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In this paper we make a contribution to the Margulis-
Platonov conjecture, which describes the normal subgroup
structure of algebraic groups over number fields. We estab-
lish the conjecture for inner forms of anisotropic groups of
type An. We obtain information on the commuting graph
of nonabelian finite simple groups, and consequently, using
the paper by Segev, 1999, we obtain results on the normal
structure and quotient groups of the multiplicative group of
a division algebra.

0. Introduction.

Let G be a simple, simply connected algebraic group defined over an al-
gebraic number field K. Let T be the (finite) set of all nonarchimedean
places v of K such that G is Kv-anisotropic, and define G(K, T ) to be∏

v∈T G(Kv) with the topology of the direct product if T 6= ∅, and let
G(K, T ) = {e} if T = ∅ (which is always the case if G is not of type An).
Let δ : G(K) → G(K, T ) be the diagonal embedding in the first case, and
the trivial homomorphism in the second case.

Conjecture (Margulis and Platonov). For any noncentral normal subgroup
N ≤ G(K) there exists an open normal subgroup W ≤ G(K, T ) such that
N = δ−1(W ); in particular, if T = ∅, the group G(K) has no proper non-
central normal subgroups (i.e., it is projectively simple).

The conjecture has been established for almost all isotropic groups and
for most anisotropic groups except for those of type An. The anisotropic
groups of type An are thus the main unresolved case of the conjecture.

Inner forms of anisotropic groups of type An have the form SL1,D, the
reduced norm 1 group of a finite dimensional division algebra D over K
(see 2.17 and 2.12 of [10]). In this case Potapchik and Rapinchuk showed
(Theorem 2.1 of [11]) that if SL1,D fails to satisfy the Conjecture, then there
exists a proper normal subgroup N of D∗ = D − {0} such that D∗/N is a
nonabelian finite simple group.
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In recent work the first named author ([14]) established a result, relating
finite simple images of the multiplicative group of a finite dimensional di-
vision algebra over an arbitrary field to information about the commuting
graph of finite simple groups. To state this result we need the following
definitions.

Let H be a finite group. The commuting graph of H denoted ∆(H) is
the graph whose vertex set is H −Z(H) and whose edges are pairs {h, g} ⊆
H − Z(H), such that h 6= g and [h, g] ∈ Z(H). We denote the diameter of
∆(H) by diam (∆(H)).

Let d : ∆(H)×∆(H) → Z≥0 be the distance function on ∆(H). We say
that ∆(H) is balanced if there exists x, y ∈ ∆(H) such that the distances
d(x, y), d(x, xy), d(y, xy), d(x, x−1y), d(y, x−1y) are all larger than 3.

Theorem (Segev [14]). Let D be a finite dimensional division algebra over
an arbitrary field and L a nonabelian finite simple group. If diam (∆(L)) >
4, or ∆(L) is balanced, then L cannot be isomorphic to a quotient of D∗.

Consequently, the Margulis-Platonov Conjecture for inner forms of aniso-
tropic groups of type An is resolved by the following theorem, which is the
main result of this paper.

Theorem 1. Let L be a nonabelian finite simple group. Then either
diam (∆(L)) > 4 or ∆(L) is balanced.

The following results are then immediate corollaries:

Theorem 2. The Margulis-Platonov Conjecture holds for G = SL1,D.

Theorem 3. If D is a finite dimensional division algebra over an arbitrary
field, then no quotient of D∗ is a nonabelian finite simple group.

In Section 12 we show that the following theorem is a consequence of
Theorem 2.

Theorem 4. Let D be a finite dimensional division algebra over a number
field. Let N be a noncentral normal subgroup of D∗. Then D∗/N is a
solvable group.

To prove Theorem 1 we need to establish results on the commuting graph
of a finite simple group. These results may have independent interest, so we
state them as separate theorems corresponding to the various types of finite
simple groups.

The main obstacle in establishing Theorem 1 occurs for classical groups.
Here we prove the following theorem.

Theorem 5. Let L be a finite simple group of classical type. Then ∆(L) is
balanced. The required elements can be taken as opposite regular unipotent
elements.
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Corollary. If L is a finite simple classical group, then diam (∆(L)) ≥ 4.

We mention that except for some small cases the elements x, y used to
establish balance in Theorem 5 satisfy d(x, y) = 4 (see Section 12).

The following result covers exceptional groups of Lie type and Sporadic
groups.

Theorem 6. Let L 6' E7(q) be either an exceptional group of Lie type or
a Sporadic group. Then ∆(L) is disconnected. If L = E7(q), then ∆(L) is
balanced, where the elements x, y can be chosen to be semisimple elements.

For the alternating groups we have:

Theorem 7. If L is a simple alternating group, then diam (∆(L)) > 4.

Finally, in Section 12 we prove the following theorem:

Theorem 8. Let G(q) be a simple classical group with q > 5. Then ∆(G(q))
is disconnected if and only if one of the following holds

(i) G(q) ' Lε
n(q) and n is a prime.

(ii) G(q) ' Lε
n(q), n− 1 is a prime and q − ε | n.

(iii) G(q) ' S2n(q), O−
2n(q), or O2n+1(q) and n = 2c, for some c.

Moreover, if ∆(G(q)) is connected then diam (∆(G(q))) ≤ 10.

We draw the attention of the reader to the remark at the end of Section 12,
for additional information about the connectivity of the commuting graph
of finite simple groups.

In Chapter 1, which consists of Sections 1-7 we prove Theorem 5. In
Chapter 2, which consists of Sections 8-9 we prove Theorem 6, when L is
an exceptional group of Lie-type. Section 10 is devoted to the Alternating
groups and the short Section 11 is devoted to the Sporadic groups. Finally
in Section 12 we derive Theorem 4 from Theorem 2 and we include some
results and remarks about the commuting graph of the classical groups.

We would like to thank Michael Aschbacher for various discussions, in
particular, for contributions in Sections 8 and 9.

Chapter 1. The Classical Groups.

1. Notation and preliminaries.

The notation and definitions that will be introduced in this section will
prevail throughout Chapter 1. F denotes a finite field and V denotes a vector
space of dimension n over F. We fix an ordered basis

B = {v1, . . . , vn}
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of V . For a subset S ⊆ V , 〈S〉 denotes the subspace generated by S. We
set:

For 1 ≤ i ≤ n, Vi = 〈v1, v2, . . . , vi〉.

We write M(V ) for both Hom F(V, V ), the set of all linear operators on
V , and for the set of n × n matrices over F. When we wish to emphasize
that we are dealing with matrices we’ll write Mn(F) for the set of n × n
matrices over F. Also GL(V ) ⊆ M(V ), denotes both the set of invertible
linear operators on V and the set of invertible n × n matrices over F. To
emphasize matrices we write GLn(F), for the set of n×n invertible matrices
over F. Finally, SL(V ) ⊆ M(V ) are the elements of determinant 1; again,
we write SLn(F) for the set of n × n matrices of determinant 1. We use
the same notation for the linear operator and its matrix, with respect to the
basis B. All our matrices are also linear operators whose matrix is the given
matrix always with respect to our fixed basis B, unless explicitly mentioned
otherwise. Thus if a ∈ M(V ), then a is an n × n matrix over F whose
(i, j)-th entry we always denote by aij . Also a : V → V is a linear operator
such that via =

∑n
j=1 aijvj .

Given a bilinear form f (resp. a quadratic form Q) on V , we denote
by O(V, f) (resp. O(V,Q)) the elements in GL(V ) preserving f (resp. Q).
SO(V, f) (resp. SO(V,Q)) denotes the elements in O(V, f) (resp. O(V,Q))
of determinant 1.

We fix the letter R to denote either F, or the ring of polynomials over
F, F[λ]. We’ll denote by Mn(R), the set of n× n matrices over R.

Let H be a finite group. The commuting graph of H denoted ∆(H) is
the graph whose vertex set is H −Z(H) and whose edges are pairs {h, g} ⊆
H − Z(H), such that h 6= g and [h, g] ∈ Z(H). (Note that our definition
of the commuting graph differs a bit from what the reader may be used to,
i.e., the vertex set of ∆(H) is H −Z(H) and not H −{1} and two elements
form an edge when they commute modulo the center of H and not only when
they commute.) We denote by d∆(H) the distance function of ∆(H). We
fix the letter ∆ to denote ∆(GL(V )) and the letter d to denote the distance
function of ∆ (see 1.3 for further notation and definitions for the commuting
graph).

Our goal in Chapter 1 is to prove Theorem 5 of the Introduction, which
shows that ∆(L) is balanced, for all simple classical groups L. In principle
we present a uniform approach to this, by showing that in all cases we can
take the elements x, y to be opposite regular unipotent elements. However,
the details are fairly complicated. In this section and the next we lay the
ground work for the proof.

1.1. Notation and definitions for matrices over R. Let m ≥ 1 be an
integer.
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(1) First we mention that given α ∈ F, whenever we write α inside a
matrix, this means α = −α.

(2) Im denotes the identity m×m matrix.
(3) For integers i, j ≥ 1, 0i,j denotes the zero i× j matrix. We denote by

0i the zero i× i matrix.
(4) Given g ∈ Mm(F), we denote the transpose of g by gt.
(5) Given A ∈ Mm(R), Mi,j(A) ∈ Mm−1(R), denotes the (i, j)-minor of

A, i.e., the matrix A without the i-th row and j-th column. Also
M(i1,i2),(j1,j2)(A) ∈ Mm−2(R) is the matrix without the i1, i2 rows and
without the j1, j2 columns.

(6) Suppose m = k1 + k2 + · · ·+ kt and that gi ∈ Mki
(R), 1 ≤ i ≤ t. We

write g = diag (g1, g2, . . . , gt) for the m×m matrix with g1, g2, . . . , gt

on the main diagonal (in that order) and zero elsewhere. Of course if
gi ∈ R, for all i (ki = 1, for all i), then g is a diagonal matrix in the
usual sense.

(7) Suppose m ≥ 2 and let 1 ≤ i ≤ m − 1 and α ∈ F. We denote by
um

i (α) ∈ Mm(F), the matrix which has 1 on the main diagonal, α in
the (i + 1, i) entry and zero elsewhere.

(8) Suppose m ≥ 2 and let β1, β2, . . . , βm−1 ∈ F∗. We denote

am(β1, β2, . . . , βm−1) = um
1 (βm−1)um

2 (βm−2) · · ·um
m−2(β2)um

m−1(β1)

bm(β1, β2, . . . , βm−1) = um
1 (−β1)um

2 (−β2) · · ·um
m−2(−βm−2)um

m−1(−βm−1).

Of course

am(β1, . . . , βm−1) =



1 0 · · · · · 0
βm−1 1 0 · · · · 0

0 βm−2 1 0 · · · 0
0 0 βm−3 1 0 · · ·
· · · · · · · ·
· · · · · · · ·
0 · · · 0 β2 1 0
0 · · · · 0 β1 1


,

bm(β1, . . . , βm−1) =



1 0 · · · · · 0
β1 1 0 · · · · 0
0 β2 1 0 · · · 0
0 0 β3 1 0 · · ·
· · · · · · · ·
· · · · · · · ·
0 · · · 0 βm−2 1 0
0 · · · · 0 βm−1 1


.

(9) We denote a1 = b1 = [1] and for m ≥ 2,

am = am(1, 1, . . . , 1) and bm = bm(1, 1, . . . , 1).
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Hence

am =



1 0 · · · · · 0
1 1 0 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 1 0
0 · · · 0 1 1


bm =



1 0 · · · · · 0
1 1 0 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 1 0
0 · · · 0 1 1


.

(10) Suppose m ≥ 2 and 1 ≤ r ≤ m − 1. We denote by Tm(r) the set of
m×m matrices t ∈ Mm(F) such that:

(i) ti,j = 0, for all 1 ≤ i ≤ r and 1 ≤ j ≤ m.
(ii) tr+i,i 6= 0 and tr+i,` = 0, for all 1 ≤ i ≤ m− r and all i < ` ≤ m.

Thus t has the form

t =



0 0 0 · · · · · · 0
· · · · · · · · · ·
· · · · · · · · · ·
0 · · · · · · · · 0

tr+1,1 0 · · · · · · · 0
∗ tr+2,2 0 · · · · · · 0
∗ ∗ tr+3,3 0 · · · · · 0
· · · · · · · · · ·
· · · · · · · · · ·
∗ ∗ ∗ ∗ ∗ tm,m−r 0 · · 0


where ∗ represents any element of F.

(11) Throughout Chapter 1, Jm denotes the following m×m matrix. If we
set, J = Jm, then Ji,m+1−i = (−1)i+1, for all 1 ≤ i ≤ m, and Ji,j = 0,
otherwise. Thus

Jm =



0 0 · · · · 0 1
0 0 · · · 0 1 0
0 0 · · 0 1 0 0
0 0 · 0 1 0 0 0
· · · · · · · ·
· · · · · · · ·
0 1m 0 · · · · ·

1m+1 0 · · · · · 0


.

Note that J−1
m = J t

m, J2
m = (−1)m+1Im and if m = 2` is even, then

J2` =
[

0` J`

(−1)`J` 0`

]
.
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1.2. Notation for polynomials, characteristic polynomials and
characteristic vectors. Let m ≥ 1 be an integer.

(1) Let g ∈ Mm(F). We denote by Fg[λ], the characteristic polynomial of
g. We often write Fg for Fg[λ].

(2) If F is the characteristic polynomial of g ∈ GLm(F), we denote by F
the characteristic polynomial of g−1.

(3) Given a polynomial F [λ], we denote by α(F, `), the coefficient of λ` in
F .

(4) Throughout Chapter 1 we denote by Fm[λ] the characteristic polyno-
mial of at

mam (am as in 1.1.9). We mention that several properties of
Fm[λ] are given in 2.6.

(5) Throughout Chapter 1, Gm[λ] denotes the characteristic polynomial
of the following m×m matrix

2 1 0 · · · · 0
1 2 1 0 · · · 0
0 1 2 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 2 1 0
0 · · · 0 1 2 1
0 · · · · 0 1 2


.

(6) We denote Qm[λ] = λm − λm−1 + λm−2 + · · ·+ (−1)m−1λ + (−1)m.
(7) Let g ∈ GL(V ) and suppose that v ∈ V is a characteristic vector for

g. We denote by λg(v) ∈ F the scalar such that vg = λg(v)v.

1.3. Notation for the commuting graph. Let H be a group and let
Λ = ∆(H).

(1) Given elements X, Y ∈ Λ, we write BΛ(X, Y ) if the distances dΛ(X, Y ),
dΛ(X, XY ) and dΛ(X, X−1Y ) are all > 3. We write B(X, Y ) =
B∆(X, Y ) (recall that ∆ = ∆(GL(V ))).

(2) We say that Λ is balanced if there are elements X, Y ∈ Λ such that
BΛ(X, Y ) and BΛ(Y, X).

(3) We use the usual notation for graphs, thus, for example, ∆≤i(X) means
the set of all elements at distance at most i from X, in ∆.

1.4. Further notation and definitions. Let g ∈ GL(V ), 0 6= v ∈ V and
H ≤ GL(V ), a subgroup.

(1) We denote by O(v, g) the orbit of v under 〈g〉.
(2) Given an ordered basis A = {w1, . . . , wn} of V we denote by [g]A the

matrix of g with respect to the basis A. Thus, the i-th row of [g]A are
the coordinates of wig with respect to A.

(3) We say that H is closed under transpose if h ∈ H implies ht ∈ H.
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(4) We fix the letter τ to denote the graph automorphism of SLn(F) such
that τ : un

i (α) → un
n−i(α) and τ : (un

i (α))t → (un
n−i(α))t, for all α ∈ F

and all 1 ≤ i ≤ n− 1. Note that τ commutes with the transpose map.
(5) If |F| = q2, we let σq : GLn(F) → GLn(F), be the Frobenius automor-

phism taking each entry of g ∈ GLn(F) to its q power.

By a Classical Group we mean L ≤ GL(V ), where L is one of the groups
SLn(q), Spn(q), Ωε

n(q), or SUn(q), where for orthogonal groups we use ε ∈
{+,−} only in even dimension and for unitary groups we work over the
field of order q2. In all cases we take L to be quasisimple, avoiding the
few cases when this does not hold. By a Simple Classical Group we mean
L/Z(L), with L a classical group. In the respective cases we denote the
simple classical groups by Ln(q), Sn(q), On(q), Oε

n(q) and Un(q).

1.5. (1) For even q and odd n, On(q) ' Sn−1(q).
(2) For all q, O3(q) ' L2(q), O+

4 (q) ' L2(q) × L2(q), O−
4 (q) ' L2(q2),

O5(q) ' S4(q), O+
6 (q) ' L4(q) and O−

6 (q) ' U4(q).

The purpose of Chapter 1 is to prove:

Theorem 1.6. Let L be a finite simple classical group. Then ∆(L) is bal-
anced.

We mention that in Remark 1.18 ahead we indicate our strategy for prov-
ing Theorem 1.6.

1.7. Let H be a group. Suppose that Z(H/Z(H)) = 1 and that ∆(H) is
balanced. Then ∆(H/Z(H)) is balanced.

Proof. This is obvious since if X, Y ∈ ∆(H) satisfy B(X, Y ) and B(Y, X),
then XZ(H), Y Z(H) satisfy the same condition in ∆(H/Z(H)).

1.8. Let L ≤ SL(V ) be a classical group. Set Λ = ∆(L) and suppose that L
is closed under transpose. Then:

(1) The maps g → g−1, g → gt and conjugation are isomorphisms of Λ.
(2) Let g, h ∈ Λ and let ε ∈ {1,−1}, then any one of the following imply

dΛ(g, gεh) > 3:
(i) dΛ(g, hgε) > 3;
(ii) dΛ(g, h−1g−ε) > 3;
(iii) dΛ(g, g−εh−1) > 3.

Proof. (1) is easy. (2) follows from (1) noting that (gεh)gε
= hgε, (g−εh−1)g−ε

= h−1g−ε and that the distance between g and t is the same as that from g
to t−1.

1.9. Let L ≤ SL(V ) be a classical group. Set Λ = ∆(L) and suppose that L
is closed under transpose. Let X, Y ∈ L. Then:
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(1) If B(X, Y ), then B(Xt, Y t).
In particular:

(2) If B(X, Xt), then B(Xt, X).

Proof. Suppose that B(X, Y ) holds. By 1.8.1, dΛ(Xt, Y t) > 3. Also since
dΛ(X, XY ) > 3, dΛ(Xt, (XY )t) > 3. Hence dΛ(Xt, Y tXt) > 3. By 1.8.2,
dΛ(Xt, XtY t) > 3. Finally since dΛ(X, X−1Y ) > 3, dΛ(Xt, (X−1Y )t) > 3.
Thus dΛ(Xt, Y t(Xt)−1) > 3 and then, dΛ(Xt, (Xt)−1Y t) > 3.

Corollary 1.10. Let L ≤ SL(V ) be a classical group. Set Λ = ∆(L) and
suppose that L is closed under transpose. Suppose one of the following holds:

(i) There exists X ∈ L such that BΛ(X, Xt).
(ii) There exists X, Y ∈ L such that BΛ(X, Y t) and BΛ(Y, Xt).
Then ∆(L) is balanced.

Proof. If (i) holds, then it is immediate from 1.9.2, and definition, that ∆(L)
is balanced. If (ii) holds, then by 1.9.1, also BΛ(Y t, X), so by definition ∆(L)
is balanced.

1.11. Suppose n = 2k + ε ≥ 2, with ε ∈ {0, 1}. Let β1, β2, . . . , βk−1 ∈ F∗.
Set a = ak(β1, β2, . . . , βk−1) and b = bk(β1, β2, . . . , βk−1). Let τ : SLn(F) →
SLn(F) be the automorphism defined in 1.4.4. If ε = 0, then diag (a, b−1) ∈
Fix (τ) and if ε = 1, then diag (a, 1, b−1) ∈ Fix (τ).

