) = R(λ,A)|F ≥ 0 (λ > −1

p).
Since, for λ > −1

p , D(A) = R(λ,A)G ⊂ F , we have R(λ,A)G ⊂ F for all
λ ∈ %(A). Thus, for λ < −1

p , λ ∈ %(B) and R(λ,B) = R(λ,A)|F ≤ 0.
Assume that −B generates a C0-semigroup (T (−t))t≥0. Then T (t)f =

lim
n→∞

(I+ t
nB)−nf in F for all f ∈ F . Since F is continuously embedded into

G, it follows that T (t) = U(−t).
However, U(−t)F 6⊂ F, t > 0, which is a contradiction. In fact, let

−1
p < α < −1

q and f(x) = (1− x)α1(0,1)(x). Then∫ ∞

0
|f(x)|p dx =

∫ 1

0
(1− x)αp dx =

∫ 1

0
yαp dy =

1
αp+ 1

<∞.

Thus f ∈ F . However, for t > 0 , U(−t)f 6∈ Lq(1,∞). In fact,

‖U(−t)f‖q
Lq(1,∞) =

∫ ∞

1
f(e−tx)q dx =

1∫
e−t

(1− y)αq dy et

=
∫ 1−e−t

0
yαq dy et = ∞

since αq + 1 < 0. �

In Section 4 a whole class of operators A is given for which ±A is resolvent
positive but D(A) is not dense. The preceding example has the additional
remarkable property that the semigroup operators T (t) which always exist
as operators from D(A2) into E are not bounded on E. Recall, that A
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generates a twice integrated semigroup S and T (t)x = d2

dt2
S(t)x exists for

all x ∈ D(A2).

4. The Cesaro operator on arbitrary interpolation spaces.

In this section we shall illustrate how the theory developed in the previous
section can be used to obtain results analogous to the ones in Section 2, but
now for a much larger class of function spaces.

Let E be an exact (L1, L∞)-interpolation space on (0,∞). As in Section 2
we denote by TE = {T (t)}t∈R the group defined by T (t)f(x) = f(e−tx).
Since we do not assume that E has order continuous norm, the group TE

need not be strongly continuous (see Theorem 2.4). For t ≥ 0 define

S+(t)f(x) =

t∫
0

T (s)f(x) ds =

t∫
0

f(e−sx) ds , x > 0 , f ∈ E.

Using that E is an (L1, L∞)-interpolation space, it follows that S+(t) is a
bounded linear operator in E and ‖S+(t)‖E ≤ et−1 for all t ≥ 0. Moreover,
‖S+(t+ h)− S+(t)‖E ≤ het+h for all t, h ≥ 0. Similarly, if we define

S−(t)f(x) =

t∫
0

T (−s)f(x) ds =

t∫
0

f(esx) ds, x > 0, f ∈ E,

then ‖S−(t)‖E ≤ max(1 − e−t, t) and ‖S−(t + h) − S−(t)‖E ≤ he−t for
all t, h ≥ 0. We show next that {S+(t)}t≥0 and {S−(t)}t≥0 are actually
integrated semigroups in E. To this end, for λ ∈ C with Re λ > 1 define

R(λ)f(x) = x−λ

x∫
0

uλ−1f(u)du, x > 0, f ∈ E.

Via interpolation, R(λ) is a bounded linear operator in E and

‖R(λ)‖E ≤ (Reλ− 1)−1.(4.1)

Similarly, for Reλ < 0 we define

R(λ)f(x) = −x−λ

∞∫
x

uλ−1f(u)du, x > 0, f ∈ E;

then

‖R(λ)‖E ≤ (−Reλ)−1.(4.2)

Now it is not difficult to verify that R(λ) = R(λ,AE) on {Reλ > 1} ∪
{Reλ < 0}, where AE : D(AE) → E is given by

D(AE) = {f ∈ E : f ∈ ACloc(0,∞), xf ′(x) ∈ E}, AEf(x) = −xf ′(x).
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Moreover, integration by parts shows that

R(λ,AE)f = λ

∞∫
0

e−λtS+(t)fdt, Re λ > 1, f ∈ E

and

R(λ,−AE)f = λ

∞∫
0

e−λtS−(t)fdt, Re λ > 0, f ∈ E.

Hence, {S+(t)}t≥0 and {S−(t)}t≥0 are the integrated semigroups generated
by AE and −AE respectively. In particular, ±AE are resolvent positive.

Remark 4.1. From the estimates (4.1) and (4.2) on R(λ,AE) above, it
follows that the part of AE in D(AE) generates a strongly continuous group
(cf. [A1, Corollary 4.2]). It is easy to see that this group is the restriction of
TE to D(AE). This implies that D(AE) = {f ∈ E : lim

t→0
‖T (t)f − f‖E = 0}.

In combination with Theorem 2.4, this shows that D(AE) is dense if and
only if E has order continuous norm.

Theorem 4.2. Let E and AE be as above. Then

σ(AE) = {λ ∈ C : αE ≤ Reλ ≤ αE},

where αE and αE denote the lower- and upper-Boyd indices of E.

Proof. We divide the proof in five steps.

(1) As before, we denote s+(AE) = sup{Reλ : λ ∈ σ(AE)} and s−(AE) =
s+(−AE). Then σ(AE) ⊆ {λ ∈ C : −s−(AE) ≤ Reλ ≤ s+(AE)}. Moreover,
s+(AE), −s−(AE) ∈ σ(AE) as ±AE are resolvent positive.

(2) Next we may use Corollary 3.8 to conclude that

σ(AE) ∩ R = [−s−(AE), s+(AE)].

Indeed, from the explicit form of AE given above it follows immediately
that AE satisfies the Kato equality and hence (K0). Furthermore, using the
representation of R(λ,AE) as an integral operator for Reλ > 1 it is easily
seen that R(λ,AE) has no nontrivial reducing bands.

(3) For τ ∈ R we define the isometry Mτ in E by Mτf(x) = xiτf(x), x >
0. Then M−1

τ AEMτ = AE − iτ , and hence σ(AE) = σ(AE) − iτ for all
τ ∈ R.

A combination of (1), (2) and (3) already shows that

σ(AE) = {λ ∈ C : −s−(AE) ≤ Reλ ≤ s+(AE)}.
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(4) We will show now that s+(AE) = αE . Take ω > αE . From the
definition of αE it follows that there existsMω > 0 such that ‖Ds‖E ≤Mωs

ω

for all s ≥ 1. Since

S+(t)f(x) =
∫ t

0
f(e−sx) ds =

∫ et

1
Duf(x)

du

u

for all f ∈ E, x > 0 and t ≥ 0, it follows from Lemma 1.1 that

‖S+(t)‖E ≤
∫ et

1
‖Du‖E

du

u
≤ Mω

ω
eωt

for all t ≥ 0. Hence, if Reλ > w then the integral
∫∞
0 e−λtS+(t) dt is con-

vergent and R(λ) = λ
∫∞
0 e−λtS+(t) dt is analytic on {Reλ > ω}. Therefore

s+(AE) ≤ ω, and this shows that s+(AE) ≤ αE . Now take λ > s+(AE).
For t ≥ 0 we have (since λ > 0) :

R(λ,AE) =

∞∫
0

e−λsdS+(s) ≥
t∫

0

e−λsdS+(s) ≥ e−λtS+(t),

so ‖S+(t)‖E ≤ eλt‖R(λ,AE)‖E . For f ∈ E the function s 7→ T (s)f∗ is
increasing on [0,∞), hence

0 ≤ T (t)f∗(x) ≤
∫ t+1

t
T (s)f∗(x) ds ≤ S+(t+ 1)f∗(x), x > 0,

and so

‖T (t)f‖E = ‖T (t)f∗‖E ≤ ‖S+(t+ 1)f∗‖E ≤ (eλ‖R(λ,AE)‖E)eλt‖f‖E .

This shows that ‖T (t)‖E ≤ Cλe
λt for all t ≥ 0, which implies (see the

beginning of Section 2) that αE ≤ λ. Hence αE ≤ s+(AE).

(5) Finally we show that s−(AE) = −αE . To prove that s−(AE) ≤ −αE

we may assume that αE > 0, as s−(AE) ≤ 0. Take −αE < ω < 0. From
the definition of αE it follows that there exists Mω > 0 such that ‖Ds‖E ≤
Mωs

−ω for all 0 < s ≤ 1. Via Lemma 1.1 we see that

S−(∞)f(x) :=
∫ ∞

0
f(esx) ds =

1∫
0

Duf(x)
du

u
, f ∈ E, x > 0,

defines a bounded linear operator in E with ‖S−(∞)‖E ≤ (−ω)−1Mω.
Moreover, using Lemma 1.1 again, ‖S−(t) − S−(∞)‖E ≤ (−ω)−1Mωe

ωt

for all t ≥ 0. Hence (cf. [A2, Proposition 5.5]; [HP, Theorem 6.2.1])
λ 7→

∫∞
0 e−λtdS−(t) is analytic on {Re λ > ω} and so s−(AE) ≤ ω. This

shows that s−(AE) ≤ −αE .
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Now we show that −αE ≤ s−(AE). We may assume that s−(AE) < 0, as
αE ≥ 0. Take s−(AE) < λ < 0. Then

R(λ,−AE) =

∞∫
0

e−λsdS−(s) ≥
t∫

t−1

e−λsdS−(s) ≥ e−λ(t−1){S−(t)−S−(t−1)}

for all t ≥ 1. For f ∈ E the function s 7→ T (−s)f∗ is decreasing on [0,∞),
so

0 ≤ T (−t)f∗(x) ≤
t∫

t−1

T (−s)f∗(x) ds = S−(t)f∗(x)− S+(t)f∗(x), x > 0,

and hence

‖T (−t)f‖E = ‖T (−t)f∗‖E ≤ eλ(t−1)‖R(λ,−AE)‖E‖f‖E

for all t ≥ 1. From this estimate it follows immediately that −αE ≤ λ,
and we may conclude that −αE ≤ s−(AE). This completes the proof of the
theorem. �

Corollary 4.3. Let E be an exact (L1, L∞)-interpolation space on (0,∞).
Then the Cesaro operator CE is bounded on E if and only if αE < 1. In
that case

σ(CE) =
{
λ ∈ C : 1− αE ≤ Re

(
1
λ

)
≤ 1− αE

}
∪ {0}.(4.3)

Proof. If αE < 1 then, by the above theorem, 1 ∈ %(AE) and integration by
parts gives

R(1, AE)f(x) =

∞∫
0

e−tS+(t)f(x) dt =

∞∫
0

e−tf(e−tx) dt

=
1
x

x∫
0

f(u)du , a.e. x ∈ (0,∞)

for all f ∈ E, i.e., R(1, AE) = CE . The indentity (4.3) now follows from a
combination of Theorem 4.2 with the spectral mapping theorem for resol-
vents. Conversely, assume that the Cesaro operator is bounded on E. It is
easy to see that the integrated semigroup generated by A− I is given by

(W (t)f)(x) =

t∫
0

e−sf(e−sx) ds.



24 WOLFGANG ARENDT AND BEN DE PAGTER

Since

(W (t)f)(x) ≤ 1
x

x∫
0

f(u)du (x− a.e.)

it follows that ‖W (t)‖ ≤ ‖CE‖ for all t ≥ 0. By Lemma 1.2 this implies that
s(A− I) < 0. �

Remark 4.4. If we assume that αE > 0 then it follows by an argument
similar to the above that the operator C̃E , defined by

C̃Ef(x) =

∞∫
x

f(u)
du

u
, a.e. x ∈ (0,∞), f ∈ E,

is bounded on E and

σ(C̃E) =
{
λ ∈ C : αE ≤ Re

(
1
λ

)
≤ αE

}
∪ {0}.

Indeed, if αE > 0 then 0 ∈ σ(AE) and C̃E = −R(0, AE). It should be ob-
served that in this general situation (i.e., without any additional assumption
on the norm of E) it seems that this last result cannot be obtained via a
duality argument from Corollary 4.3.

As before, let E be an exact (L1, L∞)-interpolation space on (0,∞), and
we denote by {TE(t)}t∈R the group of bounded operators in E given by
TE(t)f(x) = f(e−tx) for all f ∈ E. As we have seen, if E does not have
order continuous norm, this group is not strongly continuous. However,
there is always a natural (locally convex) topology in E with respect to
which the group is continuous. For this purpose, let E′n denote the Köthe
dual (or associate space) of E, i.e.,

E′n =

g ∈ L0(0,∞) :

∞∫
0

|fg|dx <∞ ∀ f ∈ E

 .

Every g ∈ E′n defines a bounded (order continuous) linear functional ϕg on

E, given by 〈f, ϕg〉 =
∞∫
0

fgdx for all f ∈ E. In this way we can identify E′n

with subspace of the norm dual E′ (and under the present assumptions on
E, this subspace is norming for E). As is known, equipped with the norm
‖g‖

E′n
= ‖ϕg‖E′n

, the space E′n is an exact (L1, L∞)-interpolation space on
(0,∞).

Proposition 4.5. The group {TE(t)}t∈R is continuous with respect to σ(E,
E′n), i.e., for every f ∈ E and g ∈ E′n the function t 7→

∫∞
0 T (t)f(x)g(x)dx

is continuous.
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Proof. First we assume that E is satisfies the additional condition

(∗) f∗(x) → 0 as x→∞ for all f ∈ E.

For every g ∈ E′n we define the seminorm pg on E by pg(f)=
∫∞
0 f∗(x)g∗(x)dx

for all f ∈ E. Note that subadditivity of pg follows from [BS, Proposition
3.6 and (3.10) on p. 54]. Actually we will show that {TE(t)}t∈R is continuous
with respect to the topology σ∗ generated by the seminorms {pg : g ∈ E′n}.
Since, by the Hardy-Littlewood quality,∣∣∣∣∣∣

∞∫
0

f(x)g(x)dx

∣∣∣∣∣∣ ≤
∞∫
0

f∗(x)g∗(x)dx ∀ f ∈ E, g ∈ E′n,

the result of the proposition then follows immediately.
We denote by S the linear span of all characteristic functions 1(a,b] with

0 ≤ a < b < ∞. We claim that S is dense in E with respect to σ∗. Let A
be a measurable subset of (0,∞) such that A ⊆ (0, R] for some 0 < R <∞.
Then there exists a sequence {Bn}∞n=1 of subsets of (0, R], each Bn being
a finite union of intervals, such that m(A4 Bn) → 0 (n → ∞). This
implies that (1A − 1Bn)∗ → 0 on (0,∞) as n → ∞, and so, by dominated
convergence, pg(1A−1Bn) → 0 (n→∞) for all g ∈ E′n. Hence 1A ∈ S

σ∗.
Now take 0 ≤ f ∈ E. Then there exists a sequence {fn}∞n=1 of simple
functions on bounded measurable sets such that 0 ≤ fn ↑ f a.e. on (0,∞).
Since f∗(x) → 0 as x → ∞, it follows that (f − fn)∗ ↓ 0 on (0,∞). Hence
pg(f−fn) → 0 (n→∞) for all g ∈ E′n by dominated convergence. From
this we may conclude that f ∈ Sσ∗, by which the claim is proved.

Now we show that pg(TE(t)f − f) → 0 (t→ 0) for all f ∈ E, g ∈ E′n.
This is easily verified for f ∈ S. Take f ∈ E arbitrary, h ∈ S and g ∈ E′n.
Then

pg(TE(t)f − f) ≤ pg(TE(t)(f − h)) + pg(TE(t)h− h) + pg(f − h).

For −1 ≤ t ≤ 1 we have

pg(TE(t)(f − h)) =

∞∫
0

[TE(t)(f − h)]∗g∗dx

=

∞∫
0

TE(t)(f − h)∗g∗dx ≤
∞∫
0

(f − h)∗(e−1x)g∗(x)dx

=

∞∫
0

(f − h)∗(x)g∗(ex)edx = pg1(f − h),
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where g1 ∈ E′n is given by g1(x) = eg∗(ex). This shows that

lim sup
t→0

pg(TE(t)f − f) ≤ pg1(f − h) + pg(f − h)

for all h ∈ S. Since Sσ∗ = E, we may conclude that lim
t→0

pg(TE(t)f − f) = 0.

Observe that for f ∈ E, g ∈ E′n and s ∈ R we have

pg(TE(s)f) =

∞∫
0

TE(s)f∗ · g∗dx = es
∞∫
0

f∗(x)g∗(esx)dx

= es
∞∫
0

f∗[TE′n(−s)g]∗dx = pgs(f),

where gs = esTE′n(−s)g. From this it follows that

lim
t→s

pg(T (t)f − T (s)f) = 0

for all f ∈ E, g ∈ E′n and s ∈ R. This concludes the proof of the proposition
in the case that E satisfies (∗).

Now assume that E does not satisfy (∗). Then 1 ∈ E and so E′n ⊆ L1,
which implies that E′n satisfies (∗). Since E is a subspace of (E′n)′n, it follows
from the first part of the proof that

lim
t→0

∞∫
0

f · TE′n(t)gdx =

∞∫
0

fgdx

for all f ∈ E and g ∈ E′n. Since
∞∫
0

TE(t)f · gdx = et
∞∫
0

fTE′n(−t)gdx,

this implies that lim
t→s

∫∞
0 TE(t)f · gdx =

∫∞
0 fgdx for all f ∈ E and g ∈ E′n.

This suffices to prove the proposition in this case.

5. The Black-Scholes partial differential equation in
(L1, L∞)-interpolation spaces.

The Black-Scholes partial differential equation is a degenerate parabolic
equation of the form

ut = x2uxx + xux (t > 0, x > 0).(5.1)

The aim of this section is to discuss its well-posedness, spectral properties
and asymptotic behaviour in (L1, L∞)-interpolation spaces. It is convenient
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to consider the corresponding operator

B : D(0,∞)′ → D(0,∞)′

Bf = x2f ′′ + xf ′;
i.e., 〈Bf, ϕ〉 = 〈f, ((m2ϕ)′ −mϕ)′〉

for all ϕ ∈ D(0,∞), f ∈ D(0,∞)′ where m(x) = x (x > 0).
Given an (L1, L∞)-interpolation space E we consider the part BE of B

in E; i.e., BE is the operator on E with domain

D(BE) = {f ∈ E : Bf ∈ E}
BEf = Bf .

Here we use that E ⊂ L1
loc(0,∞) ⊂ D(0,∞)′ with the usual identification of

functions with distributions. The following proposition allows us to use the
results of the preceding sections.

Proposition 5.1. Let E be an (L1, L∞)-interpolation space. Then BE =
(AE)2.

Proof. Recall that D(AE) = {f ∈ E : mf ′ ∈ E}, AEf = −mf ′.
a) We show that λ2 − BE is injective for λ > 1. Let k ∈ D(BE) such

that (λ2 −BE)k = 0. Let h = λk +mk′ ∈ D(0,∞)′. Then λh−mh′ = 0 in
D(0,∞)′. This implies that h ∈ C(0,∞) and

(x−λh)′ = x−λ−1(−λh+ xh′) = 0.

Hence h(x) = cxλ for some constant c. Thus λk(x) + xk′(x) = cxλ ∈
D(0,∞)′. Hence k ∈ C∞(0,∞) and

(xλk)′ = xλ−1(λk + xk′) = cx2λ−1.

This implies that xλk = ax2λ+b for some constants a and b. We have shown
that k(x) = axλ + bx−λ which is in L1 + L∞ only if a = b = 0.

b) Now let f ∈ D(BE). Let λ > 1. Then λ ∈ %(±AE). Hence λ2 ∈ %(A2
E)

and R(λ2, A2
E) = (λ − AE)−1(λ + AE)−1. Let k = R(λ2, A2

E)(λ2 − BE)f .
Then k ∈ D(A2

E). Since A2
E is a restriction of BE we have (λ2 − BE)k =

(λ2−BE)f . Since (λ2−BE) is injective, it follows that f = k ∈ D(A2
E). �

As a first consequence we determine the spectrum of BE .

Theorem 5.2. Let E be an (L1, L∞)-interpolation space with Boyd indices
αE and αE. Then

σ(BE) =
{
r + is : α2

E −
s2

4α2
E

≤ r ≤ α2
E −

s2

4α2
E

}
;

i.e., σ(BE) is the region between two parabolas (with appropriate modifica-
tion if αE = 0 or αE = αE = 0).
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Proof. By Theorem 4.2 we have

σ(AE) = {λ ∈ C : αE ≤ Re λ ≤ αE}.
Since σ(BE) = σ(AE)2 it follows that

σ(BE) = {α2 + 2αβi− β2 : β ∈ R, αE ≤ α ≤ αE}

=
{
α2 − s2

4α2
+ is : s ∈ R, αE ≤ α ≤ αE

}
which implies the claim. �

Thus the spectrum of BE varies very much as a function of the (L1, L∞)-
interpolation space.

Next we consider the semigroup generated by BE .

Theorem 5.3. Let E be an (L1, L∞)-interpolation space with order contin-
uous norm. Then BE generates a holomorphic C0-semigroup VE on E of
angle π/2. Moreover, the exponential type ω(VE) of VE is given by

ω(VE) = (αE)2.

Proof. This follows directly from the fact that BE = (AE)2 and that AE

generates a C0-group (cf. [N, Theorem 1.15]). It follows from Theorem 5.2
that s(BE) = (αE)2. Since VE is holomorphic, s(BE) = ω(VE). �

If E does not have order continuous norm, then D(BE) is not dense. Still
the holomorphic estimate for the resolvent is valid. This situation is very
well studied by E. Sinestrari [Si] from which we quote the following result.

Theorem 5.4. Let A be an operator on a Banach space X. Assume that
there exist w ∈ R, θ ∈ [0, π/2] such that{

w + Σ(θ + π/2) ⊂ %(A) and
‖λR(λ,A)‖ ≤M if λ ∈ w + Σ(θ + π/2).(5.2)

Then there exists a holomorphic mapping

T : Σ(θ) → L(X)

such that T (z + z′) = T (z)T (z′) (z, z′ ∈ Σ(θ)),

sup
|Argz|<θ′

‖e−wzT (z)‖ <∞ for all 0 < θ′ < θ,(5.3)

and

R(λ,A) =

∞∫
0

e−λtT (t) dt (λ > ω).(5.4)

In that case, we call T the generalized holomorphic semigroup gener-
ated by A.
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Here we used the usual notation

Σ(θ) = {reiα : r > 0, α ∈ (−θ, θ)}.
The semigroup T has the following regularity property. Considering D(Ak)
as a Banach space for the norm ‖x‖D(Ak) = ‖x‖+ ‖Ax‖+ . . .+ ‖Akx‖, one
has

T (·)x ∈ C∞((0,∞), D(Ak)) and(5.5)
d

dt
T (t)x = AT (t)x (t > 0)(5.6)

for all x ∈ X, k ∈ N, see [Si] for this. Denoting by

s(A) = sup{Reλ : λ ∈ σ(A)}
the spectral bound of A, as before, and by

ω(T ) = inf
{
w ∈ R : sup

t≥0
‖e−ωtT (t)‖ <∞

}
the type of T , one has as in the strongly continuous case

s(A) = ω(T ).(5.7)

Proof of (5.7). Let Y = D(A) ⊂ X and denote by A0 the part of A in
Y . Then A0 generates a holomorphic C0-semigroup (T0(t))t≥0 on Y and
one has T0(t) = T (t)|Y . Since D(A) ⊂ Y one has σ(A) = σ(A0) (by [A4,
Proposition 1.1]), and in particular s(A) = s(A0). Let w′ > s(A). Then

‖T0(t)‖L(Y ) ≤M ′ew
′t (t ≥ 0).

Since T (1)X ⊂ Y , it follows that ω(T ) ≤ ω′. �

Now we can formulate the following result for the operator BE .

Proposition 5.5. Let E be an (L1, L∞)-interpolation space. Then BE gen-
erates a generalized holomorphic semigroup VE on E. The semigroup VE is
strongly continuous if and only if E has order continuous norm. Finally the
exponential type of VE is given by

ω(VE) = (αE)2.(5.8)

Proof. It follows from (4.1) and (4.2) that

‖R(λ,AE)‖ ≤ (|Reλ| − 1)−1 (|Reλ| ≥ 1).(5.9)

Now the argument given in [N] A-II Theorem 1.14 and 1.15 shows that
BE = A2

E satisfies (5.2). Hence BE generates a generalized holomorphic
semigroup.

If D(BE) is dense, then also D(AE) is dense, since D(BE) ⊂ D(AE).
Conversely, assume that D(AE) is dense. Then λR(λ,AE) → I strongly as
λ → ∞. Hence (λR(λ,AE))2 → I strongly as λ → ∞. Thus D(BE) =
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D(A2
E) is dense. Now the second claim follows from Theorem 2.4. Finally,

Theorem 5.2 and (5.7) imply that ω(VE) = s(BE) = (αE)2. �

Next we establish the usual formula for VE .

Proposition 5.6. Let E be an (L1, L∞)-interpolation space. Then

〈VE(t)f, ϕ〉 = (4πt)−1/2

∫
R

e−r2/4t〈TE(r)f, ϕ〉dr(5.10)

for all f ∈ E, ϕ ∈ E′.

Proof. We use the following formula

e−λ|r|

2λ
=

∞∫
0

e−λ2t(4πt)−1/2e−r2/4t dt,(5.11)

valid for all λ > 0, r ∈ R (see [D, p. 138]).
For λ > 1 we have
∞∫
0

e−λ2tVE(t) dt = R(λ2, A2
E)

= (λ−AE)−1(λ+AE)−1 = −R(λ,AE)R(−λ,AE)

=
R(λ,AE) +R(−λ,AE)

2λ

=
1
2λ

 ∞∫
0

e−λtTE(t) dt+

∞∫
0

e−λtTE(t) dt


=

+∞∫
−∞

e−λ|r|

λ
TE(r) dr

=

+∞∫
−∞

TE(r)

∞∫
0

e−λ2t(4πt)−1/2e−r2/4t dt dr

=

∞∫
0

e−λ2t

∫
R

(4πt)−1/2e−r2/4tTE(r) dr dt.

Here the integrals involving TE(t) are understood in the σ(E,E′)-duality.
Observe that it suffices to evaluate by f ∈ E+ and ϕ ∈ E′+ only, so that
Fubini’s theorem can be applied. Now the claim follows from the uniqueness
theorem for Laplace transforms. �
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It is easy to deduce a pointwise expression from (5.10):

(VE(t)f)(x) = (4πt)−1/2

∫
R

e−r2/4tf(e−rx) dr(5.12)

= (4πt)−1/2

∞∫
0

e−(log x−log y)2/4tf(y)
dy

y
.

Thus VE is an integral operator.
From Proposition 5.6 we now deduce the following continuity result.

Proposition 5.7. Let E be an exact interpolation space and E′n its Köthe
dual. Then VE is σ(E,E′n)-continuous, i.e.,

lim
t↓0
〈VE(t)f, ϕ〉 = 〈f, ϕ〉

for all f ∈ E, ϕ ∈ E′n.

Proof. Let f ∈ E, ϕ ∈ E′n. Let ε > 0. By Proposition 4.5 we can choose
δ > 0 such that |〈TE(r)f, ϕ〉 − 〈f, ϕ〉| ≤ ε if |r| ≤ δ. Then

lim sup
t↓0

|〈VE(t)f, ϕ〉 − 〈f, ϕ〉|

= lim sup
t↓0

(4πt)−1/2

∣∣∣∣∣∣
∫
R

e−r2/4t(〈TE(r)f, ϕ〉 − 〈f, ϕ〉)dr

∣∣∣∣∣∣
≤ ε+ lim sup

t↓0
(4πt)−1/2

∫
|r|≥δ

e−r2/4t|〈TE(r)f, ϕ〉 − 〈f, ϕ〉|dr

= ε.

This implies the claim. �

Now we obtain the following final result on existence and uniqueness for
the Black & Scholes partial differential equation.

Theorem 5.8. Let E be an exact (L1, L∞)-interpolation space with Köthe
dual E′n. Let f ∈ E, u(t) = VE(t)f . Then u is the unique solution of the
Cauchy problem

u ∈ C1((0,∞);E), u(t) ∈ D(BE) (t > 0);
u̇(t) = BEu(t) (t > 0)
lim
t↓0

u(t) = f for σ(E,E′n).
(CP)

Moreover, if we put u(t, x) = (VE(t)f)(x) = u(t)(x), then u ∈ C∞(0,∞) ×
(0,∞) and

(BS) ut = x2uxx + xux (t > 0, x > 0).
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Proof. We know that u is a solution of (CP ). In order to prove uniqueness
let u be a solution of (CP ) with f = 0. Let t > 0, v(s) = VE(t−s)u(s), s ∈
(0, t). Since VE is holomorphic and d

dtVE(t) = BEVE(t) (t > 0) we have

v̇(s) = −BEVE(t− s)u(s) + VE(t− s)u̇(s) = 0.

Thus v is constant on (0, t). Moreover, VE(t− s) → VE(t) as s ↓ 0 in L(E).
Let ϕ ∈ E′n. Then

〈v(s), ϕ〉 = 〈(VE(t− s)− VE(t))u(s), ϕ〉
+〈u(s), VE(t)′ϕ〉

→ 0 (s ↓ 0).

Here we use that VE(t)′ϕ ∈ E′n which follows from (5.10). Thus v(s) ≡ 0
on (0, t). Since u(s) → u(t) in norm as s ↑ t and VE(t − s)u(t) → u(t) for
σ(E,E′n) as s ↑ t, it follows that v(s) = VE(t − s)(u(s) − u(t)) + VE(t −
s)u(t) → u(t) as s ↑ t for σ(E,E′n). Thus u(t) = 0.

It remains to show the regularity result. For f ∈ D(AE) we have f ∈
L1

loc(0,∞) and xf ′ ∈ E ⊂ L1
loc(0,∞). Hence f ∈ C(0,∞). From this one

obtains by induction that D(Ak+1
E ) ⊂ Ck(0,∞) for all k ∈ N. Now we know

that VE(·)f ∈ C∞((0,∞), D(Bk
E)) = C∞((0,∞);D(A2k

E )) for all f ∈ E. It
is not difficult to see that this implies that u ∈ C∞(0,∞)× (0,∞). �

6. Perturbation.

Let B be an operator on a Banach space X. An operator Q : D(B) → X is
called a small perturbation of B if for all ε > 0 there exists b ≥ 0 such
that

‖Qx‖ ≤ ε‖Bx‖+ b‖x‖ (x ∈ D(B)).(6.1)

The following is well-known.

Proposition 6.1. Let B be the generator of a (generalized) holomorphic
semigroup and let Q be a small perturbation of B. Then B +Q generates a
(generalized) holomorphic semigroup.

Example 6.2. Let E be an (L1, L∞)-interpolation space. Then AE is a
small perturbation of BE .

Proof. We have for λ > 1,

R(λ2, BE) =
1
2λ

(R(λ,AE) +R(λ,−AE))
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(see the proof of Proposition 5.6). Hence

‖AER(λ2, BE)‖ =
1
2λ
‖AER(λ,AE) +AER(λ,−AE)‖

=
1
2λ
‖λR(λ,AE)− λR(λ,−AE)‖

≤ 1
2
(‖R(λ,AE)‖+ ‖R(λ,−AE)‖)

→ 0 (λ→∞).

Let ε > 0. Choose λ > 1 such that ‖AER(λ,B2
E)‖ ≤ ε. Let f ∈ D(BE).

Then ‖AEf‖ = ‖AER(λ2, BE)(λ2 − BE)f‖ ≤ ε‖(λ2 − BE)f‖ ≤ ε‖BEf‖ +
λ2‖f‖. �

It remains to show that σ(E,E′n)-continuity is preserved by small pertur-
bations. For this we establish a Tauberian theorem (Proposition 6.4) which
is valid for Laplace transforms of functions having a holomorphic extension
to a sector. They can be characterized as follows (see Prüß [P, Theorem
0.1]).

Proposition 6.3. Let X be a Banach space and let 0 < θ0 ≤ π/2.
a) Let r : Σ(θ0 + π/2) → X be a holomorphic function such that

sup
λ∈Σ(θ+π/2)

‖λr(λ)‖ <∞(6.2)

for all 0 < θ < θ0. Then there exists a holomorphic function f :
Σ(θ0) → X satisfying

sup
z∈Σ(θ)

‖f(z)‖ <∞(6.3)

for all 0 < θ < θ0 such that r(λ) = f̂(λ) :=
∫∞
0 e−λtf(t)dt for Reλ >

0.
b) Conversely, assume that f : R+ → X has a holomorphic extension to

Σ(θ0) satisfying (6.3); then the Laplace transform f̂ of f has a holo-
morphic extension r to Σ(θ0 + π/2) satisfying (6.2).

Now we describe the asymptotic behaviour of f(t) for t ↓ 0 in terms of
the behaviour of r(λ) as λ→∞.

Proposition 6.4. Assume that f and r are as in Proposition 6.3. Let c ∈
X. Then limt↓0 f(t) = c if and only if limλ→∞ λr(λ) = c.

Proof. 1. Assume that limλ→∞ λr(λ) = c. Choose 0 < θ < θ0. It follows
from [HP, Theorem 3.14.3] that

lim
|λ|→∞

λ∈Σ(θ+π/2)

λr(λ) = c.
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Let ε > 0. Choose %0 > 0 such that ‖λr(λ)− c‖ ≤ ε for all λ ∈ Σ(θ + π/2)
with |λ| ≥ %0. Let t ≥ 1/%0. Choose a contour Γ consisting of the lines
{%e±i(θ+π/2) : % ≥ 1/t} and the arc {1/t · eiα : −θ ≤ α ≤ θ}. Then by the
proof of [P, Theorem 0.1],

f(t) =
1

2πi

∫
Γ
eλtr(λ)dλ.

Since 1
2πi

∫
Γ e

λt dλ
λ = 1,

‖f(t)− c‖ =
∥∥∥∥ 1
2πi

∫
γ
eλt(λr(λ)− c)

dλ

λ

∥∥∥∥
≤ ε

2π

2

∞∫
1/t

e−tr cos θ dr

r
+

θ∫
−θ

ecos αdα


≤ ε

2π

{
2 · 1
| cos θ|

+
∫ θ

−θ
ecos αdα

}
.

This proves the claim.

2. The converse is a classical Abelian theorem. �

Proposition 6.5. Let A be the generator of a generalized holomorphic semi-
group T on a Banach space X and let B be a small perturbation of A. De-
note by S the generalized holomorphic semigroup generated by A + B. Let
x ∈ X, ϕ ∈ X ′, such that lim

t↓0
〈T (t)x, ϕ〉 = 〈x, ϕ〉. Then limt↓0〈S(t)x, ϕ〉 =

〈x, ϕ〉.

Proof. Replacing A by A−w if necessary, we can assume that A and A+B
satisfy (5.2) with w = 0. So we are in the situation of Proposition 6.4. Thus
we know that limλ→∞〈λR(λ,A)x, ϕ〉 = 〈x, ϕ〉, and it suffices to show that
limλ→∞〈λR(λ,A+B)x, ϕ〉 = 〈x, ϕ〉. For this it suffices to show that

‖λR(λ,A+B)− λR(λ,A)‖ → 0 (λ→∞).

Let M ≥ 0 such that ‖λR(λ,A)‖ ≤ M (λ > 0). Let ε > 0. There exists
b ≥ 0 such that

‖BR(λ,A)‖ ≤ ε‖AR(λ,A)‖+ b‖R(λ,A)‖
≤ ε‖λR(λ,A)− I‖+ b‖R(λ,A)‖
≤ ε(M + 1) + bM/λ.

Thus limλ→∞ ‖BR(λ,A)‖ ≤ ε(M + 1). �

As a result we now know the following. Let E be an (L1, L∞)-interpolation
space. Let Q be a small perturbation of BE . Then BE + Q generates a
generalized holomorphic semigroup on E which is σ(E,E′n) continuous. In
particular, we obtain the following result.
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Theorem 6.6. Let E be an (L1, L∞)-interpolation space. Let α > 0 be a
constant, and let β, γ ∈ L∞(0,∞). Consider the operator G on E given by

Gf = αx2f ′′ + βxf ′ + γf

D(G) = D(BE).

Then G generates a generalized holomorphic semigroup which is σ(E,E′n)-
continuous.

Proof. By Example 6.2, the operator AE is a small perturbation of BE . Thus
BE −AE generates a generalized holomorphic semigroup. Since β defines a
bounded multiplication operator on E, βAE + γ is a small perturbation of
α(BE −AE). Note that G = α(BE −AE) + βAE + γ. �

References

[A1] W. Arendt, Kato’s equality and spectral decomposition for positive C0-groups,
Manuscripta Math., 40 (1982), 277-298, MR 85d:47041, Zbl 543.47032.

[A2] , Resolvent positive operators, Proc. London Math. Soc., 54 (1987), 321-
349, MR 88c:47074, Zbl 617.47029.

[A3] , Vector-valued Laplace transforms and Cauchy problems, Israel J. Math.,
59 (1987), 327-353, MR 89a:47064, Zbl 637.44001.

[A4] , Gaussian estimates and interpolation of the spectrum in Lp, Differential
and Integral Equations, 7 (1994), 1153-1168, MR 95e:47066, Zbl 827.35081.

[A5] , Spectrum and growth of positive semigroups, in “Evolution Equa-
tions”, G. Ferreyra, G. Goldstein, F. Neubrander eds., Marcel-Dekker, 1994,
MR 95m:47062, Zbl 834.47031.
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[CH] Ph. Clémènt, H.J.A.M. Heijmans et al., One-Parameter Semigroups, North Hol-
land, 1987, MR 89b:47058, Zbl 636.47051.

[CGV] F. Colombo, M. Giuli and V. Vespri, Generation of smoothing semigroups by el-
liptic operators and some applications to mathematical finance, preprint, Firenze,
1998.

[D] G. Doetsch, Handbuch der Laplace-Transformation, Band 1, Birkhäuser, Basel,
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[P] J. Prüß, Evolutionary Integral Equations and Applications, Birkhäuser, Basel,
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MIRANDA–PERSSON’S PROBLEM ON EXTREMAL
ELLIPTIC K3 SURFACES

Enrique Artal Bartolo, Hiro-o Tokunaga, and De-Qi Zhang

In one of their early works, Miranda and Persson have clas-
sified all possible configurations of singular fibers for semistable
extremal elliptic fibrations on K3 surfaces. They also ob-
tained the Mordell-Weil groups in terms of the singular fibers
except for 17 cases where the determination and the unique-
ness of the groups were not settled. In this paper, we set-
tle these problems completely. We also show that for all
cases with ‘larger’ Mordell-Weil groups, this group, together
with the singular fibre type, determines uniquely the fibration
structure of the K3 surface (up to based fibre-space isomor-
phisms).

0. Introduction.

Let f : X → C be an elliptic surface over a smooth projective curve C with
a section O, i.e., a Jacobian elliptic fibration over C. Throughout this paper,
we always assume that

(∗) f has at least one singular fiber.

Let MW (f) be the Mordell-Weil group of f : X → C, i.e., the group
of sections, O being the zero. Under the assumption (∗), it is known that
MW (f) is a finitely generated Abelian group (the Mordell-Weil theorem).
More precisely, if we let R be the subgroup of the Néron-Severi group NS(X)
ofX generated byO and all the irreducible components in fibers of f , then (i)
NS(X) is torsion-free, and (ii) MW (f) ∼= NS(X)/R (see [S], for instance).
Note that the Shioda-Tate formula rankMW (f) = ρ(X) − rankR easily
follows from the second statement.

We call f : X → C extremal if
(i) the Picard number ρ(X) of X is equal to h1,1 and
(ii) rankMW (f) = 0.
If f : X → C is extremal, then the Shioda-Tate formula implies rankR =

ρ(X). Hence, in other words, f : X → C is extremal if and only if ρ(X) =
rankR = h1,1(X). Also, taking the isomorphism MW (f) ∼= NS(X)/R into
account, it seems that we can say a lot about MW (f) only from the data
of types of singular fibers.
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In [MP1], Miranda and Persson studied extremal rational elliptic sur-
faces. They gave a complete classification and proved the uniqueness of
such surfaces.

Suppose that f : X → C is a semi-stable elliptic K3 surface, i.e., f has
only In type singular fibers with Kodaira’s notation [Ko]. In this case,
C = P1, NS(X) = PicX, and f is extremal if and only if f has exactly six
singular fibers. For a semi-stable elliptic K3 surface, the configuration of
singular fibers is said to be [n1, . . . , ns] (n1 ≤ n2 ≤ · · · ≤ ns) if it has singular
fibers In1 , . . . , Ins . In [MP2], Miranda and Persson gave a complete list
for realizable s-tuples [n1, . . . , ns]; and their list shows that there are 112
extremal cases. In [MP3], they go on to study MW (f) for those extremal
elliptic K3 surfaces.

We say that f : X → P1 is of type m if the corresponding [n1, n2, . . . , n6]
appears as the No. m case in the table of [MP3]. Suppose that f is of type
m. What Miranda and Persson did in [MP3] are that

(i) if m 6= 2, 4, 9, 11, 13, 27, 31, 32, 35, 37, 38, 44, 48, 53, 55, 69 and 92,
MW (f) is determined by the 6-tuples [n1, n2, . . . , n6], and

(ii) if MW (f) ⊇ Z/2Z×Z/2Z, then the corresponding elliptic K3 surface
is unique.

The main purpose of this paper is

(i) to determine MW (f) for the remaining cases, and
(ii) to consider the uniqueness problem for other kinds of MW (f); more

precisely, this problem may be formulated as follows:

Question 0.1. Let f1 : X1 → P1 and f2 : X2 → P1 be semi-stable extremal
elliptic K3 surfaces such that

(i) both X1 and X2 have the same configuration of singular fibers, and
(ii) their Mordell-Weil groups are isomorphic.

Then is it true that there exists an isomorphism ϕ : X1 → X2 such that

(a) ϕ preserves the fibrations, and
(b) the zero section of f1 maps to that of f2 with ϕ?

Now let us state our result concerning the first problem.

Theorem 0.2. Let f : X → P1 be of type m, m being one of the 17 excep-
tional cases as above. Then we have the following table:
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m the 6-tuple MW (f) m the 6-tuple MW (f)

2 [1, 1, 1, 1, 2, 18] (0), Z/3Z 4 [1, 1, 1, 1, 4, 16] Z/4Z

9 [1, 1, 1, 1, 10, 10] (0), Z/5Z 11 [1, 1, 1, 2, 3, 16] (0), Z/2Z

13 [1, 1, 1, 2, 5, 14] (0), Z/2Z 27 [1, 1, 1, 5, 6, 10] (0), Z/2Z

31 [1, 1, 2, 2, 2, 16] Z/4Z 32 [1, 1, 2, 2, 3, 15] (0), Z/3Z

35 [1, 1, 2, 2, 6, 12] Z/2Z, Z/6Z 37 [1, 1, 2, 2, 9, 9] (0), Z/3Z

38 [1, 1, 2, 3, 3, 14] (0), Z/2Z 44 [1, 1, 2, 4, 4, 12] Z/4Z

48 [1, 1, 2, 4, 8, 8] Z/8Z 53 [1, 1, 3, 3, 4, 12] Z/3Z, Z/6Z

55 [1, 1, 3, 3, 8, 8] (0), Z/2Z 69 [1, 2, 2, 3, 4, 12] Z/2Z, Z/4Z

92 [1, 3, 4, 4, 4, 8] Z/4Z

Moreover, all the above possibilities for MW (f) in each of these 17 types
are realizable.

Once we have settled the problem on MW (f), we next consider Ques-
tion 0.1. Our result is the following:

Theorem 0.3. Let f : X → P1 be an extremal semi-stable elliptic K3
surface. If ] (MW (f)) ≥ 4, then Question 0.1 has a positive answer except
for m = 49.

Remark 0.4. Let φ be the homomorphism from MW (f) to Z/n1Z× · · ·×
Z/n6Z given in [MP3, §2], i.e., φ(s) = (a1, . . . , a6), where ai is the compo-
nent number of the irreducible component that s hits at the corresponding
singular fiber. Since φ is injective, we can identify MW (f) with its image
by φ. Then we have:

(1) Let gm : Ym → P1 be any Jacobian elliptic fibration of type m with
MW (gm) = (0) and fitting one of the nine cases in Theorem 0.2. Let
{In1 , In2 , . . . , Ink

, Ink+1
, . . . , In6} be the set of types of singular fibers

of gm so that 1 = n1 = n2 = · · · = nk−1 < nk ≤ nk+1 ≤ · · · ≤ n6.
Then the Picard lattice PicYm is identical to U ⊕Ank−1⊕ · · ·⊕An6−1

with the Q/2Z-valued discriminant quadratic form qPic Ym equal to
(cf. [Mo]):

(−(nk − 1)/nk)⊕ · · · ⊕ (−(n6 − 1)/n6).

Here U =
(

0 1
1 0

)
, and the dual (PicYm)∨ = HomZ(PicYm,Z) natu-

rally contains PicYm as a sublattice with Z/nkZ⊕ · · · ⊕Z/n6Z as the
factor group (see §1 for definitions).
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An easy case-by-case check, using the fact that q(TYm ) = −q(Pic Ym),
shows that the intersection matrix of the transcendental lattice TYm

is, modulo the action of SL2(Z), uniquely determined by the data
[n1, . . . , n6] (see [Ni, Prop. 1.6.1] or [Mo, Lemma 2.4]). So the inter-
section matrix of TYm is equal to the corresponding one in the proof
of Lemma (3.3). Thus, for each of these 9 of type m, there is exactly
one K3 surface (modulo isomorphisms of abstract surfaces without the
fibered structure being taken into consideration) which has a Jacobian
elliptic fibration of type m with trivial Mordell-Weil group.

Also, for both (m,Gm) = (35,Z/2Z), (53,Z/3Z), there is a unique
K3 surface Xm, which has a Jacobian elliptic fibration fm of type m
and MW (fm) = Gm, because we can prove that the transcendental
lattice TXm is unique in each pair case and identical to the correspond-
ing one in the proof of Lemma (3.3).

The authors suspect that if (fm)i : (Xm)i → P1 are two Jaco-
bian elliptic surfaces of the same type m and with MW ((fm)1) ∼=
MW ((fm)2) then (Xm)1 ∼= (Xm)2, though there may not be any
fibered surface isomorphism between ((Xm)i, (fm)i) (i = 1, 2); see
the fourth remark below and our Proposition (4.9). The importance
of Lemma (3.3) is that its proof can be used, we guess, to lattice-
theoretically show the existence of all cases of m and possibly to give
an affirmative answer to this question. See [SZ] and [Y] for the non-
semistable cases.

(2) When m = 49, we have MW (f) = Z/5Z with s1 = (0, 0, 0, 2, 2, 2) or
s2 = (0, 0, 0, 1, 1, 4) as its generator (cf. the Table in [MP3]). However,
we have 2s2 = (0, 0, 0, 2, 2, 10 − 2). So we may assume that MW (f)
always has s1 as its generator after suitable relabeling of fiber compo-
nents if necessary.

(3) When m = 110, we have MW (f) = Z/3Z× Z/3Z with

G1 = {s1 = (0, 0, 1, 1, 2, 2), s2 = (1, 1, 2, 2, 0, 2)}

or
G2 = {s1 = (0, 0, 1, 1, 2, 2), s3 = (1, 1, 1, 1, 0, 4)}

as its set of generators (cf. the Table in [MP3]). Note that G2 can
be replaced by the new generating set G′2 := {s1, 2s3 = (3 − 1, 3 −
1, 2, 2, 0, 2)}. So we may assume that MW (f) always has G1 as its set
of generators after suitable relabeling of fiber components if necessary.

(4) When m = 46, we have MW (f) = Z/2Z with s1 = (0, 0, 0, 0, 3, 5) or
s2 = (0, 0, 1, 2, 0, 5) as its generator (cf. the Table in [MP3]). As in
the proof of Lemma (3.8), one can show that there are pairs (Xi, fi)
(i = 1, 2) of the same type m = 46 with MW (fi) = {O, si}. Moreover,
the minimal resolution Yi of Xi/〈si〉 for i = 1 (resp. i = 2) has an
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elliptic fibration gi : Yi → P1, induced from fi, of type m = 101
(resp. m = 66). Hence there is no isomorphism between the pairs
(Xi, fi).

(5) For m = 69, we have either MW (f) = Z/2Z with s = (0, 1, 1, 0, 0, 6)
as its generator, or MW (f) = Z/4Z with s = (0, 1, 1, 0, 1, 3) as its
generator (cf. Lemma (3.7)).

The contents of this article are as follows: In §1, we explain our technique
and we give a brief summary of the facts we need. In §2, we give a method
to construct (or show the nonexistence) of elliptic fibrations and give several
examples of extremal elliptic K3 surfaces with trivial Mordell-Weil groups.
§3 and §4 are devoted to proving Theorems 0.2 and 0.3, respectively.
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between NUS and the Japan Society of Promotion of Science (JSPS). Deep
appreciation goes to both NUS and JSPS. The authors would like to thank
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Conventions. In this article, the ground field is always the complex num-
bers field C.

To describe the type of simple singularities of plane curves, we use bold
capital letters, A, D and E.

We use capital italic letters A, D and E to describe the type of lattices,
but we always multiply the value of intersection form by −1 for such lattices.

1. Preliminaries.

1.1. Cremona transformations and its applications.
We fix notation about Cremona transformations related with two-dimens-

ional families of conics.
Let V be the vector space of homogeneous polynomials of degree 2 in three

variables. Let P,Q,R ∈ P2 be three different points in general position and
let VP,Q,R be the subspace of elements of V vanishing at P , Q and R; it is a
3-dimensional vector space. It is classical to define a rational map CRP,Q,R :
P2 99K P̌(VP,Q,R) where if P0 ∈ P2, its image is the hyperplane of elements
of VP,Q,R which also vanish at P0. By a suitable choice of coordinates and
the identification of P̌(VP,Q,R) with P2 this map may be written as:

P2 99K P2

[x : y : z] 7→ [yz : xz : xy] .

The map CRP,Q,R is not defined at P,Q,R, which are called the centers of
the Cremona transformation. Outside the lines joining P,Q,R, this map is
an isomorphism.
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Let us consider now P,Q ∈ P2 and a line L through P such that Q /∈ L.
In the same way we define VP,L,Q as the space of equation of conics passing
through P and Q and tangent to L at P . We define in the same way
CRP,L,Q. We can choose coordinates such that we have:

P2 99K P2

[x : y : z] 7→
[
y2 : xy : xz

]
.

This map is not defined at P and Q and it is an isomorphism outside L and
the line joining P and Q. We say that the centers are Q and the two first
infinitely near points of L at P ; sometimes we will replace in the notation
L by any curve through P whose only tangent at P is L.

There is a third type of Cremona transformation associated to a conic.
Let C be a smooth conic passing through a point P ; we denote VP,C as the
space of equations of conics C ′ such that (C · C ′)P = 3. We denote CRP,C

the associated Cremona transformation. It is not defined at P and is an
isomorphism outside the tangent line to C at P . We say that the centers
at P are the three first infinitely near points of C at P ; sometimes we will
replace in the notation Q by any curve through P such that Q is the only
conic with highest contact at P . We can choose equations to write it down
as:

P2 99K P2

[x : y : z] 7→
[
x2 : xy : y2 − xz

]
.

1.2. Some lattice theory.
We here briefly review Nikulin’s lattice theory. Details are found in [Ni].

Let L be a lattice, i.e.,
(i) L is a free finite Z-module and
(ii) L is equipped with a nondegenerate bilinear symmetric pairing 〈 , 〉.
For a given lattice L, discL is the determinant of the intersection matrix.

Note that it is independent of the choice of a basis. We call L unimodular
if discL = ±1. Let J be a sublattice of L. We denote its orthogonal
complement with respect to 〈 , 〉 by J⊥.

For a lattice L, we denote its dual lattice by L∨. Note that, by using the
pairing, L is embedded in L∨ as a sublattice with same rank. Hence the
quotient group L∨/L is a finite Abelian group, which we denote by GL.
L is called even if 〈x, x〉 is even for all x ∈ L. For an even lattice L, we

define a quadratic form qL with values in Q/2Z as follows:

qL(x mod L) = 〈x, x〉 mod 2Z.

Then we have the following lemma:

Lemma 1.1. Let L be an even unimodular lattice. Let J1 and J2 be sublat-
tices of L such that J⊥1 = J2 and J⊥2 = J1. Then
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(i) GJ1
∼= GJ2 and

(ii) qJ1 = −qJ2.

For a proof, see [Ni].
A sublattice M of L is called primitive if L/M is torsion-free.

Example 1.2. For a K3 surface X, H2(X,Z) is an even unimodular lattice
with respect to the intersection pairing. The Picard group, PicX, is a primi-
tive sublattice of H2(X,Z), and TX := (PicX)⊥ is called the transcendental
lattice of X.

We shall end this subsection with the following lemma.

Lemma 1.3. For j = 1, 2, let ∆j = ∆(1)j ⊕ · · · ⊕∆(rj)j be a lattice where
each ∆(i)j is of Dynkin type Aa, Dd or Ee.

(1) Suppose that Φ : ∆1 → ∆2 is a lattice-isometry. Then r1 = r2 and
Φ(∆(i)1) = ∆(i)2 after relabeling.

(2) Let A = Am1 ⊕ · · · ⊕ Amk
be a direct sum of lattices of Dynkin type

Ami. Suppose that A is an index-n (n > 1) sublattice of ∆ := ∆2 and
that (m1, . . . ,mk) = (1, 1, 5, 11), (2, 2, 3, 11). Then one of the following
three cases occurs (the first two are quite unlikely but the authors do
not have a proof yet) :

(2-1) A = A1⊕(A1⊕A5⊕A11),∆ = A1⊕D17, and (A1⊕A5⊕A11) ⊆ D17

is an index-6 extension.
(2-2) A = A2⊕(A2⊕A3⊕A11),∆ = A2⊕D16, and (A2⊕A3⊕A11) ⊆ D16

is an index-6 extension.
(2-3) A = A1⊕A11⊕ (A1⊕A5),∆ = A1⊕A11⊕E6, and (A1⊕A5) ⊆ E6

is an index-2 extension.

Proof. We observe that

|det(An)| = n+ 1, |det(Dn)| = 4, |det(E6)| = 3,

|det(E7)| = 2, |det(E8)| = 1.

We also note that for an index n lattice extension L ⊆M one has |det(L)| =
n2|det(M)|.

(1) is true when r1 = r2 = 1. In general, for a generating root e in
∆(1)1 with e2 = −2, one has (Φ(e))2 = −2 and hence Φ(e) ∈ ∆(1)2 say,
because ∆2 is even and negative definite. Now the connectedness of ∆(1)1
implies that Φ(∆(1)1) ⊆ ∆(1)2. Thus to prove (1), we may assume that
r2 = 1,∆2 = ∆(1)2. The same argument applied to Φ−1 shows that r1 = 1.

(2) The argument in (1) applied to the inclusion A ↪→ ∆2, implies that
each ∆(i)1 contains a finite-index sublattice which is a sum of a few sum-
mands of A. Now it follows from the observations at the beginning of the
proof of this lemma, that either (2) is true or one of the following two cases
occurs:
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Case (2-4) A = A11⊕(A2⊕A2⊕A3),∆ = A11⊕D7, and (A2⊕A2⊕A3) ⊆
D7 is an index-3 extension.

Case (2-5) A = A2⊕A3⊕(A2⊕A11),∆ = A2⊕A3⊕D13, and (A2⊕A11) ⊆
D13 is an index-3 extension.

In the following, if ei’s form a canonical Z-basis of An we let hn = (1/(n+
1))
∑n

i=1 iei (mod An) be the generator of (An)∨/An
∼= Z/(n + 1)Z. Note

that (hn)2 = −n/(n+ 1).
Suppose the contrary that Case (2-4) occurs. Set B = A2 ⊕ A2 ⊕ A3.

Then D7 ⊆ B∨ := HomZ(B,Z). and the latter is generated by h2, h
′
2, h3

with (h2)2 = −2/3 = (h′2)
2, (h3)2 = −3/4. Since D7 is generated by roots

and contains an index-3 sublattice B, there is a root t ∈ D7 − B, and we
can write t = ah2 + bh′2 + A where a, b ∈ Z, A ∈ B. Then −2 = t2 =
(−2/3)(a2 + b2) + A2 − 2s1 for some s1 ∈ Z. Since B is even and negative
definite, A2 = −2s2 for some s2 ∈ Z. Denote by s = s1 + s2. Then
3 = a2 + b2 + 3s, 3|(a2 + b2). Hence a = 3a1, b = 3b1 for some a1, b1 ∈ Z.
This leads to that t = a1(3h2) + b1(3h′2) +A ∈ B, a contradiction.

Suppose the contrary that Case (2-5) occurs. Set B = A2 ⊕ A11. Then
D13 ⊆ B∨ and the latter is generated by h2, h11. As in Case (2-4), there
is a root t ∈ D13 − B, and we can write t = ah2 + 4bh11 + A where a, b ∈
Z, A ∈ B. Then −2 = t2 = (−2/3)(a2 + 22b2) − 2s for some s ∈ Z. Hence
3 = a2 + 22b2 + 3s, 3|(a2 + b2) and a = 3a1, b = 3b1 for some a1, b1 ∈ Z.
This leads to that t ∈ B, a contradiction. �

1.3. Review on elliptic surfaces with large torsion group.
We here give a brief summary on the results in [CP] and [C]. Let f : X →

C be an elliptic surface over a curve C with a section O. Let MW (f) be
its Mordell-Weil group, the group of sections, O being the zero element. We
denote its torsion part by MW (f)tor. Suppose that MW (f)tor ⊃ Z/mZ ⊕
Z/nZ, m|n, mn ≥ 3, and the j-invariant of X is not constant. Then it is
known that one obtains f : X → C in a certain universal way, which we
describe below. For that purpose, we need some notations.

Set

Γm(n) =
{(

a b
c d

)
∈ SL(2,Z) |

(
a b
c d

)
≡
(

1 ∗
0 1

)
mod n, b ≡ 0 mod m

}
.

Let Xm(n) = Γm(n)\H∗, where H is the upper halfplane in C, and let
Em(n) be the elliptic modular surface of Γm(n). By definition, Em(n) is an
elliptic surface over Xm(n); and we denote the morphism from Em(n) to
Xm(n) by ψm,n.
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Suppose that MW (f)tor ⊃ Z/mZ⊕ Z/nZ, m|n, mn ≥ 3. Then we have
a commutative diagram

C
g→ X1(N)

j ↘ ↓ jm,n

P1

where j and jm,n are the j-invariants of f and ψm,n, respectively. Moreover,
this diagram essentially gives f : X → C, i.e., X is obtained as the pull-back
surface by g, in the sense of relatively minimal smooth model.

Thus f is determined by g. Hence the uniqueness of X is reduced to that
of g, which we consider in §4.

1.4. Comments on pencil of plane curves and nodal cubics.
Let C = {f = 0} and D = {g = 0} two projective plane curves of degree d

without common components. They define a pencil of curves by considering
{C[t:s]}[t:s]∈P1 , where C[t:s] is the curve of equation sf − tg = 0. Let us
denote B := C ∩ D; it is the set of base points of the pencils; these base
points are the intersection points of any couple of elements of the pencil. A
base point P is multiple if (C ·D)P > 1 (we may replace C and D by any
couple of different elements of the pencil). A pencil defines a rational map
P2 99K P1 which is well-defined outside the base points. Let Z ⊂ P2 be an
irreducible curve of degree e which is not a component of any element in the
pencil. Let C[t:s] a generic element of the pencil. Then the pencil defines a
map φ : Z → P1 of degree

dZ := de−
∑
P∈B

(Z · C[t:s])P ;

if a base point P is in Z its image is the unique value φ(P ) such that
(Z · Cφ(P ))P is greater than the generic intersection number. The critical
points of the map are the points Q ∈ Z such that:

– If Q is not a base point, then Cφ(Q) is either singular at Q or not
transversal to Z at Q, i.e., (Z · Cφ(Q))Q > 1.

– If Q ∈ B, then (Z · Cφ(Q))Q > 1 + (Z · C[t:s])P , for [t : s] 6= φ(Q).

Let us consider a nodal cubic N in P2. We will apply later the following
well-known result.

Proposition 1.4. There exists a homogeneous coordinate system [x : y : z]
in P2 such that the equation of N is xyz + x3 − y3 = 0. The subgroup G
of PGL(3,C) fixing N is isomorphic to the dihedral group of order 6. Let
ϕ : C∗ → Reg(N) be the mapping defining by ϕ(t) := [t : t2 : t3 − 1]. Let us
consider on N the geometrical group structure with zero element [1 : 1 : 0] =
ϕ(1). Then ϕ is a group isomorphism. Each element of G is determined by
its action on Reg(N); the induced action on C∗ is generated by t 7→ t−1 and
t 7→ ζt where ζ3 = 1.
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2. Some extremal elliptic K3 surfaces with trivial Mordell-Weil
group.

2.1. Elliptic fibrations and sextic curves.
Relationship between extremal elliptic fibrations and maximizing sextic

curves was intensively studied in Persson’s paper [P]. We explain in this
section how to apply this method to construct or discard extremal elliptic
fibrations. Let (X, f) be a pair such that X is a K3 surface and f : X → P1

is a relatively minimal elliptic fibration with a fixed section O.

Step 1. Fix O as the zero element of the Mordell-Weil group MW (f). It
determines a group law on each regular fiber and it extends to a group law
in the regular part of any fiber. For a fiber F of type In, there is a short
exact sequence

0 → C∗ → Reg (F ) → Z/nZ → 0
where the kernel corresponds to the part of Reg (F ) in the irreducible com-
ponent which intersects O.

Step 2. On the regular part of any fiber F we can consider the map P 7→
−P , (where F ∩ O is the zero element). These maps are the restriction
of a morphism σ : X → X, which is clearly an involution. By definition
f ◦ σ = f . Then, there is a natural map ρ̃ : X/σ → P1; if F is an elliptic
fiber of π, F/σ is the quotient of an elliptic curve by an involution with four
fixed points (the 2-torsion), i.e., a smooth rational curve.

Then ρ̃ : X/σ → P1 is a morphism from a smooth (rational) surface onto
P1 whose generic fiber is P1. If F is a fiber of type I2n+1 (resp. I2n), F/σ is
a curve with normal crossings and n + 1 irreducible components which are
smooth and rational.

Step 3. For any singular fiber F , we contract all of the irreducible compo-
nents of ρ̃(F ) but the one which intersects ρ̃(O). We obtain a holomorphic
fiber bundle ρ : Σ → P1 with fiber isomorphic to P1 (Σ smooth) and a map
τ : X → Σ such that ρ ◦ τ = π. This map is generically 2 : 1.

The map τ is a 2-fold covering ramified on the image of the fixed points
of σ, i.e., on the image of the 2-torsion. We can write this curve as E ∪ R
where E := τ(O), R ∩ E = ∅ and R has intersection number three with
the fibers of ρ. The number of irreducible components of R depends on
the 2-torsion T2(MW (f)) of the Mordell-Weil group of X (one irreducible
component if T2(MW (f)) = 0, two if T2(MW (f)) = Z/2Z and three if
T2(MW (f)) = Z/2Z⊕ Z/2Z).

If the configuration of π is [1, . . . , n1, . . . , nr], 1 < n1 ≤ · · · ≤ nr, then R
has exactly r singular points of type An1−1, . . . ,Anr−1.

Remark 2.1. Let us suppose that nr > 7, and let us call F the fiber of ρ
containing this point Anr−1; R intersects also F at another point P . Then
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we can perform three Nagata elementary transformations on the first three
infinitely near points of R at Anr−1. We call Σ′ the result of this operation
and we do not change the notation for the strict transforms; it induces a new
fibration ρ′ : Σ′ → P1 where E is a section of self-intersection −1. The curve
R has a singular point Anr−7 and (R ·E)P = 3, and R is smooth at P . We
can contract E and we obtain a projective plane where the contraction of R
is a curve of degree 6 (also denoted by R) which has r + 1 singular points
of type An1−1,An2−1, . . . ,Anr−7 and E6; the image of F is the tangent
line to R at E6 and passes through An1−7. The pencil which induces the
elliptic fibration (the preferred pencil) is the pencil of lines through E6.
This fibration is called the standard fibration in [P] and in this case E6 is
its center.

We can consider some kind of converse of this construction. Let R ⊂ P2

be a reduced curve (maybe reducible) of degree six such that its singular
points are simple. Let P be a singular point of R. Then if X is the minimal
resolution of the ramified double covering of P2 ramified on R and π : X →
P1 is the mapping induced by the pencil of lines through P , then π is a
relatively minimal elliptic fibration of the K3-surface X. We call (X,π) the
elliptic fibration associated to (R,P ) and we will call the pencil of lines at
P the preferred pencil; we will denote σ : X → P2 the double covering. The
following result is easy and useful.

Proposition 2.2. Let π : X → P1 be the elliptic fibration associated to
(R,P ) as above. Let E be a section of X; let C := σ(E). Then either C is
an irreducible component of R, either the intersection number of C and E
at any point in C ∩R is an even number.

In both cases C is a curve of degree d having at P a singular point of
multiplicity d − 1. In the first case there is exactly one section over C and
in the second case there are exactly two such sections.

We study now the existence of elliptic fibrations with trivial Mordell-Weil
group in the cases of ambiguity which appear in the list of Miranda and
Persson. In fact, we have applied this method to all cases of ambiguity in
the list. As it is very long, we present only a few cases, where interesting
phenomena occur.

2.2. Type m = 9.

Proposition 2.3. There exist elliptic K3 surfaces of type 9, i.e., with con-
figuration [1, 1, 1, 1, 10, 10], and trivial Mordell-Weil group.

This proposition gives one ambiguity case as such a fibration with Mordell-
Weil group of order 5 appears in [MP3].

We look for an irreducible curve R of degree 6 having three singular points
of type E6,A3,A9 and such that the tangent line to R at E6 passes through



48 E. ARTAL, H. TOKUNAGA, AND D.-Q. ZHANG

A3. As in the case above the line through A3 and A9 intersects R at two
other points.

Step 1. First Cremona transformation.

We consider CRE6,A3,A9 . We denote R1 the strict transform of R; R1 is
a quintic curve. We have a smooth point Q such that the tangent line T to
R1 at Q verifies that (R1 ·Q)Q = 4. We denote Q′ the other point in R1∩T .

The other singular points of R1 are A7 (coming from A9), P1 (an ordinary
double point coming from A3) and another ordinary double point denote P2.
The preferred pencil of lines has its center at P1. The line joining P1 and
P2 intersects R1 at Q. The line joining P1 and A7 passes through Q′. The
ramification locus is R1 ∪ T .

E6

P
1

9
A

A3

A 7

P
2

Q

Q’

Figure 1.

Step 2. Second and third Cremona transformations.

We perform CRP1,P2,A7 . We obtain a quartic curve R2 with one singular
point A5 (coming from A7). The line T becomes a conic T2 and R2 ∩ T2 =
{Q,Q′, Q′′} where (R2 · T2)Q = 5, (R2 · T2)Q′ = 2, (R2 · T2)Q′′ = 1, and
A5, Q

′, Q′′ are aligned. The center of the preferred pencil is Q′′.
We perform the third Cremona transformation CRA5,L,Q′′ , L being the

tangent line at A5. We obtain two cubics R3 and T3. The cubic R3 has
an ordinary double point A1 and T3 has also a double point denoted S
(which is the center of the preferred pencil). The curves R3 and T3 have
two intersection points Q and Q′, with intersection numbers 5 and 4, and
the points Q′, S and A1 are aligned.

Question 2.4. Does there exist an irreducible nodal cubic R3 (with node
A1), an irreducible cubic T3 with a double point S in P2 such that R3∩T3 =
{Q,Q′}, Q,Q′ 6= S,A1, with (R3 · T3)Q = 5, (R3 · T3)Q′ = 4 and Q′, S,A1

aligned?

Proposition 2.5. The answer to Question 2.4 is yes.
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Proof. We proceed by applying Proposition 1.4 to R3. We suppose that
Q = p(s−4) and Q′ = p(s5). In this situation the equation of the line joining
Q′ and A1 is y = s5x. Let f(x, y, z) = 0 an equation for T3 such that the
coefficient of z3 in f is 1. Then f(t, t2, t3 − 1) = (t − s5)4(t − s−4)5. We
impose that T3 intersects the line y = s2x at one point outside Q′ (with
multiplicity 2). We force this point to be singular and we get the conditions
on s (again with Maple-V). We obtain that

(s6 − 1)(s6 + 3s3 + 1)(s12 + 4s9 + s6 + 4s3 + 1) = 0.

We consider the action of the dihedral group; in the first term it is enough
to retain the cases s = ±1; the positive case is too degenerate so it remains
only s = −1. The equation of T3 in this case is:

13 y3 + 9 y2x− 5 y2z − 9 yx2 − 6 yxz − yz2 − 13x3 − 5x2z + xz2 + z3 = 0.

For the second term, one can see that we force S = A1 which is also too
degenerate. The last factor gives two different cases (the twelve roots give
two orbits by the action of the dihedral group). The equation is:(

−1265 s9

2
− 60 s3 − 4671

2
− 2170 s6

)
x3

+
(
1205 s8 + 320 s11 + 1285 s2

)
zx2

+
(
10080 s+ 135 s4 + 9480 s7 + 2466 s10

)
yx2

+
(
60 s+ 60 s7 + 16 s10 + 5 s4

)
z2x

+
(
15255 s2 + 216 s5 + 14325 s8 + 3780 s11

)
y2x

+
(

495 s9

2
+

2103
2

+ 990 s6
)
yzx

+
(
−1735 s9

2
− 60 s3 − 6609

2
− 3110 s6

)
y3

−
(
640 s+ 620 s7 + 160 s10 + 5 s4

)
zy2

+
(
−75 s2 − 75 s8 − 20 s11 − 4 s5

)
z2y + z3 = 0.

�

We deduce that there are essentially three different answers to Ques-
tion 2.4. The main feature of the first answer is that the tangent line L to
R3 at Q′ passes through Q. The elliptic surface is obtained from the double
covering of P2 ramified along R3 + T3, and the elliptic fibration comes from
the pencil of lines with center at S. One of the singular fibers is produced
by the line joining S, A1 and Q′.
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The other singular fiber is produced by the line joining S and Q.
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Proposition 2.6. The solution for s = −1 produces the elliptic fibration
such that MW is cyclic of order 5. The solutions s12 +4s9 +s6 +4s3 +1 = 0
produce elliptic fibrations with trivial Mordell-Weil group; this case was not
previously known.

Proof. We note that the exceptional curve of the blowing-up of S never
produces a section. In both cases the strict preimage of T3 produces a
section.