Proof. Just observe that if ε = 0, then

diag (a, b−1)

= un
1 (βk−1)un

n−1(βk−1)un
2 (βk−2)un

n−2(βk−2) · · ·un
k−1(β1)un

k+1(β1)

and if ε = 1, then

diag (a, 1, b−1)

= un
1 (βk−1)un

n−1(βk−1)un
2 (βk−2)un

n−2(βk−2) · · ·un
k−1(β1)un

k+2(β1).

1.12. Let τ, σq : SL(V ) → SL(V ) be the automorphisms defined in 1.4.4
and 1.4.5. Set J = Jn (see 1.1.11). Then:

(1) gτ = J(gt)−1J−1 = J(gt)−1J t, for all g ∈ SL(V ).
(2) τ and σq commute with the transpose map.
(3) For an automorphism φ : SL(V ) → SL(V ), let Fix (φ) = {h ∈ SL(V ) :

hφ = h}. Then if |F| = q2, Fix (τσq) ' SUn(q); if n is even, then
Fix (τ) ' Spn(q) and if n is odd and q is odd, Fix (τ) ' SOn(q).

(4) In the notation of (3), Fix (τ) and Fix (τσq) are closed under transpose.
(5) Suppose n = 2k is even, x, y ∈ SLk(F) are such that diag (x, y−1) ∈

Fix (τ). Then y = Jkx
tJ−1

k = Jkx
tJ t

k.

Proof. First recall that J−1 = J t. Let τ ′ : SL(V ) → SL(V ), be the auto-
morphism g → J(gt)−1J−1. It is easy to check that un

i (α)τ ′ = un
i (α)τ , and

(un
i (α))tτ ′ = (un

i (α))tτ , for all 1 ≤ i ≤ n− 1, and all α ∈ F. Thus τ ′ = τ .
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Evidently τ and σq commute with the transpose map. Next note that
g ∈ Fix (τ) iff gJgt = J ; thus g ∈ SO(V, f), where f is the bilinear form
given by f(vi, vj) = Ji,j . Hence Fix (τ) is as claimed in (3). Now if |F| = q2,
then g ∈ Fix (τσq) iff gJ(gσq)t = J , so as above, g ∈ SO(V, f), for a suitable
unitary form f .

To prove (5), set g = diag (x, y−1). Then by (1), gτ = J(gt)−1J t =
Jdiag ((xt)−1, yt)J t. Now using Definition 1.1.11, we get

gτ =
[

0k Jk

(−1)kJk 0k

]
·
[
(xt)−1 0k

0k yt

]
·
[
0k (−1)kJ t

k
J t

k 0k

]
=

[
0k Jky

t

(−1)kJk(xt)−1 0k

]
·
[

0k −Jk

(−1)k+1Jk 0k

]
=

[
(−1)k+1Jky

tJk 0k

0k (−1)k+1Jk(xt)−1Jk

]
.

Since we are assuming that gτ = g, we see that (−1)k+1Jky
tJk = x, so since

J−1
k = (−1)k+1Jk = J t

k, we see that x = J t
ky

tJk, so y = Jkx
tJ−1

k = Jkx
tJ t

k,
as asserted.

1.13. Let X ∈ GLn(V ) be a lower triangular matrix such that X − In ∈
Tn(1) (see 1.1.10 for Tn(1)). Let h ∈ Mn(F) be a matrix commuting with X.
Then:

(1) h is a lower triangular matrix.
(2) There exists 1 ≤ r < n, and β ∈ F such that h− βIn ∈ Tn(r).
(3) If Xi,i−1 = Xj,j−1, for all 2 ≤ i, j ≤ n, then hr+i,i = hr+j,j, for all

1 ≤ i, j ≤ n− r.

Proof. For 2 ≤ i ≤ n, set αi := Xi,i−1. Note that by definition (see 1.1.10),
αi 6= 0, for all 2 ≤ i ≤ n. Note further that h commutes with the matrix
X − In, and clearly for 1 ≤ i ≤ n− 1, ker(X − In)i = Vi. Since h commutes
with (X − In)i, h fixes ker(X − In)i, so (1) holds.

Next set Xh = g and hX = q. It is easy to check that for 2 ≤ i ≤ n,
gi,i−1 = αihi−1,i−1 +hi,i−1 and that qi,i−1 = hi,i−1 +αihi,i. Since g = q, and
αi 6= 0, for all i, we see that h1,1 = h2,2 = · · · = hn,n. Set β = h1,1 and
t = h− βIn. Then t has the form

t =



0 0 0 · · · · · · 0
· · · · · · · · · ·
· · · · · · · · · ·
0 · · · · · · · · 0

tr+1,1 0 · · · · · · · 0
∗ tr+2,2 0 · · · · · · 0
∗ ∗ tr+3,3 0 · · · · · 0
· · · · · · · · · ·
· · · · · · · · · ·
∗ ∗ ∗ ∗ ∗ tn,n−r 0 · · 0


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where 1 ≤ r ≤ n − 1 and for some 1 ≤ j ≤ n − r, tr+j,j 6= 0. Note that
X − In commutes with t.

Set (X−In)t = g and t(X−In) = q. Then it is easy to check that gr+2,1 =
αr+2tr+1,1, gr+3,2 = αr+3tr+2,2, . . . , gn,n−r−1 = αntn−1,n−r−1. Similarly,
qr+2,1 = α2tr+2,2, qr+3,2 = α3tr+3,3, . . . , qn,n−r−1 = αn−rtn,n−r. Since g = q,
αi 6= 0, for all i, and tr+j,j 6= 0, for some 1 ≤ j ≤ n − r, tr+i,i 6= 0, for all
1 ≤ i ≤ n− r and t ∈ Tn(r) as asserted. Further, it is easy to check that (3)
holds.

1.14. Let R,S ∈ GL(V ). Set Z = Z(GL(V )) and W = 〈O(w1, S)〉. Suppose
that:

(a) R−1SR = µS, for some µ ∈ F∗.
(b) v1 is a characteristic vector of R.

Then:
(1) If µ = 1, then W is a set of characteristic vectors of R and for w ∈ W,

λR(w) = λR(v1). In particular, if W = V , then R ∈ Z.
Suppose W = V , and let FS [λ] = λn −

∑n−1
i=0 αiλ

i. Then:
(2) R is conjugate in GL(V ) to some member of diag (1, µ, µ2, . . . , µn−1)Z.
(3) µi = 1, for each 1 ≤ i ≤ n such that αn−i 6= 0.
(4) µn = 1.

(5) If gcd
{
{i : αn−i 6= 0} ∪ {|F∗|}

}
= 1, then R ∈ Z.

Proof. Notice that by hypotheses (a) and (b), O(v1, S) is a set of charac-
teristic vectors of R. Further if µ = 1, clearly (1) holds. For the remaining
parts assume W = V . Then A = {v1, v1S, v1S

2, . . . , v1S
n−1} is a basis of

V . The matrix of S with respect to the basis A is

S′ := [S]A =



0 1 0 · · · · 0
0 0 1 0 · · · 0
0 0 0 1 0 · · 0
0 · · 0 1 0 · 0
· · · · · · · ·
· · · · · · · 0
0 · · · · · 0 1
α0 α1 α2 · · · · αn−1


and the matrix of R with respect to the basisA is R′= diag (R1, R2, . . . , Rn).
Replacing R with a scalar multiple of R we may assume that R1 = 1. Note
that for 1 ≤ i ≤ n − 1, the (i, i + 1)-entry of the matrix (R′)−1S′R′ is
R−1

i Ri+1. Since (R′)−1S′R′ = µS′, we conclude that Ri = µi−1, 1 ≤ i ≤ n
and (2) holds.

Next note that for 1 ≤ i ≤ n, the (n, n − i + 1)-entry of (R′)−1S′R′ is
R−1

n Rn−i+1αn−i = µ1−nµn−iαn−i = µ1−iαn−i. Thus, since (R′)−1S′R′ =
µS′, µ1−iαn−i = µαn−i, so if αn−i 6= 0, µi = 1. This shows (3). Of course
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(4) follows from (3), since α0 = (−1)n+1 det(R) 6= 0. Finally (5) is an
immediate consequence of (2), (3) and (4).

1.15. Suppose S, T ∈ M(V ), R ∈ GL(V ) and j,m, ` ≥ 0 are integers such
that:

(a) 1 ≤ j ≤ n− 1 and for all 1 ≤ i ≤ j and i + 1 < k ≤ n, Si,i+1 6= 0 and
Si,k = 0.

(b) Vj ⊆ ker(T ).
(c) vj+1 /∈ ker(S`T ).
(d) 1 ≤ m ≤ j + 1, and Vm is R-invariant.
(e) If we set Z = Z(GL(V )) then R−1SR ∈ ZS and R−1TR ∈ ZT .
Then v1 is a characteristic vector of R.

Proof. For i ≥ 0, set zi = SiT . Note that R−1ziR ∈ Zzi, for all i ≥ 0 and
hence

ker(zi) is R-invariant, for all i ≥ 0.(i)

Notice that by (a):

For all i ≥ 0, if Vj+1 ⊆ ker(zi), then Vj ⊆ ker(zi+1).(ii)

Now without loss we may assume that ` is the least nonnegative integer i
such that vj+1 /∈ ker(zi). Since by (b), Vj ⊆ ker(z0), minimality of ` and (ii)
imply that Vj ⊆ ker(z`). Thus

vj+1 /∈ ker(z`) and Vj ⊆ ker(z`).(iii)

Now, by (a) and (iii), we get that

ker(z`+i) ∩ Vj−i+1 = Vj−i, for all 0 ≤ i ≤ j − 1.(iv)

By (i), (iv), (d) and since 1 ≤ m ≤ j + 1, we see that Vm,Vm−1, . . . ,V1 are
all R-invariant, so since V1 is R-invariant, v1 is a characteristic vector of R.

1.16. Suppose n ≥ 2 and let Z ∈ GL(n, F). Let v ∈ V such that 〈O(v, Z)〉
= V and let α ∈ F. Then 〈O(αv + vZ, Z)〉 6= V iff −α is a characteristic
value of Z.

Proof. Since 〈O(v, Z)〉 = V , C := {v, vZ, . . . , vZn−1} is a basis of V . Now
〈O(αv + vZ, Z)〉 = V , iff D := {αv + vZ, (αv + vZ)Z, . . . , (αv + vZ)Zn−1}
is a basis of V . Now D is obtained from C by applying the transformation
αIn + Z to the basis C. Thus D is a basis of V iff αIn + Z is invertible and
the lemma follows.

Corollary 1.17. Suppose n = 2k + 1 (with k ≥ 1), let S ∈ GL(n, F) and
write

S =
[
R1,1 R1,2

R2,1 Z

]
with R1,1, R1,2, R2,1 and Z a k×k, k×(k+1), (k+1)×k and (k+1)×(k+1)
matrices, respectively. Set W = 〈O(v1, S)〉 and assume:
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(a) Vk ⊆ W.
(b) Z ∈ GLk+1(F) and 〈O(vk+1,diag (Ik, Z))〉 = 〈vk+1, . . . , vn〉.
(c) αvk+1 + vk+1diag (Ik, Z) ∈ W, for some α ∈ F.

If −α is not a characteristic value of the matrix Z, then V = 〈O(v1, S)〉.

Proof. Set U = 〈vk+1, . . . , vn〉 and let Z denote also the linear operator
Z : U → U , given by the matrix Z, with respect to the basis {vk+1, . . . , vn}.
Then, by (b), U = 〈O(vk+1, Z)〉. Also it is easy to check that hypothesis
(a) implies that if u ∈ U ∩W, then uZ ∈ U ∩W. Hence by hypothesis (c),
O(αvk+1 +vk+1Z,Z) ⊆ W. Now 1.16 and hypotheses (b) and (c) imply that
if −α is not a characteristic value of Z, then U ⊆ W, so by (a), W = V as
asserted.

1.18. Important remark. Throughout Chapter 1, the following strategy
will be used to prove Theorem 1.6. Let L ≤ SL(V ) be a classical group.
Let Λ = ∆(L). We carefully choose X, Y ∈ Λ. To show BΛ(X, Y ), let
S ∈ {Y, XY,X−1Y }. In order to show that dΛ(X, S) > 3, suppose R ∈
Λ≤2(X) ∩ Λ≤1(S). We do the following steps.

Step 1. We obtain information about CL(X). Part of the work was already
done in 1.13.

Step 2. Using Step 1, we show that if h ∈ Λ≤1(X) ∩ Λ≤1(R), then there
exists β ∈ F∗ and an integer k ≥ 1 such that if we set T := (h − βIn)k,
then there are integers j, `,m ≥ 0 such that T, S, R, j, `,m satisfy all the
hypotheses of 1.15. Thus we conclude from 1.15 that v1 is a characteristic
vector of R.

Step 3. We compute 〈O(v1, S)〉. In all cases X, Y are chosen so that either
〈O(v1, S)〉 = V , or [S, R] = 1, (so that we can use 1.14.1) and 〈O(v1, S)〉
has codimension 1 or 2 in V .

Step 4. We obtain information on the characteristic polynomial of S. This
information is aimed to fit the hypotheses of 1.14.5.

Step 5. We use Step 2, Step 3 and Step 4, together with 1.14, to get that
R ∈ Z(L) and obtain a contradiction.

2. Some information about characteristic polynomials.

Throughout this section n = 2k+ε ≥ 2 is a positive integer, where ε ∈ {0, 1}.
am and bm are as in 1.1.9. We draw the attention of the reader to 1.1 and 1.2,
where we fixed our notation for matrices and polynomials. In particular,
recall that the polynomials Fm[λ], Gm[λ] and Qm[λ] are defined in 1.2.4,
1.2.5 and 1.2.6 respectively.
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2.1. Notation. For an integer ` ≥ 1 and a prime r, |`|r is the largest power
of r dividing `. Hence, if gcd (`, r) = 1, then |`|r = 0.

2.2. Let ` ≥ 1 be a positive integer. Suppose ` =
∑s

i=0 εi2i, with εi ∈ {0, 1},
for all i. Then |`!|2 = `−

∑s
i=0 εi.

Proof. It is easy to see that

|`!|2 =
[

`

2

]
+

[
`

4

]
+

[
`

8

]
+ · · ·+ 1

=
s∑

i=1

εi2i−1 +
s∑

i=2

εi2i−2 + · · ·+
s∑

i=s−1

εi2i−s+1 + εs

= ε1 + ε2

1∑
i=0

2i + ε3

2∑
i=0

2i + · · ·+ εs

s−1∑
i=0

2i

= ε0(20 − 1) + ε1(21 − 1) + ε2(22 − 1) + · · ·+ εs(2s − 1)

= `−
s∑

i=0

εi.

2.3. Suppose k = m2s+1 − 1, with s ≥ 1 and m odd. Then:

(1) If 1 ≤ ` < 2s, then
(
k+`
2`

)
≡ 0 (mod 2).

(2) If 1 ≤ ` < 2s, then
(

k+`
2`+1

)
≡ 0 (mod 2).

(3)
(
k+2s

2s+1

)
≡ 1 (mod 2).

(4)
(
2k−2s

2s

)
≡ 0 (mod 2).

(5)
(
2k−2s

2s−2

)
≡ 1 (mod 2).

(6)
(
2k−2s+1

2s−1

)
≡ 1 (mod 2).

Proof. For (1) note that by comparing 2−parts of factors we have(
k + `

2`

)
≡

{∏1
i=`−1((k + 1) + i)

}
· (k + 1) ·

{∏`
i=1((k + 1)− i)

}
2` · `!

(mod 2).

Since k + 1 = m2s+1 for ` ≤ 2s, we get(
k + `

2`

)
≡ (`− 1)! · 2s+1 · `!

2` · `!
(mod 2)

hence ∣∣∣∣(k + `

2`

)∣∣∣∣
2

= {|(`− 1)!|2 + s + 1 + |`!|2} − (` + |`!|2)

= |(`− 1)!|2 + s + 1− `.
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If ` < 2s, then ` − 1 < 2s − 1, so if we write ` − 1 =
∑s−1

i=0 εi2i, we see
that

∑s−1
i=0 εi < s. Thus, by 2.2, |(` − 1)!|2 > ` − 1 − s, so |

(
k+`
2`

)
|2 >

` − 1 − s + s + 1 − ` = 0. This shows (1). In (3), ` = 2s, so, by 2.2,
|(`− 1)!|2 = `− 1− s, thus = |

(
k+2s

2s+1

)
|2 = 0.

For (2), note that(
k + `

2` + 1

)
≡ (k − `)

(
k + `

2`

)
(mod 2).

Hence (2) following from (1).
We proceed with the proof of (4) and (5).(

2k − 2s

2s

)
≡

∏2s−1
i=0 ((m2s+2 − 2s − 2)− i)

2s!
≡

∏2s−1
i=0 (2s + i + 2)

2s!

≡ 2 · 2s!
2s!

≡ 0 (mod 2),

and as above, (
2k − 2s

2s − 2

)
≡

∏2s−3
i=0 ((m2s+2 − 2s − 2)− i)

(2s − 2)!

≡
∏2s−3

i=0 (2s + i + 2)
(2s − 2)!

≡ 1 (mod 2).

Finally, for (6), note that(
2k − 2s + 1

2s − 1

)
≡

∏2s−2
i=0 ((m2s+2 − 2s − 1)− i)

(2s − 1)!

≡
∏2s−2

i=0 (2s + i + 1)
(2s − 1)!

≡ 1 (mod 2).

2.4. Suppose n = 2k and let τ : SLn(F) → SLn(F) be the automorphism
defined in 1.4.4. Let ai, bi ∈ SLk(F) and suppose diag (ai, b

−1
i ) ∈ Fix (τ),

i = 1, 2. Then for ε ∈ {1,−1}, Fat
1aε

2
[λ] = Fbt

1bε
2
[λ].

Proof. By 1.12.5, bi = Jk(ai)tJ t
k. Hence, bt

1b2 = Jka1J
t
kJk(a2)tJ t

k. Recall
now that J t

k = J−1
k . Hence bt

1b2 is conjugate to a1a
t
2, so Fat

1a2
= Fbt

1b2 .
Also bt

1b
−1
2 = Jka1J

t
kJk(a−1

2 )tJ t
k. Again we see that bt

1b
−1
2 is conjugate to

a1(a−1
2 )t. Hence Fat

1a−1
2

= Fbt
1b−1

2
.

2.5. Let m ≥ 1 and let x = am or bm. Then the characteristic polynomial
of xtx−1, x−1xt, and x(xt)−1 is

Qm[λ] = λm − λm−1 + λm−2 − · · ·+ (−1)m.
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Proof. First note that, by 1.11, diag (am, b−1
m ) ∈ Fix (τ), where τ : SL2m(F)

→ SL2m(F) is as defined in 1.4.4. Hence by 2.4,

Fat
ma−1

m
= Fbt

mb−1
m

.(i)

Next, note that xtx−1 and x−1xt are conjugate in GL(m, F) and x(xt)−1,
and (xt)−1x are conjugate in GL(m, F), so it suffices to show the lemma
for xtx−1 and x(xt)−1. Now, by 2.7.1 (ahead), since x(xt)−1 = (xtx−1)−1,
Fx(xt)−1 [λ] = (−1)mλmFxtx−1 [λ−1], so if Fxtx−1 [λ] = Qm[λ], then also
Fx(xt)−1 [λ] = Qm[λ]. By (i), it remains to show that Qm[λ] = Fat

ma−1
m

[λ].
Note now that,

at
ma−1

m =



0 1 0 · · · · 0
0 0 1 0 · · · 0
0 0 0 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · · 0 1 0
0 · · · · · 0 1
· · · · 1 1 1 1


and hence Fat

ma−1
m

[λ] = Qm[λ].

2.6. Let m ≥ 1. Then:
(1) For x = am or bm, Fxtx[λ] = Fxxt [λ] = Fm[λ].
(2) For m ≥ 3, Fm = (λ − 2)Fm−1 − Fm−2, Fm = (λ − 1)Gm−1 − Gm−2

and Gm = (λ− 2)Gm−1 −Gm−2.
(3) Gm[λ] is the characteristic polynomial of the m×m matrices

ym =



2 1 0 · · · · 0
1 2 1 0 · · · 0
0 1 2 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 2 1 0
0 · · · 0 1 2 1
0 · · · · 0 1 2


and

zm =



2 1 0 · · · · 0
1 2 1 0 · · · 0
0 1 2 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 2 1 0
0 · · · 0 1 2 1
0 · · · · 0 1 2


.
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(4) Fm[λ] =
∑m

`=0(−1)m+`
(
m+`
2`

)
λ`.

(5) Gm[λ] =
∑m

`=0(−1)m+`
(
m+`+1
2`+1

)
λ`.

(6) Let γ ∈ F and suppose that for some ` ≥ 2, F`[γ] = 0. Then G`−1[γ] 6=
0.

Proof. For (1), we already observed (using 1.11) that diag (am, b−1
m ) ∈ Fix (τ)

and (1) follows from 2.4, and since, by definition, Fm = Fat
mam

. Next, by
definition Gm = Fym (ym as in (3)). Observe now that

at
mam =



2 1 0 · · · · 0
1 2 1 0 · · · 0
0 1 2 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 2 1 0
0 · · · 0 1 2 1
0 · · · · 0 1 1


.

Now Fm = det(λIm − at
mam). Developing det(λIm − at

mam) using the first
row, we easily get that for m ≥ 3, Fm = (λ − 2)Fm−1 − Fm−2. Developing
det(λIm−at

mam) using the last row, we easily get Fm = (λ−1)Gm−1−Gm−2.
Also developing det(λIm−ym) using the first row gives Gm = (λ−2)Gm−1−
Gm−2 and (2) is proved.

For (3), note that zm is obtained from ym by conjugating by diag (1,−1, 1,
−1, . . . , (−1)m+1), so Fzm [λ] = Fym [λ] = Gm[λ].

To prove (4) and (5), note that F1 = λ−1, F2 = λ2−3λ+1 and G1 = λ−2,
G2 = λ2 − 4λ + 3. So (4) and (5) are the characteristic polynomials when
m = 1, 2. Then, using (2), for m ≥ 3, α(Fm, 0) = −2α(Fm−1, 0)−α(Fm−2, 0)
and for 1 ≤ ` ≤ m, α(Fm, `) = α(Fm−1, ` − 1) − 2α(Fm−1, `) − α(Fm−2, `).
The same equalities hold if we replace F by G. We must show that for
m ≥ 3.

(−1)m = −2(−1)m−1 − (−1)m−2(i)

(−1)m

(
m + 1

1

)
= −2(−1)m−1

(
m

1

)
− (−1)m−2

(
m− 1

1

)
(ii)

(−1)m+`

(
m + `

2`

)
= (−1)m−1+`−1 ·

(
m + `− 2

2`− 2

)
(iii)

− 2(−1)m−1+` ·
(

m + `− 1
2`

)
− (−1)m−2+` ·

(
m + `− 2

2`

)
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(−1)m+` ·
(

m + ` + 1
2` + 1

)
= (−1)m−1+`−1 ·

(
m + `− 1

2`− 1

)
(iv)

− 2(−1)m−1+` ·
(

m + `

2` + 1

)
− (−1)m−2+` ·

(
m + `− 1

2` + 1

)
.

For (i), note that −2(−1)m−1 − (−1)m−2 = 2(−1)m − (−1)m. For (ii),
note that −2(−1)m−1

(
m
1

)
− (−1)m−2

(
m−1

1

)
= 2(−1)mm − (−1)m(m − 1) =

(−1)m(m + 1).
For (iii) we have

(−1)m−1+`−1 ·
(

m + `− 2
2`− 2

)
− 2(−1)m−1+` ·

(
m + `− 1

2`

)
− (−1)m−2+` ·

(
m + `− 2

2`

)
= (−1)m+`

{(
m + `− 2

2`− 2

)
+ 2

(
m + `− 1

2`

)
−

(
m + `− 2

2`

)}
.

Note now that(
m + `− 2

2`− 2

)
−

(
m + `− 2

2`

)
=

(
m + `− 2

2`− 2

)
+

(
m + `− 2

2`− 1

)
−

(
m + `− 2

2`− 1

)
−

(
m + `− 2

2`

)
=

(
m + `− 1

2`− 1

)
−

(
m + `− 1

2`

)
.

Thus

(−1)m+`

{(
m + `− 2

2`− 2

)
+

(
m + `− 1

2`

)
−

(
m + `− 2

2`

)}
= (−1)m+`

{(
m + `− 1

2`− 1

)
+

(
m + `− 1

2`

)}
= (−1)m+` ·

(
m + `

2`

)

and (iii) is proved.
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For (iv) we have

(−1)m−1+`−1 ·
(

m + `− 1
2`− 1

)
− 2(−1)m−1+` ·

(
m + `

2` + 1

)
− (−1)m−2+` ·

(
m + `− 1

2` + 1

)
= (−1)m+`

{(
m + `− 1

2`− 1

)
+ 2

(
m + `

2` + 1

)
−

(
m + `− 1

2` + 1

)}
and as in the previous paragraph of the proof we get (iv). This shows (4)
and (5).

Suppose that F`[γ] = 0 = G`−1[γ], for some ` ≥ 2, then, by (2), also
G`−2[γ] = 0. Then, using (2), we see that Gm[γ] = 0, for all 1 ≤ m ≤ `.
In particular, G1[γ] = 0 = G2[γ], so γ = 2 and 0 = 22 − 4 · 2 + 3 = −1, a
contradiction.

2.7. Let h, g ∈ SLn(F) and let Q[λ] = Fg. Then:

(1) Q = (−1)nλnQ[λ−1]. In particular, for all 0 ≤ ` ≤ n, α(Q, `) =
(−1)nα(Q,n− `).

(2) Fhg[λ] = Fgh[λ] = det(λh−1 − g).
(3) Suppose `,m ≥ 1 are integers and ε ∈ {1,−1}. Suppose h−1 =

diag (I`−1, s
−1, Im−1), where s is a (2 + ε) × (2 + ε) matrix. Then

Fhg = det(r + (λI − g)), where r = diag (0`−1, λs−1 − λI2+ε, 0m−1).

Proof. Set I = In. Then Fg−1 = det(λI − g−1) = det{−λI(λ−1I − g)g−1} =
(−λ)n det(λ−1I − g) = (−1)nλnQ[λ−1].

For (2), we have det(λI − gh) = det{(λh−1 − g)h} = det(λh−1 − g).
Finally, for (3), det(λh−1− g) = det(λh−1−λI + λI − g) = det(r + λI − g),
because r = λh−1 − λI.

2.8. Let `,m ≥ 1 be two integers such that ` + m = 2k. Let A ∈ M`(R)
and B ∈ Mm(R). If ε = 0, let g = diag (A,B), while if ε = 1, let g =
diag (A, µ,B), with 0 6= µ ∈ R. Let f be the following (2 + ε) × (2 + ε)
matrix over R

f =
[
α β
γ δ

]
when ε = 0,

f =

α11 α12 α13

α21 α22 α23

α31 α32 α33

 when ε = 1.

Let r = diag (0`−1, f, 0m−1). Then:
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(1) If ε = 0, then

det(r + g) = det(A) det(B) + δ det(A) det(M1,1(B))

+ α det(M`,`(A)) det(B)

+ det
[
α β
γ δ

]
det(M`,`(A)) det(M1,1(B)).

(2) If ε = 1, then

det(r + g) = (α22 + µ) det(A) det(B)

+ det
[
α22 + µ α23

α32 α33

]
det(A) det(M1,1(B))

+ det
[
α11 α12

α21 α22 + µ

]
det(M`,`(A)) det(B)

+ det

α11 α12 α13

α21 α22 + µ α23

α31 α32 α33

det(M`,`(A)) det(M1,1(B)).

Proof. (1) is proved by expanding det(r + g) along row ` + 1. For (2),
expanding det(r + g) along the (` + 1)-row, we get

(i) det(r + g) = −α21 det(r1 + g1)

+ (α22 + µ) det(r2 + g2)− α23 det(r3 + g3)

where r1 = diag
(

0`−1,

[
α12 α13

α32 α33

]
, 0m−1

)
, g1 = diag (A1,B), and A1 is ob-

tained from A by replacing the last column by a column of zeros.

r2 = diag
(

0`−1,

[
α11 α13

α31 α33

]
, 0m−1

)
, and g2 = diag (A,B). r3 =

diag
(

0`−1,

[
α11 α12

α31 α32

]
, 0m−1

)
, g3 = diag (A,B1), and B1 is obtained from

B by replacing the first column by a column of zeros. Notice now that
det(A1) = 0 = det(B1) and det(M`,`(A1)) = det(M`,`(A)), while
det(M1,1(B1)) = det(M1,1(B)). Now, by (1), we get

det(r1 + g1) = α12 det(M`,`(A)) det(B)(ii)

+ det
[
α12 α13

α32 α33

]
det(M`,`(A)) det(M1,1(B)).
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det(r2 + g2) = det(A) det(B) + α33 det(A) det(M1,1(B))(iii)

+ α11 det(M`,`(A)) det(B)

+ det
[
α11 α13

α31 α33

]
det(M`,`(A)) det(M1,1(B)).

det(r3 + g3) = α32 det(A) det(M1,1(B))(iv)

+ det
[
α11 α12

α31 α32

]
det(M`,`(A)) det(M1,1(B)).

Note now that (2) follows from (i)-(iv).

2.9. Let `,m ≥ 1 be two integers such that ` + m = 2k. Let A ∈ M`(F)
and B ∈ Mm(F). Let g = diag (A,B). Let s ∈ GL2(F) such that s−1 =[
β11 β12

β21 β22

]
. Let h = diag (I`−1, s, Im−1). Then

Fhg = FAFB + (β22 − 1)λFAFM1,1(B) + (β11 − 1)λFM`,`(A)FB

+ det
[
(β11 − 1)λ β12λ

β21λ (β22 − 1)λ

]
FM`,`(A)FM1,1(A).

Proof. First we mention, that, by definition, if R is a 1 × 1 matrix over F,
we always take FM1,1(R) = 1. Next note that h−1 = diag (I`−1, s

−1, Im−1).
By 2.7.3, Fgh = det(r + (λIn − g)), where r = diag (0`−1, λs−1 − λI2, 0m−1).
Note now that

λs−1 − λI2 =
[
(β11 − 1)λ β12λ

β21λ (β22 − 1)λ

]
also,

λIn − g = diag (λI` −A, λIm −B).

So if we set A = λI` −A and B = λIm −B, then by 2.8.1,

det(r + (λI − g))

= det(A) det(B) + (β22 − 1)λ det(A) det(M1,1(B))

+ (β11 − 1)λ det(M`,`(A)) det(B)

+ det
[
(β11 − 1)λ β12λ

β21λ (β22 − 1)λ

]
det(M`,`(A)) det(M1,1(B)).

The lemma follows.

2.10. Let g = diag (A, 1, B), with A,B ∈ Mk(F). Let s ∈ SL3(F) such that

s−1 =

β11 β12 β13

β21 β22 β23

β31 β32 β33

 .
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Let h = diag (Ik−1, s, Ik−1). Then α(Fhg, 1) = α(R[λ], 1), where

R[λ] = (β22λ− 1)FAFB − (β33 − 1)λFAFM1,1(B) − (β11 − 1)λFMk,k(A)FB.

Proof. We use 2.8.2, with ` = m = k. First note that h−1 = diag (Ik−1, s
−1,

Ik−1). By 2.7.3, Fgh = det(r + (λI − g)), where

r = diag (0k−1, λs−1 − λI3, 0k−1).

Note now that

λs−1 − λI3 =

(β11 − 1)λ β12λ β13λ
β21λ (β22 − 1)λ β23λ
β31λ β32λ (β33 − 1)λ


also, if we set I = In, then

λI − g = diag (λIk −A, λ− 1, λIk −B).

We use 2.8.2 with A = λIk − A, B = λIk − B and µ = λ − 1. The αij are
given by the matrix λs−1 − λI3 above. By 2.8.2

det(r + (λI − g))

= (β22λ− 1) det(A) det(B)

+ det
[
β22λ− 1 β23λ

β32λ (β33 − 1)λ

]
det(A) det(M1,1(B))

+ det
[
(β11 − 1)λ β12λ

β21λ β22λ− 1

]
det(Mk,k(A)) det(B)

+ det

(β11 − 1)λ β12λ β13λ
β21λ β22λ− 1 β23λ
β31λ β32λ (β33 − 1)λ

det(Mk,k(A)) det(M1,1(B))

so we see that the only expressions in det(r + (λI − g)) which contribute to
the coefficient of λ in det(r + (λI − g)) are

(β22λ− 1) det(A) det(B)− (β33 − 1)λ det(A) det(M1,1(B))

− (β11 − 1)λ det(Mk,k(A)) det(B)

because the other expressions are in λ2F[λ]. This shows the lemma.

2.11. Let m ≥ 2 be an integer and let c, d ∈ SLm(F) be two unipotent
elements such that c is lower triangular and d is upper triangular. Let
x ∈ SLm(F). Then:

(1) M`,`(dx) = M`,`(d)M`,`(x), for ` ∈ {1, (1, 2)}.
(2) M`,`(xc) = M`,`(x)M`,`(c), for ` ∈ {1, (1, 2)}.
(3) Mm,m(cx) = Mm,m(c)Mm,m(x) and Mm,m(xd) = Mm,m(x)Mm,m(d).
(4) M`,`(y−1) = {M`,`(y)}−1, for y ∈ {c, d} and ` ∈ {1,m, (1, 2)}.

Proof. (1), (2) and (3) are obvious and (4) follows from them.
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2.12. Let m ≥ 3, β1, β2, . . . , βm, γ1, γ2, . . . , γm ∈ F∗. For 1 ≤ i ≤ 3, let

Bi := bm+2−i(βi, . . . , βm) and Ci := bm+2−i(γi, . . . , γm).

Then:
(1) FCt

1B1
= (λ− 1)FCt

2B2
− β1γ1λFM1,1(B2Ct

2).

(2) F(Ct
1B1)−1 = {(1 + β1γ1)λ− 1}F(Ct

2B2)−1 − β1γ1λ
2F(Ct

3B3)−1 .

(3) FCt
1B−1

1
= (λ− 1)FCt

2B−1
2

+ β1γ1λFCt
3B−1

3
.

(4) If B2 = C2 = bm, FCt
1B1

= (λ− 1)Fm − β1γ1λGm−1.

(5) If B2 = C2 = bm, then FCt
1B−1

1
= (λ− 1)Qm + β1γ1λQm−1.

Proof. First note that (4) and (5) follow from (1) and (3) respectively, since,
if B2 = C2 = bm, then, by 2.6, FCt

2B2
= Fm and, by 2.5, FCt

2B−1
2

= Qm,

FCt
3B−1

3
= Qm−1 and we leave it for the reader to verify that FM1,1(B2Ct

2) =
Gm−1.

To prove (1), (2) and (3), let u = um+1
1 (−β1) and w = um+1

1 (−γ1). Note
first that B1 = u diag (1, B2) and C1 = w diag (1, C2). Hence

Ct
1B1 = diag (1, Ct

2)w
tu diag (1, B2)(i)

(Ct
1B1)−1 = diag (1, B−1

2 )u−1(wt)−1diag (1, (Ct
2)
−1)(ii)

Ct
1B

−1
1 = diag (1, Ct

2)diag (1, B−1
2 )wtu−1(iii)

where (iii) follows from the fact that diag (1, B−1
2 ) and wt commute.

For (1), (2) and (3), given S ∈ {Ct
1B1, C

t
1B

−1
1 , (Ct

1B1)−1}, we find g, h ∈
SLm+1(F) and B ∈ SLm(F) (g, h and B depend on S) such that S is conju-
gate to hg, with g = diag (1, B) and h−1 = diag (s, Im−1). Then we use 2.9
(with ` = 1 and m = m) to compute Fhg. Note that by 2.9 if A ∈ M1(F),

B ∈ Mm(F), then for g = diag (A,B) and h−1 = diag
([

α β
γ δ

]
, Im−1

)
,

Fhg = FAFB + (δ − 1)λFAFM1,1(B) + (α− 1)λFB(iv)

+ det
[
(α− 1)λ βγ

γλ (δ − 1)λ

]
FM1,1(B).

In all cases we take A = 1.
(v) In (1), take B = B2C

t
2; in (2) take B = (B2C

t
2)
−1; in (3) take B =

Ct
2B

−1
2 .

Also

(vi) in (1), take h−1 = (wtu)−1 = diag
([

1 γ1

β1 β1γ1 + 1

]
, Im−1

)
;

in (2) take h−1 = wtu = diag
([

1 + β1γ1 −γ1

−β1 1

]
, Im−1

)
;

in (3) take h−1 = (wtu−1)−1 = diag
([

1 γ1

−β1 −β1γ1 + 1

]
, Im−1

)
.
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We now use (iv), (v) and (vi) to prove (1) (2) and (3).
In (1), taking B = B2C

t
2, we get

FCt
1B1

= (λ− 1)FB + β1γ1λ(λ− 1)FM1,1(B)

+ det
[

0 γ1λ
β1λ β1γ1λ

]
FM1,1(B)

= (λ− 1)FB2Ct
2
− β1γ1λFM1,1(B2Ct

2)

also, in (3), taking B = Ct
2B

−1
2 , we get

FCt
1B−1

1
= (λ− 1)FB − β1γ1λ(λ− 1)FM1,1(B)

+ det
[

0 γ1λ
−β1λ −β1γ1λ

]
FM1,1(B)

= (λ− 1)FCt
2B−1

2
+ β1γ1λFM1,1(Ct

2B−1
2 ).

Since M1,1(Ct
2B

−1
2 ) = Ct

3B
−1
3 , we get (3). Finally in (2), taking B =

(B2C
t
2)
−1, we get

F(Ct
1B1)−1 = (λ− 1)FB + β1γ1λFB

+ det
[
β1γ1λ −γ1λ
−β1λ 0

]
FM1,1(B)

= {λ− 1 + β1γ1λ}F(B2Ct
2)−1 − β1γ1λ

2FM1,1((B2Ct
2)−1).

Note however that F(B2Ct
2)−1 = F(Ct

2B2)−1 and that, by 2.11.1,
M1,1{(B2C

t
2)
−1} = (B3C

t
3)
−1 and again F(B3Ct

3)−1 = F(Ct
3B3)−1 .

2.13. Suppose n=2k. Let α∈F∗ and set u=un
k(α). Let X =diag (ak, b

−1
k )u

and let Hn be the characteristic polynomial of XtX. Then:

Hn = F k(Fk + α2λGk−1)− α2λ2Gk−1F k−1.(1)

α(Hn, 1) = −
(

k + 1
2

)
− (α2 + 2)k + 1.(2)

Suppose α = 1. Then:
(3) If char (F) = 3 and k ≡ 0 or 2 (mod 3), then α(Hn, 1) 6= 0.
(4) If char (F) = 2 and k ≡ 0 or 1 (mod 4), then α(Hn, 1) 6= 0.
(5) If char (F ) = 2 and k ≡ −2 or 3 (mod 8), then α(Hn, 2) 6= 0.
(6) If char (F ) = 2 and k ≡ 2 (mod 8), then either α(Hn, 4) 6= 0 or

α(Hn, 7) 6= 0.
(7) If char (F ) = 2 and k ≡ −1 (mod 8), then α(Hn, 2s) = 1, where s is

defined by k = m2s+1 − 1, with m odd.