In the case s = −1, the intersection numbers of the line T with the curve
R3+T3 are always even; then the preimage of L is reducible and produces two
sections. We note also that Q is in this case an inflection point for both R3

and T3; the common tangent line has also even intersection numbers with
R3 + T3 and then it produces two sections. We have found five different
sections, then all of them.

Let us consider now the second case. We know already a section. By
Proposition 2.2, any other section should come from a section to the pencil
of lines through S having always even intersection numbers with the rami-
fication curve R3 + T3. Then the problem is as follows:
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Is there a curve D of degree d having a point of multiplicity d− 1 at
S and such that (S ·R3)P ≡ (S · T3)P mod 2 for any P ∈ P2 and any
branch of D at S has even intersection number with T3?
Let us suppose that such a curve exists. It gives two different sections D0

and D1 in the elliptic surface. From [MP3], D0 and D1 are torsion sections,
and then they must be disjoint. In particular, D cannot intersect R3 ∪ T3

outside S,A1, Q,Q
′ and no branch of D at S is tangent to any branch of T3

at S.

D0 and D1 belong to the 5-torsion, so by the structure of the singular
fibers, we have:

– A1 /∈ D;
– (T3 ·D)Q′ = (R3 ·D)Q′ = a = 0, 2, 4;
– (T3 ·D)Q′ = (R3 ·D)Q = b = 1, 3, 5.

Then, putting all these conditions together, we obtain that S /∈ D and
so D is a line; then 3 = a+ b. The two possibilities appear in the previous
case, but not in this one. �

2.3. Case m = 11.
The method to find or discard the fibrations in the other cases is the

same one. As the answers are positive, we will give the results that may be
verified by the reader. Let us consider the polynomial

p1(x, y, z)

:=
(

11593
95004009

− 4027 v
190008018

)
y4x2 +

(
4705

10556001
− 2183 v

10556001

)
zxy4

+
(
− 1493 v

4691556
+

803
2345778

)
z2y4 +

(
− 48226

5000211
+

1475 v
5000211

)
zy3x2

+
(

1174 v
185193

− 4736
185193

)
z2xy3 +

(
635 v

123462
− 755

61731

)
z3y3

+
(

20153
87723

+
1081 v
175446

)
z2y2x2 +

(
854
3249

− 187 v
3249

)
z3y2x

+
(
− 427

6498
+

187 v
12996

)
z4y2 +

(
−22612

13851
+

386 v
13851

)
z3yx2

+
(

1412
1539

+
20 v
1539

)
z4xy + x3z3 +

(
−11 v

729
− 485

729

)
z4x2

where v2 + 2 = 0.

Proposition 2.7. The curve p1(x, y, z) = 0 is an irreducible curve with
singularities E6 (at [1 : 0 : 0] and tangent line z = 0), A1 (at [0 : 0 : 1]),
A9 (at [0 : 1 : 0]) and A2 (at [1 : 1 : 1]). The pencil of lines through the
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triple point determine after a double covering an elliptic K3 fibration of type
[1, 1, 1, 2, 3, 16] with trivial Mordell-Weil group.

Proof. The computations have been performed with Maple-V. We note that
the curve is irreducible as the line x = 0 joining A9 and A1 is not a compo-
nent. The Miranda-Persson classification finishes the result. �

2.4. Case m = 13.

Proposition 2.8. The curve p2(x, y, z) = 0 (see below) is an irreducible
curve with singularities E6 (at [1 : 0 : 0] and tangent line y = 0), A7 (at
[0 : 0 : 1]), A4 (at [0 : 1 : 0]) and A1 (at [1 : 1 : 1]). The pencil of lines
through the triple point determine after a double covering an elliptic K3
fibration of type [1, 1, 1, 2, 5, 14] with trivial Mordell-Weil group.

Proof. As before, computations have been performed with Maple-V. We
note that the curve is irreducible as the line x = y joining A7 and A1 is not
a component. The Miranda-Persson classification finishes the result. �

We have:

p2(x, y, z)

:= y3x3 +
(
− 24284

130321
+

10287 v
260642

+
144295 v2

1824494

)
y4x2

+
(
−6071515 v2

130321
− 2851308 v

130321
+

13668817
130321

)
zx2y3

+
(

38660279 v
260642

+
161684215 v2

521284
− 179634441

260642

)
z2x2y2

+
(
−252208635 v2

521284
− 60782001 v

260642
+

277127879
260642

)
z3x2y

+
(

55758423 v
521284

+
460287135 v2

2085136
− 125694751

260642

)
z4x2

+
(
−10473

6859
+

2326 v
6859

+
32860 v2

48013

)
zxy4

+
(
−361050 v2

6859
− 176895 v

6859
+

1579285
13718

)
z2xy3

+
(

725753 v
13718

+
1458065 v2

13718
− 1564472

6859

)
z3xy2

+
(

1625477
13718

− 191737 v
6859

− 3045105 v2

54872

)
z4xy

+
(
−268

361
+

141 v
722

+
3495 v2

10108

)
z2y4 +

(
825
722

− 255 v
361

− 1175 v2

1444

)
z3y3
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+
(
−686

361
+

1099 v
1444

+
6055 v2

5776

)
z4y2,

where 5 v3 − 4 v2 − 14 v + 14 = 0.

Let us remark that this condition has exactly one real solution.

2.5. Case m = 27.
In this cases we only state the result concerning the existence and unicity

of curves and we give the equation of the polynomial. The proofs and
methods of computations are very similar to the previous ones.

Proposition 2.9. The curve p3(x, y, z) = 0 (see below) is an irreducible
curve with singularities E6 (at [0 : 0 : 1] and tangent line y = 0), A3 (at
[1 : 0 : 0]), A5 (at [0 : 1 : 0]) and A4 (at [1 : 1 : 1]). The pencil of lines
through the triple point determine after a double covering an elliptic K3
fibration of type [1, 1, 1, 5, 6, 10] with trivial Mordell-Weil group.

We have

p3(x, y, z)

:=
(
−200 v2

297
− 425

297
− 110 v

27

)
y4x2 +

(
125
396

+
5 v
9
− 13 v2

396

)
zy4x

+
(

5 z2

528
− 5

264
+

5 v
48

)
z2y4 +

(
115 v2

81
+

220
81

+
875 v
81

)
y3x3

+
(

655
108

+
493 v
54

+
133 v2

108

)
zy3x2 +

(
5 v2

36
− 115

36
− 5 v

9

)
z2y3x+ z3y3

+
(
−2225

972
− 3275 v

486
− 725 v2

972

)
y2x4 +

(
−2831

324
− 2032 v

81
− 797 v2

324

)
zy2x3

+
(
−37 v2

72
− 35

36
− 215 v

72

)
z2y2x2 +

(
1225 z2

972
+

5215
972

+
7495 v
486

)
zyx4

+
(

1105
324

+
788 v
81

+
193 v2

324

)
z2yx3 +

(
−893 v2

3888
− 4333

1944
− 24499 v

3888

)
z2x4

where 25 + 75 v + 15 v2 + v3 = 0.

2.6. Case m = 32.
Let us consider the polynomial

p4(x, y, z)

:= y3z3 +
(

5625 v
668168

− 33625
334084

)
z2x4 +

(
3475 v
58956

+
39275
29478

)
yz2x3

+
(
−1465 v

1734
− 1775

867

)
y2x2z2 +

(
173 v
204

− 299
102

)
y3xz2
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+
(
− v

40
+

17
20

)
y4z2 +

(
19675 v
501126

− 188825
501126

)
yzx4

+
(

350 v
4913

+
23110
4913

)
y2x3z +

(
−1580 v

867
− 5900

867

)
y3x2z

+
(

11 v
15

− 5/3
)
y4xz +

(
29555 v
668168

− 232705
668168

)
y2x4

+
(
−1885 v

29478
+

116975
29478

)
y3x3 +

(
−1205 v

1734
− 33517

8670

)
y4x2

where v2 − v + 34 = 0.

Proposition 2.10. The curve p4(x, y, z) = 0 is an irreducible curve with
singularities E6 (at [0 : 0 : 1] and tangent line y = 0), A8 (at [1 : 0 : 0]),
A2 (at [0 : 1 : 0]) and two points of type A1 in the line x+ y + z = 0. The
pencil of lines through the triple point determine after a double covering an
elliptic K3 fibration of type [1, 1, 2, 2, 3, 15] with trivial Mordell-Weil group.

2.7. Case m = 37.

Proposition 2.11. The curve p5(x, y, z) = 0 (see below) is an irreducible
curve with singularities E6 (at [0 : 0 : 1] and tangent line x = 0), A2

(at [0 : 1 : 0]), A8 (at [1 : 0 : 0]) and two points of type A1 in the line
x + y + z = 0. The pencil of lines through the triple point determine after
a double covering an elliptic K3 fibration of type [1, 1, 2, 2, 9, 9] with trivial
Mordell-Weil group.

We have:

p5(x, y, z)

:=
(

3970803 v
130438

− 345557847 v2

65219
+

8058927
130438

)
y4x2

+
(
−82574784 v2

5929
+

37159110 v
5929

− 3105297
5929

)
zy4x

+
(
−653967

2156
+

3545235 v
1078

− 5380479 v2

1078

)
z2y4

+
(

5894214 v
9317

− 295704 v2

9317
− 650011

9317

)
y3x3

+
(
−278076 v2

847
+

808926 v
847

− 86286
847

)
zy3x2

+
(
−105723 v2

77
+

80505 v
77

− 15255
154

)
z2xy3
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+
(

14286
1331

− 136113 v
1331

+
65742 v2

1331

)
y2x4

+
(
−24048 v

121
+

30018 v2

121
+

4599
242

)
zy2x3

+
(
−2199 v

11
+

3966 v2

11
+

195
11

)
z2y2x2

+
(
−309

121
+

3711 v
121

− 8358 v2

121

)
zyx4

+
(

471 v
11

− 903 v2

11
− 87

22

)
z2yx3 +

(
−42 v2

11
+

159 v
44

− 15
44

)
z2x4 + z3x3

where 28 v3 − 30 v2 + 12 v − 1 = 0.

2.8. Case m = 38.
Let us consider the polynomial

p6(x, y, z)

:=
1404x2y4

1445
− 9xy4z

85
+

17 z2y4

60
+

10800x3y3

4913
+

1980x2y3z

289

− 37 z2y3x

102
+ y3z3 +

105840x4y2

83521
+

4410x3y2z

289
+

13965 z2y2x2

1156

+
720300x4yz

83521
+

780325 z2yx3

29478
+

14706125 z2x4

1002252
.

Proposition 2.12. The curve p6(x, y, z) = 0 is an irreducible curve with
singularities E6 (at [0 : 0 : 1] and tangent line y = 0), A7 (at [1 : 0 : 0]),
A1 (at [0 : 1 : 0]) and two points of type A2 in the line x+ y + z = 0. The
pencil of lines through the triple point determine after a double covering an
elliptic K3 fibration of type [1, 1, 2, 3, 3, 14] with trivial Mordell-Weil group.

2.9. Case m = 55.
Let us consider the polynomial

p7(x, y, z)

:=
(

139
176

+
175 v
176

)
y4z2 + .

(
−837 v

242
+

7101
968

)
y4zx

+
(

30537
10648

− 29565 v
10648

)
y4x2 +

(
−151 v

44
+

155
44

)
y3z2x

+
(

675
242

+
837 v
242

)
y3zx2 +

(
−669 v

2662
+

2765
1331

)
y3x3

+
(
−81 v

22
+

243
44

)
y2z2x2 +

(
441 v
242

− 183
242

)
y2zx3
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+
(
−1107

1331
+

2025 v
1331

)
y2x4 +

(
−17

11
+

107 v
22

)
yz2x3

+
(

153 v
121

+
18
121

)
yzx4 + z3x3 +

(
13
22
− 5 v

22

)
z2x4

where 3v2 − 4v + 2 = 0.

Proposition 2.13. The curve p7(x, y, z) = 0 is an irreducible curve with
singularities E6 (at [0 : 0 : 1] and tangent line x = 0), A1 (at [0 : 1 : 0]),
A7 (at [1 : 0 : 0]) and two points of type A2 in the line x+ y + z = 0. The
pencil of lines through the triple point determine after a double covering an
elliptic K3 fibration of type [1, 1, 3, 3, 8, 8] with trivial Mordell-Weil group.

3. The complete determination of the Mordell-Weil group for
each type of semi-stable extremal fibrations.

In this section, we shall show Theorem 0.2 which will follow from the Table
in [MP3], and the Lemmas below. We recall Lemma 1.3 and Shioda-Inose’s
result that the isomorphism class of a K3 surface X of Picard number 20 is
uniquely determined by the transcendental lattice TX , modulo the action of
SL2(Z) [SI].

Lemma 3.1. Let S be an even symmetric lattice of rank 20 and signature
(1, 19) and T a positive definite even symmetric lattice of rank 2. Assume
that ϕ : T∨/T → S∨/S is an isomorphism which induces the following
equality involving Q/2Z-valued discriminant (quadratic) forms: qS = −qT .

Let X be the unique K3 surface (up to isomorphisms) with the transcen-
dental lattice TX = T . Then the Picard lattice PicX is isometric to S.

Proof. Consider the overlattice L of S ⊕ T obtained by adding all elements
ϕ(x) + x, x ∈ T∨, where ϕ(x) ∈ S∨ denotes one representative of ϕ(x +
T ) ∈ S∨/S. The (even) intersection form on S ⊕ T is naturally extended
to a Q-valued one on S∨ ⊕ T∨. For each x ∈ T∨, we have, modulo 2Z,
(ϕ(x)+x, ϕ(x)+x) = −qT (x)+qT (x) = 0, i.e., (ϕ(x)+x, ϕ(x)+x) ∈ 2Z. Also
for xi ∈ T∨, combining (ϕ(x1 + x2), ϕ(x1 + x2)) = −(x1 + x2, x1 + x2) (mod
2Z) and (ϕ(xi), ϕ(xi)) = −(xi, xi) (mod 2Z), we see that (ϕ(x1), ϕ(x2)) =
−(x1, x2) (mod Z), whence mod Z we have (ϕ(x1) + x1, ϕ(x2) + x2) = 0.
Thus L is an even (integral) symmetric lattice of rank 22 and signature
(1 + 2, 19 + 0). Clearly, L/(S ⊕ T ) ∼= T∨/T and hence |det(L)| = |det(S ⊕
T )|/|T∨/T |2 = 1. Now by the classification of indefinite unimodular even
symmetric lattices, L is isometric to the K3 lattice (cf. [Se]).

On the other hand, by [SI], there is a unique K3 surface X (modulo
isomorphisms) with the intersection form of the transcendental lattice TX

equal to T (modulo SL2(Z)). We identify L with H2(X,Z) and T with
TX . Note that there are two embeddings ιk : TX → H2(X,Z): ι1 : TX ↪→
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H2(X,Z) as the transcendental sublattice, and ι2 : TX = T ↪→ S ⊕ T ↪→
L = H2(X,Z).

The embedding ι1 (resp. ι2) is primitive by the definition of TX (resp. of
L). Now Nikulin’s uniqueness theorem of primitive embedding implies that
there is an isometry Ψ of H2(X,Z) such that ι1 = Ψ ◦ ι2 [Mo, Cor. 2.10].
Note that the Picard lattice PicX = (ι1(TX))⊥ = (Ψ(ι2(TX)))⊥ = Ψ(T⊥) =
Ψ(S) ∼= S. �

Lemma 3.2. Let f : X → P1 be of type m = 4 as in Theorem 0.2. Then
MW (f) 6= (0).

Proof. Suppose the contrary that f : X → P1 is of type m = 4 with
MW (f) = (0). Then Pic X is a direct sum U ⊕A3 ⊕A15 of lattices, where
U = (aij) satisfies aii = 0, a12 = a21 = 1. Let (bij) be the intersection
matrix of the transcendental lattice T = TX . Then bii > 0 and det(bij) =
|det(PicX)| = 64 (cf. [BPV]). After conjugation by SL(2,Z), we may
assume that −b11 < 2|b12| ≤ b11 ≤ b22, and that b12 ≥ 0 when b11 = b22. An
easy calculation shows that one of the following cases occurs:

(1) (bij) = diag [2, 32],
(2) (bij) = diag [4, 16],
(3) (bij) = diag [8, 8], and
(4) b11 = 8, b22 = 10, b12 = 4.

Embed T , as a sublattice, naturally into T∨ = HomZ(T,Z). Then T∨/T
∼= (PicX)∨/ (PicX) ∼= Z/4Z⊕Z/16Z. Note that (PicX)∨/(PicX) is gener-
ated by ε1 = (1/4)

∑3
i=1 ivi and ε2 = (1/16)

∑18
i=4(i − 3)vi, modulo Pic X,

where vi’s form a canonical basis of A3⊕A15 ⊆ Pic X. So the discriminantal
quadratic form qT : T∨/T → Q/2Z is equal to −qPic X = (−ε21)⊕ (−ε22) =
(3/4)⊕ (15/16).

On the other hand, in Case (4), T∨ has a Z-basis (e1 e2)(bij)−1 = (g1 g2),
where e1, e2 form a canonical basis of T , where g1 = (1/32)(5e1− 2e2), g2 =
(1/16)(−e1 + 2e2). This leads to that ord(g1) is equal to 32 in T∨/T , a
contradiction.

In Cases (1)-(3) where T = diag [s, t], with (s, t) = (2, 32), (4, 16) or (8, 8),
the discriminantal quadratic form qT is equal to (1/s) ⊕ (1/t). This leads
to that (1/s) ⊕ (1/t) ∼= (3/4) ⊕ (15/16), which is impossible by an easy
check. �

Lemma 3.3. Consider the pairs below:

(m,Gm) = (2, 〈0〉), (9, 〈0〉), (11, 〈0〉), (13, 〈0〉), (27, 〈0〉), (32, 〈0〉),
(37, 〈0〉), (38, 〈0〉), (55, 〈0〉), (35,Z/2Z), (53, 〈Z/3Z〉).

For each of these eleven pairs (m,Gm), there is a Jacobian elliptic K3 sur-
face fm : Xm → P1 of type m as in Theorem 0.2 such that (m,MW (fm)) =
(m,Gm).
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Proof. The existence of the pairs where m = 2, 35 is proved constructively
in [AT]. The rest is also constructively proved in §2. In the paragraphs
below, we will give an independent lattice-theoretical proof.

Let Tm, m = 2, 9, 11, 13, 27, 32, 37, 38, 55, 35, 53, be the positive definite
even symmetric lattice of rank 2 with the following intersection form, re-
spectively:(

4 2
2 10

)
,

(
10 0
0 10

)
,

(
10 2
2 10

)
,

(
2 0
0 70

)
,

(
10 0
0 30

)
,

(
12 6
6 18

)
,

(
18 0
0 18

)
,

(
6 0
0 42

)
,

(
24 0
0 24

)
,

(
6 0
0 12

)
,

(
4 0
0 12

)
.

For the first nine m above, let Sm be the even lattice of rank 20 and
signature (1,19) with the following intersection form, respectively

U ⊕A1 ⊕A17, U ⊕A9 ⊕A9, U ⊕A1 ⊕A2 ⊕A15,

U ⊕A1 ⊕A4 ⊕A13, U ⊕A4 ⊕A5 ⊕A9, U ⊕A1 ⊕A1 ⊕A2 ⊕A14,

U ⊕A1 ⊕A1 ⊕A8 ⊕A8, U ⊕A1 ⊕A2 ⊕A2 ⊕A13, U ⊕A2 ⊕A2 ⊕A7 ⊕A7.

We now define Sm for m = 35, 53. Let Γ35 be the lattice U ⊕ A1 ⊕ A1 ⊕
A5 ⊕ A11, with G,H, Ji(1 ≤ i ≤ 5), θi(1 ≤ i ≤ 11) as the canonical basis of
A1 ⊕ A1 ⊕ A5 ⊕ A11, and O, F as a basis of U such that O2 = −2, F 2 =
0,O · F = 1.

We extend Γ35 to an index-2 integral over lattice S35 = Γ35 +Zs35, where

s35 = O + 2F −G/2−H/2− (1/2)

(
6∑

i=1

iθi +
11∑
i=7

(12− i)θi

)
.

It is easy to see that the intersection form on Γ35 can be extended to an
integral even symmetric lattice of signature (1, 19). Indeed, setting s = s35,
we have

s2 = −2, s ·F = s ·G = s ·H = s ·θ6 = 1, s ·O = s ·Ji = s ·θj = 0 (∀i; j 6= 6).

Moreover, |det(S35)| = |det(Γ35)|/22 = 72.
Note that Γ∨35 = HomZ(Γ35,Z) contains naturally Γ35 as a sublattice with

Z/2Z⊕Z/2Z⊕Z/6Z⊕Z/12Z as the factor group, and is generated by the
following, modulo Γ35:

h1 = G/2, h2 = H/2, h3 = (1/6)
5∑

i=1

iJi, h4 = (1/12)
11∑
i=1

iθi.

Since (S35)∨ is an (index-2) sublattice of (Γ35)∨, an element x is in (S35)∨

if and only if x =
∑4

i=1 aihi (mod Γ35) such that x is integral on S35, i.e.,
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x · s = (a1 + a2 + a4)/2 is an integer. Hence (S35)∨ is generated by the
following, modulo Γ35:

h3, 2hi, h1 + h2, h1 + h4, h2 + h4.

Noting that 2h1, 2h2 ∈ S35 and (h1 + h2) + 6h4 is equal to s (mod Γ35)
and hence contained in S35, we can see easily that (S35)∨ is generated by
the following, modulo S35:

ε1 := h3, ε2 := h1 − h4.

Now the fact that |(S35)∨/S35| = 72 and that 6ε1, 12ε2 ∈ S35 imply that
(S35)∨/S35 is a direct sum of its cyclic subgroups which are of order 6, 12,
and generated by ε1, ε2, modulo S35.

We note that the negative of the discriminant form

−q(S35) = (−(ε1)2)⊕(−(ε2)2) = (5/6)⊕((1/2)+(11/12)) = (5/6)⊕(−7/12).

Next we define S53. Let Γ53 be the lattice U ⊕A2 ⊕A2 ⊕A3 ⊕A11, with
Gi(i = 1, 2),Hi(i = 1, 2), Ji(i = 1, 2, 3), θi(1 ≤ i ≤ 11) as the canonical basis
of A2 ⊕A2 ⊕A3 ⊕A11, and O, F as a basis of U as in the case of S35.

Extend Γ53 to an index-3 integral over lattice S53 = Γ53 + Zs53, where

s53 = O + 2F− (1/3)(2G1 +G2 + 2H1 +H2)− (2/3)
11∑
i=1

iθi +
11∑
i=5

(i− 4)θi,

(set s = s53) s2 = −2, s · F = s ·G1 = s ·H1 = s · θ4 = 1,

s · O = s ·G2 = s ·H2 = s · Ji = s · θj = 0 (∀i; j 6= 4).

Moreover, |det(S53)| = |det(Γ53)|/32 = 48.
Note that Γ∨53 is generated by the following, modulo Γ53:

h1 = (1/3)
2∑

i=1

iGi, h2 = (1/3)
2∑

i=1

iHi,

h3 = (1/4)
3∑

i=1

iJi, h4 = (1/12)
11∑
i=1

iθi.

(S53)∨ is generated by the following, modulo Γ53:

h3, 3hi, h1 + h2 + h4, h1 − h2, h1 − h4, h2 − h4.

Noting that 3h1, 3h2 ∈ S53 and 3h4 + (h1 + h2 + h4) is equal to s (mod
Γ53) and hence contained in S53, we see that (S53)∨ is generated by ε1 :=
h3, ε2 := h1 − h4, modulo S53. As in the case of S35, (S53)∨/S53 is a direct
sum of its cyclic subgroups, which are of order 4, 12, and generated by ε1, ε2,
modulo S53.
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The negative of the discriminant form

−q(S53) = (−(ε1)2)⊕ (−(ε2)2)

= (3/4)⊕ ((2/3) + (11/12)) = (3/4)⊕ (−5/12).

Claim 3.4. The pair (Sm, Tm) satisfies the conditions of Lemma (3.1) and
hence if we let Xm be the unique K3 surface with TXm = Tm then PicXm =
Sm (both two equalities here are modulo isometries).

Proof of the claim. We need to show that qTm = −qSm . Note that A∨n/An =
Z/(n + 1)Z and q(An) = (−n/(n + 1)). For the first nine m, if we write
Sm = U ⊕An1−1 ⊕ · · ·Ank−1, then

qSm = (−(n1 − 1)/n1)⊕ · · · ⊕ (−(nk − 1)/nk);

moreover, S∨m/Sm is generated by two elements εi (i = 1, 2) (εi is a simple
sum of the natural generators of S∨m/Sm) such that for every a, b ∈ Z one
has −q(Sm)(aε1+aε2) = −a2(ε1)2−b2(ε22). For all eleven m, εi can be chosen
such that (−ε21,−ε22) is respectively given as follows:

(1/2, 17/18), (9/10, 9/10), (1/2,−19/48), (1/2, 121/70),

(9/10, 49/30), (−5/6,−17/30), (25/18, 25/18), (−5/6,−17/42),
(−11/24,−11/24), (5/6,−7/12), (3/4,−5/12).

On the other hand, T∨m is generated by (g1 g2) = (e1 e2)T−1
m , where e1, e2

form a canonical basis of Tm which gives rise to the intersection matrix of
Tm shown before this claim. Now, the claim follows from the existence of
the following isomorphism, which induces qTm = −qSm :

ϕ : T∨m/Tm → S∨m/Sm; (g1 g2) 7→ (ε1 ε2)Bm.

Here Bm is respectively given as:(
1 1
2 5

)
,

(
7 0
0 7

)
,

(
0 1
11 17

)
,

(
1 0
0 51

)
,

(
7 0
0 17

)
,

(
−2 1
1 3

)
,(

7 0
0 7

)
,

(
2 3
21 10

)
,

(
2 3
3 −2

)
,

(
3 2
4 3

)
,

(
0 1
3 4

)
.

Write Sm (resp. Γm) as U ⊕A(m) with A(m) = An1−1⊕ · · · ⊕Ank−1, for
the first nine m (resp. m = 35, 53) as in the definitions of them. Let O, F be
a Z-basis of U for all m, as in the definition of S35. By [PSS, p. 573, Th. 1],
after an (isometric) action of reflections on Sm = PicXm, we may assume at
the beginning that F is a fiber of an elliptic fibration fm : Xm → P1. Since
O2 = −2, Riemann-Roch Theorem implies that O is an effective divisor
because O ·F > 0. Moreover, O ·F = 1 implies that O = O1 +F ′ where O1

is a cross-section of fm and F ′ is an effective divisor contained in fibers. So
fm is a Jacobian elliptic fibration and we can choose O1 as the zero element
of MW (fm).
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Let Λm be the lattice generated by all fiber components of fm. Clearly,
Λm = ZF ⊕∆,∆ = ∆(1)⊕· · ·⊕∆(r) (depending on m), where each ∆(i) is
a negative definite even lattice of Dynkin type Ap, Dq, or Er, contained in a
single reducible singular fiber Fi of fm and spanned by smooth components
of Fi disjoint from O1.

Claim 3.5. We have:
(1) SpanZ{x ∈ Sm|x ·F = 0, x2 = −2} = Λm = ZF ⊕A(m); in particular,

r = k, and there are lattice-isometries: ∆ ∼= A(m) and ∆(i) ∼= Ani

(i = 1, 2, . . . , k), after relabeling.
(2) There are k singular fibers Fi of type Ãni−1 (1 ≤ i ≤ k) of fm, and

any fiber other than Fi is irreducible.
(3) MW (fm) = (0) (resp. Z/2Z, Z/3Z) for the first nine m (resp. m =

35, 53).

Proof. The assertion (2) follows from (1) (see also [K, Lemma 2.2]).

The first equality in (1) is clear from Kodaira’s classification of elliptic
fibers and the Riemann Roch Theorem as used prior to this claim to deduce
O ≥ 0. The second equality is clear for the cases of the first nine m because
then PicXm = Sm = (ZO + ZF )⊕A(m).

Let m = 35, 53. We now show the second equality using Lemma 1.3.
Clearly, ZF⊕A(m) is contained in the first term of (1) and hence in Λm. One
notes that 19 = rank Sm − 1 ≥ rank Λm = 1+ rank ∆ ≥ 1+ rank A(m) =
1 +

∑k
i=1(ni − 1) = 19. Hence ∆ = ∆(1)⊕ · · · ⊕∆(r) ∼= Λm/ZF contains a

finite-index sublattice (ZF ⊕A(m))/ZF ∼= A(m) = An1−1 ⊕ · · · ⊕Ank−1.
Suppose the contrary that the second equality in (1) is not true. Then

A(m) is an index-n (n > 1) sublattice of ∆. By Lemma 1.3, one of Cases
(2-1) - (2-3) there occurs.

Case (2-1). Then m = 35, fm has reducible singular fibers of types
Ã1, I

∗
13 and no other reducible fibers. This leads to that 72 = |PicXm| =

(2× 4)/|MW (fm)|2, a contradiction (cf. [S]).
Case (2-2). Then m = 53, fm has reducible singular fibers of types

Ã2, I
∗
12 and no other reducible fibers. This leads to that 48 = |PicXm| =

(3× 4)/|MW (fm)|2, a contradiction.
Case (2-3). Then m = 35, fm has reducible singular fibers of types

Ã1, I12, IV
∗ and no other reducible fibers. Since 72 = |PicXm| = (2× 12×

3)/|MW (fm)|2, we have MW (fm) = (0) and Sm = PicXm = ZO1 + Λm =
ZO1 + ( ZF ⊕∆) = ZO1 + ( ZF ⊕A1 ⊕A11 ⊕ E6).

By the Riemann-Roch theorem and the fact that (sm)2 = −2, sm.F = 1
and MW (fm) = (0), we see that sm = O1 (mod Λm). This, together with
the fact that O = O1 (mod Λm) and the definition of sm, implies that
(1/2)(G+H +D) ∈ Λm, where D =

∑6
i=1 iθi +

∑11
i=7(12− i)θi.



62 E. ARTAL, H. TOKUNAGA, AND D.-Q. ZHANG

Consider the index-2 extension

A1 ⊕A11 ⊕ (A1 ⊕A5) = A(m) ∼= (ZF ⊕A(m))/ZF ⊆ (ZF ⊕∆)/ZF
∼= ∆ = A1 ⊕A11 ⊕ E6.

The proof of Lemma 1.3 shows that (the first summand A1 in this rearranged
A(m)) ⊕ZF = (the summand A1 in ∆) ⊕ZF , (the summand A11 in A(m))
⊕ZF = (the summand A11 in ∆) ⊕ZF , and (the summand (A1 ⊕ A5) in
A(m)) ⊕ZF ⊆ (the summand E6 in ∆) ⊕ZF . So we may assume that, mod
ZF , G is the Z-generator of the first summand A1 in ∆, θi (1 ≤ i ≤ 11) form
a Z-basis of the summand A11 in ∆, and H is contained in the summand
E6 in ∆.

In particular, for (G+H+D)/2 ∈ Λm = ZF ⊕∆ = ZF ⊕(A1⊕A11⊕E6),
we have, mod ZF , G/2 ∈ A1, H/2 ∈ E6, and D/2 ∈ A11. We reach a
contradiction to the above observation that the A1 in ∆ is generated by G
over Z.

Therefore, the second equality of (1) is true. So there is an isometry
Φ : ∆ ∼= Λm/ZF ∼= A(m). Now the rest of (1) follows from Lemma 1.3.

The assertion (3) follows from the fact in [S, Th. 1.3], that MW (fm) is
isomorphic to the factor group of PicXm modulo (ZO1 + ZF ) ⊕∆, where
the latter is equal to (ZO + ZF ) + ∆ = (ZO + ZF )⊕A(m) = U ⊕A(m).
This proves the claim.

The existence of singular fibers Fi (i = 1, 2, . . . , k) of type Ini , the fact that
the sum of Euler numbers of singular fibers of fm is 24, the fact that each
fiber other than Fi is irreducible, and [MP3, Lemma 3.1 and Proposition
3.4] imply that fm is semi-stable. Hence Fi (i = 1, 2, . . . , k) is of type Ini ,
there are χ(Xm) −

∑
i(ni − 1) − k = 6 − k fibers of type I1, and fm is of

type [1, 1, . . . , 1, n1, . . . , nk], i.e., of type m after an easy case-by-case check.
Moreover, (m,MW (fm)) = (m,Gm) for all eleven m by the last claim. �

Remark 3.6. We note that S35 = U ⊕ A1 ⊕ A11 ⊕ E6. This is because
the lattices T35 and the one on the right hand side satisfy all conditions of
Lemma 3.1 by an easy check. In particular, using [MP3, Lemma 3.1 and
Proposition 3.4] as in the proof of Lemma 3.3, we can show that there is
a Jacobian elliptic fibration τm : Xm → P1 (m = 35) with singular fibers
I1, I1, I2, I12, IV

∗ and with MW (τm) = (0).

Lemma 3.7. Let f : X → P1 be of type m as in Theorem 0.2. Then we
have:

(1) If m = 48, then MW (f) 6= Z/2Z, or Z/4Z.
(2) If m = 4, then MW (f) 6= Z/2Z.
(3) If m = 31, then MW (f) 6= Z/2Z.
(4) If m = 44, then MW (f) 6= Z/2Z.
(5) If m = 69, then it is impossible that MW (f) is Z/2Z with s =

(0, 0, 0, 0, 2, 6) as its generator (see Remark 0.4).
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(6) If m = 92, then MW (f) 6= Z/2Z.

Proof. Let f : X → P1 be of type m as in Theorem 0.2.
(1) Assume that f is of type m = 48 and MW (f) ⊇ Z/2Z. We will show

that MW (f) ⊇ Z/8Z which will imply (1).
m = 48 means that the singular fiber type of f is I1, I1, I2, I4, I8, I8. Using

the height pairing in [S] or the Table in [MP3], we may assume thatMW (f)
contains s = (0, 0, 0, 0, 4, 4) as a 2-torsion section after suitable labeling of
fiber components.

Let Y , a K3 surface again, be the minimal resolution of the quotient
surface X/〈s〉. f on X induces a Jacobian semi-stable elliptic fibration
g : Y → P1 of singular fiber type I2, I2, I4, I8, I4, I4 where these 6 ordered
singular fibers are respectively “images” of ordered singular fibers on X.

To be precise, let σ : X̃ → X be the blowing-up of all 8 intersections in
the first 4 singular fibers of f of types I1, I1, I2, I4. Then Y = X̃/〈s〉 and the
Z/2Z-covering π : X̃ → Y is branched along 4 disjoint curves θ(i)

j , where
(i, j) = (1, 1), (2, 1), (3, 1), (3, 3), (4, 1), (4, 3), (4, 5), (4, 7). Here we choose
the common image of the zero section and the 2-torsion section s of f , as
the zero section O1 of g, and label clock or anti-clockwise the i-th singular
fiber of g of type Ini as

∑ni−1
j=0 θ

(i)
j so that O1 passes through θ

(i)
0 , where

[n1, . . . , n6] = [2, 2, 4, 8, 4, 4].
Note that (Y, g) is of type m = 103 in the Table of [MP3] and hence

there is a 4-torsion section t of g equal to (0, 0, 2, 2, 1, 1) or (0, 0, 1, 2, 1, 2) or
(0, 0, 1, 2, 2, 1), after choosing either clockwise or counterclockwise labeling
of fiber components, where for orders of six fibers of g we use the current
indexing inherited from that of f .

If t = (0, 0, 1, 2, 1, 2) or (0, 0, 1, 2, 2, 1), then t meets the branch locus of π
transversally at one point only so that π−1(t) is a smooth irreducible curve
and π : π−1(t) → t is a double cover with exactly one ramification point, a
contradiction to Hurwitz’s genus formula applied to the covering map π.

Thus t = (0, 0, 2, 2, 1, 1). A check using height pairing shows that π−1(t)
is a disjoint union of two 8-torsion sections of f . Hence MW (f) ⊇ Z/8Z.
Indeed, MW (f) = Z/8Z by [MP3]. This proves (1).

Now assume that f is of type m = 4 (resp. m = 31, m = 44, m = 69 with
MW (f) = 〈s = (0, 0, 0, 0, 2, 6)〉, or m = 92) and MW (f) ⊇ Z/2Z. Then
MW (f) contains a unique 2-torsion section s = (0, 0, 0, 0, 0, 8) (resp. s =
(0, 0, 0, 0, 0, 8), s = (0, 0, 0, 0, 2, 6), s = (0, 0, 0, 0, 2, 6), s = (0, 0, 0, 2, 2, 4))
(cf. [MP3]). As in (1) we can show that f induces a Jacobian semi-stable
elliptic fibration g on the minimal resolution Y of X/〈s〉. The singular
fiber type of g is In1 + · · ·+ In6 where [n1, . . . , n6] is equal to [2, 2, 2, 2, 8, 8]
(resp. [2, 2, 4, 4, 4, 8], [2, 2, 4, 8, 2, 6], [2, 4, 4, 6, 2, 6], [2, 6, 8, 2, 2, 4]) and hence
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is of type m = 94 (resp. m = 103, m = 97, m = 104, or m = 97) in the Table
of [MP3]. Now the inverse on X of the 2-torsion section t = (0, 0, 0, 0, 4, 4)
(resp. t = (0, 0, 0, 2, 2, 4), t = (0, 0, 0, 4, 1, 3), t is one of (0, 2, 2, 0, 1, 3) and
(1, 2, 2, 3, 0, 0), or t = (0, 0, 0, 4, 1, 2)) on Y is a disjoint union of two 4-torsion
sections of f . Hence MW (f) ⊇ Z/4Z. Indeed, MW (f) = Z/4Z by [MP3].
This proves (2)-(6). The proof of the lemma is completed. �

Lemma 3.8. Let f : X → P1 be of type m as in Theorem 0.2. Then each
of the following pairs (m,MW (f)) occurs:

(69,Z/2Z = 〈(0, 1, 1, 0, 0, 6)〉), (69,Z/4Z), (92,Z/4Z),

(32,Z/3Z), (37,Z/3Z), (44,Z/4Z), (55,Z/2Z).

Proof. The idea of the proof for the existence of the pair (m,MW (f)) =
(69,Z/4Z) is as follows. By [MP3], s = (0, 1, 1, 0, 1, 3) is the generator of
MW (f) = Z/4Z. As in the proof of Lemma 3.7, the minimal resolution Y
of X/〈2s〉 is of type m = 104. The detailed proof of the existence is given
below.

Let g : Y → P1 be of type m = 104. By the Table in [MP3], MW (g) =
Z/2Z × Z/2Z and we may assume that g has singular fibres

∑ni−1
j=0 θ(i)j

(i = 1, . . . , 6) of type Ini , and two 2-torsion sections t1 = (0, 2, 2, 0, 1, 3), t2 =
(1, 2, 2, 3, 0, 0), after suitably indexing singular fibers so that [n1, . . . , n6] =
[2, 4, 4, 6, 2, 6]. It is easy to check the following relation (cf. [S, Lemma 8.1]
or [M, Formula (2.5)]), where O1, F are the zero section and a general fiber
of g,

2t2 ∼ 2(O1 +2F )− (θ(1)1 + θ(2)1 +2θ(2)2 + θ(2)3 + θ(3)1 +2θ(3)2 + θ(3)3+

θ(4)1 + 2θ(4)2 + 3θ(4)3 + 2θ(4)4 + θ(4)5).
Hence we get a relation

D = θ(1)1 + θ(2)1 + θ(2)3 + θ(3)1 + θ(3)3 + θ(4)1 + θ(4)3 + +θ(4)5 ∼ 2L

for some integral divisor L. Let π : X̃ → Y be the Z/2Z-cover, branched
along D and induced from the above relation. Then g induces an elliptic
fibration f : X̃ → P1 so that the relatively minimal model (X, f) of (X̃, f)
is of type m = 69. The inverse on X of O1 is a disjoint union of two sections,
one of which will be fixed as O of f . Now the inverse on X of the 2-torsion
section t1 on Y is a disjoint union of two 4-torsion sections of f . Hence
MW (f) = Z/4Z by the Table in [MP3]. This proves the existence of the
pair (m,MW (f)) = (69,Z/4Z).

The existence of other pairs is similar. Here we just show which Y, t1, t2
we should choose. To be precise, we let g : Y → P1 be of type m = 52
(resp. m = 97; m = 91; m = 110; m = 97; m = 104) with singular fibers of
type In1 + · · · + In6 with [n1, . . . , n6] = [2, 1, 1, 6, 8, 6] (resp. [2, 6, 8, 2, 2, 4];
[3, 3, 6, 6, 1, 5]; [3, 3, 6, 6, 3, 3]; [2, 2, 4, 8, 2, 6]; [2, 2, 6, 6, 4, 4]) and we let



MIRANDA-PERSSON’S PROBLEM 65

t1 = O1 be the zero section and t2 = (1, 0, 0, 3, 4, 0) the 2-torsion section
(resp. t1 = (0, 0, 4, 1, 1, 2) and t2 = (1, 3, 4, 0, 0, 0) two 2-torsion sections;
t1 = O1 and t2 = (1, 1, 2, 2, 0, 0) a 3-torsion section; t1 = O1 and t2 =
(1, 1, 2, 2, 0, 0) a 3-torsion section; t1 = (0, 0, 0, 4, 1, 3) and t2 = (1, 1, 2, 4, 0, 0)
two 2-torsion sections; t1 = O1 and t2 = (1, 1, 3, 3, 0, 0) a 2-torsion section).
Then as in the above paragraph, the minimal model X of a Z/nZ-cover with
n = 2 (resp. n = 2; n = 3; n = 3; n = 2; n = 2) of Y has an elliptic fibration
f : X → P1, induced from g, of type m = 69 (resp. m = 92; m = 32;
m = 37; m = 44; m = 55) such that the inverse on X of t1 is a disjoint
union of O and s = (0, 1, 1, 0, 0, 6) (resp. a disjoint union of two 4-torsion
sections; a disjoint union of O and two 3-torsion sections; a disjoint union
of O and two 3-torsion sections; a disjoint union of two 4-torsion sections;
a disjoint union of O and a 2-torsion section), whence MW (f) is equal to
Z/2Z = {O, s} (resp. Z/4Z; Z/3Z; Z/3Z; Z/4Z; Z/2Z) by the Table in
[MP3].

This completes the proof of the lemma and also that of Theorem 0.2. �

4. Uniqueness for extremal elliptic K3 surfaces with large torsion
groups.

The goal of this section is to prove Theorem 0.3.
In the case where MW (f) ⊇ Z/2Z × Z/2Z, namely, m = 94, 97, 98, 103,

104, 112, the uniqueness problem has already been considered in §7 [MP3]
by using double sextics, and they are all unique. Hence we need to prove
the cases when MW (f) ∼= Z/4Z, Z/5Z, Z/6Z,Z/7Z, Z/3Z× Z/3Z.

As we have seen in §1, if MW (f) has an element of order N ≥ 3, then
f : X → P1 is obtained as the pull-back surface of the elliptic surface,
ψ1,N : E1(N) → X1(N), by some morphism g : P1 → X1(N). Since X1(N)
should be isomorphic to P1 and X is a K3 surface in our case, N ≤ 8 by
[C]. Thus our proof of Theorem 0.3 is reduced to showing the uniqueness
of g up to Aut(P1) for each case. Hence it is enough to prove the following:

Proposition 4.1. Let g : P1 → X1(N) be the morphism as above. Then g
is unique except m = 49.

By comparing the degree of the j-functions, we can easily check the fol-
lowing table:
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MW (f) deg g m

Z/4Z 4 4, 31, 44, 69, 92

Z/5Z 2 9, 49, 105

Z/6Z 2 35, 53, 63, 95, 108

Z/7Z 1 30

Z/3Z× Z/3Z 2 110

Table 4.2.

One can see that the uniqueness for the case MW (f) ∼= Z/7Z (m = 30)
immediately from the table.

Let us consider the cases of deg g = 2. Our goal is to show that g is
unique up to Aut(X1(N))(∼= Aut(P1)) except m = 49.

Case m = 9. f : X → P1 has two I10 fibers. This means that the branch
points of g are 2 points over which ψ1,5 has I5 fibers. The choice of such
two points is unique and g is determined by the branch points. Hence g is
unique.

For cases m = 35, 53, 63, 95, 105, 108, we can prove the uniqueness in a
similar way to that for m = 9. Hence we omit it.

Case m = 110. In this case, f : X → P1 is obtained as the pull-back
surface of ψ3,3 : E3(3) → X3(3) by a degree 2 map g : P1 → X3(3). ψ3,3 has
4 singular fibers, all of which are of type I3. By [MP1, Table 5.3], E3(3) is
given by the Weierstrass equation as follows:

y2 = x3 + (−3s2 + 24s)x+ (2s6 + 40s3 − 16),

where s is an inhomogeneous coordinate of X3(3) ∼= P1. The four I3 fibers
are over −1,−ω, ω2 and ∞, where ω = exp(2π

√
−1/3).

Consider two fiber preserving automorphisms of E3(3):

τ1 : (x, y, s) 7→
(

−3
(s+ 1)2

x,
3
√
−3

(s+ 1)3
y,
−s+ 2
s+ 1

)
,

and
τ2 : (x, y, s) 7→ (ωx, y, ωs).

These automorphisms induce permutations of the I3 fibers. Since X is a
double covering of E3(3), it is uniquely determined by the branch locus which
is two I3 fibers. Therefore, using τ1 and τ2, we can show that f : X → P1

is unique.
Putting the case m = 49 the aside, we consider the cases of deg g = 4.

There are 5 cases: m = 4, 31, 44, 69, 92.
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The degree of the j-invariant of E1(4) is 6, as it has three singular fibers
I∗1 , I4 and I1. With a suitable affine coordinate of X1(4), we may assume
that these singular fibers are over 0, 1 and ∞, respectively. Since the degree
of the j-invariant of f : X → P1 is 24, the degree of g is 4, and is branched
only at 0, 1 and ∞. By [MP1, Table 7.1] and the Riemann-Hurwitz formula
for g : P1 → X1(4), we have the following table on the ramification types
over each branch point.

m The ramification types over 0, 1 and ∞
4 (4), (4), (1, 1, 1, 1)

31 (2, 2), (4), (2, 1, 1)

44 (4), (3, 1), (2, 1, 1)

69 (2, 2), (3, 1), (3, 1)

92 (4), (2, 1, 1), (3, 1)

Table 4.3.

Here the notation (e1, . . . , ek) means that g−1(p) (p ∈ {0, 1,∞}) consists
of k points, q1, . . . ,qk, and the ramification index at qj is ej .

To show the uniqueness, it is enough to show that g assigned with the ram-
ification types as above is unique up to covering isomorphisms over X1(4).
Let us start with the following lemma.

Lemma 4.4. Let g : P1 → X1(4) be one of the degree 4 maps in Table 4.3.
Let α : C → P1 be the Galois closure, and put ĝ = g ◦ α. Then we have the
following:

m = 4: g = ĝ and g is a 4-fold cyclic covering.
m = 31: deg ĝ = 8, C ∼= P1 and Gal(ĝ) ∼= D8.
m = 44, 92: deg ĝ = 24, C ∼= P1 and Gal(ĝ) ∼= S4.
m = 69: deg ĝ = 12, C ∼= P1 and Gal(ĝ) ∼= A4.

Proof. The monodromy around the branch points gives a permutation rep-
resentation of π1(P1 \ {0, 1,∞}) to S4; the basic loops γ0, γ1 and γ∞ about
0, 1 and ∞, respectively map to permutations σ0, σ1 and σ∞. The cycle
structure of each permutation is the same as the ramification type over the
corresponding point. These permutations satisfy the identity σ0σ1σ∞ = 1 in
S4 and generate a transitive subgroup, G, in S4. Note that this G is nothing
but the Galois group of ĝ : C → X1(4). We apply this argument to each
case, and obtain the following table:
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m The cycle structure of σ0, σ1 and σ∞ G

4 (4), (4), (1, 1, 1, 1) Z/4Z

31 (2, 2), (4), (2, 1, 1) D8

44 (4), (3, 1), (2, 1, 1) S4

69 (2, 2), (3, 1), (3, 1) A4

92 (4), (2, 1, 1), (3, 1) S4

Table 4.5.

Now all we need to show Is: C ∼= P1. Our argument is based on the
following elementary fact:

Fact 4.6. Let x be a point on C, and put Gx = {τ ∈ G|τ(x) = x}. Then

G The order of Gx

Z/4Z 1, 2, 3

S4 1, 2, 3, 4

A4 1, 2, 3

D8 1, 2, 4

We prove C ∼= P1 case by case.

Case m = 4. As G = Z/4Z, deg ĝ = deg g, and α is the identity.

Case m = 31. Since G = D8, degα = 2. Let ι be an element of order 2
such that C/〈ι〉 ∼= P1. As g is not Galois, ι is not contained in the center of
D8. If α is branched over g−1(0), then ĝ−1(0) consists of two points, each of
which has the ramification index 4. This means that ι belongs to the center
of D8, which leads us to a contradiction. Hence the branch points of α are
two points in g−1(∞) which are unramified points of g. Hence C ∼= P1.

Cases m = 44, 92. By Fact 4.6 and Gal(C/P1) ∼= S4, points over 0, 1 and
∞ have the ramification indices 4, 3 and 2, respectively. By the Riemann-
Hurwitz formula, we have C ∼= P1.
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Case m = 69. By Fact 4.6, points over 0, 1 and ∞ have the ramification
indices 2, 3 and 3, respectively. By the Riemann-Hurwitz formula, C ∼= P1.

This completes our proof for Lemma 4.4. �

The following classical fact is a key to prove Theorem 0.3 in the case
where MW (f) ∼= Z/4Z.

Fact 4.7 ([Na, pp. 31-32]). For a suitable choice of an affine coordinate, w
and z, of X1(4) and P1, respectively, the map in Table 4.5 can be given by
the rational functions as follows:

w = z4 m = 4

w = −(z4 − 1)2

4z2
m = 31

w =

(
z4 + 2

√
3z2 − 1

z4 − 2
√

3z2 − 1

)3

m = 69

w =
(z8 + 14z4 + 1)3

108z4(z4 − 1)4
m = 44, 92.

Fact 4.7 implies that the Galois coverings described in Lemma 4.4 are es-
sentially unique up to isomorphisms over P1. The morphisms g in Lemma 4.4
are corresponding to a subgroup of index 4 of G, and for each case, such
subgroups are conjugate to each other. This shows that the pull-back mor-
phisms, g, are unique up to covering isomorphisms over X1(4). Therefore
we have Proposition 4.1 in the case where MW (f) ∼= Z/4Z.

Remark 4.8. We can prove the uniqueness for m = 94, 98, 103, 112 in a
similar way to the case MW (f) ∼= Z/4Z.

We now go on to show that the uniqueness does not hold for m = 49.
For the case m = 49, as we have seen before, f :→ P1 is obtained as the

pull-back surface of ψ1,5 : E1(5) → X1(5) by a degree 2 map g : P1 → X1(5).
ψ1,5 has 4 singular fibers. By [MP1, Table 5.3], E1(5) is given by the
following Weierstrass equation:

y2 = x3−3(s4−12s3 +14s2 +12s+1)x+2(s6−18s5 +75s4 +75s2 +18s+1),

where s is an inhomogeneous coordinate of X1(5) ∼= P1. The two I5 fibers
are over s = 1 and s = ∞, and the two I1 fibers are over s = (11± 5

√
5)/2.

For m = 49, There are 4 possible cases for the pull-back morphism de-
pending on the branch points as follows:
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The branch points of g

(1) 0 and (11 + 5
√

5)/2

(2) 0 and (11− 5
√

5)/2

(3) ∞ and (11 + 5
√

5)/2

(4) ∞ and (11− 5
√

5)/2

We denote the pull-back morphisms by gi (i = 1, 2, 3, 4) corresponding
to the cases as above, and let fi :→ P1 denote the pull-back surface by gi.
Then we have:

Proposition 4.9. There exists ϕ in Question 0.1 between either X1 and X4

or X2 and X3, while there is no such ϕ between the two pull-back surfaces
for other combinations.

Proof. Consider an automorphism, τ , of E1(5) → X1(5) given by

τ : (x, y, s) 7→
(

1
s2
x,

1
s3
y,−1

s

)
.

With τ , the points 0 and (11+5
√

5)/2 map to ∞ and (11−5
√

5)/2, respec-
tively. Our first assertion follows from this fact. For the second, by using τ ,
it is enough to show that there is no ϕ in Question 0.1 between the pull-back
surfaces X1 and X2.

Suppose that there exists ϕ : X1 → X2 as Question 0.1. Then we have:

Claim 4.10. ϕ induces an automorphism ϕ̂ : X1(5) → X1(5) such that 0 7→
∞, ∞ 7→ 0, (11+5

√
5)/2 7→ (11−5

√
5)/2, and (11−5

√
5)/2 7→ (11+5

√
5)/2.

Since there is no fractional linear transformation as above, the second
assertion follows.

Proof of the Claim. Let ιi (i = 1, 2) be fiber preserving involutions on Xi

(i = 1, 2) determined by the pull-back morphisms gi. Let ϕ and ιi (i = 1, 2)
be the restrictions of each morphism to the zero sections of X1 and X2.
ϕ−1 ◦ ι2 ◦ ϕ gives rise to another fiber preserving involution on X1. Under
ϕ−1 ◦ ι2 ◦ ϕ, I10, I5, I2 fibers map to I10, I5, I2 fibers, respectively. Hence
ϕ−1 ◦ ι2 ◦ϕ = ι1 or id, but the latter case does not occur since ι2 6= id. Thus
we have an isomorphism ϕ̂ : X1(5) → X1(5), and it is easy to see that ϕ̃ has
the desired property.

This finishes the proof of Proposition 4.1.
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QUASIREGULAR MAPPINGS AND WT -CLASSES OF
DIFFERENTIAL FORMS ON RIEMANNIAN MANIFOLDS

D. Franke, O. Martio, V.M. Miklyukov, M. Vuorinen,
and R. Wisk

The purpose of this paper is to study the relations between
quasiregular mappings on Riemannian manifolds and differ-
ential forms. Four classes of differential forms are introduced
and it is shown that some differential expressions connected
in a natural way to quasiregular mappings are members in
these classes.

1. Introduction.

Let Ω be a domain in Rn, n ≥ 2. A mapping f : Ω → Rn is called a
quasiregular mapping, if f = (f1, f2, . . . , fn) ∈W 1

n,loc(Ω) and if there exists
a constant K ∈ [1,∞) such that

|f ′(x)|n ≤ K det f ′(x), for a.e. x ∈ Ω.

The following result is well-known in [Re] and [HKM].
Each of the functions

u = fi(x) (i = 1, 2, . . . , n), u = log |f(x)|,
is a generalized solution of a quasilinear elliptic equation

divA(x,∇u) = 0, A = (A1, A2, . . . , An),(1.1)

where

Ai(x, ξ) =
∂

∂ξi

 n∑
i,j=1

θi,j(x)ξiξj

n/2

,(1.2)

and θi,j are some functions, which can be expressed in terms of the derivative
f ′(x), and satisfy

c1(K)|ξ|2 ≤
n∑
i,j

θi,j(x)ξiξj ≤ c2(K)|ξ|2,(1.3)

for some constants c1(K), c2(K) > 0.
This important proposition connects two large sections of analysis namely,

quasiregular mapping theory and the theory of partial differential equations.
Much progress in quasiregular mapping theory has resulted from the study

73
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of Equations (1.1)-(1.3). On the other hand many investigations of solu-
tions of quasilinear equations in the form (1.1)-(1.3) were stimulated by this
connection with quasiregular mapping theory.

However, many theorems about quasiregular mappings, obtained in this
way for example, in the monograph [HKM] do not make use of the special
form (1.2) of functions Ai(x, ξ). In fact, what is important is the divergence
form of the Equation (1.1) and the existence of constants c1(K), c2(K) –
the values of these constants are not significant.

We do not know who was the first turning attention to this fact. Possibly,
it was first observed in the paper [Mi], where the following fact was recorded
and used.

Proposition. The function u ∈W 1
n,loc(Ω) is the solution of some equation

of the form (1.1) with Condition (1.3) if and only if there exists a differential
(n− 1)-form

θ(x) =
n∑

i=1

θi(x) dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn ∈ Ln/(n−1)
loc (Ω),

with the properties:
α) For every function φ ∈W 1

n(Ω) with compact support we have∫
Ω

dφ ∧ θ = 0 ,

β) almost everywhere on Ω the following inequalities are true

ν1|du(x)|n ≤ ∗(du(x) ∧ θ(x))

where ∗ denotes the orthogonal complement of a form and

|θ(x)| ≤ ν2|du(x)|n−1,

with constants ν1, ν2 > 0.

The proof for this proposition is obvious. The above statement concerning
the coordinate functions of a quasiregular mapping f also follows from this
proposition. For the case u = f1(x) we put

θ = df2 ∧ df3 ∧ . . . ∧ dfn .

In order to show that u = log |f(x)| satisfies (1.1) it suffices to choose

θ =
1

|f(x)|n
n∑

i=1

df1 ∧ . . . ∧ d̂fi ∧ . . . ∧ dfn.

Looking carefully at Conditions α) and β) on the function u we see that
these conditions are on the 1-form w = du and the (n − 1)-form θ. Some
simple differential forms w, 1 ≤ degw ≤ n, satisfying Conditions α) and β)
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in domains Ω ⊂ Rn were studied in [Zh1] and [Zh2]. Similar results have
been given in [Iw], [FW], [MMV1], [MMV2] and [Sc].

The purpose of this paper is to study the relations between quasiregular
mappings on Riemannian manifolds and differential forms suggested by the
aforementioned proposition. We introduce four classes of differential forms
and prove membership in these classes of some differential expressions con-
nected in a natural way to quasiregular mappings.

2. Preliminaries.

2.1. Euclidean space. Let X be a topological space. We denote by A the
closure of a set A ⊂ X, by intA the interior of A, and by ∂A = A \ intA the
boundary of A.

By Rn we denote the Euclidean vector space consisting of elements of the
form x = (x1, . . . , xn), xi ∈ R, the field of real numbers. In Rn we use

the standard inner product 〈x, y〉 =
n∑

i=1
xiyi and the norm |x| =

√
〈x, x〉 =( n∑

i=1
x2

i

)1/2
.

The boundary of the n-dimensional ball with center at x and radius r

B(x, r) = {y ∈ Rn : |y − x| < r}
is the sphere

S(x, r) = {y ∈ Rn : |y − x| = r}.
For E ⊂ Rn and for an integer k = 1, 2, . . . , n we denote by Hk(E) the

k-dimensional Hausdorff measure of E.

2.2. Differential forms on Rn. The mutually dual spaces
∧

k(R
n) and∧k(Rn) of k-vectors and k-forms (k-covectors) are associated with the Eu-

clidean space Rn. Here one has
∧0(Rn) = R =

∧
0(R

n), and
∧

k(R
n) =

{0} =
∧k(Rn) in the case k > n or k < 0. The direct sums∧

∗(R
n) = ⊕k

∧
k(R

n),
∧∗(Rn) = ⊕k

∧k(Rn)

generate contravariant and covariant Grassmann algebras on Rn with the
exterior multiplication operator ∧.

Let ω ∈
∧k(Rn) be a covector. We denote by Λ(k, n) the set of ordered

multi–indices I = (i1, i2, . . . , ik), of integers 1 ≤ i1 < . . . < ik ≤ n. The
form ω can be written in a unique way as the linear combination

ω =
∑

I∈Λ(k,n)

ωI dxI .

Here ωI are the coefficients of ω with respect to the standard basis of
∧k(Rn)

dxI = dxi1 ∧ . . . ∧ dxik , I = (i1, i2, . . . , ik) ∈ Λ(k, n).
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Let I = (i1, . . . , ik) be a multi–index from Λ(k, n). The complement I∗

of the multi–index I is the multi-index I∗ = (j1, . . . , jn−k) in Λ(n − k, n)
where the components jp are in {1, . . . , n} \ {i1, . . . , ik}. We have

dxI ∧ dxI∗ = σdx1 ∧ . . . ∧ dxn(2.3)

where σ = σ(I) is the signature of the permutation (i1, . . . , ik, j1, . . . , jn−k)
in the set {1, 2, . . . , n}. Note that σ(I∗) = (−1)k(n−k)σ(I).

Let dxI = dxi1 ∧ . . . ∧ dxik be a differential form of the standard basis of∧k(Rn). We set

?dxI = σ(I)dxI∗ .(2.4)

For ω ∈
∧k(Rn) with ω =

∑
I∈Λ(k,n) ωI dxI , we set

?ω =
∑

I∈Λ(k,n)

ωI ? dxI .(2.5)

Then ?ω belongs to
∧n−k(Rn). The differential form ?ω is called the or-

thogonal complement of the differential form ω.
The operator ? :

∧∗(Rn) →
∧∗(Rn), also called Hodge star operator, has

the following properties:
If α, β ∈

∧k(Rn) and a, b ∈ R, then

?(aα+ bβ) = a ? α+ b ? β.(2.6)

For every ω with degω = k we have

?(?ω) = (−1)k(n−k)ω.(2.7)

We introduce the following notation. Let ω be a differential form of degree
k. We set

?−1ω = (−1)k(n−k) ? ω.(2.8)

The operator ?−1 is an inverse to ? in the sense that ?−1(?ω) = ?(?−1ω) = ω.
The inner or scalar product of the differential forms α and β of the same

degree is defined as

〈α, β〉 = ?−1(α ∧ ?β) = ?(α ∧ ?β).(2.9)

The scalar product of differential forms has the usual properties of the scalar
product. We set

|ω| =
√
〈ω, ω〉.

A differential form ω of degree k is called simple if there are differential
forms α1, . . . , αk of degree 1 such that

ω = α1 ∧ . . . ∧ αk.

We note the following useful property of the Euclidean norm: If α, β ∈∧∗(Rn), then
|α ∧ β| ≤ |α||β|,
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if at least one of the differential forms α, β is simple. If α and β are simple
and nonzero, then equality holds if and only if the subspaces associated with
α and β are orthogonal. More generally, if degα = p, deg β = q, then

|α ∧ β| ≤ (Cp
p+q)

1/2|α||β|,(2.10)

see [Fe] §1.7.
The linear isomorphism Hom

(∧
k(R

n), R
)
'
∧k(Rn), that defines the

duality of the spaces
∧

k(R
n) and

∧k(Rn), associates a k-vector with a
differential form. A vector a = (a1, . . . , an) ∈ Rn defines a differential form
of degree 1

ω = a1dx
1 + a2dx

2 + . . .+ andx
n.(2.11)

We denote it by Ωa. Let u = (u1, . . . , uk), ui ∈
∧

1(R
n), be a nondegenerated

frame. The set of all k-dimensional frames is identified with the set of simple
k-vectors. One can prove that the differential form

Ωu = Ωu1 ∧ . . . ∧ Ωuk

does not depend on the choice of the particular frame from the class of
frames equivalent with u. This fact produces a one-to-one correspondence
u 7→ Ωu of the set of simple polyvectors onto the set of simple differential
forms.

3. Differential forms on Riemannian manifolds.

3.1. Riemannian manifolds. Let M be an n-dimensional Riemannian
manifold with boundary or without boundary. Throughout the sequel we
will assume that the manifold M is orientable and of class Cp where p is
at least 3. By T (M) we denote the tangent bundle and by Tm(M) the
tangent space at the point m ∈ M. For each pair of vectors x, y ∈ Tm(M)
the symbol 〈 , 〉 denotes their scalar product. The Riemannian connection
on Tm(M) gives the natural connection for tensors of every type. This
connection preserves the scalar product mentioned above.

Below we shall use standard notation for function classes on manifolds.
Thus, for example, the symbol Lp

loc(D) stands for the set of all Lebesgue
measurable functions on an open set D ⊂ M, locally integrable to the
power p, 1 ≤ p ≤ ∞, on D. The symbol W 1

p,loc(D) stands for the set of
functions that have generalized partial derivatives in the sense of Sobolev of
class Lp

loc(D) and Lip (D) denotes the class of all Lipschitz functions on D.
Let M and N be Riemannian manifolds of class Ck, k ≥ 3, and F : D →

N , D ⊂ M, a mapping. We shall say that F ∈ Lp
loc(D) if for an arbitrary

function φ ∈ C0(N ) we have φ◦F ∈ Lp
loc(D). The mapping F is in the class

W 1
p,loc(D), if φ ◦ F ∈W 1

p,loc(D) for every φ ∈ C1(N ).
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Let V (M) be a vector bundle on M. Let in the elements of this bun-
dle be given a Euclidean scalar product and let the linear connection on
V (M) preserve this scalar product. In this case we may say that V (M) is
a Riemannian vector bundle over M.

By
∧

k(M) and
∧

k(M) we denote Riemannian vector bundles
∧k(Tm(M))

and
∧

k(Tm(M)). The sections of these bundles are the fields of k-covectors
(k-forms) and k-vectors, which we shall discuss now in some detail.

3.2. Basic properties of differential forms. Let x1, . . . , xn be local co-
ordinates in the neighborhood of a point m ∈ M. The square of a line
element on M has the following expression in terms of the local coordinates
x1, . . . , xn

ds2 =
n∑

i,j=1

gijdx
i dxj .

By the symbol gij we shall denote the contravariant tensor defined by the
equality

(gik)(gkj) = (δi
j), i, j = 1, . . . , n,

where δj
i is the Kronecker symbol.

Each section α of the bundle
∧k(M) (that is a differential form) can be

written in terms of the local coordinates x1, . . . , xn as the linear combina-
tion

α =
∑

I∈Λ(k,n)

αI dxI =
∑

1≤i1<...<ik≤n

αi1...ikdx
i1 ∧ . . . ∧ dxik .(3.3)

Let α be a differential form defined on an open set D ⊂ M. If F(D) is
a class of functions defined on D then we say that the differential form α is
in this class provided that αI ∈ F(D). For instance, the differential form α
is in the class Lp(D) if all its coefficients are in this class.

The orthogonal complement of a differential form α on a Riemannian
manifold M will be denoted by ?α. If degα = 1 then in the local orthonor-
mal system of coordinates x1, . . . , xn at m we can write

?α(m) = ?

n∑
i=1

αi(m) dxi =
n∑

i=1

(−1)i−1αi(m) dx1 ∧ . . . d̂xi . . . ∧ dxn ,

where the sign ̂ means that the expression under ̂ is omitted. We remark
that the differential form dv is the volume element on M.

If α, degα = k, 0 ≤ k ≤ n, is a differential form whose coefficients are in
C1(M) then dα, deg(dα) = k + 1, denotes its differential defined by

dα =
∑

I∈Λ(k,n)

dαI ∧ dxI .
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The differentiation is a linear operation for which the following properties
hold:

If α and β are arbitrary differential form that are differentiable in a do-
main U ⊂M then

(i) d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,
(ii) d(dα) = 0,

where k is the degree of the differential form α.
The operator ? and the exterior differentiation d define the codifferential

operator δ by the formula

δα = (−1)k ?−1 d ? α(3.4)

for a differential form α of degree k. Clearly, δα is a differential form of
degree k − 1.

Let M be a compact n-dimensional orientable Riemannian manifold with
nonempty piecewise smooth boundary ∂M. The following Stokes formula
holds ∫

∂M

α =
∫
M

dα,

for an arbitrary form α ∈ C1(M), degα = n− 1.

3.5. A differential form α of degree k on the manifold M with coefficients
αi1...ik ∈ Lp

loc(M) is called weakly closed if for each differential form β,
deg β = k + 1, with

suppβ ∩ ∂M = ∅, suppβ = {m ∈M : β 6= 0} ⊂ M,

and with coefficients in the class W 1
q,loc(M), 1

p + 1
q = 1, 1 ≤ p, q ≤ ∞, we

have ∫
M

〈α, δβ〉dv = 0.(3.6)

For smooth differential forms α Condition (3.6) agrees with the traditional
condition of closedness dα = 0. In fact, if α, β ∈ C1(M), suppβ ∩ ∂M = ∅,
then we have∫

M

dα ∧ ?β =
∫
M

d(α ∧ ?β) + (−1)k+1

∫
M

α ∧ d ? β.

Because the differential form β has compact support on the orientable mani-
fold M the first integral on the right hand side is zero by the Stokes formula.
Thus we get∫

M

dα ∧ ?β = (−1)k+1

∫
M

α ∧ ? ?−1 d ? β =
∫
M

α ∧ ?δβ =
∫
M

〈α, δβ〉dv.
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We fix an arbitrary point m ∈ M and pass to the local coordinates on
M in a neighborhood of this point. Using Condition (3.6) and the funda-
mental lemma of the variational calculus, the du Bois-Reymond Lemma, we
conclude that everywhere in this neighborhood of m the coefficients of the
differential form dα are zero. Thus the validity of (3.6) under the given
conditions on β is equivalent to the requirement dα = 0 understood in the
classical sense.

We next introduce the following very useful theorem.

Theorem 3.7. Let α and β be differential forms, β ∈W 1
q (M) with a com-

pact support, and α ∈ W 1
p,loc(M), 1 ≤ p, q ≤ ∞, degα + deg β = n − 1,

1/p+ 1/q = 1. Then∫
M

dα ∧ β = (−1)deg α+1

∫
M

α ∧ dβ.(3.8)

In particular, the differential form α is weakly closed if and only if dα = 0
a.e. on M.

Proof. Fix α and β with the stated properties. Because the coefficients of
the differential form α are in the class W 1

p,loc(M) there exists a sequence
{αn}∞n=1 of differential forms with coefficients of class C1(M) converging in
the W 1

p -norm to the coefficients of the differential form α on every compact
set K ⊂ intM.

Let {βn}∞n=1 be a sequence of differential forms of degree deg βn = deg β
in the class C1(M) having compact supports and converging in the norm of
W 1

q to the form β. We may assume that there exists a smooth submanifold
U ⊂⊂M such that suppβn ⊂ U for all integers n.

The differential forms αn ∧ βn have compact supports contained in U .
The Stokes formula yields∫

M

d(αn ∧ βn) =
∫
U

d(αn ∧ βn) = 0,

and hence ∫
U

dαn ∧ βn + (−1)deg α

∫
U

αn ∧ dβn = 0.

We have∫
U

dα ∧ β −
∫
U

dαn ∧ βn =
∫
U

(dα− dαn) ∧ β +
∫
U

dαn ∧ (β − βn).



QUASIREGULAR MAPPINGS 81

Therefore, using inequality (2.10) we obtain∣∣∣∣∣∣
∫
U

dα ∧ β −
∫
U

dαn ∧ βn

∣∣∣∣∣∣
≤
∫
U

|d(α− αn) ∧ β|dv +
∫
U

|dαn ∧ (β − βn)|dv

≤ C

∫
U

|d(α− αn)| |β|dv + C

∫
U

|dαn| |β − βn|dv

≤ C||d(α− αn)||Lp(U) ||β||Lq(U) + C||dαn||Lp(U) ||β − βn||Lq(U),

where C = max(Ck+1
n )1/2 and k = degα.

Similarly we obtain∣∣∣∣∣∣
∫
U

α ∧ dβ −
∫
U

αn ∧ dβn

∣∣∣∣∣∣
≤ C1||α||Lp(U) ||d(β − βn)||Lq(U) + C1||α− αn||Lp(U) ||dβ||Lq(U),

where C1 = (Ck
n)1/2.

These inequalities easily yield (3.8).
If dα = 0 a.e. on M then by (3.8)∫

M

α ∧ dβ = 0(3.9)

for an arbitrary differential form β ∈ W 1
q with compact support. This,

obviously, implies (3.6).
On the other hand, if we take a weakly closed differential form α ∈

W 1
p,loc(M) then by (3.8) one has∫

M

dα ∧ β = 0 for all β ∈W 1
q (M) with suppβ ⊂M.

We fix an arbitrary point m ∈ M, pass again to the local coordinates on
M in a neighborhood of m and use again the du Bois-Reymond Lemma
to conclude that almost everywhere in this neighborhood the form dα is
zero. �

4. The WT -classes of differential forms.

In this section we introduce several classes of differential forms with gen-
eralized derivatives which first were presented in [MMV1] and [MMV2].
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These classes are used to study the associated classes of quasilinear elliptic
partial differential equations.

Let M be a Riemannian manifold of class C3, dimM = n, with a bound-
ary or without boundary and let

w ∈ Lp
loc(M), degw = k, 0 ≤ k ≤ n, p > 1,(4.1)

be a weakly closed differential form on M.

Definition 4.2. A differential form w (4.1) is said to be of the class WT1

on M if there exists a weakly closed differential form

θ ∈ Lq
loc(M), deg θ = n− k,

1
p

+
1
q

= 1,(4.3)

such that almost everywhere on M we have

ν0 |θ|q ≤ 〈w, ?θ〉,(4.4)

where ν0 is a constant.

Definition 4.5. The differential form (4.1) is said to be of the class WT2

on M if there exists a differential form (4.3) such that almost everywhere
on M the conditions

ν1 |w|p ≤ 〈w, ?θ〉(4.6)

and

|θ| ≤ ν2 |w|p−1(4.7)

are satisfied, with constants ν1, ν2 > 0.

For an arbitrary simple differential form of degree k

w = w1 ∧ . . . ∧ wk

we set

‖w‖ =

(
k∑

i=1

|wi|2
)1/2

.

For a simple differential form w we have Hadamard’s inequality

|w| ≤
k∏

i=1

|wi|.

Taking these and using the inequality between geometric and arithmetic
means (

k∏
i=1

|wi|

)1/k

≤ 1
k

k∑
i=1

|wi| ≤

(
1
k

k∑
i=1

|wi|2
)1/2

we obtain

|w| ≤ k−
k
2 ‖w‖k.(4.8)
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Definition 4.9. A simple differential form of degree k

w = w1 ∧ . . . ∧ wk, wi ∈ Lp
loc(M), 1 ≤ i ≤ k,

is said to be of the class WT3 on M if there is a differential form (4.3) such
that almost everywhere on M the inequality (4.7) holds and

ν3 ‖w‖kp ≤ k
kp
2 〈w, ?θ〉.(4.10)

Definition 4.11. A simple differential form of degree k

w = w1 ∧ . . . ∧ wk, wi ∈ Lp
loc(M), 1 ≤ i ≤ k,

is said to be of the class WT4 on M, if there exists a simple differential form
(4.3) such that the inequality (4.10) holds almost everywhere on M and

(n− k)
−(n−k)

2 ‖θ‖n−k ≤ ν4 |w|p−1.(4.12)

Remark 4.13. Because every differential form of degree 1 is simple, for
k = 1 the class WT2 coincides with the class WT3 while for k = n − 1 the
class WT3 coincides with WT4.

Theorem 4.14. The following inclusions hold between these WT -classes

WT4 ⊂ WT3 ⊂ WT2 ⊂ WT1.

Proof. The first two relations follow in an obvious way from (4.8). For the
proof of the last one it is enough to observe that

|θ|q = |θ|
p

p−1 ≤
(
ν

1
p−1

2 |w|
)p

≤ ν
p

p−1

2 ν−1
1 〈w, ?θ〉.

�

Example 4.15. Let v be a differential form of the class L2
loc(M) with

deg v = k, 1 ≤ k ≤ n. Following Hodge [Ho] we shall say that the dif-
ferential form v is harmonic if it is simultaneously weakly closed and weakly
coclosed, that is

dv = δv = 0.(4.16)

In particular, if f ∈ C2(M) then the differential form df of degree 1 is
harmonic if and only if ∆f = 0.

Theorem 4.17. Let v be a differential form of L2
loc(M), deg v = k. If v is

a harmonic differential form then v is of the class WT2 on M with structure
constants p = 2, ν1 = ν2 = 1.

Proof. Setting θ = ?−1v ∈ L2
loc(M) we have

〈v, ?θ〉 = 〈v, v〉 = |v|2

and |θ| = |v|. The differential form ?−1v is weakly closed because ?−1v =
(−1)k(n−k) ? v. Therefore Conditions (4.6) and (4.7) indeed hold with the
constants p = 2, ν2 = ν3 = 1. �
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5. Quasilinear elliptic equations.

Let M be a Riemannian manifold and let

A :
∧k(T (M)) →

∧k(T (M))

be a mapping defined almost everywhere on the k-vector tangent bundle∧k(T (M)). We assume that for almost every m ∈ M the mapping A is
defined on the k-vector tangent space

∧k(Tm(M)), that is for almost every
m ∈M the mapping

A(m, . ) : ξ ∈
∧k(Tm(M)) →

∧k(Tm(M))

is defined and continuous. We assume that the mapping m 7→ Am(X) is
measurable for all measurable k-vector fields X. Suppose that for almost
every m ∈M and for all ξ ∈

∧k(Tm(M)) we have

ν0 |A(m, ξ)|p ≤ 〈ξ, A(m, ξ)〉(5.1)

with the constants p > 1 and ν0 > 0.

Definition 5.2. A differential form w ∈W 1,p
loc (M) is said to be A-harmonic

if it is a solution of the A-harmonic equation

δA(m, dw) = 0,(5.3)

understood in the weak sense, that is∫
M

〈dΦ, A(m, dw)〉 dv = 0(5.4)

for all differential forms Φ ∈W 1,q
loc (M), 1/p+1/q = 1, with suppΦ∩∂M = ∅.

Theorem 5.5. If the differential form w ∈ W 1
p,loc(M) is A-harmonic with

the property (5.1) then the differential form dw is in the class WT1 on M.

Proof. Let w, degw = k be a solution of (5.3) understood in the weak sense.
Let the differential form α(m) be associated with the vector field A(m, dw)
at the point m and set θ = ?α. The differential form w is weakly closed
because of (5.4) and the weak closedness of θ follows from

(−1)nk+1

∫
M

〈θ, δψ〉 dv =
∫
M

〈?α, ? d ? ψ〉 dv

=
∫
M

〈α, d ? ψ〉 dv =
∫
M

〈A(m, dw), dφ〉 dv = 0

for all ψ = ?−1φ ∈ W 1,q(M) with suppψ ∩ ∂M = ∅. Further, by (5.1) we
get

ν0|θ|q = ν0|A(m, dw)|q ≤ 〈dw,A(m, dw)〉 = 〈dw, ?θ〉,
which guarantees (4.4). �
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From now on we assume that the vector field A(m, ξ) satisfies the condi-
tions

ν1 |ξ|p ≤ 〈ξ, A(m, ξ)〉,(5.6)

and

|A(m, ξ)| ≤ ν2 |ξ|p−1(5.7)

with p > 1 and for some constants ν1, ν2 > 0. It is clear that we have
ν1 ≤ ν2.

Theorem 5.8. A differential form ω ∈W 1,p
loc (M) is A-harmonic with prop-

erties (5.6) and (5.7) if and only if dω ∈ WT2.

Proof. As is the proof of Theorem 5.5 we define θ. The weak closedness of
w and θ follows as above. From (5.6) it follows that

ν1|dw|p ≤ 〈dw,A(m, dw)〉 = 〈dw, ? θ〉
and from (5.7)

|θ| = | ? α| = |A(m, dw)| ≤ ν2|dw|p−1.

Conversely, if dw ∈ WT2, then there exists a weakly closed differential
form θ (see (4.3)) such that (4.6) and (4.7) are satisfied. With the vector
field a : M→ Λk(R) associated to the differential form α = ? θ we define

A(m, ξ) =

{
a(m), for ξ = dw(m),
ξ|ξ|p−2, for ξ 6= dw(m).

(5.9)

The weak closedness of θ ensures that w is a solution of (5.3) understood
in the weak sense. Conditions (5.6) and (5.7) for A are satisfied with (4.6)
and (4.7). �

6. Quasiregular mappings.

Let M and N be Riemannian manifolds of dimension n. A mapping F :
M→N of the classW 1

n,loc(M) is called a quasiregular mapping if F satisfies

|F ′(m)|n ≤ KJF (m)(6.1)

almost everywhere on M. Here F ′(m) : Tm(M) → TF (m)(N ) is the formal
derivative of F (m), further, |F ′(m)| = max|h|=1 |F ′(m)h|. We denote by
JF (m) the Jacobian of F at the point m ∈ M, i.e., the determinant of
F ′(m).

The best constant K ≥ 1 in the inequality (6.1) is called the outer di-
latation of F and denoted by KO(F ). If F is quasiregular then the least
constant K ≥ 1 for which we have

JF (m) ≤ Kl(F ′(m))n
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almost everywhere on M is called the inner dilatation of the mapping F :
M→N and denoted by KI(F ). Here

l(F ′(m)) = min
|h|=1

|F ′(m)h|.

The quantity
K(F ) = max{KO(F ),KI(F )}

is called the maximal dilatation of F and if K(F ) ≤ K then the mapping F
is called K-quasiregular.

If F : M → N is a quasiregular homeomorphism then the mapping
F is called quasiconformal. In this case the inverse mapping F−1 is also
quasiconformal in the domain F (M) ⊂ N and K(F−1) = K(F ).

Example 6.2. Some basic examples of quasiregular mappings are provided
by mappings F : M → N that distort lengths of curves by a bounded
factor. Indeed, following [HKM], we shall say that a mapping F : M→N ,
F ∈ W 1

1,loc(M), is an L–BLD mapping if JF (m) ≥ 0 almost everywhere on
M and for some constant L ≥ 1 and for all h ∈ Tm(M) and almost every
m ∈M we have

|h|/L ≤ |F ′(m)h| ≤ L|h|.(6.3)

It is readily shown that every L–BLD map is K-quasiregular with K =
L2(n−1) ([HKM], Lemma 14.80).

Let A and B be Riemannian manifolds of dimensions dimA = k, dimB =
n − k, 1 ≤ k < n, and with scalar products 〈 , 〉A, 〈 , 〉B, respectively. On
the Cartesian product N = A × B we introduce the natural structure of a
Riemannian manifold with the scalar product

〈 , 〉 = 〈 , 〉A + 〈 , 〉B.

We denote by π : A×B → A and η : A×B → B the natural projections of
the manifold N onto submanifolds.

If wA and wB are volume forms on A and B, respectively, then the differ-
ential form wN = π∗wA ∧ η∗wB is a volume form on N .

Theorem 6.4. Let F : M→N be a quasiregular mapping and let f = π ◦
F : M→A. Then the differential form f∗wA is of the class WT2 on M with
the structure constants p = n/k, ν1 = ν1(n, k,KO) and ν2 = ν2(n, k,KO).

Remark 6.5. From the proof of the theorem it will be clear that the struc-
ture constants can be chosen to be

ν−1
1 =

(
k +

n− k

c2

)−n/2

nn/2KO, ν−1
2 = cn−k ,
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where c = c(k, n,KO) and c = c(k, n,KO) are, respectively, the greatest and
least positive roots of the equation

(kξ2 + (n− k))n/2 − nn/2KO ξ
k = 0.(6.6)

Proof. Setting g = η ◦ F : M→ B we choose θ = g∗wB. The volume form
wB is weakly closed.

In fact, if the mapping g is sufficiently regular then

dθ = dg∗wB = g∗dwB = 0.

In the general case for the verification of Condition (3.6) we approximate
the mapping g : M→ B in the norm of W 1

n by smooth maps gl, l = 1, 2, . . . .
Because Condition (3.6) holds for each of the differential forms g∗l wB, it must
hold also for the differential form g∗wB.

The weak closedness of the differential form f∗wA follows similarly.
Fix a point m ∈ M, at which the relation (6.1) holds. Set a = f(m),

b = g(m). Then
TF (m)(N ) = Ta(A)× Tb(B).

The computations can be conveniently carried out as follows. We first
rewrite Condition (6.1) in the form

|F ′(m)|n ≤ KO|F ∗wN |,(6.7)

where wN is a volume form on N .
For the points a ∈ A, b ∈ B we choose neighborhoods and local sys-

tems of coordinates y1, . . . , yk, and yk+1, . . . , yn, orthonormal at a and b,
respectively. We have

f∗wA = f∗(dy1 ∧ . . . ∧ dyk) = f∗dy1 ∧ . . . ∧ f∗dyk

= df1 ∧ . . . ∧ dfk, f i = yi ◦ f, i = 1, . . . , k.

Because the differential form wA is simple we obtain by the inequality be-
tween the geometric and arithmetic means

|df1 ∧ . . . ∧ dfk|1/k ≤

(
k∏

i=1

|df i|

)1/k

(6.8)

≤ 1
k

k∑
i=1

|df i| ≤

(
1
k

k∑
i=1

|df i|2
)1/2

.

Similarly

|dgk+1 ∧ . . . ∧ dgn|1/(n−k) ≤

(
1

n− k

n∑
i=k+1

|dgi|2
)1/2

.(6.9)

It is not difficult to see that

F ∗wN = F ∗(π∗wA ∧ η∗wB) = f∗wA ∧ g∗wB = f∗wA ∧ θ
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and further that

|F ∗wN | = |f∗wA ∧ g∗wB| ≤ |df1 ∧ . . . ∧ dfk||dgk+1 ∧ . . . ∧ dgn|.

We have

|dF |2 =
k∑

i=1

|df i|2 +
n∑

i=k+1

|dgi|2 ≤ n |F ′|2.

Therefore we get from (6.7), (6.8) and (6.9)(
k|f∗wA|2/k + (n− k)|g∗wB|2/(n−k)

)n/2

≤ nn/2KO〈f∗wA, ?θ〉 ≤ nn/2KO|f∗wA||g∗wB|.

Set

ξ =
|f∗wA|1/k

|g∗wB|1/(n−k)
.

The preceding relation takes the form(
kξ2 + (n− k)

)n/2 ≤ nn/2KOξ
k.

Using the notations c and c for the least and greatest positive roots of
Equation (6.6) we have c ≤ ξ ≤ c and

c|g∗wB|1/(n−k) ≤ |f∗wA|1/k ≤ c|g∗wB|1/(n−k).(6.10)

As above, from (6.10) it follows that

|f∗wA|n/k ≤
(
k +

n− k

c2

)−n/2
nn/2KO〈f∗wA, ?θ〉.

Thus Condition (4.6) for the membership of the differential form f∗wA of
degree k in the class WT2 is indeed satisfied.

To verify Condition (4.7) it is enough to observe that from (6.10) it follows
that

cn−k|θ| ≤ |f∗wA|
n−k

k .

�

Let y1, y2, . . . , yk be an orthonormal system of coordinates in Rk, 1 ≤
k ≤ n. Let A be a domain in Rk and let B be an (n − k)-dimensional
Riemannian manifold. We consider the manifold N = A× B.

Let F = (f1, f2, . . . , fk, g) : M→N be a mapping of the classW 1
n,loc(M)

and g = η ◦ F as defined above. We have f∗wA = df1 ∧ . . . ∧ dfk.

Theorem 6.11. If the mapping F is quasiregular then the differential form
f∗wA is in the class WT3 on M with the structure constants p = n/k,
ν3 = ν3(k, n,KO), ν2 = ν2(k, n,KO).
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Remark 6.12. We can choose the constants ν2, ν3 to be

ν2 = ck−n
1 , ν3 =

(
1 +

1
c21

)n/2

n−n/2kn/2K−1
O

where c1 is the least and c1 the greatest positive root of the equation

(ξ2 + 1)n/2 − nn/2k−k/2(n− k)−(n−k)/2KO ξ
k = 0.(6.13)

Proof. In contrast to the previous case the k-form f∗wA has now a global
coordinate representation. Because the earlier arguments had local character
they are applicable to the present case, too. As in the previous case we can
choose θ = g∗wB. Condition (4.7) holds with the same constant. We now
proceed to verify Condition (4.10).

Combining (6.7), (6.8) and (6.9) we get(
k∑

i=1

|df i|2 +
n∑

i=k+1

|dgi|2
)n/2

≤ k−k/2(n− k)−(n−k)/2nn/2KO

(
k∑

i=1

|df i|2
)k/2( n∑

i=k+1

|dgi|2
)(n−k)/2

.

Here we set

ξ =


k∑

i=1
|df i|2

n∑
i=k+1

|dgi|2


1/2

.

We then get

(ξ2 + 1)n/2 ≤ k−k/2(n− k)−(n−k)/2nn/2KOξ
k.

If c1, c1 are, respectively, the least and greatest of the positive roots of
(6.13) then

c1

(
n∑

i=k+1

|dgi|2
)1/2

≤

(
k∑

i=1

|df i|2
)1/2

≤ c1

(
n∑

i=k+1

|dgi|2
)1/2

.(6.14)

From the relations (6.7) and (6.14) it follows that(
1
c21

+ 1
)n/2

(
k∑

i=1

|df i|2
)n/2

≤ nn/2KO〈f∗wA, ?θ〉,

which guarantees the truth of (4.10). �
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Theorem 6.15. If the mapping F : M→ Rn is quasiregular then the dif-
ferential form f∗wA = df1 ∧ . . . ∧ dfk is of the class WT4 on M with the
structure constants p = n/k, ν3 = ν3(k, n,KO), ν4 = ν4(k, n,KO).

Proof. As above we set θ = dgk+1 ∧ . . .∧ dgn . Condition (4.10) has already
been proved. By (6.7), (6.9) and (6.14) we have

(1 + c21)
n/2

(
n∑

i=k+1

|dgi|2
)n/2

≤ (n− k)−(n−k)/2nn/2KO|f∗wA|

(
n∑

i=k+1

|dgi|2
)(n−k)/2

.

Therefore(
n∑

i=k+1

|dgi|2
)k/2

≤ (n− k)−(n−k)/2(1 + c21)
−n/2nn/2KO|f∗wA|,

which easily yields the desired conclusion. �

Remark 6.16. For the constant ν3 we can choose the constant of Theo-
rem 6.11 and

ν4 =
(
(n− k)−n/2(1 + c21)

−n/2nn/2KO

)(n−k)/k
.

Theorem 6.17. Let f = (f1, f2, . . . , fn−1) : M → Rn−1 be a mapping of
the class W 1

n,loc(M) and let the fundamental group π1 of the manifold M be
trivial. The mapping f can be extended to a quasiregular mapping

F = (f, fn) = (f1, . . . , fn−1, fn) : M→ Rn

if and only if the differential form w = df1 ∧ . . . ∧ dfn−1 of degree n − 1 is
in the class WT4 on M with p = n/(n− 1).

Proof. We assume that F = (f, fn) is quasiregular. By Theorem 6.15 the
differential form w is in the class WT4 on M.

Conversely, let w be a differential form of the classWT4. Then there exists
a weakly closed differential form θ, deg θ = 1, satisfying Conditions (4.10)
and (4.12). Because π1 = {e} there exists an injective function fn : M→ R1

such that dfn = θ. From (4.10) we get

ν3

(
n−1∑
i=1

|df i|2
)n/2

≤ (n− 1)n/2|df1 ∧ . . . ∧ dfn|.
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Condition (4.12) implies

ν−1
4 |dfn| ≤ |df1 ∧ . . . dfn−1|1/(n−1) ≤

(
1

n− 1

n−1∑
i=1

|df i|2
)1/2

.

Thus we get(
n∑

i=1

|df i|2
)n/2

≤

(
n−1∑
i=1

|df i|2 +
ν2
4

n− 1

n−1∑
i=1

|df i|2
)n/2

≤
(

1 +
ν2
4

n− 1

)n/2 1
ν3

(n− 1)n/2|df1 ∧ . . . ∧ dfn|,

which implies (6.1) with the constant

KO = (n− 1 + ν2
4)n/2n−n/2ν−1

3 .

�
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[FW] D. Franke and R. Wisk, Quasireguläre abbildungen und p-harmonische tensoren,
preprint A 1/95, Freie Universität Berlin, 1995.
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EGGERT’S CONJECTURE ON THE DIMENSIONS OF
NILPOTENT ALGEBRAS

Lakhdar Hammoudi

In this paper we prove that for a finite dimensional commu-
tative nilpotent algebra A over a field of prime characteristic
p > 0, dimA ≥ p dimA(p), where A(p) is the subalgebra of
A generated by the elements xp. In particular, this solves
Eggert’s conjecture.

1. Introduction.

In 1971, Eggert [2] conjectured that for a finite commutative nilpotent al-
gebra A over a field K of prime characteristic p > 0, dimA ≥ p dimA(p),
where A(p) is the subalgebra of A generated by all the elements xp, x ∈ A
and dimA, dimA(p) denote the dimensions of A and A(p) as vector spaces
over K.

In [3], Stack conjectures that dimA ≥ p dimA(p) is true for every finite
dimensional nilpotent algebra A over K . We point out that some particular
cases of Eggert’s conjecture have been proved in [1, 2, 3, 4].

Here we prove the conjecture for finite dimensional commutative nilpotent
algebras. This combined with the results of [2] completely describe the
group of units of A and the problem set in [1]: “When a finite abelian group
is isomorphic to the group of units of some finite commutative nilpotent
algebras?” is solved. Recall that the group of units of A is the set A with
the following operation: x · y = x+ y + xy, ∀x, y ∈ A.

The author would like to thank the referee and Prof. B. Magurn along
with the Algebra Seminar team at Miami university for valuable suggestions
and comments.

2. Results.

Our main result is the following:

Theorem. Let A be a finite dimensional commutative nilpotent algebra over
a field K of characteristic p > 0 and let A(p) be the subalgebra of A generated
by all the elements xp, x ∈ A. Then dimA ≥ p dimA(p).

To prove the theorem we need an easy lemma on the partition of some
sets in Zd

≥0 of d-tuples (d > 0) of nonnegative integers. Let α = (α1, . . . , αd)

93
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and β = (β1, . . . , βd) be in Zd
≥0. Define α > β if in the difference α − β =

(α1 − β1, . . . , αd − βd), the left-most nonzero entry is positive and all other
entries to the right are nonnegative. It is easy to prove that > is in fact a
partial order on Zd

≥0, which is compatible with the addition.

Lemma 1. Let (n1, n2, . . . , nd) = n ∈ Zd
≥0 be a fixed d-tuple such that

(0, . . . , 0, 0) 6= n and consider the following subsets of Zd
≥0:

Zd
≥0(n) = {α, (0, . . . , 0, 0) 6= α ≤ n},

Zd
≥0(i1, . . . , id−1) = {(i1, i2, . . . , id−1, j), 1 ≤ j ≤ nd}, 0 ≤ ik ≤ nk, 1 ≤

k ≤ d− 1,

Zd
≥0(0) = {(i1, i2, . . . , id−1, 0), (i1, i2, . . . , id−1, 0) ∈ Zd

≥0(n)}.

Then the sets Zd
≥0(i1, . . . , id−1), and Zd

≥0(0) form a partition of Zd
≥0(n).

The proof of the theorem requires also the following lemma due to Bautista
[1, Proposition 2.1, p. 15]. For completness, we will give a sketch of a proof
of this result.

Lemma 2. Let A be a commutative nilpotent algebra over a field K gen-
erated by X1, . . . , Xd. Let (α1, . . . , αd) be an element of Zd

≥0 such that
Xα1

1 · · ·Xαd
d 6= 0 but ∀(β1, . . . , βd) ∈ Zd

≥0, (β1, . . . , βd) > (α1, . . . , αd),
Xβ1

1 · · ·Xβd
d = 0. Then for the set of ordered d-tuples

S =
{

(i1, . . . , id) ∈ Zd
≥0; (α1, . . . , αd)− (i1, . . . , id) ∈ Zd

≥0

}
,

{Xi1
1 · · ·X

id
d ; (i1, . . . , id) ∈ S} is linearly independent.

Sketch of Proof. Suppose that the family{
Xi1

1 · · ·X
id
d ; (i1, . . . , id) ∈ Zd

≥0; (α1, . . . , αd)− (i1, . . . , id) ∈ Zd
≥0

}
is linearly dependent. Then there exists a set of nonzero elements λi1,... ,id ∈
K such that

∑
α−I∈Zd

≥0
λi1,... ,idX

i1
1 · · ·X

id
d = 0, α = (α1, . . . , αd), I = (i1,

. . . , id).
Let L = (l1, . . . , ld) be a minimal element such that λl1,... ,ld 6= 0. Then

λl1,... ,ldX
l1
1 · · ·X

ld
d +

∑
I>L

λi1,... ,idX
i1
1 · · ·X

id
d = 0.

By multiplying on the right by X(α1−l1)
1 · · ·X(αd−ld)

d and using the commu-
tativity of A, we obtain:

λl1,... ,ldX
α1
1 · · ·Xαd

d +
∑
I>L

λi1,... ,idX
i1+(α1−l1)
1 · · ·Xid+(αd−ld)

d = 0.

However, it is easy to see that (i1 +α1− l1, . . . , id +αd− ld) > (α1, . . . , αd).
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Thus, ∑
I>L

λi1,... ,idX
i1+(α1−l1)
1 · · ·Xid+(αd−ld)

d = 0.

So, λl1,... ,ldX
α1
1 · · ·Xαd

d = 0. But, λl1,... ,ld 6= 0. Thus, Xα1
1 · · ·Xαd

d = 0.
This contradicts our hypothesis and proves the lemma.

Lemma 3. Let A be a commutative nilpotent algebra over a field K gen-
erated by d elements X1, . . . , Xd. Suppose that A cannot be generated by
d − 1 elements. Let B = {Xi1

1 · · ·X
id
d , (i1, i2, . . . , id) ∈ Zd

≥0, with the con-
vention X0

k = 1, 1 ≤ k ≤ d} be a basis of A as a vector space over
K. Then Xd ∈ B and some of the basis B are such that, if for some
(j1, . . . , jd), jd ≥ 2, Xj1

1 · · ·Xjd
d ∈ B then Xj1

1 · · ·Xjd−1

d−1 X
jd−1
d ∈ B.

Proof. Suppose that Xd /∈ B and let us write it as a linear combination of
elements of B, Xd =

∑
i1,... ,id

λi1,... ,idX
i1
1 · · ·X

id
d , λi1,... ,id ∈ K . Since A is

not generated by d − 1 elements, for some id we have id ≥ 1. So, one can
write

Xd =

 ∑
i1,... ,id

λi1,... ,idX
i1
1 · · ·X

id−1
d

 ∑
i1,... ,id

λi1,... ,idX
i1
1 · · ·X

id
d

 .

Since A is commutative and nilpotent, by repeating the above process we
can write Xd as a linear combination of monomials in X1, . . . , Xd−1. Thus
A is generated by d − 1 elements. This contradiction proves our assertion,
Xd ∈ B.

We prove now our second assertion. It is easy to see that Xj1
1 · · ·Xjd

d ∈ B
implies that there exists (α1, . . . , αd) ∈ Zd

≥0 satisfying the hypothesis of
Lemma 2 such that

(α1, . . . , αd) > (j1, . . . , jd) and (α1 − j1, . . . , αd − jd) ∈ Zd
≥0.

But (j1, . . . , jd) > (j1, . . . , jd−1, jd − 1). So, (α1 − j1, . . . , αd−1 − jd−1, αd −
jd − 1) ∈ Zd

≥0. Thus, Lemma 2 applies here.

Suppose now thatXj1
1 · · ·Xjd−1

d−1 X
jd−1
d /∈ B. Then {Xj1

1 · · ·Xjd−1

d−1 X
jd−1
d ,B}

is linearly dependent which contradicts the preceeding lemma.

Proof of the Theorem. We prove our theorem by induction on the number
l of generators of the algebra A.

We first prove the conjecture for l = 1. Let X be a generator of A and
m+1 be the degree of nilpotency of X. Then {X,X2, . . . , Xm} is a basis for
the vector space A and since A is commutative over a field of characteristic
p, {Xp, . . . , Xpk} is a basis of A(p). But the fact that m+ 1 is the degree of
nilpotency of X yields to m ≥ pk. So, dimA = m ≥ pk = p dimA(p).

Suppose that the theorem is proved for every algebra generated by l el-
ements, l ≤ d − 1 and consider a finite dimensional commutative nilpotent
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algebra A over K generated by d elements, X1, . . . , Xd. Since A is nilpotent,
there exists a d-tuple (n1, n2, . . . , nd) = n ∈ Zd

≥0 such that n1+1, . . . , nd+1
are the degrees of nilpotency of X1, . . . , Xd respectively. Since A is commu-
tative over a field of characteristic p, as vector spaces over K, A and A(p)

are generated by the monomials of the form {Xβ1
1 · · ·Xβd

d , (β1, . . . , βd) ∈
Zd
≥0, whereX0

i = 1} and Xpβ1
1 · · ·Xpβd

d respectively. So, one can extract a
basis B of A(p) from the last cited monomials. Let B be a basis of A obtained
by completing B. Let Zd

≥0(B) be the set of all d-tuples (α1, . . . , αd) ∈ Zd
≥0

such that Xα1
1 · · ·Xαd

d ∈ B and denote by Zd
≥0(B) the set of all d-tuples

(α1, . . . , αd) ∈ Zd
≥0 such that Xα1

1 · · ·Xαd
d ∈ B.

With these notations, dimA ≥ p dimA(p) is the same as #Zd
≥0(B) ≥

p#Zd
≥0(B), where #Y is the number of the elements of the set Y .

Let R be the subalgebra of A generated by {X1, . . . , Xd−1}. Then by the
hypothesis of induction, dimR ≥ p dimR(p). But, dimR = #(Zd

≥0(B) ∩
Zd
≥0(0)) and dimR(p) = #(Zd

≥0(B) ∩ Zd
≥0(0)). On the other hand, since

Zd
≥0(B) and Zd

≥0(B) are included in Zd
≥0(n), by Lemma 1 we have:

Zd
≥0(B) =

 ⋃
i1,... ,id−1

Zd
≥0(B) ∩ Zd

≥0(i1, . . . , id−1)

⋃(
Zd
≥0(B) ∩ Zd

≥0(0)
)

Zd
≥0(B) =

 ⋃
i1,... ,id−1

Zd
≥0(B) ∩ Zd

≥0(i1, . . . , id−1)

⋃(
Zd
≥0(B) ∩ Zd

≥0(0)
)
.

Also, by Lemma 1 we have partitions of Zd
≥0(B) and Zd

≥0(B). Thus, we
only need to prove that

#
⋃

i1,... ,id−1

(
Zd
≥0(B) ∩ Zd

≥0(i1, . . . , id−1)
)

≥ p#
⋃

i1,... ,id−1

(
Zd
≥0(B) ∩ Zd

≥0(i1, . . . , id−1)
)
.

Moreover, since we have a disjoint union of sets, we prove that

#
(
Zd
≥0(B) ∩ Zd

≥0(i1, . . . , id−1)
)
≥ p#

(
Zd
≥0(B) ∩ Zd

≥0(i1, . . . , id−1)
)
.

Fix (i1, . . . , id−1) and let j be the greatest integer such that:
Xi1

1 · · ·X
id−1

d−1 X
j
d ∈ B (i.e., (i1, . . . , id−1, j) ∈ Zd

≥0(B)).
If j = 0 or j = 1 then Zd

≥0(B) ∩ Zd
≥0(i1, . . . , id−1) = ∅ and our claim is

obvious.
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If j ≥ 2 then by Lemma 3, (i1, . . . , id−1, k) ∈ Zd
≥0(B), ∀k, 1 ≤ k ≤ j and

so, by the choice of the integer j,

#
(
Zd
≥0(B) ∩ Zd

≥0(i1, . . . , id−1)
)

= j.

On the other hand

Zd
≥0(B) ∩ Zd

≥0(i1, . . . , id−1) =


∅
or
{(i1, . . . , id−1, pk), 1 ≤ pk ≤ j}.

The first case is obvious and in the second as for an algebra generated by
one element, we have

p#
(
Zd
≥0(B) ∩ Zd

≥0(i1, . . . , id−1)
)

= pt ≤ j.

This ends the proof of the theorem.
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SIGNATURES OF LEFSCHETZ FIBRATIONS

Burak Ozbagci

Let M be a smooth 4-manifold which admits a Lefschetz
fibration over D2 or S2. We develop an algorithm to compute
the signature of M using the global monodromy of this fibra-
tion. As a corollary we prove that there is no hyperelliptic
Lefschetz fibration over S2 with only reducible singular fibers.

0. Introduction.

The signature of a smooth 4-manifold which admits a hyperelliptic Lefschetz
fibration of genus g over a closed surface can be computed using the local
signature formula given by Matsumoto ([M1], [M2]) for g = 1, 2 and more
recently extended by Endo [E] for g ≥ 3.

In this paper we present an algorithm to compute the signature of a
smooth 4-manifold which admits an arbitrary (not necessarily hyperellip-
tic) Lefschetz fibration of any genus over D2 or S2. A Lefschetz fibration
on a smooth 4-manifold M gives rise to a handlebody description of M ,
which is determined by a sequence of vanishing cycles. We use this handle-
body description [K] and Wall’s nonadditivity formula for signatures [W] to
compute the signature of M . Hence we calculate a ‘signature contribution’
corresponding to each singular fiber of the given fibration on M .

As a corollary we prove that “there is no hyperelliptic Lefschetz fibration
over S2 with only reducible singular fibers.” After we proved and announced
this result the general case (not assuming the hyperellipticity) was proved
independently by Li [L], Smith [Sm] and Stipsicz [St3] all using a result of
this paper (cf. Corollary 7).

Recent results in symplectic topology show that Lefschetz fibrations pro-
vide a topological characterization of symplectic 4-manifolds: Donaldson [D]
has shown that, after perhaps blowing up, a closed symplectic 4-manifold
admits a Lefschetz fibration over S2, and conversely Gompf [GS] has shown
that most Lefschetz fibrations are symplectic — the exceptions all have fiber-
genus one and are blow-ups of torus fibrations with no critical points. Hence
by computing the signatures of Lefschetz fibrations we hope to attack some
of the problems in the geography of symplectic 4-manifolds ([St1], [St2],
[GS]).
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We also prove that the signature of a smooth 4-manifold which admits a
hyperelliptic Lefschetz fibration of genus g ≤ 3 over S2 is nonpositive. It is
conjectured that this is true for all genus g Lefschetz fibrations over S2.

We want to point out that despite the fact that the vanishing cycles are
defined up to isotopy, our technique shows that the signature of a 4-manifold
which admits a Lefschetz fibration depends only on the algebraic data given
by the homology classes of the vanishing cycles.

In [Sm], Smith gave an elegant signature formula using the geometry of
Lefschetz fibrations. Even though his formula is in a closed form, it seems
impossible to actually compute the signature using his formula.

Acknowledgement. The author would like to thank John Etnyre, Terry
Fuller, Ludmil Katzarkov, Ron Stern and Richard Wentworth for helpful
conversations. In particular, the author would like to thank Terry Fuller for
stimulating his interest in Lefschetz fibrations. The author would also like to
thank Yukio Matsumoto for informing him about the preprint [E] by Hisaaki
Endo. The author would like to thank Andras Stipsicz for commenting on
earlier versions of this paper. Finally, the author wishes to express his
gratitute to Ron Stern for encouragement and many useful discussions.

1. Preliminaries.

1.1. Mapping class groups. Let Σg be a closed oriented surface of genus
g. Let Diff+(Σg) be the group of all orientation preserving self diffeomor-
phisms of Σg. Let Diff+

0 (Σg) be the subgroup of Diff+(Σg) consisting of all
self diffeomorphisms isotopic to the identity. Then we define the mapping
class group of genus g as

Mg = Diff+(Σg)/Diff+
0 (Σg).

The hyperelliptic mapping class group Hg of genus g is defined as the
subgroup of Mg which consists of all isotopy classes commuting with the
isotopy class of the hyperelliptic involution ι : Σg −→ Σg.

It is known that the hyperelliptic mapping class group Hg agrees with the
mapping class group Mg for g = 1, 2 (cf. [BH]).

A positive (or right-handed) Dehn twist D(α) : Σg → Σg about a simple
closed curve α is a diffeomorphism obtained by cutting Σg along α, twisting
360◦ to the right and regluing. Note that the positive Dehn twist D(α) is
determined up to isotopy by α and is independent of the orientation on α.

It is well-known that the mapping class group Mg is generated by Dehn
twists.

We will use the functional notation for the products inMg, e.g.,D(β)D(α)
will denote the composition where we apply D(α) first and then D(β).



SIGNATURES OF LEFSCHETZ FIBRATIONS 101

1.2. Smooth Lefschetz fibrations.
LetM be a compact, oriented smooth 4-manifold, and let B be a compact,

oriented 2-manifold. A proper smooth map f : M → B is a smooth Lefschetz
fibration if there exist points b1, . . . , bm ∈ interior(B) such that

(1) {b1, . . . , bm} are the critical values of f , with pi ∈ f−1(bi) a unique
critical point of f , for each i, and

(2) about each bi and pi, there are local complex coordinate charts agreeing
with the orientations of M and B such that locally f can be expressed
as f(z1, z2) = z2

1 + z2
2 .

Remark. An achiral Lefschetz fibration is a fibration which satisfies (1)
and (2) above without requiring the coincidence of the canonical orientation
determined by (z1, z2) and the orientation of M .

It is a consequence of the definition of a smooth Lefschetz fibration that

f |f−1(B−{b1,... ,bm}) : f−1(B − {b1, . . . , bm}) → B − {b1, . . . , bm}

is a smooth fiber bundle over B − {b1, . . . , bm} with fiber diffeomorphic to
a 2-manifold Σg, and so we refer to f (and sometimes also the manifold M)
as a genus g Lefschetz fibration (or a Lefschetz fibration of genus g). Two
genus g Lefschetz fibrations f : M → B and f ′ : M ′ → B′ are equivalent if
there are diffeomorphisms Φ : M →M ′ and φ : B → B′ such that f ′Φ = φf.

We always assume that our Lefschetz fibrations are relatively minimal,
namely that no fiber contains an embedded 2-sphere of self-intersection
number −1. We also assume that there is at least one singular fiber in
each fibration.

If f : M → D2 is a smooth genus g Lefschetz fibration, then we can use
this fibration to produce a handlebody description of M . We select a regular
value b0 ∈ interior(D2) of f , an identification f−1(b0) ∼= Σg, and a collection
of arcs si in interior(D2) with each si connecting b0 to bi, and otherwise
disjoint from the other arcs. We also assume that the critical values are
indexed so that the arcs s1, . . . , sm appear in order as we travel counter-
clockwise in a small circle about b0. Let V0, . . . , Vm denote a collection of
small disjoint open disks with bi ∈ Vi for each i.

To build our description of M , we observe first that f−1(V0) ∼= Σg ×D2,
with ∂(f−1(V0)) ∼= Σg×S1. Let ν(si) be a regular neighborhood of the arc si.
Enlarging V0 to include the critical value b1, it can be shown that f−1(V0 ∪
ν(s1)∪V1) is diffeomorphic to Σg ×D2 with a 2-handle h1 attached along a
circle γ1 contained in a fiber Σg×pt ⊂ Σg×S1.Moreover, Condition (2) in the
definition of a Lefschetz fibration requires that h1 is attached with a framing
−1 relative to the natural framing on γ1 inherited from the product structure
of ∂(f−1(V0)). γ1 is called a vanishing cycle. In addition, ∂((Σg×D2)∪h1) is
diffeomorphic to a Σg-bundle over S1 whose monodromy is given by D(γ1),
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Figure 1. Fibration over the disk.

a positive Dehn twist about γ1. Continuing counterclockwise about b0, we
add the remaining critical values to our description, yielding that

M0
∼= f−1

(
V0 ∪

(
m⋃

i=1

ν(si)

)
∪

(
m⋃

i=1

Vi

))
is diffeomorphic to (Σg×D2)∪(

⋃m
i=1 hi), where each hi is a 2-handle attached

along a vanishing cycle γi in a Σg-fiber in Σg×S1 with relative framing −1.
This handle attaching procedure will be explained in more detail in Section 2.
Furthermore,

∂M0
∼= ∂

(
(Σg ×D2) ∪

(
m⋃

i=1

hi

))
is a Σg-bundle over S1 with monodromy given by the composition D(γm)
· · · D(γ1). We will refer to the cyclically ordered collection (D(γ1) , . . . ,
D(γm)) (or the product D(γm) · · ·D(γ1)) as the global monodromy of this
fibration.
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A Lefschetz fibration f : M → D2 does not completely determine the
ordered collection (D(γ1), . . . , D(γm)). Aside from the cyclic permutations
and being able to conjugate all elements by a fixed arbitrary element of Γg,
different choices of {si} will give different monodromies. Given two choices
of {si}, it is possible to get between them by a sequence of moves and their
inverses. These moves which are called elementary transformations, can be
thought of as the Lefschetz analog of handle slides in Morse theory. Each
move interchanges the corresponding vanishing cycles, and also acts on one of
the two cycles by the monodromy of the other. Equivalently, the pair of Dehn
twists (D(γi), D(γi+1)) is replaced by (D(γi+1), D(γi+1)D(γi)D(γi+1)−1).
Thus, two relatively minimal Lefschetz fibrations over D2 will be equivalent
if and only if it is possible to get between the corresponding ordered col-
lections of monodromies by a sequence of elementary transformations (and
their inverses), together with an inner automorphism of Mg (cf. [GS]).

We can extend this description to Lefschetz fibrations over S2 as follows:
Assume that f : M → S2 is a smooth genus g Lefschetz fibration. Let

M0 = M − ν(f−1(b)), where ν(f−1(b)) ∼= Σg ×D2 denotes a regular neigh-
borhood of a nonsingular fiber f−1(b). Then f |M0 : M0 → D2 is a smooth
Lefschetz fibration. If (D(γ1), . . . , D(γm)) is the global monodromy of the
fibration f |M0 : M0 → D2, then D(γm) · · ·D(γ1) is isotopic to the identity
since also ∂M0

∼= Σg × S1. Finally, to extend our description of M0 to M ,
we reattach Σg ×D2 to (Σg ×D2)∪ (

⋃m
i=1 hi) via a Σg-fiber preserving map

of the boundary. This extension is unique up to equivalence for g ≥ 2 [K].

Definition. Let f : M → S2 be a smooth genus g Lefschetz fibration
with global monodromy (D(γ1), . . . , D(γm)). We will call f : M → S2 a
hyperelliptic Lefschetz fibration of genus g iff there exists h ∈Mg such that
hD(γi)h−1 ∈ Hg for all i, 1 ≤ i ≤ m.

Remark. All Lefschetz fibrations of genus one and genus two are hyperel-
liptic since Hg = Mg for g = 1, 2.

1.3. Wall’s non-additivity formula.
If two compact oriented 4-manifolds are glued by an orientation reversing

diffeomorphism of their boundaries, then the signature of their union is the
sum of their signatures. This is known as the Novikov additivity. But
it is often desirable to consider the more general case of gluing: Along a
common submanifold, which may itself have boundary, of the boundaries of
the original manifolds. However, the Novikov additivity does not hold in this
general case. Wall [W] derives a formula for the deviation from additivity
in the general case, which is known as the Wall’s nonadditivity formula.

We will give a specific case of his formula:
Let X−, X0, X+ be 3-manifolds and Y− and Y+ be 4-manifolds such that
∂X− = ∂X0 = ∂X+ = Z,
∂Y− = X− ∪X0,
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∂Y+ = X0 ∪X+;
write Y = Y− ∪ Y+ and X = X− ∪X0 ∪X+ (Figure 2).

Y

X_

_

X0 Z

Y+

X+

Z

Figure 2.

Suppose that Y is oriented inducing orientations of Y− and Y+. Orient
the rest so that
∂∗[Y−] = [X0]− [X−],
∂∗[Y+] = [X+]− [X0],
∂∗[X−] = ∂∗[X0] = ∂∗[X+] = [Z].
Write V = H1(Z; R); let A,B and C be the kernels of the maps on first

homology induced by the inclusions of Z in X−,X0 and X+ respectively.
Then dimA = dimB = dimC = (dim V )

2 .
Let Φ denote the oriented intersection pairing in Z. Note that A,B and

C are maximal isotropic subspaces for the intersection pairing Φ. Let W =
C∩(A+B)

(C∩A)+(C∩B) . Wall [W] defines a symmetric bilinear map Ψ : W ×W → R
as follows: The map Ψ′ : C ∩ (A + B) × C ∩ (A + B) → R defined by
Ψ′(c, c′) = Φ(c, a′) where a′ + b′ + c′ = 0 for some a′ ∈ A and b′ ∈ B induces
a well-defined bilinear map Ψ on W .

The signature of the symmetric bilinear map Ψ will be denoted by σ(V ;
C,A,B).

We also denote the signature of a 4-manifold M as σ(M) in the rest of
this paper.

We are now ready to state Wall’s formula:

Theorem 1 ([W]). σ(Y ) = σ(Y−) + σ(Y+)− σ(V ;C,A,B).

1.4. Local signature formula.
The following theorem was proven by Matsumoto for g = 1, 2 using the

fact that the cohomology class of Meyer’s signature cocyle has finite order in
the cohomology group H2(Mg,Z). Recently, Endo proved the g ≥ 3 case by
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observing the finiteness of the order of the cohomology class of the signature
cocycle restricted to the hyperelliptic mapping class group Hg.

Theorem 2 ([M1], [M2], [E]). Let M be a 4-manifold which admits a hy-

perelliptic Lefschetz fibration of genus g over S2. Let n and s =
∑[ g

2
]

h=1 sh be
the numbers of nonseparating and separating vanishing cycles in the global
monodromy of this fibration, respectively. Then

σ(M) = − g + 1
2g + 1

n+
[ g
2
]∑

h=1

(
4h(g − h)

2g + 1
− 1
)
sh.

Remarks. (1) Here sh denotes the number of separating vanishing cycles
which separate the genus g surface into two surfaces one of which has
genus h.

(2) This formula was reproven for the case g = 2 in [Sm].

2. Main theorems.

In this section we explain our main idea and establish the main theorems
to develop an algorithm to compute the signature of a 4-manifold which
admits a Lefschetz fibration over D2 or S2 using the global monodromy of
this fibration.

Definition. Let X be a 4-manifold with boundary ∂X ∼= Σg × I/(x, 1) ∼
(φ(x), 0), where φ is a self-diffeomorphism of Σg. Let X ′ denote the resulting
4-manifold after attaching a 2-handle to X along a simple closed curve γ on
Σg × {pt} with framing −1 (relative to the product framing). Then σ(φ, γ)
is defined as σ(X ′)− σ(X).

Theorem 3. Let M be a 4-manifold which admits a genus g Lefschetz fi-
bration over D2 or S2. Let (D(γ1), . . . , D(γt)) be the global monodromy of
this fibration. Let D(γ0) denote the identity map. Then

σ(M) = Σt
i=1σ(D(γi−1) · · ·D(γ0), γi),

where σ(D(γi−1) · · ·D(γ1), γi) ∈ {−1, 0,+1} for all i, 1 ≤ i ≤ t.

Proof. It suffices to prove the result for Lefschetz fibrations over D2. (By
Novikov additivity it extends to Lefschetz fibrations over S2.) We use the
handlebody description of M and Wall’s formula as follows:

We start with a copy of M0 = Σg×D2. We attach a 2-handle to M0 along
γ1 with framing −1. Let M1 denote the resulting manifold. Then ∂M1 will
have monodromy D(γ1), a positive Dehn twist about γ1. Now we attach
another 2-handle to M1 along γ2. Let M2 denote the resulting manifold.
Proceeding in this manner we get the manifolds M1,M2, . . . ,Mt.
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We are going to apply Wall’s formula at each step of this contruction to
compute the signature of M . In order to apply Wall’s formula we set up the
following notation:

Take φ, X, γ and X ′ as in the definition above.
Let ν(γ) denote a regular neighborhood of γ in ∂X, and let i∗ be the

induced map on the homology by the inclusion of appropriate spaces.
Now we define Y+, Y−, X+, X0, X−, Z in Wall’s formula as follows:

Y− = D2 ×D2, Y+ = X,
∂Y− = ∂(D2 ×D2) = S1×D2∪D2×S1, ∂Y+ = Σg×I/(x, 1) ∼ (φ(x), 0),
X0 = S1 ×D2 ∼= ν(γ), X− = D2 × S1, X+ = ∂X − ◦

ν(γ),
Z = S1 × S1 ∼= ∂ν(γ) ∼= ∂(∂X − ◦

ν(γ)).

Hence,
A = Ker(i∗ : H1(S1 × S1; R) → H1(D2 × S1; R)),
B = Ker(i∗ : H1(S1 × S1; R) → H1(S1 ×D2; R)),
C = Ker(i∗ : H1(∂ν(γ); R) → H1(∂X − ◦

ν(γ); R)).

Let l be the longitude S1 × {pt} and m be the meridian {pt} × ∂D2 of
X0 = S1 ×D2. Then A = 〈[l]〉 and B = 〈[m]〉. We also know that C is a 1-
dimensional subspace of

H1(S1 × S1; R) = 〈[l], [m]〉 ∼= R2.

Let Φ be the intersection form on Z = S1 × S1 and W = C∩(A+B)
(C∩A)+(C∩B) =

C
(C∩A)+(C∩B) . Hence W = {0} if C = A or C = B and W = C otherwise.
Now assume that C 6= A and C 6= B. Then C = 〈c〉 = 〈p[l] + q[m]〉 for
some p, q ∈ R and Ψ(c, c) = Φ(c, a′) where c + a′ + b′ = 0 for some a′ ∈ A
and b′ ∈ B. (Ψ is the bilinear form in Wall’s formula). Let a′ = −p[l] and
b′ = −q[m]. Then we have,

Ψ(c, c) = Φ(c,−p[l]) = Φ(p[l] + q[m],−p[l]) = −pqΦ([m], [l]) = pq.

Therefore signature of Ψ is given by the sign of pq.
Hence by Wall’s formula

σ(X ′) = σ(X) + σ(D2 ×D2)− σ(R2;C,A,B)

= σ(X)− signature(Ψ) = σ(X)− sign(pq).

This proves the theorem by setting X = Mi for i = 1, 2, . . . , t− 1. �

So the idea to compute the signature of a genus g Lefschetz fibration is
very simple. For each 2-handle that we attach to Σg×D2 along a vanishing
cycle, there is a corresponding signature contribution ∈ {−1, 0,+1}. Once
we attach all the 2-handles, the sum of the signature contributions will
be signature of the 4-manifold. The difficulty is to compute the signature
contributions using the vanishing cycles (or more precisely using only the
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homology classes of the vanishing cycles). The following technical theorems
will be helpful in computations.

Theorem 4. In addition to the notation above, let {a1, b1, a2, b2, . . . , ag, bg}
be the standard basis for H1(Σg; R). (We will use the letters ai and bi also
to denote the curves which represent the homology classes ai and bi, respec-
tively, for 1 ≤ i ≤ g.) Then:

(1) If γ is a nonseparating curve, then there exists a longitude l′ and a
meridian m′ of ∂(∂X − ◦

ν(γ)) such that

i∗[l′] = [γ] ∈ H1(∂X − ◦
ν(γ); R)

i∗[m′] =
e− φ∗(e)
e.[γ]

∈ H1(∂X − ◦
ν(γ); R)

for all e ∈ {a1, b1, a2, b2, . . . , ag, bg}, where e.[γ] 6= 0.
(2) If γ is a separating curve, then σ(X ′) = σ(X)− 1, i.e., σ(φ, γ) = −1.

Proof. We recall that ∂X is a mapping torus, i.e., ∂X ∼= Σg × I/(x, 1) ∼
(φ(x), 0) and γ is a curve on a fiber Σg × {pt}. We note that a regular
neighborhood of γ in Σg is given by γ×I1. Hence a regular neighborhood of
γ in ∂X is given by γ×I1×I2 where I2 is a small neighborhood of the {pt} in
S1 = I/(1 ∼ 0). This neighborhood of γ is called the product neighborhood
[K].

Now let us push off γ to the boundary of ∂X − ◦
ν(γ). Denote the push off

of γ as l′. Moreover if we identify I1× I2 as D2 and denote ∂D2 as m′, then
{l′,m′} will be a longitude-meridian pair for ∂(∂X − ◦

ν(γ)). Then clearly

i∗[l′] = [γ] ∈ H1(∂X − ◦
ν(γ); R).

On the other hand, to find the image of m′ we observe the following:
Assume that e.[γ] = 1 for some e ∈ {a1, b1, a2, b2, . . . , ag, bg}. Then we

locally have the picture in Figure 3 in a neighborhood of the point where e
and γ meet.

This proves that

i∗[m′] = e− φ∗(e) ∈ H1(∂X − ◦
ν(γ); R).

Note that here we can deform e−m′ into φ∗(e) since the part of e which
is not along m′ lies outside of

◦
ν(γ).

Now assume that e.[γ] = −1 for some e ∈ {a1, b1, a2, b2, . . . , ag, bg}. Then
we locally have a similar picture in a neighborhood of the point where e and
γ meet, except for the orientations.

This proves that

i∗[m′] = φ∗(e)− e ∈ H1(∂X − ◦
ν(γ); R).
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Since these are local results it follows combining these two observations
that

i∗[m′] =
e− φ∗(e)
e.[γ]

∈ H1(∂X − ◦
ν(γ); R).

To prove the second part of the theorem we note that if γ is a separating
curve in Σg then it is homologically trivial. Thus i∗[l′] = 0. This implies
that Ker(i∗) = 〈[l′]〉.

Note that, in terms of the bases {[l], [m]} of H1(∂(S1×D2); R) = H1(S1×
S1; R) and {[l′], [m′]} of H1(∂(∂X − ◦

ν(γ)); R), attaching a 2-handle by −1
framing means that we identify [l] with [l′]− [m′] and [m] with [m′].

So if we transform the Ker(i∗) to the {[l], [m]} plane we see that Ker (i∗) =
C = W = 〈[l]+[m]〉 which implies that σ(X ′) = σ(X)−(+1) (cf. Theorem 3).

�

Proposition 5. We use the same notation as in Theorem 4.

(1) Let γ = ai for some i, 1 ≤ i ≤ g. Then H1(∂X − ◦
ν(ai); R) =

〈a1, b1, a2, b2, . . . , ag, bg, b
′
i, t | aj = φ∗aj for all j, bj = φ∗bj for all

j 6= i, b′i = φ∗bi〉.
Moreover i∗[l′] = ai and i∗[m′] = bi − b′i.

(2) Let γ = bi for some i, 1 ≤ i ≤ g. Then H1(∂X − ◦
ν(bi); R) =

〈a1, b1, a2, b2, . . . , ag, bg, a
′
i, t | bj = φ∗bj for all j, aj = φ∗aj for all

j 6= i, a′i = φ∗ai〉.
Moreover i∗[l′] = bi and i∗[m′] = a′i − ai.
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Proof. Assume that γ = ai for some i, 1 ≤ i ≤ g. We first use Van-Kampen’s
theorem to compute π1(∂X−

◦
ν(ai)). Write ∂X− ◦

ν(ai) = E1∪E2 as follows:
Let E1 = Σg × [0, 1/2] and E2 = Σg × [1/2, 1]. Then glue Σg × {1/2} ⊂ E1

with Σg × {1/2} ⊂ E2 by the identity map except a neighborhood of ai,
namely ai× I ⊂ Σg. Denote the result as E′. By a trivial calculation we get
the following presentation:

π1(E′) =

〈
a1, b1, a2, b2, . . . , ag, bg, b

′
i |

g∏
j=1

[aj , bj ], [ai, b
′
i]
∏
j 6=i

[aj , bj ]

〉
.

Finally we Abelianize this presentation after gluing Σg × {0} ⊂ E1 with
Σg × {1} ⊂ E2 using the map φ to get ∂X − ◦

ν(ai).
i∗[l′] = ai and i∗[m′] = bi−b′i follows from Theorem 4 because ai intersects

bj only once iff i = j.
Second part is obtained similarly. �

3. The algorithm and examples.

Suppose that we are attaching a 2-handle along a simple closed curve γ to
a 4-manifold M with boundary ∂M ∼= Σg × I/(x, 1) ∼ (φ(x), 0), where φ is
a self-diffeomorphism of Σg. To compute the signature contribution of this
handle we first compute C = ker i∗ (cf. Wall’s formula) using Theorem 4
and Proposition 5 and then apply Theorem 3. The signature contribution
of a 2-handle will depend on the action of φ on H1(Σg) and the homology
class [γ] ∈ H1(Σg).

3.1. Genus 1.
To illustrate how one can develop an algorithm using our main theorems

to calculate the signatures of smooth Lefschetz fibrations, we will give the
details of our computation to obtain the well-known result σ(E(1)) = −8
for the elliptic surface E(1).

a b

Figure 4.

The global monodromy of E(1) is given by the sequence (α, β)6 of 12
Dehn twists where α = D(a) and β = D(b) denote the positive Dehn twists
about the curves a and b, respectively (Figure 4).

To build up E(1), we start with a copy of T 2 × D2 and glue 2-handles
along the vanishing cycles a and b in an alternating fashion. (We will use
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the letters a and b also to denote the homology classes of the curves a and
b, respectively.)

Let φ denote the monodromy of the boundary of the 4-manifold before
we attach a 2-handle.

We take A, B and C as in the proof of Theorem 3 and we apply Proposi-
tion 5 to compute i∗[l′] and i∗[m′]. Note that we identify [l] with [l′]− [m′]
and [m] with [m′] as in the proof of Theorem 4.

φ = identity, attach the first handle along a,
i∗[l′] = a and i∗[m′] = b− b′ = b− φ∗b = b− b = 0,
C = 〈[m′]〉 = 〈[m]〉 = B and therefore σ(id, a) = 0.

φ = α, attach the second handle along b,
i∗[l′] = b and i∗[m′] = a′ − a = φ∗a− a = 0,
C = 〈[m′]〉 = 〈[m]〉 = B and therefore σ(α, b) = 0.

φ = βα, attach the third handle along a,
i∗[l′] = a and i∗[m′] = b−b′ = b−φ∗b = b−a = −a since a = φ∗a = a−b,
C = 〈[m′] + [l′]〉 = 〈2[m] + [l]〉 and therefore σ(βα, a) = −1.

φ = αβα, attach the fourth handle along b,
i∗[l′] = b and i∗[m′] = a′−a = φ∗a−a = −b−a = −2b since b = φ∗b = a,
C = 〈[m′] + 2[l′]〉 = 〈3[m] + 2[l]〉 and therefore σ(αβα, b) = −1.

φ = βαβα, attach the fifth handle along a,
i∗[l′] = a and i∗[m′] = b− b′ = b− φ∗b = b− (a− b) = 2b− a = 3b since
a = φ∗a = −b,
C = 〈[m′] + 3[l′]〉 = 〈4[m] + 3[l]〉 and therefore σ(βαβα, a) = −1.

φ = αβαβα, attach the sixth handle along b,
i∗[l′] = b = 0 and i∗[m′] = a′−a = φ∗a−a = −a− b−a = −2a− b = −2a
since b = φ∗b = −b,
C = 〈[l′]〉 = 〈[m] + [l]〉 and therefore σ(αβαβα, b) = −1.

φ = βαβαβα, attach the seventh handle along a,
i∗[l′] = a = 0 since a = φ∗a = −a and i∗[m′] = b− b′ = b− φ∗b =
b− (−b) = 2b,
C = 〈[l′]〉 = 〈[m] + [l]〉 and therefore σ(βαβαβα, a) = −1.

φ = αβαβαβα, attach the eighth handle along b,
i∗[l′] = b and i∗[m′] = a′ − a = φ∗a− a = −a− a = −2a = 4b since
b = φ∗b = −a− b,
C = 〈 − [m′] + 4[l′]〉 = 〈3[m] + 4[l]〉 and therefore σ(αβαβαβα, b) = −1.

φ = βαβαβαβα, attach the ninth handle along a,
i∗[l′] = a and i∗[m′] = b− b′ = b− φ∗b = b+ a = 2a+ a = 3a since
a = φ∗a = −a+ b,
C = 〈 − [m′] + 3[l′]〉 = 〈2[m] + 3[l]〉 and therefore σ(βαβαβαβα, a) = −1.
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φ = αβαβαβαβα, attach the tenth handle along b,
i∗[l′] = b and i∗[m′] = a′ − a = φ∗a− a = b− a = 2b since b = φ∗b = −a,
C = 〈 − [m′] + 2[l′]〉 = 〈[m] + [l]〉 and therefore σ(αβαβαβαβα, b) = −1.

φ = βαβαβαβαβα, attach the eleventh handle along a,
i∗[l′] = a and i∗[m′] = b−b′ = b−φ∗b = b−(−a+b) = a since a = φ∗a = b,
C = 〈 − [m′] + [l′]〉 = 〈[l]〉 = A and therefore σ(βαβαβαβαβα, a) = 0.

φ = αβαβαβαβαβα, attach the twelfth handle along b,
i∗[l′] = b and i∗[m′] = a′ − a = φ∗a− a = (a+ b)− a = b,
C = 〈 − [m′] + [l′]〉 = 〈[l]〉 = A and therefore σ(αβαβαβαβαβα, b) = 0.

Therefore by Theorem 3

σ(E(1)) = σ(id, a) + σ(α, b) + σ(βα, a) + · · ·+ σ(αβαβαβαβαβα, b)

= 0 + 0− (1 + · · ·+ 1︸ ︷︷ ︸
8

) + 0 + 0 = −8.

3.2. Genus 2.
We developed a Mathematica program to compute the signature of a

4-manifold which admits a genus two Lefschetz fibration over D2 or S2

whose global monodromy is given by any finite sequence of positive Dehn
twists D(c1), D(c2), . . . , D(c5), where c1, . . . , c5 are the curves indicated in
Figure 5

cccc1 5432c

Figure 5.

Let ζi denote D(ci), 1 ≤ i ≤ 5.
It was shown in [M2] that CP 2#13CP 2 admits a smooth Lefschetz fibra-

tion of genus two with global monodromy (ζ1, ζ2, ζ3, ζ4, ζ5, ζ5, ζ4, ζ3, ζ2, ζ1)2.
We computed the signature of the total space as

σ((ζ1, ζ2, ζ3, ζ4, ζ5, ζ5, ζ4, ζ3, ζ2, ζ1)2)

= 0 + 0 + 0 + 0− (1 + · · ·+ 1︸ ︷︷ ︸
12

) + 0 + 0 + 0 + 0

= −12.
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One can also compute the signature of the total space starting from a
cyclic permutation of the word above as follows.
σ(ζ2, ζ3, ζ4, ζ5, ζ5, ζ4, ζ3, ζ2, ζ1, ζ1, ζ2, ζ3, ζ4, ζ5, ζ5, ζ4, ζ3, ζ2, ζ1, ζ1) =

0 + 0 + 0 + 0− (1 + · · ·+ 1︸ ︷︷ ︸
11

) + 0 + 0 + 0− 1 + 0 = −12.

Similarly a genus two Lefschetz fibration on K3#2CP 2 is given in [M2]
with the global monodromy (ζ1, ζ2, ζ3, ζ4, ζ5)6.

We computed that σ((ζ1, ζ2, ζ3, ζ4, ζ5)6) =

0+0+0+0−(1 + · · ·+ 1︸ ︷︷ ︸
9

)+0+0+0+0−(1 + · · ·+ 1︸ ︷︷ ︸
9

)+0+0+0+0 = −18.

Matsumoto [M2] also shows that (ζ1, ζ2, ζ3, ζ4)5 is the hyperelliptic invo-
lution in M2, inducing the relation (ζ1, ζ2, ζ3, ζ4)10 = 1.

We computed that σ((ζ1, ζ2, ζ3, ζ4)10) = 0 + 0 + 0 + 0− (1 + · · ·+ 1︸ ︷︷ ︸
8

)+

0 + 0 + 1− (1 + · · ·+ 1︸ ︷︷ ︸
10

) + 1 + 0 + 0− (1 + · · ·+ 1︸ ︷︷ ︸
8

) + 0 + 0 + 0 + 0 = −24.

Note that the 15th and the 26th 2-handle both contribute +1 to the
signature. It is known that the total space of this fibration is homeomorphic
but not diffeomorphic to 5CP 2#29CP 2 (cf. [M2], [F1]).

As a final example we give the signature contributions of the singular
fibers in the genus two Lefschetz fibration of S2× T 2#4CP 2 given in [M2].

σ(S2 × T 2#4CP 2) = 0− 1− 0− 1− 1− 1 + 0 + 0 = −4.

Remark. One can indeed check these numbers using Matsumoto’s local
signature formula or using the fact that σ(X#CP 2) = σ(X) − 1, for a
4-manifold X.

3.3. Genus 3.
Let F2 denote the Hirzebruch surface, the holomorphic CP 1 bundle over

CP 1 with a holomorphic section s1 of self intersection −2. F2 also admits a
disjoint holomorphic section s2 of self intersection 2. Let X be the two-fold
cover of F2, branced over the disjoint union of a smooth curve in |7s1| and
s2. Then X admits a holomorphic Lefschetz fibration X → CP 1 of genus
three obtained by composing the branched cover map with the bundle map
F2 → CP 1. In [F2], Fuller gives the global monodromy of this fibration as

(η1, η2, η3, η4, η5, η6)14.

Here η1, η2, . . . , η9 denote the positive Dehn twists about the curves
d1, d2, . . . , d9 indicated as in Figure 6.
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Figure 6.

We computed the signature of this genus three Lefschetz fibrations over
S2, using our Mathematica program. (The program is available upon re-
quest.)

σ((η1, η2, η3, η4, η5, η6)14) =

0 + · · ·+ 0︸ ︷︷ ︸
6

−(1 + · · ·+ 1︸ ︷︷ ︸
8

) + 0 + · · ·+ 0︸ ︷︷ ︸
4

−(1 + · · ·+ 1︸ ︷︷ ︸
8

) + 0 + · · ·+ 0︸ ︷︷ ︸
4

−1− 1 + 0 + 0 + 1− (1 + · · ·+ 1︸ ︷︷ ︸
14

) + 1 + 0 + 0− 1− 1+

0 + · · ·+ 0︸ ︷︷ ︸
4

−(1 + · · ·+ 1︸ ︷︷ ︸
8

) + 0 + · · ·+ 0︸ ︷︷ ︸
4

−(1 + · · ·+ 1︸ ︷︷ ︸
8

) + 0 + · · ·+ 0︸ ︷︷ ︸
6

= −48.

Fuller (cf. [F3]) also derives the following word in M3.

(η8, η9, η4, η3, η2, η1, η5, η4, η3, η2, η6, η5, η4, η3, (η1, η2, η3, η4, η5, η6)10).

We computed that

σ((η8, η9, η4, η3, η2, η1, η5, η4, η3, η2, η6, η5, η4, η3, (η1, η2, η3, η4, η5, η6)10))
= −42.

The four manifold with the global monodromy given as above is not very
familiar and it is our only example where we can not use any other method
than ours to calculate the signature. The Lefschetz fibration is not hyper-
elliptic, for example, otherwise the local signature formula [E] would yield
σ = 74(−4/7) which is not an integer! It is not known whether this fibration
is holomorphic or not.

Corollary 6. There exist two genus three Lefschetz fibrations with the same
Euler characteristic but having different signatures.

Proof. Let M1 and M2 be the 4-manifolds with global monodromies

(η1, η2, η3, η4, η5, η6)14
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and

(η8, η9, η4, η3, η2, η1, η5, η4, η3, η2, η6, η5, η4, η3, (η1, η2, η3, η4, η5, η6)10)

respectively.
Let #nM denote the n-fold fiber sum of M by itself. Then e(#37M1) =

e(#42M2) but σ(#37M1) = −1776 and σ(#42M2) = −1764. �

Remark. Following the language in [Sm], we say that two Lefschetz fibra-
tions are combinatorially equivalent if they have the same fiber genus and
the same number of each conjugacy type of singular fibers. The corollary
above shows that signature is not an invariant of the combinatorial equiv-
alence class of a Lefschetz fibration. Moreover there is not necessarily a
hyperelliptic Lefschetz fibration in each combinatorial equivalence class.

4. Some applications.

First we give an immediate application of Theorems 3 and 4.

Corollary 7. Let M be a 4-manifold which admits a genus g Lefschetz fi-
bration over D2 or S2. Let n and s be the numbers of nonseparating and
separating vanishing cycles in the global monodromy of this fibration, respec-
tively. Then σ(M) ≤ n− s.

Proof. Suppose that we build up the 4-manifold M from Σg × D2 by at-
taching 2-handles. By Theorem 4, every time we attach a 2-handle along a
separating curve the signature of the resulting 4-manifold will be one less
than the signature of the 4-manifold before we attach the 2-handle. Thus
Theorem 3 implies the upper bound n− s on the signature. �

Remark. Define c21(M) = 3σ(M)+2χ(M) and χh(M) = 1
4(σ(M)+χ(M))

for a closed symplectic 4-manifold M . Note that σ(M) ≤ n + s = χ(M) +
4g − 4 trivially implies c21 ≤ 10χh + 2g − 2 for a genus g Lefschetz fibration
over S2.

Corollary 8. There is no hyperelliptic Lefschetz fibration (of any genus)
over S2 with only reducible singular fibers. (Here reducible means that the
local monodromy corresponding to the singular fiber is a Dehn twist about a
separating curve.)

Remark. In particular, this proves that a product of positive Dehn twists
about separating curves can not be equal to the identity in M2, which is a
result of Mess [Me].

Proof. Let M be a 4-manifold which admits a Lefschetz fibration of genus
g over S2 with global monodromy (D(γ1), . . . , D(γs)) , where s =

∑[ g
2
]

h=1 sh

and γi is separating for each i, 1 ≤ i ≤ s. Then, by the local signature
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formula,

σ(M) =

{ ∑[ g
2
]

h=1

(
4h(g−h)

2g+1 − 1
)
sh ≥ 0 if g ≥ 3

−s/5 if g = 2.