Proof. For (1), we’ll use 2.9. But first we observe that

XtX = utdiag (at
kak, (bt

k)
−1b−1

k )u.(i)
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Further, by definition and by 2.6.1,

Fat
kak

= Fk F(bt
k)−1b−1

k
= F k.(ii)

Also, by 2.11.1 and 2.11.4,

M1,1((bt
k)
−1b−1

k ) = (bt
k−1)

−1b−1
k−1 so FM1,1((bt

k)−1b−1
k ) = F k−1.(iii)

Finally observe that by definition and by the shape of at
kak

FMk,k(at
kak) = Gk−1.(iv)

Set h = uut. Of course h = diag (Ik−1, s, Ik−1), with s−1 =
[
α2 + 1 α

α 1

]
.

Note that, by (i), Hn is the characteristic polynomial of hg, with g =
diag (A,B), A = at

kak and B = (bt
k)
−1b−1

k . Thus by 2.9

Hn = Fhg = FAFB + α2λFMk,k(A)FB

+ det
[
α2λ αλ
αλ 0

]
FMk,k(A)FM1,1(B)

= FAFB + α2λFMk,k(A)FB − α2λ2FMk,k(A)FM1,1(B).

Using (ii), (iii) and (iv) we see that (1) holds. Next, using 2.6 and 2.7,

α(Hn, 1) = α(F k, 0){α(Fk, 1) + α2α(Gk−1, 0)}+ α(Fk, 0)α(F k, 1)

α(F k, 0) = (−1)k = α(Fk, 0), α(Gk−1, 0) = (−1)k−1

(
k

1

)
α(Fk, 1) = (−1)k+1

(
k + 1

2

)
, α(F k, 1) = (−1)k(1− 2k).

Thus

α(Hn, 1) = (−1)k

{
(−1)k+1

(
k + 1

2

)
+ α2(−1)k−1

(
k

1

)}
+ (−1)k(−1)k(1− 2k)

= −
(

k + 1
2

)
−

(
k

1

)
α2 − 2k + 1

= −
(

k + 1
2

)
− (α2 + 2)k + 1.

This shows (2). For the remainder of the proof we assume that α = 1.
Suppose first that char (F) = 3. By (2), α(Hn, 1) = −

(
k+1
2

)
+ 1. Thus if

k ≡ 0 or 2 (mod 3), α(Hn, 1) 6= 0 and (3) is proved.
So suppose that char (F) = 2. By (2), α(Hn, 1) =

(
k+1
2

)
+ k + 1. Hence if

k ≡ 0 or 1 (mod 4), α(Hn, 1) = 1 and (4) is proved. Recall from 2.6 and 2.7
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that

Fk[λ] = 1 +
(

k + 1
2

)
λ +

(
k + 2

4

)
λ2 +

(
k + 3

6

)
λ3 +

(
k + 4

8

)
λ4 + · · ·

(∗)

F k[λ] = 1 +
(

2k − 1
1

)
λ +

(
2k − 2

2

)
λ2 +

(
2k − 3

3

)
λ3 +

(
2k − 4

4

)
λ4 + · · ·

F k−1[λ] = 1 +
(

2k − 3
1

)
λ +

(
2k − 4

2

)
λ2 +

(
2k − 5

3

)
λ3 +

(
2k − 6

4

)
λ4 + · · ·

Gk−1 = k +
(

k + 1
3

)
λ +

(
k + 2

5

)
λ2 +

(
k + 3

7

)
λ3 +

(
k + 4

9

)
λ4 + · · · .

Suppose first that k ≡ −2 (mod 8). Using (∗), note that F k ≡ 1 + λ +
λ2 (mod (λ3)), Fk ≡ 1 + λ (mod (λ3)) and Gk−1 ≡ λ (mod (λ2)). Hence
modulo the ideal (λ3), F k(Fk + λGk−1) − λ2Gk−1F k−1 ≡ (1 + λ + λ2)(1 +
λ + λ2) ≡ 1 + λ2. Thus α(Hn, 2) 6= 0.

Suppose k ≡ 3 (mod 8). Then by (∗), F k ≡ 1+λ (mod (λ3)), Fk ≡ 1+λ2

(mod (λ3)), Gk−1 ≡ 1 (mod (λ2)) and F k−1 ≡ 1 (mod (λ)). Hence, modulo
the ideal (λ3), F k(Fk + λGk−1)− λ2Gk−1F k−1 ≡ (1 + λ)(1 + λ2 + λ) + λ2 ≡
1 + λ2. This completes the proof of (5).

Suppose k = 8m + 2. Note that
(
k+1
2

)
≡ 1 (mod 2),

(
k+2
4

)
≡ 4·2

4·2 ≡ 1
(mod 2),

(
k+3
6

)
≡ 4·2·(k−2)

2·4·2 ≡ 0 (mod 2),
(
k+4
8

)
≡ 2·4·2·(k−2)

8·2·4·2 ≡ m (mod 2),(
k+5
10

)
≡ 2·4·2·(k−2)·2

2·8·2·4·2 ≡ m (mod 2).
(
k+6
12

)
≡ (k+6)2·4·2·(k−2)·2

4·2·8·2·4·2 ≡ (k+6)·(k−2)
4·8 ≡

0 (mod 2), and similarly,
(
k+7
14

)
≡ 0 (mod 2). Hence, by (∗),

Fk ≡ 1 + λ + λ2 + mλ4 + mλ5 (mod (λ8)).

Next,
(
2k−1

1

)
≡ 1 (mod 2),

(
2k−2

2

)
≡ 1 (mod 2),

(
2k−3

3

)
≡ 0 (mod 2),

(
2k−4

4

)
≡ 0 (mod 2) and

(
2k−5

5

)
≡ 2·4

4·2 ≡ 1 (mod 2),
(
2k−6

6

)
≡ 2·4·2

2·4·2 ≡ 1 (mod 2),(
2k−7

7

)
≡ 0 (mod 2). Hence, by (∗),

F k = 1 + λ + λ2 + λ5 + λ6 (mod (λ8)).

Next,
(
2k−3

1

)
≡ 1 (mod 2),

(
2k−4

2

)
≡ 0 (mod 2),

(
2k−5

3

)
≡ 1 (mod 2),

(
2k−6

4

)
≡ 1 (mod 2),

(
2k−7

5

)
≡ 1 (mod 2). Hence, by (∗),

F k−1 = 1 + λ + λ3 + λ4 + λ5 (mod (λ6)).

Finally,
(
k
1

)
≡ 0 (mod 0) (mod 2),

(
k+1
3

)
≡ 1 (mod 2),

(
k+2
5

)
≡ 4·2·(k−2)

2·4·2 ≡ 0
(mod 2),

(
k+3
7

)
≡ 4·2·(k−2)

2·4·2 ≡ 0 (mod 2),
(
k+4
9

)
≡ 2·4·2·(k−2)·2

8·2·4·2 ≡ 0 (mod 2),(
k+5
11

)
≡ 2·4·2·(k−2)·2

2·8·2·4·2 ≡ m (mod 2),
(
k+6
13

)
≡ (k+6)2·4·2·(k−2)·2·4

4·2·8·2·4·2 ≡ 0 (mod 2).
Hence, by (∗),

Gk−1 ≡ λ + mλ5 (mod (λ7)).
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Hence, modulo the ideal (λ8),

F k(Fk + λGk−1)− λ2Gk−1F k−1

= (1 + λ + λ2 + λ5 + λ6)(1 + λ + λ2 + mλ4 + mλ5 + λ2 + mλ6)

+ λ2(λ + mλ5)(1 + λ + λ3 + λ4 + λ5)

= (1 + λ + λ2 + λ5 + λ6)(1 + λ + mλ4 + mλ5 + mλ6)

+ (λ3 + mλ7)(1 + λ + λ3 + λ4 + λ5).

Thus α(Hn, 4) = m + 1 and α(Hn, 7) = (m + m + 1) + (1 + m) = m. Hence
either α(Hn, 4) 6= 0, or α(Hn, 7) 6= 0 and (6) is proved.

Finally, suppose k ≡ −1 (mod 8). Write k = m2s+1 − 1, with s ≥ 2
and m odd. Recall that we are assuming char (F ) = 2. We claim that
α(Hn, 2s) = 1. Set

t = 2s.

Note that by 2.6 and 2.7, for 1 ≤ ` ≤ t, α(Fk, `) =
(
k+`
2`

)
,

α(Gk−1, `) =
(

k + `

2` + 1

)
,

α(F k, t) = α(Fk, k − t) =
(

2k − t

t

)
=

(
2k − 2s

2s

)
,

α(F k, t− 1) = α(Fk, k − (t− 1)) =
(

2k − (t− 1)
t− 1

)
=

(
2k − 2s + 1

2s − 1

)
and

α(F k−1, t− 2) = α(Fk−1, (k − 1)− (t− 2)) =
(

2(k − 1)− (t− 2)
t− 2

)
=

(
2k − 2s

2s − 2

)
.

Using 2.3, we see that

Fk ≡ 1 + λt (mod (λt+1)) Gk−1 ≡ 1 (mod (λt))

α(F k, t) = 0, α(F k, t− 1) = 1, α(F k−1, t− 2) = 1.

Hence α(Hn, t) is the coefficient of λt in the polynomial

(1 + λt−1)(1 + λ + λt) + λ2λt−2

which is 1.

2.14. Suppose char (F) = 3 and n = 2k. Let β ∈ {1,−1}. Set u = un
k(1),

h = uut and

a(β) = uk
1(1)uk

2(1) · · ·uk
k−2(1)uk

k−1(β)

b(β) = uk
1(−β)uk

2(−1)uk
3(−1) · · ·uk

k−1(−1)

X(β) = diag (a(β), {b(β)}−1)u.
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Then:

(1) h = diag (Ik−1, s, Ik−1), with s−1 =
[
2 1
1 1

]
.

(2) If x = (a(β))ta(−β) and y = b(−β)(b(β))t, then

Fx = Fy = Fk − λGk−2.

(3) Suppose k ≡ 1 (mod 3). Set X = X(β), Y = X(−β) and Ln[λ] =
FXtY . Then α(Ln, 1) = −1.

Proof. (1) is obvious. For (2), note that

a(β) =



1 0 · · · · · 0
1 1 0 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · ·
· · · · · · · ·
· · · · · · · ·
0 · · · · 1 1 0
0 · · · · 0 β 1


and b(β) =



1 0 · · · · · 0
β 1 0 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · ·
· · · · · · · ·
· · · · · · · ·
0 · · · · 1 1 0
0 · · · · 0 1 1


.

Hence

x =



1 1 0 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 1 0
0 · · · · 0 1 β
0 · · · · · 0 1


·



1 0 · · · · · 0
1 1 0 · · · · 0
0 1 1 0 · · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 1 0 0
0 · · · · 1 1 0
0 · · · · 0 β 1



=



2 1 0 · · · · 0
1 2 1 0 · · · 0
0 1 2 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 2 1 0
0 · · · 0 1 0 β

0 · · · · 0 β 1


,
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y =



1 0 · · · · · 0
β 1 0 · · · · 0
0 1 1 0 · · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 1 0 0
0 · · · 0 1 1 0
0 · · · · 0 1 1


·



1 β 0 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 1 0
0 · · · · 0 1 1
0 · · · · · 0 1



=



1 β 0 · · · · 0
β 0 1 0 · · · 0
0 1 2 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · 0 1 2 1 0
0 · · · 0 1 2 1
0 · · · · 0 1 2


.

To compute Fx expand det(λIk − x) along the last row. Thus

Fx = (λ− 1)FMk,k(x) + Gk−2

(since β2 = 1). Also it is easy to see that

FMk,k(x) = λGk−2 −Gk−3.(i)

Thus

Fx = (λ− 1){λGk−2 −Gk−3}+ Gk−2.(ii)

Expanding Fy along the first row we see that Fy = Fx. Recall now from
2.6, that Fk = (λ− 1)Gk−1 −Gk−2 and that Gk−1 = (λ− 2)Gk−2 −Gk−3 =
(λ + 1)Gk−2 −Gk−3. Hence

Fk = (λ− 1){(λ + 1)Gk−2 −Gk−3} −Gk−2.(iii)

Thus, from (ii) and (iii) we see that Fk − Fx = (λ − 1)Gk−2 − 2Gk−2 =
(λ− 1)Gk−2 + Gk−2 = λGk−2. This shows (2).

We proceed with the proof of (3). Note that XtY = utdiag ((a(β))t,
({b(β)}−1)t)diag (a(−β), {b(−β)}−1)u = utdiag (x, y−1)u, with x and y as
in (1). Now XtY is conjugate to hdiag (x, y−1), so we can use 2.9 to compute
Ln. By 2.9 and (1),

Ln = {Fx + λFMk,k(x)}Fy−1 − λ2FMk,k(x)FM1,1(y−1).(iv)

Thus, by (iv),

α(Ln, 1) = α({Fx + λFMk,k(x)}Fy−1 , 1).(v)
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Now, by (i) and (ii), Fx + λFMk,k(x) = Fk − λGk−2 + λ{λGk−2 −Gk−3}. So

Fx + λFMk,k(x) = Fk − λGk−2 − λGk−3 + λ2Gk−2.(vi)

Hence, by (v) and (vi),

α(Ln, 1) = α({Fk − λGk−2 − λGk−3}Fy−1 , 1).(vii)

Now modulo the ideal (λ2), Fk ≡ (−1)k(1−λ), λGk−2 ≡ (−1)k−2
(
k−1
1

)
λ ≡

0, λGk−3 ≡ (−1)k−3
(
k−2
1

)
λ ≡ (−1)k−2λ ≡ (−1)kλ. Thus

Fk − λGk−2 − λGk−3 ≡ (−1)k(1 + λ) (mod (λ2)).(viii)

Now, by (2), Fy = Fk − λGk−2 = (λk − λk−1 + · · · ) − (λk−1 + · · · ) =
λk + λk−1 + · · · . It follows from 2.7.1, that

Fy−1 ≡ (−1)k(1 + λ) (mod (λ2)).(ix)

Hence by (vii), (viii) and (ix), α(Ln, 1) = α((1 + λ)2, 1) = −1, and (3) is
proved.

2.15. Suppose n=2k. Let α∈F∗ and set u=un
k(α). Let X =diag (ak, b

−1
k )u

and set x = at
ka

−1
k and y = b−1

k bt
k. Then

α (FXtX−1 , 1) = α2 − 2.

Proof. Note that XtX−1 = utdiag (at
k, (b

t
k)
−1)u−1diag (a−1

k , bk). A moment
of thought will convince the reader that u commutes with diag (at

k, (b
t
k)
−1),

hence

XtX−1 = utu−1diag (x, y−1).(i)

Set h = utu−1 and g = diag (x, y−1). Then

h−1 = diag
(

Ik−1,

[
1 α
α 1− α2

]
, Ik−1

)
.(ii)

We use 2.9, with A = x, B = y−1, h = utu−1. By (i), XtX−1 = hg. By 2.9,

FXtX−1 = FxFy−1 + (β22 − 1)λFxFM1,1(y−1) + (β11 − 1)λFMk,k(x)Fy−1(iii)

+ det
[
(β11 − 1)λ β12λ

β21λ (β22 − 1)λ

]
FMk,k(x)FM1,1(y−1).

Of course, by (ii), here β11 = 1, β12 = −α, β21 = α and β22 = 1− α2. Note
that by 2.5,

Fx = Fy−1 = Qk.(iv)

Further, by 2.11.1 and 2.11.4, FM1,1(y−1) = F(b−1
k−1)bk−1

, so by 2.5,

FM1,1(y−1) = Qk−1.(v)
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Now by (iii), (iv) and (v), we get

FXtX−1 = Qk{Qk − α2λQk−1}+ α2λ2 · FMk,k(x) · FM1,1(y−1).

Whence,

α (FXtX−1 , 1) = α(Qk{Qk − α2λQk−1}, 1)

= (−1)k{(−1)k+1 − α2(−1)k−1}+ (−1)k(−1)k+1

= −1 + α2 − 1

= α2 − 2.

2.16. Suppose char (F) = 3, n = 2k ≥ 8 and that k ≡ 1 (mod 3). Let β ∈
{1,−1} and let a(β), b(β), X, Y and u be as in 2.14. Set x=(a(β))t(a(−β))−1

and y = (b(−β))−1(b(β))t. Then

Fx = Fy = λk + (−1)k = Fy−1 ,(1)

α (FXtY −1 , 1) = 1.(2)

Proof. Note that XtY −1 = utdiag ((a(β))t, ((b(β))t)−1)u−1diag ((a(−β))−1,
b(−β)). Now a moment of thought will convince the reader that u commutes
with diag ((a(β))t, ((b(β))t)−1), hence

XtY −1 = utu−1diag (x, y−1).(i)

Set h = utu−1 and g = diag (x, y−1). Then

h−1 = diag
(

Ik−1,

[
1 1
1 0

]
, Ik−1

)
.(ii)

Next note that, by 1.11, diag (a(β), {b(β)}−1), diag (a(−β), {b(−β)}−1) ∈
Fix (τ), so, by 2.4, Fx = Fy. Also if Fy = λk + (−1)k, then, by 2.7.1,
Fy−1 = λk + (−1)k. We now use 2.12.3 to compute Fy. Take in 2.12.3,
B1 = bk(−β, 1, . . . , 1) and C1 = bk(β, 1, . . . , 1) (notice that β1 = −β and
γ1 = β). By 2.12.3, Fy = (λ − 1)Qk−1 − β2λQk−2 and since β2 = 1,

Fy = (λ−1)Qk−1−λQk−2. Notice now that λQk−1 = λk−Qk−1 +(−1)k−1,
and λQk−2 = Qk−1− (−1)k−1. Hence Fy = (λk−Qk−1 +(−1)k−1)−Qk−1−
(Qk−1− (−1)k−1) = λk − 3Qk−1 + 2(−1)k−1. Since char (F) = 3, (1) follows.

Next, y−1 = ({b(β)}−1)t(b(−β)). By 2.11.4 and 2.11.1, M1,1(y−1) =
(b−1

k−1)
tbk−1 and so FM1,1(y−1) = F(b−1

k−1)tbk−1
, hence by 2.5

FM1,1(y−1) = Qk−1.(iii)

For (2), we use 2.9, with A = x, B = y−1, g = diag (A,B) and h = utu−1.
By 2.9,

Fhg = FAFB + (β22 − 1)λFAFM1,1(B) + (β11 − 1)λFMk,k(A)FB

+ det
[
(β11 − 1)λ β12λ

β21λ (β22 − 1)λ

]
FMk,k(A)FM1,1(B).
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By (i), XtY −1 = hg and by (ii), here β11 = 1, β12 = −1, β21 = 1 and
β22 = 0. Using 2.9, (1) and (iii), we get

FXtY −1 = (λk + (−1)k){λk + (−1)k − λQk−1}+ λ2FMk,k(A) · FM1,1(B).

Hence, α(FXtY −1 , 1) = α((λk + (−1)k){λk + (−1)k − λQk−1}, 1) = 1, as is
easily checked.

3. The Special Linear Groups.

In this section we prove Theorem 1.6 for the groups Ln(q). We let L =
SLn(F). Of course all notation and definitions introduced in Section 1 are
maintained here. By 1.7 and 1.9.2, all we have to do is to find an element
X ∈ L, such that B(X, Xt). We take

X = an.

3.1. Let S ∈ {XtX, XtX−1, Xt} and let R ∈ ∆≤2(X) ∩∆≤1(S). Then v1

is a characteristic vector of R.

Proof. Let h ∈ ∆≤1(X) ∩ ∆≤1(R). Note that since X is unipotent and
[X, h] ∈ Z(L), [X, h] = 1. By 1.13, there exists β ∈ F and 1 ≤ r < n, such
that h− βIn ∈ Tn(r) (see notation in 1.1.10). Put T = h− βIn, j = m = r
and ` = 0. We’ll show that S, T, R, j,m and ` satisfy the hypotheses of 1.15.
Hence, by 1.15, v1 is a characteristic vector of R.