But on the other hand σ(M) = −s according to Theorem 4. Hence
s = 0. (This is trivially true for g = 1 since any vanishing cycle on a
torus is nonseparating.) This proves the desired result since we assume
(by definition) that there exists at least one singular fiber in each Lefschetz
fibration. �

Next we combine our results with the local signature formula for the
hyperelliptic Lefschetz fibrations to give an upper bound for the signatures
of these fibrations.

Corollary 9. Let M be a 4-manifold which admits a hyperelliptic Lefschetz
fibration of genus g over S2. Let n and s be the numbers of nonseparating
and separating vanishing cycles in the global monodromy of this fibration,
respectively. Then σ(M) ≤ n− s− 4.

Remark. This inequality is not necessarily sharp.

Proof. We first note that we can improve the inequality

σ(M) ≤ n− s

given in Corollary 7 to
σ(M) ≤ n− s− 1

for hyperelliptic Lefschetz fibrations as follows:
Suppose that we attach the first 2-handle along a nonseparating curve.

We can always assume this because n ≥ 1 (since we proved in Corollary 8
that n 6= 0) and we can cyclically permute the vanishing cycles in the global
monodromy of a Lefschetz fibration. Moreover we can easily show that if
we start attaching handles along a nonseparating curve then the signature
of the resulting 4-manifold (after attaching the very first handle) will be the
same as σ(Σ2 ×D2), which is zero.

Next note that σ(M) ≤ n− s− 1 is equivalent to

4
[ g
2
]∑

h=1

h(g − h)sh ≤ (3g + 2)n− (2g + 1)

using the local signature formula.
Assume that g is odd. Endo [E] proves that

n+ 4
[ g
2
]∑

h=1

h(2h+ 1)sh ≡ 0 (mod4(2g + 1)).
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Hence

n = 4c(2g + 1)− 4
[ g
2
]∑

h=1

h(2h+ 1)sh

for some integer c. Substituting into the inequality above (and dividing by
4) we get

[ g
2
]∑

h=1

h(g − h)sh ≤ (3g + 2)

c(2g + 1)−
[ g
2
]∑

h=1

h(2h+ 1)sh

− 1
4
(2g + 1).

Hence
[ g
2
]∑

h=1

h(g − h)sh ≤ (3g + 2)

c(2g + 1)−
[ g
2
]∑

h=1

h(2h+ 1)sh

− 1
4
(2g + 2)

since 2g + 1 ≡ 3 (mod4).
But this inequality, in turn, implies that

4
[ g
2
]∑

h=1

h(g − h)sh ≤ (3g + 2)n− (2g + 2)

which is equivalent to

σ(M) ≤ n− s− 1− 1
2g + 1

.

Since σ(M) is an integer,

σ(M) ≤ n− s− 2.

Iterating the same argument, we obtain

σ(M) ≤ n− s− 4.

(We use 2(2g + 1) ≡ 2 (mod4) and 3(2g + 1) ≡ 1 (mod4).)
Similarly, if g is even, then one can use the corresponding result by Endo:

n+ 4
[ g
2
]∑

h=1

h(2h+ 1)sh ≡ 0 (mod2(2g + 1)).

(Note that 2(3g + 2)(2g + 1) ≡ 0 (mod4), if g is even.) �

The following is a result concerning the geography of the hyperelliptic
Lefschetz fibrations, which follows easily from Corollary 9.

Corollary 10. (1) The total space of a genus two Lefschetz fibration over
S2 satisfies

c21 ≤ 6χh − 3.
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(2) The number of singular fibers in a genus two Lefschetz fibration over
S2 can not be equal to 5, 6, 11 or 12 and in particular, the minimal
number of singular fibers in a genus two Lefschetz fibration over S2 is
7 or 8.

(3) The total space of a genus three hyperelliptic Lefschetz fibration over
S2 satisfies

c21 ≤ 7.25χh − 2.75.

Remarks. (1) In particular, the signature of a smooth 4-manifold which
admits a hyperelliptic Lefschetz fibration of genus g ≤ 3 over S2 is negative.

(2) Similar inequalities can be obtained for genus g ≥ 4 hyperelliptic
Lefschetz fibrations over S2.

5. Final remark.

Given a product of positive Dehn twists in the mapping class group of a
genus g surface, we can construct a symplectic 4-manifold which admits a
Lefschetz fibration over D2, as we have studied in this paper. A natural
generalization is to allow negative Dehn twists also. These fibrations are
called achiral Lefschetz fibrations. Our technique clearly extends to compute
the signatures of these fibrations.
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EFFECTIVE DIVISOR CLASSES ON A RULED SURFACE

Jeff Rosoff

The Neron-Severi group of divisor classes modulo algebraic
equivalence on a smooth algebraic surface is often not diffi-
cult to calculate, and has classically been studied as one of
the fundamental invariants of the surface. A more difficult
problem is the determination of those divisor classes which
can be represented by effective divisors; these divisor classes
form a monoid contained in the Neron-Severi group. Despite
the finite generation of the whole Neron-Severi group, the
monoid of effective divisor classes may or may not be finitely
generated, and the methods used to explicitly calculate this
monoid seem to vary widely as one proceeds from one type of
surface to another in the standard classification scheme (see
Rosoff, 1980, 1981).

In this paper we shall use concrete vector bundle techniques
to describe the monoid of effective divisor classes modulo al-
gebraic equivalence on a complex ruled surface over a given
base curve. We will find that, over a base curve of genus 0,
the monoid of effective divisor classes is very simple, having
two generators (which is perhaps to be expected), while for
a ruled surface over a curve of genus 1, the monoid is more
complicated, having either two or three generators. Over a
base curve of genus 2 or greater, we will give necessary and
sufficient conditions for a ruled surface to have its monoid
of effective divisor classes finitely generated; these conditions
point to the existence of many ruled surfaces over curves of
higher genus for which finite generation fails.

0. Preliminaries on ruled surfaces.

Let C be a nonsingular complex curve, and let X be a ruled surface over C.
Then ([H1, V.2.2, p. 370]) X can be written as P(E), the projectivization
of a rank 2 vector bundle E on C. Moreover, for rank 2 bundles E and
E′, P(E) = P(E′) if and only if E and E′ differ by a twisting with a line
bundle.

LetX be a ruled surface over the base curve C, sayX = P(E′). Replacing
E′ by E = E′ ⊗ L for some line bundle L chosen appropriately, we may
assume that E is normalized so that:

119
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(a) E admits a nontrivial global section, and,
(b) E ⊗ L admits no nontrivial section for any line bundle L of negative

degree.
E is determined up to twisting with line bundles of degree 0. The choice
of a (normalized) bundle E to represent X as the projectivization of a rank
two bundle determines the linear equivalence class of a “standard” section
C0 of X over C, with OX(C0) = OP(E)(1).

If E is a rank 2 bundle on C, then deg Λ2(E) = deg Λ2(E⊗L) for any line
bundle L of degree 0, and hence is a well-defined invariant of X = P(E) for
E normalized as above. Finally, the Neron-Severi group of X is a free group
of rank 2, generated by the algebraic equivalence classes of the section C0

and of any fiber F of the natural map π : X → C. Denoting by [D] the
algebraic equivalence class of any divisor D, the intersection pairing on X
is given by:

[C0]2 = deg Λ2(E), [C0] • [F ] = 1, [F ]2 = 0.

1. Ruled surfaces with [C0]2 ≤ 0.

Theorem 1. Let C be a smooth curve and let X = P(E) be a ruled surface
over C such that, with E normalized as above, [C0]2 = deg Λ2(E) ≤ 0. Then
the monoid of effective divisor classes on X is {a[C0] + b[F ] | a, b ≥ 0}.
Remark. Since any vector bundle over P1 splits into a direct sum of line
bundles, this theorem applies to any ruled surface over a curve of genus 0;
a normalized rank 2 bundle will be of the form O ⊕ L for some line bundle
L of degree ≤ 0. These are the “Hirzebruch surfaces”.

Proof. Clearly any divisor class in the above set represents an effective di-
visor. Now, let D be an effective divisor on X, so that D can be written
as D = nC0 +

∑
Di with n ≥ 0 and Di an irreducible curve other than

C0. Letting [Di] = ai[C0] + bi[F ], we have that [Di] • [F ] = ai ≥ 0 and
[Di] • [C0] = bi + ai[C0]2 ≥ 0, so bi ≥ 0. The result follows by additivity.

2. Ruled surfaces over curves of genus 1.

Theorem 2. Let X = P(E) be a ruled surface over an elliptic curve C,
with E normalized. Then the monoid of effective divisor classes on X is
(finitely) generated by:

(a) [C0] and [F ] if deg Λ2(E) ≤ 0, and
(b) [C0], [F ] and the anti-cannonical class 2[C0]− [F ] if deg Λ2(E) > 0.

Proof. We may assume that deg Λ2(E) ≥ 1, and by Nagata [N, pp. 191-96]
we may assume that this degree is 1.

Since E has a nontrivial section and since E ⊗ O(−p) has none for any
p ∈ C, we have an exact sequence of bundles 0 → OC → E → O(p) → 0,
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with E a nontrivial extension of O(p) by OC for some fixed p ∈ C. The
nontriviality of the extension corresponds to E being normalized.

We will first show that the divisor class 2[C0]− [F ] contains an effective
divisor, i.e., that the bundle OX(2) ⊗ π∗OC(−q) has nontrivial section for
some q ∈ C. By [H1, 7.11, p. 162] π∗OX(2) = S2(E), the second symmetric
power of E, so by the projection formula it suffices to show that S2(E) ⊗
OC(−q) has a section for some q ∈ C.

The structure of the space of indecomposable bundles of a given rank
and degree on an elliptic curve has been extensively studied by Atiyah [A,
pp. 414-52], and we will appeal to his results to show that S2(E) =

∑
O(pi)

where the {pi} are the three nontrivial half-periods of C under the transla-
tion sending p to the origin. In Atiyah’s notation E = eA(2, 1) where A is
the bundle O(p), and by [A, Th. 7, p. 434], Ě = eA(2,−1) = E ⊗ O(−p)
[A, Th. 6, p. 433].

Thus, E ⊗E ⊗O(−p) = E ⊗ Ě = End (E) = OC ⊕
∑
O(pi − p) with the

{pi} as above using [A, Lemma 22, p. 439], and so E⊗E = O(p)⊕
∑
O(pi).

On the other hand, over C, E⊗E = S2(E)⊕Λ2(E) = S2(E)⊕O(p). Thus
S2(E) =

∑
O(pi) and S2(E)⊗O(−q) has a section for q ∈ {pi}.

Thus the monoid generated by the classes [C0], [F ] and 2[C0]− [F ] is con-
tained in the monoid of effective divisor classes on X. The reverse inclusion
follows directly from [H1, V.2.21, p. 382].

3. Ruled surfaces over curves of higher genus.

For the reminder of this article, we will assume that our ruled surface X is
the projectivization of a normalized rank 2 bundle E on the curve C with
g(C) ≥ 1 and, in view of Theorem 1, that deg Λ2(E) ≥ 1.

By [H1, V.2.21, p. 382], if Y is an irreducible curve on X with [Y ] =
a[C0] + b[F ], then Hurwitz’s theorem applied to the desingularization of
Y shows that either a, b ≥ 0, or a ≥ 2 and b ≥ −(a/2) deg Λ2(E). It
follows from linearity that these are necessary conditions for an algebraic
equivalence class to contain an effective divisor.

On the other hand, sufficient conditions are provided by the Riemann-
Roch theorem: By Serre duality dimH2(X,OX(aC0 + bF )) = 0 for a ≥ 0,
and Riemann-Roch on the surface X applied to the divisor class [aC0 + bF ]
shows that this class contains an effective divisor if a ≥ 0 and b ≥ g −
(a/2) deg Λ2(E).

Theorem 3. Let X = P(E) be a ruled surface over a curve C with g(C) ≥
1, and deg Λ2(E) ≥ 1 with E normalized. Then the monoid of effective
divisor classes on X is finitely generated if and only if there is effective
divisor class a[C0] + b[F ] with a ≥ 2 and b = −(a/2) deg Λ2(E).
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Proof. Suppose that there is an effective divisor class as above, and let
A ≥ 2 be minimal such that the class A[C0] − (A/2) deg Λ2(E)[F ] con-
tains an effective divisor, say D0. Let S = {a[C0] + b[F ] | 1 ≤ a < A and
−(a/2) deg Λ2(E) ≤ b < 0}; S contains a finite number of (not necessarily
effective) divisor classes, say [E1] · · · [Ek].

Let Š = {[Ei] ∈ S | [Ei] + n[D0] contains an effective divisor for some
n ≥ 0}, and for each [Ei] ∈ Š let Di = Ei +niD0 with ni ≥ 0 minimal in the
above regard. Then the monoid of effective divisor classes on X is (finitely)
generated by the classes [C0], [F ] and the [Di], i ≥ 0.

Conversely, suppose that there is no effective divisor class on X meeting
the condition of the theorem. Then, for any finite collection of (nontrivial)
effective divisors D1, . . . , Dk we have [Di] = ai[C0] + bi[F ] with ai ≥ 0 and
bi > −(ai/2) deg Λ2(E), i.e., for some εi > 0 bi ≥ −(ai/2) deg Λ2(E) + aiεi.
For any nonnegative integers c1, . . . , ck (not all 0) the linear combination
A[C0] + B[F ] = c1[D1] + · · · + ck[Dk] has B ≥ −(A/2) deg Λ2(E) + Aε for
ε = min{εi}, ε > 0.

Finally, select an integer a sufficiently large so that g(C) < εa; making a
even if necessary, let b ∈ Z be b = g(C) − (a/2) deg Λ2(E). By our above
observation on Riemann-Roch, the divisor class a[C0] + b[F ] is an effective
class, but cannot be expressed as a nonnegative linear combination of the
classes {[Di]}. Thus, if there is no effective class as in the theorem, the
monoid of effective divisor classes on X is not finitely generated.

A geometric criterion for finite generation of the monoid of effective classes
is given by:

Corollary. The monoid of effective divisor classes on X is finitely generated
if and only if there is a curve Y on X such that the projection π : X → C
exhibits Y as an unramified n-fold cover of C for some n ≥ 2.

Proof. Indeed, the proof of [H1, V.2.21, p. 382] shows that an irreducible
curve Y on X that is an unramified n-fold cover of C (for n ≥ 2) must
necessarily have [Y ] = n[C0]− (n/2) deg Λ2(E)[F ], and that any curve in a
divisor class of this form (with n minimal and n ≥ 2) is such a cover.

Remark. For any such curve Y on X as above, we must have dimH0(X,
OX(Y )) = 1. To see this, note that if D ∈ |Y |, then D∩π−1(u) consists of n
distinct points for all u ∈ C. If there are two linearly independent sections
si in H0(X,OX(Y )), then as Y 2 = 0, we have a surjection Ψ : X → P1

given by Ψ(p) = [s1(p), s2(p)]. Since Ψ−1(t) ∈ |Y | for t ∈ P1, Ψ|F gives an
unramified n-fold cover of P1 for a fiber F , which is impossible for n > 1.

Theorem 4. Let X be the ruled surface P(E) over the curve C with g(C)
≥ 1, with E normalized and with deg Λ2(E) > 0. Then finite generation of
the monoid of effective divisor classes on X is equivalent to the existence
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of a sub-line bundle N of Sn(E) with deg(N) = (n/2) deg Λ2(E), for some
n > 1.

Proof. [H2, 10.2, p. 51] shows that a multisection Y of P(E) of degree
n over C corresponds to a sub-line bundle N of Sn(E), and further that
the requirement that [Y ] = n[C0] − (n/2) deg Λ2(E)[F ] forces deg(N) =
(n/2) deg Λ2(E).

Remark. An interesting geometric proof of Theorem 3 can be obtained
by considering the projective n-bundle P(SnĚ) over C, with projection ψ
to C. Giving a multisection Y of P(E) of degree n over C can be viewed
as giving a section σ of P(SnĚ) — this is really the same as giving local
homogeneous equations defining Y on each fiber of π in P(E), with the
fibers of ψ parameterizing homogeneous polynomials of degree n in two
variables. There is a divisor ∆ on P(SnĚ) whose intersection with each
fiber of ψ corresponds to such local equations having zero discriminant;
a linear algebra computation shows that O(∆) = O(2n − 2) ⊗ ψ∗(L) for
some line bundle L on C of degree n(n − 1) deg Λ2(E). The requirement
that Y be an unramified n-fold cover of C is that σ(C) not meet ∆, so
that deg σ∗(∆) = 0, i.e., deg σ∗O(1) = −(n/2) deg Λ2(E) using n ≥ 2. Since
σ∗O(1) is a quotient of Sn(Ě) [H1, 7.12, p. 162], we may take for the bundle
N above the dual σ∗O(−1).

Remark. For the ruled surface P(E) over an elliptic curve C with degΛ2(E)
= 1, there are precisely three sub-line bundles of S2(E) of the correct degree:
The O(pi) in the proof of Theorem 2.

Remark. It is known [H2, 10.5, pp. 53-54] that, on a curve C of genus
g(C) ≥ 2, there are bundles of any given degree and rank that are stable
and all of whose symmetric powers are also stable. For such a rank 2 bundle
E, E ⊗ L has the same property for any line bundle L. Thus, even with E
normalized if necessary we will have, for any sub-line bundle N of Sn(E),
deg(N) < (n/2) deg Λ2(E). For such a bundle E whose normalizations have
positive degree, the monoid of effective divisor classes on the ruled surface
P(E) requires an infinite number of generators.
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ANISOTROPIC GROUPS OF TYPE An AND THE
COMMUTING GRAPH OF FINITE SIMPLE GROUPS

Yoav Segev and Gary M. Seitz

In this paper we make a contribution to the Margulis-
Platonov conjecture, which describes the normal subgroup
structure of algebraic groups over number fields. We estab-
lish the conjecture for inner forms of anisotropic groups of
type An. We obtain information on the commuting graph
of nonabelian finite simple groups, and consequently, using
the paper by Segev, 1999, we obtain results on the normal
structure and quotient groups of the multiplicative group of
a division algebra.

0. Introduction.

Let G be a simple, simply connected algebraic group defined over an al-
gebraic number field K. Let T be the (finite) set of all nonarchimedean
places v of K such that G is Kv-anisotropic, and define G(K,T ) to be∏

v∈T G(Kv) with the topology of the direct product if T 6= ∅, and let
G(K,T ) = {e} if T = ∅ (which is always the case if G is not of type An).
Let δ : G(K) → G(K,T ) be the diagonal embedding in the first case, and
the trivial homomorphism in the second case.

Conjecture (Margulis and Platonov). For any noncentral normal subgroup
N ≤ G(K) there exists an open normal subgroup W ≤ G(K,T ) such that
N = δ−1(W ); in particular, if T = ∅, the group G(K) has no proper non-
central normal subgroups (i.e., it is projectively simple).

The conjecture has been established for almost all isotropic groups and
for most anisotropic groups except for those of type An. The anisotropic
groups of type An are thus the main unresolved case of the conjecture.

Inner forms of anisotropic groups of type An have the form SL1,D, the
reduced norm 1 group of a finite dimensional division algebra D over K
(see 2.17 and 2.12 of [10]). In this case Potapchik and Rapinchuk showed
(Theorem 2.1 of [11]) that if SL1,D fails to satisfy the Conjecture, then there
exists a proper normal subgroup N of D∗ = D − {0} such that D∗/N is a
nonabelian finite simple group.
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In recent work the first named author ([14]) established a result, relating
finite simple images of the multiplicative group of a finite dimensional di-
vision algebra over an arbitrary field to information about the commuting
graph of finite simple groups. To state this result we need the following
definitions.

Let H be a finite group. The commuting graph of H denoted ∆(H) is
the graph whose vertex set is H −Z(H) and whose edges are pairs {h, g} ⊆
H − Z(H), such that h 6= g and [h, g] ∈ Z(H). We denote the diameter of
∆(H) by diam (∆(H)).

Let d : ∆(H)×∆(H) → Z≥0 be the distance function on ∆(H). We say
that ∆(H) is balanced if there exists x, y ∈ ∆(H) such that the distances
d(x, y), d(x, xy), d(y, xy), d(x, x−1y), d(y, x−1y) are all larger than 3.

Theorem (Segev [14]). Let D be a finite dimensional division algebra over
an arbitrary field and L a nonabelian finite simple group. If diam (∆(L)) >
4, or ∆(L) is balanced, then L cannot be isomorphic to a quotient of D∗.

Consequently, the Margulis-Platonov Conjecture for inner forms of aniso-
tropic groups of type An is resolved by the following theorem, which is the
main result of this paper.

Theorem 1. Let L be a nonabelian finite simple group. Then either
diam (∆(L)) > 4 or ∆(L) is balanced.

The following results are then immediate corollaries:

Theorem 2. The Margulis-Platonov Conjecture holds for G = SL1,D.

Theorem 3. If D is a finite dimensional division algebra over an arbitrary
field, then no quotient of D∗ is a nonabelian finite simple group.

In Section 12 we show that the following theorem is a consequence of
Theorem 2.

Theorem 4. Let D be a finite dimensional division algebra over a number
field. Let N be a noncentral normal subgroup of D∗. Then D∗/N is a
solvable group.

To prove Theorem 1 we need to establish results on the commuting graph
of a finite simple group. These results may have independent interest, so we
state them as separate theorems corresponding to the various types of finite
simple groups.

The main obstacle in establishing Theorem 1 occurs for classical groups.
Here we prove the following theorem.

Theorem 5. Let L be a finite simple group of classical type. Then ∆(L) is
balanced. The required elements can be taken as opposite regular unipotent
elements.
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Corollary. If L is a finite simple classical group, then diam (∆(L)) ≥ 4.

We mention that except for some small cases the elements x, y used to
establish balance in Theorem 5 satisfy d(x, y) = 4 (see Section 12).

The following result covers exceptional groups of Lie type and Sporadic
groups.

Theorem 6. Let L 6' E7(q) be either an exceptional group of Lie type or
a Sporadic group. Then ∆(L) is disconnected. If L = E7(q), then ∆(L) is
balanced, where the elements x, y can be chosen to be semisimple elements.

For the alternating groups we have:

Theorem 7. If L is a simple alternating group, then diam (∆(L)) > 4.

Finally, in Section 12 we prove the following theorem:

Theorem 8. Let G(q) be a simple classical group with q > 5. Then ∆(G(q))
is disconnected if and only if one of the following holds

(i) G(q) ' Lε
n(q) and n is a prime.

(ii) G(q) ' Lε
n(q), n− 1 is a prime and q − ε | n.

(iii) G(q) ' S2n(q), O−2n(q), or O2n+1(q) and n = 2c, for some c.
Moreover, if ∆(G(q)) is connected then diam (∆(G(q))) ≤ 10.

We draw the attention of the reader to the remark at the end of Section 12,
for additional information about the connectivity of the commuting graph
of finite simple groups.

In Chapter 1, which consists of Sections 1-7 we prove Theorem 5. In
Chapter 2, which consists of Sections 8-9 we prove Theorem 6, when L is
an exceptional group of Lie-type. Section 10 is devoted to the Alternating
groups and the short Section 11 is devoted to the Sporadic groups. Finally
in Section 12 we derive Theorem 4 from Theorem 2 and we include some
results and remarks about the commuting graph of the classical groups.

We would like to thank Michael Aschbacher for various discussions, in
particular, for contributions in Sections 8 and 9.

Chapter 1. The Classical Groups.

1. Notation and preliminaries.

The notation and definitions that will be introduced in this section will
prevail throughout Chapter 1. F denotes a finite field and V denotes a vector
space of dimension n over F. We fix an ordered basis

B = {v1, . . . , vn}
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of V . For a subset S ⊆ V , 〈S〉 denotes the subspace generated by S. We
set:

For 1 ≤ i ≤ n, Vi = 〈v1, v2, . . . , vi〉.

We write M(V ) for both Hom F(V, V ), the set of all linear operators on
V , and for the set of n × n matrices over F. When we wish to emphasize
that we are dealing with matrices we’ll write Mn(F) for the set of n × n
matrices over F. Also GL(V ) ⊆ M(V ), denotes both the set of invertible
linear operators on V and the set of invertible n × n matrices over F. To
emphasize matrices we write GLn(F), for the set of n×n invertible matrices
over F. Finally, SL(V ) ⊆ M(V ) are the elements of determinant 1; again,
we write SLn(F) for the set of n × n matrices of determinant 1. We use
the same notation for the linear operator and its matrix, with respect to the
basis B. All our matrices are also linear operators whose matrix is the given
matrix always with respect to our fixed basis B, unless explicitly mentioned
otherwise. Thus if a ∈ M(V ), then a is an n × n matrix over F whose
(i, j)-th entry we always denote by aij . Also a : V → V is a linear operator
such that via =

∑n
j=1 aijvj .

Given a bilinear form f (resp. a quadratic form Q) on V , we denote
by O(V, f) (resp. O(V,Q)) the elements in GL(V ) preserving f (resp. Q).
SO(V, f) (resp. SO(V,Q)) denotes the elements in O(V, f) (resp. O(V,Q))
of determinant 1.

We fix the letter R to denote either F, or the ring of polynomials over
F,F[λ]. We’ll denote by Mn(R), the set of n× n matrices over R.

Let H be a finite group. The commuting graph of H denoted ∆(H) is
the graph whose vertex set is H −Z(H) and whose edges are pairs {h, g} ⊆
H − Z(H), such that h 6= g and [h, g] ∈ Z(H). (Note that our definition
of the commuting graph differs a bit from what the reader may be used to,
i.e., the vertex set of ∆(H) is H −Z(H) and not H −{1} and two elements
form an edge when they commute modulo the center of H and not only when
they commute.) We denote by d∆(H) the distance function of ∆(H). We
fix the letter ∆ to denote ∆(GL(V )) and the letter d to denote the distance
function of ∆ (see 1.3 for further notation and definitions for the commuting
graph).

Our goal in Chapter 1 is to prove Theorem 5 of the Introduction, which
shows that ∆(L) is balanced, for all simple classical groups L. In principle
we present a uniform approach to this, by showing that in all cases we can
take the elements x, y to be opposite regular unipotent elements. However,
the details are fairly complicated. In this section and the next we lay the
ground work for the proof.

1.1. Notation and definitions for matrices over R. Let m ≥ 1 be an
integer.
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(1) First we mention that given α ∈ F, whenever we write α inside a
matrix, this means α = −α.

(2) Im denotes the identity m×m matrix.
(3) For integers i, j ≥ 1, 0i,j denotes the zero i× j matrix. We denote by

0i the zero i× i matrix.
(4) Given g ∈Mm(F), we denote the transpose of g by gt.
(5) Given A ∈ Mm(R), Mi,j(A) ∈ Mm−1(R), denotes the (i, j)-minor of

A, i.e., the matrix A without the i-th row and j-th column. Also
M(i1,i2),(j1,j2)(A) ∈Mm−2(R) is the matrix without the i1, i2 rows and
without the j1, j2 columns.

(6) Suppose m = k1 + k2 + · · ·+ kt and that gi ∈ Mki
(R), 1 ≤ i ≤ t. We

write g = diag (g1, g2, . . . , gt) for the m×m matrix with g1, g2, . . . , gt

on the main diagonal (in that order) and zero elsewhere. Of course if
gi ∈ R, for all i (ki = 1, for all i), then g is a diagonal matrix in the
usual sense.

(7) Suppose m ≥ 2 and let 1 ≤ i ≤ m − 1 and α ∈ F. We denote by
um

i (α) ∈ Mm(F), the matrix which has 1 on the main diagonal, α in
the (i+ 1, i) entry and zero elsewhere.

(8) Suppose m ≥ 2 and let β1, β2, . . . , βm−1 ∈ F∗. We denote

am(β1, β2, . . . , βm−1) = um
1 (βm−1)um

2 (βm−2) · · ·um
m−2(β2)um

m−1(β1)

bm(β1, β2, . . . , βm−1) = um
1 (−β1)um

2 (−β2) · · ·um
m−2(−βm−2)um

m−1(−βm−1).

Of course

am(β1, . . . , βm−1) =



1 0 · · · · · 0
βm−1 1 0 · · · · 0

0 βm−2 1 0 · · · 0
0 0 βm−3 1 0 · · ·
· · · · · · · ·
· · · · · · · ·
0 · · · 0 β2 1 0
0 · · · · 0 β1 1


,

bm(β1, . . . , βm−1) =



1 0 · · · · · 0
β1 1 0 · · · · 0
0 β2 1 0 · · · 0
0 0 β3 1 0 · · ·
· · · · · · · ·
· · · · · · · ·
0 · · · 0 βm−2 1 0
0 · · · · 0 βm−1 1


.

(9) We denote a1 = b1 = [1] and for m ≥ 2,

am = am(1, 1, . . . , 1) and bm = bm(1, 1, . . . , 1).
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Hence

am =



1 0 · · · · · 0
1 1 0 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 1 0
0 · · · 0 1 1


bm =



1 0 · · · · · 0
1 1 0 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 1 0
0 · · · 0 1 1


.

(10) Suppose m ≥ 2 and 1 ≤ r ≤ m − 1. We denote by Tm(r) the set of
m×m matrices t ∈Mm(F) such that:

(i) ti,j = 0, for all 1 ≤ i ≤ r and 1 ≤ j ≤ m.
(ii) tr+i,i 6= 0 and tr+i,` = 0, for all 1 ≤ i ≤ m− r and all i < ` ≤ m.

Thus t has the form

t =



0 0 0 · · · · · · 0
· · · · · · · · · ·
· · · · · · · · · ·
0 · · · · · · · · 0

tr+1,1 0 · · · · · · · 0
∗ tr+2,2 0 · · · · · · 0
∗ ∗ tr+3,3 0 · · · · · 0
· · · · · · · · · ·
· · · · · · · · · ·
∗ ∗ ∗ ∗ ∗ tm,m−r 0 · · 0


where ∗ represents any element of F.

(11) Throughout Chapter 1, Jm denotes the following m×m matrix. If we
set, J = Jm, then Ji,m+1−i = (−1)i+1, for all 1 ≤ i ≤ m, and Ji,j = 0,
otherwise. Thus

Jm =



0 0 · · · · 0 1
0 0 · · · 0 1 0
0 0 · · 0 1 0 0
0 0 · 0 1 0 0 0
· · · · · · · ·
· · · · · · · ·
0 1m 0 · · · · ·

1m+1 0 · · · · · 0


.

Note that J−1
m = J t

m, J
2
m = (−1)m+1Im and if m = 2` is even, then

J2` =
[

0` J`

(−1)`J` 0`

]
.
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1.2. Notation for polynomials, characteristic polynomials and
characteristic vectors. Let m ≥ 1 be an integer.

(1) Let g ∈Mm(F). We denote by Fg[λ], the characteristic polynomial of
g. We often write Fg for Fg[λ].

(2) If F is the characteristic polynomial of g ∈ GLm(F), we denote by F
the characteristic polynomial of g−1.

(3) Given a polynomial F [λ], we denote by α(F, `), the coefficient of λ` in
F .

(4) Throughout Chapter 1 we denote by Fm[λ] the characteristic polyno-
mial of at

mam (am as in 1.1.9). We mention that several properties of
Fm[λ] are given in 2.6.

(5) Throughout Chapter 1, Gm[λ] denotes the characteristic polynomial
of the following m×m matrix

2 1 0 · · · · 0
1 2 1 0 · · · 0
0 1 2 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 2 1 0
0 · · · 0 1 2 1
0 · · · · 0 1 2


.

(6) We denote Qm[λ] = λm − λm−1 + λm−2 + · · ·+ (−1)m−1λ+ (−1)m.
(7) Let g ∈ GL(V ) and suppose that v ∈ V is a characteristic vector for

g. We denote by λg(v) ∈ F the scalar such that vg = λg(v)v.

1.3. Notation for the commuting graph. Let H be a group and let
Λ = ∆(H).

(1) Given elementsX,Y ∈ Λ, we writeBΛ(X,Y ) if the distances dΛ(X,Y ),
dΛ(X,XY ) and dΛ(X,X−1Y ) are all > 3. We write B(X,Y ) =
B∆(X,Y ) (recall that ∆ = ∆(GL(V ))).

(2) We say that Λ is balanced if there are elements X,Y ∈ Λ such that
BΛ(X,Y ) and BΛ(Y,X).

(3) We use the usual notation for graphs, thus, for example, ∆≤i(X) means
the set of all elements at distance at most i from X, in ∆.

1.4. Further notation and definitions. Let g ∈ GL(V ), 0 6= v ∈ V and
H ≤ GL(V ), a subgroup.

(1) We denote by O(v, g) the orbit of v under 〈g〉.
(2) Given an ordered basis A = {w1, . . . , wn} of V we denote by [g]A the

matrix of g with respect to the basis A. Thus, the i-th row of [g]A are
the coordinates of wig with respect to A.

(3) We say that H is closed under transpose if h ∈ H implies ht ∈ H.
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(4) We fix the letter τ to denote the graph automorphism of SLn(F) such
that τ : un

i (α) → un
n−i(α) and τ : (un

i (α))t → (un
n−i(α))t, for all α ∈ F

and all 1 ≤ i ≤ n− 1. Note that τ commutes with the transpose map.
(5) If |F| = q2, we let σq : GLn(F) → GLn(F), be the Frobenius automor-

phism taking each entry of g ∈ GLn(F) to its q power.

By a Classical Group we mean L ≤ GL(V ), where L is one of the groups
SLn(q), Spn(q), Ωε

n(q), or SUn(q), where for orthogonal groups we use ε ∈
{+,−} only in even dimension and for unitary groups we work over the
field of order q2. In all cases we take L to be quasisimple, avoiding the
few cases when this does not hold. By a Simple Classical Group we mean
L/Z(L), with L a classical group. In the respective cases we denote the
simple classical groups by Ln(q), Sn(q), On(q), Oε

n(q) and Un(q).

1.5. (1) For even q and odd n, On(q) ' Sn−1(q).
(2) For all q, O3(q) ' L2(q), O+

4 (q) ' L2(q) × L2(q), O−4 (q) ' L2(q2),
O5(q) ' S4(q), O+

6 (q) ' L4(q) and O−6 (q) ' U4(q).

The purpose of Chapter 1 is to prove:

Theorem 1.6. Let L be a finite simple classical group. Then ∆(L) is bal-
anced.

We mention that in Remark 1.18 ahead we indicate our strategy for prov-
ing Theorem 1.6.

1.7. Let H be a group. Suppose that Z(H/Z(H)) = 1 and that ∆(H) is
balanced. Then ∆(H/Z(H)) is balanced.

Proof. This is obvious since if X,Y ∈ ∆(H) satisfy B(X,Y ) and B(Y,X),
then XZ(H), Y Z(H) satisfy the same condition in ∆(H/Z(H)).

1.8. Let L ≤ SL(V ) be a classical group. Set Λ = ∆(L) and suppose that L
is closed under transpose. Then:

(1) The maps g → g−1, g → gt and conjugation are isomorphisms of Λ.
(2) Let g, h ∈ Λ and let ε ∈ {1,−1}, then any one of the following imply

dΛ(g, gεh) > 3:
(i) dΛ(g, hgε) > 3;
(ii) dΛ(g, h−1g−ε) > 3;
(iii) dΛ(g, g−εh−1) > 3.

Proof. (1) is easy. (2) follows from (1) noting that (gεh)gε
= hgε, (g−εh−1)g−ε

= h−1g−ε and that the distance between g and t is the same as that from g
to t−1.

1.9. Let L ≤ SL(V ) be a classical group. Set Λ = ∆(L) and suppose that L
is closed under transpose. Let X,Y ∈ L. Then:
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(1) If B(X,Y ), then B(Xt, Y t).
In particular:

(2) If B(X,Xt), then B(Xt, X).

Proof. Suppose that B(X,Y ) holds. By 1.8.1, dΛ(Xt, Y t) > 3. Also since
dΛ(X,XY ) > 3, dΛ(Xt, (XY )t) > 3. Hence dΛ(Xt, Y tXt) > 3. By 1.8.2,
dΛ(Xt, XtY t) > 3. Finally since dΛ(X,X−1Y ) > 3, dΛ(Xt, (X−1Y )t) > 3.
Thus dΛ(Xt, Y t(Xt)−1) > 3 and then, dΛ(Xt, (Xt)−1Y t) > 3.

Corollary 1.10. Let L ≤ SL(V ) be a classical group. Set Λ = ∆(L) and
suppose that L is closed under transpose. Suppose one of the following holds:

(i) There exists X ∈ L such that BΛ(X,Xt).
(ii) There exists X,Y ∈ L such that BΛ(X,Y t) and BΛ(Y,Xt).
Then ∆(L) is balanced.

Proof. If (i) holds, then it is immediate from 1.9.2, and definition, that ∆(L)
is balanced. If (ii) holds, then by 1.9.1, also BΛ(Y t, X), so by definition ∆(L)
is balanced.

1.11. Suppose n = 2k + ε ≥ 2, with ε ∈ {0, 1}. Let β1, β2, . . . , βk−1 ∈ F∗.
Set a = ak(β1, β2, . . . , βk−1) and b = bk(β1, β2, . . . , βk−1). Let τ : SLn(F) →
SLn(F) be the automorphism defined in 1.4.4. If ε = 0, then diag (a, b−1) ∈
Fix (τ) and if ε = 1, then diag (a, 1, b−1) ∈ Fix (τ).

Proof. Just observe that if ε = 0, then

diag (a, b−1)

= un
1 (βk−1)un

n−1(βk−1)un
2 (βk−2)un

n−2(βk−2) · · ·un
k−1(β1)un

k+1(β1)

and if ε = 1, then

diag (a, 1, b−1)

= un
1 (βk−1)un

n−1(βk−1)un
2 (βk−2)un

n−2(βk−2) · · ·un
k−1(β1)un

k+2(β1).

1.12. Let τ, σq : SL(V ) → SL(V ) be the automorphisms defined in 1.4.4
and 1.4.5. Set J = Jn (see 1.1.11). Then:

(1) gτ = J(gt)−1J−1 = J(gt)−1J t, for all g ∈ SL(V ).
(2) τ and σq commute with the transpose map.
(3) For an automorphism φ : SL(V ) → SL(V ), let Fix (φ) = {h ∈ SL(V ) :

hφ = h}. Then if |F| = q2, Fix (τσq) ' SUn(q); if n is even, then
Fix (τ) ' Spn(q) and if n is odd and q is odd, Fix (τ) ' SOn(q).

(4) In the notation of (3), Fix (τ) and Fix (τσq) are closed under transpose.
(5) Suppose n = 2k is even, x, y ∈ SLk(F) are such that diag (x, y−1) ∈

Fix (τ). Then y = Jkx
tJ−1

k = Jkx
tJ t

k.

Proof. First recall that J−1 = J t. Let τ ′ : SL(V ) → SL(V ), be the auto-
morphism g → J(gt)−1J−1. It is easy to check that un

i (α)τ ′ = un
i (α)τ , and

(un
i (α))tτ ′ = (un

i (α))tτ , for all 1 ≤ i ≤ n− 1, and all α ∈ F. Thus τ ′ = τ .
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Evidently τ and σq commute with the transpose map. Next note that
g ∈ Fix (τ) iff gJgt = J ; thus g ∈ SO(V, f), where f is the bilinear form
given by f(vi, vj) = Ji,j . Hence Fix (τ) is as claimed in (3). Now if |F| = q2,
then g ∈ Fix (τσq) iff gJ(gσq)t = J , so as above, g ∈ SO(V, f), for a suitable
unitary form f .

To prove (5), set g = diag (x, y−1). Then by (1), gτ = J(gt)−1J t =
Jdiag ((xt)−1, yt)J t. Now using Definition 1.1.11, we get

gτ =
[

0k Jk

(−1)kJk 0k

]
·
[
(xt)−1 0k

0k yt

]
·
[
0k (−1)kJ t

k
J t

k 0k

]
=
[

0k Jky
t

(−1)kJk(xt)−1 0k

]
·
[

0k −Jk

(−1)k+1Jk 0k

]
=
[
(−1)k+1Jky

tJk 0k

0k (−1)k+1Jk(xt)−1Jk

]
.

Since we are assuming that gτ = g, we see that (−1)k+1Jky
tJk = x, so since

J−1
k = (−1)k+1Jk = J t

k, we see that x = J t
ky

tJk, so y = Jkx
tJ−1

k = Jkx
tJ t

k,
as asserted.

1.13. Let X ∈ GLn(V ) be a lower triangular matrix such that X − In ∈
Tn(1) (see 1.1.10 for Tn(1)). Let h ∈Mn(F) be a matrix commuting with X.
Then:

(1) h is a lower triangular matrix.
(2) There exists 1 ≤ r < n, and β ∈ F such that h− βIn ∈ Tn(r).
(3) If Xi,i−1 = Xj,j−1, for all 2 ≤ i, j ≤ n, then hr+i,i = hr+j,j, for all

1 ≤ i, j ≤ n− r.

Proof. For 2 ≤ i ≤ n, set αi := Xi,i−1. Note that by definition (see 1.1.10),
αi 6= 0, for all 2 ≤ i ≤ n. Note further that h commutes with the matrix
X − In, and clearly for 1 ≤ i ≤ n− 1, ker(X − In)i = Vi. Since h commutes
with (X − In)i, h fixes ker(X − In)i, so (1) holds.

Next set Xh = g and hX = q. It is easy to check that for 2 ≤ i ≤ n,
gi,i−1 = αihi−1,i−1 +hi,i−1 and that qi,i−1 = hi,i−1 +αihi,i. Since g = q, and
αi 6= 0, for all i, we see that h1,1 = h2,2 = · · · = hn,n. Set β = h1,1 and
t = h− βIn. Then t has the form

t =



0 0 0 · · · · · · 0
· · · · · · · · · ·
· · · · · · · · · ·
0 · · · · · · · · 0

tr+1,1 0 · · · · · · · 0
∗ tr+2,2 0 · · · · · · 0
∗ ∗ tr+3,3 0 · · · · · 0
· · · · · · · · · ·
· · · · · · · · · ·
∗ ∗ ∗ ∗ ∗ tn,n−r 0 · · 0


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where 1 ≤ r ≤ n − 1 and for some 1 ≤ j ≤ n − r, tr+j,j 6= 0. Note that
X − In commutes with t.

Set (X−In)t = g and t(X−In) = q. Then it is easy to check that gr+2,1 =
αr+2tr+1,1, gr+3,2 = αr+3tr+2,2, . . . , gn,n−r−1 = αntn−1,n−r−1. Similarly,
qr+2,1 = α2tr+2,2, qr+3,2 = α3tr+3,3, . . . , qn,n−r−1 = αn−rtn,n−r. Since g = q,
αi 6= 0, for all i, and tr+j,j 6= 0, for some 1 ≤ j ≤ n − r, tr+i,i 6= 0, for all
1 ≤ i ≤ n− r and t ∈ Tn(r) as asserted. Further, it is easy to check that (3)
holds.

1.14. Let R,S ∈ GL(V ). Set Z = Z(GL(V )) and W = 〈O(w1, S)〉. Suppose
that:

(a) R−1SR = µS, for some µ ∈ F∗.
(b) v1 is a characteristic vector of R.

Then:
(1) If µ = 1, then W is a set of characteristic vectors of R and for w ∈ W,

λR(w) = λR(v1). In particular, if W = V , then R ∈ Z.
Suppose W = V , and let FS [λ] = λn −

∑n−1
i=0 αiλ

i. Then:
(2) R is conjugate in GL(V ) to some member of diag (1, µ, µ2, . . . , µn−1)Z.
(3) µi = 1, for each 1 ≤ i ≤ n such that αn−i 6= 0.
(4) µn = 1.
(5) If gcd

{
{i : αn−i 6= 0} ∪ {|F∗|}

}
= 1, then R ∈ Z.

Proof. Notice that by hypotheses (a) and (b), O(v1, S) is a set of charac-
teristic vectors of R. Further if µ = 1, clearly (1) holds. For the remaining
parts assume W = V . Then A = {v1, v1S, v1S2, . . . , v1S

n−1} is a basis of
V . The matrix of S with respect to the basis A is

S′ := [S]A =



0 1 0 · · · · 0
0 0 1 0 · · · 0
0 0 0 1 0 · · 0
0 · · 0 1 0 · 0
· · · · · · · ·
· · · · · · · 0
0 · · · · · 0 1
α0 α1 α2 · · · · αn−1


and the matrix ofR with respect to the basisA isR′= diag (R1, R2, . . . , Rn).
Replacing R with a scalar multiple of R we may assume that R1 = 1. Note
that for 1 ≤ i ≤ n − 1, the (i, i + 1)-entry of the matrix (R′)−1S′R′ is
R−1

i Ri+1. Since (R′)−1S′R′ = µS′, we conclude that Ri = µi−1, 1 ≤ i ≤ n
and (2) holds.

Next note that for 1 ≤ i ≤ n, the (n, n − i + 1)-entry of (R′)−1S′R′ is
R−1

n Rn−i+1αn−i = µ1−nµn−iαn−i = µ1−iαn−i. Thus, since (R′)−1S′R′ =
µS′, µ1−iαn−i = µαn−i, so if αn−i 6= 0, µi = 1. This shows (3). Of course
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(4) follows from (3), since α0 = (−1)n+1 det(R) 6= 0. Finally (5) is an
immediate consequence of (2), (3) and (4).

1.15. Suppose S, T ∈ M(V ), R ∈ GL(V ) and j,m, ` ≥ 0 are integers such
that:

(a) 1 ≤ j ≤ n− 1 and for all 1 ≤ i ≤ j and i+ 1 < k ≤ n, Si,i+1 6= 0 and
Si,k = 0.

(b) Vj ⊆ ker(T ).
(c) vj+1 /∈ ker(S`T ).
(d) 1 ≤ m ≤ j + 1, and Vm is R-invariant.
(e) If we set Z = Z(GL(V )) then R−1SR ∈ ZS and R−1TR ∈ ZT .
Then v1 is a characteristic vector of R.

Proof. For i ≥ 0, set zi = SiT . Note that R−1ziR ∈ Zzi, for all i ≥ 0 and
hence

ker(zi) is R-invariant, for all i ≥ 0.(i)

Notice that by (a):

For all i ≥ 0, if Vj+1 ⊆ ker(zi), then Vj ⊆ ker(zi+1).(ii)

Now without loss we may assume that ` is the least nonnegative integer i
such that vj+1 /∈ ker(zi). Since by (b), Vj ⊆ ker(z0), minimality of ` and (ii)
imply that Vj ⊆ ker(z`). Thus

vj+1 /∈ ker(z`) and Vj ⊆ ker(z`).(iii)

Now, by (a) and (iii), we get that

ker(z`+i) ∩ Vj−i+1 = Vj−i, for all 0 ≤ i ≤ j − 1.(iv)

By (i), (iv), (d) and since 1 ≤ m ≤ j + 1, we see that Vm,Vm−1, . . . ,V1 are
all R-invariant, so since V1 is R-invariant, v1 is a characteristic vector of R.

1.16. Suppose n ≥ 2 and let Z ∈ GL(n,F). Let v ∈ V such that 〈O(v, Z)〉
= V and let α ∈ F. Then 〈O(αv + vZ,Z)〉 6= V iff −α is a characteristic
value of Z.

Proof. Since 〈O(v, Z)〉 = V , C := {v, vZ, . . . , vZn−1} is a basis of V . Now
〈O(αv + vZ,Z)〉 = V , iff D := {αv + vZ, (αv + vZ)Z, . . . , (αv + vZ)Zn−1}
is a basis of V . Now D is obtained from C by applying the transformation
αIn + Z to the basis C. Thus D is a basis of V iff αIn + Z is invertible and
the lemma follows.

Corollary 1.17. Suppose n = 2k + 1 (with k ≥ 1), let S ∈ GL(n,F) and
write

S =
[
R1,1 R1,2

R2,1 Z

]
with R1,1, R1,2, R2,1 and Z a k×k, k×(k+1), (k+1)×k and (k+1)×(k+1)
matrices, respectively. Set W = 〈O(v1, S)〉 and assume:
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(a) Vk ⊆ W.
(b) Z ∈ GLk+1(F) and 〈O(vk+1,diag (Ik, Z))〉 = 〈vk+1, . . . , vn〉.
(c) αvk+1 + vk+1diag (Ik, Z) ∈ W, for some α ∈ F.

If −α is not a characteristic value of the matrix Z, then V = 〈O(v1, S)〉.

Proof. Set U = 〈vk+1, . . . , vn〉 and let Z denote also the linear operator
Z : U → U , given by the matrix Z, with respect to the basis {vk+1, . . . , vn}.
Then, by (b), U = 〈O(vk+1, Z)〉. Also it is easy to check that hypothesis
(a) implies that if u ∈ U ∩W, then uZ ∈ U ∩W. Hence by hypothesis (c),
O(αvk+1 +vk+1Z,Z) ⊆ W. Now 1.16 and hypotheses (b) and (c) imply that
if −α is not a characteristic value of Z, then U ⊆ W, so by (a), W = V as
asserted.

1.18. Important remark. Throughout Chapter 1, the following strategy
will be used to prove Theorem 1.6. Let L ≤ SL(V ) be a classical group.
Let Λ = ∆(L). We carefully choose X,Y ∈ Λ. To show BΛ(X,Y ), let
S ∈ {Y,XY,X−1Y }. In order to show that dΛ(X,S) > 3, suppose R ∈
Λ≤2(X) ∩ Λ≤1(S). We do the following steps.

Step 1. We obtain information about CL(X). Part of the work was already
done in 1.13.

Step 2. Using Step 1, we show that if h ∈ Λ≤1(X) ∩ Λ≤1(R), then there
exists β ∈ F∗ and an integer k ≥ 1 such that if we set T := (h − βIn)k,
then there are integers j, `,m ≥ 0 such that T, S,R, j, `,m satisfy all the
hypotheses of 1.15. Thus we conclude from 1.15 that v1 is a characteristic
vector of R.

Step 3. We compute 〈O(v1, S)〉. In all cases X,Y are chosen so that either
〈O(v1, S)〉 = V , or [S,R] = 1, (so that we can use 1.14.1) and 〈O(v1, S)〉
has codimension 1 or 2 in V .

Step 4. We obtain information on the characteristic polynomial of S. This
information is aimed to fit the hypotheses of 1.14.5.

Step 5. We use Step 2, Step 3 and Step 4, together with 1.14, to get that
R ∈ Z(L) and obtain a contradiction.

2. Some information about characteristic polynomials.

Throughout this section n = 2k+ε ≥ 2 is a positive integer, where ε ∈ {0, 1}.
am and bm are as in 1.1.9. We draw the attention of the reader to 1.1 and 1.2,
where we fixed our notation for matrices and polynomials. In particular,
recall that the polynomials Fm[λ], Gm[λ] and Qm[λ] are defined in 1.2.4,
1.2.5 and 1.2.6 respectively.
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2.1. Notation. For an integer ` ≥ 1 and a prime r, |`|r is the largest power
of r dividing `. Hence, if gcd (`, r) = 1, then |`|r = 0.

2.2. Let ` ≥ 1 be a positive integer. Suppose ` =
∑s

i=0 εi2
i, with εi ∈ {0, 1},

for all i. Then |`!|2 = `−
∑s

i=0 εi.

Proof. It is easy to see that

|`!|2 =
[
`

2

]
+
[
`

4

]
+
[
`

8

]
+ · · ·+ 1

=
s∑

i=1

εi2i−1 +
s∑

i=2

εi2i−2 + · · ·+
s∑

i=s−1

εi2i−s+1 + εs

= ε1 + ε2

1∑
i=0

2i + ε3

2∑
i=0

2i + · · ·+ εs

s−1∑
i=0

2i

= ε0(20 − 1) + ε1(21 − 1) + ε2(22 − 1) + · · ·+ εs(2s − 1)

= `−
s∑

i=0

εi.

2.3. Suppose k = m2s+1 − 1, with s ≥ 1 and m odd. Then:

(1) If 1 ≤ ` < 2s, then
(
k+`
2`

)
≡ 0 (mod 2).

(2) If 1 ≤ ` < 2s, then
(

k+`
2`+1

)
≡ 0 (mod 2).

(3)
(
k+2s

2s+1

)
≡ 1 (mod 2).

(4)
(
2k−2s

2s

)
≡ 0 (mod 2).

(5)
(
2k−2s

2s−2

)
≡ 1 (mod 2).

(6)
(
2k−2s+1

2s−1

)
≡ 1 (mod 2).

Proof. For (1) note that by comparing 2−parts of factors we have(
k + `

2`

)
≡

{∏1
i=`−1((k + 1) + i)

}
· (k + 1) ·

{∏`
i=1((k + 1)− i)

}
2` · `!

(mod 2).

Since k + 1 = m2s+1 for ` ≤ 2s, we get(
k + `

2`

)
≡ (`− 1)! · 2s+1 · `!

2` · `!
(mod 2)

hence ∣∣∣∣(k + `

2`

)∣∣∣∣
2

= {|(`− 1)!|2 + s+ 1 + |`!|2} − (`+ |`!|2)

= |(`− 1)!|2 + s+ 1− `.
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If ` < 2s, then ` − 1 < 2s − 1, so if we write ` − 1 =
∑s−1

i=0 εi2
i, we see

that
∑s−1

i=0 εi < s. Thus, by 2.2, |(` − 1)!|2 > ` − 1 − s, so |
(
k+`
2`

)
|2 >

` − 1 − s + s + 1 − ` = 0. This shows (1). In (3), ` = 2s, so, by 2.2,
|(`− 1)!|2 = `− 1− s, thus = |

(
k+2s

2s+1

)
|2 = 0.

For (2), note that(
k + `

2`+ 1

)
≡ (k − `)

(
k + `

2`

)
(mod 2).

Hence (2) following from (1).
We proceed with the proof of (4) and (5).(

2k − 2s

2s

)
≡
∏2s−1

i=0 ((m2s+2 − 2s − 2)− i)
2s!

≡
∏2s−1

i=0 (2s + i+ 2)
2s!

≡ 2 · 2s!
2s!

≡ 0 (mod 2),

and as above,(
2k − 2s

2s − 2

)
≡
∏2s−3

i=0 ((m2s+2 − 2s − 2)− i)
(2s − 2)!

≡
∏2s−3

i=0 (2s + i+ 2)
(2s − 2)!

≡ 1 (mod 2).

Finally, for (6), note that(
2k − 2s + 1

2s − 1

)
≡
∏2s−2

i=0 ((m2s+2 − 2s − 1)− i)
(2s − 1)!

≡
∏2s−2

i=0 (2s + i+ 1)
(2s − 1)!

≡ 1 (mod 2).

2.4. Suppose n = 2k and let τ : SLn(F) → SLn(F) be the automorphism
defined in 1.4.4. Let ai, bi ∈ SLk(F) and suppose diag (ai, b

−1
i ) ∈ Fix (τ),

i = 1, 2. Then for ε ∈ {1,−1}, Fat
1aε

2
[λ] = Fbt

1bε
2
[λ].

Proof. By 1.12.5, bi = Jk(ai)tJ t
k. Hence, bt1b2 = Jka1J

t
kJk(a2)tJ t

k. Recall
now that J t

k = J−1
k . Hence bt1b2 is conjugate to a1a

t
2, so Fat

1a2
= Fbt

1b2 .
Also bt1b

−1
2 = Jka1J

t
kJk(a−1

2 )tJ t
k. Again we see that bt1b

−1
2 is conjugate to

a1(a−1
2 )t. Hence Fat

1a−1
2

= Fbt
1b−1

2
.

2.5. Let m ≥ 1 and let x = am or bm. Then the characteristic polynomial
of xtx−1, x−1xt, and x(xt)−1 is

Qm[λ] = λm − λm−1 + λm−2 − · · ·+ (−1)m.
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Proof. First note that, by 1.11, diag (am, b
−1
m ) ∈ Fix (τ), where τ : SL2m(F)

→ SL2m(F) is as defined in 1.4.4. Hence by 2.4,

Fat
ma−1

m
= Fbt

mb−1
m
.(i)

Next, note that xtx−1 and x−1xt are conjugate in GL(m,F) and x(xt)−1,
and (xt)−1x are conjugate in GL(m,F), so it suffices to show the lemma
for xtx−1 and x(xt)−1. Now, by 2.7.1 (ahead), since x(xt)−1 = (xtx−1)−1,
Fx(xt)−1 [λ] = (−1)mλmFxtx−1 [λ−1], so if Fxtx−1 [λ] = Qm[λ], then also
Fx(xt)−1 [λ] = Qm[λ]. By (i), it remains to show that Qm[λ] = Fat

ma−1
m

[λ].
Note now that,

at
ma

−1
m =



0 1 0 · · · · 0
0 0 1 0 · · · 0
0 0 0 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · · 0 1 0
0 · · · · · 0 1
· · · · 1 1 1 1


and hence Fat

ma−1
m

[λ] = Qm[λ].

2.6. Let m ≥ 1. Then:
(1) For x = am or bm, Fxtx[λ] = Fxxt [λ] = Fm[λ].
(2) For m ≥ 3, Fm = (λ − 2)Fm−1 − Fm−2, Fm = (λ − 1)Gm−1 − Gm−2

and Gm = (λ− 2)Gm−1 −Gm−2.
(3) Gm[λ] is the characteristic polynomial of the m×m matrices

ym =



2 1 0 · · · · 0
1 2 1 0 · · · 0
0 1 2 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 2 1 0
0 · · · 0 1 2 1
0 · · · · 0 1 2


and

zm =



2 1 0 · · · · 0
1 2 1 0 · · · 0
0 1 2 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 2 1 0
0 · · · 0 1 2 1
0 · · · · 0 1 2


.
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(4) Fm[λ] =
∑m

`=0(−1)m+`
(
m+`
2`

)
λ`.

(5) Gm[λ] =
∑m

`=0(−1)m+`
(
m+`+1
2`+1

)
λ`.

(6) Let γ ∈ F and suppose that for some ` ≥ 2, F`[γ] = 0. Then G`−1[γ] 6=
0.

Proof. For (1), we already observed (using 1.11) that diag (am, b
−1
m ) ∈ Fix (τ)

and (1) follows from 2.4, and since, by definition, Fm = Fat
mam

. Next, by
definition Gm = Fym (ym as in (3)). Observe now that

at
mam =



2 1 0 · · · · 0
1 2 1 0 · · · 0
0 1 2 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 2 1 0
0 · · · 0 1 2 1
0 · · · · 0 1 1


.

Now Fm = det(λIm − at
mam). Developing det(λIm − at

mam) using the first
row, we easily get that for m ≥ 3, Fm = (λ − 2)Fm−1 − Fm−2. Developing
det(λIm−at

mam) using the last row, we easily get Fm = (λ−1)Gm−1−Gm−2.
Also developing det(λIm−ym) using the first row gives Gm = (λ−2)Gm−1−
Gm−2 and (2) is proved.

For (3), note that zm is obtained from ym by conjugating by diag (1,−1, 1,
−1, . . . , (−1)m+1), so Fzm [λ] = Fym [λ] = Gm[λ].

To prove (4) and (5), note that F1 = λ−1, F2 = λ2−3λ+1 and G1 = λ−2,
G2 = λ2 − 4λ + 3. So (4) and (5) are the characteristic polynomials when
m = 1, 2. Then, using (2), form ≥ 3, α(Fm, 0) = −2α(Fm−1, 0)−α(Fm−2, 0)
and for 1 ≤ ` ≤ m, α(Fm, `) = α(Fm−1, ` − 1) − 2α(Fm−1, `) − α(Fm−2, `).
The same equalities hold if we replace F by G. We must show that for
m ≥ 3.

(−1)m = −2(−1)m−1 − (−1)m−2(i)

(−1)m

(
m+ 1

1

)
= −2(−1)m−1

(
m

1

)
− (−1)m−2

(
m− 1

1

)
(ii)

(−1)m+`

(
m+ `

2`

)
= (−1)m−1+`−1 ·

(
m+ `− 2

2`− 2

)
(iii)

− 2(−1)m−1+` ·
(
m+ `− 1

2`

)
− (−1)m−2+` ·

(
m+ `− 2

2`

)
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(−1)m+` ·
(
m+ `+ 1

2`+ 1

)
= (−1)m−1+`−1 ·

(
m+ `− 1

2`− 1

)
(iv)

− 2(−1)m−1+` ·
(
m+ `

2`+ 1

)
− (−1)m−2+` ·

(
m+ `− 1

2`+ 1

)
.

For (i), note that −2(−1)m−1 − (−1)m−2 = 2(−1)m − (−1)m. For (ii),
note that −2(−1)m−1

(
m
1

)
− (−1)m−2

(
m−1

1

)
= 2(−1)mm − (−1)m(m − 1) =

(−1)m(m+ 1).
For (iii) we have

(−1)m−1+`−1 ·
(
m+ `− 2

2`− 2

)
− 2(−1)m−1+` ·

(
m+ `− 1

2`

)
− (−1)m−2+` ·

(
m+ `− 2

2`

)
= (−1)m+`

{(
m+ `− 2

2`− 2

)
+ 2
(
m+ `− 1

2`

)
−
(
m+ `− 2

2`

)}
.

Note now that(
m+ `− 2

2`− 2

)
−
(
m+ `− 2

2`

)
=
(
m+ `− 2

2`− 2

)
+
(
m+ `− 2

2`− 1

)
−
(
m+ `− 2

2`− 1

)
−
(
m+ `− 2

2`

)
=
(
m+ `− 1

2`− 1

)
−
(
m+ `− 1

2`

)
.

Thus

(−1)m+`

{(
m+ `− 2

2`− 2

)
+
(
m+ `− 1

2`

)
−
(
m+ `− 2

2`

)}
= (−1)m+`

{(
m+ `− 1

2`− 1

)
+
(
m+ `− 1

2`

)}
= (−1)m+` ·

(
m+ `

2`

)

and (iii) is proved.
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For (iv) we have

(−1)m−1+`−1 ·
(
m+ `− 1

2`− 1

)
− 2(−1)m−1+` ·

(
m+ `

2`+ 1

)
− (−1)m−2+` ·

(
m+ `− 1

2`+ 1

)
= (−1)m+`

{(
m+ `− 1

2`− 1

)
+ 2
(
m+ `

2`+ 1

)
−
(
m+ `− 1

2`+ 1

)}
and as in the previous paragraph of the proof we get (iv). This shows (4)
and (5).

Suppose that F`[γ] = 0 = G`−1[γ], for some ` ≥ 2, then, by (2), also
G`−2[γ] = 0. Then, using (2), we see that Gm[γ] = 0, for all 1 ≤ m ≤ `.
In particular, G1[γ] = 0 = G2[γ], so γ = 2 and 0 = 22 − 4 · 2 + 3 = −1, a
contradiction.

2.7. Let h, g ∈ SLn(F) and let Q[λ] = Fg. Then:

(1) Q = (−1)nλnQ[λ−1]. In particular, for all 0 ≤ ` ≤ n, α(Q, `) =
(−1)nα(Q,n− `).

(2) Fhg[λ] = Fgh[λ] = det(λh−1 − g).
(3) Suppose `,m ≥ 1 are integers and ε ∈ {1,−1}. Suppose h−1 =

diag (I`−1, s
−1, Im−1), where s is a (2 + ε) × (2 + ε) matrix. Then

Fhg = det(r + (λI − g)), where r = diag (0`−1, λs
−1 − λI2+ε, 0m−1).

Proof. Set I = In. Then Fg−1 = det(λI − g−1) = det{−λI(λ−1I − g)g−1} =
(−λ)n det(λ−1I − g) = (−1)nλnQ[λ−1].

For (2), we have det(λI − gh) = det{(λh−1 − g)h} = det(λh−1 − g).
Finally, for (3), det(λh−1− g) = det(λh−1−λI +λI − g) = det(r+λI − g),
because r = λh−1 − λI.

2.8. Let `,m ≥ 1 be two integers such that ` + m = 2k. Let A ∈ M`(R)
and B ∈ Mm(R). If ε = 0, let g = diag (A,B), while if ε = 1, let g =
diag (A, µ,B), with 0 6= µ ∈ R. Let f be the following (2 + ε) × (2 + ε)
matrix over R

f =
[
α β
γ δ

]
when ε = 0,

f =

α11 α12 α13

α21 α22 α23

α31 α32 α33

 when ε = 1.

Let r = diag (0`−1, f, 0m−1). Then:
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(1) If ε = 0, then

det(r + g) = det(A) det(B) + δ det(A) det(M1,1(B))

+ α det(M`,`(A)) det(B)

+ det
[
α β
γ δ

]
det(M`,`(A)) det(M1,1(B)).

(2) If ε = 1, then

det(r + g) = (α22 + µ) det(A) det(B)

+ det
[
α22 + µ α23

α32 α33

]
det(A) det(M1,1(B))

+ det
[
α11 α12

α21 α22 + µ

]
det(M`,`(A)) det(B)

+ det

α11 α12 α13

α21 α22 + µ α23

α31 α32 α33

det(M`,`(A)) det(M1,1(B)).

Proof. (1) is proved by expanding det(r + g) along row ` + 1. For (2),
expanding det(r + g) along the (`+ 1)-row, we get

(i) det(r + g) = −α21 det(r1 + g1)

+ (α22 + µ) det(r2 + g2)− α23 det(r3 + g3)

where r1 = diag
(

0`−1,

[
α12 α13

α32 α33

]
, 0m−1

)
, g1 = diag (A1,B), and A1 is ob-

tained from A by replacing the last column by a column of zeros.

r2 = diag
(

0`−1,

[
α11 α13

α31 α33

]
, 0m−1

)
, and g2 = diag (A,B). r3 =

diag
(

0`−1,

[
α11 α12

α31 α32

]
, 0m−1

)
, g3 = diag (A,B1), and B1 is obtained from

B by replacing the first column by a column of zeros. Notice now that
det(A1) = 0 = det(B1) and det(M`,`(A1)) = det(M`,`(A)), while
det(M1,1(B1)) = det(M1,1(B)). Now, by (1), we get

det(r1 + g1) = α12 det(M`,`(A)) det(B)(ii)

+ det
[
α12 α13

α32 α33

]
det(M`,`(A)) det(M1,1(B)).
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det(r2 + g2) = det(A) det(B) + α33 det(A) det(M1,1(B))(iii)

+ α11 det(M`,`(A)) det(B)

+ det
[
α11 α13

α31 α33

]
det(M`,`(A)) det(M1,1(B)).

det(r3 + g3) = α32 det(A) det(M1,1(B))(iv)

+ det
[
α11 α12

α31 α32

]
det(M`,`(A)) det(M1,1(B)).

Note now that (2) follows from (i)-(iv).

2.9. Let `,m ≥ 1 be two integers such that ` + m = 2k. Let A ∈ M`(F)
and B ∈ Mm(F). Let g = diag (A,B). Let s ∈ GL2(F) such that s−1 =[
β11 β12

β21 β22

]
. Let h = diag (I`−1, s, Im−1). Then

Fhg = FAFB + (β22 − 1)λFAFM1,1(B) + (β11 − 1)λFM`,`(A)FB

+ det
[
(β11 − 1)λ β12λ
β21λ (β22 − 1)λ

]
FM`,`(A)FM1,1(A).

Proof. First we mention, that, by definition, if R is a 1 × 1 matrix over F,
we always take FM1,1(R) = 1. Next note that h−1 = diag (I`−1, s

−1, Im−1).
By 2.7.3, Fgh = det(r+ (λIn − g)), where r = diag (0`−1, λs

−1 − λI2, 0m−1).
Note now that

λs−1 − λI2 =
[
(β11 − 1)λ β12λ
β21λ (β22 − 1)λ

]
also,

λIn − g = diag (λI` −A, λIm −B).

So if we set A = λI` −A and B = λIm −B, then by 2.8.1,

det(r + (λI − g))

= det(A) det(B) + (β22 − 1)λ det(A) det(M1,1(B))

+ (β11 − 1)λ det(M`,`(A)) det(B)

+ det
[
(β11 − 1)λ β12λ
β21λ (β22 − 1)λ

]
det(M`,`(A)) det(M1,1(B)).

The lemma follows.

2.10. Let g = diag (A, 1, B), with A,B ∈Mk(F). Let s ∈ SL3(F) such that

s−1 =

β11 β12 β13

β21 β22 β23

β31 β32 β33

 .
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Let h = diag (Ik−1, s, Ik−1). Then α(Fhg, 1) = α(R[λ], 1), where

R[λ] = (β22λ− 1)FAFB − (β33 − 1)λFAFM1,1(B) − (β11 − 1)λFMk,k(A)FB.

Proof. We use 2.8.2, with ` = m = k. First note that h−1 = diag (Ik−1, s
−1,

Ik−1). By 2.7.3, Fgh = det(r + (λI − g)), where

r = diag (0k−1, λs
−1 − λI3, 0k−1).

Note now that

λs−1 − λI3 =

(β11 − 1)λ β12λ β13λ
β21λ (β22 − 1)λ β23λ
β31λ β32λ (β33 − 1)λ


also, if we set I = In, then

λI − g = diag (λIk −A, λ− 1, λIk −B).

We use 2.8.2 with A = λIk − A, B = λIk − B and µ = λ − 1. The αij are
given by the matrix λs−1 − λI3 above. By 2.8.2

det(r + (λI − g))

= (β22λ− 1) det(A) det(B)

+ det
[
β22λ− 1 β23λ
β32λ (β33 − 1)λ

]
det(A) det(M1,1(B))

+ det
[
(β11 − 1)λ β12λ
β21λ β22λ− 1

]
det(Mk,k(A)) det(B)

+ det

(β11 − 1)λ β12λ β13λ
β21λ β22λ− 1 β23λ
β31λ β32λ (β33 − 1)λ

det(Mk,k(A)) det(M1,1(B))

so we see that the only expressions in det(r+ (λI − g)) which contribute to
the coefficient of λ in det(r + (λI − g)) are

(β22λ− 1) det(A) det(B)− (β33 − 1)λ det(A) det(M1,1(B))

− (β11 − 1)λ det(Mk,k(A)) det(B)

because the other expressions are in λ2F[λ]. This shows the lemma.

2.11. Let m ≥ 2 be an integer and let c, d ∈ SLm(F) be two unipotent
elements such that c is lower triangular and d is upper triangular. Let
x ∈ SLm(F). Then:

(1) M`,`(dx) = M`,`(d)M`,`(x), for ` ∈ {1, (1, 2)}.
(2) M`,`(xc) = M`,`(x)M`,`(c), for ` ∈ {1, (1, 2)}.
(3) Mm,m(cx) = Mm,m(c)Mm,m(x) and Mm,m(xd) = Mm,m(x)Mm,m(d).
(4) M`,`(y−1) = {M`,`(y)}−1, for y ∈ {c, d} and ` ∈ {1,m, (1, 2)}.