Since (Xt)i,i+1 = 1, while, (Xt)i,k = 0, for all 1 ≤ i ≤ n − 1 and all
i + 1 < k ≤ n, and since Xε is unipotent lower triangular, for ε ∈ {1,−1},
it is easy to see that hypothesis (a) of 1.15 is satisfied. Of course Vj = Vr ⊆
ker(T ). By definition, vj+1 /∈ ker(T ). Since Vm = Vr = ker(T ) and since R
centralizes T,Vm is R-invariant. By now we verified all hypotheses of 1.15
and the proof of 3.1 is complete.

3.2. Let S = XXt. Then:
(1) If char (F) 6= 3, or n− 2 6≡ 0 (mod 3), then either α(FS , n− 1) 6= 0 or

α(FS , 1) 6= 0.
(2) If char (F) = 3 and n − 2 ≡ 3, 6 (mod 9), then α(FS , n − 2) 6= 0 6=

α(FS , n− 3).
(3) If char (F) = 3 and n − 2 ≡ 0 (mod 9), then α(FS , n − 2) 6= 0 6=

α(FS , n− 5).

Proof. By definition 1.2.4, FS = Fn. So by 2.6.4,

FS =
n∑

`=0

(−1)n+`

(
n + `

2`

)
λ`.

In particular, α(FS , n − 1) = 1 − 2n and α(FS , 1) = (−1)n+1
(
n+1

2

)
. Let

p = char (F) and suppose α(FS , n − 1) = α(FS , 1) = 0. It is easy to check
that we must have p = 3 and n ≡ −1 (mod 3). So suppose char (F) = 3 and
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n ≡ −1 (mod 3). Note that α(FS , n−2) = (n−1)(2n−3), so α(FS , n−2) 6= 0.
If n− 2 ≡ 3, 6 (mod 9), then α(FS , n− 3) = −

(
2n−3

3

)
6≡ 0 (mod 3). Finally,

if n−2 ≡ 0 (mod 9), then α(FS , n−5) = −
(
2n−5

5

)
6≡ 0 (mod 3). We remark

that when n = 2, ∆ is disconnected and there exists no path from X to S
in ∆, so evidently B(X, Xt) holds.

3.3. (1) Let S ∈ {XtX, XtX−1, Xt}, then d(X, S) > 3.
(2) ∆(L) is balanced.

Proof. Let R ∈ ∆≤2(X) ∩∆≤1(S). By 3.1,

v1 is a characteristic vector of R.(i)

Note that for all 1 ≤ i ≤ n− 1, viS = u + vi+1, with u ∈ Vi. Thus

〈O(v1, S)〉 = V.(ii)

Now if S = Xt, then, by (i), (ii) and 1.14.1, R ∈ Z(GL(V )), a contradiction.
Suppose S = XtX. Note that by 3.2, gcd

{
{i : αn−i 6= 0} ∪ {n}

}
=

1, thus, by (i), (ii) and 1.14.5, R ∈ Z(GL(V )), a contradiction. Finally
suppose S = XtX−1. Then, by 2.5, α(FS , n− 1) 6= 0, and again, by 1.14.5,
R ∈ Z(GL(V )), a contradiction. This shows (1). (2) follows immediately
from (1), since, by definition, B(X, Xt) and then, by 1.9.2, B(Xt, X), so by
definition, ∆(L) is balanced.

4. The Symplectic Groups and Unitary Groups in even
dimension.

In this section n = 2k ≥ 4. Further, F is a field of order q2 and K ≤ F
is a field of order q. L is one of the following groups. Either L = Fix (τ),
where τ : SLn(K) → SLn(K) is the automorphism defined in 1.4.4, or
L = Fix (τσq), where τσq : SLn(F) → SLn(F) is the automorphism defined
in 1.4.4 and 1.4.5. Thus, by 1.12.3, in the first case L ' Spn(q), and in
the second case L ' SUn(q). The purpose of this section is to prove that
Theorem 1.6 holds for (the simple version of) L. We’ll pick two elements
X, Y ∈ L and show that B(X, Y t) and B(Y, Xt). By 1.9.1, also B(Y t, X)
and thus the elements X, Y show that ∆(L) is balanced. In most cases, we’ll
take X = Y , but when char (F) = 3, it turns out that we must pick Y 6= X.
For the moment we fix elements β1, . . . , βk−1, γ1, . . . , γk−1, α ∈ K∗. Using
the notation in 1.1.8 we let

a = ak(β1, . . . , βk−1) a1 = ak(γ1, . . . , γk−1)

b = bk(β1, . . . , βk−1) b1 = bk(γ1, . . . , γk−1)

g = diag (a, b−1) g1 = diag (a1, b
−1
1 )

u = un
k(α)

X = gu Y = g1u.
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Towards the end of Section 4 we’ll specialize and give concrete values to
βi, γi and α. Note that by 1.11, X, Y ∈ L.

4.1. Let u = un
k(α). Then:

uut = diag
(

Ik−1,

[
1 α
α α2 + 1

]
, Ik−1

)
(1)

(uut)−1 = diag
(

Ik−1,

[
α2 + 1 α

α 1

]
, Ik−1

)
.

u−1ut = diag
(

Ik−1,

[
1 α
α 1− α2

]
, Ik−1

)
(2)

(u−1ut)−1 = diag
(

Ik−1,

[
1− α2 α

α 1

]
, Ik−1

)
.

(3) [u, gt] = 1.

Proof. This is obvious.

4.2. Let ε ∈ {1,−1}. Then:
(1) XY t = guutgt

1, (X, Y t)−1 = (gt
1)
−1(uut)−1g−1.

(2) X−1Y t = u−1utg−1gt
1 and (X−1Y t)−1 = (gt

1)
−1g(u−1ut)−1.

(3) X =
[
a 0k,k

E b−1

]
with E some k × k matrix, such that E1,k = α.

(4) XεY t =
[
aεat

1 R1,2

R2,1 R2,2

]
(XεY t)−1 =

[
R′

1,1 R′
1,2

R′
2,1 bt

1b
ε

]
with Ri,j and R′

i,j

some k × k matrices. Further, the first k − 1 rows of R1,2 are zero.
(5) Let S ∈ {Y t, XεY t}. Then for 1 ≤ i ≤ k − 1, viS = v + δi+1vi+1, with

v ∈ Vi and δi+1 ∈ K∗.
(6) Let S ∈ {Y t, XεY t}. Then for k ≤ i ≤ n − 1, viS

−1 = v + δi+1vi+1,
with v ∈ Vi and δi+1 ∈ K∗.

(7) Let S ∈ {Y t, XεY t}, then V = 〈O(v1, S)〉.
(8) Let S ∈ {Y t, XεY t}, then Sk,n 6= 0.

Proof. (1) is obvious. For (2), we have X−1Y t = u−1g−1utgt
1. By 4.1.3,

[g−1, ut] = 1, and (2) follows. (3) is clear, the (1, k)-entry of E is α·(b−1)1,1 =
α.

To show(4) and (5), let 1 ≤ i ≤ k − 1, then viu
−1ut = vi, so viX

−1Y t =
vig

−1gt
1. Also vig ∈ Vi, so vig(uut) = vig and viXY t = viggt

1. We conclude
that:

For 1 ≤ i ≤ k − 1, viX
εY t = vig

εgt
1.(i)

Now the shape of XεY t follows from (3) and (i), since, by (i), the first k− 1
rows of R1,2 are zero. Also the shape of (XεY t)−1, follows from (3). For
(5), we use (i). Note that aε is unipotent, lower triangular and at

1 is upper
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triangular unipotent with (at
1)i,j = 0, for j > i + 1, and (at

1)i,i+1 6= 0. This
easily implies (5), for S = XεY t. For S = Y t, viY

t = vi + βk−ivi+1, for all
1 ≤ i ≤ k − 1, thus (5) holds for Y t as well.

For (6), note that for h ∈ {bt
1, b

t
1b

ε}, hi,j = 0, for j > i+1, and hi,i+1 6= 0,
for all 1 ≤ i ≤ k − 1. This clearly holds for bt

1 and since this holds for
bt
1 and bε is unipotent lower triangular, it also hold for bt

1b
ε. Thus, by (4),

(6) holds for S ∈ {Y t, XεY t} and k + 1 ≤ i ≤ n − 1. We compute that
vk(Y t)−1 = vk(gt

1)
−1(ut)−1 = vk(ut)−1 = vk − αvk+1. Also vk(XεY t)−1 =

vk(Y t)−1X−ε = (vk − αvk+1)X−ε = vkX
−ε − αvk+1X

−ε. Now vkX
−ε ∈ Vk,

and vk+1X
−ε ≡ vk+1 (mod Vk), so (6) follows. (7) follows from (5) and (6),

since by (5), Vk ⊆ 〈O(v1, S)〉, and then by (6), 〈O(v1, S)〉 = V .
Finally, to show (8), note that vkX

ε = v + vk, with v ∈ Vk−1, and by (5),
vY t ∈ Vk. Thus for S ∈ {Y t, XεY t}, Sk,n = (Y t)k,n. Now vkY

t = vku
tgt

1 =
(vk + αvk+1)gt

1 = vk + αvk+1g
t
1. Now it is easy to check that (b−1

1 )k,1 =∏k
i=1 γi 6= 0, thus (gt

1)k+1,n = (b−1
1 )k,1 6= 0, hence (Y t)k,n = (gt

1)k+1,n 6= 0
and (8) is proved.

4.3. Let ε ∈ {1,−1} and let S ∈ {Y t, XεY t}. Let R ∈ ∆≤2(X) ∩∆≤1(S).
Then v1 is a characteristic vector of R.

Proof. Let h ∈ ∆≤1(X) ∩∆≤1(R). Then, [h, X] = 1, so by 4.2.3 and 1.13,
there exists 0 6= β ∈ K, and 1 ≤ r ≤ n − 1, such that h − βIn ∈ Tn(r). We
use 1.15. We take in 1.15, T = h− βIn. Note that R commutes with h and
hence with T .

Suppose first that r ≤ k−1, we take in 1.15 j = r = m and ` = 0. Notice
that by 4.2.5, hypothesis (a) of 1.15 is satisfied, hypothesis (b) and (c) of
1.15 are satisfied by definition, and we observed that hypothesis (e) of 1.15
is satisfied. Finally, since R centralizes T, Vr is R-invariant. Hence 1.15
completes the proof in this case.

Suppose next that r ≥ k, we take in 1.15, j = k − 1, ` = 1 and m =
dim(im(T )). Notice that im (T ) = Vm and im (T ) is R-invariant. Also, by
4.2.8, Sk,n 6= 0, so clearly vk /∈ ker(ST ) and hypothesis (c) of 1.15 holds.
Thus 1.15 completes the proof in this case too.

From this point to the end of Section 4 we specialize and set:

If |K| = 2, or |K| > 3, or k 6≡ 1 (mod 3),
βi = γi = 1, for all 1 ≤ i ≤ k − 1, in particular, X = Y .

If |K| = 3 and k ≡ 1 (mod 3),
βi = γi = 1, for all 2 ≤ i ≤ k − 1 and β1 = −γ1 = β.

4.4. (1) If |K| > 3, or k 6≡ 1 (mod 3), we can find α ∈ K∗ such that
α(FS , 1) 6= 0 for all S ∈ {XY t, X−1Y t}.

(2) If |K| = 3, or k ≡ 1 (mod 3), then for α = 1 we have α(FS , 1) 6= 0,
for all S ∈ {XY t, X−1Y t}.
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(3) If |K| = 2, then for α = 1, gcd
{
{i : α(FS , n − i) 6= 0} ∪ {n}

}
is

relatively prime to 3, for all S ∈ {XY t, X−1Y t}.

Proof. For (1), note that by our choice of X and Y , X = Y . Further, FXXt

is the polynomial Hn of 2.13. Thus, α(FXXt , 1) = −
(
k+1
2

)
− (α2 + 2)k + 1

by 2.13.2. Also, by 2.15, α(FX−1Xt , 1) = α2− 2. The reader may now easily
verify (using also 2.13.3) that we can choose α ∈ K∗ as asserted in (1).

So suppose |K| = 3 and k ≡ 1 (mod 3). Then by 2.14.3, and 2.16, (2)
holds. Finally assume |K| = 2. Then (3) holds by 2.13.4-2.13.7 and by 2.15.

We now specialize further and choose α as in 4.4, in the respective cases.

4.5. Set Λ = ∆(L) and let ε ∈ {1,−1} and let S ∈ {Y t, XεY t}. Then:
(1) dΛ(X, S) > 3.
(2) BΛ(X, Y t) and BΛ(Y, Xt).
(3) ∆(L) is balanced.

Proof. Suppose dΛ(X, S) ≤ 3 and let R ∈ Λ≤2(X) ∩ Λ≤1(S). Of course
R ∈ ∆≤2(X) ∩∆≤1(S), so by 4.3,

v1 is a characteristic vector of R.(i)

If S = Y t, then [R,S] = 1, so by (i), 4.2.7 and 1.14.1, R ∈ Z(L), a contra-
diction. So (1) holds in case S = Y t. So assume S = XεY t.

Suppose first that |K| > 3, or |K| = 3 and k 6≡ 1 (mod 3), then using
4.4.1, (i), 4.2.7 and 1.14.5, we see that R ∈ Z(L), a contradiction. This
shows (1) in this case. By (1), BΛ(X, Y t) holds here, and since here X = Y ,
1.9.2 implies (2) in this case.

Suppose |K| = 3 and k ≡ 1 (mod 3). Then using 4.4.2, (i), 4.2.7 and
1.14.5, we see that R ∈ Z(L), a contradiction. Hence (1) holds here and by
(1) and definition, BΛ(X, Y t) holds in this case. By Symmetry d(Y, Xt) > 3
and d(Y, Y εXt) > 3. Thus BΛ(Y, Xt) also holds and (2) holds in this case
as well.

Finally, suppose |K| = 2. If L ' Spn(q), then Z(L) = 1, so [R,S] = 1,
and hence, by (i), 4.2.7 and 1.14.1, R = 1, a contradiction. So assume
L ' SUn(q). Then |F∗| = 3. Now 4.4.3, (i), 4.2.7 and 1.14.5 show that
R ∈ Z(L), a contradiction. Again we see that (1) holds, and since X = Y
here, (2) holds here (as above). Note that (2) implies (3) by 1.9 and by
definition.

5. The Unitary and Orthogonal Groups in odd dimension.

In this section F is a field of order q2 and K ≤ F is the subfield of order q.
We let n = 2k+1 ≥ 3 be an odd integer and U ' SU(n, F) ≤ SL(n, F) is the
special unitary group. We view U as the fixed points of the automorphism
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τσq : SL(n, F) → SL(n, F), described in 1.12.3. We denote by U ≥ O '
SO(n, K), the subgroup O = U ∩ SL(n, K). L denotes one of the groups
U or O. When L = O, we assume that n ≥ 7 and that q is odd (this is
because if q is even or n < 7, O′ is either not simple, or isomorphic to simple
groups that we handled earlier). We continue the notation of Section 1. In
particular, V is a vector space of dimension n over F.

Throughout this section Λ = ∆(L). The purpose of this section is to
prove that when L′/Z(L′) is simple, ∆(L′) is balanced (and hence, by 1.7,
∆(L′/Z(L′)) is balanced). For that we’ll indicate elements X, Y ∈ L′ such
that BΛ(X, Y t) and BΛ(Y, Xt) (see 1.10).

Notation 5.1. (1) given an element r = diag (Ik−1, s, Ik−1) ∈ GL(n, F),
we denote s(r) := s (note that s ∈ GL3(F)).

(2) Let θ ∈ F∗. We denote by u0(θ) = diag (Ik−1, s, Ik−1), with

s =

1 0 0
0 1 0
θ 0 1

 .

(3) Whenever we write ui(α), we mean un
i (α) (see 1.1.7).

5.2. Let α ∈ F∗ and β1, . . . , βk−1 ∈ K∗. Set a = ak(β1, . . . , βk−1), b =
bk(β1, . . . , βk−1), B = bk+1(α, β1, . . . , βk−1) and g = diag (a, 1, b−1). Let
u = uk(α)uk+1(αq)u0(θ). Then:

(1) g ∈ O.
(2) gun

k+1(α) = diag (a,B−1).
(3) [g, ut] = 1.

Proof. (1) is 1.11. For (2), note that g = diag (a, z), with

z = uk+1
k (βk−1)uk+1

k−1(βk−2) · · ·uk+1
2 (β1).

Also uk+1(α) = diag (Ik, u
k+1
1 (α)). Thus guk+1(α) = diag (a, h), with h =

zuk+1
1 (α) = uk+1

k (βk−1)uk+1
k−1(βk−2) · · ·uk+1

2 (β1)uk+1
1 (α) = B−1.

(3) follows from the fact that (uk(α))t, (uk+1(αq))t, and (u0(θ))t commute
with g.

5.3. Let α, β, θ ∈ F and set u = uk(α)uk+1(β)u0(θ). Then:

(1) s(uk(α)uk+1(β)) =

1 0 0
α 1 0
0 β 1

 .

(2) s(uk+1(β)uk(α)) =

 1 0 0
α 1 0
αβ β 1

 .
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(3)

u0(θ) = uk(1)uk+1(−θ)uk(−1)uk+1(θ)

= uk+1(1)uk(θ)uk+1(−1)uk(−θ).

(4) u0(θ)τ = u0(−θ).
(5) u ∈ Fix (τσq) iff β = αq and θ + θq = αq+1.

Proof. (1) and (2) are easy to check. For (3) we have

s
{

uk(1)uk+1(−θ)uk(−1)uk+1(θ)
}

=

1 0 0
1 1 0
0 θ 1

 ·
1 0 0

1 1 0
0 θ 1


=

1 0 0
0 1 0
θ 0 1

 = s(u0(θ))

and

s
{

uk+1(1)uk(θ)uk+1(−1)uk(−θ)
}

=

1 0 0
θ 1 0
θ 1 1

 ·
1 0 0

θ 1 0
θ 1 1


=

1 0 0
0 1 0
θ 0 1

 = s(u0(θ)).

For (4), note that by (3), u0(θ)τ = {uk(1)uk+1(−θ)uk(−1)uk+1(θ)}τ =
uk+1(1)uk(−θ)uk+1(−1)uk(θ) = u0(−θ).

For (5), we have

s(u) =

1 0 0
α 1 0
θ β 1

 .

Now, by (4), uτσq = uk+1(αq)uk(βq)u0(−θq), so

s(uτσq) =

 1 0 0
βq 1 0

(αβ − θ)q αq 1

 .

So the lemma follows.

Notation 5.4. Let α, θ ∈ F such that θ + θq = αq+1.
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(1) We denote

un(α, θ) = u(α, θ) = uk(α)uk+1(αq)u0(θ)

= uk+1(αq)uk(α)u0(−θq).

(2) We denote X(α, θ) = diag (ak, 1, b−1
k )u(α, θ).

Note that we denote u(α, θ) and X(α, θ) only when θ+θq = αq+1, so that
u(α, θ), X(α, θ) ∈ U .

5.5. Let α, β ∈ F∗ and let u = uk+1
1 (−α), w = uk+1

1 (−β) and ε ∈ {1,−1}.
Then:

(1) (wtuε)−1 = diag
([

1 β
εα εαβ + 1

]
, Ik−1

)
.

(2) wtuε = diag
([

1 + εαβ β
−εα 1

]
, Ik−1

)
.

Proof. This is obvious.

5.6. Suppose char (F) = 3. Then:
(1) For B = bk+1, FBtB = Fk+1 and FBtB−1 = Qk+1, in particular

FBtB[−1] 6= 0 and FBtB−1 [−1] = Qk+1[−1] = (−1)k+1(k + 2).
(2) Suppose k ≥ 4 and let B = bk+1(1, 1, 1, β4, 1, . . . , 1) and C = bk+1(1, 1,

1, γ4, 1, . . . , 1), with β4γ4 = −1. Then for {T,Z} = {B,C}, and ε ∈
{1,−1}, FT tZε [−1] 6= 0.

Proof. By definition 1.2.4 and by 2.6, if B = bk+1, then FBtB = Fk+1 and by
2.5, FBtB−1 = Qk+1. Next note that F1[λ] = λ− 1, F2[λ] = λ2 − 3λ + 1 and
for m ≥ 3, Fm[λ] = (λ− 2)Fm−1[λ]− Fm−2[λ] (see 2.6). Since char (F) = 3,
Fm[−1] = −Fm−2[−1]. Hence

Fm[−1] 6= 0 for all m ≥ 1.(i)

Further, for m ≥ 1, Qm[−1] = (−1)m{1 − (−1) + (−1)2 − (−1)3 + · · · } =
(−1)m(m + 1). Hence

Qm[−1] = (−1)m(m + 1), for all m ≥ 1.(ii)

Now (i) and (ii) imply (1).
For (2), let β1, β2, . . . , βk, γ1, γ2, . . . , γk ∈ F∗. Let B = bk+1(β1, β2, . . . ,

βk), b = bk(β2, β3, . . . , βk), C = bk+1(γ1, γ2, . . . , γk), c = bk(γ2, γ3, . . . , γk)
and for 1 ≤ i ≤ 4, bi = bk−1(βi+2, . . . , βk) and ci = bk−i(γi+2, . . . , γk). We
claim that

F(CtB)−1 [−1] = (1− β1γ1)F(ctb)−1 [−1]− β1γ1F(ct
1b1)−1 [−1].(iii)

FCtB−1 [−1] = Fctb−1 [−1]− β1γ1Fct
1b−1

1
[−1].(iv)

If β1γ1 = 1, then F(CtB)−1 [−1] = −F(ct
1b1)−1 [−1].(v)

If β1γ1 = 1, then FCtB−1 [−1] = −β2γ2Fct
2b−1

2
[−1].(vi)
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Indeed, (iii) follows from 2.12.2, and (iv) follows from 2.12.3. (v) fol-
lows from (iii). For (vi), note that by (iv), Fctb−1 [−1] = Fct

1b−1
1

[−1] −
β2γ2Fct

2b−1
2

[−1]. Thus, by (iv) again,

FCtB−1 [−1] = Fctb−1 [−1]− Fct
1b−1

1
[−1]

= Fct
1b−1

1
[−1]− β2γ2Fct

2b−1
2

[−1]− Fct
1b−1

1
[−1]

= −β2γ2Fct
2b−1

2
[−1].

Let now B and C be as in (2). Then β1γ1 = β3γ3 = 1, so applying
(v) twice, we see that F(CtB)−1 [−1] = −F(ct

1b1)−1 [−1] = F(ct
3b3)−1 [−1] =

F k−3[−1], where the last equality follows from the fact that c3 = b3 = bk−3.
Note now that (by 2.7.1), F k−3[−1] = Fk−3[−1], so by (i), F k−3[−1] 6= 0,
and hence F(CtB)−1 [−1] 6= 0. Next, by (vi), FCtB−1 [−1] = −Fct

2b−1
2

[−1] =
−{Fct

3b−1
3

[−1] − β4γ4Fct
4b−1

4
[−1]} = −{Qk−3[−1] + Qk−4[−1]} =

−{(−1)k−3(k − 2) + (−1)k−4(k − 3)} ∈ {1,−1}. (Note that this also works
when k = 4 and 5, where −Fct

2b−1
2

[−1] can be easily computed.) This com-
pletes the proof of (2).

5.7. (1) There are at least q − 2 − [ q−2
2 ] elements δ ∈ K such that the

polynomial x2 − δx + δ is irreducible over K.
(2) If δ ∈ K is as in (1) and α ∈ F is a root of the polynomial x2− δx+ δ,

then δ = αq+1 = α + αq.

Proof. Consider the set of polynomials P := {x2 − δx + δ : δ ∈ K}. There
are q polynomials in P . For δ ∈ K, denote pδ = x2 − δx + δ. For p ∈ P , let
r(p) be the set of roots of p. Note that for 0, 4 6= δ ∈ K, |r(pδ)| = 2 and if
γ, δ ∈ K are distinct, then r(pγ) ∩ r(pδ) = ∅. Hence if t is the number of
polynomials pδ ∈ P such δ 6= 0, 4 and pδ has a root in K, then 2t+2 ≤ q, so
t ≤ [ q−2

2 ]. Thus |{δ ∈ K : pδ has a root in K}| ≤ [ q−2
2 ] + 2, and (1) follows.

Let δ ∈ K as in (1). Let α be a root of pδ in F. Then the other root of pδ

is αq so pδ = (x− α)(x− αq) and hence δ = αq+1 = αq + α.

Notation 5.8. (1) We denote Ξ = {α ∈ F−K : α + αq = αq+1}.
(2) We denote by D = {δ ∈ K : pδ[λ] = λ2 − δλ + δ is irreducible over K}.

5.9. Set u = u(α, θ) and w = u(β, ρ). Then:

s(u) =

1 0 0
α 1 0
θ αq 1

 (s(u))t =

1 α θ
0 1 αq

0 0 1

 ,(1)

(s(u))−1 =

 1 0 0
−α 1 0
θq −αq 1

 ((s(u))−1) =

1 −α θq

0 1 −αq

0 0 1

 ,(2)
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s(uwt) =

1 β ρ
α αβ + 1 αρ + βq

θ βθ + αq θρ + αqβq + 1

 ,(3)

s((uwt)−1) =

1 + αβ + θqρq β − αqρq ρq

−α− βqθq αqβq + 1 −βq

θq −αq 1

 ,(4)

s(u−1wt) =

 1 β ρ
−α 1− αβ −αρ + βq

θq βθq − αq ρθq − αqβq + 1

 ,(5)

s((u−1wt)−1) =

1− αβ + θρq −β + αqρq ρq

α− θβq 1− αqβq −βq

θ αq 1

 .(6)

Proof. (1) is obvious. For (2), observe that u−1 = u0(−θ)uk+1(−αq)uk(−α),
so

s(u−1) =

 1 0 0
0 1 0
−θ 0 1

 ·
 1 0 0
−α 1 0
αq+1 −αq 1


=

 1 0 0
−α 1 0
θq −αq 1

 .

For (3) and (4), we compute:

s(uwt) =

1 0 0
α 1 0
θ αq 1

 ·
1 β ρ

0 1 βq

0 0 1


=

1 β ρ
α αβ + 1 αρ + βq

θ βθ + αq θρ + αqβq + 1

 .

s((uwt)−1 =

1 −β ρq

0 1 −βq

0 0 1

 ·
 1 0 0
−α 1 0
θq −αq 1


=

1 + αβ + θqρq β − αqρq ρq

−α− βqθq αqβq + 1 −βq

θq −αq 1

 .
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For (5) and (6) we compute:

s(u−1wt) =

 1 0 0
−α 1 0
θq −αq 1

 ·
1 β ρ

0 1 βq

0 0 1


=

 1 β ρ
−α 1− αβ −αρ + βq

θq βθq − αq ρθq − αqβq + 1


s((u−1wt)−1) =

1 −β ρq

0 1 −βq

0 0 1

 ·
1 0 0

α 1 0
θ αq 1


=

1− αβ + θρq −β + αqρq ρq

α− θβq 1− αqβq −βq

θ αq 1

 .

5.10. Let X = X(α, θ) and Y = X(β, ρ). Then:

(1) α (FXY t , 1) =
(
k+1
2

)
+ (αβ + θqρq + 2)k + αqβq.

(2) α (FX−1Y t , 1) = 3− αβ − αqβq + θρq.
(3) If α (FXY t , 1) = 0, then (αqβq − αβ)(k − 1) = (θqρq − θρ)k.
(4) If α (FXXt , 1) = 0, then (α2q − α2)(k − 1) = (θ2q − θ2)k. Further, if

α ∈ Ξ, then (αq − α)(k − 1) = (θq − θ)k.
Suppose further that α ∈ Ξ, and set δ = α + αq = αq+1. Then:

(5) If α(FX−1Xt , 1) = 0, then δ2 − 2δ = 3 + θq+1.
(6) If θ = α, then α(FXXt , 1) 6= 0, while if θ = αq, then either α(FXXt , 1)

6= 0, or 2k − 1 ≡ 0 (mod char(K)) and 8δ2 − 16δ + 11 = 0.
(7) If θ = α or α2, then either α(FX−1Xt , 1) 6= 0, or δ2 − 3δ − 3 = 0.
(8) Suppose char (K) 6= 2. Suppose further that β = αq, ρ = θ and θ 6= K,

then for {T,Z} = {X, Y }, α(FTZt , 1) 6= 0.
(9) If β = αq, ρ = θ and 2δ 6= 3 + θq+1, then for {T,Z} = {X, Y },

α(FT−1Zt , 1) 6= 0.
(10) We can choose α ∈ Ξ and θ ∈ F − K, with θ + θq = αq+1 = δ, such

that if we set X = X(α, θ) and Y = X(αq, θ), then either
(10i) q = 2, θ = α, and for ε ∈ {1,−1}, and Z ∈ {X, Y }, α(FZεZt , 1) 6= 0.

Or
(10ii) q = 4, θ = α + 1 and there exists β ∈ F − {α, αq), with βq+1 = δ,

such that if we set W = X(β, θ), then for ε ∈ {1,−1}, and Z ∈
{X, Y,W}, α(FZεZt , 1) 6= 0. Or

(10iii) q 6= 2, 4 and α(FT εZt , 1) 6= 0, for T,Z ∈ {X, Y } and ε ∈ {1,−1}.

Proof. Set u = u(α, θ) and w = u(β, ρ). For (1), let xk = at
kak, yk =

bkb
t
k, and g = diag (xk, 1, y−1

k ). Note that FXY t = FY tX . Further Y tX =
wtdiag (at

k, 1, (b−1
k )t)diag (ak, 1, b−1

k )u. Thus, clearly, FXY t = Fhg, where
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h = uwt. By 5.9.4, h−1 = diag (Ik−1, s, Ik−1), with

s = s((uwt)−1) =

1 + αβ + θqρq β − αqρq ρq

−α− βqθq αqβq + 1 −βq

θq −αq 1

 .

Thus, by 2.10 (with A = xk and B = y−1
k ), α(Fhg, 1) = α(R[λ], 1), where

R[λ] = (β22λ− 1)FAFB − (β33 − 1)λFAFM1,1(B)(i)

−(β11 − 1)λFMk,k(A)FB,

and the βij are given by matrix s above. Using 2.6, we see that

FA = Fk, FMk,k(A) = Gk−1 and FB = F k.

Hence (i) implies

R[λ] = {(αqβq + 1)λ− 1}FkF k − (αβ + θqρq)λGk−1 · F k.

Now 2.6 gives

Fk ≡ (−1)k

{
1−

(
k + 1

2

)
λ

}
(mod (λ2))

Gk−1 ≡ (−1)k−1

{
k −

(
k + 1

3

)
λ

}
(mod (λ2))

F k ≡ (−1)k{1− (2k − 1)λ} (mod (λ2))

Hence modulo the ideal (λ2),

R[λ] ≡ {(αqβq + 1)λ− 1} ·
{

1−
(

k + 1
2

)
λ

}
· {1− (2k − 1)λ}

+ (αβ + θqρq)λk

≡ −1 +
{(

k + 1
2

)
+ (αβ + θqρq + 2)k + αqβq

}
λ.

This shows (1).
For (2), let xk = a−1

k at
k, yk = bk(b−1

k )t and g = diag (xk, 1, yk). Us-
ing 5.2.3, we see that X−1Y t = u−1diag (a−1

k , 1, bk)wtdiag (at
k, 1, (b−1

k )t) =
u−1wtdiag (a−1

k , 1, bk)diag (at
k, 1, (b−1

k )t) = hg, where h = u−1wt. Thus,
FX−1Y t = Fhg. By 5.9.6, h−1 = diag (Ik−1, s, Ik−1), with

s = s((u−1wt)−1) =

1− αβ + θρq −β + αqρq ρq

α− θβq 1− αqβq −βq

θ αq 1

 .

Using 2.10 again (with A = xk and B = yk), α(Fhg, 1) = α(R[λ], 1), with
R[λ] as in (i) and the βij are given by the matrix s above. Using 2.5 and 2.11,
we see that

FA = Qk, FMk,k(A) = Qk−1, FB = Qk.
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Hence

R[λ] = {(1− αqβq)λ− 1}Q2
k − (−αβ + θρq)λQk−1 ·Qk.

Now

Qk ≡ (−1)k(1− λ) (mod (λ2))

Qk−1 ≡ (−1)k−1 (mod (λ)).

Hence modulo the ideal (λ2),

R[λ] ≡ {(1− αqβq)λ− 1}(1− λ)2 + (−αβ + θρq)λ

≡ −1 + {3− αβ − αqβq + θρq}λ.

This shows (2).
Suppose α(FXY t , 1) = 0. Applying σq, we get

α(FXY t , 1) = 0 = α(FXY t , 1)σq,

hence

(αβ + θqρq)k + αqβq = (αqβq + θρ)k + αβ

so

(αqβq − αβ)(k − 1) = (θqρq − θρ)k

and (3) is proved. For (4), take Y = X in (3), to get (α2q−α2)(k−1) = (θ2q−
θ2)k. Further, (α2q−α2) = (αq +α)(αq−α), and (θ2q−θ2) = (θq +θ)(θq−θ).
So if α ∈ Ξ, (αq + α) = αq+1 = θq + θ. This shows (4).

From now on assume α ∈ Ξ and set δ = αq+1. For (5), take X = Y in (2)
and note that α2 + α2q = (α + αq)2 − 2αq+1 = δ2 − 2δ.

Suppose θ = α and α(FXXt , 1) = 0. Then, by (4), (αq − α)(k − 1) =
(αq − α)k. Hence αq = α, which is false, since α /∈ K. Suppose θ = αq

and α(FXXt , 1) = 0. Then, by (4), (αq − α)(k − 1) = (α − αq)k hence
(2k − 1)(αq − α) = 0. As above, we get 2k − 1 = 0 in K, so

(
k+1
2

)
= 3

8

in K. Also, by (1), 0 = α(FXXt , 1) =
(
k+1
2

)
+ (α2 + θ2q + 2)k + α2q =

3
8 + (α2 + α2 + 2)1

2 + α2q = 11
8 + α2 + α2q. Since α2 + α2q = δ2 − 2δ, we get

that 11
8 + δ2 − 2δ = 0. This shows (6).

For (7) suppose that θ = α or αq. Then, θq+1 = δ, so, by (5), if
α(FX−1Xt , 1) = 0, then δ2 − 2δ = 3 + δ, and δ2 − 3δ− 3 = 0, this shows (7).

Assume the hypothesis of (8). Note that αqβq − αβ = 0. Thus, by (3), if
α(FXY t , 1) = 0, then 0 = (θ2q − θ2)k = δ(θq − θ)k. Thus since δ 6= 0 and
since we are assuming that θ /∈ K, k = 0, in K. Then, (1) implies that δ = 0,
a contradiction. By symmetry, (8) holds.

Assume the hypothesis of (9). Note again that αβ = δ, so (9) follows
immediately from (2).
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For (10), assume Y = X(αq, θ). Suppose first that char (K) = 2. Note
that by (4):

If α, θ ∈ F−K such that θ + θq = αq+1,(ii)

then for X = X(α, θ), α(FXXt , 1) 6= 0.

This is because (4) implies that if k is odd and α(FXXt , 1) = 0, then θq +θ =
0, while if k is even and α(FXXt , 1) = 0, then αq + α = 0.

For q = 2, take δ = 1, for q > 2, pick 1 6= δ ∈ D (note that this is
possible by 5.7). Further, if q > 4, take δ such that δ2 + δ + 1 6= 0 (note
that this is possible). Let α ∈ Ξ, with αq+1 = δ. If q = 2, take θ = α,
if q = 4, take θ = α + 1 and if q > 4, take θ = α + δ. Note that θ /∈ K.
When q = 4, we take W = X(β, θ), with β ∈ F − (K ∪ {α, αq}), such that
βq+1 = αq+1 = δ. Note that such a choice of β is possible. Now, by (ii), for
all q ≥ 2, α(FZZt , 1) 6= 0, for Z ∈ {X, Y,W}.

Next, for q = 4, θq+1 = (α+1)q+1 = (αq+1)(α+1) = αq+1+(αq+α)+1 =
1. Of course, when q = 2, θq+1 = 1. Also, by (2), for Z ∈ {X, Y,W}, if
Z = X(γ, θ), then α(FZ−1Zt , 1) = 3 + γ2 + γ2q + 1 = γ2 + γ2q = (γ + γq)2.
Since γ /∈ K, for all possibilities of γ and for q = 2, 4, α(FZ−1Zt , 1) 6= 0.
Thus (10i) and (10ii) are proved.

We now assume that char (F) = 2 and q > 4. Now θq+1 = (α + δ)q+1 =
(αq+δ)(α+δ) = αq+1+δ(αq+α)+δ2 = δ+δ2+δ2 = δ. Hence, 3+θq+1 = δ+1.
So if δ2 − 2δ = 3 + θq+1, then δ2 = δ + 1, this contradicts the choice of δ
(recall δ2 + δ + 1 6= 0). Hence, by (5), α(FZ−1Zt , 1) 6= 0, for Z ∈ {X, Y }.

Suppose α(FXY t , 1) = 0. Then, by (3), (with β = αq), we get 0 =
(θq + θ)2k = δ2k, so k ≡ 0 (mod 2). Then by (1),

(
k+1
2

)
+ δ = 0. Thus

k ≡ 2 (mod 4) (since δ 6= 0) and δ = 1, contradicting the choice of δ. Thus
α(FXY t , 1) 6= 0; by symmetry, α(FY Xt , 1) 6= 0.

Next note that we showed that θq+1 = δ. Thus θq+1 + 3 = δ + 1. Since
δ 6= 1, δ + 1 6= 0, so by (9), α(FT−1Zt , 1) = 0, for {T,Z} = {X, Y }. Thus
(10iii) holds in case char (K) = 2.

So suppose char (K) 6= 2. Suppose further that q 6= 5. We take 3 6= δ ∈ D,
α ∈ Ξ, with αq+1 = δ and θ = α. Since θ /∈ K, (8) implies that for
{T,Z} = {X, Y }, α(FTZt , 1) 6= 0. Since δ 6= 3, (and θq+1 = αq+1 = δ), (9)
implies that for {T,Z} = {X, Y }, α(FT−1Zt , 1) 6= 0. Next we show that we
can pick δ ∈ D, such that

δ 6= 3 and 8δ2 − 16δ + 11 6= 0 6= δ2 − 3δ − 3.(iii)

By (6) and (7), this shows (10), for q 6= 5. If q ≥ 13, then, by 5.7.1, |D| ≥ 6,
so clearly, we can pick δ 6= 3 such that (iii) holds. So suppose q ≤ 11.
Suppose char (K) = 3. Then δ2 − 3δ − 3 6= 0, so if q = 9, then, by 5.7.1, we
can pick δ (6= 3) so that 8δ2 − 16δ + 11 6= 0, while if q = 3, take δ = −1, so
(iii) holds in this case. For q = 11, take δ = 1. For q = 7, take δ = 2.
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Finally, suppose q = 5. We take δ = 1, α ∈ Ξ, with αq+1 = δ and we
let θ be as follows. If k 6≡ 2 (mod 5), θ = θ1 = α + 3(α − αq) = 2αq − α,
while if k ≡ 2 (mod 5), θ = θq

1 (note that θ + θq = α + αq = αq+1). Note
that if θ ∈ K, then α ∈ K, which is false. Thus θ /∈ K. Hence, by (8),
for {T,Z} = {X, Y }, α(FTZt , 1) 6= 0. Next, θq+1 = (2α − αq)(2αq − α) =
4δ − 2(α2 + α2q) + δ = −2(δ2 − 2δ). Thus

θq+1 = 2.(iv)

By (iv) θq+1 +3 = 0 6= 2δ. Hence, by (9), for {T,Z} = {X, Y }, α(FT−1Zt , 1)
6= 0. Also, δ2 − 2δ = −1 6= 0 = 3 + θq+1, so, by (5), α(FZ−1Zt , 1) 6= 0, for
Z ∈ {X, Y }.