Proof. (1), (2) and (3) are obvious and (4) follows from them.
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2.12. Let m ≥ 3, β1, β2, . . . , βm, γ1, γ2, . . . , γm ∈ F∗. For 1 ≤ i ≤ 3, let

Bi := bm+2−i(βi, . . . , βm) and Ci := bm+2−i(γi, . . . , γm).

Then:
(1) FCt

1B1
= (λ− 1)FCt

2B2
− β1γ1λFM1,1(B2Ct

2).

(2) F(Ct
1B1)−1 = {(1 + β1γ1)λ− 1}F(Ct

2B2)−1 − β1γ1λ
2F(Ct

3B3)−1 .

(3) FCt
1B−1

1
= (λ− 1)FCt

2B−1
2

+ β1γ1λFCt
3B−1

3
.

(4) If B2 = C2 = bm, FCt
1B1

= (λ− 1)Fm − β1γ1λGm−1.

(5) If B2 = C2 = bm, then FCt
1B−1

1
= (λ− 1)Qm + β1γ1λQm−1.

Proof. First note that (4) and (5) follow from (1) and (3) respectively, since,
if B2 = C2 = bm, then, by 2.6, FCt

2B2
= Fm and, by 2.5, FCt

2B−1
2

= Qm,

FCt
3B−1

3
= Qm−1 and we leave it for the reader to verify that FM1,1(B2Ct

2) =
Gm−1.

To prove (1), (2) and (3), let u = um+1
1 (−β1) and w = um+1

1 (−γ1). Note
first that B1 = u diag (1, B2) and C1 = w diag (1, C2). Hence

Ct
1B1 = diag (1, Ct

2)w
tu diag (1, B2)(i)

(Ct
1B1)−1 = diag (1, B−1

2 )u−1(wt)−1diag (1, (Ct
2)
−1)(ii)

Ct
1B

−1
1 = diag (1, Ct

2)diag (1, B−1
2 )wtu−1(iii)

where (iii) follows from the fact that diag (1, B−1
2 ) and wt commute.

For (1), (2) and (3), given S ∈ {Ct
1B1, C

t
1B

−1
1 , (Ct

1B1)−1}, we find g, h ∈
SLm+1(F) and B ∈ SLm(F) (g, h and B depend on S) such that S is conju-
gate to hg, with g = diag (1, B) and h−1 = diag (s, Im−1). Then we use 2.9
(with ` = 1 and m = m) to compute Fhg. Note that by 2.9 if A ∈ M1(F),

B ∈Mm(F), then for g = diag (A,B) and h−1 = diag
([
α β
γ δ

]
, Im−1

)
,

Fhg = FAFB + (δ − 1)λFAFM1,1(B) + (α− 1)λFB(iv)

+ det
[
(α− 1)λ βγ
γλ (δ − 1)λ

]
FM1,1(B).

In all cases we take A = 1.
(v) In (1), take B = B2C

t
2; in (2) take B = (B2C

t
2)
−1; in (3) take B =

Ct
2B

−1
2 .

Also

(vi) in (1), take h−1 = (wtu)−1 = diag
([

1 γ1

β1 β1γ1 + 1

]
, Im−1

)
;

in (2) take h−1 = wtu = diag
([

1 + β1γ1 −γ1

−β1 1

]
, Im−1

)
;

in (3) take h−1 = (wtu−1)−1 = diag
([

1 γ1

−β1 −β1γ1 + 1

]
, Im−1

)
.



148 YOAV SEGEV AND GARY M. SEITZ

We now use (iv), (v) and (vi) to prove (1) (2) and (3).
In (1), taking B = B2C

t
2, we get

FCt
1B1

= (λ− 1)FB + β1γ1λ(λ− 1)FM1,1(B)

+ det
[

0 γ1λ
β1λ β1γ1λ

]
FM1,1(B)

= (λ− 1)FB2Ct
2
− β1γ1λFM1,1(B2Ct

2)

also, in (3), taking B = Ct
2B

−1
2 , we get

FCt
1B−1

1
= (λ− 1)FB − β1γ1λ(λ− 1)FM1,1(B)

+ det
[

0 γ1λ
−β1λ −β1γ1λ

]
FM1,1(B)

= (λ− 1)FCt
2B−1

2
+ β1γ1λFM1,1(Ct

2B−1
2 ).

Since M1,1(Ct
2B

−1
2 ) = Ct

3B
−1
3 , we get (3). Finally in (2), taking B =

(B2C
t
2)
−1, we get

F(Ct
1B1)−1 = (λ− 1)FB + β1γ1λFB

+ det
[
β1γ1λ −γ1λ
−β1λ 0

]
FM1,1(B)

= {λ− 1 + β1γ1λ}F(B2Ct
2)−1 − β1γ1λ

2FM1,1((B2Ct
2)−1).

Note however that F(B2Ct
2)−1 = F(Ct

2B2)−1 and that, by 2.11.1,
M1,1{(B2C

t
2)
−1} = (B3C

t
3)
−1 and again F(B3Ct

3)−1 = F(Ct
3B3)−1 .

2.13. Suppose n=2k. Let α∈F∗ and set u=un
k(α). Let X=diag (ak, b

−1
k )u

and let Hn be the characteristic polynomial of XtX. Then:

Hn = F k(Fk + α2λGk−1)− α2λ2Gk−1F k−1.(1)

α(Hn, 1) = −
(
k + 1

2

)
− (α2 + 2)k + 1.(2)

Suppose α = 1. Then:
(3) If char (F) = 3 and k ≡ 0 or 2 (mod 3), then α(Hn, 1) 6= 0.
(4) If char (F) = 2 and k ≡ 0 or 1 (mod 4), then α(Hn, 1) 6= 0.
(5) If char (F ) = 2 and k ≡ −2 or 3 (mod 8), then α(Hn, 2) 6= 0.
(6) If char (F ) = 2 and k ≡ 2 (mod 8), then either α(Hn, 4) 6= 0 or

α(Hn, 7) 6= 0.
(7) If char (F ) = 2 and k ≡ −1 (mod 8), then α(Hn, 2s) = 1, where s is

defined by k = m2s+1 − 1, with m odd.

Proof. For (1), we’ll use 2.9. But first we observe that

XtX = utdiag (at
kak, (btk)

−1b−1
k )u.(i)
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Further, by definition and by 2.6.1,

Fat
kak

= Fk F(bt
k)−1b−1

k
= F k.(ii)

Also, by 2.11.1 and 2.11.4,

M1,1((btk)
−1b−1

k ) = (btk−1)
−1b−1

k−1 so FM1,1((bt
k)−1b−1

k ) = F k−1.(iii)

Finally observe that by definition and by the shape of at
kak

FMk,k(at
kak) = Gk−1.(iv)

Set h = uut. Of course h = diag (Ik−1, s, Ik−1), with s−1 =
[
α2 + 1 α
α 1

]
.

Note that, by (i), Hn is the characteristic polynomial of hg, with g =
diag (A,B), A = at

kak and B = (btk)
−1b−1

k . Thus by 2.9

Hn = Fhg = FAFB + α2λFMk,k(A)FB

+ det
[
α2λ αλ
αλ 0

]
FMk,k(A)FM1,1(B)

= FAFB + α2λFMk,k(A)FB − α2λ2FMk,k(A)FM1,1(B).

Using (ii), (iii) and (iv) we see that (1) holds. Next, using 2.6 and 2.7,

α(Hn, 1) = α(F k, 0){α(Fk, 1) + α2α(Gk−1, 0)}+ α(Fk, 0)α(F k, 1)

α(F k, 0) = (−1)k = α(Fk, 0), α(Gk−1, 0) = (−1)k−1

(
k

1

)
α(Fk, 1) = (−1)k+1

(
k + 1

2

)
, α(F k, 1) = (−1)k(1− 2k).

Thus

α(Hn, 1) = (−1)k

{
(−1)k+1

(
k + 1

2

)
+ α2(−1)k−1

(
k

1

)}
+ (−1)k(−1)k(1− 2k)

= −
(
k + 1

2

)
−
(
k

1

)
α2 − 2k + 1

= −
(
k + 1

2

)
− (α2 + 2)k + 1.

This shows (2). For the remainder of the proof we assume that α = 1.
Suppose first that char (F) = 3. By (2), α(Hn, 1) = −

(
k+1
2

)
+ 1. Thus if

k ≡ 0 or 2 (mod 3), α(Hn, 1) 6= 0 and (3) is proved.
So suppose that char (F) = 2. By (2), α(Hn, 1) =

(
k+1
2

)
+ k + 1. Hence if

k ≡ 0 or 1 (mod 4), α(Hn, 1) = 1 and (4) is proved. Recall from 2.6 and 2.7
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that

Fk[λ] = 1 +
(
k + 1

2

)
λ+

(
k + 2

4

)
λ2 +

(
k + 3

6

)
λ3 +

(
k + 4

8

)
λ4 + · · ·

(∗)

F k[λ] = 1 +
(

2k − 1
1

)
λ+

(
2k − 2

2

)
λ2 +

(
2k − 3

3

)
λ3 +

(
2k − 4

4

)
λ4 + · · ·

F k−1[λ] = 1 +
(

2k − 3
1

)
λ+

(
2k − 4

2

)
λ2 +

(
2k − 5

3

)
λ3 +

(
2k − 6

4

)
λ4 + · · ·

Gk−1 = k +
(
k + 1

3

)
λ+

(
k + 2

5

)
λ2 +

(
k + 3

7

)
λ3 +

(
k + 4

9

)
λ4 + · · · .

Suppose first that k ≡ −2 (mod 8). Using (∗), note that F k ≡ 1 + λ +
λ2 (mod (λ3)), Fk ≡ 1 + λ (mod (λ3)) and Gk−1 ≡ λ (mod (λ2)). Hence
modulo the ideal (λ3), F k(Fk + λGk−1) − λ2Gk−1F k−1 ≡ (1 + λ + λ2)(1 +
λ+ λ2) ≡ 1 + λ2. Thus α(Hn, 2) 6= 0.

Suppose k ≡ 3 (mod 8). Then by (∗), F k ≡ 1+λ (mod (λ3)), Fk ≡ 1+λ2

(mod (λ3)), Gk−1 ≡ 1 (mod (λ2)) and F k−1 ≡ 1 (mod (λ)). Hence, modulo
the ideal (λ3), F k(Fk + λGk−1)− λ2Gk−1F k−1 ≡ (1 + λ)(1 + λ2 + λ) + λ2 ≡
1 + λ2. This completes the proof of (5).

Suppose k = 8m + 2. Note that
(
k+1
2

)
≡ 1 (mod 2),

(
k+2
4

)
≡ 4·2

4·2 ≡ 1
(mod 2),

(
k+3
6

)
≡ 4·2·(k−2)

2·4·2 ≡ 0 (mod 2),
(
k+4
8

)
≡ 2·4·2·(k−2)

8·2·4·2 ≡ m (mod 2),(
k+5
10

)
≡ 2·4·2·(k−2)·2

2·8·2·4·2 ≡ m (mod 2).
(
k+6
12

)
≡ (k+6)2·4·2·(k−2)·2

4·2·8·2·4·2 ≡ (k+6)·(k−2)
4·8 ≡

0 (mod 2), and similarly,
(
k+7
14

)
≡ 0 (mod 2). Hence, by (∗),

Fk ≡ 1 + λ+ λ2 +mλ4 +mλ5 (mod (λ8)).

Next,
(
2k−1

1

)
≡ 1 (mod 2),

(
2k−2

2

)
≡ 1 (mod 2),

(
2k−3

3

)
≡ 0 (mod 2),

(
2k−4

4

)
≡ 0 (mod 2) and

(
2k−5

5

)
≡ 2·4

4·2 ≡ 1 (mod 2),
(
2k−6

6

)
≡ 2·4·2

2·4·2 ≡ 1 (mod 2),(
2k−7

7

)
≡ 0 (mod 2). Hence, by (∗),

F k = 1 + λ+ λ2 + λ5 + λ6 (mod (λ8)).

Next,
(
2k−3

1

)
≡ 1 (mod 2),

(
2k−4

2

)
≡ 0 (mod 2),

(
2k−5

3

)
≡ 1 (mod 2),

(
2k−6

4

)
≡ 1 (mod 2),

(
2k−7

5

)
≡ 1 (mod 2). Hence, by (∗),

F k−1 = 1 + λ+ λ3 + λ4 + λ5 (mod (λ6)).

Finally,
(
k
1

)
≡ 0 (mod 0) (mod 2),

(
k+1
3

)
≡ 1 (mod 2),

(
k+2
5

)
≡ 4·2·(k−2)

2·4·2 ≡ 0
(mod 2),

(
k+3
7

)
≡ 4·2·(k−2)

2·4·2 ≡ 0 (mod 2),
(
k+4
9

)
≡ 2·4·2·(k−2)·2

8·2·4·2 ≡ 0 (mod 2),(
k+5
11

)
≡ 2·4·2·(k−2)·2

2·8·2·4·2 ≡ m (mod 2),
(
k+6
13

)
≡ (k+6)2·4·2·(k−2)·2·4

4·2·8·2·4·2 ≡ 0 (mod 2).
Hence, by (∗),

Gk−1 ≡ λ+mλ5 (mod (λ7)).
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Hence, modulo the ideal (λ8),

F k(Fk + λGk−1)− λ2Gk−1F k−1

= (1 + λ+ λ2 + λ5 + λ6)(1 + λ+ λ2 +mλ4 +mλ5 + λ2 +mλ6)

+ λ2(λ+mλ5)(1 + λ+ λ3 + λ4 + λ5)

= (1 + λ+ λ2 + λ5 + λ6)(1 + λ+mλ4 +mλ5 +mλ6)

+ (λ3 +mλ7)(1 + λ+ λ3 + λ4 + λ5).

Thus α(Hn, 4) = m+ 1 and α(Hn, 7) = (m+m+ 1) + (1 +m) = m. Hence
either α(Hn, 4) 6= 0, or α(Hn, 7) 6= 0 and (6) is proved.

Finally, suppose k ≡ −1 (mod 8). Write k = m2s+1 − 1, with s ≥ 2
and m odd. Recall that we are assuming char (F ) = 2. We claim that
α(Hn, 2s) = 1. Set

t = 2s.

Note that by 2.6 and 2.7, for 1 ≤ ` ≤ t, α(Fk, `) =
(
k+`
2`

)
,

α(Gk−1, `) =
(
k + `

2`+ 1

)
,

α(F k, t) = α(Fk, k − t) =
(

2k − t

t

)
=
(

2k − 2s

2s

)
,

α(F k, t− 1) = α(Fk, k − (t− 1)) =
(

2k − (t− 1)
t− 1

)
=
(

2k − 2s + 1
2s − 1

)
and

α(F k−1, t− 2) = α(Fk−1, (k − 1)− (t− 2)) =
(

2(k − 1)− (t− 2)
t− 2

)
=
(

2k − 2s

2s − 2

)
.

Using 2.3, we see that

Fk ≡ 1 + λt (mod (λt+1)) Gk−1 ≡ 1 (mod (λt))

α(F k, t) = 0, α(F k, t− 1) = 1, α(F k−1, t− 2) = 1.

Hence α(Hn, t) is the coefficient of λt in the polynomial

(1 + λt−1)(1 + λ+ λt) + λ2λt−2

which is 1.

2.14. Suppose char (F) = 3 and n = 2k. Let β ∈ {1,−1}. Set u = un
k(1),

h = uut and

a(β) = uk
1(1)uk

2(1) · · ·uk
k−2(1)uk

k−1(β)

b(β) = uk
1(−β)uk

2(−1)uk
3(−1) · · ·uk

k−1(−1)

X(β) = diag (a(β), {b(β)}−1)u.
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Then:

(1) h = diag (Ik−1, s, Ik−1), with s−1 =
[
2 1
1 1

]
.

(2) If x = (a(β))ta(−β) and y = b(−β)(b(β))t, then

Fx = Fy = Fk − λGk−2.

(3) Suppose k ≡ 1 (mod 3). Set X = X(β), Y = X(−β) and Ln[λ] =
FXtY . Then α(Ln, 1) = −1.

Proof. (1) is obvious. For (2), note that

a(β) =



1 0 · · · · · 0
1 1 0 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · ·
· · · · · · · ·
· · · · · · · ·
0 · · · · 1 1 0
0 · · · · 0 β 1


and b(β) =



1 0 · · · · · 0
β 1 0 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · ·
· · · · · · · ·
· · · · · · · ·
0 · · · · 1 1 0
0 · · · · 0 1 1


.

Hence

x =



1 1 0 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 1 0
0 · · · · 0 1 β
0 · · · · · 0 1


·



1 0 · · · · · 0
1 1 0 · · · · 0
0 1 1 0 · · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 1 0 0
0 · · · · 1 1 0
0 · · · · 0 β 1



=



2 1 0 · · · · 0
1 2 1 0 · · · 0
0 1 2 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 2 1 0
0 · · · 0 1 0 β

0 · · · · 0 β 1


,
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y =



1 0 · · · · · 0
β 1 0 · · · · 0
0 1 1 0 · · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 1 0 0
0 · · · 0 1 1 0
0 · · · · 0 1 1


·



1 β 0 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 1 0
0 · · · · 0 1 1
0 · · · · · 0 1



=



1 β 0 · · · · 0
β 0 1 0 · · · 0
0 1 2 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 2 1 0
0 · · · 0 1 2 1
0 · · · · 0 1 2


.

To compute Fx expand det(λIk − x) along the last row. Thus

Fx = (λ− 1)FMk,k(x) +Gk−2

(since β2 = 1). Also it is easy to see that

FMk,k(x) = λGk−2 −Gk−3.(i)

Thus

Fx = (λ− 1){λGk−2 −Gk−3}+Gk−2.(ii)

Expanding Fy along the first row we see that Fy = Fx. Recall now from
2.6, that Fk = (λ− 1)Gk−1 −Gk−2 and that Gk−1 = (λ− 2)Gk−2 −Gk−3 =
(λ+ 1)Gk−2 −Gk−3. Hence

Fk = (λ− 1){(λ+ 1)Gk−2 −Gk−3} −Gk−2.(iii)

Thus, from (ii) and (iii) we see that Fk − Fx = (λ − 1)Gk−2 − 2Gk−2 =
(λ− 1)Gk−2 +Gk−2 = λGk−2. This shows (2).

We proceed with the proof of (3). Note that XtY = utdiag ((a(β))t,
({b(β)}−1)t)diag (a(−β), {b(−β)}−1)u = utdiag (x, y−1)u, with x and y as
in (1). Now XtY is conjugate to hdiag (x, y−1), so we can use 2.9 to compute
Ln. By 2.9 and (1),

Ln = {Fx + λFMk,k(x)}Fy−1 − λ2FMk,k(x)FM1,1(y−1).(iv)

Thus, by (iv),

α(Ln, 1) = α({Fx + λFMk,k(x)}Fy−1 , 1).(v)



154 YOAV SEGEV AND GARY M. SEITZ

Now, by (i) and (ii), Fx + λFMk,k(x) = Fk − λGk−2 + λ{λGk−2 −Gk−3}. So

Fx + λFMk,k(x) = Fk − λGk−2 − λGk−3 + λ2Gk−2.(vi)

Hence, by (v) and (vi),

α(Ln, 1) = α({Fk − λGk−2 − λGk−3}Fy−1 , 1).(vii)

Now modulo the ideal (λ2), Fk ≡ (−1)k(1−λ), λGk−2 ≡ (−1)k−2
(
k−1
1

)
λ ≡

0, λGk−3 ≡ (−1)k−3
(
k−2
1

)
λ ≡ (−1)k−2λ ≡ (−1)kλ. Thus

Fk − λGk−2 − λGk−3 ≡ (−1)k(1 + λ) (mod (λ2)).(viii)

Now, by (2), Fy = Fk − λGk−2 = (λk − λk−1 + · · · ) − (λk−1 + · · · ) =
λk + λk−1 + · · · . It follows from 2.7.1, that

Fy−1 ≡ (−1)k(1 + λ) (mod (λ2)).(ix)

Hence by (vii), (viii) and (ix), α(Ln, 1) = α((1 + λ)2, 1) = −1, and (3) is
proved.

2.15. Suppose n=2k. Let α∈F∗ and set u=un
k(α). Let X=diag (ak, b

−1
k )u

and set x = at
ka
−1
k and y = b−1

k btk. Then

α (FXtX−1 , 1) = α2 − 2.

Proof. Note that XtX−1 = utdiag (at
k, (b

t
k)
−1)u−1diag (a−1

k , bk). A moment
of thought will convince the reader that u commutes with diag (at

k, (b
t
k)
−1),

hence

XtX−1 = utu−1diag (x, y−1).(i)

Set h = utu−1 and g = diag (x, y−1). Then

h−1 = diag
(
Ik−1,

[
1 α
α 1− α2

]
, Ik−1

)
.(ii)

We use 2.9, with A = x, B = y−1, h = utu−1. By (i), XtX−1 = hg. By 2.9,

FXtX−1 = FxFy−1 + (β22 − 1)λFxFM1,1(y−1) + (β11 − 1)λFMk,k(x)Fy−1(iii)

+ det
[
(β11 − 1)λ β12λ
β21λ (β22 − 1)λ

]
FMk,k(x)FM1,1(y−1).

Of course, by (ii), here β11 = 1, β12 = −α, β21 = α and β22 = 1− α2. Note
that by 2.5,

Fx = Fy−1 = Qk.(iv)

Further, by 2.11.1 and 2.11.4, FM1,1(y−1) = F(b−1
k−1)bk−1

, so by 2.5,

FM1,1(y−1) = Qk−1.(v)
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Now by (iii), (iv) and (v), we get

FXtX−1 = Qk{Qk − α2λQk−1}+ α2λ2 · FMk,k(x) · FM1,1(y−1).

Whence,

α (FXtX−1 , 1) = α(Qk{Qk − α2λQk−1}, 1)

= (−1)k{(−1)k+1 − α2(−1)k−1}+ (−1)k(−1)k+1

= −1 + α2 − 1

= α2 − 2.

2.16. Suppose char (F) = 3, n = 2k ≥ 8 and that k ≡ 1 (mod 3). Let β ∈
{1,−1} and let a(β), b(β), X, Y and u be as in 2.14. Set x=(a(β))t(a(−β))−1

and y = (b(−β))−1(b(β))t. Then

Fx = Fy = λk + (−1)k = Fy−1 ,(1)

α (FXtY −1 , 1) = 1.(2)

Proof. Note that XtY −1 = utdiag ((a(β))t, ((b(β))t)−1)u−1diag ((a(−β))−1,
b(−β)). Now a moment of thought will convince the reader that u commutes
with diag ((a(β))t, ((b(β))t)−1), hence

XtY −1 = utu−1diag (x, y−1).(i)

Set h = utu−1 and g = diag (x, y−1). Then

h−1 = diag
(
Ik−1,

[
1 1
1 0

]
, Ik−1

)
.(ii)

Next note that, by 1.11, diag (a(β), {b(β)}−1), diag (a(−β), {b(−β)}−1) ∈
Fix (τ), so, by 2.4, Fx = Fy. Also if Fy = λk + (−1)k, then, by 2.7.1,
Fy−1 = λk + (−1)k. We now use 2.12.3 to compute Fy. Take in 2.12.3,
B1 = bk(−β, 1, . . . , 1) and C1 = bk(β, 1, . . . , 1) (notice that β1 = −β and
γ1 = β). By 2.12.3, Fy = (λ − 1)Qk−1 − β2λQk−2 and since β2 = 1,
Fy = (λ−1)Qk−1−λQk−2. Notice now that λQk−1 = λk−Qk−1 +(−1)k−1,
and λQk−2 = Qk−1− (−1)k−1. Hence Fy = (λk−Qk−1 +(−1)k−1)−Qk−1−
(Qk−1− (−1)k−1) = λk − 3Qk−1 + 2(−1)k−1. Since char (F) = 3, (1) follows.

Next, y−1 = ({b(β)}−1)t(b(−β)). By 2.11.4 and 2.11.1, M1,1(y−1) =
(b−1

k−1)
tbk−1 and so FM1,1(y−1) = F(b−1

k−1)tbk−1
, hence by 2.5

FM1,1(y−1) = Qk−1.(iii)

For (2), we use 2.9, with A = x, B = y−1, g = diag (A,B) and h = utu−1.
By 2.9,

Fhg = FAFB + (β22 − 1)λFAFM1,1(B) + (β11 − 1)λFMk,k(A)FB

+ det
[
(β11 − 1)λ β12λ
β21λ (β22 − 1)λ

]
FMk,k(A)FM1,1(B).
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By (i), XtY −1 = hg and by (ii), here β11 = 1, β12 = −1, β21 = 1 and
β22 = 0. Using 2.9, (1) and (iii), we get

FXtY −1 = (λk + (−1)k){λk + (−1)k − λQk−1}+ λ2FMk,k(A) · FM1,1(B).

Hence, α(FXtY −1 , 1) = α((λk + (−1)k){λk + (−1)k − λQk−1}, 1) = 1, as is
easily checked.

3. The Special Linear Groups.

In this section we prove Theorem 1.6 for the groups Ln(q). We let L =
SLn(F). Of course all notation and definitions introduced in Section 1 are
maintained here. By 1.7 and 1.9.2, all we have to do is to find an element
X ∈ L, such that B(X,Xt). We take

X = an.

3.1. Let S ∈ {XtX,XtX−1, Xt} and let R ∈ ∆≤2(X) ∩∆≤1(S). Then v1
is a characteristic vector of R.

Proof. Let h ∈ ∆≤1(X) ∩ ∆≤1(R). Note that since X is unipotent and
[X,h] ∈ Z(L), [X,h] = 1. By 1.13, there exists β ∈ F and 1 ≤ r < n, such
that h− βIn ∈ Tn(r) (see notation in 1.1.10). Put T = h− βIn, j = m = r
and ` = 0. We’ll show that S, T,R, j,m and ` satisfy the hypotheses of 1.15.
Hence, by 1.15, v1 is a characteristic vector of R.

Since (Xt)i,i+1 = 1, while, (Xt)i,k = 0, for all 1 ≤ i ≤ n − 1 and all
i + 1 < k ≤ n, and since Xε is unipotent lower triangular, for ε ∈ {1,−1},
it is easy to see that hypothesis (a) of 1.15 is satisfied. Of course Vj = Vr ⊆
ker(T ). By definition, vj+1 /∈ ker(T ). Since Vm = Vr = ker(T ) and since R
centralizes T,Vm is R-invariant. By now we verified all hypotheses of 1.15
and the proof of 3.1 is complete.

3.2. Let S = XXt. Then:
(1) If char (F) 6= 3, or n− 2 6≡ 0 (mod 3), then either α(FS , n− 1) 6= 0 or

α(FS , 1) 6= 0.
(2) If char (F) = 3 and n − 2 ≡ 3, 6 (mod 9), then α(FS , n − 2) 6= 0 6=

α(FS , n− 3).
(3) If char (F) = 3 and n − 2 ≡ 0 (mod 9), then α(FS , n − 2) 6= 0 6=

α(FS , n− 5).

Proof. By definition 1.2.4, FS = Fn. So by 2.6.4,

FS =
n∑

`=0

(−1)n+`

(
n+ `

2`

)
λ`.

In particular, α(FS , n − 1) = 1 − 2n and α(FS , 1) = (−1)n+1
(
n+1

2

)
. Let

p = char (F) and suppose α(FS , n − 1) = α(FS , 1) = 0. It is easy to check
that we must have p = 3 and n ≡ −1 (mod 3). So suppose char (F) = 3 and



ANISOTROPIC GROUPS 157

n ≡ −1 (mod 3).Note that α(FS , n−2) = (n−1)(2n−3), so α(FS , n−2) 6= 0.
If n− 2 ≡ 3, 6 (mod 9), then α(FS , n− 3) = −

(
2n−3

3

)
6≡ 0 (mod 3). Finally,

if n−2 ≡ 0 (mod 9), then α(FS , n−5) = −
(
2n−5

5

)
6≡ 0 (mod 3). We remark

that when n = 2, ∆ is disconnected and there exists no path from X to S
in ∆, so evidently B(X,Xt) holds.

3.3. (1) Let S ∈ {XtX,XtX−1, Xt}, then d(X,S) > 3.
(2) ∆(L) is balanced.

Proof. Let R ∈ ∆≤2(X) ∩∆≤1(S). By 3.1,

v1 is a characteristic vector of R.(i)

Note that for all 1 ≤ i ≤ n− 1, viS = u+ vi+1, with u ∈ Vi. Thus

〈O(v1, S)〉 = V.(ii)

Now if S = Xt, then, by (i), (ii) and 1.14.1, R ∈ Z(GL(V )), a contradiction.
Suppose S = XtX. Note that by 3.2, gcd

{
{i : αn−i 6= 0} ∪ {n}

}
=

1, thus, by (i), (ii) and 1.14.5, R ∈ Z(GL(V )), a contradiction. Finally
suppose S = XtX−1. Then, by 2.5, α(FS , n− 1) 6= 0, and again, by 1.14.5,
R ∈ Z(GL(V )), a contradiction. This shows (1). (2) follows immediately
from (1), since, by definition, B(X,Xt) and then, by 1.9.2, B(Xt, X), so by
definition, ∆(L) is balanced.

4. The Symplectic Groups and Unitary Groups in even
dimension.

In this section n = 2k ≥ 4. Further, F is a field of order q2 and K ≤ F
is a field of order q. L is one of the following groups. Either L = Fix (τ),
where τ : SLn(K) → SLn(K) is the automorphism defined in 1.4.4, or
L = Fix (τσq), where τσq : SLn(F) → SLn(F) is the automorphism defined
in 1.4.4 and 1.4.5. Thus, by 1.12.3, in the first case L ' Spn(q), and in
the second case L ' SUn(q). The purpose of this section is to prove that
Theorem 1.6 holds for (the simple version of) L. We’ll pick two elements
X,Y ∈ L and show that B(X,Y t) and B(Y,Xt). By 1.9.1, also B(Y t, X)
and thus the elements X,Y show that ∆(L) is balanced. In most cases, we’ll
take X = Y , but when char (F) = 3, it turns out that we must pick Y 6= X.
For the moment we fix elements β1, . . . , βk−1, γ1, . . . , γk−1, α ∈ K∗. Using
the notation in 1.1.8 we let

a = ak(β1, . . . , βk−1) a1 = ak(γ1, . . . , γk−1)

b = bk(β1, . . . , βk−1) b1 = bk(γ1, . . . , γk−1)

g = diag (a, b−1) g1 = diag (a1, b
−1
1 )

u = un
k(α)

X = gu Y = g1u.
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Towards the end of Section 4 we’ll specialize and give concrete values to
βi, γi and α. Note that by 1.11, X,Y ∈ L.

4.1. Let u = un
k(α). Then:

uut = diag
(
Ik−1,

[
1 α
α α2 + 1

]
, Ik−1

)
(1)

(uut)−1 = diag
(
Ik−1,

[
α2 + 1 α
α 1

]
, Ik−1

)
.

u−1ut = diag
(
Ik−1,

[
1 α
α 1− α2

]
, Ik−1

)
(2)

(u−1ut)−1 = diag
(
Ik−1,

[
1− α2 α
α 1

]
, Ik−1

)
.

(3) [u, gt] = 1.

Proof. This is obvious.

4.2. Let ε ∈ {1,−1}. Then:
(1) XY t = guutgt

1, (X,Y t)−1 = (gt
1)
−1(uut)−1g−1.

(2) X−1Y t = u−1utg−1gt
1 and (X−1Y t)−1 = (gt

1)
−1g(u−1ut)−1.

(3) X =
[
a 0k,k

E b−1

]
with E some k × k matrix, such that E1,k = α.

(4) XεY t =
[
aεat

1 R1,2

R2,1 R2,2

]
(XεY t)−1 =

[
R′1,1 R′1,2

R′2,1 bt1b
ε

]
with Ri,j and R′i,j

some k × k matrices. Further, the first k − 1 rows of R1,2 are zero.
(5) Let S ∈ {Y t, XεY t}. Then for 1 ≤ i ≤ k − 1, viS = v + δi+1vi+1, with

v ∈ Vi and δi+1 ∈ K∗.
(6) Let S ∈ {Y t, XεY t}. Then for k ≤ i ≤ n − 1, viS

−1 = v + δi+1vi+1,
with v ∈ Vi and δi+1 ∈ K∗.

(7) Let S ∈ {Y t, XεY t}, then V = 〈O(v1, S)〉.
(8) Let S ∈ {Y t, XεY t}, then Sk,n 6= 0.

Proof. (1) is obvious. For (2), we have X−1Y t = u−1g−1utgt
1. By 4.1.3,

[g−1, ut] = 1, and (2) follows. (3) is clear, the (1, k)-entry of E is α·(b−1)1,1 =
α.

To show(4) and (5), let 1 ≤ i ≤ k − 1, then viu
−1ut = vi, so viX

−1Y t =
vig

−1gt
1. Also vig ∈ Vi, so vig(uut) = vig and viXY

t = vigg
t
1. We conclude

that:

For 1 ≤ i ≤ k − 1, viX
εY t = vig

εgt
1.(i)

Now the shape of XεY t follows from (3) and (i), since, by (i), the first k− 1
rows of R1,2 are zero. Also the shape of (XεY t)−1, follows from (3). For
(5), we use (i). Note that aε is unipotent, lower triangular and at

1 is upper
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triangular unipotent with (at
1)i,j = 0, for j > i+ 1, and (at

1)i,i+1 6= 0. This
easily implies (5), for S = XεY t. For S = Y t, viY

t = vi + βk−ivi+1, for all
1 ≤ i ≤ k − 1, thus (5) holds for Y t as well.

For (6), note that for h ∈ {bt1, bt1bε}, hi,j = 0, for j > i+1, and hi,i+1 6= 0,
for all 1 ≤ i ≤ k − 1. This clearly holds for bt1 and since this holds for
bt1 and bε is unipotent lower triangular, it also hold for bt1b

ε. Thus, by (4),
(6) holds for S ∈ {Y t, XεY t} and k + 1 ≤ i ≤ n − 1. We compute that
vk(Y t)−1 = vk(gt

1)
−1(ut)−1 = vk(ut)−1 = vk − αvk+1. Also vk(XεY t)−1 =

vk(Y t)−1X−ε = (vk − αvk+1)X−ε = vkX
−ε − αvk+1X

−ε. Now vkX
−ε ∈ Vk,

and vk+1X
−ε ≡ vk+1 (mod Vk), so (6) follows. (7) follows from (5) and (6),

since by (5), Vk ⊆ 〈O(v1, S)〉, and then by (6), 〈O(v1, S)〉 = V .
Finally, to show (8), note that vkX

ε = v+ vk, with v ∈ Vk−1, and by (5),
vY t ∈ Vk. Thus for S ∈ {Y t, XεY t}, Sk,n = (Y t)k,n. Now vkY

t = vku
tgt

1 =
(vk + αvk+1)gt

1 = vk + αvk+1g
t
1. Now it is easy to check that (b−1

1 )k,1 =∏k
i=1 γi 6= 0, thus (gt

1)k+1,n = (b−1
1 )k,1 6= 0, hence (Y t)k,n = (gt

1)k+1,n 6= 0
and (8) is proved.

4.3. Let ε ∈ {1,−1} and let S ∈ {Y t, XεY t}. Let R ∈ ∆≤2(X) ∩∆≤1(S).
Then v1 is a characteristic vector of R.

Proof. Let h ∈ ∆≤1(X) ∩∆≤1(R). Then, [h,X] = 1, so by 4.2.3 and 1.13,
there exists 0 6= β ∈ K, and 1 ≤ r ≤ n − 1, such that h − βIn ∈ Tn(r). We
use 1.15. We take in 1.15, T = h− βIn. Note that R commutes with h and
hence with T .

Suppose first that r ≤ k−1, we take in 1.15 j = r = m and ` = 0. Notice
that by 4.2.5, hypothesis (a) of 1.15 is satisfied, hypothesis (b) and (c) of
1.15 are satisfied by definition, and we observed that hypothesis (e) of 1.15
is satisfied. Finally, since R centralizes T, Vr is R-invariant. Hence 1.15
completes the proof in this case.

Suppose next that r ≥ k, we take in 1.15, j = k − 1, ` = 1 and m =
dim(im(T )). Notice that im (T ) = Vm and im (T ) is R-invariant. Also, by
4.2.8, Sk,n 6= 0, so clearly vk /∈ ker(ST ) and hypothesis (c) of 1.15 holds.
Thus 1.15 completes the proof in this case too.

From this point to the end of Section 4 we specialize and set:

If |K| = 2, or |K| > 3, or k 6≡ 1 (mod 3),
βi = γi = 1, for all 1 ≤ i ≤ k − 1, in particular, X = Y .

If |K| = 3 and k ≡ 1 (mod 3),
βi = γi = 1, for all 2 ≤ i ≤ k − 1 and β1 = −γ1 = β.

4.4. (1) If |K| > 3, or k 6≡ 1 (mod 3), we can find α ∈ K∗ such that
α(FS , 1) 6= 0 for all S ∈ {XY t, X−1Y t}.

(2) If |K| = 3, or k ≡ 1 (mod 3), then for α = 1 we have α(FS , 1) 6= 0,
for all S ∈ {XY t, X−1Y t}.
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(3) If |K| = 2, then for α = 1, gcd
{
{i : α(FS , n − i) 6= 0} ∪ {n}

}
is

relatively prime to 3, for all S ∈ {XY t, X−1Y t}.

Proof. For (1), note that by our choice of X and Y , X = Y . Further, FXXt

is the polynomial Hn of 2.13. Thus, α(FXXt , 1) = −
(
k+1
2

)
− (α2 + 2)k + 1

by 2.13.2. Also, by 2.15, α(FX−1Xt , 1) = α2− 2. The reader may now easily
verify (using also 2.13.3) that we can choose α ∈ K∗ as asserted in (1).

So suppose |K| = 3 and k ≡ 1 (mod 3). Then by 2.14.3, and 2.16, (2)
holds. Finally assume |K| = 2. Then (3) holds by 2.13.4-2.13.7 and by 2.15.

We now specialize further and choose α as in 4.4, in the respective cases.

4.5. Set Λ = ∆(L) and let ε ∈ {1,−1} and let S ∈ {Y t, XεY t}. Then:
(1) dΛ(X,S) > 3.
(2) BΛ(X,Y t) and BΛ(Y,Xt).
(3) ∆(L) is balanced.

Proof. Suppose dΛ(X,S) ≤ 3 and let R ∈ Λ≤2(X) ∩ Λ≤1(S). Of course
R ∈ ∆≤2(X) ∩∆≤1(S), so by 4.3,

v1 is a characteristic vector of R.(i)

If S = Y t, then [R,S] = 1, so by (i), 4.2.7 and 1.14.1, R ∈ Z(L), a contra-
diction. So (1) holds in case S = Y t. So assume S = XεY t.

Suppose first that |K| > 3, or |K| = 3 and k 6≡ 1 (mod 3), then using
4.4.1, (i), 4.2.7 and 1.14.5, we see that R ∈ Z(L), a contradiction. This
shows (1) in this case. By (1), BΛ(X,Y t) holds here, and since here X = Y ,
1.9.2 implies (2) in this case.

Suppose |K| = 3 and k ≡ 1 (mod 3). Then using 4.4.2, (i), 4.2.7 and
1.14.5, we see that R ∈ Z(L), a contradiction. Hence (1) holds here and by
(1) and definition, BΛ(X,Y t) holds in this case. By Symmetry d(Y,Xt) > 3
and d(Y, Y εXt) > 3. Thus BΛ(Y,Xt) also holds and (2) holds in this case
as well.

Finally, suppose |K| = 2. If L ' Spn(q), then Z(L) = 1, so [R,S] = 1,
and hence, by (i), 4.2.7 and 1.14.1, R = 1, a contradiction. So assume
L ' SUn(q). Then |F∗| = 3. Now 4.4.3, (i), 4.2.7 and 1.14.5 show that
R ∈ Z(L), a contradiction. Again we see that (1) holds, and since X = Y
here, (2) holds here (as above). Note that (2) implies (3) by 1.9 and by
definition.

5. The Unitary and Orthogonal Groups in odd dimension.

In this section F is a field of order q2 and K ≤ F is the subfield of order q.
We let n = 2k+1 ≥ 3 be an odd integer and U ' SU(n,F) ≤ SL(n,F) is the
special unitary group. We view U as the fixed points of the automorphism
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τσq : SL(n,F) → SL(n,F), described in 1.12.3. We denote by U ≥ O '
SO(n,K), the subgroup O = U ∩ SL(n,K). L denotes one of the groups
U or O. When L = O, we assume that n ≥ 7 and that q is odd (this is
because if q is even or n < 7, O′ is either not simple, or isomorphic to simple
groups that we handled earlier). We continue the notation of Section 1. In
particular, V is a vector space of dimension n over F.

Throughout this section Λ = ∆(L). The purpose of this section is to
prove that when L′/Z(L′) is simple, ∆(L′) is balanced (and hence, by 1.7,
∆(L′/Z(L′)) is balanced). For that we’ll indicate elements X,Y ∈ L′ such
that BΛ(X,Y t) and BΛ(Y,Xt) (see 1.10).

Notation 5.1. (1) given an element r = diag (Ik−1, s, Ik−1) ∈ GL(n,F),
we denote s(r) := s (note that s ∈ GL3(F)).

(2) Let θ ∈ F∗. We denote by u0(θ) = diag (Ik−1, s, Ik−1), with

s =

1 0 0
0 1 0
θ 0 1

 .
(3) Whenever we write ui(α), we mean un

i (α) (see 1.1.7).

5.2. Let α ∈ F∗ and β1, . . . , βk−1 ∈ K∗. Set a = ak(β1, . . . , βk−1), b =
bk(β1, . . . , βk−1), B = bk+1(α, β1, . . . , βk−1) and g = diag (a, 1, b−1). Let
u = uk(α)uk+1(αq)u0(θ). Then:

(1) g ∈ O.
(2) gun

k+1(α) = diag (a,B−1).
(3) [g, ut] = 1.

Proof. (1) is 1.11. For (2), note that g = diag (a, z), with

z = uk+1
k (βk−1)uk+1

k−1(βk−2) · · ·uk+1
2 (β1).

Also uk+1(α) = diag (Ik, uk+1
1 (α)). Thus guk+1(α) = diag (a, h), with h =

zuk+1
1 (α) = uk+1

k (βk−1)uk+1
k−1(βk−2) · · ·uk+1

2 (β1)uk+1
1 (α) = B−1.

(3) follows from the fact that (uk(α))t, (uk+1(αq))t, and (u0(θ))t commute
with g.

5.3. Let α, β, θ ∈ F and set u = uk(α)uk+1(β)u0(θ). Then:

(1) s(uk(α)uk+1(β)) =

1 0 0
α 1 0
0 β 1

 .
(2) s(uk+1(β)uk(α)) =

 1 0 0
α 1 0
αβ β 1

 .
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(3)

u0(θ) = uk(1)uk+1(−θ)uk(−1)uk+1(θ)

= uk+1(1)uk(θ)uk+1(−1)uk(−θ).

(4) u0(θ)τ = u0(−θ).
(5) u ∈ Fix (τσq) iff β = αq and θ + θq = αq+1.

Proof. (1) and (2) are easy to check. For (3) we have

s
{
uk(1)uk+1(−θ)uk(−1)uk+1(θ)

}
=

1 0 0
1 1 0
0 θ 1

 ·
1 0 0

1 1 0
0 θ 1


=

1 0 0
0 1 0
θ 0 1

 = s(u0(θ))

and

s
{
uk+1(1)uk(θ)uk+1(−1)uk(−θ)

}
=

1 0 0
θ 1 0
θ 1 1

 ·
1 0 0
θ 1 0
θ 1 1


=

1 0 0
0 1 0
θ 0 1

 = s(u0(θ)).

For (4), note that by (3), u0(θ)τ = {uk(1)uk+1(−θ)uk(−1)uk+1(θ)}τ =
uk+1(1)uk(−θ)uk+1(−1)uk(θ) = u0(−θ).

For (5), we have

s(u) =

1 0 0
α 1 0
θ β 1

 .
Now, by (4), uτσq = uk+1(αq)uk(βq)u0(−θq), so

s(uτσq) =

 1 0 0
βq 1 0

(αβ − θ)q αq 1

 .
So the lemma follows.

Notation 5.4. Let α, θ ∈ F such that θ + θq = αq+1.
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(1) We denote

un(α, θ) = u(α, θ) = uk(α)uk+1(αq)u0(θ)

= uk+1(αq)uk(α)u0(−θq).

(2) We denote X(α, θ) = diag (ak, 1, b−1
k )u(α, θ).

Note that we denote u(α, θ) and X(α, θ) only when θ+θq = αq+1, so that
u(α, θ), X(α, θ) ∈ U .

5.5. Let α, β ∈ F∗ and let u = uk+1
1 (−α), w = uk+1

1 (−β) and ε ∈ {1,−1}.
Then:

(1) (wtuε)−1 = diag
([

1 β
εα εαβ + 1

]
, Ik−1

)
.

(2) wtuε = diag
([

1 + εαβ β
−εα 1

]
, Ik−1

)
.

Proof. This is obvious.

5.6. Suppose char (F) = 3. Then:
(1) For B = bk+1, FBtB = Fk+1 and FBtB−1 = Qk+1, in particular

FBtB[−1] 6= 0 and FBtB−1 [−1] = Qk+1[−1] = (−1)k+1(k + 2).
(2) Suppose k ≥ 4 and let B = bk+1(1, 1, 1, β4, 1, . . . , 1) and C = bk+1(1, 1,

1, γ4, 1, . . . , 1), with β4γ4 = −1. Then for {T,Z} = {B,C}, and ε ∈
{1,−1}, FT tZε [−1] 6= 0.

Proof. By definition 1.2.4 and by 2.6, if B = bk+1, then FBtB = Fk+1 and by
2.5, FBtB−1 = Qk+1. Next note that F1[λ] = λ− 1, F2[λ] = λ2 − 3λ+ 1 and
for m ≥ 3, Fm[λ] = (λ− 2)Fm−1[λ]− Fm−2[λ] (see 2.6). Since char (F) = 3,
Fm[−1] = −Fm−2[−1]. Hence

Fm[−1] 6= 0 for all m ≥ 1.(i)

Further, for m ≥ 1, Qm[−1] = (−1)m{1 − (−1) + (−1)2 − (−1)3 + · · · } =
(−1)m(m+ 1). Hence

Qm[−1] = (−1)m(m+ 1), for all m ≥ 1.(ii)

Now (i) and (ii) imply (1).
For (2), let β1, β2, . . . , βk, γ1, γ2, . . . , γk ∈ F∗. Let B = bk+1(β1, β2, . . . ,

βk), b = bk(β2, β3, . . . , βk), C = bk+1(γ1, γ2, . . . , γk), c = bk(γ2, γ3, . . . , γk)
and for 1 ≤ i ≤ 4, bi = bk−1(βi+2, . . . , βk) and ci = bk−i(γi+2, . . . , γk). We
claim that

F(CtB)−1 [−1] = (1− β1γ1)F(ctb)−1 [−1]− β1γ1F(ct
1b1)−1 [−1].(iii)

FCtB−1 [−1] = Fctb−1 [−1]− β1γ1Fct
1b−1

1
[−1].(iv)

If β1γ1 = 1, then F(CtB)−1 [−1] = −F(ct
1b1)−1 [−1].(v)

If β1γ1 = 1, then FCtB−1 [−1] = −β2γ2Fct
2b−1

2
[−1].(vi)



164 YOAV SEGEV AND GARY M. SEITZ

Indeed, (iii) follows from 2.12.2, and (iv) follows from 2.12.3. (v) fol-
lows from (iii). For (vi), note that by (iv), Fctb−1 [−1] = Fct

1b−1
1

[−1] −
β2γ2Fct

2b−1
2

[−1]. Thus, by (iv) again,

FCtB−1 [−1] = Fctb−1 [−1]− Fct
1b−1

1
[−1]

= Fct
1b−1

1
[−1]− β2γ2Fct

2b−1
2

[−1]− Fct
1b−1

1
[−1]

= −β2γ2Fct
2b−1

2
[−1].

Let now B and C be as in (2). Then β1γ1 = β3γ3 = 1, so applying
(v) twice, we see that F(CtB)−1 [−1] = −F(ct

1b1)−1 [−1] = F(ct
3b3)−1 [−1] =

F k−3[−1], where the last equality follows from the fact that c3 = b3 = bk−3.
Note now that (by 2.7.1), F k−3[−1] = Fk−3[−1], so by (i), F k−3[−1] 6= 0,
and hence F(CtB)−1 [−1] 6= 0. Next, by (vi), FCtB−1 [−1] = −Fct

2b−1
2

[−1] =
−{Fct

3b−1
3

[−1] − β4γ4Fct
4b−1

4
[−1]} = −{Qk−3[−1] + Qk−4[−1]} =

−{(−1)k−3(k − 2) + (−1)k−4(k − 3)} ∈ {1,−1}. (Note that this also works
when k = 4 and 5, where −Fct

2b−1
2

[−1] can be easily computed.) This com-
pletes the proof of (2).

5.7. (1) There are at least q − 2 − [ q−2
2 ] elements δ ∈ K such that the

polynomial x2 − δx+ δ is irreducible over K.
(2) If δ ∈ K is as in (1) and α ∈ F is a root of the polynomial x2− δx+ δ,

then δ = αq+1 = α+ αq.

Proof. Consider the set of polynomials P := {x2 − δx + δ : δ ∈ K}. There
are q polynomials in P . For δ ∈ K, denote pδ = x2 − δx+ δ. For p ∈ P , let
r(p) be the set of roots of p. Note that for 0, 4 6= δ ∈ K, |r(pδ)| = 2 and if
γ, δ ∈ K are distinct, then r(pγ) ∩ r(pδ) = ∅. Hence if t is the number of
polynomials pδ ∈ P such δ 6= 0, 4 and pδ has a root in K, then 2t+2 ≤ q, so
t ≤ [ q−2

2 ]. Thus |{δ ∈ K : pδ has a root in K}| ≤ [ q−2
2 ] + 2, and (1) follows.

Let δ ∈ K as in (1). Let α be a root of pδ in F. Then the other root of pδ

is αq so pδ = (x− α)(x− αq) and hence δ = αq+1 = αq + α.

Notation 5.8. (1) We denote Ξ = {α ∈ F−K : α+ αq = αq+1}.
(2) We denote by D = {δ ∈ K : pδ[λ] = λ2 − δλ+ δ is irreducible over K}.

5.9. Set u = u(α, θ) and w = u(β, ρ). Then:

s(u) =

1 0 0
α 1 0
θ αq 1

 (s(u))t =

1 α θ
0 1 αq

0 0 1

 ,(1)

(s(u))−1 =

 1 0 0
−α 1 0
θq −αq 1

 ((s(u))−1) =

1 −α θq

0 1 −αq

0 0 1

 ,(2)
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s(uwt) =

1 β ρ
α αβ + 1 αρ+ βq

θ βθ + αq θρ+ αqβq + 1

 ,(3)

s((uwt)−1) =

1 + αβ + θqρq β − αqρq ρq

−α− βqθq αqβq + 1 −βq

θq −αq 1

 ,(4)

s(u−1wt) =

 1 β ρ
−α 1− αβ −αρ+ βq

θq βθq − αq ρθq − αqβq + 1

 ,(5)

s((u−1wt)−1) =

1− αβ + θρq −β + αqρq ρq

α− θβq 1− αqβq −βq

θ αq 1

 .(6)

Proof. (1) is obvious. For (2), observe that u−1 = u0(−θ)uk+1(−αq)uk(−α),
so

s(u−1) =

 1 0 0
0 1 0
−θ 0 1

 ·
 1 0 0
−α 1 0
αq+1 −αq 1


=

 1 0 0
−α 1 0
θq −αq 1

 .

For (3) and (4), we compute:

s(uwt) =

1 0 0
α 1 0
θ αq 1

 ·
1 β ρ

0 1 βq

0 0 1


=

1 β ρ
α αβ + 1 αρ+ βq

θ βθ + αq θρ+ αqβq + 1

 .
s((uwt)−1 =

1 −β ρq

0 1 −βq

0 0 1

 ·
 1 0 0
−α 1 0
θq −αq 1


=

1 + αβ + θqρq β − αqρq ρq

−α− βqθq αqβq + 1 −βq

θq −αq 1

 .
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For (5) and (6) we compute:

s(u−1wt) =

 1 0 0
−α 1 0
θq −αq 1

 ·
1 β ρ

0 1 βq

0 0 1


=

 1 β ρ
−α 1− αβ −αρ+ βq

θq βθq − αq ρθq − αqβq + 1


s((u−1wt)−1) =

1 −β ρq

0 1 −βq

0 0 1

 ·
1 0 0
α 1 0
θ αq 1


=

1− αβ + θρq −β + αqρq ρq

α− θβq 1− αqβq −βq

θ αq 1

 .
5.10. Let X = X(α, θ) and Y = X(β, ρ). Then:

(1) α (FXY t , 1) =
(
k+1
2

)
+ (αβ + θqρq + 2)k + αqβq.

(2) α (FX−1Y t , 1) = 3− αβ − αqβq + θρq.
(3) If α (FXY t , 1) = 0, then (αqβq − αβ)(k − 1) = (θqρq − θρ)k.
(4) If α (FXXt , 1) = 0, then (α2q − α2)(k − 1) = (θ2q − θ2)k. Further, if

α ∈ Ξ, then (αq − α)(k − 1) = (θq − θ)k.
Suppose further that α ∈ Ξ, and set δ = α+ αq = αq+1. Then:

(5) If α(FX−1Xt , 1) = 0, then δ2 − 2δ = 3 + θq+1.
(6) If θ = α, then α(FXXt , 1) 6= 0, while if θ = αq, then either α(FXXt , 1)

6= 0, or 2k − 1 ≡ 0 (mod char(K)) and 8δ2 − 16δ + 11 = 0.
(7) If θ = α or α2, then either α(FX−1Xt , 1) 6= 0, or δ2 − 3δ − 3 = 0.
(8) Suppose char (K) 6= 2. Suppose further that β = αq, ρ = θ and θ 6= K,

then for {T,Z} = {X,Y }, α(FTZt , 1) 6= 0.
(9) If β = αq, ρ = θ and 2δ 6= 3 + θq+1, then for {T,Z} = {X,Y },

α(FT−1Zt , 1) 6= 0.
(10) We can choose α ∈ Ξ and θ ∈ F − K, with θ + θq = αq+1 = δ, such

that if we set X = X(α, θ) and Y = X(αq, θ), then either
(10i) q = 2, θ = α, and for ε ∈ {1,−1}, and Z ∈ {X,Y }, α(FZεZt , 1) 6= 0.

Or
(10ii) q = 4, θ = α + 1 and there exists β ∈ F − {α, αq), with βq+1 = δ,

such that if we set W = X(β, θ), then for ε ∈ {1,−1}, and Z ∈
{X,Y,W}, α(FZεZt , 1) 6= 0. Or

(10iii) q 6= 2, 4 and α(FT εZt , 1) 6= 0, for T,Z ∈ {X,Y } and ε ∈ {1,−1}.

Proof. Set u = u(α, θ) and w = u(β, ρ). For (1), let xk = at
kak, yk =

bkb
t
k, and g = diag (xk, 1, y−1

k ). Note that FXY t = FY tX . Further Y tX =
wtdiag (at

k, 1, (b
−1
k )t)diag (ak, 1, b−1

k )u. Thus, clearly, FXY t = Fhg, where



ANISOTROPIC GROUPS 167

h = uwt. By 5.9.4, h−1 = diag (Ik−1, s, Ik−1), with

s = s((uwt)−1) =

1 + αβ + θqρq β − αqρq ρq

−α− βqθq αqβq + 1 −βq

θq −αq 1

 .
Thus, by 2.10 (with A = xk and B = y−1

k ), α(Fhg, 1) = α(R[λ], 1), where

R[λ] = (β22λ− 1)FAFB − (β33 − 1)λFAFM1,1(B)(i)

−(β11 − 1)λFMk,k(A)FB,

and the βij are given by matrix s above. Using 2.6, we see that

FA = Fk, FMk,k(A) = Gk−1 and FB = F k.

Hence (i) implies

R[λ] = {(αqβq + 1)λ− 1}FkF k − (αβ + θqρq)λGk−1 · F k.

Now 2.6 gives

Fk ≡ (−1)k

{
1−

(
k + 1

2

)
λ

}
(mod (λ2))

Gk−1 ≡ (−1)k−1

{
k −

(
k + 1

3

)
λ

}
(mod (λ2))

F k ≡ (−1)k{1− (2k − 1)λ} (mod (λ2))

Hence modulo the ideal (λ2),

R[λ] ≡ {(αqβq + 1)λ− 1} ·
{

1−
(
k + 1

2

)
λ

}
· {1− (2k − 1)λ}

+ (αβ + θqρq)λk

≡ −1 +
{(

k + 1
2

)
+ (αβ + θqρq + 2)k + αqβq

}
λ.

This shows (1).
For (2), let xk = a−1

k at
k, yk = bk(b−1

k )t and g = diag (xk, 1, yk). Us-
ing 5.2.3, we see that X−1Y t = u−1diag (a−1

k , 1, bk)wtdiag (at
k, 1, (b

−1
k )t) =

u−1wtdiag (a−1
k , 1, bk)diag (at

k, 1, (b
−1
k )t) = hg, where h = u−1wt. Thus,

FX−1Y t = Fhg. By 5.9.6, h−1 = diag (Ik−1, s, Ik−1), with

s = s((u−1wt)−1) =

1− αβ + θρq −β + αqρq ρq

α− θβq 1− αqβq −βq

θ αq 1

 .
Using 2.10 again (with A = xk and B = yk), α(Fhg, 1) = α(R[λ], 1), with
R[λ] as in (i) and the βij are given by the matrix s above. Using 2.5 and 2.11,
we see that

FA = Qk, FMk,k(A) = Qk−1, FB = Qk.
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Hence

R[λ] = {(1− αqβq)λ− 1}Q2
k − (−αβ + θρq)λQk−1 ·Qk.

Now

Qk ≡ (−1)k(1− λ) (mod (λ2))

Qk−1 ≡ (−1)k−1 (mod (λ)).

Hence modulo the ideal (λ2),

R[λ] ≡ {(1− αqβq)λ− 1}(1− λ)2 + (−αβ + θρq)λ

≡ −1 + {3− αβ − αqβq + θρq}λ.

This shows (2).
Suppose α(FXY t , 1) = 0. Applying σq, we get

α(FXY t , 1) = 0 = α(FXY t , 1)σq,

hence

(αβ + θqρq)k + αqβq = (αqβq + θρ)k + αβ

so

(αqβq − αβ)(k − 1) = (θqρq − θρ)k

and (3) is proved. For (4), take Y = X in (3), to get (α2q−α2)(k−1) = (θ2q−
θ2)k. Further, (α2q−α2) = (αq +α)(αq−α), and (θ2q−θ2) = (θq +θ)(θq−θ).
So if α ∈ Ξ, (αq + α) = αq+1 = θq + θ. This shows (4).

From now on assume α ∈ Ξ and set δ = αq+1. For (5), take X = Y in (2)
and note that α2 + α2q = (α+ αq)2 − 2αq+1 = δ2 − 2δ.

Suppose θ = α and α(FXXt , 1) = 0. Then, by (4), (αq − α)(k − 1) =
(αq − α)k. Hence αq = α, which is false, since α /∈ K. Suppose θ = αq

and α(FXXt , 1) = 0. Then, by (4), (αq − α)(k − 1) = (α − αq)k hence
(2k − 1)(αq − α) = 0. As above, we get 2k − 1 = 0 in K, so

(
k+1
2

)
= 3

8

in K. Also, by (1), 0 = α(FXXt , 1) =
(
k+1
2

)
+ (α2 + θ2q + 2)k + α2q =

3
8 + (α2 + α2 + 2)1

2 + α2q = 11
8 + α2 + α2q. Since α2 + α2q = δ2 − 2δ, we get

that 11
8 + δ2 − 2δ = 0. This shows (6).

For (7) suppose that θ = α or αq. Then, θq+1 = δ, so, by (5), if
α(FX−1Xt , 1) = 0, then δ2 − 2δ = 3 + δ, and δ2 − 3δ− 3 = 0, this shows (7).

Assume the hypothesis of (8). Note that αqβq − αβ = 0. Thus, by (3), if
α(FXY t , 1) = 0, then 0 = (θ2q − θ2)k = δ(θq − θ)k. Thus since δ 6= 0 and
since we are assuming that θ /∈ K, k = 0, in K. Then, (1) implies that δ = 0,
a contradiction. By symmetry, (8) holds.

Assume the hypothesis of (9). Note again that αβ = δ, so (9) follows
immediately from (2).
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For (10), assume Y = X(αq, θ). Suppose first that char (K) = 2. Note
that by (4):

If α, θ ∈ F−K such that θ + θq = αq+1,(ii)

then for X = X(α, θ), α(FXXt , 1) 6= 0.

This is because (4) implies that if k is odd and α(FXXt , 1) = 0, then θq +θ =
0, while if k is even and α(FXXt , 1) = 0, then αq + α = 0.

For q = 2, take δ = 1, for q > 2, pick 1 6= δ ∈ D (note that this is
possible by 5.7). Further, if q > 4, take δ such that δ2 + δ + 1 6= 0 (note
that this is possible). Let α ∈ Ξ, with αq+1 = δ. If q = 2, take θ = α,
if q = 4, take θ = α + 1 and if q > 4, take θ = α + δ. Note that θ /∈ K.
When q = 4, we take W = X(β, θ), with β ∈ F − (K ∪ {α, αq}), such that
βq+1 = αq+1 = δ. Note that such a choice of β is possible. Now, by (ii), for
all q ≥ 2, α(FZZt , 1) 6= 0, for Z ∈ {X,Y,W}.

Next, for q = 4, θq+1 = (α+1)q+1 = (αq+1)(α+1) = αq+1+(αq+α)+1 =
1. Of course, when q = 2, θq+1 = 1. Also, by (2), for Z ∈ {X,Y,W}, if
Z = X(γ, θ), then α(FZ−1Zt , 1) = 3 + γ2 + γ2q + 1 = γ2 + γ2q = (γ + γq)2.
Since γ /∈ K, for all possibilities of γ and for q = 2, 4, α(FZ−1Zt , 1) 6= 0.
Thus (10i) and (10ii) are proved.

We now assume that char (F) = 2 and q > 4. Now θq+1 = (α + δ)q+1 =
(αq+δ)(α+δ) = αq+1+δ(αq+α)+δ2 = δ+δ2+δ2 = δ. Hence, 3+θq+1 = δ+1.
So if δ2 − 2δ = 3 + θq+1, then δ2 = δ + 1, this contradicts the choice of δ
(recall δ2 + δ + 1 6= 0). Hence, by (5), α(FZ−1Zt , 1) 6= 0, for Z ∈ {X,Y }.

Suppose α(FXY t , 1) = 0. Then, by (3), (with β = αq), we get 0 =
(θq + θ)2k = δ2k, so k ≡ 0 (mod 2). Then by (1),

(
k+1
2

)
+ δ = 0. Thus

k ≡ 2 (mod 4) (since δ 6= 0) and δ = 1, contradicting the choice of δ. Thus
α(FXY t , 1) 6= 0; by symmetry, α(FY Xt , 1) 6= 0.

Next note that we showed that θq+1 = δ. Thus θq+1 + 3 = δ + 1. Since
δ 6= 1, δ + 1 6= 0, so by (9), α(FT−1Zt , 1) = 0, for {T,Z} = {X,Y }. Thus
(10iii) holds in case char (K) = 2.

So suppose char (K) 6= 2. Suppose further that q 6= 5. We take 3 6= δ ∈ D,
α ∈ Ξ, with αq+1 = δ and θ = α. Since θ /∈ K, (8) implies that for
{T,Z} = {X,Y }, α(FTZt , 1) 6= 0. Since δ 6= 3, (and θq+1 = αq+1 = δ), (9)
implies that for {T,Z} = {X,Y }, α(FT−1Zt , 1) 6= 0. Next we show that we
can pick δ ∈ D, such that

δ 6= 3 and 8δ2 − 16δ + 11 6= 0 6= δ2 − 3δ − 3.(iii)

By (6) and (7), this shows (10), for q 6= 5. If q ≥ 13, then, by 5.7.1, |D| ≥ 6,
so clearly, we can pick δ 6= 3 such that (iii) holds. So suppose q ≤ 11.
Suppose char (K) = 3. Then δ2 − 3δ − 3 6= 0, so if q = 9, then, by 5.7.1, we
can pick δ (6= 3) so that 8δ2 − 16δ + 11 6= 0, while if q = 3, take δ = −1, so
(iii) holds in this case. For q = 11, take δ = 1. For q = 7, take δ = 2.
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Finally, suppose q = 5. We take δ = 1, α ∈ Ξ, with αq+1 = δ and we
let θ be as follows. If k 6≡ 2 (mod 5), θ = θ1 = α + 3(α − αq) = 2αq − α,
while if k ≡ 2 (mod 5), θ = θq

1 (note that θ + θq = α + αq = αq+1). Note
that if θ ∈ K, then α ∈ K, which is false. Thus θ /∈ K. Hence, by (8),
for {T,Z} = {X,Y }, α(FTZt , 1) 6= 0. Next, θq+1 = (2α − αq)(2αq − α) =
4δ − 2(α2 + α2q) + δ = −2(δ2 − 2δ). Thus

θq+1 = 2.(iv)

By (iv) θq+1 +3 = 0 6= 2δ. Hence, by (9), for {T,Z} = {X,Y }, α(FT−1Zt , 1)
6= 0. Also, δ2 − 2δ = −1 6= 0 = 3 + θq+1, so, by (5), α(FZ−1Zt , 1) 6= 0, for
Z ∈ {X,Y }.

Next, θq
1 − θ1 = 2(α− αq)− (αq − α) = 3(α− αq) = 2(αq − α). So:

If k 6≡ 2 (mod 5), θq − θ = 2(αq − α)(v)

and if k ≡ 2 (mod 5), θq − θ = 3(αq − α).

Suppose first that k 6≡ 2 (mod 5). Suppose α(FXXt , 1) = 0, then by (4)
and (v), (k − 1) = 2k so k ≡ −1 (mod 5). Then, by (1), α(FXXt , 1) =(
k+1
2

)
+(α2 + θ2q +2)k+α2q = −(α2 + θ2q +2)+α2q = α2q−α2− θ2q− 2 =

α2q − α2 − (2α − αq)2 − 2 = α2q − α2 − 4α2 + 4 − α2q − 2 = 2 6= 0, a
contradiction.

Suppose α(FY Y t , 1) = 0. Then, by (4), and (v) (replacing α by αq in (4)),
−(k − 1) ≡ 2k (mod 5), so k ≡ 2 (mod 5), a contradiction.

Finally, suppose k ≡ 2 (mod 5). Then, by (1), α(FXXt , 1) =
(
k+1
2

)
+

(α2q + θ2q + 2)k + α2 = 3 + 2(α2q + θ2q + 2) + α2 = 2 + 2α2q + α2 + 2θ2q =
2+2α2q +α2+2(2αq−α)2 = 2+2α2q +α2+2(4α2q−4+α2) = −1+3α2 6= 0.

Suppose α(FY Y t , 1) = 0. Then, by (4), and (v) (replacing α by αq in
(4)), −(k − 1) ≡ 3k (mod 5), so k ≡ −1 (mod 5), a contradiction. This
completes the proof of (10) and of 5.10.

5.11. Let β1, . . . , βk−1, γ1, . . . , γk−1 ∈ K∗. Let also α, θ, β, ρ ∈ F∗ such that
αq+1 = θ+θq, βq+1 = ρ+ρq. Set a= ak(β1, . . . , βk−1), a1 = ak(γ1, . . . , γk−1),
b = bk(β1, . . . , βk−1), b1 = bk(γ1, . . . , γk−1), g = diag (a, 1, b−1), g1 =
diag (a1, 1, b−1

1 ), B = uk+1
1 (−αq)diag (1, b), B1 = uk+1

1 (−βq)diag (1, b1), u =
u(α, θ), w = u(β, ρ), X = gu and Y = g1w. Finally let ε ∈ {−1, 1}. Then:

(1) XY t = guwtgt
1, (XY t)−1 = (gt

1)
−1(uwt)−1g−1.

(2) X−1Y t = u−1wtg−1gt
1 and (X−1Y t)−1 = (gt

1)
−1g(u−1wt)−1.

(3) X =
[
a 0k,k+1

E B−1

]
with E some (k + 1) × k matrix, such that E1,k =

α 6= 0.
(4)

XεY t =
[
aεat

1 R
S T

]
(XεY t)−1 =

[
T ′ R′

S′ Bt
1B

ε

]
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with T ′, T,R,R′, S, S′ some k×k, (k+1)×(k+1), k×(k+1), k×(k+1),
(k + 1)× k, (k + 1)× k, matrices respectively. Further, the first k − 1
rows of R are zero.

(5) Let S ∈ {Y t, XεY t}. Then for 1 ≤ i ≤ k− 1, viS = v + δi+1vi+1, with
v ∈ Vi and δi+1 ∈ K∗.

(6) Sk,n 6= 0, for all S ∈ {Y t, XεY t}.
(7) For S ∈ {Y t, XεY t}, there exists v ∈ Vk, η ∈ F and µ ∈ F∗ such that:

vk+1S
−1 ≡ ηvk+1 + µvk+2 (mod Vk).(7i)

vS−1 ≡ (η + ρ1−q)vk+1 + µvk+2 (mod Vk).(7ii)

In all cases µ = −βq. If S = Y t, η = 1, while(7iii)

if S = XεY t, η = 1 + εαqβq.

(8) For S ∈ {Y t, XεY t}, V = 〈O(v1, S)〉 iff −ρ1−q is not a root of FZ ,
where Z = Bt

1, if S = Y t and Z = Bt
1B

ε, if S = XεY t.
(9) If β 6= 0, then V = 〈O(v1, Y t)〉.

Proof. (1) is obvious. For (2), we have X−1Y t = u−1g−1wtgt
1. By 5.2.3,

[g−1, wt] = 1, and (2) follows. For (3) recall from 5.4.1 that

u = uk+1(αq)uk(α)u0(−θq).

Further by 5.2.2, guk+1(αq) = diag (a,B−1). Thus

X = diag (a,B−1)uk(α)u0(−θq).

Note now that

s(uk(α)u0(−θq)) =

 1 0 0
α 1 0
−θq 0 1

 .
Hence (3) follows, the (1, k)-entry of E is α(B−1)1,1 − θq(B−1)1,2 = α · 1−
θq · 0 = α.