Next, θq
1 − θ1 = 2(α− αq)− (αq − α) = 3(α− αq) = 2(αq − α). So:

If k 6≡ 2 (mod 5), θq − θ = 2(αq − α)(v)

and if k ≡ 2 (mod 5), θq − θ = 3(αq − α).

Suppose first that k 6≡ 2 (mod 5). Suppose α(FXXt , 1) = 0, then by (4)
and (v), (k − 1) = 2k so k ≡ −1 (mod 5). Then, by (1), α(FXXt , 1) =(
k+1
2

)
+(α2 + θ2q +2)k +α2q = −(α2 + θ2q +2)+α2q = α2q−α2− θ2q− 2 =

α2q − α2 − (2α − αq)2 − 2 = α2q − α2 − 4α2 + 4 − α2q − 2 = 2 6= 0, a
contradiction.

Suppose α(FY Y t , 1) = 0. Then, by (4), and (v) (replacing α by αq in (4)),
−(k − 1) ≡ 2k (mod 5), so k ≡ 2 (mod 5), a contradiction.

Finally, suppose k ≡ 2 (mod 5). Then, by (1), α(FXXt , 1) =
(
k+1
2

)
+

(α2q + θ2q + 2)k + α2 = 3 + 2(α2q + θ2q + 2) + α2 = 2 + 2α2q + α2 + 2θ2q =
2+2α2q +α2+2(2αq−α)2 = 2+2α2q +α2+2(4α2q−4+α2) = −1+3α2 6= 0.

Suppose α(FY Y t , 1) = 0. Then, by (4), and (v) (replacing α by αq in
(4)), −(k − 1) ≡ 3k (mod 5), so k ≡ −1 (mod 5), a contradiction. This
completes the proof of (10) and of 5.10.

5.11. Let β1, . . . , βk−1, γ1, . . . , γk−1 ∈ K∗. Let also α, θ, β, ρ ∈ F∗ such that
αq+1 = θ+θq, βq+1 = ρ+ρq. Set a= ak(β1, . . . , βk−1), a1 = ak(γ1, . . . , γk−1),
b = bk(β1, . . . , βk−1), b1 = bk(γ1, . . . , γk−1), g = diag (a, 1, b−1), g1 =
diag (a1, 1, b−1

1 ), B = uk+1
1 (−αq)diag (1, b), B1 = uk+1

1 (−βq)diag (1, b1), u =
u(α, θ), w = u(β, ρ), X = gu and Y = g1w. Finally let ε ∈ {−1, 1}. Then:

(1) XY t = guwtgt
1, (XY t)−1 = (gt

1)
−1(uwt)−1g−1.

(2) X−1Y t = u−1wtg−1gt
1 and (X−1Y t)−1 = (gt

1)
−1g(u−1wt)−1.

(3) X =
[
a 0k,k+1

E B−1

]
with E some (k + 1) × k matrix, such that E1,k =

α 6= 0.
(4)

XεY t =
[
aεat

1 R
S T

]
(XεY t)−1 =

[
T ′ R′

S′ Bt
1B

ε

]
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with T ′, T, R,R′, S, S′ some k×k, (k+1)×(k+1), k×(k+1), k×(k+1),
(k + 1)× k, (k + 1)× k, matrices respectively. Further, the first k − 1
rows of R are zero.

(5) Let S ∈ {Y t, XεY t}. Then for 1 ≤ i ≤ k− 1, viS = v + δi+1vi+1, with
v ∈ Vi and δi+1 ∈ K∗.

(6) Sk,n 6= 0, for all S ∈ {Y t, XεY t}.
(7) For S ∈ {Y t, XεY t}, there exists v ∈ Vk, η ∈ F and µ ∈ F∗ such that:

vk+1S
−1 ≡ ηvk+1 + µvk+2 (mod Vk).(7i)

vS−1 ≡ (η + ρ1−q)vk+1 + µvk+2 (mod Vk).(7ii)

In all cases µ = −βq. If S = Y t, η = 1, while(7iii)

if S = XεY t, η = 1 + εαqβq.

(8) For S ∈ {Y t, XεY t}, V = 〈O(v1, S)〉 iff −ρ1−q is not a root of FZ ,
where Z = Bt

1, if S = Y t and Z = Bt
1B

ε, if S = XεY t.
(9) If β 6= 0, then V = 〈O(v1, Y

t)〉.

Proof. (1) is obvious. For (2), we have X−1Y t = u−1g−1wtgt
1. By 5.2.3,

[g−1, wt] = 1, and (2) follows. For (3) recall from 5.4.1 that

u = uk+1(αq)uk(α)u0(−θq).

Further by 5.2.2, guk+1(αq) = diag (a,B−1). Thus

X = diag (a,B−1)uk(α)u0(−θq).

Note now that

s(uk(α)u0(−θq)) =

 1 0 0
α 1 0
−θq 0 1

 .

Hence (3) follows, the (1, k)-entry of E is α(B−1)1,1 − θq(B−1)1,2 = α · 1−
θq · 0 = α.

To show (4) and (5), let 1 ≤ i ≤ k − 1, then viu
−1wt = vi, so viX

−1Y t =
vig

−1gt
1. Also vig ∈ Vi, so vig(uwt) = vig and viXY t = viggt

1. We conclude
that:

For 1 ≤ i ≤ k − 1, viX
εY t = vig

εgt
1.(i)

Now the shape of XεY t follows from (3) and (i), since, by (i), the first k− 1
rows of R are zero. Also the shape of (XεY t)−1, follows from (3). For
(5), we use (i). Note that aε is unipotent, lower triangular and at

1 is upper
triangular unipotent with (at

1)i,j = 0, for j > i + 1, and (at
1)i,i+1 6= 0. This

easily implies (5), for S = XεY t. For S = Y t, viY
t = vi + γk−ivi+1, for all

1 ≤ i ≤ k − 1, thus (5) holds for Y t as well.
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Recall now that

s(uwt) =

1 β ρ
α αβ + 1 αρ + βq

θ βθ + αq θρ + αqβq + 1


s((uwt)−1) =

1 + αβ + θqρq β − αqρq ρq

−α− βqθq αqβq + 1 −βq

θq −αq 1


s(u−1wt) =

 1 β ρ
−α 1− αβ −αρ + βq

θq βθq − αq ρθq − αqβq + 1


s((u−1wt)−1) =

1− αβ + θρq −β + αqρq ρq

α− θβq 1− αqβq −βq

θ αq 1

 .

Note now that vkg
−1 ≡ vk ≡ vkg (mod Vk−1), vk+1g

−1 = vk+1 and vk+2g
−1

= vk+2. Since uεwt fixes Vk−1, we see that,

vk(XεY t) ≡ vk(uεwt)gt
1 (mod Vk−1).

Thus modulo Vk, vk(XεY t) ≡ (βvk+1 + ρvk+2)gt
1 ≡ βvk+1 + ρ(v′ + ηvn),

with v′ ∈ 〈vk+2, . . . , vn−1〉, η ∈ F∗. This is because the (k, 1) entry of b−1
1 is

η = γ1γ2 · · · γk−1, and gt
1 = diag (at

1, 1, (b−1
1 )t). This shows (6), for S = XεY t

and it is easy to see that (6) holds for S = Y t as well.
Next, modulo Vk, we have −ρ−qβqvk(XY t)−1 = −ρ−qβqvk(uwt)−1g−1 ≡

((αqβq+βq+1ρ−q)vk+1−βqvk+2)g−1 = (αqβq+βq+1ρ−q)vk+1−βqvk+2. Since
βq+1 = ρ + ρq, we see that −ρ−qβqvk(XY t)−1 ≡ (αqβq + 1 + ρ1−q)vk+1 −
βqvk+2. Note that vk+1(XY t)−1 ≡ (αqβq +1)vk+1−βqvk+2 (mod Vk). This
shows (7), for S = XY t.

Let v ∈ Vk, such that v(gt
1)
−1g = vk. Then, modulo Vk,

−ρ−qβqv(X−1Y t)−1 = −ρ−qβqvk(u−1wt)−1

≡ ((βq+1ρ−q − αqβq)vk+1 − βqvk+2)

= (1− αqβq + ρ1−q)vk+1 − βqvk+2.

Note that vk+1(X−1Y t)−1 ≡ (1−αqβq)vk+1−βqvk+2 (mod Vk). This shows
(7), for S = X−1Y t.

Next

−ρ−qβqvk(Y t)−1 = −ρ−qβqvk(gt
1)
−1(wt)−1 = −ρ−qβqvk(wt)−1

= −ρ−qβqvk + ρ−qβq+1vk+1 − βqvk+2

= −ρ−qβqvk + (1 + ρ1−q)vk+1 − βqvk+2.

Also vk+1(Y t)−1 = vk+1 − βqvk+2, thus (7) holds for S = Y t and (7) is
proved.
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For (8), set W = 〈O(v1, S)〉. Set also Z = Bt
1, if S = Y t and Z = Bt

1B
ε,

if S = XεY t. By (5), Vk ⊆ W. Let η, µ ∈ F be as in (7iii). Since Vk ⊆ W,

ρ1−qvk+1 + ηvk+1 + µvk+2 ∈ W.(ii)

Also, by (3), (4) and (7i), vk+1diag (Ik, Z) = ηvk+1 + µvk+2. Thus, by (ii),
ρ1−qvk+1 + vk+1diag (Ik, Z) ∈ W, now (8) follows from (4), (5) and 1.17
(taking S−1 in place of S in 1.17); note that 〈O(vk+1,diag (Ik, Z))〉 =
〈vk+1, . . . , vn〉.

Finally, for (9), note that if β 6= 0, then ρ1−q 6= −1, since 0 6= βq+1 =
ρ + ρq. Since 1 is the only root of FBt

1
, −ρ1−q is not a root of FBt

1
, so (9)

follows from (8).

5.12. Let β1, . . . , βk−1, γ1, . . . , γk−1 ∈ K∗. Let also α, θ, β, ρ ∈ F∗ such
that αq+1 = θ + θq, βq+1 = ρ + ρq. Set a = ak(β1, . . . , βk−1), a1 =
ak(γ1, . . . , γk−1), b = bk(β1 . . . , βk−1), b1 = bk(γ1, . . . , γk−1), g = diag (a, 1,
b−1), g1 = diag (a1, 1, b−1

1 ), u = u(α, θ), w = u(β, ρ), X = gu and Y = g1w.
Finally let ε ∈ {−1, 1}.

Let S ∈ {Y t, XεY t} and R ∈ ∆≤2(X) ∩∆≤1(S). Then v1 is a character-
istic vector of R.

Proof. The proof is almost identical to the proof of 4.3. Note first that, by
5.11.3, X satisfies the hypotheses of 1.13. Let h ∈ ∆≤1(X)∩∆≤1(R). Then,
[h, X] = 1, so by 1.13, there exists 0 6= β ∈ K, and 1 ≤ r ≤ n− 1, such that
h− βIn ∈ Tn(r). We use 1.15. We take in 1.15, T = h− βIn. Note that R
commutes with h and hence with T .

Suppose first that r ≤ k − 1, we take in 1.15, j = r = m and ` = 0.
Notice that by 5.11.5, hypothesis (a) of 1.15 is satisfied, hypothesis (b) and
(c) of 1.15 are satisfied, by definition and we observed that hypothesis (e)
of 1.15 is satisfied. Finally, since R centralizes T , Vr is R-invariant. Hence
1.15 completes the proof in this case.

Suppose next that r ≥ k, we take in 1.15, j = k − 1, ` = 1 and m = k, if
r = k and m = dim(im (T )), if r > k. Notice that Vm is R-invariant. Also,
by 5.11.6, Sk,n 6= 0, so clearly vk 6∈ ker(ST ) and hypothesis (c) of 1.15 holds.
Thus 1.15 completes the proof in this case too.

5.13. For i ∈ {1, 2, 3, 4}, let αi ∈ F∗ and set Bi = uk+1
1 (−αi)diag (1, bk).

Let also ε ∈ {1,−1} and 1 6= γ ∈ F∗. Then:

(1) If FBt
1Bε

2
[γ] = 0 = FBt

3Bε
4
[γ], then α1α2 = α3α4.

(2) Suppose α2
1 6∈ K and α2 = αq

1. Then γ is a root of at most one of the
polynomials FBt

1Bε
1
, FBt

2Bε
2

and FBt
1Bε

2
.

(3) Suppose α2
1 6∈ K and α2 = αq

1. Then either we can find j ∈ {1, 2}, such
that FBt

jBj
[γ] 6= 0 6= FBt

jB−1
j

[γ], or for {B,C} = {B1, B2}, FBtC [γ] 6=
0 6= FBtC−1 [γ].
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(4) If char (K) 6= 2 and q > 3, then we can find α1, α2 ∈ K∗, such that
FBt

1B2
[−1], FBt

1B−1
2

[−1], FBt
2B1

[−1], FBt
2B−1

1
[−1] are all distinct from 0.

(5) Suppose that q = 2, and that α1 6∈ K. Then, FBt
1B−1

1
[γ] 6= 0. In

particular, we can pick α1 ∈ F−K such that FBt
1B1

[γ] 6= 0 6= FBt
1B−1

1
[γ].

Proof. First observe that, for 1 ≤ i ≤ 4, Bi = bk+1(αi, 1, . . . , 1). We mention
that for small values of k (k = 1, 2 or 3), direct calculations show (1). For
the general case in (1), suppose FBt

1B2
[γ] = 0 = FBt

3B4
[γ]. Then, by 2.12.4,

(γ − 1)Fk[γ]− α1α2γGk−1[γ] = 0 = (γ − 1)Fk[γ]− α3α4γGk−1[γ]. Suppose
α1α2 6= α3α4. Then Gk−1[γ] = 0, and as γ 6= 1, Fk[γ] = 0. This contradicts
2.6.6. Using 2.12.5, it is easy to see that if FBt

1B−1
2

[γ] = 0 = FBt
3B−1

4
[γ], then

α1α2 = α3α4. (2) follows immediately from (1), noticing that α2
1, α

2q
1 and

αq+1
1 are distinct. (3) follows from (2) noticing that, by 2.12.4 and 2.12.5,

FBt
1Bε

2
[γ] = FBt

2Bε
1
[γ].

For (4), just choose α1, α2 ∈ K∗ such that −1 is not a root of the poly-
nomial FBt

1B2
= FBt

2B1
= (λ − 1)Fk − α1α2λGk−1 nor of the polynomial

FBt
1B−1

2
= FBt

2B−1
1

= (λ− 1)Qk + α1α2λQk−1, using (1).
For (5), note that as q = 2, 2.12.5 shows that, FBt

1B−1
1

[λ] = (λ + 1)Qk +

α2
1λQk−1 = λk+1 + 1 + α2

1λQk−1. Suppose γ = α1. Then (since α3
1 = 1),

FBt
1B−1

1
[α1] = αk+1

1 + 1 + Qk−1[α1] = αk+1
1 + αk−1

1 + αk−2
1 + · · ·+ α1. Recall

that α2
1+α1+1 = 0. Thus, if k−1 ≡ 0 (mod 3), FBt

1B−1
1

[α1] = α2
1+0 = α2

1, if
k−1 ≡ 1 (mod 3), then FBt

1B−1
1

[α1] = 1+α1 = α2
1, and if k−1 ≡ 2 (mod 3),

FBt
1B−1

1
[α1] = α1 + α2

1 + α1 = α2
1. Suppose γ = α2

1. Then, FBt
1B−1

1
[α2

1] =

α2k+2
1 + 1 + α1Qk−1[α2

1]. Note that if k ≡ 0 (mod 3), Qk−1[α2
1] = 0, if k ≡ 1

(mod 3), Qk−1[α2
1] = 1 and if k ≡ 2 (mod 3), Qk−1[α2

1] = α1. Thus, if
k ≡ 0 (mod 3), then FBt

1B−1
1

[α2
1] = α2

1 + 1 + α1 · 0 = α1, if k ≡ 1 (mod 3),
FBt

1B−1
1

[α2
1] = α1 + 1 + α · 1 = 1 and if k ≡ 2 (mod 3), FBt

1B−1
1

[α2
1] =

1 + 1 + α1 · α1 = α2
1. This shows first part of (5). The second part of (5)

follows from (1), just choose α1 ∈ F−K so that FBt
1B1

[γ] 6= 0.

Corollary 5.14. (1) Let α1 ∈ Ξ and let θ ∈ F such that θ + θq = αq+1
1 .

Then we can pick α, β ∈ {α1, α
q
1} such that if we set X = X(α, θ) and

Y = X(β, θ), then for {T,Z} = {X, Y } and S ∈ {TZt, T−1Zt, T t, Zt},
〈O(v1, S)〉 = V . Further, if q = 2, α = β.

(2) Suppose q = 4 and let θ ∈ F∗. Suppose α1, α2, α3 ∈ F∗ are distinct
elements such that θ + θq = αq+1

i , 1 ≤ i ≤ 3. Then there exist β ∈
{α1, α2, α3} such that for X = X(β, θ), and S ∈ {XXt, X−1Xt, Xt},
〈O(v1, S)〉 = V .

(3) If q 6= 3 is odd, or q = 3 and k 6≡ 1 (mod 3), then there are α, β ∈ K∗,
such that if we set X = X(α, θ) and Y = X(β, ρ), with θ = 1

2α2 and
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ρ = 1
2β2, then for {T,Z} = {X, Y } and S ∈ {TZt, T−1Zt, T t, Zt},

〈O(v1, S)〉 = V .
(4) If q = 3 and k ≥ 4, let a = ak(1, 1,−1, 1, 1, . . . , 1) and b = bk(1, 1,−1,

1, 1, . . . , 1). Let X = diag (ak, 1, b−1
k )u(1, 1

2) and Y = diag (a, 1,

b−1)u(1, 1
2). Then for {T,Z} = {X, Y } and S ∈ {TZt, T−1Zt, T t, Zt},

〈O(v1, S)〉 = V .

Proof. For (1), pick α, β ∈ {α1, α
q
1}. Let B = uk+1

1 (−αq)diag (1, bk) and
B1 = uk+1

1 (−βq)diag (1, bk). By 5.11.8, for ε ∈ {1,−1}, 〈O(v1, X
εY t)〉 = V ,

iff −θ1−q is not a root of FBt
1Bε . Note that since θ + θq = αq+1

1 6= 0, θ1−q 6=
−1. Hence, using 5.13.3 (when q > 2, notice that α2

1 6∈ K follows from the
equation αq

1+α1 = αq+1
1 ), or 5.13.5 (when q = 2), we can pick α, β ∈ {α1, α

q
1}

such that −θ1−q is not a root of FBtBε
1

and not a root of FBt
1Bε (with α = β

when q = 2, by 5.13.5). Of course, by 5.11.9, 〈O(v1, Y
t)〉 = V = 〈O(v1, X

t)〉,
this shows (1).

The proof of (2) is similar. Setting Xi = X(αi, θ) and

Bi = uk+1
1 (−αq

i )diag (1, bk), 1 ≤ i ≤ 3,

we see, using 5.11.8, that for ε ∈ {1,−1}, 〈O(v1, X
ε
i X

t
i )〉 = V , iff −θ1−q is

not a root of FBt
iB

ε
i
. Again we observe that θ1−q 6= −1. Further, since α1, α2

and α3 are distinct, also, α2q
1 , α2q

2 and α2q
3 are distinct, so by 5.13.1, there

exists 1 ≤ i ≤ 3, such that γ = −θ1−q is not a root of the polynomial FBt
iBi

and FBt
iB

−1
i

.