To show (4) and (5), let 1 ≤ i ≤ k − 1, then viu
−1wt = vi, so viX

−1Y t =
vig

−1gt
1. Also vig ∈ Vi, so vig(uwt) = vig and viXY

t = vigg
t
1. We conclude

that:

For 1 ≤ i ≤ k − 1, viX
εY t = vig

εgt
1.(i)

Now the shape of XεY t follows from (3) and (i), since, by (i), the first k− 1
rows of R are zero. Also the shape of (XεY t)−1, follows from (3). For
(5), we use (i). Note that aε is unipotent, lower triangular and at

1 is upper
triangular unipotent with (at

1)i,j = 0, for j > i+ 1, and (at
1)i,i+1 6= 0. This

easily implies (5), for S = XεY t. For S = Y t, viY
t = vi + γk−ivi+1, for all

1 ≤ i ≤ k − 1, thus (5) holds for Y t as well.
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Recall now that

s(uwt) =

1 β ρ
α αβ + 1 αρ+ βq

θ βθ + αq θρ+ αqβq + 1


s((uwt)−1) =

1 + αβ + θqρq β − αqρq ρq

−α− βqθq αqβq + 1 −βq

θq −αq 1


s(u−1wt) =

 1 β ρ
−α 1− αβ −αρ+ βq

θq βθq − αq ρθq − αqβq + 1


s((u−1wt)−1) =

1− αβ + θρq −β + αqρq ρq

α− θβq 1− αqβq −βq

θ αq 1

 .
Note now that vkg

−1 ≡ vk ≡ vkg (mod Vk−1), vk+1g
−1 = vk+1 and vk+2g

−1

= vk+2. Since uεwt fixes Vk−1, we see that,

vk(XεY t) ≡ vk(uεwt)gt
1 (mod Vk−1).

Thus modulo Vk, vk(XεY t) ≡ (βvk+1 + ρvk+2)gt
1 ≡ βvk+1 + ρ(v′ + ηvn),

with v′ ∈ 〈vk+2, . . . , vn−1〉, η ∈ F∗. This is because the (k, 1) entry of b−1
1 is

η = γ1γ2 · · · γk−1, and gt
1 = diag (at

1, 1, (b
−1
1 )t). This shows (6), for S = XεY t

and it is easy to see that (6) holds for S = Y t as well.
Next, modulo Vk, we have −ρ−qβqvk(XY t)−1 = −ρ−qβqvk(uwt)−1g−1 ≡

((αqβq+βq+1ρ−q)vk+1−βqvk+2)g−1 = (αqβq+βq+1ρ−q)vk+1−βqvk+2. Since
βq+1 = ρ + ρq, we see that −ρ−qβqvk(XY t)−1 ≡ (αqβq + 1 + ρ1−q)vk+1 −
βqvk+2. Note that vk+1(XY t)−1 ≡ (αqβq +1)vk+1−βqvk+2 (mod Vk). This
shows (7), for S = XY t.

Let v ∈ Vk, such that v(gt
1)
−1g = vk. Then, modulo Vk,

−ρ−qβqv(X−1Y t)−1 = −ρ−qβqvk(u−1wt)−1

≡ ((βq+1ρ−q − αqβq)vk+1 − βqvk+2)

= (1− αqβq + ρ1−q)vk+1 − βqvk+2.

Note that vk+1(X−1Y t)−1 ≡ (1−αqβq)vk+1−βqvk+2 (mod Vk). This shows
(7), for S = X−1Y t.

Next

−ρ−qβqvk(Y t)−1 = −ρ−qβqvk(gt
1)
−1(wt)−1 = −ρ−qβqvk(wt)−1

= −ρ−qβqvk + ρ−qβq+1vk+1 − βqvk+2

= −ρ−qβqvk + (1 + ρ1−q)vk+1 − βqvk+2.

Also vk+1(Y t)−1 = vk+1 − βqvk+2, thus (7) holds for S = Y t and (7) is
proved.
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For (8), set W = 〈O(v1, S)〉. Set also Z = Bt
1, if S = Y t and Z = Bt

1B
ε,

if S = XεY t. By (5), Vk ⊆ W. Let η, µ ∈ F be as in (7iii). Since Vk ⊆ W,

ρ1−qvk+1 + ηvk+1 + µvk+2 ∈ W.(ii)

Also, by (3), (4) and (7i), vk+1diag (Ik, Z) = ηvk+1 + µvk+2. Thus, by (ii),
ρ1−qvk+1 + vk+1diag (Ik, Z) ∈ W, now (8) follows from (4), (5) and 1.17
(taking S−1 in place of S in 1.17); note that 〈O(vk+1,diag (Ik, Z))〉 =
〈vk+1, . . . , vn〉.

Finally, for (9), note that if β 6= 0, then ρ1−q 6= −1, since 0 6= βq+1 =
ρ + ρq. Since 1 is the only root of FBt

1
, −ρ1−q is not a root of FBt

1
, so (9)

follows from (8).

5.12. Let β1, . . . , βk−1, γ1, . . . , γk−1 ∈ K∗. Let also α, θ, β, ρ ∈ F∗ such
that αq+1 = θ + θq, βq+1 = ρ + ρq. Set a = ak(β1, . . . , βk−1), a1 =
ak(γ1, . . . , γk−1), b = bk(β1 . . . , βk−1), b1 = bk(γ1, . . . , γk−1), g = diag (a, 1,
b−1), g1 = diag (a1, 1, b−1

1 ), u = u(α, θ), w = u(β, ρ), X = gu and Y = g1w.
Finally let ε ∈ {−1, 1}.

Let S ∈ {Y t, XεY t} and R ∈ ∆≤2(X) ∩∆≤1(S). Then v1 is a character-
istic vector of R.

Proof. The proof is almost identical to the proof of 4.3. Note first that, by
5.11.3, X satisfies the hypotheses of 1.13. Let h ∈ ∆≤1(X)∩∆≤1(R). Then,
[h,X] = 1, so by 1.13, there exists 0 6= β ∈ K, and 1 ≤ r ≤ n− 1, such that
h− βIn ∈ Tn(r). We use 1.15. We take in 1.15, T = h− βIn. Note that R
commutes with h and hence with T .

Suppose first that r ≤ k − 1, we take in 1.15, j = r = m and ` = 0.
Notice that by 5.11.5, hypothesis (a) of 1.15 is satisfied, hypothesis (b) and
(c) of 1.15 are satisfied, by definition and we observed that hypothesis (e)
of 1.15 is satisfied. Finally, since R centralizes T , Vr is R-invariant. Hence
1.15 completes the proof in this case.

Suppose next that r ≥ k, we take in 1.15, j = k − 1, ` = 1 and m = k, if
r = k and m = dim(im (T )), if r > k. Notice that Vm is R-invariant. Also,
by 5.11.6, Sk,n 6= 0, so clearly vk 6∈ ker(ST ) and hypothesis (c) of 1.15 holds.
Thus 1.15 completes the proof in this case too.

5.13. For i ∈ {1, 2, 3, 4}, let αi ∈ F∗ and set Bi = uk+1
1 (−αi)diag (1, bk).

Let also ε ∈ {1,−1} and 1 6= γ ∈ F∗. Then:

(1) If FBt
1Bε

2
[γ] = 0 = FBt

3Bε
4
[γ], then α1α2 = α3α4.

(2) Suppose α2
1 6∈ K and α2 = αq

1. Then γ is a root of at most one of the
polynomials FBt

1Bε
1
, FBt

2Bε
2

and FBt
1Bε

2
.

(3) Suppose α2
1 6∈ K and α2 = αq

1. Then either we can find j ∈ {1, 2}, such
that FBt

jBj
[γ] 6= 0 6= FBt

jB−1
j

[γ], or for {B,C} = {B1, B2}, FBtC [γ] 6=
0 6= FBtC−1 [γ].
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(4) If char (K) 6= 2 and q > 3, then we can find α1, α2 ∈ K∗, such that
FBt

1B2
[−1], FBt

1B−1
2

[−1], FBt
2B1

[−1], FBt
2B−1

1
[−1] are all distinct from 0.

(5) Suppose that q = 2, and that α1 6∈ K. Then, FBt
1B−1

1
[γ] 6= 0. In

particular, we can pick α1 ∈ F−K such that FBt
1B1

[γ] 6= 0 6= FBt
1B−1

1
[γ].

Proof. First observe that, for 1 ≤ i ≤ 4, Bi = bk+1(αi, 1, . . . , 1). We mention
that for small values of k (k = 1, 2 or 3), direct calculations show (1). For
the general case in (1), suppose FBt

1B2
[γ] = 0 = FBt

3B4
[γ]. Then, by 2.12.4,

(γ − 1)Fk[γ]− α1α2γGk−1[γ] = 0 = (γ − 1)Fk[γ]− α3α4γGk−1[γ]. Suppose
α1α2 6= α3α4. Then Gk−1[γ] = 0, and as γ 6= 1, Fk[γ] = 0. This contradicts
2.6.6. Using 2.12.5, it is easy to see that if FBt

1B−1
2

[γ] = 0 = FBt
3B−1

4
[γ], then

α1α2 = α3α4. (2) follows immediately from (1), noticing that α2
1, α

2q
1 and

αq+1
1 are distinct. (3) follows from (2) noticing that, by 2.12.4 and 2.12.5,
FBt

1Bε
2
[γ] = FBt

2Bε
1
[γ].

For (4), just choose α1, α2 ∈ K∗ such that −1 is not a root of the poly-
nomial FBt

1B2
= FBt

2B1
= (λ − 1)Fk − α1α2λGk−1 nor of the polynomial

FBt
1B−1

2
= FBt

2B−1
1

= (λ− 1)Qk + α1α2λQk−1, using (1).
For (5), note that as q = 2, 2.12.5 shows that, FBt

1B−1
1

[λ] = (λ + 1)Qk +

α2
1λQk−1 = λk+1 + 1 + α2

1λQk−1. Suppose γ = α1. Then (since α3
1 = 1),

FBt
1B−1

1
[α1] = αk+1

1 + 1 +Qk−1[α1] = αk+1
1 +αk−1

1 +αk−2
1 + · · ·+α1. Recall

that α2
1+α1+1 = 0. Thus, if k−1 ≡ 0 (mod 3), FBt

1B−1
1

[α1] = α2
1+0 = α2

1, if
k−1 ≡ 1 (mod 3), then FBt

1B−1
1

[α1] = 1+α1 = α2
1, and if k−1 ≡ 2 (mod 3),

FBt
1B−1

1
[α1] = α1 + α2

1 + α1 = α2
1. Suppose γ = α2

1. Then, FBt
1B−1

1
[α2

1] =

α2k+2
1 + 1 +α1Qk−1[α2

1]. Note that if k ≡ 0 (mod 3), Qk−1[α2
1] = 0, if k ≡ 1

(mod 3), Qk−1[α2
1] = 1 and if k ≡ 2 (mod 3), Qk−1[α2

1] = α1. Thus, if
k ≡ 0 (mod 3), then FBt

1B−1
1

[α2
1] = α2

1 + 1 + α1 · 0 = α1, if k ≡ 1 (mod 3),
FBt

1B−1
1

[α2
1] = α1 + 1 + α · 1 = 1 and if k ≡ 2 (mod 3), FBt

1B−1
1

[α2
1] =

1 + 1 + α1 · α1 = α2
1. This shows first part of (5). The second part of (5)

follows from (1), just choose α1 ∈ F−K so that FBt
1B1

[γ] 6= 0.

Corollary 5.14. (1) Let α1 ∈ Ξ and let θ ∈ F such that θ + θq = αq+1
1 .

Then we can pick α, β ∈ {α1, α
q
1} such that if we set X = X(α, θ) and

Y = X(β, θ), then for {T,Z} = {X,Y } and S ∈ {TZt, T−1Zt, T t, Zt},
〈O(v1, S)〉 = V . Further, if q = 2, α = β.

(2) Suppose q = 4 and let θ ∈ F∗. Suppose α1, α2, α3 ∈ F∗ are distinct
elements such that θ + θq = αq+1

i , 1 ≤ i ≤ 3. Then there exist β ∈
{α1, α2, α3} such that for X = X(β, θ), and S ∈ {XXt, X−1Xt, Xt},
〈O(v1, S)〉 = V .

(3) If q 6= 3 is odd, or q = 3 and k 6≡ 1 (mod 3), then there are α, β ∈ K∗,
such that if we set X = X(α, θ) and Y = X(β, ρ), with θ = 1

2α
2 and
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ρ = 1
2β

2, then for {T,Z} = {X,Y } and S ∈ {TZt, T−1Zt, T t, Zt},
〈O(v1, S)〉 = V .

(4) If q = 3 and k ≥ 4, let a = ak(1, 1,−1, 1, 1, . . . , 1) and b = bk(1, 1,−1,
1, 1, . . . , 1). Let X = diag (ak, 1, b−1

k )u(1, 1
2) and Y = diag (a, 1,

b−1)u(1, 1
2). Then for {T,Z} = {X,Y } and S ∈ {TZt, T−1Zt, T t, Zt},

〈O(v1, S)〉 = V .

Proof. For (1), pick α, β ∈ {α1, α
q
1}. Let B = uk+1

1 (−αq)diag (1, bk) and
B1 = uk+1

1 (−βq)diag (1, bk). By 5.11.8, for ε ∈ {1,−1}, 〈O(v1, XεY t)〉 = V ,
iff −θ1−q is not a root of FBt

1Bε . Note that since θ + θq = αq+1
1 6= 0, θ1−q 6=

−1. Hence, using 5.13.3 (when q > 2, notice that α2
1 6∈ K follows from the

equation αq
1+α1 = αq+1

1 ), or 5.13.5 (when q = 2), we can pick α, β ∈ {α1, α
q
1}

such that −θ1−q is not a root of FBtBε
1

and not a root of FBt
1Bε (with α = β

when q = 2, by 5.13.5). Of course, by 5.11.9, 〈O(v1, Y t)〉 = V = 〈O(v1, Xt)〉,
this shows (1).

The proof of (2) is similar. Setting Xi = X(αi, θ) and

Bi = uk+1
1 (−αq

i )diag (1, bk), 1 ≤ i ≤ 3,

we see, using 5.11.8, that for ε ∈ {1,−1}, 〈O(v1, Xε
iX

t
i )〉 = V , iff −θ1−q is

not a root of FBt
iB

ε
i
. Again we observe that θ1−q 6= −1. Further, since α1, α2

and α3 are distinct, also, α2q
1 , α

2q
2 and α2q

3 are distinct, so by 5.13.1, there
exists 1 ≤ i ≤ 3, such that γ = −θ1−q is not a root of the polynomial FBt

iBi

and FBt
iB

−1
i

.

For (3), notice first that, by 5.3.5, given α ∈ K∗, if we set θ = θ(α) = 1
2α

2,
then X(α, θ) ∈ L and θq−1 = 1. Hence if q > 3, (3) follows from 5.11.8 and
5.13.4 (in the same way as we proved (1) and (2), noticing that since θ ∈ K∗,
θ1−q = 1), and if q = 3, take α = β = 1 and use 5.6.1. Finally (4) follows
similarly using 5.11.8 and 5.6.2.

Theorem 5.15. (1) We can pick θ, α, β ∈ F, with θ+ θq = αq+1 = βq+1,
such that if we set X = X(α, θ) and Y = X(β, θ), then:
(i) For {T,Z} = {X,Y } and S ∈ {TZt, T−1Zt, T t, Zt}, 〈O(v1, S)〉 =

V and:
(ii) For S ∈ {TZt, T−1Zt}, α(FS , 1) 6= 0.

(2) The commuting graph ∆(L′) is balanced.

Proof. For (1), suppose first that q 6= 2, 4. Then, by 5.10.10iii, we can find
α1 ∈ Ξ, and θ ∈ F−K, with θ+θq = αq+1

1 , such that for all α, β ∈ {α1, α
q
1},

if we set X = X(α, θ) and Y = X(β, θ), α(FT εZt , 1) 6= 0, for T,Z ∈ {X,Y }
and ε ∈ {1,−1}. Now, use 5.14.1, to pick α, β ∈ {α1, α

q
1}, such that for

{T,Z} = {X,Y } and S ∈ {TZt, T−1Zt, T t, Zt}, 〈O(v1, S)〉 = V . This
shows (1), in case q 6= 2, 4.
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Suppose next that q = 2. Let α ∈ F − K. Then, by 5.10.10i, for
X1 ∈ {X(α, α), X(αq, α)}, and ε ∈ {1,−1}, α(FXε

1Xt
1
, 1) 6= 0. By 5.14.1,

there exists X ∈ {X(α, α), X(αq, α)}, such that V = 〈O(v1, S)〉, for S ∈
{XXt, X−1Xt, Xt}, so (1) holds in case q = 2, choosing Y = X. The proof
of (1) in case q = 4, is similar,using 5.10.10ii and 5.14.2.

We proceed with the proof of (2). Set Λ = ∆(L). Suppose L ' SU(n, q)
and let X,Y ∈ L be as in (1). We show that BΛ(X,Y t) holds. The proof
that BΛ(Y,Xt) holds is symmetric and by 1.9, Λ is balanced. Let S ∈
{XY t, X−1Y t, Y t}. Suppose R ∈ Λ≤2(X) ∩ Λ≤1(S). By 5.12,

v1 is a characteristic vector of R.(∗)

Now if S = Y t, then S commutes with R, so since V = 〈O(v1, Y t)〉, (∗)
implies that R ∈ Z(L), a contradiction. Suppose S ∈ {XY t, X−1Y t}. Then,
by (ii) of (1), gcd {{i : α(FS , i) 6= 0} ∪ {n}} = 1, so, by (∗) and 1.14.5,
R ∈ Z(L), a contradiction.

Suppose L ' SOn(q). Pick X,Y as in 5.14.3 and 5.14.4. Since Z(L) = 1,
to show BΛ(X,Y t) holds, it suffices, by 1.14.1, to show that V = 〈O(v1, S)〉,
for S ∈ {XY t, X−1Y t, Y t}, but this holds by the choice of X,Y . By sym-
metry also BΛ(Y,Xt) holds and the proof of the theorem is complete.

6. The Orthogonal Groups in odd characteristic and even
dimension.

In this section F is a field of odd order and n = 2k ≥ 8 is even. Let J be
the following n× n matrix:

J =



0 0 · · · · 0 1 0
0 0 · · · 0 1 0 0
0 0 · · 0 1 0 0 0
· · · · · · · · ·
· · · · · · · · ·
0 0 1 0 · · · · ·
0 1 0 · · · · · ·
1 0 · · · · · 0 0
0 0 · · · · · 0 ν


.

Let L ' SOε(F) be the subgroup of SLn(F) defined by L = {x ∈ SLn(F) :
xJxt = J}. Of course, for a suitable choice of ν (ν = (−1)k) ε = + and for
a suitable choice of ν ((−1)kν a nonsquare in F) ε = −.

We continue with the notation of Section 1. In addition we let f : V ×V →
F be a bilinear form whose matrix with respect to the basis B = {v1, . . . , vn}
is J .
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6.1. Let u ∈ GLn(q) be a matrix of the form

u =



1 0 0 · · · · 0 0
α2 1 0 0 · · · 0 0
∗ α3 1 0 0 · · 0 0
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
∗ · · · ∗ αn−2 1 0 0
∗ · · · · ∗ αn−1 1 0
0 0 0 · · · · 0 1


αi ∈ F∗, for all i.

Let h ∈ GL(n,F)− Z(GL(n,F)) be a matrix commuting with u. Then:

(1) h has the form

h =
[
M E
F c

]
where M is an (n−1)×(n−1) matrix commuting with Mn,n(u), c ∈ F∗,
E is a column (n− 1)× 1 matrix of the form (0, 0, . . . , ρ)t, F is a row
1× (n− 1) matrix of the form (θ, 0, . . . , 0).

(2) Suppose u, h ∈ L, and let ρ, θ ∈ F as in (1). Then there exists ε ∈
{1,−1} such that hi,i = ε, for all 1 ≤ i ≤ n. Further, θ = −ρf(vn, vn).

(3) If u, h ∈ L, then there exists ε ∈ {1,−1}, and 1 ≤ r′ < n−1, such that

h− εIn =
[
t′ E
F 0

]
with t′ ∈ Tn−1(r′) (see notation in 1.1.10).

(4) Suppose u, h ∈ L and let t′ and r′ be as in (3) and ρ as in (2). Suppose
that either ρ = 0, or r′ 6= k − 1. There exists ε ∈ {1,−1}, i ∈ {1, 2}
and 1 ≤ r < n− 1, such that

(h− εIn)i =
[

t 0n−1,1

01,n−1 0

]
where t ∈ Tn−1(r).

(5) Suppose u, h ∈ L and let t′ and r′ be as in (3) and ρ, θ as in (2).
Suppose r′ = k − 1 and ρ 6= 0. Then:

(5i) k is even.
(5ii) If, in addition, (h−εIn)2 = 0, then we may assume that f(vn, vn) =

1 (so ν = 1) and if we set d = t′k,1, then d2 = θ2.

Proof. Note that h commutes with the matrix u − In, and clearly for 1 ≤
i ≤ n− 1, im (u− In)i = Vn−i−1. Since h commutes with (u− In)i, h fixes
im (u− In)i. Thus h fixes Vi, for 1 ≤ i ≤ n− 2. Also ker(u− In) = 〈v1, vn〉,
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so h fixes 〈v1, vn〉, thus h has the form

h =
[
M E
F c

]
with M some (n − 1) × (n − 1) matrix and E,F and c as in (1). Let
u1 = Mn,n(u). Then

hu =
[
Mu1 E
F c

]
and uh =

[
u1M E
F c

]
this shows (1).

For (2), note that vnh = θv1 + cvn, thus 0 6= f(vn, vn) = f(vnh, vnh) =
c2f(vn, vn). Thus c = ε, for some ε ∈ {1,−1}. Also, since u1 commutes
with M , 1.13.2 implies that there exists β ∈ F, such that hi,i = β, for all
1 ≤ i ≤ n − 1. Since vk is a nonsingular vector, it is easy to check that we
must have β = 1 or −1. Since det(h) = 1, β = ε and the first part of (2) is
proved. For the second part we have 0 = f(vn−1, vn) = f(vn−1h, θv1+εvn) =
f(v′ + εvn−1 + ρvn, θv1 + εvn), with v′ ∈ Vn−2. But f(v1, v′) = f(vn, v

′) = 0.
Thus 0 = f(vn−1, vn) = f(εvn−1 +ρvn, θv1 + εvn) = εθ+ ερf(vn, vn) and the
second part of (2) is proved.

Next note that by (1), u1 := Mn,n(u), commutes with M so, by 1.13 and
(2), (M − εIn−1) ∈ Tn−1(r′), for some 1 ≤ r′ < n− 1. Thus (3) follows from
(1) and (2).

For (4), we use (3). If ρ = 0, then, by (2) also θ = 0, and so by (3), (4)
holds with i = 1, r = r′ and t = t′. Suppose ρ 6= 0. Note that EF is an
(n−1)×(n−1) matrix whose (n−1, 1)-entry is ρθ and for (i, j) 6= (n−1, 1),
(EF )ij = 0. Further t′E = 0n−1,1 (the last column of t′ is zero), Ft′ = 01,n−1

(the first row of t′ is zero) and FE = 0. Thus

(h− εIn)2 =
[
t′ E
F 0

]
·
[
t′ E
F 0

]
=
[
(t′)2 + EF 0n−1,1

01,n−1 0

]
.

Since we are assuming that ρ 6= 0 and r′ 6= k− 1, either r′ > k− 1, in which
case (t′)2 = 0, and t = EF ∈ Tn−1(n − 2). Or r′ < k − 1, in which case,
(t′)2 ∈ Tn−1(r), for some 1 < r < n− 2, and then t := (t′)2 +EF ∈ Tn−1(r).
This shows (4).

Finally assume the hypotheses of (5). Suppose first that k is odd. Let
j = k+1

2 , then r′ + j = (k − 1) + k+1
2 = 3k−1

2 and t′r′+j,j 6= 0. But
vr′+jh = v′ + t′r′+j,jvj + εvr′+j , with v′ ∈ Vj−1. But 0 = f(vr′+j , vr′+j) =
f(vr′+jh, vr′+jh) = 2εt′r′+jf(vj , vr′+j) 6= 0, a contradiction. Hence k is
even. To prove (5ii), set d = t′k,1. We claim that t′n−1,k = d. Indeed,
0 = f(vk, vn−1) = f(vkh, vn−1h) = f(dv1 + εvk, t

′
n−1,1v1 + · · · + t′n−1,kvk +

εvn−1 + ρvn) = εd + (−1)k+1εt′n−1,k, thus t′n−1,k = (−1)kd = d. Also the
(n − 1, 1)-entry of (t′)2 is d2 and the remaining entries of (t′)2 are zero.
Since (h− εIn)2 = 0, we must have (see the proof of (4)), (t′)2 +EF = 0, so
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d2 + θρ = 0. But θρ = −ρ2f(vn, vn) (see (2)), so d2 = ρ2f(vn, vn). Hence,
f(vn, vn) is a square in F, so we may take f(vn, vn) = 1. Then d2 = ρ2, and
since, by (2), θ = −ρ, d2 = θ2.

Notation. For the remainder of this section, we fix the following nota-
tion. Let β1, . . . , βk−2, γ1, . . . , γk−2 ∈ F∗. Let also α, β ∈ F∗. We set a =
ak−1(β1, . . . , βk−2), a1 = ak−1(γ1, . . . , γk−2), b = bk−1(β1, . . . , βk−2), b1 =
bk−1(γ1, . . . , γk−2), g = diag (a, 1, b−1), g1 = diag (a1, 1, b−1

1 ), B = bk(α, β1,
. . . , βk−2), B1 = bk(β, γ1, . . . , γk−2), u = un−1(α, 1

2α
2), w = un−1(β, 1

2β
2)

(notation as in 5.4.1), X = gu and Y = g1w. Finally, we let X = diag (X , 1)
and Y = diag (Y, 1).

6.2. Let ε′ ∈ {1,−1}, and S ∈ {Yt,X ε′Yt}. Set S = diag (S, 1) and let
R ∈ ∆≤2(X) ∩∆≤1(S). Then v1 is characteristic vector of R.

Proof. Let h ∈ ∆≤1(X) ∩ ∆≤1(R). Note that by 5.11.3, X satisfies the
hypothesis for u in 6.1, there exists ε ∈ {−1, 1} and 1 ≤ r′ < n − 1, such
that

h− εIn =
[
t′ E
F 0

]
with t′ ∈ Tn−1(r′).

We’ll show that there exists i ∈ {1, 2} such that if we set T := (h− εIn)i,
then T, S and R satisfy all the hypotheses of 1.15, for a suitable choice of
j,m and `. Then the lemma follows from 1.15. First, R−1TR = T and
[R,S] ∈ Z(L), so hypothesis (e) of 1.15 is satisfied. Note next that by
5.11.5:

S satisfies hypothesis (a) of 1.15 for any j ≤ k − 2.(i)

We now distinguish two cases as follows.

Case 1. There exists i ∈ {1, 2} and 1 ≤ r < n− 1, such that

(h− εIn)i =
[

t 0n−1,1

01,n−1 0

]
where t ∈ Tn−1(r).

Let T := (h− εIn)i, with i as above. Observe that Mn,n(ST ) = St, hence
we get from 5.11.6 (replacing k by k − 1) that:

If r ≥ k − 1, then vk−1 6∈ ker(ST ) and Vk−2 ⊆ ker(ST ).(ii)

Next observe that if r > k−1 (and (ii) necessarily holds), n−r−1 ≤ k−1
and im (T ) = Vn−r−1 is R-invariant. Thus:

If r > k − 1, then n− r − 1 ≤ k − 1 and Vn−r−1 is R-invariant.(iii)

Hence if r > k − 1, take j = k − 2, m = n− r − 1 and ` = 1 and, by (i),
(ii) and (iii), all hypotheses of 1.15 are met, so we are done.



180 YOAV SEGEV AND GARY M. SEITZ

Next observe that if r ≤ k − 1, then ker(T ) = 〈v1, . . . , vr, vn〉 and the
radical of the form f , reduced to ker(T ) is Vr. Thus:

If r ≤ k − 1, then Vr is an R-invariant subspace and vr+1 /∈ ker(T ).(iv)

Thus if r = k − 1, take m = r, j = k − 2 and ` = 1, and, by (i), (ii) and
(iv) we are done, while if r < k − 1, take j = m = r and ` = 0 and observe
that by (i) and (iv) we are done.

Case 2. r′ = k − 1, ρ 6= 0 6= θ, ν = f(vn, vn) = 1 and for d = t′k,1, d
2 = θ2.

Note that by 6.1.4 and 6.1.5, either Case 1 holds or Case 2 holds. Let
T = X − εIn. Write d = −ε′′θ, with ε′′ ∈ {1,−1}. Observe that ker(T ) =
{v1, . . . , vk−1, vn + ε′′vk}. First we claim that:

There exists v ∈ Vk−1 such that modulo Vk−1, we have(v)

vkS
−1 ≡ ηvk + µvk+1, with η ∈ F and µ ∈ F∗

{(vn + ε′′vk)− ε′′v}S−1 ≡ vn − ε′′vk.

Indeed, we use 5.11.7. We take in 5.11, n = 2k− 1 = 2(k− 1) + 1, α, β, and
ρ (of 5.11) in the fixed field of σq (so ρ1−q = 1). Thus, for all possibilities of
S the following holds:

There exists v ∈ Vk−1, η ∈ F and µ ∈ F∗ such that(vi)

vkS−1 ≡ ηvk + µvk+1 (mod Vk−1)

vS−1 ≡ (η + 1)vk + µvk+1 (mod Vk−1).

Where in all cases µ = −β. If S = Yt, η = 1, while

if S = X ε′Yt, η = 1 + ε′αβ.

Thus, by (vi), modulo Vk−1 we get that

{(vn + ε′′vk)− ε′′v}S−1

≡ vn + ε′′{ηvk + µvk+1} − ε′′{(η + 1)vk + µvk+1}
≡ vn + {ηε′′ − (η + 1)ε′′}vk + (µε′′ − µε′′)vk+1

≡ vn − ε′′vk.

This shows (v).
Let v and ε′′ be as in (v). Since v, vn + ε′′vk ∈ ker(T ), U := 〈vS−1, (vn +

ε′′vk)S−1〉 ⊆ ker(ST ). Notice that (v) implies that vn − ε′′vk ∈ U + Vk−1

and also that vS−1 ≡ µvk+1 (mod Vk) (µ as in (v)). Hence we conclude
that U ∩ ker(T ) = (0). Since dim(U) = 2, and since dim(ker(T )) = k, we
get that dim(ker(T ) ∩ ker(ST )) ≤ k − 2. But Vk−2 ⊆ ker(ST ) and hence
ker(T ) ∩ ker(ST ) = Vk−2. Clearly ker(T ) ∩ ker(ST ) is R-invariant, so we
conclude that:

Vk−2 is R-invariant.(vii)
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Observe that (ii) holds here as well, since Mn,n(ST ) = St, holds here as
well. Hence if we take m = k − 2 = j and ` = 1, we see that all hypotheses
of 1.15 hold here as well and the proof of 6.2 is complete.

6.3. Let ε ∈ {1,−1} and let S ∈ {Y t, XεY t}. Set S = Mn,n(S) and suppose
〈O(v1,S)〉 = Vn−1. Then dΛ(X,S) > 3, where Λ = ∆(L).

Proof. Let R ∈ ∆≤2(X) ∩ ∆≤1(S). By 6.2, v1 is a characteristic vector
of R and since 〈O(v1,S)〉 = Vn−1, Vn−1 is an R-invariant subspace. Thus
V⊥n−1 = 〈vn〉 is R-invariant as well. Set R1 = Mn,n(R). Since [R,S] ∈ Z(L),
[R1,S] = ±In−1 and since det([R1,S]) = 1, [R1,S] = In−1. Thus [R,S] = 1,
and since v1 is a characteristic vector of R and 〈O(v1,S)〉 = Vn−1, R1 =
±In−1. Of course Rn,n ∈ {1,−1} and since det(R) = 1, R ∈ Z(L), a
contradiction.

Theorem 6.4. ∆(L) is balanced.

Proof. In 5.14.3 and 5.14.4, we showed that we can pick X ,Y such that for
{T ,Z} = {X ,Y}, ε ∈ {1,−1} and S ∈ {T t, T εZt}, 〈O(v1,S)〉 = Vn−1.
Hence the theorem follows from 6.3 and by definition.

7. The Orthogonal Groups in even dimension and even
characteristic.

In this section n = 2k ≥ 8 is even and F is a field of even order. We keep
the notation of Section 1. In particular V is a vector space of dimension n
over F and B = {v1, . . . , vn} is our fixed basis of V . Let f be the symplectic
form on V whose matrix with respect to B is

J =



0 0 · · · · 0 1
0 0 · · · 0 1 0
0 0 · · 0 1 0 0
· · · · · · · ·
· · · · · · · ·
0 0 1 0 · · · ·
0 1 0 · · · · ·
1 0 · · · · · 0


.

For ε ∈ {+,−} let Qε be the quadratic form on V defined as follows. First
Qε(v + w) = Qε(v) +Qε(w) + f(v, w), for all v, w ∈ V . Second, Qε(vi) = 0,
for all 1 ≤ i ≤ k−1 and all k+2 ≤ i ≤ n. We define Qε(vk) = Qε(vk+1) = νε,
where νε = 0, when ε = + and when ε = −, νε 6= 0, is such that νελ

2 +λ+νε

is an irreducible polynomial in F[λ]. Of course V is an orthogonal space
of type ε in the respective cases. We let Q = Qε. We denote by Qε(V,Q)
the full orthogonal group of type ε ∈ {+,−} in the respective cases. We
let L be the commutator subgroup of Oε(V,Q). Thus L is a simple group
and L has index 2 in Oε(V,Q). The purpose of this section is to prove
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Theorem 1.6 for L. For that we’ll show that L is closed under transpose
(see 1.4.3) and indicate an element X ∈ L such that BΛ(X,Xt) holds,
where Λ = ∆(L). Then, by 1.9.2, Λ is balanced. We’ll define X shortly.
The following Theorem is useful.

7.1. Let g ∈ Oε(V,Q). Then g ∈ L if and only if dimCV (g) is even.

Proof. See [3], Theorem 3.

7.2. L is closed under transpose.

Proof. Regard J above as an element of GL(V ). Then J is an involution
and J t = J (J is symmetric). We claim that J ∈ Qε(V,Q). Indeed JJJ t =
J ∈ O(V, f) and since viJ = vn+1−i, for all 1 ≤ i ≤ n, J preserves the
quadratic form Q, since in both types Q(vi) = Q(vn+1−i). But for g ∈ L,
gt = Jg−1J , so gt ∈ L.

Notation 7.3. (1) Let g ∈ GL(V ) such that g = diag (Ik−2, s, Ik−2),
where s is some 4× 4 matrix. We denote s by s(g).

(2) Throughtout this section u := diag (Ik−2, s, Ik−2), where

s = s(u) =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 .
(3) Throughout this section we let

g = diag (ak, b
−1
k )

X = gu

where for m ≥ 1, am and bm are as in 1.1.9. Note that since char (F) =
2, am = bm.

(4) We denote by C, the ordered basis (w1 . . . , wn), where wi = vi, for
1 ≤ i ≤ k − 2, wk−1 = vk−1 + vk + vk+1, wi = vi+2, for k ≤ i ≤ n− 2,
wn−1 = vk + vk+1 and wn = vk + vk+2. Thus

C = (v1, v2, . . . , vk−2, vk−1 + vk + vk+1, vk+2, . . . , vn, vk + vk+1, vk + vk+2).

7.4. (1)

s(u) =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 (s(u))t =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 .
(2) u−1 = u.
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(3)

s(uut) =


1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

 .

(4)

s((uut)−1) = s(utu) =


0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1

 .

(5) s(u−1ut) = s(uut) and s((u−1ut)−1) = s(utu).
(6) [gt, u] = 1.

Proof. (1) is by definition. Clearly u−1 = u. For (3) and (4), we compute

s(uut) =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 ·


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 =


1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

 .

s((uut)−1) =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ·


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 =


0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1

 .

(5) follows from (2). For (6) we have, vig
tu = vig

t = viug
t, for i /∈ {k + 1,

k + 2}. vk+1g
tu = (vk+1 + · · ·+ vn)u = vk−1 + vk + · · ·+ vn and vk+1ug

t =
(vk−1 + vk+1)gt = vk−1 + vk + · · · + vn. vk+2g

tu = (vk+2 + · · · + vn)u =
vk + vk+2 + · · ·+ vn and vk+2ug

t = (vk + vk+2)gt = vk + vk+2 + · · ·+ vn.
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7.5. (1)

X =



1 0 · · · · · 0
1 1 0 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 1 0
0 · · · · 0 1 1

1 0 1 0 · · · · · 0
1 1 1 1 0 · · · · 0
1 1 1 1 1 0 · · · 0
1 1 1 1 1 1 0 · · 0
· · · · · · · · · ·
· · · · · · · · · ·
1 1 1 · · · · 1 1 0
1 1 1 · · · · 1 1 1


where the blank spots are zeros. Also the upper submatrix of X is a
k × k matrix and the lower submatrix of X is a k × (k + 2) matrix.

(2) The matrix of X with respect to the basis C is

[X]C =



1 0 · · · · 0
1 1 0 · · · 0
0 1 1 0 · · 0
0 0 1 1 0 · 0
· · · · · · ·
· · · · · · ·
0 · · 0 1 1 0
0 · · · 0 1 1

1 1 0 · · · · 0
1 1 1 0 · · · 0
1 1 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
1 1 · · · · 1 0
1 1 · · · · · 1

1 0
1 1


where the blank spots are zeros. Also the upper submatrix of [X]C is a
(k− 1)× (k− 1) matrix, the middle submatrix of [X]C is a (k− 1)× k
matrix and of course the lower submatrix of [X]C is a 2× 2 matrix.

(3) X ∈ L.
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Proof. (1) and (2) are easy calculations and we omit the details. Next,
since Vk−1 and 〈vk+2, . . . , vn〉 are totally singular subspaces (in both types),
Q(viX) = 0, for 1 ≤ i ≤ k − 1. Also, for k + 2 ≤ i ≤ n, Q(viX) =
Q(vk−1 + vk + vk+1 + vk+2 + · · · + vi) = Q(vk−1 + vk + vk+1 + vk+2) =
Q(vk−1 + vk+2) + Q(vk + vk+1) = 1 + 1 = 0. Further, for s ∈ {k, k + 1},
Q(vsX) = Q(vk−1 + vs) = Q(vs).

We leave it for the reader to verify that XJXt = J , so X ∈ O(V, f).
Since CV (X) = 〈v1, vk + vk+1〉, X ∈ L, by 7.1.

7.6. Let B be the following (k + 1)× (k + 1) matrix

B =



1 0 · · · · · 0
0 1 0 · · · · 0
1 1 1 0 · · · 0
0 0 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 1 0
0 · · · · 0 1 1


.

Then:

(1) B−1 =



1 0 · · · · · 0
0 1 0 · · · · 0
1 1 1 0 · · · 0
1 1 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
1 1 · · · · 1 0
1 1 · · · · · 1


.

(2)

BtB =



0 1 1 0 · · · 0
1 0 1 0 · · · 0
1 1 0 1 0 · · 0
0 0 1 0 1 0 · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 0 1
0 · · · · 0 1 1


BtB−1 =



0 1 1 0 · · · 0
1 0 1 0 · · · 0
0 0 0 1 0 · · 0
0 0 0 0 1 0 · 0
· · · · · · · ·
· · · · · · · ·
0 0 · · · · 0 1
1 1 · · · · 1 1


.
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Proof. (1) is easy to check. For (2), we compute

BtB =



1 0 1 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · 0
0 0 0 1 1 0 · 0
· · · · · · · ·
· · · · · · · ·
0 0 · · · 0 1 1
0 0 · · · · 0 1


·



1 0 · · · · · 0
0 1 0 · · · · 0
1 1 1 0 · · · 0
0 0 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 1 0
0 · · · · 0 1 1



=



0 1 1 0 · · · 0
1 0 1 0 · · · 0
1 1 0 1 0 · · 0
0 0 1 0 1 0 · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 0 1
0 · · · · 0 1 1


,

BtB−1 =



1 0 1 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · 0
0 0 0 1 1 0 · 0
· · · · · · · ·
· · · · · · · ·
0 0 · · · 0 1 1
0 0 · · · · 0 1


·



1 0 · · · · · 0
0 1 0 · · · · 0
1 1 1 0 · · · 0
1 1 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
1 1 · · · · 1 0
1 1 · · · · · 1



=



0 1 1 0 · · · 0
1 0 1 0 · · · 0
0 0 0 1 0 · · 0
0 0 0 0 1 0 · 0
· · · · · · · ·
· · · · · · · ·
0 0 · · · · 0 1
1 1 · · · · 1 1


.

7.7. Set a = ak−1 and v = vk +vk+1. Let B be as in 7.6 and let ε ∈ {−1, 1}.
Then:

(1) XXt = guutgt, (XXt)−1 = (gt)−1(utu)g−1.
(2) X−1Xt = uutg−1gt and (X−1Xt)−1 = (gt)−1gutu.

(3) X =
[
a 0k−1,k+1

E B−1

]
with E some (k + 1)× (k − 1) matrix.
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(4) XεXt =
[
aεat R1,2

R2,1 R2,2

]
(XεXt)−1 =

[
R′1,1 R′1,2

R′2,1 BtBε

]
with R′1,1, R2,2,

R1,2, R
′
1,2, R2,1, R

′
2,1 some (k− 1)× (k− 1), (k+1)× (k+1), (k− 1)×

(k+ 1), (k− 1)× (k+ 1), (k+ 1)× (k− 1), (k+ 1)× (k− 1) matrices
respectively. Further, the first k − 2 rows of R1,2 are zero.

(5) Let S ∈ {Xt, XεXt}. Then for 1 ≤ i ≤ k − 2, viS = w + vi+1, with
w ∈ Vi. In particular, Vk−1 ⊆ 〈O(v1, S)〉.

(6) Let S ∈ {Xt, XεXt}. Then vk−1S = w + vn, with w ∈ Vn−1.
(7)(7i) Let S = Xt, then vk−1S

−1 = vk−1 + vk + vk+1 + vk+2, vkS
−1 =

vk + vk+2, and vk+1S
−1 = vk+1 + vk+2.

(7ii) Let S = XXt, then vk−1S
−1 = vk+2, vkS

−1 = vk+1 + vk+2, and
vk+1S

−1 = vk + vk+2.
(7iii) Let S = X−1Xt, then vk−1S

−1 = vk−2+vk+2, vkS
−1 = vk+1+vk+2,

and vk+1S
−1 = vk + vk+2.

(8) 〈O(v1, Xt)〉 = 〈Vk−1, v + vk+2, vk+3, . . . , vn〉. Further if we set W =
〈O(v1, Xt)〉, then W⊥ = 〈v, vk−1 + vk〉, vXt = v and (vk−1 + vk)Xt =
v + (vk−1 + vk).

(9) Let S = XXt. Then:
(9i) If k ≡ 1 or 2 (mod 3), then

〈O(v1, S)〉 = 〈Vk−1, v, vk+2, vk+3, . . . , vn〉.

(9ii) If k ≡ 0 (mod 3), then

〈O(v1, S)〉 =
〈
Vk−1, vk+2, v + vk+3j , v + vk+3j+1,

vk+3j+2, v + vn : 1 ≤ j ≤ 1
3
k − 1

〉
.

Further, in (9ii), if we set W = 〈O(v1, S)〉, then W⊥ = 〈v, v′〉, where

v′ = (v1 + v3) + (v4 + v6) + (v7 + v9) + · · ·+ (vk−2 + vk),

vS = v and v′S = v + v′.
(10) Let S = X−1Xt. Then

〈O(v1, S)〉 = 〈Vk−1, v, vk+2, vk+3, . . . , vn〉.

Proof. (1) is obvious, recalling (see 7.4.2) that u−1 = u. For (2), we have
X−1Xt = u−1g−1utgt. By 7.4.6, [g−1, ut] = 1, and (2) follows. For (3), just
observe that X is given in 7.5.

(4) follows from (3), except that we must show that the first k − 2 rows
of R1,2 are zero. This will of course follow from (5). To show (5), let 1 ≤
i ≤ k− 2. Suppose first that S = Xt. Then viS = viu

tgt = vig
t = vi + vi+1.

Next viuu
t = vi, so viX

−1Xt = vig
−1gt. Also vig ∈ Vi, so vig(uut) = vig

and viXX
t = vigg

t. We conclude that:

(∗) For 1 ≤ i ≤ k − 2, viX
εY t = vig

εgt.
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Note that aε
k is unipotent, lower triangular and at

k is upper triangular unipo-
tent with (at

k)i,j = 0, for j > i + 1, and (at
k)i,i+1 = 1. This easily implies

(5), for S = XεY t.
To show (6), note thatX is given in 7.5.1, so we have vk−1X

t = vk−1+vk+
· · ·+vn. Next, vk−1XX

t = vk−1guu
tgt = (vk−2+vk−1)uutgt = (vk−2+vk−1+

vk+1)gt = vk−2 + vk + vk+1 + · · ·+ vn. Also vk−1X
−1Xt = vk−1uu

tg−1gt =
(vk−1 + vk+1)g−1gt = (v1 + · · ·+ vk−1 + vk+1)gt = v1 + vk + vk+1 + · · ·+ vn.

For (7) we compute vk−1(Xt)−1 = vk−1(gt)−1(ut)−1 = (vk−1 + vk)ut =
vk−1 + vk + vk+1 + vk+2. vk(Xt)−1 = vk(gt)−1(ut)−1 = vku

t = vk + vk+2

and vk+1(Xt)−1 = vk+1(gt)−1(ut)−1 = (vk+1 + vk+2)ut = vk+1 + vk+2. This
shows (7i). For (7ii) and (7iii), we use (7i). We compute (using (7i)) that,
for ε ∈ {1,−1}, vk−1(XεXt)−1 = (vk−1 + vk + vk+1 + vk+2)X−ε. If ε = 1, we
get (vk−1 + vk + vk+1 + vk+2)u−1g−1 = (vk+1 + vk+2)g−1 = vk+2. If ε = −1,
we get, (vk−1 + vk + vk+1 + vk+2)gu = (vk−2 + vk + vk+2)u = vk−2 + vk+2.

Next, vk(XεXt)−1 = (vk+vk+2)X−ε. If ε = 1, we get, (vk+vk+2)u−1g−1 =
vk+2g

−1 = vk+1 + vk+2. If ε = −1, we get (vk + vk+2)gu = (vk−1 + vk +
vk+1 + vk+2)u = vk+1 + vk+2.

Finally, vk+1(XεXt)−1 = (vk+1 + vk+2)X−ε. If ε = 1, we get (vk+1 +
vk+2)u−1g−1 = (vk−1 + vk + vk+1 + vk+2)g−1 = vk + vk+2. If ε = −1, we get
(vk+1 + vk+2)gu = vk+2u = vk + vk+2. This completes the proof of (7).

For (8), let W = 〈O(v1, Xt)〉. By (5), Vk−1 ⊆ W. Next, by (7i),
vk−1(Xt)−1 = vk−1 + vk + vk+1 + vk+2. Hence

v + vk+2 ∈ W.(i)

Using (3) and 7.6 and computing modulo Vk−1, (v + vk+2)(Xt)−1 ≡ v +
vk+2 + vk+3. Hence

vk+3 ∈ W.(ii)

Now, for k + 3 ≤ i ≤ n− 1, vi(Xt)−1 = vi + vi+1. Hence, by (ii)

〈vk+3, . . . , vn〉 ⊆ W.(iii)

Let W ′ = 〈Vk−1, v + vk+2, vk+3, . . . , vn〉. The reader may easily verify that
〈v, vk−1 + vk〉⊥ = W ′ and that vXt = v. We compute that (vk−1 + vk)Xt =
(vk−1 + vk)utgt = (vk−1 + vk + vk+1 + vk+2)gt = (vk−1 + vk)gt + (vk+1 +
vk+2)gt = vk−1 + vk+1 = v + vk−1 + vk. Hence 〈v, vk−1 + vk〉 is S-invariant,
and it follows that W ′ is S-invariant. It follows that W = W ′ and (8) is
proved.

For (9), let S = XXt and set W = 〈O(v1, S)〉. By (5), Vk−1 ⊆ W. Next,
by (7ii), vk−1S

−1 = vk+2. Hence

vk+2 ∈ W.(i′)
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Next, we mention that all our calculations are done modulo Vk−1 and we
use (4) and 7.6.2. We have vk+2S

−1 ≡ v + vk+3. Thus

v + vk+3 ∈ W.(ii′)

Now vS−1 = vkS
−1 + vk+1S

−1 = v, by (7ii). Thus

vS−1 = v.(iii′)

Next (v + vk+3)S−1 ≡ v + vk+2 + vk+4, hence, by (i′) and (ii′)

v + vk+4 ∈ W.(iv′)

By (ii′) and (iv′)

vk+3 + vk+4 ∈ W.(v′)

Now if k = 4, then (v+vk+2 +vk+4)S−1 ≡ v+v+vk+3 +vk+3 +vk+4 = vk+4,
so v8 ∈ W. It is easy to check now that by (v′), (iv′) and (ii′), (9i) holds.
So from now until the end of the proof of (9) we assume that k ≥ 5.

Next (v + vk+2 + vk+4)S−1 ≡ v + v + vk+3 + vk+3 + vk+5 = vk+5. Thus

vk+5 ∈ W.(vi′)

Suppose k = 5. By the above we get that V4∪{v7, v+ v9, v8 + v9, v10} ⊆ W.
Also, v10S

−1 = v9 + v10 ∈ W and (9i) holds. So from now until the end of
the proof of (9) we assume that k ≥ 6.

Now vk+5S
−1 ≡ vk+4+vk+6 ∈ W, thus v+vk+4+vk+4+vk+6 = v+vk+6 ∈

W, so by (ii′)

vk+3 + vk+6 ∈ W.(vii′)

Now for i ≥ k + 3, (vi + vi+3)S−1 ≡ (vi−1 + vi+2) + (vi+1 + vi+4), since
vk+2 + vk+5 ∈ W, we conclude from (vii′) that:

For k + 2 ≤ i ≤ n− 3, vi + vi+3 ∈ W.(viii′)

Now (vn−3 + vn)S−1 ≡ (vn−4 + vn−1) + (vn−2 + vn), so from (viii′) we get

vn−2 + vn ∈ W.(ix′)

Note also that by (i′) and (viii′),

vk+j ∈ W, for all 2 ≤ j ≤ k, such that j ≡ 2 (mod 3).(x′)

Thus, by (x′), if k ≡ 2 (mod 3), vn ∈ W and if k ≡ 1 (mod 3), vn−2 ∈ W.
Thus, by (ix′), if k ≡ 1 or 2 (mod 3), vn−2, vn ∈ W. It follows from (viii′)
that:

If k ≡ 1 or 2 (mod 3) then there exists ν ∈ {0, 1} such that(xi′)

vk+j ∈ W, for all 2 ≤ j ≤ k, such that j ≡ ν (mod 3).

Since vk+3 + vk+4 ∈ W, we get from (iv′), (x′), (xi′) and (viii′) that:

If k ≡ 1 or 2 (mod 3), W ⊇ 〈Vk−1, vk + vk+1, vk+2, vk+3, . . . , vn〉.(xii′)
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Notice that v⊥ = 〈Vk−1, vk+vk+1, vk+2, vk+3, . . . , vn〉 is S-invariant, as vS =
v, so (9i) holds.

Suppose k ≡ 0 (mod 3). We get from (ii′), (iv′) and (viii′), that

v + vk+j ∈ W, for all 3 ≤ j ≤ k such that j ≡ 0 or 1 (mod 3).(xiii′)

This, together with (x′), shows that

W ′ :=
〈
Vk−1, vk+2, v + vk+3j ,

v + vk+3j+1, vk+3j+2, v + vn : 1 ≤ j ≤ 1
3
k − 1

〉
⊆ W.

It easy to check that 〈v, v′〉⊥ = W ′. We show that v′S = v+ v′; this implies
that 〈v, v′〉 is S-invariant, and hence W ′ is S-invariant, so (9ii) holds. We
compute that

v′S = {(v1 + v3) + (v4 + v6) + (v7 + v9) + · · ·+ (vk−2 + vk)}guutgt

= {(v1 + v2) + (v4 + v5) + (v7 + v8) + · · ·+ (vk−2 + vk−1) + vk}uutgt

= {(v1 + v2) + (v4 + v5) + · · ·+ (vk−2 + vk−1) + vk + vk+1 + vk+2}gt

= {(v1 + v2) + (v4 + v5) + · · ·+ (vk−2 + vk−1) + vk}gt

+ (vk+1 + vk+2)gt

= {(v1 + v3) + (v4 + v6) + (v7 + v9) + · · ·+ (vk−5 + vk−3) + vk−2}
+ vk+1

= v + v′.

We now turn to the proof of (10). Set S = X−1Xt and W = 〈O(v1, S)〉.
By (5), Vk−1 ⊆ W. Next, by (7iii), vk−1S

−1 = vk−2 + vk+2. Thus

vk+2 ∈ W.(i′′)

Next, for k + 2 ≤ i ≤ n− 1, viS
−1 ≡ vi+1. Hence, by (i′′)

vi ∈ W, for all k + 2 ≤ i ≤ n.(ii′′)

Also vnS
−1 ≡ v + vk+2 + · · ·+ vn, so by (ii′′)

v ∈ W.(iii′′)

Again, since v⊥ = 〈Vk−1, v, vk+2, vk+3, . . . , vn〉 and vS = v, (10) holds.

7.8. Let 1 6= h ∈ CL(X). Write H = [h]C and set Z := [X]C. Write

Z = diag (Z1, Z2), with Z1 = M(n−1,n,)(n−1,n)([X]C), and Z2 =
[
1 0
1 1

]
.

Then:
(1) h fixes 〈w1〉, 〈w1, w2〉, . . . , 〈w1, . . . , wn−4〉.
(2) h fixes 〈w1, wn−1〉 and 〈w1, w2, wn−1, wn〉.
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(3) H has the form

H =
[
R E
F P

]
such that:

(3i) In−2 6= R is an (n − 2) × (n − 2) matrix commuting with Z,P =[
1 0
δ 1

]
, with δ ∈ {0, 1}, E is an (n−2)×2 matrix whose first n−4

rows are zero, and En−3,2 = 0. F is a 2× (n−2) matrix whose last
n− 4 columns are zero and F1,2 = 0.

(3ii) Hi,i = 1, for all 1 ≤ i ≤ n.
(3iii) We fix the notation α := En−3,1, β := En−2,1, γ := F2,1. We have

α = En−2,2 = F1,1 = F2,2.
(4) There exists 1 ≤ r ≤ n− 3, such that R − In−2 ∈ Tn−2(r). We fix the

letter r to denote this integer.
(5)

(H − In)2 =
[
(R− In−2)2 + EF E′

F ′ 02,2

]
such that E′is a (n− 2)× 2 matrix with E′n−2,1 = α(Rn−2,n−3 + δ) (δ
as in (3i) and α as in (3iii)) and E′ij = 0 otherwise, F ′ is a 2× (n− 2)
matrix such that F ′2,1 = α(R2,1 + δ) and F ′ij = 0 otherwise. EF is
an (n − 2) × (n − 2) matrix such that (EF )n−3,1 = α2 = (EF )n−2,2,
(EF )n−2,1 = α(β + γ) and (EF )i,j = 0, otherwise.

Proof. First we mention that we think of h and H as the same linear oper-
ator, but they are distinct as matrices. The same remark holds for X and
[X]C . It is easy to check that ker([X]C−In) = 〈w1, wn−1〉, ker([X]C−In)2 =
〈w1, w2, wn−1, wn〉. Further, for j ≥ 2, im ([X]C − In)j = 〈w1, . . . , wn−j−2〉.
Thus (1) and (2) clearly hold.

Next, by (1), the first n− 4 rows of E are zero and by (2), the last n− 4
columns of F are zero. Also, since 〈w1, wn−1〉 is h-invariant, F1,2 = 0. Next

ZH =
[
Z1 0
0 Z2

]
·
[
R E
F P

]
=
[
Z1R Z1E
Z2F Z2P

]
HZ =

[
R E
F P

]
·
[
Z1 0
0 Z2

]
=
[
RZ1 EZ2

FZ1 PZ2

]
so since ZH = HZ, R commutes with Z1 and P commutes with Z2. Thus

P =
[
ρ 0
µ ρ

]
. Now (vk + vk+1)h = F1,1v1 + ρ(vk + vk+1). But 1 = Q(vk +

vk+1) = Q((vk + vk+1)h) = ρ2, so ρ = 1. Further, (vk + vk+1)h = F2,1v1 +
F2,2v2 + µ(vk + vk+1) + (vk + vk+2). Hence Q((vk + vk+2)h) = µ2 + νε + µ.
It follows that νε = Q(vk + vk+2) = Q((vk + vk+2)h) = µ2 + νε + µ. Thus

µ = 0 or 1 and P =
[
1 0
δ 1

]
, with δ ∈ {0, 1}.
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Next since R commutes with Z1, 1.13 implies that, Hi,i = Ri,i = Rj,j =
Hj,j , for all 1 ≤ i, j ≤ n− 2. Now

1 = f(v1, vn) = f(v1H, vnH)

= f(H1,1v1,Hn−2,n−2vn) = H1,1Hn−2,n−2.

Since H1,1 = Hn−2,n−2, we see that H1,1 = 1. Since Hn−1,n−1 = P1,1 = 1
and Hn,n = P2,2 = 1, we see that Hi,i = 1, for all 1 ≤ i ≤ n. Now
since R commutes with Z1, 1.13 implies that R − In−2 ∈ Tn−2(r), for some
1 ≤ r ≤ n− 3.

Let
[
α ρ
β µ

]
be the last two rows of E. Then the last two rows of Z1E

are
[

α ρ
α+ β ρ+ µ

]
and the last two rows of EZ2 are

[
α+ ρ ρ
β + µ µ

]
. Since

Z1E = EZ2, ρ = 0 and α = µ. Thus:

The last two rows of E are
[
α 0
β α

]
.

Next let
[
ρ 0
γ µ

]
be the first two columns of F . Then the first two columns

of Z2F are
[

ρ 0
ρ+ γ µ

]
and the first two columns of FZ1 are

[
ρ 0

γ + µ µ

]
.

Thus ρ = µ. Hence:

The first two columns of F are
[
ρ 0
γ ρ

]
.

Next (vk +vk+1)H = ρv1+vk +vk+1 and observe that vnH = w+vn+α(vk +
vk+2), with w ∈ 〈v1, . . . , vk−1, vk + vk+1, vk+2, . . . , vn−1〉 ⊆ 〈v1, vk + vk+1〉⊥.
Thus 0 = f(vk + vk+1, vn) = f((vk + vk+1)h, vnh) = f(ρv1 +(vk + vk+1), w+
vn +α(vk + vk+2)) = f(ρv1 +(vk + vk+1), vn +α(vk + vk+2)) = ρ+α. Hence
ρ = α. This completes the proof of (3) and (4), except that we must show
that R 6= In−2. Now if R = In−2, then, it follows that 0 = Q(vn−1) =
Q(vn−1H) = Q(vn−1 +α(vk +vk+1)) = α. Also, since 0 = Q(vn) = Q(vnH),
β = 0. Now δ (of (3i)) must be 0; so since h ∈ L, 7.1 implies that h = In,
contradicting h 6= In.

To prove (5) note that

(H − In)2 =
[
R− In−2 E

F P − I2

]
·
[
R− In−2 E

F P − I2

]
=
[

(R− In−2)2 + EF (R− In−2)E + E(P − I2)
F (R− In−2) + (P − I2)F FE + (P − I2)2

]
.

Now, since the last column of (R−In−2) is zero, (R−In−2)E is an (n−2)×2
matrix, whose (n−2, 1)-entry is αRn−2,n−3, and whose other entries are zero.
Hence it is easy to check that E′ = (R− In−2)E +E(P − I2), is as claimed.
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Next, since the first row of (R− In−2) is zero, F (R− In−2) is a 2× (n− 2)
matrix whose (2, 1)-entry is αR2,1 and whose other entries are zero. Hence,
it is easy to check that F ′ = F (R− In−2)+(P − I2)F is as claimed. Finally,
FE = 02,2 and clearly (P − I2)2 = 02,2. It is easy to check that EF has the
claimed shape and (5) is proved.

Before formulating the next lemma it is important that the reader will
recall that for a linear operator a on our vector space V , ai,j is the (i, j)-entry
of the matrix of a, with respect to the basis B, unless otherwise specified (see
the beginning of Chapter 1).

7.9. Let 1 6= h ∈ CL(X). Set T = h − In. Write H = [h]C. Let
R,P,E, F, δ, α, β, γ be as in 7.8.3 and r as in 7.8.4. Then:

(1) Suppose k − 1 ≤ r ≤ n− 3. Then, there exists i ∈ {1, 2} such that for
T := Ti, we have:

(1a) Vk−1 ⊆ ker(T ).
(1b) There exists 1 ≤ f ≤ n, such that Ts,f = 0, for all 1 ≤ s ≤ n − 1,

and Tn,f 6= 0.
Further, one of the following holds.

(1c) α 6= δ 6= 0, i = 2, f = k + 1 and imT = 〈v1, αv2 + vk + vk+1〉.
(1d) α 6= 0 = δ, i = 2, f = 2 and imT = 〈v1, v2〉.
(1e) α = 0 = δ, i = 1, f = n− r − 2 and

imT = 〈v1, v2, . . . , vn−r−2, vk + vk+1〉.

(1f) α = 0 = δ, i = 1, f = n− r − 2 and

im (T ) = 〈v1, v2, . . . , vn−r−3, vn−r−2 + µ(vk + vk+1)〉, µ ∈ F∗.

(1g) α = 0 = δ, i = 1, f = n− r − 2 and imT = Vn−r−2.
(1h) α = 0 = δ, r = n− 3, i = 1, f = k + 1 and imT = 〈v1, vk + vk+1〉.

(2) Suppose r = k − 2 α 6= 0 = δ. Then either T2 ∈ Tn(n − s), for some
s ∈ {1, 2}, or the following holds:

(2a) T2 = 0, Hk−1,1 = α = Hn−2,k−1, Vk−1 ⊆ ker T, and
(2b) For all S ∈ {Xt, XXt, X−1Xt}, ker(ST) ∩ ker T = Vk−2.

(3) Suppose 1 ≤ r < k − 1, but exclude the case of (2). Then one of the
following holds:

(3a) r = 1, and Tn−3 ∈ Tn(n− 1).
(3b) r > 1, α 6= 0 6= δ, and ker T = {v1, . . . , vr, ρvr+1 + µ(vk + vk+1)},

with ρ, µ ∈ F∗.
(3c) r = k − 2, α 6= 0 6= δ, Hk−1,1 = α, and ker T = Vk−1. Further,

Ts,k−1 = 0, for all 1 ≤ s ≤ n− 1, and Tn,k−1 6= 0.
(3d) r = k − 2, α 6= 0 6= δ, Hk−1,1 = α, and im T2 = 〈v1, vk + vk+1〉.
(3e) There exists i ≥ 1 and 1 ≤ m ≤ k − 2, such that im Ti = 〈v1, . . . ,

vm〉, Vk−1 ⊆ ker Ti and Ti ∈ Tn(n−m).
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(3f) There exists i ≥ 1, such that im Ti = 〈v1, . . . , vk−2, vk−1+vk+vk+1〉
and Vk−1 ⊆ ker Ti. Further, (Ti)s,k−1 = 0, for all 1 ≤ s ≤ n − 1,
and (Ti)n,k−1 6= 0.

Proof. Assume the hypothesis of (1). Note that since r ≥ k − 1, R2,1 =
Rn−2,n−3 = 0. Notice also that (R− In−2)2 = 0n−2,n−2. Suppose α 6= 0 6= δ,
then it is easy to verify, using 7.8.5, that (1c) holds. Similarly if α 6= 0 = δ,
then by 7.8.5, E′ = 0n−2,2 (E′ as in 7.8.5) and it is easy to verify using 7.8.5
that (1d) holds (both in the case when γ = 0 and in the case γ 6= 0). Hence
we may assume that α = 0.

We claim that:

If r = n− 3 then δ = 0.(i)

For suppose r = n − 3. Then vnH = Rn−2,1v1 + vn + β(vk + vk+1). Hence
0 = Q(vn) = Q(vnH) = Rn−2,1 + β2. Since by 7.8.3i, R 6= In−2, we get
that 0 6= Rn−2,1 = β2. Also, 0 = f(vn, vk + vk+2) = f(vnH, (vk + vk+2)H) =
f(Rn−2,1v1+vn+β(vk+vk+1), γv1+δ(vk+vk+1)+(vk+vk+2)) = γ+β. Hence
γ = β. Now if δ = 1, then we get that im (H − In) = βv1 +(vk + vk+1). But
then dimCV (h) = n−1 is odd, this contradicts 7.1, since h ∈ L. So (i) holds.
Further, if r = n− 3, then, vnT = β2v1 + β(vk + vk+1), vkT = vk+1T = βv1
and ker T = 〈Vk−1, vk + vk+1, vk+2, . . . , vn−1〉. Hence (1h) holds. So from
now on we also assume that k − 1 ≤ r < n− 3.

Note that since α = 0, vk + vk+1 ∈ ker(H − In). Hence

vkT = vk+1T(ii)

also, vk = vk+2 + (vk + vk+2), so vk(H − In) = vk+2(H − In) + (vk +
vk+2)(H − In) = Hk,1v1 + γv1 + δ(vk + vk+1). It follows from (ii) that since
k − 1 ≤ r < n− 3,

Tk,n−r−2 = Tk+1,n−r−2 = 0.(iii)

Since vk−1 + vk + vk+1, vk + vk+1 ∈ Ker (H − In), vk−1 ∈ Ker T, so
since Vk−2 ⊆ Ker T, we get that Vk−1 ⊆ ker T, so (1a) holds. Also, since
R − In−2 ∈ Tn−2(r), and α = 0, vi(H − In) = vi(h − In) ∈ Vn−r−3, for
k + 2 ≤ i ≤ n− 1. Thus (h− In)i,n−r−2 = 0, for k + 2 ≤ i ≤ n− 1. Finally,
since R − In−2 ∈ Tn−2(r), Hn−2,n−r−2 6= 0, so (h − In)n,n−r−2 6= 0. We
showed that:

If α = 0, then Ts,n−r−2 = 0, for all 1 ≤ s ≤ n− 1, and Tn,n−r−2 6= 0.(iv)

So (1b) holds for f = n− r − 2.
Suppose δ 6= 0. We leave it for the reader to verify that im T = 〈v1, v2, . . . ,

vn−r−2, vk + vk+1〉. Hence (1e) holds.
Suppose next that δ = 0 = β, then either r > k − 1, in which case

im T = Vn−r−2 and (1g) holds, or r = k − 1, in which case (1f) holds, with
µ = 1.
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Finally suppose δ = 0 6= β. If r > k − 1, then (1f) holds, with µ =
β/Hn−2,n−r−2, and if r = k−1, then either (1g) holds (in caseHn−2,k−1 = β),
or (1f) holds (otherwise). This completes the proof of (1).

Assume the hypothesis of (2). Suppose first that (H − In)2 6= 0. Notice
that since δ = 0, 7.8.5 implies that

(H − In)2 =
[
(R− In)2 + EF 0n−2,2

02,n−2 02,2

]
.

Also, since r = k − 2, (R − In)2 ∈ Tn−2(n − 4). Notice further, that by
1.13.3, Rr+i,i = Rr+s,s, for all 1 ≤ i, s ≤ n − r − 2. Thus the (n − 3, 1)-
entry and the (n − 2, 2)-entry of (R − In)2 are both equal to R2

r+1,1. Since
(EF )n−3,1 = (EF )n−2,2 = α2, it is clear that (h− In)2 ∈ Tn(n−s), for some
s ∈ {1, 2}.

Suppose next that (H − In)2 = 0. Then, the above considerations imply
that Rr+i,i = α, for all 1 ≤ i ≤ n − r − 2. Note that Vk−2 ⊆ ker T. Also
vk−1(H−In) = (vk−1+vk+vk+1)(H−In)+(vk+vk+1)(H−In) = αv1+αv1 =
0. So vk−1 ∈ ker T. Thus (2a) is proved.

Next note that dim(im (H−In)) = dim(ker(H−In)), so since (H−In)2 =
0, im (H − In) = ker(H − In). Also vn(H − In) = v′ +Rn−2,k−1(vk−1 + vk +
vk+1)+αvk+2 +β(vk +vk+1)+α(vk +vk+2) = v′′+αvk +(Rn−2,k−1 +β)(vk +
vk+1), with v′ ∈ Vk−2 and v′′ ∈ Vk−1. Hence

vn(H − In) ≡ αvk + (Rn−2,k−1 + β)(vk + vk+1)(mod Vk−1).(v)

Since Vk−1 ⊆ ker(H − In), we get from (v) that

ρvk + µvk+1 ∈ ker(H − In), for some µ, ρ ∈ F, with µ 6= ρ.(vi)

Thus

ker T = 〈Vk−1, ρvk + µvk+1〉 ρ, µ as in (vi).(vii)

For (2b), we’ll show that if ρ, µ are as in (vi) and S ∈ {Xt, XXt, X−1Xt},
〈vk−1S

−1, (ρvk +µvk+1)S−1〉∩ker T = (0). This easily implies ker T∩kerST
has dimension ≤ k−2. Since, by (vii) and 7.7.5, Vk−2 ⊆ ker T∩kerST, (2b)
follows. Let v ∈ 〈vk−1S

−1, (ρvk + µvk+1)S−1〉.
Suppose S = Xt. By 7.7.7i, v = θ1vk−1S

−1 + θ2(ρvk + µvk+1)S−1 =
θ1(vk−1 + vk + vk+1 + vk+2) + θ2(ρ(vk + vk+2) + µ(vk+1 + vk+2)) = θ1vk−1 +
(θ1 +θ2ρ)vk +(θ1 +θ2µ)vk+1 +(θ1 +θ2(ρ+µ))vk+2. So if v ∈ ker T, then, by
(vii), θ1 +θ2(ρ+µ) = 0. Thus, θ1 +θ2ρ = θ2µ and θ1 +θ2µ = θ2ρ. It follows
that θ2µvk+θ2ρvk+1 ∈ ker T. Hence, we may assume that θ2µvk+θ2ρvk+1 =
ρvk + µvk+1. Hence θ2µ+ ρ = θ2ρ+ µ = 0. This is possible only if ρ = µ, a
contradiction.

Suppose S = XXt. Then, by 7.7.7ii, v = θ1vk−1S
−1+θ2(ρvk +µvk+1)S−1

= θ1vk+2 + θ2{ρ(vk+1 + vk+2) + µ(vk + vk+2)} = θ2µvk + θ2ρvk+1 + (θ1 +
θ2(ρ+ µ))vk+2. So if v ∈ ker(h− In), then, by (vii), θ1 + θ2(ρ+ µ) = 0 and
θ2µvk + θ2ρvk+1 ∈ ker T, which we have seen to be impossible.
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Suppose S = X−1Xt. Then, by 7.7.7iii, v = θ1vk−1S
−1 + θ2(ρvk +

µvk+1)S−1 = θ1(vk−2 + vk+2) + θ2(ρ(vk+1 + vk+2) + µ(vk + vk+2)) and as in
the case S = XXt, we get a contradiction. This completes the proof of (2).

Assume the hypothesis of (3).

Case 1. r = 1.

By 7.8.5, (H − In)2 =
[
t E′

F ′ 02,2

]
, with t ∈ Tn−2(2). Then, it is easy to

verify that (H − In)3 =
[
t′ 0
0 02,2

]
, with t′ ∈ Tn−2(3) and from that (3a)

follows easily.
So from now on we assume that r > 1.

Case 2. α 6= 0 6= δ.
If r 6= k−2, or r = k−2 and Hk−1,1 6= α, then it is easily checked that (3b)

holds. So suppose that r = k − 2, and Hk−1,1 = α. Then vk−1T = (vk−1 +
vk+vk+1)T+(vk+vk+1)T = αv1+αv1 = 0. So clearly ker T = Vk−1. Also, for
k+2 ≤ s ≤ n−2, vsT ∈ Vk−2. Further, (vk+vk+2)T = γv1+αv2+(vk+vk+1)
and vk+2T = Rk,1v1+Rk,2v2. Since vkT = vk+2T+(vk+vk+2)T, we conclude
that Tk,k−1 = 0. Also since (vk + vk+1)T = αv1, we see that Tk+1,k−1 = 0.
Hence, we see that Ts,k−1 = 0, for all 1 ≤ s ≤ n − 1. Now vnT = v′ +
Rn−2,k−1(vk−1 +vk +vk+1)+Rn−2,kvk+2 +β(vk +vk+1)+α(vk +vk+1), with
v′ ∈ Vk−2. Hence, if Rn−2,k−1 6= 0, then Tn,k−1 6= 0, and case (3c) holds.
Finally, suppose Rn−2,k−1 = 0. Then vnh = vnH = v′′ + vn + βwn−1 +αwn,
with v′′ ∈ 〈Vk−2, vk+2〉 and wnh = γv1 + αv2 + wn−1 + wn. Hence 0 =
f(vn, wn) = f(vnh,wnh) = γ + β + α. Hence β + γ = α. Also, vk+2h =
Rk,1v1 + Rk,2v2 + vk+2. Hence, 0 = f(vk+2, vn) = f(vk+2h, vnh) = Rk,1.
So Rk,1 = 0. Since β + γ = α, 7.8.5 yields (EF )n−2,1 = α2. Then, since
Rk,1 = Rn−2,k−1 = 0 and Rk−1,1 = Rn−2,k = α (see 1.13.3), we get, using
7.8.5, that (R − In−2)2 + EF ∈ Tn−2(n − 3). Now using 7.8.5, it is easy to
check that (3d) holds.

Case 3. α 6= 0 = δ and r 6= k − 2; or α = 0.
Using 7.8.5 we get that

(H − In)2 =
[
(R− In)2 + EF 0n−2,2

02,n−2 02,2

]
.

Now if α = 0, EF = 0, while if α 6= 0 = δ, and r 6= k − 2, then (R− In)2 +
EF ∈ Tn−2(r′), for some 1 ≤ r′ < n− 2. Thus in either case

(H − In)2 =
[

t 0n−2,2

02,n−2 02,2

]
with t ∈ Tn−2(r′), for some 1 ≤ r′ < n− 2. It follows that for some i,

(H − In)i =
[

t′ 0n−2,2

02,n−2 02,2

]
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with t′ ∈ Tn−2(r′′), for some k−1 ≤ r′′ < n−2. If r′′ > k−1, we get case (3e).
So suppose r′′ = k− 1. Clearly, im Ti = 〈v1, . . . , vk−2, vk−1 + vk + vk+1〉 and
Vk−1 ⊆ ker Ti. So, to establish (3f), it remains to show that (Ti)s,k−1 = 0, for
all 1 ≤ s ≤ n−1, and (Ti)n,k−1 6= 0. Now for k+2 ≤ s ≤ n−1, vs(H−In)i ∈
Vk−2, so (Ti)s,k−1 = 0. Further since (vk + vk+1)Ti = (vk + vk+2)Ti = 0,
vkTi = vk+1Ti = vk+2Ti ∈ 〈v1〉. Hence (Ti)k,k−1 = (Ti)k+1,k−1 = 0. Finally,
since t′ ∈ Tn−2(k − 1), (Ti)n,k−1 6= 0. Thus, (3f) holds.

7.10. Let ε ∈ {−1, 1} and let S ∈ {Xt, XεXt}. Let R ∈ CL(S) and suppose
v1 is a characteristic vector of R. Then R = 1.

Proof. Set W = 〈O(v1, S)〉. Using, 7.7.8, 7.7.9 and 7.7.10, it is clear that W
is nonsingular (in all cases) and hence R centralizes W. Set v = vk + vk+1.

Suppose first that S = Xt. Then, by 7.7.8, W⊥ = 〈v, v′〉, with v′ =
vk−1 + vk, vS = v and v′S = v + v′. Clearly W⊥ is R-invariant and since
R ∈ CL(S), vR = αv and v′R = βv + αv′. Since Q(v) = 1, α = 1. Hence R
centralizes 〈W, v〉 of dimension n− 1. Thus, by 7.1 (and since det(R) = 1),
R = 1.

Suppose next that S = XXt and that k ≡ 0 (mod 3). Then using 7.7.9
and arguing exactly as in previous paragraph we get R = 1.

Finally suppose S = XXt and k 6≡ 0 (mod 3), or S = X−1Xt. By 7.7.9
and 7.7.10, dim(W) = n− 1, so by 7.1, R = 1.

7.11. Let ε ∈ {1,−1} and let S ∈ {Xt, XεXt}. Suppose R ∈ ∆≤2(X) ∩
∆≤1(S). Then v1 is a characteristic vector of R.

Proof. Let h ∈ ∆≤1(X) ∩∆≤1(R). We’ll show that there exists i ≥ 1, such
that if we set T = (h− In)i, then there are integers j,m, ` ≥ 0 such that all
the hypotheses of 1.15 are satisfied for S, T and R. The lemma will follow
from 1.15. We’ll use 7.9, so we adopt the notation of 7.9. For a subspace
W ⊆ V , let S(W) = 〈w ∈ W : Q(w) = 0〉 (the singular vectors of W).

Case 1. k − 1 ≤ r ≤ n− 3.
In each case (1c)-(1h) of 7.9.1 we pick i as defined in these cases. We

take j = k − 2, in all cases. Notice that by 7.7.5, hypothesis (a) of 1.15 is
satisfied. We let m = dim{S(imT )} and ` = 1. Using 7.7.6 and (1b) of
7.9.1, we get hypothesis (c) of 1.15. The remaining hypotheses of 1.15 are
readily verified using 7.9.1.

Case 2. r = k − 2 and α 6= 0 = δ.
In this case, if (h − In)2 ∈ Tn(n − s), for some s ∈ {1, 2}, we take i = 2,

m = s, j = k − 2 and ` = 1. Otherwise we take i = 1, j = k − 2 = m and
` = 1. Using 7.9.2, we see that the hypotheses of 1.15 are satisfied.

Case 3. 1 ≤ r < k − 1, but Case 2 does not occur.
If case 7.9.3a holds, take i = n− 3 and m = 1, to get the lemma trivially.

If case 7.9.3b holds, take i = 1, j = m = dim(S(kerT )) and ` = 0. If
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case 7.9.3c holds, take i = 1, j = k − 2, m = k − 1 and ` = 1. Notice
again that by 7.7.6, hypothesis (c) of 1.15 holds. If case 7.9.3d holds, then
S(im (h− In)2) = 〈v1〉 and trivially, 〈v1〉 is R-invariant. If case 7.9.3e holds,
take i as in 7.9.3e, j = k − 2, m as in 7.9.3e and ` = 1. If case 7.9.3f holds,
take i as in 7.9.3f, j = k− 2, m = dim{S(im (T )} = k− 2, and ` = 1. Using
7.7.6, the hypotheses of 1.15 are readily verified in cases 7.9.3e and 7.9.3f
and the proof of 7.11 is complete.

7.12. Let Λ = ∆(L), ε ∈ {1,−1} and let S ∈ {Xt, XεXt}. Then dΛ(X,S)
≥ 4.

Proof. Suppose dΛ(X,S) ≤ 3 and let R ∈ ∆≤2(X) ∩∆≤1(S). By 7.11, v1 is
a characteristic vector of R and by 7.10, R = 1, a contradiction.

Theorem 7.13. ∆(L) is balanced.

Proof. Let Λ = ∆(L). Note that 7.12 implies that BΛ(X,Xt) and by 1.9,
BΛ(Xt, X), so Λ is balanced.

Chapter 2. The Exceptional Groups of Lie type.

In Section 8 we prove that for all exceptional groups of Lie type L ex-
cluding E7(q), the commuting graph ∆(L) is disconnected (Theorem 8.8).
In Section 9 we prove that if L ∼= E7(q), then ∆(L) is balanced (see 1.3.2).

8. The Exceptional Groups excluding E7(q).

In this section L is a finite exceptional group of Lie type, excluding E7(q).
We take L = Gσ, where G is a simply connected simple algebraic group
and σ is a Frobenius morphism. Hence L is one of the following groups:
2B2(22m+1), G2(q), 2G2(32m+1), 3D4(q), F4(q), 2F4(22m+1), E6(q), 2E6(q),
E8(q). We exclude certain small cases where L is either solvable or L′ is of
classical type. So we exclude 2B2(2), G2(2),2G2(3). The remaining groups
are all quasisimple, with the exception of 2F4(2), which has derived group of
index 2. We let L∗ = L/Z(L). Of course Z(L) = 1, except when L ∼= E6(q),
in which case |Z(L)| = (3, q − 1), and when L ∼= 2E6(q), in which case
|Z(L)| = (3, q + 1).

8.1. Assume G is a simply connected simple algebraic group and σ is a
Frobenius morphism with quasisimple fixed point group Gσ. Let T be a σ
invariant maximal torus. Suppose s ∈ Tσ is an element such that s /∈ Sσ, for
any σ-invariant maximal torus S, such that |Sσ| 6= |Tσ|. Then CGσ(s) = Tσ.
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Proof. It will suffice to show that CG(s) = T . As G is simply connected,
CG(s) = CG(s)0 ([1, II, 3.9]) and this is a reductive group. Write CG(s) =
DZ, where Z = Z(CG(s))0 and D = CG(s)′. Thus D is a semisimple group.
Note that T ≤ CG(s) and that s is contained in all maximal tori of CG(s)
(as maximal tori are self centralizing).

If D = 1, then CG(s) = T , as required. Suppose this is not the case and
let {D1, . . . , Dr} be an orbit of 〈σ〉 on simple components of D. Then σr

induces a Frobenius morphism on each Di. By [1, I, 2.9], this Frobenius
morphism normalizes a maximal torus contained in an invariant Borel of
D1. Taking images under powers of σ we get a maximal torus of each Di

with the same properties.
For the moment exclude the case where p = 2 and Di = B2, C2. Then σr

acts on the various root systems, stabilizing the positive roots, and fixing
the root of highest height and its negative. Hence for each i, σr normalizes
Ji, the fundamental SL2 generated by the corresponding root subgroups.
Also σ normalizes J1 · · ·Jr. The centralizer in CG(s) of this group is also
σ-stable and so contains a σ-stable maximal torus, say E.

There are two classes of σ-invariant maximal tori in J1 · · ·Jr. These
correspond to maximal tori in the fixed point group (of type A1(qr) of order
qr + 1 and qr − 1). Hence there are two classes of σ-invariant maximal tori
of (J1 · · ·Jr)E whose fixed points in J1 · · ·Jr have order qr +1 and qr−1. A
representative of one of these tori, say T has fixed points of order different
than that of Tσ, however, by earlier remarks, s ∈ T σ, contradicting the
hypothesis.

Finally consider the case p = 2, and Di = B2, C2. This is only possible
when G = F4. There cannot be more than one such simple component in D,
since the product of two has trivial centralizer, so cannot lie in CG(s). Thus
D1 is σ-invariant and we can use the same argument unless (D1)σ = Sz(q).
Here too there are at least two classes of maximal tori, so we can proceed
as above.

Corollary 8.2. Let G be a simple connected simple algebraic group and let
σ be a Frobenius morphism of G such that Gσ = L. Let T be a σ-invariant
torus and assume:

(a) If S ≤ G is a σ-invariant maximal torus such that |Sσ| 6= |Tσ|, then
(|Tσ|, |Sσ|) = |Z(L)|.

(b) (|Tσ : Z(L)|, |Z(L)|) = 1.

Let T ∗σ be the image of Tσ in L∗. Then T ∗σ −{1} is a component of ∆(L∗).

Proof. We’ll show that CL∗(s) = T ∗σ , for every 1 6= s∗ ∈ T ∗σ . Let s ∈
Tσ − Z(L). We claim that s /∈ Sσ, for every σ-invariant maximal torus S
of G, such that |Sσ| 6= |Tσ|. Indeed, since s ∈ Tσ − Z(L), (b) implies that
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|s| - |Z(L)|, where |s| is the order of s. However, if s ∈ Sσ, for some σ-
invariant maximal torus S of G, then |s| divides (|Tσ|, |Sσ|). Hence, by (a),
|Sσ| = |Tσ|.

By 8.1, CL(s) = Tσ. Hence, from (b) we get that CL∗(s∗) = T ∗σ .

Notation and definitions. We denote by Φn(x), the n-th cyclotomic
polynomial (of degree φ(n)). Given a prime p and an integer b, the p-share
of b is the largest power of p dividing b.

8.3. Let n, a ≥ 2 and let p be a prime. When (a, p) = 1, denote by dp(a)
the order of a mod p. Then:

(1) p | Φn(a) iff (a, p) = 1, and n = pedp(a), for some e ≥ 0.
(2) If n ≥ 3, and p | Φn(a), then either n = dp(a), or the p-share of Φn(a)

is p.

Proof. This is well-known, see, e.g., [9, p. 27].

Corollary 8.4. Let r be a prime, q a positive power of r and 2 ≤ m < n.
Then:

(1) If m - n or if n
m is not a prime power, then (Φn(q),Φm(q)) = 1.

(2) If n
m = pf , with r 6= p a prime and f ≥ 1, then (Φn(q),Φm(q)) = pt,

with t ≥ 0.

Proof. Let p be a prime such that p | (Φn(q),Φm(q)). By 8.3.1, p 6= r,
m = pe1dp(q) and n = pe2dp(q). Thus m | n and n

m = pe2−e1 . This shows
(1). It also shows (2), since, we just saw that there can be at most one prime
dividing (Φn(q),Φm(q)).

In the following lemma we list the cyclotomic polynomials of degree ≤ 8.
These are the relevant cyclotomic polynomials in calculating the order of
maximal tori in exceptional groups of Lie type.

8.5. The cyclotomic polynomials of degree ≤ 8 are given in the following
table.
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The degree The cyclotomic polynomials

1 Φ1(x) = x− 1, Φ2(x) = x+ 1.

2 Φ3(x), Φ4(x) = x2 + 1, Φ6(x) = x2 − x+ 1.

4 Φ5(x), Φ8(x) = x4 + 1, Φ10(x) = x4 − x3 + x2 − x+ 1,

Φ12(x) = x4 − x2 + 1.

6 Φ7(x), Φ9(x) = x6 + x3 + 1,

Φ14(x) = x6 − x5 + x4 − x3 + x2 − x+ 1,

Φ18(x) = x6 − x3 + 1.

8 Φ15(x) = x8 − x7 + x5 − x4 + x3 − x+ 1, Φ16(x) = x8 + 1,

Φ20(x) = x8 − x6 + x4 − x2 + 1, Φ24(x) = x8 − x4 + 1,

Φ30 = x8 + x7 − x5 − x4 − x3 + x+ 1.

Proof. The degree of Φn(x) is φ(n) =
∏k

i=1 p
mi−1
i (pi−1), where n =

∏k
i=1 p

mi
i

and it is easy to calculate the table.

Corollary 8.6. Let q be a positive power of a prime r. Then:
(1) (Φ12(q), f(q)) = 1, for any cyclotomic polynomial f(x) of degree ≤ 4

distinct from Φ12(x).
(2) Let f(x) be a cyclotomic polynomial of degree ≤ 6, distinct from Φ9(x).

Then:
(i) If f(x) /∈ {Φ1(x),Φ3(x)}, then (Φ9(q), f(q)) = 1.
(ii) The 3-share of Φ9(q) is (3, q − 1).
(iii) If f(x) ∈ {Φ1(x),Φ3(x)}, then (Φ9(q), f(q)) = (3, q − 1).

(3) Let f(x) be a cyclotomic polynomial of degree ≤6, distinct from Φ18(x).
Then:
(i) If f(x) /∈ {Φ2(x),Φ6(x)}, then (Φ18(q), f(q)) = 1.
(ii) The 3-share of Φ18(q) is (3, q + 1).
(iii) If f(x) ∈ {Φ2(x),Φ6(x)}, then (Φ18(q), f(q)) = (3, q + 1).

(4) (Φ30(q), f(q)) = 1, for any cyclotomic polynomial f(x), of degree ≤ 8,
distinct from Φ30(x).

(5) Let f(x) be a cyclotomic polynomial of degree ≤6, distinct from Φ14(x).
Then:
(i) If f(x) 6= Φ2(x), then (Φ14(q), f(q)) = 1.
(ii) (Φ14(q),Φ2(q)) = (q + 1, 7).

(6) Let f(x) be a cyclotomic polynomial of degree ≤ 6, distinct from Φ7(x).
Then:
(i) If f(x) 6= x− 1, then (Φ7(q), f(q)) = 1.
(ii) (Φ7(q), q − 1) = (q − 1, 7).
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Proof. (1): We have Φ12(x) = x4−x2 +1, hence clearly (Φ12(q),Φ1(q)) = 1.
Let Φ12(x) 6= f(x) be a cyclotomic polynomial of degree ≤ 4. Note that
Φ12(q) is odd and Φ12(q) ≡ 1 (mod 3). Now, by 8.5, f(x) = Φm(x), with
m < 12, so (1) follows from 8.4.

(2): Next Φ9(x) = q6 + q3 + 1. Let Φ9(x) 6= f(x) be a cyclotomic polyno-
mial of degree ≤ 6. Since Φ9(q) is odd, 8.4 implies that (Φ9(q),Φ18(q)) = 1.
Now, by 8.5 and 8.4, (Φ9(q), f(q)) = 1, except when q ≡ 1 (mod 3) and
f(x) = Φ1(x) or Φ3(x), in which case (Φ9(q), f(q)) = 3t, for some t ≥ 1.
Suppose q ≡ 1 (mod 3), then d3(q) = 1, so by 8.3.2, the 3-share of Φ9(q) is
3 and (2) follows.

(3): Next, Φ18(x) = x6−x3+1. We already observed that (Φ18(q),Φ9(q))
= 1. Let Φ18(x) 6= f(x) be a cyclotomic polynomial of degree ≤ 6. No-
tice that (Φ18(q),Φ1(q)) = 1. Since Φ18(q) is odd, 8.5 and 8.4 imply that,
(Φ18(q), f(q)) = 1, except when f(x) = Φ2(x) or Φ6(x) and q ≡ −1 (mod 3),
in which case (Φ18(q), f(q)) = 3t, for some t ≥ 1. But by 8.3.2, if q ≡ −1
(mod 3), the 3-share of Φ18(q) is 3 and (3) holds.

(4): Let Φ30(x) 6= f(x) be a cyclotomic polynomial of degree ≤ 8 and
suppose (Φ30(q), f(q)) 6= 1. Now Φ30(x) = x8 + x7 − x5 − x4 − x3 + x + 1,
so Φ30(q) is odd. Notice that (Φ30(q),Φ1(q)) = 1. By 8.5 and 8.4, f(x) =
Φm(x) for some 1 < m < 30. By 8.4, if p is a prime dividing (Φ30(q), f(q)),
then p = 3 or 5. Now by 8.3.1, Φ30(q) 6≡ 0 (mod 3) and Φ30(q) 6≡ 0 (mod 5)
so (4) follows.

(5): Let Φ14(x) 6= f(x) be a cyclotomic polynomial of degree ≤ 6 and
suppose (Φ14(q), f(q)) 6= 1. Now Φ14(x) = x6 − x5 + x4 − x3 + x2 − x +
1, so Φ14(q) is odd. Using 8.5 and 8.4, we see that f(x) = Φ2(x) and
(Φ14(q),Φ2(q)) = 7t, for some t ≥ 1. Hence q ≡ −1 (mod 7) and by 8.3.2,
t = 1.

(6): Let Φ7(x) 6= f(x) be a cyclotomic polynomial of degree ≤ 6 and
suppose (Φ7(q), f(q)) 6= 1. Now Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1, so
Φ7(q) is odd. Using 8.5 and 8.4, we see that f(x) = x − 1. Now Φ7(x) =
(x5 + 2x4 + 3x3 + 4x2 + 5x+ 6)(x− 1) + 7. Hence (Φ7(q), q− 1) = (q− 1, 7).

8.7. There exists a maximal torus Tσ ≤ L satisfying the hypotheses of 8.2.

Proof. We begin with the Suzuki and Ree groups 2B2(q), 2G2(q), 2F4(q),
where p = 2, 3, 2 respectively. Here q = p2m+1 and we set q0 =

√
q. Suppose

first that L ' 2B2(q). As is well-known, (see, e.g., [1, p. 191]) there are 3
classes of maximal tori in L of orders (q−1), (q−

√
2q+1) and (q+

√
2q+1).

So taking, e.g., |Tσ| = q − 1, we are done.
Suppose next that L ∼= 2G2(q). Then, there are 4 classes of maximal

tori in L (see, e.g., [1, p. 213]) of orders (q − 1), (q + 1), q −
√

3q + 1 and
q +

√
3q + 1 and taking, e.g., |Tσ| = q +

√
3q + 1, we are done.

Suppose that L ∼= 2F4(q). By [17], the order of a maximal torus of L either
divides [Φ1(q)]2[Φ2(q)]2Φ4(q)Φ6(q), or is of order q40 +ε

√
2q30 +q20 +ε

√
2q0+1,
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ε ∈ {1,−1} and hence divides Φ12(q). Let |Tσ| = q40 +
√

2q30 + q20 +
√

2q0 + 1
and let Sσ ≤ L be a maximal torus with |Sσ| 6= |Tσ|. Since |Tσ| divides
Φ12(q), we deduce from 8.6.1, that (|Tσ|, |Sσ|) = 1, except perhaps when
|Sσ| = q40 −

√
2q30 + q20 −

√
2q0 + 1. But it is easy to check that (q40 +

√
2q30 +

q20 +
√

2q0 + 1, q40 −
√

2q30 + q20 −
√

2q0 + 1) = 1.
Suppose L is one of the remaining types. Let Sσ ≤ L be a maximal torus.

As is well-known, if n is the rank of L, then

|Sσ| = g(q)(∗)

where g(x) is a polynomial of degree n, a product of cyclotomic polynomials.
If L ∼= G2(q), with q 6≡ −1 (mod 3) we let |Tσ| = Φ6(q), while if q ≡ −1

(mod 3), we let |Tσ| = Φ3(q). If L ∼= 3D4(q), we let |Tσ| = Φ12(q). If
L ∼= F4(q), we let |Tσ| = Φ12(q). If L ∼= E6(q) we let |Tσ| = Φ9(q). If
L ∼= 2E6(q), we let |Tσ| = Φ18(q). Finally, if L ∼= E8(q), we let |Tσ| = Φ30(q).

In all cases Tσ exists (see, e.g., [1, pp. 304-305] and [5]). By 8.6 and (∗),
Tσ satisfies the hypotheses of 8.2.

Theorem 8.8. Let L∗ be an exceptional finite simple group of Lie type.
Suppose L∗ is not of type E7. Then ∆(L∗) is disconnected.

Proof. This is immediate from 8.2 and 8.7.

9. The group E7(q).

In this section q is a prime power and L is a simple group with L ∼= E7(q).
We let δ = gcd (q − 1, 2). Recall that

|L| = 1
δ
q63(q18 − 1)(q14 − 1)(q12 − 1)(q10 − 1)(q8 − 1)(q6 − 1)(q2 − 1).

Thus if L̃ is the universal group of type E7 defined over the field of q el-
ements, then |Z(L̃)| = δ and L̃/Z(L̃) = L. We let ∆ = ∆(L) be the
commuting graph of L. Our notation for graphs and the commuting graph
are as introduced in Section 1 (see 1.3), in particular, for a ∈ ∆, ∆i(a) =
{x ∈ ∆ : d(a, x) = i} (d is the distance function) and ∆(a) = ∆1(a).

The purpose of this section is to prove that ∆ is balanced (Theorem 9.14),
we do this by showing that, in the notation of 9.2 (below), there exists a ∈ ∆
such that Ξ(a) 6= ∅. Then, by definition, for each b ∈ Ξ(a), B∆(a, b) and
B∆(b, a), so ∆ is balanced.

Notation. We denote SLε
n(q) = SLn(q), SUn(q), according to whether ε =

1,−1. Similarly for GLε
n and PSLε

n.
In what follows we take ε = 1, unless 4 | q − 1, in which case we take

ε = −1. Of course 4 - q − ε.

9.1. (1) L contains a subgroup K ∼= PSLε
8(q).
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(2) K contains a subgroup H ∼= GLε
7(q)/Z(2,q−ε), which contains a cyclic

maximal torus of order (q7 − ε)/(2, q − ε).
(3) Z(H) ∼= Z(q−ε)/(2,q−ε), a group of odd order.
(4) Let 1 6= a ∈ Z(H). Then CL(a) = H.

Proof. View L = (Lσ)′, where L is an adjoint group of type E7 and σ is
a Frobenius morphism. Then L has index δ in Lσ. There is a σ-invariant
maximal rank subgroup A7 < L with center of order δ. Then NE7(A7) =
A7.2, the extra involution being the long word in a suitable Weyl group and
inducing a graph automorphism on A7. It follows from [1, I, 2.8], that there
are two classes of σ-invariant conjugates of A7. For elements in one class σ
induces a field morphism and on the other a graph-field morphism. Let E
be an element of one of these classes, determined by ε. Then Eσ < Lσ.

Let Ê = SL8, the simply connected group of type A7. There is a surjective
homomorphism θ : Ê → E, with kernel of order 4 or 1, according to whether
q is odd or even. Moreover, there is a Frobenius morphism of Ê, which we
also call σ, which commutes with θ.

Now K̂ = (Ê)σ = SLε
8(q) and this group contains Ĥ ∼= GLε

7(q), which
arises by taking fixed points of a σ-invariant subgroup of Ê of type A6T1.

Set K = θ(K̂), so that K ∼= SLε
8(q)/Z(4,q−ε). Our choice of ε forces

K ∼= PSLε
8(q) giving (1).

Let D = θ(A6T1) < E. Then Dσ and (A6T1)σ have the same order (see
the proof of (2.12) in [15]), so Dσ ≥ θ(GLε

7(q)) as a subgroup of index
(4, q − ε). Also Dσ covers Lσ/L.

Our choice of ε implies that GLε
7(q) = J×S, where J = O2′(GLε

7(q)) and
S ∼= Z(2,q−ε). Then θ restricts to an isomorphism on J and setting H = θ(J)
we obtain (2). We note that H has index (2, q − ε) in Dσ, and if the index
is 2, then there is an involution in Dσ which is in Lσ − L ((2.12) in [15]).
Also H contains a cyclic maximal torus of order (q7− ε)/(2, q− ε). Thus (2)
holds. (3) follows from (2) and our choice of ε.

Fix 1 6= a ∈ Z(H). Then C
L

(a)0 ≥ D, a maximal rank group of type
A6T1. If the containment is strict, then C

L
(a)0 would have to be a semisim-

ple group of rank 7. But a consideration of root systems shows that the only
such subgroups of E7 containing A6 are of type A7 and such a group has
centralizer of order at most 2. Thus equality holds and taking fixed points
we have C

Lσ
(a) = Dσ. Intersecting with L yields (4).

9.2. Notation and definitions.
(1) T denotes the set of maximal tori in L of order (q7 − ε)/(2, q − ε) as

in 9.1.2. Of course T is a conjugacy class of tori in L.
(2) Given T ∈ T , we denote by RT ≤ T , the unique subtorus of order

(q − ε)/(2, q − ε). We let ΛT = T − RT . We set Λ = ∪T∈T ΛT and we
let λ = |Λ|.
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(3) Given T ∈ T , we let HT = CL(RT ).
Let a ∈ Λ.

(4) We let Θ(a) = ∆≤3(a). We denote θ = |Θ(a)|. We’ll see in 9.3 below
that θ is independent of a.

(5) We let Γ(a) = {b ∈ Λ : d(a, ab) > 3 < d(a, a−1b)}.
(6) We denote Γ∗(a) = {b ∈ Λ : a ∈ Γ(b)}.
(7) We denote Ξ(a) = Γ(a) ∩ Γ∗(a) ∩ Λ>3(a).

9.3. Let a ∈ Λ. Then:
(1) There exists a unique T ∈ T such that a ∈ T . Further, CL(a) = T .

Let T ∈ T be the unique torus containing {a}. Then:
(2) ∆(a) = T − {1, a}.
(3) ∆2(a) = HT − T .
(4) |∆k(a)| = |∆k(b)|, for all b ∈ Λ and all k.

Proof. Let a ∈ Λ. To show (1), suppose first that the order of a, |a| is not a
power of 7. We claim that a satisfies the hypotheses for s in 8.1. Recall that
if Sσ ≤ L̃ is a maximal torus, then |Sσ| = g(q), where g(x) is a polynomial
of degree 7, a product of cyclotomic polynomials, hence the hypotheses of
8.1 follow from 8.6.5 if ε = −1 and from 8.6.6, if ε = 1. So suppose |a| is a
power of 7. Let T ∈ T such that a ∈ T . Since T is cyclic, 1 6= ak ∈ RT ,
for some k ≥ 2. Then CL(a) ≤ CL(ak) = CL(RT ), by 9.1.4. Hence, (1)
follows from inspecting CH(a), where H = HT . This shows (1). Now, (2)
is immediate from (1), and (3) is immediate from (2) and 9.1.4. Also (3)
says that ∆2(x) = ∆2(y), for x, y ∈ ΛT , so since T is a conjugacy class of
subgroups, (4) follows.

9.4. Let a ∈ Λ and set Θ = Θ(a). Then:
(1) Γ(a) = Λ− ((a−1(aΛ ∩Θ)) ∪ (a(a−1Λ ∩Θ))).
(2) |Γ(a)| ≥ λ− 2θ.

Proof. Note that {b ∈ Λ : d(a, ab) ≤ 3} = a−1(aΛ ∩ Θ(a)) and {b ∈ Λ :
d(a, a−1b) ≤ 3} = a(a−1Λ ∩ Θ(a)). Hence (1) holds. (2) is immediate from
(1).

9.5. There exists a ∈ Λ such that |Γ∗(a)| ≥ λ− 2θ.

Proof. Let M = Maxb∈Λ|Γ∗(b)|. Count the number of pairs X = {(a, b) :
a, b ∈ Λ and b ∈ Γ(a)}. Using 9.4, we have λ(λ−2θ) ≤

∑
a∈Λ |Γ(a)| = |X| =∑

b∈Λ |Γ∗(b)| ≤ λM . Thus M ≥ (λ− 2θ) as asserted.

9.6. Notation. From now on we fix a ∈ Λ such that |Γ∗(a)| ≥ λ− 2θ, and
we set Θ = Θ(a), Ξ = Ξ(a) and ξ = |Ξ|. Let T denote the unique member
of T containing {a} and set H = HT .

9.7. (1) |Γ(a) ∩ Γ∗(a)| ≥ λ− 4θ.
(2) ξ ≥ λ− 5θ.
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Proof. |Γ(a)∩Γ∗(a)| ≥ |Γ(a)|−|Λ−Γ∗(a)| ≥ (λ−2θ)−(λ−(λ−2θ)) = λ−4θ.
The proof of (2) is similar.

The remainder of this section is devoted to showing that Ξ 6= ∅, or that
ξ > 0. It will be done by producing an upper bound to θ. To estimate sizes
of subgroups we’ll use the following lemma.

9.8. Let 2 ≤ a1 < a2 < . . . < ak be integers and let ε1, ε2, . . . , εk ∈ {1,−1}.
Then

1
2
≤ (qa1 + ε1)(qa2 + ε2) · · · (qak + εk)

qa1+a2+···+ak
≤ 2.

Proof. This is taken from [18, p. 2100]. We include the proof in [18]. For
i ≥ 2, we have

1− 1
2i
≥

1
2 + 1

2i

1
2 + 1

2i−1

, 1 +
1
2i
≤

1− 1
2i

1− 1
2i−1

.

Therefore the fraction

(qa1 + ε1)(qa2 + ε2) · · · (qak + εk)
qa1+a2+···+ak

is at least
k∏

i=1

(
1− 1

qai

)
≥

K∏
i=2

(
1− 1

qi

)
≥

K∏
i=2

(
1− 1

2i

)

≥
K∏

i=2

1
2 + 1

2i

1
2 + 1

2i−1

=
1
2

+
1

2K
>

1
2
,

(where K = ak) and at most

k∏
i=1

(
1 +

1
qai

)
≤

K∏
i=2

(
1 +

1
qi

)
≤

K∏
i=2

(
1 +

1
2i

)

≤
K∏

i=2

1− 1
2i

1− 1
2i−1

= 2− 1
2K−1

< 2.

9.9. (1) |H| ≤ 3q49 ≤ q51.
(2) |L| ≥ 1

2δ q
133.

(3) λ ≥ 1
14δ q

133.

Proof. By 9.1.2, |H| = 1
(2,q−ε) |GL

ε
7(q)|. By 9.8, |SLε

7(q)| ≤ 2q48. Hence,
1

(2,q−ε) |GL
ε
7(q)| = 1

(2,q−ε)(q−ε)|SL
ε
7(q)| ≤ 2

(2,q−ε)(q−ε)q
48 ≤ 3q49. (2) follows

immediately from 9.8. Now |ΛT | = |T − RT | = 1
(2,q−ε){q

7 − ε − (q − ε)} =
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1
(2,q−ε)(q

7 − q). Since every element of Λ lies in a unique member of T , we
get that

|Λ| = |ΛT | |T | ≥
1

(2, q − ε)
(q7 − q) · |L|

7|T |
=

1
7δ
|L| q

7 − q

q7 − ε

=
1
7δ
q63(q7−q)(q7+ε)(q18−1)(q12−1)(q10−1)(q8−1)(q6−1)(q2−1)

≥ 1
14δ

q133

by 9.8; notice that the argument in the proof of 9.8 applies even though we
have q6 − 1 appearing twice in the last product.

Corollary 9.10. (1) Suppose θ < 1
70δ q

133. Then ξ > 0.
(2) Suppose θ < q126. Then ξ > 0.

Proof. By 9.7.2, ξ ≥ λ−5θ. Now λ−5θ > 0, iff λ > 5θ iff θ < 1
5λ. By 9.9.3,

λ ≥ 1
14δ q

133, so 1
5λ ≥

1
70δ q

133. (2) follows immediately from (1).

9.11. Let M = {h ∈ H − {1} : |CL(h)| ≥ q74}. Set M = ∪h∈MCL(h) and
µ = |M|. If µ ≤ q125, then ξ > 0.

Proof. By 9.10.2, it suffices to show that θ ≤ q126. Of course, by 9.3.3, any
element in Θ centralizes a nontrivial element of H. Hence

θ ≤

∣∣∣∣∣∣
⋃

h∈H−{1}

CL(h)

∣∣∣∣∣∣ .(i)

Let M1 =
⋃
{CL(h) : 1 6= h ∈ H−M}. Of course, |M1|≤

∑
1 6=h∈H−M |CL(h)|

< |H|q74 ≤ q125. Also,
⋃
{CL(h) : 1 6= h ∈ H} = M1 ∪ M, so by (i),

θ ≤ |M1|+ |M| ≤ q125 + q125 ≤ q126.
Hence, it remains to show that µ ≤ q125.

9.12. Let x ∈ H satisfy |CL(x)| ≥ q74. Then one of the following holds:
(1) x is unipotent of class A1, |CL(x)| ≤ 2q99, xL∩H is a conjugacy class

of H and |H : CH(x)| ≤ 4q12.
(2) x is unipotent of class 2A1, |CL(x)| ≤ 2q81, xL ∩ H is a conjugacy

class of H, and |H : CH(x)| ≤ 4q20.
(3) x is semisimple, CL(x)′ ∼= E6(q) or 2E6(q) according to whether ε = 1

or −1. CL(x) = CL(x)′S, where S is cyclic of order (q − ε)/(2, q − ε).
Hence |CL(x)| ≤ 3q79. Either |H : CH(x)| = |GLε

7(q) : GLε
5(q)GL

ε
2(q)|

≤ 4q20 or |H : CH(x)| = |GLε
7(q) : GLε

6(q)GL
ε
1(q)| ≤ 2q12.

Proof. Write x = su as a commuting product of a semisimple and a unipo-
tent element. Then CL(x) ≤ CL(s). The latter group is obtained by taking
the set of fixed points under σ from the centralizer in the algebraic group,
then intersecting with L. In the algebraic group the centralizer is a reductive
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subgroup of maximal rank and a trivial check of subsystems shows that the
only subsystems giving a large enough centralizer are of type E7 or E6T1.
In the first case, s = 1 and in the latter case u = 1 in order to have large
enough centralizer (see [7]).

Suppose s = 1, so that x is unipotent. Then a check of [8] shows that x
has types A1, (2A1), or (3A1)′′. Now x is contained in a subsystem subgroup
of L̃ of type A6. The Jordan form of a unipotent element of A6 determines
a subsystem group containing the unipotent element as a regular element.
Each of the relevant subsystems is a Levi factor, so by the classification of
unipotent elements, x must also be of type A1, 2A1, or 3A1 within A6.

Now E7 has just one class of subsystem groups of type A1 and 2A1, but
it has two classes of subsystem groups of type 3A1 and we claim that the
class (3A1)′′ is not represented in A6. To see this start from a subsystem
group of type A1, with centralizer D6. Working in A1D6 we see that there
are two classes of groups of type 3A1, with centralizers D4, 4A1, respectively.
Only unipotent elements of type (3A1)′′ have centralizer involving D4, so the
former class is of type (3A1)′′. On the other hand, the group 3A1 in A6 is
contained in A1A4, so from the centralizer of the first factor we get A4 < D6

and from here we see that the full centralizer of 3A1 cannot contain D4, so
this must be the class (3A1)′, establishing the claim.

One checks that the centralizers of unipotent elements of type A1 and
2A1 in A6T1

∼= GL7 are connected, so each type is represented by a single
class in GLε

7(q) ([1, I, 2.8]) and hence in H. Centralizers are given in [8], so
the numerical information in (1) and (2) follows by taking fixed points and
using 9.8.

Now suppose s 6= 1. We again consider the group A7 = E < L. It is
shown in (2.3) of [6] the the 56-dimensional restricted module for a simple
connected group of type E7 restricts to a subgroup of type A7 as the wedge
square of the natural module and its dual. In each of these three irreducible
modules the Weyl group of E7 or A7 with respect to a maximal torus is
transitive on weight spaces within the module. The stabilizer in W (E7) of
a weight space is W (E6) and this is also the centralizer in W (E7) of the
central torus in CL(s).

Choose a σ-invariant maximal torus R < E. Taking Weyl groups with
respect to R, it follows from the above paragraph that W (A7) has two
orbits on 1-dimensional tori in R, with centralizer of type W (E6). Each
has stabilizer in W (A7) of type W (A5)W (A1). So for such a 1-dimensional
torus, the centralizer in A7 is a reductive group with Weyl group of type
W (A5)W (A1). The only possibility is that the centralizer has the form
A5A1T1.

Elements of the above 1-dimensional torus are represented in E as images
of elements of SL8 having one eigenvalue of multiplicity 6 and another of
multiplicity 2. Taking fixed points and working in GLε

7(q) we see that there
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are two types of semisimple elements in H of the correct type. In the
action on the natural 7-dimensional module one type has one eigenvalue of
multiplicity 6 and one eigenvalue of multiplicity 1, while for the other class
there is one eigenvalue of multiplicity 5 and another of multiplicity 2. The
conclusion follows.

Corollary 9.13. µ ≤ q125.

Proof. For i = 1, 2 let ui denote a unipotent element as in 9.12.1, and
set Mi = uL

i ∩ H. Let S1, S2 be subgroups of order (q − ε)/(2, q − ε) in
H corresponding to subgroups of GLε

7(q) with centralizer GLε
5(q)GL

ε
2(q) or

GLε
6(q)GL

ε
1(q), respectively. We claim that CL(S) = CL(y), for S ∈ {S1, S2}

and 1 6= y ∈ S. This follows from the fact that the preimage of S in L̃ has
centralizer of type E6T1, which is maximal among reductive subgroups of
E7. Recall that we defined M = {h ∈ H − {1} : |CL(h)| ≥ q74} and
M =

⋃
h∈MCL(h). By 9.12 we have

µ = |M| ≤
∑

x∈M1

|CL(x)|+
∑

x∈M2

|CL(x)|+
∑

x∈SH
1

|CL(x)|+
∑

x∈SH
2

|CL(x)|.

Hence µ ≤ (2q99)(4q12) + (2q81)(4q20) + (3q79)(4q20) + (3q79)(4q12) ≤ q125.

Theorem 9.14. ∆ is balanced.

Proof. By 9.13, µ ≤ q125, so by 9.11 ξ > 0. Hence Ξ(a) 6= ∅ and as we
remarked at the beginning of Section 9, this shows (by definition) that ∆ is
balanced.

10. The Alternating Groups.

In this section Am denote the Alternating Group on {1, 2, . . . ,m}. The
purpose of this section is to prove the following theorem:

Theorem 10.1. Let m > 3 and let L ∼= Am. Then diam (∆(L)) > 4.

Throughout this section n > 2 is a fixed even integer, such that n − 1 is
not a prime. We let G be the Symmetric Group on {1, 2, . . . , n}. We use
cyclic notation for permutations in G. We apply permutations on the right,
so for σ ∈ G, and i ∈ {1, 2, . . . , n}, iσ is the image of i under σ. In addition,
when we write a permutation as a product of cycles, the even numbers that
occur are bolded and enlarged. For example, if 1 ≤ k ≤ n is an odd number
congruent to 1 (mod 4), then

ρ = (1, 5, 9, · · · , k)(k + 1,k + 3, · · · ,2k)

is the permutation with iρ = i+4, if 1 ≤ i ≤ k−4 is congruent to 1 (mod 4),
kρ = 1, iρ = i+ 2, if k + 1 ≤ i ≤ 2k − 2 is even, and (2k)ρ = k + 1.
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Another convention that we’ll use is that · · · means continue with the
same pattern. Thus for example, in ρ, the · · · after 9 means that 9ρ = 13,
13ρ = 17, and so on until we get to k − 4. Another example is

η = (1,2, 3, · · · ,k−1,k + 3, · · · ,4k)

is a cycle such that iη = i+1, 1 ≤ i ≤ k−2, iη = i+4, if k−1 ≤ i ≤ 4k−4,
is congruent to 0 (mod 4) and (4k)η = 1.

Notation. (1) For a permutation σ ∈ G, we denote by supp (σ) the set
of elements moved by σ.

(2) We fix once and for all the letter g to denote the permutation

g = gn = (1,2, 3, · · · ,n−2, n− 1).

(3) We fix once and for all the letter s to denote the permutation

s = sn = (3,4)(5,6) · · · (n− 1,n).

(4) Let p be a prime divisor of n−1. We write np = n−1
p . Thus n−1 = pnp.

(5) Let p be a prime divisor of n− 1. We denote

θp = gnp .

The main result of this section, from which Theorem 10.1 follows, is the
following theorem.

Theorem 10.2. Let n > 2 be an even number. Suppose n−1 is not a prime
and let p, q be prime divisors of n−1, with p ≤ q. Let Γ = 〈θp, sθ

−1
q s〉. Then:

(1) Γ is a transitive subgroup of G.
(2) CG(Γ) = {1}.

We’ll now prove Theorem 10.1, under the assumption that Theorem 10.2
holds.

Proof of Theorem 10.1. Let L = Am. We assume that Theorem 10.2
holds and we prove Theorem 10.1. Let d be the distance function on ∆(L).
Suppose first that m is even. If m−1 is a prime, then it is easy to check that
〈gm〉−{1} is a connected component of ∆(L). So assumem−1 is a composite
odd number. Let g = gm and s = sm. We’ll show that d(g, sg−1s) > 4. So
suppose d(g, sg−1s) ≤ 4. Since CL(g) = 〈g〉, and CL(sg−1s) = 〈sg−1s〉, there

are prime divisors p, q of m − 1 such that π := g, g
(m−1)

p , x, sg
(1−m)

q s, sg−1s

is a path in ∆(L). But then x ∈ CL

(〈
g

(m−1)
p , sg

(1−m)
q s

〉)
, so if p ≤ q,

this contradicts Theorem 10.2, while if p > q, then inverting the path π and

conjugating by s, we get that g, g
(m−1)

q , sx−1s, sg
(1−m)

p s, sg−1s is also a path
in ∆(L), and this contradicts Theorem 10.2.

Suppose next that m is odd. If m − 2 is a prime, then 〈gm−1〉 − {1}
is a connected component of ∆(L). So assume m − 2 is a composite odd
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number. Let g = gm−1 and s = sm−1. Let p, q be prime divisors of m − 2.

Let Γ =
〈
g

(m−2)
p , sg

(2−m)
q s

〉
. By Theorem 10.2, {1, 2, · · · ,m−1} is an orbit

of Γ, so the centralizer of Γ in L fixes m, and hence by Theorem 10.2, it
is trivial. Then, the same proof as in the case when m is even shows that
d(g, sg−1s) > 4.

10.3. Let p be a prime divisor of n− 1. Then:
(1) θp = (1,np +1, · · · , (p− 1)np + 1)(2, np + 2, · · · , (p−1)np +2) · · ·

(np,2np, · · · , n− 1) and θp fixes n.
(2) Two indices i, j ∈ {1, 2, · · · , n− 1} are in the same orbit of θp, iff they

are congruent modulo np.
(3) For all 1 ≤ i ≤ n − 1, and all integers k, igk = k + i, in particular,

iθp = np+i, and iθ−1
p = i−np, where indices are taken modulo (n−1).

(4) For σ∈G, and i, k∈{1, . . . , n− 1}, if iσ=j 6=n, then (k+ i)g−kσgk =
k+j and (i−k)gkσg−k = j−k, in particular, (np + i)θ−1

p σθp = np +j,
(i−np)θpσθ

−1
p = j−np and (np−nq+i)g(nq−np)σg(np−nq) = np−nq+j,

where indices are taken modulo (n− 1).

Proof. The proof is straightforward.

Important Remark. In order to verify the calculations in this section,
we emphasize that np denotes n – 1

p and not n
p . In addition igk = i + k,

modulo (n – 1) and not modulo n.

Notation. From now on we fix two primes p and q dividing n − 1, such
that p ≤ q.

10.4.
(1) θ−1

q sθq = (nq +3, nq +4)(nq +5, nq +6) · · · (n−2, n−1)(1,2)(3,4)
· · · (nq − 2,nq −1)(nq,n).

(2) θqsθ
−1
q = (n−nq +2,n−nq +3) · · · (n−3,n−2)(n−1, 1)(2, 3)(4, 5)

· · · (n−nq −3, n− nq − 2)(n−nq −1,n).
(3) θ−1

q sθqs = (nq, n−1, n−3, · · · , nq+4, nq+2,nq+3,nq+5, · · · ,n−2,
n,nq + 1)(1,2).

(4) θqsθ
−1
q s = (2,4, · · · ,n − nq − 1, n − 1, 1,n, n − nq − 2, n − nq − 4,

· · · , 3)(n− nq,n−nq + 1).
(5) [θp, sθ

−1
q s] = g(nq−np)θ−1

q sθqsg
(np−nq)θqsθ

−1
q s.

(6) If p 6= q, then

g(nq−np)θ−1
q sθqsg

(np−nq) =

(np,np −nq,np −nq −2, · · · ,2, n−1, n−3, · · · , np + 2,np + 3,np + 5,

· · · ,n−2, 1, 3, · · · , np − nq − 1,n,np + 1)(np − nq + 1,np −nq + 2).
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Proof. For (1), we have,
θ−1
q sθq = (3θq, 4θq)(5θq, 6θq) · · · ((n− 1)θq, nθq) =

(nq + 3, nq + 4)(nq + 5, nq + 6) · · · (n−2, n− 1)(1,2)(3,4)

· · · (nq − 2,nq − 1)(nq,n)

where we use 10.3 to verify this equality, noting that θq fixes n. (2) is proved
similarly.

We now prove (3). We first write θ−1
q sθq and s one below the other.

(nq + 3, nq + 4)(nq + 5, nq + 6) · · · (n−2, n− 1)(1,2)(3,4)

· · · (nq − 2,nq −1)(nq,n) ·

(3,4)(5,6) · · · (n− 3,n−2)(n− 1,n) = .

Note that (3,4)(5,6) · · · (nq − 2,nq −1) is canceled. Hence

= (nq + 3, nq + 4)(nq + 5, nq + 6) · · · (n−2, n− 1)(1,2)(nq,n) ·

(nq,nq + 1)(nq + 2,nq + 3) · · · (n− 3)(n−2)(n− 1,n) = .

Now start with nq and carefully work though the product.

= (nq, n− 1, n− 3, · · · , nq + 4, nq + 2,nq + 3,nq + 5, · · · ,

n−2,n,nq + 1)(1,2).

Next we prove (4). We first write θqsθ
−1
q and s one below the other.

(n− nq + 2,n−nq + 3) · · · (n− 3,n−2)(n− 1, 1)(2, 3)(4, 5) · · ·

(n−nq −3, n− nq − 2)(n−nq −1,n) ·

(3,4)(5,6) · · · (n− 3,n−2)(n− 1,n) = .

Note that (n− nq + 2,n−nq + 3) · · · (n− 3,n−2) is canceled. Hence

= (n− 1, 1)(2, 3)(4, 5) · · · (n−nq −3, n− nq − 2)(n−nq −1,n)

(3,4)(5,6) · · · (n− nq − 2,n−nq −1)(n− nq,n−nq + 1)(n− 1,n)

= (2,4, · · · ,n−nq −1, n− 1, 1,n, n− nq − 2, n− nq − 4,

· · · , 3)(n− nq,n−nq + 1).

We now compute [θp, sθ
−1
q s] = θ−1

p sθqsθpsθ
−1
q s. Recall that by definition,

θp = gnp and θq = gnq . Hence [θp, sθ
−1
q s] = g(nq−np)θ−1

q sθqsg
(np−nq)θqsθ

−1
q s.
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Finally,

g(nq−np)θ−1
q sθqsg

(np−nq)

= g(nq−np)(nq, n− 1, n− 3, · · · , nq + 4, nq + 2,nq + 3,nq + 5,

· · · ,n−2,n,nq + 1)(1,2)g(np−nq).

Now using 10.3.4 we get

= (np,np −nq,np −nq −2, · · ·2, n− 1, n− 3,

· · · , np + 2,np + 3,np + 5, · · · ,n−2,

1, 3, · · · , np − nq − 1,n,np + 1)(np − nq + 1,np −nq + 2).

10.5. Suppose np − nq > 2, then:

(1) The fixed points of [θp, sθ
−1
q s] are

{3,4, . . . , np − nq − 3,np −nq −2,np −nq}

where if np − nq = 4, then {4} is the unique fixed point.
(2) If n− np − nq ≡ 2 (mod 4), then [θp, sθ

−1
q s] =

(1,2) ·

(np − nq − 1, n− nq − 2, n− nq − 6, · · · , np,np −nq + 2) ·

(np − 2, np − 4, · · · , np − nq + 1,np −nq + 4,

np −nq + 6, · · · ,np −1,np + 1) ·

(n− nq, n− nq − 4, · · · , np + 4, np + 2,np + 5,np + 9, · · · ,n−nq −1) ·

(n− 1, n− 3, · · · , n− nq + 2,n−nq + 1,n−nq + 3, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−nq −3).
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(3) If n− np − nq ≡ 0 (mod 4), then [θp, sθ
−1
q s] =

(1,2) ·

(np − nq − 1, n− nq − 2, n− nq − 6, · · · , np + 2,

np + 5,np + 9, · · · ,n−nq −3,

n− 1, n− 3, · · · , n− nq + 2,n−nq + 1,n−nq + 3, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−nq −5,n−nq −1,

n− nq, n− nq − 4, · · · , np + 4, np,np −nq + 2) ·

(np − 2, np − 4, · · · , np − nq + 1,np −nq + 4,

np −nq + 6, · · · ,np −1,np + 1).

Proof. Note, np − nq > 2 implies np > 5. By 10.4.5,

[θp, sθ
−1
q s] = g(nq−np)θ−1

q sθqsg
(np−nq) · θqsθ

−1
q s

so by 10.4, [θp, sθ
−1
q s] =

(np,np −nq,np −nq −2, · · · ,2, n− 1, n− 3, · · · , n− nq, · · · , np + 2,

np + 3,np + 5, · · · ,n−2, 1, 3, · · · , np − nq − 1,n,np + 1) ·

(np − nq + 1,np −nq + 2) ·

(2,4, · · · ,n−nq −1, n− 1, 1,n, n− nq − 2, n− nq − 4, · · · , 3) ·

(n− nq,n−nq + 1).

Now we leave it for the reader to verify that the fixed points are as claimed.

Case 1. n−nq −np −2 ≡ 0 (mod 4).
We write the cycles of [θp, sθ

−1
q s] and let the reader verify the product.

[θp, sθ
−1
q s] =

(1,2) ·

(np − nq − 1, n− nq − 2, n− nq − 6, · · · , np,np −nq + 2) ·

(np − 2, np − 4, · · · , np − nq + 1,np −nq + 4,

np −nq + 6, · · · ,np −1,np + 1) ·

(n− nq, n− nq − 4, · · · , np + 6, np + 2,np + 5,np + 9, · · · ,n−nq −1) ·

(n− 1, n− 3, · · · , n− nq + 2,n−nq + 1,n−nq + 3, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−nq −3).
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Case 2. n−np −nq ≡ 0 (mod 4).
[θp, sθ

−1
q s] =

(1,2) ·

(np − nq − 1, n− nq − 2, n− nq − 6, · · · , np + 2,

np + 5,np + 9, · · · ,n−nq −3,

n− 1, n− 3, · · · , n− nq + 2,n−nq + 1,n−nq + 3, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−nq −5,n−nq −1, n− nq,

n− nq − 4, · · · , np + 4, np,np −nq + 2) ·

(np − 2, np − 4, · · · , np − nq + 1,np −nq + 4,

np −nq + 6, · · · ,np −1,np + 1).

10.6. Suppose np − nq = 2. Then:

(1) If n− 2np ≡ 2 (mod 4), then [θp, sθ
−1
q s] =

(1, n− np, n− np − 4, · · · , np + 2,np + 5,np + 9, · · · ,n−np −1,

n− 1, n− 3, · · · , n− np + 4,n−np + 3,n−np + 5, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−np + 1, n− np + 2, n− np − 2, · · · , np,4,2) ·

(6,8, · · · ,np + 1, np − 2, , np − 4, · · · , 5, 3).

(2) If n− 2np ≡ 0 (mod 4), then [θp, sθ
−1
q s] =

(1, n− np, n− np − 4, · · · , np,4,2) ·

(6,8, · · · ,np + 1, np − 2, np − 4, · · · , 5, 3) ·

(n− 1, n− 3, · · · , n− np + 4,n−np + 3,n−np + 5,

· · · ,n−2,n,np + 3,np + 7, · · · ,n−np −1) ·

(n− np + 2, n− np − 2, · · · , np + 2,np + 5,np + 9, · · · ,n−np + 1).

Proof. By 10.4.5, [θp, sθ
−1
q s] =

g(nq−np)θ−1
q sθqsg

(np−nq) ·

θqsθ
−1
q s
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so by 10.4, (replacing nq by np − 2), [θp, sθ
−1
q s] =

(np,2, n− 1, n− 3, · · · , n− np + 2, · · · , np + 2,

np + 3,np + 5, · · · ,n−2, 1,n,np + 1)(3,4) ·

(2,4, · · · ,n−np + 1, n− 1, 1,n, n− np, n− np − 2, · · · , 3) ·

(n− np + 2,n−np + 3).

Case 1. n−2np −2 ≡ 0 (mod 4).
We write the cycles of [θp, sθ

−1
q s] and let the reader verify the product.

[θp, sθ
−1
q s] =

(1, n− np, n− np − 4, · · · , np + 2,np + 5,np + 9, · · · ,n−np −1,

n− 1, n− 3, · · · , n− np + 4,n−np + 3,n−np + 5, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−np + 1, n− np + 2, n− np − 2, · · · , np,4,2) ·

(6,8, · · · ,np + 1, np − 2, np − 4, · · · , 5, 3).

Case 2. n−2np ≡ 0 (mod 4)

[θp, sθ
−1
q s] =

(1, n− np, n− np − 4, · · · , np,4,2) ·

(6,8, · · · ,np + 1, np − 2, np − 4, · · · , 5, 3) ·

(n− 1, n− 3, · · · , n− np + 4,n−np + 3,n−np + 5,

· · · ,n−2,n,np + 3,np + 7, · · · ,n−np −1) ·

(n− np + 2, n− np − 2, · · · , np + 2,np + 5,np + 9, · · · ,n−np + 1).

We can now complete the proof of Theorem 10.2.

Proof of Theorem 10.2. First we show that (1) implies (2). Since Γ is
transitive, CG(Γ) is a semi-regular subgroup of G. But [θp, CG(Γ)] = 1, and
θp has a single fixed point, hence CG(Γ) = 1.

We proceed with the proof of (1). Assume first that p = q. Then
θqsθ

−1
q s ∈ Γ. Recall from 10.4 that

θqsθ
−1
q s =

(2,4, · · · ,n−nq −1, n− 1, 1,n, n− nq − 2, n− nq − 4,

· · · , 3)(n− nq,n−nq + 1).

Hence {1,2, 3,4, · · · ,n − nq − 1} are in the same orbit of Γ. However,
since q ≥ 3, n − nq − 1 > nq, and the above set contains a representative
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from each orbit of θq. Hence {1, 2, · · · , n − 1} are in the same orbit of Γ,
and looking at θqsθ

−1
q s, we see that n is also there.

Suppose next that np − nq > 2. Note that [θp, sθ
−1
q s] ∈ Γ. Assume first

that n − nq − np ≡ 2 (mod 4). We use 10.5.2. We write the cycles in
[θp, sθ

−1
q s]

σ1 = (1,2)

σ2 = (np − nq − 1, n− nq − 2, n− nq − 6, · · · , np,np −nq + 2)

σ3 = (np − 2, np − 4, · · · , np − nq + 1,

np −nq + 4,np −nq + 6, · · · ,np −1,np + 1)

σ4 = (n− nq, n− nq − 4, · · · , np + 4, np + 2,

np + 5,np + 9, · · · ,n−nq + 1)

σ5 = (n− 1, n− 3, · · · , n− nq + 2,n−nq + 1,n−nq + 3,

· · · ,n−2,n,np + 3,np + 7, · · · ,n−nq −3).

Recall that the orbits of θp are

Xi = {i, np + i, 2np + i, · · · , (p− 1)np + i}, 1 ≤ i ≤ np.

Let O be the orbit of 1 (under Γ), then supp (σ1) ⊆ O. Note that 1, np +1 ∈
X1 hence supp (σ3) ⊆ O. Note that np−1, n−2 ∈ Xnp−1, hence supp (σ5) ⊆
O. Note that 2, np + 2 ∈ X2, hence supp (σ4) ⊆ O. Also np, n − 1 ∈ Xnp ,
hence supp (σ2) ⊆ O. Since no two elements in Fix ([θp, sθ

−1
q s]), are in the

same orbit of θp, O = {1, 2, · · · , n} and Γ is transitive.
Assume next that n−nq −np ≡ 0 (mod 4). We use 10.5.3. We write the

cycles in [θp, sθ
−1
q s]

γ1 = (1,2).

γ2 = (np − nq − 1, n− nq − 2, n− nq − 6, · · · , np + 2,

np + 5,np + 9, · · · ,n−nq −3,

n− 1, n− 3, · · · , n− nq + 2,n−nq + 1,n−nq + 3, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−nq −5,n−nq −1,

n− nq, n− nq − 4, · · · , np + 4, np,np −nq + 2).

γ3 = (np − 2, np − 4, · · · , np − nq + 1,

np −nq + 4,np −nq + 6, · · · ,np −1,np + 1).
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Let O be the orbit of 1. Then supp (γ1) ⊆ O. Then, as 1, np + 1 ∈ X1,
supp (γ3) ⊆ O, and as 2, np + 2 ∈ X2, supp(γ2) ⊆ O, so as above, O =
{1, 2, · · · , n}.

Finally, suppose that np−nq = 2. Assume first that n−2np ≡ 2 (mod 4).
We use 10.6.1. We write the cycles in [θp, sθ

−1
q s]

α1 = (1, n− np, n− np − 4, · · · , np + 2,np + 5,np + 9, · · · ,n−np −1,

n− 1, n− 3, · · · , n− np + 4,n−np + 3,n−np + 5, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−np + 1, n− np + 2, n− np − 2, · · · , np,4,2).

α2 = (6,8, · · · ,np + 1, np − 2, np − 4, · · · , 5, 3).

Let O be the orbit of 1. Then supp (α1) ⊆ O. Then as 1, np + 1 ∈ X1,
supp (α2) ⊆ O so O = {1, 2, · · · , n}.

Finally, assume that n− 2np ≡ 0 (mod 4). We use 10.6.2. We write the
cycles in [θp, sθ

−1
q s]

β1 = (1, n− np, n− np − 4, · · · , np,4,2)

β2 = (6,8, · · · ,np + 1, np − 2, np − 4, · · · , 5, 3)

β3 = (n− 1, n− 3, · · · , n− np + 4,

n−np + 3,n−np + 5, · · · ,n−2,n,np + 3,np + 7, · · · ,n−np −1)

β4 = (n− np + 2, n− np − 2, · · · , np + 2,np + 5,np + 9, · · · ,n−np + 1).

Let O be the orbit of 1. Then supp (β1) ⊆ O. Then as 1, np + 1 ∈ X1,
supp (β2) ⊆ O, and as 3, np + 3 ∈ X3, supp (β3) ⊆ O. Now, since 2,
np + 2 ∈ X2, supp (β4) ⊆ O, so O = {1, 2, · · · , n}. This completes the proof
of Theorem 10.2.

11. The Sporadic Groups.

In this short section we point out the following theorem.

Theorem 11.1. Let L be a Sporadic finite simple group. Then ∆(L) is
disconnected.

Proof. Let L be a sporadic group. We show that there exists a prime p =
p(L), such that if x ∈ L is an element of order p, then CL(x) = 〈x〉. Of
course 〈x〉 − {1} is a connected component of ∆(L). We use the Atlas [2].
The following table gives the value of p(L).
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L p(L) L p(L) L p(L)

M11 11 M12 11 M22 11

M23 23 M24 23 Co1 23

Co2 23 Co3 23 J1 19

J2 7 J3 19 J4 43

Fi22 13 Fi23 23 Fi′24 29

F1 71 F2 47 F3 31

F5 19 He 17 McL 11

HS 11 Suz 13 O’N 31

Ly 67 Ru 29

12. Concluding results.

In this section we prove Theorem 4 of the introduction and present related
results on division algebras. In addition, we include a number of results and
remarks related to the commuting graph of the classical groups. Throughout
G will denote a connected reductive algebraic group over an algebraically
closed field defined over an infinite field K. Let G(K) denote the K rational
points.

12.1. ([10, Thm. 2.2].) Let G be a connected nonabelian reductive group
defined over an infinite field K. Then G(K) is Zariski dense in G.

12.2. Let K be an abelian field and G a nonabelian reductive algebraic group
defined over K. Then:

(1) G(K)/Z(G(K)) does not have finite exponent.
(2) Let Z ≤ Z(G(K)). If A/Z is an abelian normal subgroup of G(K)/Z,

then A ≤ Z(G(K)).
(3) G(K) is not solvable.

Proof. By 12.1, G(K) is Zariski dense in G. As centralizers of elements in G
are Zariski closed, it follows that Z(G(K)) ≤ Z(G). Then G(K)/Z(G(K))
is Zariski dense in G/Z(G(K)).

(1): If G/Z(G(K)) has exponent n, then, as the set of elements of order
n in G/Z(G(K)) is Zariski closed, this forces G/Z(G(K)) to be of finite
exponent. But this is clearly false as seen by considering a torus.

Let Z ≤ Z(G(K)) and suppose 1 < A/Z C G(K)/Z with A/Z abelian.
The Zariski closure, say B/Z, of A/Z in G/Z is abelian (indeed the center of⋂

a∈ACG/Z(Za) is a closed abelian subgroup of G/Z containing A/Z). Also
B/Z is normalized by G(K)/Z. Now normalizers are closed, so B/Z is an
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abelian normal closed subgroup in G/Z. But as G is a connected reductive
group, B ≤ Z(G), a contradiction. This proves (2) and (3) follows.

Corollary 12.3. Let D be a division algebra over K. Then D∗ is not solv-
able.

Proof. This follows from 12.2.3 by noting that D∗ can be realized as the K
rational points of GLd, where d = deg(D).

We can now derive Theorem 4 of the introduction.

Theorem 12.4. Let D be a finite dimensional division algebra over a num-
ber field K. Let N be a noncentral normal subgroup of D∗. Then D∗/N
solvable.

Proof. Let S := SL1(D) be the elements of D∗ whose reduced norm is 1.
Then N/(N ∩ S) ∼= NS/S is abelian, so by 12.2.2, N ∩ S is noncentral in
D∗ (alternatively, use [13]).

Hence it suffices to show that if M is a noncentral normal subgroup of
SL1(D), then SL1(D)/M is solvable. Here we take G a simple, simply
connected algebraic group of type An such that G(K) = SL1(D).

SupposeM C G(K) andM is not central. We apply Theorem 2 (of the in-
troduction). If T = ∅, then M = G(K) and there is nothing to prove. Thus
we suppose T 6= ∅. Hence we can consider G(K) <

∏
v∈T G(Kv), via the di-

agonal embedding. By Theorem 2, M = G(K)∩L, where L C
∏

v∈T G(Kv),
with L open. Then G(K)/M = G(K)/(G(K) ∩ L) ∼= G(K)L/L and so it
suffices to show that

∏
v∈T G(Kv)/L is solvable.

Notice that for each v ∈ T , [G(Kv), L] ≤ G(Kv)∩L is a normal subgroup
of G(Kv) and of course

∏
v∈T G(Kv)/L is an image of

∏
v∈T (G(Kv)/[G(Kv),

L]). So it suffices to show that G(Kv)/[G(Kv), L] is solvable. Let Mv

(resp. Lv) be the projection of M (resp. L) on G(Kv). Since M is non-
central in G(K), Mv and hence Lv is noncentral in G(Kv). Then, by 12.2.2,
[G(Kv), L] = [G(Kv), Lv] is noncentral in G(Kv). Then, by [12] (see also
[10, Prop. 1.8, p. 32]), [G(Kv), L] contains Cs, for some s, where Cs are the
congruence subgroups of G(Kv) = SL1(Dv) (where Dv = D⊗K Kv). These
congruence subgroups are defined in [10, p. 31 (1.4.4)]. Since G(Kv)/Cs is
solvable ([10, Corollary, p. 32]), we are done.

Next we focus our attention on the commuting graph of the classical
groups. We mention that as noted in Theorem 5 of the Introduction, the
elements x, y required for showing that ∆(L) is balanced can be taken as
opposite unipotent elements. We remark that except for some small cases
this usually implies d(x, y) = 4. To see this note that CL(x), CL(y) contain
root elements r, s lying in root groups corresponding to opposite long roots of
the root system. The normalizer of these root groups are opposite parabolic
subgroups, hence contain a common Levi factor. Choosing 1 6= t in this Levi
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factor (which is possible in all but a few cases) we have a path x, r, t, s, y of
length 4.

In the following theorem we use the same ε notation as given in the
beginning of Section 9.

Theorem 12.5. Let G(q) be a simple classical group with q > 5. Then
∆(G(q)) is disconnected if and only if one of the following holds:

(i) G(q) ' Lε
n(q) and n is a prime.

(ii) G(q) ' Lε
n(q), n− 1 is a prime and q − ε | n.

(iii) G(q) ' S2n(q), O−2n(q), or O2n+1(q) and n = 2c, for some c.
Moreover, if ∆(G(q)) is connected then diam (∆(G(q))) ≤ 10.

Proof. Let Ĝ(q) denote the corresponding quasisimple classical group and let
V be the natural module for Ĝ(q). For a nondegenerate subspaceW ≤ V , we
write I(W ) for GL(W ), GU(W ), Sp(W ) or SO(W ), in the respective cases.
We let Ĝ(W ) ≤ Ĝ(q) be the subgroup acting trivially on W⊥ (and acting
trivially on a specified complement U , in the case when Ĝ(q) ' SLn(q), the
complement U in this case will be clear from the context).

For the orthogonal groups we assume that dim(V ) ≥ 7. First suppose
that G(q) does not satisfy any of the conditions (i)-(iii). Here we will show
that diam (∆(G(q))) ≤ 10. The following is the key step.
(∗) Each g ∈ G(q) is at distance at most 3 from some unipotent element

in ∆(G(q)).
We proceed by contradiction assuming that (∗) does not hold. If g is the
commuting product of a nontrivial unipotent element and a semisimple el-
ement, then (∗) is obvious. Therefore g is a semisimple element.

Let h be a preimage of g in Ĝ(q). Then h is contained in a maximal
torus T of I(V ). When I(V ) ' SO2n+1(q), all maximal tori are contained
in SOε

2n(q), for ε = 1 or −1, so here all considerations can be reduced to
even dimensional orthogonal groups and we therefore ignore odd dimensional
orthogonal groups in the following.

The action of T on V is completely reducible and given by Lemma 2 of [16]
(the q > 5 hypothesis is sufficient to establish that lemma). Alternatively,
one can obtain a suitable torus working directly from a decomposition of V
under the action of h. In any case, T preserves a decomposition V = V1 ⊥
. . . ⊥ Vk ⊥ (Vk+1 ⊕ V ′k+1) ⊥ . . . ⊥ (V` ⊕ V ′` ), where if we set dim(Vi) = ri,
1 ≤ i ≤ `, then r1 ≥ . . . ≥ rk, and for k < i ≤ `, dim(Vi) = dim(V ′i ), with
both subspaces being totally singular.

Corresponding to this decomposition we have T = T1×· · ·×T`, such that
for 1 ≤ i ≤ `, Ti induces a Singer cycle on Vi and for k < i ≤ `, Ti also
induces a Singer cycle on V ′i . We note that k = ` in the general linear case.
Also for 1 ≤ i ≤ k, one of the following holds: |Ti| = qri − 1, qri + 1 (with ri
odd), qri/2 +1, qri/2 +1, with I(Vi) = GLri(q), GUri(q), Spri(q), or SO−ri

(q),
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respectively. We make a series of reductions under the assumption that (∗)
fails to hold for g.

Step 1. dim(Vi) = 1, for each i > k.
For suppose k < i ≤ ` and dim(Vi) > 1, Ti ≤ GLri(q) (GLri(q

2) in the
unitary case) with dual action on Vi and V ′i . Then Ti contains a subgroup
Zi of order q− 1 (q2− 1 in the unitary case) which induces (inverse) scalars
on Vi, and V ′i . Elements of Zi have determinant 1 and since we are assuming
q > 5, we can find a noncentral element of Zi in Ĝ(q). Since all elements
of this group centralize unipotent elements of GLri(q), we obtain (∗) in this
case, a contradiction.

Step 2. ` ≤ k + 1, if G(q) 6= Oε
2n(q). Otherwise ` ≤ k + 2.

For suppose ` > k. Then Zk+1 centralizes Ĝ(Vk+2 ⊕ · · · ⊕ V ′` ), so this
group contains no unipotent elements. Hence either ` = k+1, or G(q) is an
orthogonal group and ` = k + 2.

Step 3. k = `.
First assume k = 0. Then Step 1 and Step 2 show that either dim(V ) = 2,

or dim(V ) = 4, with G(q) ' O−4 (q) (as G(q) is simple). In either case (i)
or (iii) holds, a contradiction. Now suppose 0 < k < `. Then Z` commutes
with Ĝ(V1⊕· · ·⊕Vk) and the latter group contains unipotent elements unless
either V1 ⊕ · · · ⊕ Vk is a 2-dimensional orthogonal space or a 1-dimensional
unitary space (we already mentioned that k = ` if G(q) ' Ln(q)). In
the former case Step 2 implies dim(V ) ≤ 6, against our supposition. And
in the unitary case, dim(V ) = 3 and hence satisfies (i). This is again a
contradiction.

Step 4. r1 > 1.
Suppose r1 = 1. This can only occur for G(q) = Lε

n(q). We are assuming
that (i) does not hold, so here k = n ≥ 4. Then (T1 × T2)∩ Ĝ(q) contains a
noncentral subgroup of order q−ε centralizing unipotent elements in Ĝ(V3⊕
· · · ⊕ Vk), a contradiction.

Step 5. Either V = V1 or G(q) = Lε
n(q), V = V1 ⊕ V2, and dim(V2) = 1.

It follows from Step 4 that T1 contains noncentral elements of Ĝ(q). Since
we are assuming that (∗) does not hold, Ĝ(V2 ⊕ · · · ⊕ Vk) contains no non-
identity unipotent elements.

If G = Lε
n(q), this forces dim(V2 ⊕ · · · ⊕ Vk) ≤ 1. In the symplectic case,

necessarily V = V1. We argue that this holds for the orthogonal case as
well. For otherwise, k = 2 and dim(V2) = 2. Hence dim(V1) ≥ 5. But then
there are noncentral elements of T2 which centralize unipotent elements of
Ĝ(V1), a contradiction.

We now treat the remaining configurations. First assume V = V1, so that
r1 = n. If G(q) = Lε

n(q), then |T | = qn−ε. Also n is odd in the unitary case.
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We are assuming that n is not a prime, so we may write n = rs, with r, s > 1
and such that s is odd in the unitary case. Then there is a (cyclic) subgroup
E < T of order qr− ε intersecting Ĝ(q) in a noncentral subgroup. As T acts
irreducibly on V , E acts homogeneously, so that V = W1 ⊕ · · · ⊕Ws, with
each Wi of dimension r and irreducible under the action of E. In the unitary
case where s is odd, it is easily checked that we may take W1 nondegenerate
and perpendicular to the remaining summands. Now h centralizes E which
in turn centralizes a Singer cycle in Ĝ(W1). This Singer cycle centralizes a
unipotent element in Ĝ(W2 ⊕ · · · ⊕Ws) so we have (∗), a contradiction.

In the symplectic and orthogonal cases, we have |T | = qn + 1. Here we
are assuming that n is not a power of 2, so the same argument works.

The final case is where V = V1 ⊕ V2, with dim(V2) = 1 and G = Lε
n(q).

Then r1 = n − 1. If n − 1 is not a prime, we argue as above, working in
SLε

n−1(q). Suppose n− 1 is a prime. Then T contains a subgroup of order
(q − ε)2 which induces scalars on Vi. Intersecting with Ĝ(q) we get a group
of order q − ε so this gives a noncentral element centralizing a unipotent
element of Ĝ(V1), unless q − ε | n. This concludes the proof of (∗).

It is now an easy matter to show that ∆(G(q)) is connected of diameter
at most 10. By (∗) g is at distance at most 3 from a nontrivial unipotent
element of G(q). The center of a maximal unipotent subgroup of G(q)
contains long root elements. Hence g is at distance at most 4 from a long
root element.

Now let g, g′ ∈ ∆(G(q)). Let u, u′ be long root elements at distance at
most 4 from g, g′ respectively. It is well-known that either u, u′ commute,
lie in an extraspecial p-subgroup (hence commute with the center), or lie in
a group J = SL2(q) generated by the long root subgroups corresponding to
u, u′. In the latter case, we can choose a root element w lying in a conjugate
of J and commuting with J . This completes the argument.

To complete the proof of the theorem we now assume that G(q) satisfies
either (i), (ii) or (iii). Here we argue that ∆(G(q)) is disconnected. If (i)
holds with n = p a prime, then GLε

p(q) contains a cyclic maximal torus T
of order qp − ε. If p = 2, then we immediately see that opposite unipotent
elements cannot be joined. So assume p is odd. Let h ∈ E = T∩SLε

p(q) with
h /∈ Z(SLε

p(q)). So h acts irreducibly on V . Suppose y ∈ SLε
p(q) centralizes

h projectively. Hence hy = hz, where z ∈ Z(SLε
p(q)). The centralizer of h

and of hy in SLε
p(q) is E, so y normalizes E, hence induces an automorphism

on E of order dividing p. Hence z has order dividing (p, q − ε). So either
z = 1, or is of order p. In the latter case, by 8.3, |E/(E ∩ Z(SLε

p(q)))| has
order prime to p, so we may assume h has order prime to p, and this also
forces z = 1. But the centralizer of h in SLε

p(q) is E, so the image of E−{1}
in G(q) is a connected component of ∆(G(q)).
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The same argument applies if (iii) holds, taking T to be a Singer cycle of
order qn +1 and noting that the resulting torus of the simple group has odd
order.

The last case is where (ii) holds with n−1 = p a prime and q− ε dividing
n = p+1. In this case take a decomposition V = V1 ⊥ V2, with dim(V1) = p.
Then GLε

n(q) contains a maximal torus T1×T2 of order (qp− ε)(q− ε). The
resulting torus E < SLε

n(q) has order (qp − ε) and in the simple group the
torus has order (qp − ε)/(q − ε). The argument is thus the same as in the
case where (i) holds. This completes the proof of Theorem 12.5.

Remarks. (1) In the papers [19] and [4] the connected components of
the prime graph of all nonabelian finite simple groups are determined. It is
easy to see that the prime graph is connected if and only if the commuting
graph is connected. Thus the nonabelian finite simple groups L for which
∆(L) is disconnected are known. We note that in the connected case of
Theorem 12.2 we prove that the diameter of ∆(G(q)) is bounded.

(2) We assume q > 5, in the above result, in order to simplify the state-
ment and the proof. With extra work one should be able to obtain infor-
mation for smaller values of q. However, there will be additional examples
where the graph is disconnected.
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HARMONIC MAPS FROM Rn TO Hm WITH SYMMETRY

Yuguang Shi and Luen-Fai Tam

It is known that there is no nonconstant bounded harmonic
map from the Euclidean space Rn to the hyperbolic space Hm.
This is a particular case of a result of S.-Y. Cheng. However,
there are many polynomial growth harmonic maps from R2

to H2 by the results of Z. Han, L.-F. Tam, A. Treibergs and
T. Wan. One of the purposes of this paper is to construct
harmonic maps from Rn to Hm by prescribing boundary data
at infinity. The boundary data is assumed to satisfy some
symmetric properties. On the other hand, it was proved by
Han-Tam-Treibergs-Wan that under some reasonable assump-
tions, the image of a harmonic diffeomorphism from R2 into
H2 is an ideal polygon with n + 2 vertices on the geometric
boundary of H2 if and only if its Hopf differential is of the
form φdz2 where φ is a polynomial of degree n. It is unclear
whether one can find explicit relation between the coefficients
of φ and the vertices of the image of the harmonic map. The
second purpose of this paper is to investigate this problem.
We will explicitly demonstrate some families of polynomial
holomorphic quadratic differentials, such that the harmonic
maps from R2 into H2 with Hopf differentials in the same fam-
ily will have the same image. In proving this, we first study
the asymptotic behaviors of harmonic maps from R2 into H2

with polynomial Hopf differentials φdz2. The result may have
independent interest.

0. Introduction.

Let Rn be the Euclidean space, and Hn be the hyperbolic space. In
[HTTW], it was proved that under some reasonable assumptions, the image
of a harmonic diffeomorphism from R2 into H2 is an ideal polygon with n+2
vertices on the geometric boundary of H2 if and only if its Hopf differential
is of the form φdz2 where φ is a polynomial of degree n. Note that φ is
a polynomial of degree n if and only if the harmonic map is of polynomial
growth of order n

2 + 1, see [TW] for example. In [LW], it is shown that the
closure of the image of a harmonic map from Rn into Hm with polynomial
growth of order l will intersect the geometric boundary of Hm at no more
than Cln−1 points, where C is a constant independent of l. Moreover, the
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image lies in the convex hull of these points. In higher dimensions, unlike
harmonic maps from hyperbolic space to hyperbolic space, there are very
few examples of nontrivial harmonic maps from Rn into Hm. In fact, if the
image of a harmonic map from Rn to Hm is bounded, then the harmonic
map must be constant [Cg]. Also, there is no rotationally symmetric har-
monic map from Rn into Hn [T]. On the other hand, in [WA], (see also
[TW]), it was shown that orientation preserving harmonic diffeomorphisms
from R2 into H2 can be parametrized by their Hopf differentials, provided
that the harmonic diffeomorphisms satisfy some natural conditions. In par-
ticular, one can construct harmonic diffeomorphisms from R2 to H2 with
prescribed Hopf differentials. In [HTTW], harmonic diffeomorphisms with
prescribed images had been constructed via the Gauss maps of constant
mean curvature cuts in Minkowski three space. Both methods of construc-
tions cannot be applied to higher dimensions. In this paper, we will use a
more direct method to construct harmonic maps from Rn to Hm with pre-
scribed boundary data at infinity. The boundary data is assumed to satisfy
some symmetric properties. It should be remarked that if u is a harmonic
map from R2 into Hm−1 then u can be considered as a harmonic map from
R2 into Hm by embedding Hm−1 into Hm. Also if u is a harmonic map from
Rn−1 into Hm, then the map v from Rn = Rn−1 × R into Hm defined by
v(x, t) = u(x) for (x, t) ∈ Rn−1×R is harmonic. The harmonic maps we are
going to construct are not in these categories, and are said to be nontrivial.
Each of the constructed harmonic maps has polynomial growth, and the
closure of its image in Hm ∪ ∂Hm intersects ∂Hm at finitely many points,
where ∂Hm is the geometric boundary of Hm. This can be considered as the
first step to understand boundary value problem for harmonic maps from
Rn into Hm. The idea of construction is to find an approximate initial map
with symmetry. Using the symmetry of the initial map, one can construct
a harmonic map by compact exhaustion. The resulting harmonic map will
be of bounded distance from the initial map.

In [HTTW], it was proved that if u is a harmonic diffeomorphism from
R2 onto an ideal polygon with m vertices on ∂H2, then its Hopf differential
is φdz2 with φ to be a polynomial of degree m − 2. However, it is unclear
whether it is possible to find explicit relation between the coefficients of
φ and these m points. The second purpose of this paper is to investigate
this problem. We will explicitly demonstrate some families of polynomial
holomorphic quadratic differentials, such that the harmonic maps from R2

into H2 with Hopf differentials in the same family will have the same image.
In proving this, one needs to study asymptotic behaviors of harmonic maps
from R2 into H2 with polynomial Hopf differentials. Some results in this
direction had been obtained in [HTTW], using the techniques introduced
in [Wf] and [My]. We will prove that if φ is of degree n, then there are
n + 2 rays, with equal angle between them, so that if u is a an orientation
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preserving harmonic map from R2 into H2 with Hopf differential φdz2, then
u(z) will tend to infinity as z →∞ at the same rate along these rays. The
result has its own interest and may be useful in the construction of harmonic
maps R2 into H2 with prescribed data at infinity.

The structure of the paper is as follows. In §1, we will construct harmonic
maps with symmetry from R2 to H2. In §2, we will use induction to construct
nontrivial harmonic maps from R2 to Hm, m ≥ 3, and in §3, we will construct
nontrivial harmonic maps from Rm to Hm. In §4, we will study asymptotic
behaviors of harmonic maps. In §5, we obtain some partial results on the
explicit relation between the Hopf differential and the image of a harmonic
map.

1. Harmonic maps from R2 to H2.

It was proved in [WA] (see also [TW]) that given a holomorphic quadratic
differential φ(z)dz2 on C, one can find a harmonic diffeomorphism from C
into H2 such that the Hopf differential of the harmonic map is φ(z)dz2.
Under certain conditions, the harmonic map is essentially unique. In partic-
ular, if φ(z) = zm, m ≥ 1, using the result in [HTTW], one should be able
to prove that up to an isometry of H2, the image is a regular ideal polygon
of m+2 sides, see §5 for details. However, the method cannot be applied to
higher dimensions. In this section, we will use another method to construct
such harmonic maps. Using similar methods we will construct nontrivial
harmonic maps with symmetry from R2 into Hm, and Rm into Hm, with
m ≥ 2 in the next two sections.

Let n ≥ 3 be an integer. In R2, using polar coordinates the harmonic
function

f(z) = f(re
√
−1θ) = r

n
2 sin

(n
2
θ
)

is zero on the rays θ = θk, where 0 ≤ k ≤ n− 1, where θk = 2kπ
n , and |f | is

positive on θk < θ < θk+1. Note that the ray θ = θ0 is the same as the ray
θ = θn. For each k, let Wk be the wedge defined by θk ≤ θ ≤ θk+1.

Let us use the Poincaré disk model for H2. Let ak = e
(2k+1)π

√
−1

n , k =
0, ..., n− 1, which are identified as points on the geometric boundary of H2.
Let o be the origin of the unit disk D, and let γk be the geodesic from o to
ak in H2, parametrized by arc length. Define a map g : R2 → H2 as follows.
In the wedge θk ≤ θ ≤ θk+1, let

g(z) = γk(|f(z)|).
Since f = 0 on each ray {θ = θk}, g is well-defined. g satisfies the following
properties:

(i) g is a Lipschitz map, which is smooth and harmonic in the interior of
each wedge Wk.
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(ii) For any z ∈ C, g(e2
√
−1θkz) = e2

√
−1θkg(z).

(iii) g(e
√
−1θ1z) = e

√
−1θ1g(z).

Lemma 1.1. For any R > 0, let uR be the harmonic map from B(R) into
H2, where B(R) is the disk of radius R with center at the origin in R2, such
that uR = g on ∂B(R). Then there is a constant C1 which is independent
of R, such that

d(uR(z), g(z)) ≤ C1

for all R and for all z ∈ B(R).

Proof. By (iii) and the uniqueness of harmonic maps, we have

uR(e
√
−1θ1z) = e

√
−1θ1uR(z).

Hence it is sufficient to prove that

d(uR(z), g(z)) ≤ C1

for all z ∈ B(R)∩W0, whereW0 is the wedge defined above. By the definition
of uR,

(1.1) uR(z) = g(z)

for z ∈ ∂B(R) ∩W0. We want to show that d(uR(z), g(z)) is bounded on
∂W0 ∩ B(R) by a constant independent of R. Since W0 is bounded by two
rays θ = θ0, θ = θ1, by symmetry it is sufficient to prove that d(uR(z), g(z))
is uniformly bounded on {θ = θ0} ∩ B(R). By (ii), g(z) = g(z). Hence by
the uniqueness theorem on harmonic maps, we have uR(z) = uR(z). This
implies that uR(z) lies on the real axis, for all z ∈ {θ = θ0}∩B(R). Observe
that the image of uR lies inside the convex hull A of the ideal boundary
points ak, 0 ≤ k ≤ n − 1, and the closure of A in H2 ∪ ∂H2 intersects ∂H2

at the points ak. Suppose n is even, then no ak is on the real axis. Hence
there is a constant C2 independent of R, such that

d(uR(z), g(z)) = d(uR(z), o)(1.2)
≤ C2

for all z ∈ {θ = θ0}∩B(R), see Figure 1. Suppose n is odd, we want to show
that uR(z) lies on the positive real axis, for all z ∈ {θ = θ0} ∩ B(R). This
will imply that (1.2) is still true in this case, because no ak is on the positive
real axis. By the definition of g, we see that g maps the upper half space
into the that part of D2 which lies on the upper half space. Since uR(z) lies
on the real axis if z is real, uR also maps the upper half space into the that
part of D2 which lies on the upper half space. One can prove similarly that
uR maps the half space bounded by the rays θ = 2π

n and θ = π + 2π
n which

containing the positive real axis into the same half space, see Figure 2. In
particular, uR(z) lies on the positive real axis, for all z ∈ {θ = θ0}∩B(R). So
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(1.2) is true for all z ∈ ∂(B(R) ∩W0). Since d(uR(z), g(z)) is subharmonic,
the lemma follows from the maximum principle.

By Lemma 1.1, passing to a subsequence if necessary, uR will converge to
a harmonic map u such that d(u(z), g(z)) is uniformly bounded. In fact, u
is a diffeomorphism. We can prove this fact as follows. For each R > 0, let
us construct a harmonic map vR from B(R) into H2 in the following way.
Let bk = γk(R

n
2 ) and let βk be the minimal geodesic joining bk to bk−1. Let

αk be the minimal geodesic joining ak to ak−1. It is easy to see that the
distance from a point on γk or γk−1 to αk is bounded by a constant C3 which
is independent of R. Define a map Πk from γk|[0, bk] and γk−1|[0, bk−1] into
the line containing βk, by nearest point projection. Then

(1.3) d(γk(s),Πk(γk(s))) ≤ C1.

Πk is surjective and is continuous. Let vR be the harmonic map from B(R)
into H2, such that on the ∂B(R) ∩Wk vR(z) = Πk(g(z)). Note that the
boundary map is a homeomorphism from ∂B(R) onto the boundary of the
geodesic polygon with boundary ∪kβk. Here are some properties of vR. By
[SY], we have:

Lemma 1.2. vR is a diffeomorphism onto its image.

By Lemma 1.1, and (1.3), there is a constant C4 which is independent of
R such that

sup
x∈B(R)

d(vR(z), g(z)) ≤ C4.

Hence, passing to a subsequence, vR converge to a harmonic map v, such
that

(1.4) d(v(z), g(z)) ≤ C4.

Lemma 1.3. Let φdz2 be the Hopf differential of v. Then φ is a polynomial
of degree n− 2.

Proof. By the construction,

d(o, g(z)) ≤ |z|
n
2 .

By (1.4), we see that
d(o, v(z)) ≤ C4 + |z|

n
2 .

By the energy density estimate [Cg], there is a constant C5 independent of
z such that

e(u)(z) ≤ C5(|z|n−2 + 1).
Since |φ|(z) ≤ e(v), we conclude that φ is a polynomial of degree at most
n− 2. Suppose the degree of φ is less than or equal to n− 3. Let φRdz

2 be
the Hopf differential of vR. Then given any R0 > 0 there is R1 such that if
R > R1, then

|φR(z)| ≤ C6(|z|n−3 + 1),



232 YUGUANG SHI AND LUEN-FAI TAM

in B(R0) for some constant C6 which is independent of R0, where φR is the
Hopf differential of vR. Using an argument of [TW], we conclude that in
B(R0

2 ),
e(vR)(z) ≤ C7(|z|n−3 + 1)

for some constant C7 independent of R0, if R is large enough. Let R→∞,
and then let R0 →∞, we have

e(v)(z) ≤ C7(|z|n−3 + 1).

This would imply
d(o, v(z)) ≤ C8(|z|(n−1)/2 + 1)

for some constant C8. By (1.4), and the definition of g, this is impossible.
Hence the degree of φ must be n− 2.

Lemma 1.4. v is a diffeomorphism onto its image.

Proof. Since the Jacobian JR of vR is positive in B(R), the Jacobian J of
v satisfies J ≥ 0. First we want to show that J > 0 somewhere. Suppose
not, then J ≡ 0. Since J = ||∂v||2 − ||∂v||2, where ||∂v|| = σ|∂v

∂z |, and
||∂v|| = σ| ∂v

∂z |, σ
2|dv|2 is the metric on H2. we have

||∂v||2 ≡ ||∂v||2.
On the other hand,

|φ|2 = ||∂v||2 · ||∂v||2.
We have

|φ| = ||∂v||2.
Since φ is a polynomial of degree n−2, there is R0 > 0 such that all the zeros
of φ lies inside B(R0

2 ). For each R, ||∂vR|| > 0, and let wR = log ||∂vR||.
Then

∆wR = JR(uR).
We have ∫

∂B(R0)

∂wR

∂r
=
∫

B(R0)
∆wR

=
∫

B(R0)
JR.

Since on ∂B(R0), ||∂v||2 = |φ| > 0, let R→∞, we have∫
∂B(R0)

∂w

∂r
=
∫

B(R0)
J.

However, w = 1
2 log |φ|, and the degree of φ is at least 1, moreover, all zeros

of φ lie inside B(R0), we conclude that

(1.5)
∫

B(R0)
J > 0.
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Hence J > 0 somewhere, and (1.5) is true for some R0 > 0. This implies
that there is δ > 0 such that if R is large then

(1.6)
∫

B(R0)
JR ≥ δ.

Apply Theorem 7.1 in [J] to each map vR, we conclude that for any R1,
there is ε > 0, such that

JR(v) ≥ ε > 0

in B(R1) provided R is large enough. This implies J(v) > 0 everywhere and
v is a diffeomorphism onto its image.

Since d(v(z), u(z)) is uniformly bounded and subharmonic, d(v(z), u(z))
is a constant function. It is easy to see that v(0) = u(0), and so u ≡ v.
On the other hand, since ||∂u||2 ≥ |φ| and φ is a polynomial, we see that
||∂u||2dz2 is complete. By the result of [HTTW], the image of u is a ideal
polygon of n sides and so the image of u is the polygon spanned by the a′ks,
and we have the following:

Theorem 1.5. Let n ≥ 3, and let ak = e
(2k+1)π

√
−1

n , k = 0, . . . , n− 1. Then
there is a harmonic diffeomorphism u from R2 into H2 whose image is the
ideal polygon spanned by the ak’s. Moreover, u satisfies

u(e2
√
−1θkz) = e2

√
−1θku(z)

and

u(eiθ1z) = e
√
−1θ1u(z).

In case of n = 4, we can do more. Let ak, 1 ≤ k ≤ 4 be four points on the
unit circle, such that they are the vertices of a rectangle which is symmetric
with respect to the real and imaginary axes.

Proposition 1.6. There is a harmonic diffeomorphism from R2 into H2

whose image is the ideal polygon spanned by the ak’s. Moreover, u satisfies

u(z) = u(z),

and

u(−z) = −u(z).

The proof is similar to the proof of Theorem 1.5. We should remark that
for any four points on the unit circle, there is a conformal map of the unit
disk, which carries these four points to some ak’s satisfying the condition of
Proposition 1.6.
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2. Harmonic maps from R2 into Hm.

In this section, we will use the harmonic maps constructed in §1 to obtain
harmonic maps from R2 = C into Hm, which are nontrivial in the sense
that the image of each of the maps is not contained in any nontrivial totally
geodesic submanifold in Hm. We always use the Poincaré unit ball model
for Hm. Namely, Hm is identified with the unit ball Bm in Rm with the
Poincaré metric, and the geometric boundary ∂Hm is identified with the
unit sphere Sm−1. For any set A in Hm ∪ ∂Hm, we denote A to be the
closure of A in Hm ∪ ∂Hm, and denote the convex hull of A by Con (A).
We will use the following fact: Suppose A is a close set in Hm ∪ ∂Hm, then
Con (A) ∩ ∂Hm = A ∩ ∂Hm.

Let n ≥ 4 be an even number. Let θk = 2kπ
n and let Wk be the wedge in

R2 defined by θk ≤ θ ≤ θk+1 in polar coordinates. Note that θk = kθ1. By
Theorem 1.5, we can find a harmonic diffeomorphism u from C = R2 into
H2, such that:

(a) In the Poincaré disk model of H2, if we write

u(z) = (u1(z), u2(z)),

then u1(z) = 0 on =(z) = 0, where =(z) is the imaginary part of z;
(b) u(R2) ∩ ∂H2 does not contain the points (0,±1).

From (a) and (b), we have
(c) supz∈R2, =(z)=0 d(u(z), 0) <∞.

From (b), we also have:

(b′) If (a1, a2) ∈ u(R2) ∩ ∂H2, then a1 6= 0.
We are going to use u to construct a harmonic map from R2 into H3.

Identify H2 with {(v1, v2, v3) ∈ H3| v2 = 0}. Then u : R2 → H2 ⊂ H3 is also
harmonic, and

(2.1) u(z) = (u1(z), 0, u2(z)).

Define a harmonic map v from W0 into H3 in the following way, see Figure 3.
Let

Ψ : {z ∈ C| =(z) > 0} → interior of W0,

be a conformal diffeomorphism, Ψ({=(z) = 0}) = ∂W0 and Ψ is homeo-
morphism between =(z) ≥ 0 and W0 . Let v(z) = u ◦ Ψ−1(z). Then v is a
harmonic map from W0 into H3, such that:

(i) v(z) = (v1(z), 0, v3(z));
(ii) v(z) = (0, 0, v3(z)) for z ∈ ∂W0;
(iii) supz∈∂W0

d(v(z), 0) <∞;
(iv) v is continuous up to the boundary of W0

(v) suppose (a1, a2, a3) ∈ v(W0) ∩ ∂H3, a1 6= 0.
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Property (v) follows from property (b′) of u and the fact that if (a1, a2, a3) ∈
v(W0) ∩ ∂H3 then a2 = 0 and (a1, a3) ∈ u(R2) ∩ ∂H2.

Define g as follows, see Figure 4. Let us write any point v = (v1, v2, v3)
of H3 in the form (v1 +

√
−1v2, v3). Let g(z) = v(z) for z ∈ W0. Suppose

we have defined g = (g1, g2, g3) = (g1 +
√
−1g2, g3) on Wk, 0 ≤ k < n − 1,

then for z ∈Wk+1, let

g(z) =
(
e2
√
−1(θk+1−π

n
)(g1 −

√
−1g2)(ẑ), g3(ẑ)

)
(2.2)

=
(
e2
√
−1(k+ 1

2
)θ1(g1 −

√
−1g2)(ẑ), g3(ẑ)

)
here ẑ = e2

√
−1θk+1z which is in Wk. Here we simply ‘reflect’ g along the ray

θ = θk+1 in the domain, and θ = θk+1 − π
n = (k + 1

2)θ1 in the target. Then
g is harmonic on the interior of each Wk. Suppose n is even, then g3 is a
well-defined and continuous function on R2, and since g = (0, 0, g3) on ∂Wk

for all k, g is well-defined and continuous.

Lemma 2.1. Suppose n is even, and n is not a multiple of 4. Then the
map g defined above satisfies:

(i) g(z) = (e2
√
−1(k− 1

2
)θ1(g1 −

√
−1g2)(ẑ), g3(ẑ)), where ẑ = e2

√
−1θkz, for

all z and 0 ≤ k ≤ n− 1;
(ii) supz∈∂Wk

d(g(z), 0) <∞, for 0 ≤ k ≤ n− 1; and
(iii) suppose (a1, a2, a3) ∈ g(R2)∩∂H3, then a1 6= 0, and arg(a1+

√
−1a2) =

θk or θk + π, for some 0 ≤ k ≤ n− 1.

Proof. Let z0 ∈W0, define zs inductively by

zs+1 = e2
√
−1(s+1)θ1zs,

for s = 0, . . . , n− 1. Then zs ∈Ws. Suppose s = 2l, then

(2.3) zs = e2
√
−1lθ1z0

and

g(zs) = (e2
√
−1lθ1(g1 +

√
−1g2)(z0), g3(z0))(2.4)

= (e
√
−1sθ1(g1 +

√
−1g2)(z0), g3(z0)).

If s = 2l + 1, then

zs = ẑ2l

= e2
√
−1sθ1z2l(2.5)

= e2
√
−1(l+1)θ1z0,



236 YUGUANG SHI AND LUEN-FAI TAM

and

g(zs) = g(ẑ2l)(2.6)

=
(
e2
√
−1(s− 1

2
)θ1(g1 −

√
−1g2)(z2l), g3(z2l)

)
=
(
e2
√
−1(l+ 1

2
)θ1(g1 −

√
−1g2)(z0), g3(z0)

)
=
(
e
√
−1sθ1(g1 −

√
−1g2)(z0), g3(z0)

)
.

Hence zn = z0, and zn−1 = z0, because n is even, and

(2.7) g(z0) = (e−
√
−1θ1(g1 −

√
−1g2)(z0), g3(z0)).

Now suppose z = ρeiα where θm ≤ α < θm+1 for some 0 ≤ m ≤ n−1. Then
there exists z0 = ρeiα0 with 0 ≤ α0 < θ1, such that zm = z. If m = 2p, then

ẑ = e2
√
−1θkz

= e2
√
−1(k−p)θ1z0.

Without loss of generality, we may assume that 0 ≤ 2(k − p) ≤ n − 1. If
k − p = 0, then, apply (2.4) to g(z0) = g(ẑ) and (2.7) to g(ẑ), we have

g(z) =
(
e2
√
−1pθ1(g1 +

√
−1g2)(z0), g3(z0)

)
=
(
e2
√
−1kθ1(g1 +

√
−1g2)(z0), g3(z0)

)
=
(
e2
√
−1(k− 1

2
)θ1(g1 −

√
−1g2)(z0), g3(z0)

)
=
(
e2
√
−1(k− 1

2
)θ1(g1 −

√
−1g2)(ẑ), g3(ẑ)

)
.

So (i) is true in this case. Suppose k − p = l + 1, with l ≥ 0, then we can
apply (2.5) and (2.6)

g(z) =
(
e2
√
−1pθ1(g1(z0) +

√
−1g2(z0)), g3(z0)

)
=
(
e2
√
−1(p+k−p−1+ 1

2
)θ1(g1(ẑ)−

√
−1g2(ẑ)), g3(ẑ)

)
=
(
e2
√
−1(k− 1

2
)θ1(g1(ẑ)−

√
−1g2(ẑ)), g3(ẑ)

)
.

Then (i) is still true. The case that m = 2p + 1 can be proved similarly.
The proof of (i) is completed. (ii) can be derived from the definition of g
and property (iii) of v. To prove (iii), let (a1, a2, a3) ∈ g(R2) ∩ ∂H3, then
(a1, a2, a3) ∈ g(Wk) ∩ ∂H3, for some 0 ≤ k ≤ n− 1. Since g = v on W0, by
the definition of v and property (v) of v, if (a1, a2, a3) ∈ g(W0) ∩ ∂H3, then
a2 = 0, and a1 6= 0. In particular, arg(a1 +

√
−1a2) = θ0 = 0 or π. Now
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suppose (a1, a2, a3) ∈ g(Wk) ∩ ∂H3, for 1 ≤ k ≤ n − 1, then by (2.4), and
(2.6), there is (b1, 0, b3) ∈ g(W0) ∩ ∂H3, such that

a1 +
√
−1a2 = e

√
−1θkb1.

Since n is not a multiple of 4, e
√
−1θk 6= ±i, and since b1 6= 0 and is real, we

have a1 6= 0. Moreover, arg(a1 +
√
−1a2) = θk or θk + π .

Theorem 2.2. Let n and g(z) be as Lemma 2.1. There exists a harmonic
map h from R2 into H3, such that

sup
z∈C

d(h(z), g(z)) <∞.

Moreover:
(a) In the Poincaré ball model of H3, if =(z) = 0 and if we let

h(z) = (h1(z), h2(z), h3(z)),

then arg(h1 +
√
−1h2)(z) = −1

2θ1 or π − 1
2θ1;

(b) suppose (a1, a2, a3) ∈ h(R2) ∩ ∂H3, then a1 6= 0; and
(c) supz∈R2, =(z)=0 d(h(z), 0) <∞.

If, in addition, u({=(z) ≥ 0})∩ ∂H2 is not contained in any straight line in
the plane, then h({=(z) ≥ 0}) ∩ ∂H3 is not contained in any hyperplane in
R3. In particular, the image of h is not contained in any totally geodesic
submanifold of dimension 2 in H3.

Proof. For any R > 0, let BR be the disk of radius R with center at the
origin in R2. Let hR be the harmonic map from BR into H3, such that
hR = g on ∂BR. If we write hR = (h1

R, h
2
R, h

3
R) = (h1

R +
√
−1h2

R, h
3
R), then

by the uniqueness of harmonic maps and Lemma 2.1, we have

(2.8) hR(z) =
(
e2
√
−1(k− 1

2
)θ1(h1

R −
√
−1h2

R)(ẑ), h3
R(ẑ)

)
for any z ∈ BR, where ẑ =e2

√
−1θkz, 0 ≤ k ≤ n− 1. We want to show that

there exists a constant C1 independent of R such that

(2.9) d(hR(z), g(z)) ≤ C1

for all z ∈ BR. Obviously, we only have to prove that (2.9) is true for all
z ∈ Wk ∩ BR, for all 0 ≤ k ≤ n − 1. Let us consider W0 for example.
∂(W0 ∩ BR) is the union of W0 ∩ ∂BR, {θ = 0} ∩ BR, and {θ = θ1} ∩ BR.
On W0 ∩ ∂BR, hR = g. On the other hand, for z ∈ {θ = 0} ∩ BR, we have
z = z, and so by (2.8) with k = 0,

hR(z) = (e−
√
−1θ1(h1

R −
√
−1h2

R)(z), h3
R(z))

= (e−
√
−1θ1(h1

R −
√
−1h2

R)(z), h3
R(z)).
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Hence hR(z) ∈ Π where Π is the plane (v1, v,2 , v3) ∈ H3, such that arg(v1 +√
−1v2) = −1

2θ1 or π− 1
2θ1. Similarly, if z is in {θ = π}∩BR, then hR(z) is

also in Π. On the other hand, it is well-known that uR(BR) is contained in
the convex hull of uR(∂BR), which in turn is contained in the convex hull
of g(R2). Since Con (g(R2)) ∩ ∂H3 = g(R2) ∩ ∂H3, by Lemma 2.1 (iii) we
conclude that if (a1, a2, a3) ∈ Con (g(R2))∩∂H3, then arg(a1+

√
−1a2) = θk

for some k, and a1 6= 0. However, by the definition of Π, if (a1, a2, a3) is
also in Π, then arg(a1 +

√
−1a2) = −1

2θ1 or π− 1
2θ1, which are not equal to

θk modulo a multiple of 2π, because n is even. So

Π ∩ Con (g(R2)) ∩ ∂H3 = ∅.
Since hR(z) ∈ Π for z ∈ {θ = 0}∩BR, there exists a constant C2 independent
of R such that

(2.10) d(hR(z), 0) ≤ C2

for z ∈ {θ = 0}∩BR. By Lemma 2.1, there exists a constant C3 independent
of R such that for all z ∈ {θ = 0} ∩BR

d(g(z), 0) ≤ C3.

Combine this with (2.10), we have

d(hR(z), g(z)) ≤ C2 + C3

for all z ∈ {θ = 0} ∩BR. Similarly, one can prove that

d(hR(z), g(z)) ≤ C4

for some constant C4 independent of R, for all z ∈ {θ = θ1} ∩ BR. Since g
is harmonic on W0, d(hR(z), g(z)) is subharmonic on W0. By the maximum
principle, (2.9) is true on W0. Similarly, (2.9) is true on Wk, for all k. By
(2.9), passing to a subsequence if necessary, let R → ∞, hR converge to a
harmonic map h from R2 to H3, such that

sup
z∈R2

d(h(z), g(z)) ≤ C1

for some constant C1. In particular, h(R2)∩ ∂H3 = g(R2)∩ ∂H3. From this
and Lemma 2.1, (b) follows. (c) follows from (2.9) and the property (ii) of g
in Lemma 2.1. Since each hR satisfies (a), so does h. It is well-known that
a totally geodesic submanifold M is contained in a sphere or a hyperplane
which intersects S2 orthogonally, see [Sk] for example. This implies that
M ∩ ∂H3 is contained in a hyperplane. Hence, to prove the last statement,
let us suppose u({=(z) ≥ 0})∩∂H2 is not contained in any straight line in the
plane, then it is sufficient to prove that the intersection of the closure of the
image of h with ∂H3 is not contained in a hyperplane. By the construction
of g, g(W0) consists of those points (u1(z), 0, u2(z)) with =(z) > 0. So

g(W0) ∩ ∂H3 =
{

(v1, 0, v3)| (v1, v3) ∈ u({=(z) ≥ 0}) ∩ ∂H2
}
,
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and the smallest affine subspace of R3 which contains g(W0) ∩ ∂H3 is the
subspace defined by v2 = 0. By the definition of g,

g(W1) ∩ ∂H3 =
{

(e
√
−1θ1(v1 −

√
−1v2), v3)| (v1, v2, v3) ∈ g(W0) ∩ ∂H3

}
.

Since θ1 = 2π
n , g(W1) ∩ ∂H3 is not contained in the subspace v2 = 0. Since

W0 ∪W1 is contained in =(z) ≥ 0, we conclude that g({=(z) ≥ 0})∩ ∂H3 is
not contained in any hyperplane of R3. Using the fact that d(h(z), g(z)) is
uniformly bounded from above, the same is true for h. From this, the last
statement of the theorem follows.

By composing h with the isometry

(v1 +
√
−1v2, v3) →

(
e
√
−1
2

(θ1+π)(v1 +
√
−1v2), v3

)
on H3, we obtain a harmonic map u. Obviously, u also satisfies (c) of
Theorem 2.2, (with h replaced by u). Also u1(z) = 0 on =(z) = 0. Suppose

(a1, a2, a3) ∈ u(R2) ∩ ∂H3, then a1 +
√
−1a2 = e

√
−1
2

(θ1+π)(b1 +
√
−1b2) for

some (b1, b2, b3) ∈ h(R2) ∩ ∂H3. From the proof we see that b1 +
√
−1b2 =

e
√
−1θkc for some c 6= 0, and for some 0 ≤ k ≤ n− 1. From this we conclude

that a1 6= 0. Here we use the fact that n is even again.
We can proceed as before to use u to construct a harmonic map from R2

into H4. More precisely and more generally, suppose u is a harmonic map
from R2 → Hm for some m ≥ 2, such that:

(a) In the Poincaré ball model of Hm, if we write

u(z) = (u1(z), u2(z), . . . , um(z)),

then u1(z) = 0 on =(z) = 0;
(b) if (a1, . . . , am) ∈ u(R2) ∩ ∂Hm then a1 6= 0;
(c) supz∈R2, =(z)=0 d(u(z), 0) <∞.

Let n be even, not divisible by 4, and defined θk, Wk, Ψ as before. Let
v(z) =u ◦ Ψ−1(z), for any z ∈ W0. Define g(z) = v(z) for any z ∈ W0.
Suppose we have already defined g(z) on Wk, 0 ≤ k ≤ n − 1, then for any
z ∈Wk+1 define:

g(z) =
(
e2
√
−1(k+ 1

2
)θ1(g1 −

√
−1g2)(ẑ), g3(ẑ), . . . , gm+1(ẑ)

)
here ẑ = e2

√
−1θk+1z ∈ Wk. Using similar methods as in Theorem 2.2, we

can prove:

Theorem 2.2′. Let g(z) be as above. There exists a harmonic map h from
R2 into Hm+1, such that

sup
z∈C

d(h(z), g(z)) <∞.

Moreover:
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(a) In the Poincaré ball model of Hm+1, if =(z) = 0, and if

h(z) = (h1(z), h2(z), . . . , hm+1(z))

then arg(h1 +
√
−1h2)(z) = −1

2θ1 or π − 1
2θ1;

(b) if (a1, . . . , am+1) ∈ h(R2) ∩ ∂Hm+1, then a1 6= 0; and
(c) supz∈R2, =(z)=0 d(h(z), 0) <∞.

If, in addition, u({=(z) ≥ 0}) ∩ ∂Hm is not contained in any hyperplane
in Rm, then h({=(z) ≥ 0}) ∩ ∂Hm+1 is not contained in any hyperplane in
Rm+1. In particular, the image of h is not contained in any totally geodesic
submanifold of dimension m in Hm+1.

Again by composing h with the isometry

(v1 +
√
−1v2, v3, . . . , vm+1) → (e

√
−1
2

(θ1+π)(v1 +
√
−1v2), v3, . . . , vm+1),

we obtain a harmonic map from R2 into Hm+1 satisfying required properties
for the induction on construction.

Remark 2.1. (i) By the result in §1, it is easy to see that there are
many harmonic maps u from R2 into H2, which satisfy the conditions
in Theorem 2.2.

(ii) If we begin with a harmonic map u constructed in §1, and obtain
harmonic maps inductively using Theorem 2.2, and 2.2′, then the har-
monic maps will be of polynomial growth, and the closure of the image
of each of the maps intersects the geometric boundary of the hyper-
bolic space at finitely many points. This is related to the results in
[LW].

3. Harmonic maps from Rm into Hm.

In this section, we will use methods similar to those in §1 and §2 to construct
nontrivial harmonic maps from Rm into Hm, m ≥ 3. First let us write
Rm = R2 × Rm−2. As in the previous section, let n ≥ 4 be an even integer,
θk = 2kπ

n , 0 ≤ k ≤ n − 1, and let Wk be the wedge in R2 defined by
θk ≤ θ ≤ θk+1 in polar coordinates. Let Ωk = Wk×[0,∞)m−2 which consists
of points (x1, x2, . . . , xm) with (x1, x2) ∈ Wk and xj ≥ 0, for 3 ≤ j ≤ m.
We use the Poincaré unit ball model for Hm as before. Define a harmonic
function f by

f(x1, x2, x3, . . . , xm) = r
n
2 sin

(n
2
θ
)
x3 · · ·xm,

on Ωk, k = 0, 1, . . . , n−1, where x1+
√
−1x2 = re

√
−1θ. Let γ : [0,∞) 7→ Hm

be the geodesic parametrized by arc length, such that γ(0) = 0,

γ(t) = (γ1(t), 0, γ3(t), . . . , γm(t))
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γi(t) ≥ 0, and limt→∞ γm(t) = ((m − 1)−
1
2 , 0, (m − 1)−

1
2 , . . . , (m − 1)−

1
2 ).

Define v : Ω0 7→ Hm by

v(x1, . . . , xm) = γ(f(x1, . . . , xm)).

By the definition of f , we see that v maps the boundary of Ω0 to the origin
0 in Hm. Let us write v = (v1, v2, v3, . . . , vm) as (v1 +

√
−1v2, v3, . . . , vm).

Suppose we have already defined v on Ωk for any 0 ≤ k < n − 1, then, as
before, for any (x1, x2, . . . , xm) in Ωk+1, we set:

v(x1, x2, x3, . . . , xm) = (e2θ1
√
−1(k+1/2)(v1 −

√
−1v2)(x̂), v3(x̂), . . . , vm(x̂)),

where x̂ = (e2
√
−1θk+1(x1−

√
−1x2), x3, . . . , xm) which is in Wk× [0,∞)m−2.

Thus, we have defined v on R2×[0,∞)m−2. Now, we can define g : Rm → Hm

by setting:

g(x1, x2, x3, . . . , xm) = (v1(x̃), v2(x̃), ε3v3(x̃), . . . , εmvm(x̃)),

for any x ∈ Rm, where x̃ = (x1, x2, |x3|, . . . , |xm|), and εi = sign(xi), 3 ≤
i ≤ m, see Figure 5.

Lemma 3.1. g is Lipschitz on Rm, and is harmonic on the set arg(x1 +√
−1x2) 6= θk, 0 ≤ k ≤ n− 1, τ3 · · · τm 6= 0. Moreover, if we write

g = (g1, g2, g3, . . . , gm) = (g1 +
√
−1g2, g3, . . . , gm)

then:
(i)

g(x1, x2, . . . , xm) = (e2
√
−1(k+ 1

2
)θ1(g1 −

√
−1g2)(x̂), g3(x̂), . . . , gm(x̂))

where x̂ = (e2
√
−1θk+1(x1 −

√
−1x2), x3 . . . , xm);

(ii) for i ≥ 3

gi(x1, x2, x3, . . . ,−xi, . . . , xm) = −gi(x1, x2, x3, . . . , xi, . . . , xm);

and
(iii) if j 6= i with i ≥ 3, then

gj(x1, x2, x3, . . . ,−xi, . . . , xm) = gj(x1, x2, x3, . . . , xi, . . . , xm).

Proof. The first statement of the lemma follows immediately from the def-
inition of g, the fact that f is harmonic and that γ is a geodesic. The
proof of (i) is similar to the proof of Lemma 2.1(i). (ii) and (iii) also follow
immediately from the definition of g.

Theorem 3.2. Let g be the map as above. Then there exists a harmonic
map u : Rm 7→ Hm such that

sup
x∈Rm

d(u(x), g(x)) <∞.

Moreover, u is nontrivial in the sense that:
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(i) The image of u is not contained in any totally geodesic submanifold of
dimension m− 1 in of Hm; and

(ii) u cannot be decomposed as u = F ◦ G, such that F is an isometry
of Rm, and G = G(y1, . . . , ym−1) which is independent of the last
coordinate.

Proof. Let BR be the ball of radius R in Rm with center at the origin, and
let uR be the harmonic map from BR to Hm with uR = g on ∂BR. By
Lemma 3.1, and the uniqueness of harmonic maps, if we write

uR = (u1
R, u

2
R, u

3
R, . . . , u

m
R ) = (u1

R +
√
−1u2

R, u
3
R, . . . , u

m
R )

then
(3.1)
uR(x1, x2, . . . , xm) =

(
e2
√
−1(k+ 1

2
)θ1(u1

R −
√
−1u2

R)(x̂), u3
R(x̂), . . . , um

R (x̂)
)

where x̂ = (e2
√
−1θk+1(x1 −

√
−1x2), x3 . . . , xm); for i ≥ 3

(3.2) ui
R(x1, x2, x3, . . . ,−xi, . . . , xm) = −ui

R(x1, x2, x3, . . . , xi, . . . , xm),

and if j 6= i, with i ≥ 3,

(3.3) uj
R(x1, x2, x3, . . . ,−xi, . . . , xm) = uj

R(x1, x2, x3, . . . , xi, . . . , xm).

We want to prove that there is a constant C which is independent of R such
that

(3.4) sup
x∈BR∩Ω0

d(uR(x), g(x)) ≤ C.

Note that ∂(BR ∩ Ω0) = (∂BR ∩ Ω0) ∪ (∂Ω0 ∩ BR). On ∂BR ∩ Ω0, uR = g.
∂Ω0 ∩BR consists of those points (x1, x2, . . . , xm) ∈ BR such that arg(x1 +√
−1x2) = θ0 or θ1. By (3.1), if arg(x1 +

√
−1x2) = 0, then as in the proof

of Theorem 2.2, we have arg(u1
R(x) +

√
−1u2

R(x)) = −1
2θ1 or π − 1

2θ1. By
the definition of g, it is easy to see that if (a1, a2, . . . , am) ∈ g(Rm) ∩ ∂Hm,
then there exists k, such that

a1 +
√
−1a2 =

eiθk

√
m− 1

6= 0.

As in the proof of Theorem 2.2, we conclude that

Π ∩ g(Rm) ∩ ∂Hm = ∅
where Π is the hyperplane (v1, v,2 , . . . , vm), such that arg(v1 +

√
−1v2) =

−1
2θ1 or π − 1

2θ1. Hence there is a constant C1 which is independent of R
such that

d(uR(x), 0) ≤ C1

for all x ∈ ∂Ω0 ∩BR with arg(x1 +
√
−1x2) = θ0 = 0. Note that for such x,

g(x) = 0. Hence

(3.5) d(uR(x), g(x)) ≤ C1
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for all x ∈ ∂Ω0 ∩ BR with arg(x1 +
√
−1x2) = θ0 = 0. Similarly, one can

show that (3.5) is true for x ∈ ∂Ω0 ∩ BR with arg(x1 +
√
−1x2) = θ1. By

the maximum principle, we conclude that (3.4) is true. By Lemma 3.1 of g
and (3.1)–(3.3), we see that

sup
x∈Rm

d(uR(x), g(x)) ≤ C1

for some constant C1 which is independent of R. Passing to a subsequence
if necessary, we can find a harmonic map u from Rm into Hm such that

(3.6) sup
x∈Rm

d(u(x), g(x)) ≤ C1.

From this we have

u(Rm) ∩ ∂Hm = g(Rm) ∩ ∂Hm.

The set on the right hand side contains all points of the form
1√
m− 1

(cos θk, sin θk, a
3, . . . , am)

for some k, where aj is either +1 or −1, for 3 ≤ j ≤ m. Hence the set
cannot be contained in any hyperplane in Rm. We conclude that u(Rm) is
not contained in any totally geodesic submanifold of dimension m − 1 in
of Hm. This proves (i). To prove (ii), we may assume that F is a linear
isomorphism and it is sufficient to show that for any (m − 1) dimensional
subspace P of Rm, u(P) ∩ ∂Hm 6= u(Rm) ∩ ∂Hm. By (3.6), it is sufficient to
show that

(3.7) g(P) ∩ ∂Hm 6= g(Rm) ∩ ∂Hm.

Since P is a proper subspace, there is some fixed εi which is either +1 or−1,
3 ≤ i ≤ m, and there is some k such that if

Ω = {(x1, . . . , xm)| (x1, x2, ε3x
3, . . . , ε3x

m) ∈ Ωk}
then P will not intersect the interior of Ω. By the definition of g, we see
that (3.7) is true.

Again the harmonic map u in the theorem is of polynomial growth, and
the closure of its image intersects the geometric boundary at n×2m−2 points.

4. Asymptotic behaviors of harmonic diffeomorphisms from R2

into H2.

In this section, we will discuss the asymptotic behavior of a harmonic dif-
feomorphism u from R2 into H2 with Hopf differential φdz2 such that φ is a
polynomial. It was proved in [HTTW] that the image of such a map is an
ideal polygon. However, it is unclear how to determine the exact positions
of the vertices of the polygon in terms of φ. On the other hand, it is also
proved that each horizontal ray of φdz2 is mapped under u into a curve
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which is asymptotically a geodesic ray in H2. In this section we want to
show that the behavior of a harmonic diffeomorphism with Hopf differential
zndz2 is rather typical, in the sense that the image of the harmonic map
along each ray in certain directions will tend to infinity at a rate depending
only on n and the direction of the ray. While the results may have interest in
their own right, they will be applied in the next section to study the relation
between the Hopf differential and the image of a harmonic map from R2 to
H2.

To fix notations, let u be an orientation preserving harmonic diffeomor-
phism from R2 into H2, so that its Hopf differential is of the form φdz2

where

φ(z) = zn +
n∑

j=1

ajz
n−j = zn(1 + h)

and

h(z) =
n∑

j=1

ajz
−j .

Lemma 4.1. Let θ be such that cos((n
2 + 1)θ) 6= 0, and let L(T, θ) be the

length of u(teiθ), 0 ≤ t ≤ T . We have:
(a) If n = 2m, then as T →∞

1
2
L(T, θ) =

∣∣∣∣ Tm+1

m+ 1
cos
((n

2
+ 1
)
θ
)

+
m∑

j=1

Tm−j+1

m− j + 1

(
1
2
j

)
<
(
e
√
−1(m+1−j)θcj

)
+
(

1
2

m+ 1

)
log T · <(cm+1)

∣∣∣∣+O(1).

(b) If n = 2m+ 1, then as T →∞

1
2
L(T, θ) =

∣∣∣∣Tm+ 3
2

m+ 3
2

cos
((n

2
+ 1
)
θ
)

+
m+1∑
j=1

Tm−j+ 3
2

m− j + 3
2

(
1
2
j

)
<
(
e
√
−1(m−j+ 3

2
)θcj

) ∣∣∣∣+O(1).

Here for each 1 ≤ j ≤ n, cj are functions of a1, . . . , aj. <(z) is the real part
of the complex number z.

Proof. Since there exists R > 0 such that φ(z) 6= 0 outside |z| < R, by
deleting a half line, we can choose a branch of

√
φ on |z| > R. We may

assume that te
√
−1θ is not on the deleted half line. Let ξ + iη = w =
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φ(ζ)dζ. Then locally, w is a complex coordinates of R2. The pull-back

metric of H2 under u is

(e+ 2)dξ2 + (e− 2)dη2,

where e is energy density of u with respect to the metric |dw|2 = |φ||dz|2.
Let z = teiθ, then

(4.1)
dw

dt
=
dw

dz

dz

dt
= eiθ

√
φ(te

√
−1θ).

By [Hn], there is a constant C1 > 0 such that

(4.2) 0 ≤ e(z)− 2 ≤ exp(−C1|z|).
Also |h| < 1 when |z| is large,∣∣∣∣dξdt

∣∣∣∣ = ∣∣∣∣<{e√−1θ
√
φ(te

√
−1θ)

}∣∣∣∣(4.3)

=

∣∣∣∣∣∣<
tn

2 e
√
−1(n

2
+1)θ

1 +
∞∑

j=1

(
1
2
j

)
hj


∣∣∣∣∣∣

= t
n
2

∣∣∣∣∣
(

cos
((n

2
+ 1
)
θ
)

+
n∑

j=1

t−j

(
1
2
j

)
<
(
e
√
−1(n

2
+1−j)θcj

)

+O(t−n−1)

)∣∣∣∣∣
as t→∞. Since cos((n

2 + 1)θ) 6= 0, we have

(e+ 2)
∣∣∣∣dξdt
∣∣∣∣2 + (e− 2)

∣∣∣∣dηdt
∣∣∣∣2 = 4

∣∣∣∣dξdt
∣∣∣∣2 + (e− 2)

∣∣∣∣dwdt
∣∣∣∣2

= 4
∣∣∣∣dξdt
∣∣∣∣2 +O(exp(−C2t)).

Hence there exists t0 > 0 such that if t > t0,

L(t, θ) =

∣∣∣∣∣∣
∫ t

t0

√
(e+ 2)

∣∣∣∣dξdt
∣∣∣∣2 + (e− 2)

∣∣∣∣dηdt
∣∣∣∣2
∣∣∣∣∣∣+O(1)

=
∫ t

t0

2
∣∣∣∣dξdt
∣∣∣∣+O(1).

Using (4.3), the lemma follows.

Remark 4.1. As one can see from the proof, even if cos((n
2 + 1)θ) = 0, we

still have limt→∞ L(t, θ) = ∞, provided that one of the coefficients of the
term Tm−j+1 or log T is not zero for the case n = 2m. The situation for
n = 2m+ 1 is similar.
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Proposition 4.2. With the notations and assumptions as in Lemma 4.1,
we have

lim
t→∞

d(o, u(te
√
−1θ))

L(t, θ)
= lim

t→∞

(n
2 + 1)d(o, u(te

√
−1θ))

t
n
2
+1 cos((n

2 + 1)θ)
= 1

where o is a fixed point in H2.

Proof. Let γ(t) = u(te
√
−1θ), and let w = ξ + iη be as in the proof of

Lemma 4.1. In these coordinates, the geodesic curvature of γ(t) is

κ(t) = (ṫ)3
√
e2 − 4

[
Γ2

11(ξ
′)3 + (2Γ2

12 − Γ1
11)(ξ

′)2η′ − (2Γ1
12 − Γ2

22)ξ
′(η′)2

(4.4)

− Γ1
22(η

′)3 + ξ′η′′ − ξ′′η′
]

where

Γ1
11 =

1
2
(e+ 2)−1 ∂e

∂ξ
, Γ1

12 =
1
2
(e+ 2)−1 ∂e

∂η
, Γ1

22 =
1
2
(e+ 2)−1 ∂e

∂ξ
,

Γ2
11 = −1

2
(e− 2)−1 ∂e

∂η
, Γ2

12 =
1
2
(e− 2)−1 ∂e

∂ξ
, Γ2

22 =
1
2
(e+ 2)−1 ∂e

∂η
,

ṫ = dt
ds , s is the arc length of γ(t) and e is the energy density of u with

respect to the metric |dw|2 = |φ| |dz|2. As in [Hn], we have

(4.5) (e− 2)−
1
2 |∇e| ≤ C1 exp(−C2|z|)

for z large enough, and∇ is the gradient with respect to the metric |φ||dz|2 =
|dw|2. Since cos((n

2 + 1)θ) 6= 0, by (4.3)

(4.6)
ds

dt
=

√
(e+ 2)

∣∣∣∣dξdt
∣∣∣∣2 + (e− 2)

∣∣∣∣dηdt
∣∣∣∣2 = 2

∣∣∣∣dξdt
∣∣∣∣+O(exp(−Ct)).

Note that we also have

(4.7)
∣∣∣∣dwdt

∣∣∣∣ ≤ C2t
n/2,

(4.8) t−
n
2

∣∣∣∣dξdt
∣∣∣∣ = ∣∣∣cos

((n
2

+ 1
)
θ
)∣∣∣+ o(1).

(4.9)
∣∣∣∣d2w

dt2

∣∣∣∣ ≤ C2t
n/2−1

for some constants C2, C3. By (4.4)–(4.9), we have

(4.10) |κ(t)| ≤ C4 exp(−C5t)



HARMONIC MAPS FROM Rn TO Hm WITH SYMMETRY 247

for some positive constants C4 and C5. By (4.10) and Lemma 3.1 in
[HTTW], given ε > 0, there is t0 > 0, and a geodesic line α passing
through γ(t0) such that

(4.11) d(γ(t), α) ≤ ε

for all t > t0. Let f2dρ2 + dτ2 be the Fermi coordinates with respect to α,
so that τ = 0 is the geodesic α, where f = cosh τ . Under this coordinates,
γ(t) = (ρ(t), τ(t)). By (4.10), we have at γ(t)

|τ̈ − ffτ (ρ̇)2| ≤ C4 exp(−C5t),

and so

|τ̈ | ≤ C4 exp(−C5t) + |ffτ (ρ̇)2|
≤ C4 exp(−C5t) + C6ε|f(ρ̇)2|
≤ C4 exp(−C5t) + C6ε|f2(ρ̇)2|
≤ C7ε

for some constants C6, C7, provided t0 is large enough, where we have used
the fact that |τ | ≤ ε, f = cosh τ and the fact that f2(ρ̇)2 ≤ 1. Here and
below, “ ˙ ” means differentiation with respect to arc length s and where “ ′ ”
means differentiation with respect to t. Hence

(4.12)
∣∣∣∣ ddt(τ̇)

∣∣∣∣ = ∣∣∣∣τ̈ dsdt
∣∣∣∣ ≤ C7ε

∣∣∣∣dsdt
∣∣∣∣ .

Since |γ̇| = 1, we have
f2(ρ̇)2 + (τ̇)2 = 1.

For any T > t0, suppose τ ′(T ) = 0, then

f2(ρ̇)2 = 1,

at T . Suppose τ ′(T ) 6= 0, let us we assume τ ′(T ) > 0, the case that τ ′(T ) < 0
is similar. Let b be the supremum of c such that τ ′ > 0 on [T, T+c). Suppose
b <∞, then τ ′(T + b) = 0. By (4.12),∣∣∣∣ ddt [(τ̇)2]

∣∣∣∣ = 2|τ̇ |
∣∣∣∣ ddt(τ̇)

∣∣∣∣ ≤ C7ε|τ̇ |
∣∣∣∣dsdt
∣∣∣∣ = C7ε

dτ

dt

in (T, T + b). Hence

(τ̇)2(T )− (τ̇)2(T + b) ≤
∫ T+b

T

∣∣∣∣ ddt [(τ̇)2]
∣∣∣∣ dt

≤ C7ε

∫ T+b

T

dτ

dt

≤ C7ε
2
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where we have used the fact that |τ | ≤ ε. Since (τ̇)2(T + b) = 0, we have

(τ̇)2(T ) ≤ C7ε
2

and so
f2(ρ̇)2 ≥ 1− C7ε

2

at T . If b = ∞, then we can choose ti →∞ with τ ′(ti) → 0, and we obtain
the same inequality. In particular, f2(ρ̇)2(T ) is not 0 for all T > t0, provided
t0 is large enough. Without loss of generality, we may assume that fρ̇ > 0
on [t0,∞). For any T > t0,

ρ(T )− ρ(t0) =
∫ T

t0

dρ

dt
dt

=
∫ T

t0

ρ̇
ds

dt
dt

=
∫ T

t0

f−1fρ̇
ds

dt
dt

≥ (1− C8ε)(s(T )− s(t0))

for some constant C8. So

d(o, u(Teiθ)) ≥ ρ(T )− τ(T ) ≥ (1− C8ε)(s(T )− s(t0))− ε.

It is obvious that,
d(o, u(Teiθ)) ≤ s(T ).

Note that s(T ) = L(T, θ) in our previous notation and the lemma follows
easily.

5. Hopf differentials and images of harmonic maps.

In [HTTW], it was proved that if u is a harmonic diffeomorphism from
R2 into H2 with polynomial Hopf differential, then its image is an ideal
polygon. In this section, we will use the analysis in §4 to study explicit
relation in some special cases between the Hopf differential and the position
of the vertices of the image of u.

Theorem 5.1. Let φ(z) = z2m +azm−1, where a is a real number. Suppose
u is an orientation preserving harmonic diffeomorphism from R2 to H2 with
Hopf differential φdz2. Then by composing an isometry of H2 if necessary,
the image of u is a regular ideal polygon.

Proof. Let w = log ||∂u||, where ||∂u|| = σ|∂u
∂z | and σ2|du|2 is the metric on

H2. Then w is the unique solution of

(5.1) ∆0w = e2w − |φ|2e−2w
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such that e2w|dz|2 is a complete metric on R2, see [WA]. Here ∆0 is the
Laplacian on R2 with respect to the standard metric |dz|2. Observe that φ
satisfies {

φ(z) = φ(z), and
φ(e2

√
−1θz) = e4m

√
−1θφ(z)

(5.2)

where θ = π
m+1 . Identify H2 with the unit disk {u| |u| < 1} in C with

Poincaré metric σ2|du|2. Without loss of generality, we may assume that
u(0) = 0. By Proposition 4.2, we know that if t is real, then d(u(t), 0) →∞,
as t → ∞. We may also assume that u(tk) tends to the point 1 on the
boundary of H2 for some tk →∞, with tk to be real. Let v(z) = u(z). It is
easy to see that v is also an orientation preserving harmonic diffeomorphism.
Moreover, let ζ = z

σ(v(z))
∣∣∣∣∂v∂z

∣∣∣∣ (z) = σ(u(z))
∣∣∣∣∂u∂ζ

∣∣∣∣ (ζ)
= σ(u(ζ))

∣∣∣∣∂u∂ζ
∣∣∣∣ (ζ)

= ew(z).

Hence if we let

w̃(z) = log
(
σ(v(z))

∣∣∣∣∂v∂z
∣∣∣∣ (z))

then w̃(z) = w(z). By (5.2), it is easy to see that w̃(z) also satisfies (5.1),
such that e2 ew|dz|2 is complete. By uniqueness, we have

(5.3) w(z) = w̃(z) = w(z).

On the other hand,

σ2(v(z))
∂v

∂z
(z)

∂v

∂z
(z) = σ2(u(z))

∂u(ζ)
∂ζ

∂u(ζ)
∂ζ

(5.4)

= σ2(u(ζ))
∂u(ζ)
∂ζ

∂u(ζ)
∂ζ

= φ(ζ)

= φ(z)

= φ(z).

By (5.3), (5.4) and the result in [TW], v = ι ◦ u for some orientation
preserving isometry ι of H2. Note that v(0) = u(0) = 0, and for real number
t, v(t) = u(t). Since we have normalized u so that u(tk) → 1 as t→∞, we
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also have v(tk) → 1. So ι must be the identity map, and v ≡ u. That is to
say

(5.5) u(z) = u(z).

In particular, u(t) is real if t is real. Hence there is 0 < c < 1 such that the
set consisting of those real ξ with c < ξ < 1 is in the image of the positive
real axis under the harmonic map u. Let v1(z) = e2

√
−1θu(e2

√
−1θz). Using

similar method and (5.2), one can show that v1(z) = ι1 ◦ u(z) for some
isometry of H2. Since v1(0) = 0 = u(0), we have v1(z) = e

√
−1αu(z) for

some real number α. Hence

(5.6) u(e2
√
−1θz) = e2

√
−1βu(z)

where 2β = 2θ − α. We want to prove that e
√
−1sβ , 0 ≤ s ≤ 2m + 1 are

distinct (2m + 2)th roots of unity. Moreover the image of u is the ideal
polygon spanned by the e

√
−1sβ , 0 ≤ s ≤ 2m + 1. This will conclude the

proof of the theorem. First, we claim that for any real number t,

(5.7) u(e
√
−1(s+2)θt) = e2

√
−1βu(e

√
−1sθt)

for all integer 0 ≤ s ≤ 2m+ 1. For s = 0, (5.7) follows from (5.6) and (5.5)
by letting z = t. Suppose (5.7) is true for 0 ≤ s < 2m + 1. By (5.6) and
(5.5)

u(e
√
−1(s+3)θt) = e2

√
−1βu(e−

√
−1(s+1)θt)

= e2
√
−1βu(e i(s+1)θt).

Hence (5.7) is true. By (5.7), we have

(5.8) u(e2
√
−1sθt) = e2

√
−1sβu(t)

for any integer s. Take s = m+ 1, we have

e2
√
−1(m+1)β = 1.

By Proposition 4.2, for any 0 ≤ s ≤ 2m+1, d(u(te
√
−1sθ), 0) →∞ as t→∞,

t is real. Hence there exists tk →∞, and real number bs such that

u(tke
√
−1sθ) → e

√
−1bs ,

for 0 ≤ s ≤ 2m+ 1. Obviously, b0 = 0, bs =
√
−1sβ for s even by (5.8). On

the other hand, by (5.6)

u(te
√
−1θ) = u(e2

√
−1θ · te−

√
−1θ)(5.9)

= e2
√
−1βu(te

√
−1θ).

So we have
e
√
−1b1 = e2

√
−1(β−b1),
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and we may assume b1 = β be adding a multiple of 2π to 2β, which does
not affect the previous arguments. By (5.7), we again have bs =

√
−1sβ if s

is odd. Hence e
√
−1sβ , 0 ≤ s ≤ 2m+ 1, are in the closure of the image of u

in H2∪∂H2. It remains to prove the e
√
−1sβ are distinct. Suppose not, then

e
√
−1sβ = 1 for some 0 < s ≤ 2m+ 1. If s is even, then by (5.8), we have a

contradiction, because u is one to one and e
√
−1sθ 6= 1. Suppose, s is odd.

By (5.9), we have u(te
√
−1θ) = ρ(t)e

√
−1β where ρ(t) > 0. By (5.7),

u(te
√
−1sθ) = ρ(t)e

√
−1sβ = ρ(t).

Since ρ(tk) → 1 and c < ξ < 1 is in the image of the positive real axis under
u, this contradicts the fact the u is one to one. The theorem follows from
the fact that the image of u is a ideal polygon of 2m+ 2 sides [HTTW].

Next we will discuss the Hopf differentials of the harmonic diffeormor-
phisms constructed in Proposition 1.6.

Proposition 5.2. Let u(z) be the harmonic diffeomorphism constructed in
Proposition 1.6. Then there is a conformal map z = z(ζ) such that the Hopf
differential of u with respect to ζ is of the form (ζ2 +

√
−1α)dζ2 where α is

a real number.

Proof. Let u(z) be the harmonic diffeomorphism constructed in Proposi-
tion 1.6. Then u(z) = u(z) and u(−z) = −u(z). Let φ(z)dz2 be the Hopf
differential of u, then

φ(z) = σ2(u(z))
∂u

∂z

∂u

∂z
.

It is easy to see that φ(z) = φ(z) and φ(−z) = φ(z). By the result of
[HTTW], φ is a polynomial of degree 2, that is φ(z) = az2 + bz + c. Now
φ(z) = φ(z) implies that a, b and c are real. φ(−z) = φ(z) implies that
b = 0. Hence φ(z) = az2 + c, where a and c are real. Let β be any one of
the fourth root of a, and let ζ = βz, then

φ(z)dz2 = (az2 + c)dz2

= (aβ−2ζ + c)β−2dζ2

= (ζ2 +
√
−1α)dζ2

where
√
−1α = cβ−2. Suppose a > 0, then we may choose β to be a positive

real number. Hence
√
−1α is real. By Remark 4.1, the length of the image

under u of the half line ζ > 0 is infinite. On the other hand, β > 0, ζ > 0
implies z = β−1ζ is real and positive. However, by the construction of u
in Proposition 1.6, the image of z > 0 under u has finite length. This is a
contradiction. So a < 0, and we may choose β = |a|

1
4 e

π
4

√
−1. Then

√
−1α = cβ−2 = c|a|

1
2 e

π
2

√
−1 =

√
−1c|a|

1
2 .
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This implies that α is real, because c is real.

n = 4

R2 H2

R2 H2
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n = 6

R2 H2

H3
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R2 H3

R3 H3
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