For (3), notice first that, by 5.3.5, given α ∈ K∗, if we set θ = θ(α) = 1
2α2,

then X(α, θ) ∈ L and θq−1 = 1. Hence if q > 3, (3) follows from 5.11.8 and
5.13.4 (in the same way as we proved (1) and (2), noticing that since θ ∈ K∗,
θ1−q = 1), and if q = 3, take α = β = 1 and use 5.6.1. Finally (4) follows
similarly using 5.11.8 and 5.6.2.

Theorem 5.15. (1) We can pick θ, α, β ∈ F, with θ + θq = αq+1 = βq+1,
such that if we set X = X(α, θ) and Y = X(β, θ), then:
(i) For {T,Z} = {X, Y } and S ∈ {TZt, T−1Zt, T t, Zt}, 〈O(v1, S)〉 =

V and:
(ii) For S ∈ {TZt, T−1Zt}, α(FS , 1) 6= 0.

(2) The commuting graph ∆(L′) is balanced.

Proof. For (1), suppose first that q 6= 2, 4. Then, by 5.10.10iii, we can find
α1 ∈ Ξ, and θ ∈ F−K, with θ+θq = αq+1

1 , such that for all α, β ∈ {α1, α
q
1},

if we set X = X(α, θ) and Y = X(β, θ), α(FT εZt , 1) 6= 0, for T,Z ∈ {X, Y }
and ε ∈ {1,−1}. Now, use 5.14.1, to pick α, β ∈ {α1, α

q
1}, such that for

{T,Z} = {X, Y } and S ∈ {TZt, T−1Zt, T t, Zt}, 〈O(v1, S)〉 = V . This
shows (1), in case q 6= 2, 4.
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Suppose next that q = 2. Let α ∈ F − K. Then, by 5.10.10i, for
X1 ∈ {X(α, α), X(αq, α)}, and ε ∈ {1,−1}, α(FXε

1Xt
1
, 1) 6= 0. By 5.14.1,

there exists X ∈ {X(α, α), X(αq, α)}, such that V = 〈O(v1, S)〉, for S ∈
{XXt, X−1Xt, Xt}, so (1) holds in case q = 2, choosing Y = X. The proof
of (1) in case q = 4, is similar,using 5.10.10ii and 5.14.2.

We proceed with the proof of (2). Set Λ = ∆(L). Suppose L ' SU(n, q)
and let X, Y ∈ L be as in (1). We show that BΛ(X, Y t) holds. The proof
that BΛ(Y, Xt) holds is symmetric and by 1.9, Λ is balanced. Let S ∈
{XY t, X−1Y t, Y t}. Suppose R ∈ Λ≤2(X) ∩ Λ≤1(S). By 5.12,

v1 is a characteristic vector of R.(∗)

Now if S = Y t, then S commutes with R, so since V = 〈O(v1, Y
t)〉, (∗)

implies that R ∈ Z(L), a contradiction. Suppose S ∈ {XY t, X−1Y t}. Then,
by (ii) of (1), gcd {{i : α(FS , i) 6= 0} ∪ {n}} = 1, so, by (∗) and 1.14.5,
R ∈ Z(L), a contradiction.

Suppose L ' SOn(q). Pick X, Y as in 5.14.3 and 5.14.4. Since Z(L) = 1,
to show BΛ(X, Y t) holds, it suffices, by 1.14.1, to show that V = 〈O(v1, S)〉,
for S ∈ {XY t, X−1Y t, Y t}, but this holds by the choice of X, Y . By sym-
metry also BΛ(Y, Xt) holds and the proof of the theorem is complete.

6. The Orthogonal Groups in odd characteristic and even
dimension.

In this section F is a field of odd order and n = 2k ≥ 8 is even. Let J be
the following n× n matrix:

J =



0 0 · · · · 0 1 0
0 0 · · · 0 1 0 0
0 0 · · 0 1 0 0 0
· · · · · · · · ·
· · · · · · · · ·
0 0 1 0 · · · · ·
0 1 0 · · · · · ·
1 0 · · · · · 0 0
0 0 · · · · · 0 ν


.

Let L ' SOε(F) be the subgroup of SLn(F) defined by L = {x ∈ SLn(F) :
xJxt = J}. Of course, for a suitable choice of ν (ν = (−1)k) ε = + and for
a suitable choice of ν ((−1)kν a nonsquare in F) ε = −.

We continue with the notation of Section 1. In addition we let f : V ×V →
F be a bilinear form whose matrix with respect to the basis B = {v1, . . . , vn}
is J .
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6.1. Let u ∈ GLn(q) be a matrix of the form

u =



1 0 0 · · · · 0 0
α2 1 0 0 · · · 0 0
∗ α3 1 0 0 · · 0 0
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
∗ · · · ∗ αn−2 1 0 0
∗ · · · · ∗ αn−1 1 0
0 0 0 · · · · 0 1


αi ∈ F∗, for all i.

Let h ∈ GL(n, F)− Z(GL(n, F)) be a matrix commuting with u. Then:

(1) h has the form

h =
[
M E
F c

]
where M is an (n−1)×(n−1) matrix commuting with Mn,n(u), c ∈ F∗,
E is a column (n− 1)× 1 matrix of the form (0, 0, . . . , ρ)t, F is a row
1× (n− 1) matrix of the form (θ, 0, . . . , 0).

(2) Suppose u, h ∈ L, and let ρ, θ ∈ F as in (1). Then there exists ε ∈
{1,−1} such that hi,i = ε, for all 1 ≤ i ≤ n. Further, θ = −ρf(vn, vn).

(3) If u, h ∈ L, then there exists ε ∈ {1,−1}, and 1 ≤ r′ < n−1, such that

h− εIn =
[
t′ E
F 0

]
with t′ ∈ Tn−1(r′) (see notation in 1.1.10).

(4) Suppose u, h ∈ L and let t′ and r′ be as in (3) and ρ as in (2). Suppose
that either ρ = 0, or r′ 6= k − 1. There exists ε ∈ {1,−1}, i ∈ {1, 2}
and 1 ≤ r < n− 1, such that

(h− εIn)i =
[

t 0n−1,1

01,n−1 0

]
where t ∈ Tn−1(r).

(5) Suppose u, h ∈ L and let t′ and r′ be as in (3) and ρ, θ as in (2).
Suppose r′ = k − 1 and ρ 6= 0. Then:

(5i) k is even.
(5ii) If, in addition, (h−εIn)2 = 0, then we may assume that f(vn, vn) =

1 (so ν = 1) and if we set d = t′k,1, then d2 = θ2.

Proof. Note that h commutes with the matrix u − In, and clearly for 1 ≤
i ≤ n− 1, im (u− In)i = Vn−i−1. Since h commutes with (u− In)i, h fixes
im (u− In)i. Thus h fixes Vi, for 1 ≤ i ≤ n− 2. Also ker(u− In) = 〈v1, vn〉,
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so h fixes 〈v1, vn〉, thus h has the form

h =
[
M E
F c

]
with M some (n − 1) × (n − 1) matrix and E,F and c as in (1). Let
u1 = Mn,n(u). Then

hu =
[
Mu1 E
F c

]
and uh =

[
u1M E
F c

]
this shows (1).

For (2), note that vnh = θv1 + cvn, thus 0 6= f(vn, vn) = f(vnh, vnh) =
c2f(vn, vn). Thus c = ε, for some ε ∈ {1,−1}. Also, since u1 commutes
with M , 1.13.2 implies that there exists β ∈ F, such that hi,i = β, for all
1 ≤ i ≤ n − 1. Since vk is a nonsingular vector, it is easy to check that we
must have β = 1 or −1. Since det(h) = 1, β = ε and the first part of (2) is
proved. For the second part we have 0 = f(vn−1, vn) = f(vn−1h, θv1+εvn) =
f(v′ + εvn−1 + ρvn, θv1 + εvn), with v′ ∈ Vn−2. But f(v1, v

′) = f(vn, v′) = 0.
Thus 0 = f(vn−1, vn) = f(εvn−1 +ρvn, θv1 + εvn) = εθ + ερf(vn, vn) and the
second part of (2) is proved.

Next note that by (1), u1 := Mn,n(u), commutes with M so, by 1.13 and
(2), (M − εIn−1) ∈ Tn−1(r′), for some 1 ≤ r′ < n− 1. Thus (3) follows from
(1) and (2).

For (4), we use (3). If ρ = 0, then, by (2) also θ = 0, and so by (3), (4)
holds with i = 1, r = r′ and t = t′. Suppose ρ 6= 0. Note that EF is an
(n−1)×(n−1) matrix whose (n−1, 1)-entry is ρθ and for (i, j) 6= (n−1, 1),
(EF )ij = 0. Further t′E = 0n−1,1 (the last column of t′ is zero), Ft′ = 01,n−1

(the first row of t′ is zero) and FE = 0. Thus

(h− εIn)2 =
[
t′ E
F 0

]
·
[
t′ E
F 0

]
=

[
(t′)2 + EF 0n−1,1

01,n−1 0

]
.

Since we are assuming that ρ 6= 0 and r′ 6= k− 1, either r′ > k− 1, in which
case (t′)2 = 0, and t = EF ∈ Tn−1(n − 2). Or r′ < k − 1, in which case,
(t′)2 ∈ Tn−1(r), for some 1 < r < n− 2, and then t := (t′)2 + EF ∈ Tn−1(r).
This shows (4).

Finally assume the hypotheses of (5). Suppose first that k is odd. Let
j = k+1

2 , then r′ + j = (k − 1) + k+1
2 = 3k−1

2 and t′r′+j,j 6= 0. But
vr′+jh = v′ + t′r′+j,jvj + εvr′+j , with v′ ∈ Vj−1. But 0 = f(vr′+j , vr′+j) =
f(vr′+jh, vr′+jh) = 2εt′r′+jf(vj , vr′+j) 6= 0, a contradiction. Hence k is
even. To prove (5ii), set d = t′k,1. We claim that t′n−1,k = d. Indeed,
0 = f(vk, vn−1) = f(vkh, vn−1h) = f(dv1 + εvk, t

′
n−1,1v1 + · · · + t′n−1,kvk +

εvn−1 + ρvn) = εd + (−1)k+1εt′n−1,k, thus t′n−1,k = (−1)kd = d. Also the
(n − 1, 1)-entry of (t′)2 is d2 and the remaining entries of (t′)2 are zero.
Since (h− εIn)2 = 0, we must have (see the proof of (4)), (t′)2 +EF = 0, so
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d2 + θρ = 0. But θρ = −ρ2f(vn, vn) (see (2)), so d2 = ρ2f(vn, vn). Hence,
f(vn, vn) is a square in F, so we may take f(vn, vn) = 1. Then d2 = ρ2, and
since, by (2), θ = −ρ, d2 = θ2.

Notation. For the remainder of this section, we fix the following nota-
tion. Let β1, . . . , βk−2, γ1, . . . , γk−2 ∈ F∗. Let also α, β ∈ F∗. We set a =
ak−1(β1, . . . , βk−2), a1 = ak−1(γ1, . . . , γk−2), b = bk−1(β1, . . . , βk−2), b1 =
bk−1(γ1, . . . , γk−2), g = diag (a, 1, b−1), g1 = diag (a1, 1, b−1

1 ), B = bk(α, β1,
. . . , βk−2), B1 = bk(β, γ1, . . . , γk−2), u = un−1(α, 1

2α2), w = un−1(β, 1
2β2)

(notation as in 5.4.1), X = gu and Y = g1w. Finally, we let X = diag (X , 1)
and Y = diag (Y, 1).

6.2. Let ε′ ∈ {1,−1}, and S ∈ {Yt,X ε′Yt}. Set S = diag (S, 1) and let
R ∈ ∆≤2(X) ∩∆≤1(S). Then v1 is characteristic vector of R.

Proof. Let h ∈ ∆≤1(X) ∩ ∆≤1(R). Note that by 5.11.3, X satisfies the
hypothesis for u in 6.1, there exists ε ∈ {−1, 1} and 1 ≤ r′ < n − 1, such
that

h− εIn =
[
t′ E
F 0

]
with t′ ∈ Tn−1(r′).

We’ll show that there exists i ∈ {1, 2} such that if we set T := (h− εIn)i,
then T, S and R satisfy all the hypotheses of 1.15, for a suitable choice of
j,m and `. Then the lemma follows from 1.15. First, R−1TR = T and
[R,S] ∈ Z(L), so hypothesis (e) of 1.15 is satisfied. Note next that by
5.11.5:

S satisfies hypothesis (a) of 1.15 for any j ≤ k − 2.(i)

We now distinguish two cases as follows.

Case 1. There exists i ∈ {1, 2} and 1 ≤ r < n− 1, such that

(h− εIn)i =
[

t 0n−1,1

01,n−1 0

]
where t ∈ Tn−1(r).

Let T := (h− εIn)i, with i as above. Observe that Mn,n(ST ) = St, hence
we get from 5.11.6 (replacing k by k − 1) that:

If r ≥ k − 1, then vk−1 6∈ ker(ST ) and Vk−2 ⊆ ker(ST ).(ii)

Next observe that if r > k−1 (and (ii) necessarily holds), n−r−1 ≤ k−1
and im (T ) = Vn−r−1 is R-invariant. Thus:

If r > k − 1, then n− r − 1 ≤ k − 1 and Vn−r−1 is R-invariant.(iii)

Hence if r > k − 1, take j = k − 2, m = n− r − 1 and ` = 1 and, by (i),
(ii) and (iii), all hypotheses of 1.15 are met, so we are done.
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Next observe that if r ≤ k − 1, then ker(T ) = 〈v1, . . . , vr, vn〉 and the
radical of the form f , reduced to ker(T ) is Vr. Thus:

If r ≤ k − 1, then Vr is an R-invariant subspace and vr+1 /∈ ker(T ).(iv)

Thus if r = k − 1, take m = r, j = k − 2 and ` = 1, and, by (i), (ii) and
(iv) we are done, while if r < k − 1, take j = m = r and ` = 0 and observe
that by (i) and (iv) we are done.

Case 2. r′ = k − 1, ρ 6= 0 6= θ, ν = f(vn, vn) = 1 and for d = t′k,1, d2 = θ2.
Note that by 6.1.4 and 6.1.5, either Case 1 holds or Case 2 holds. Let

T = X − εIn. Write d = −ε′′θ, with ε′′ ∈ {1,−1}. Observe that ker(T ) =
{v1, . . . , vk−1, vn + ε′′vk}. First we claim that:

There exists v ∈ Vk−1 such that modulo Vk−1, we have(v)

vkS
−1 ≡ ηvk + µvk+1, with η ∈ F and µ ∈ F∗

{(vn + ε′′vk)− ε′′v}S−1 ≡ vn − ε′′vk.

Indeed, we use 5.11.7. We take in 5.11, n = 2k− 1 = 2(k− 1) + 1, α, β, and
ρ (of 5.11) in the fixed field of σq (so ρ1−q = 1). Thus, for all possibilities of
S the following holds:

There exists v ∈ Vk−1, η ∈ F and µ ∈ F∗ such that(vi)

vkS−1 ≡ ηvk + µvk+1 (mod Vk−1)

vS−1 ≡ (η + 1)vk + µvk+1 (mod Vk−1).

Where in all cases µ = −β. If S = Yt, η = 1, while

if S = X ε′Yt, η = 1 + ε′αβ.

Thus, by (vi), modulo Vk−1 we get that

{(vn + ε′′vk)− ε′′v}S−1

≡ vn + ε′′{ηvk + µvk+1} − ε′′{(η + 1)vk + µvk+1}
≡ vn + {ηε′′ − (η + 1)ε′′}vk + (µε′′ − µε′′)vk+1

≡ vn − ε′′vk.

This shows (v).
Let v and ε′′ be as in (v). Since v, vn + ε′′vk ∈ ker(T ), U := 〈vS−1, (vn +

ε′′vk)S−1〉 ⊆ ker(ST ). Notice that (v) implies that vn − ε′′vk ∈ U + Vk−1

and also that vS−1 ≡ µvk+1 (mod Vk) (µ as in (v)). Hence we conclude
that U ∩ ker(T ) = (0). Since dim(U) = 2, and since dim(ker(T )) = k, we
get that dim(ker(T ) ∩ ker(ST )) ≤ k − 2. But Vk−2 ⊆ ker(ST ) and hence
ker(T ) ∩ ker(ST ) = Vk−2. Clearly ker(T ) ∩ ker(ST ) is R-invariant, so we
conclude that:

Vk−2 is R-invariant.(vii)
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Observe that (ii) holds here as well, since Mn,n(ST ) = St, holds here as
well. Hence if we take m = k − 2 = j and ` = 1, we see that all hypotheses
of 1.15 hold here as well and the proof of 6.2 is complete.

6.3. Let ε ∈ {1,−1} and let S ∈ {Y t, XεY t}. Set S = Mn,n(S) and suppose
〈O(v1,S)〉 = Vn−1. Then dΛ(X, S) > 3, where Λ = ∆(L).

Proof. Let R ∈ ∆≤2(X) ∩ ∆≤1(S). By 6.2, v1 is a characteristic vector
of R and since 〈O(v1,S)〉 = Vn−1, Vn−1 is an R-invariant subspace. Thus
V⊥n−1 = 〈vn〉 is R-invariant as well. Set R1 = Mn,n(R). Since [R,S] ∈ Z(L),
[R1,S] = ±In−1 and since det([R1,S]) = 1, [R1,S] = In−1. Thus [R,S] = 1,
and since v1 is a characteristic vector of R and 〈O(v1,S)〉 = Vn−1, R1 =
±In−1. Of course Rn,n ∈ {1,−1} and since det(R) = 1, R ∈ Z(L), a
contradiction.

Theorem 6.4. ∆(L) is balanced.

Proof. In 5.14.3 and 5.14.4, we showed that we can pick X ,Y such that for
{T ,Z} = {X ,Y}, ε ∈ {1,−1} and S ∈ {T t, T εZt}, 〈O(v1,S)〉 = Vn−1.
Hence the theorem follows from 6.3 and by definition.

7. The Orthogonal Groups in even dimension and even
characteristic.

In this section n = 2k ≥ 8 is even and F is a field of even order. We keep
the notation of Section 1. In particular V is a vector space of dimension n
over F and B = {v1, . . . , vn} is our fixed basis of V . Let f be the symplectic
form on V whose matrix with respect to B is

J =



0 0 · · · · 0 1
0 0 · · · 0 1 0
0 0 · · 0 1 0 0
· · · · · · · ·
· · · · · · · ·
0 0 1 0 · · · ·
0 1 0 · · · · ·
1 0 · · · · · 0


.

For ε ∈ {+,−} let Qε be the quadratic form on V defined as follows. First
Qε(v + w) = Qε(v) + Qε(w) + f(v, w), for all v, w ∈ V . Second, Qε(vi) = 0,
for all 1 ≤ i ≤ k−1 and all k+2 ≤ i ≤ n. We define Qε(vk) = Qε(vk+1) = νε,
where νε = 0, when ε = + and when ε = −, νε 6= 0, is such that νελ

2 +λ+νε

is an irreducible polynomial in F[λ]. Of course V is an orthogonal space
of type ε in the respective cases. We let Q = Qε. We denote by Qε(V,Q)
the full orthogonal group of type ε ∈ {+,−} in the respective cases. We
let L be the commutator subgroup of Oε(V,Q). Thus L is a simple group
and L has index 2 in Oε(V,Q). The purpose of this section is to prove
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Theorem 1.6 for L. For that we’ll show that L is closed under transpose
(see 1.4.3) and indicate an element X ∈ L such that BΛ(X, Xt) holds,
where Λ = ∆(L). Then, by 1.9.2, Λ is balanced. We’ll define X shortly.
The following Theorem is useful.

7.1. Let g ∈ Oε(V,Q). Then g ∈ L if and only if dim CV (g) is even.

Proof. See [3], Theorem 3.

7.2. L is closed under transpose.

Proof. Regard J above as an element of GL(V ). Then J is an involution
and J t = J (J is symmetric). We claim that J ∈ Qε(V,Q). Indeed JJJ t =
J ∈ O(V, f) and since viJ = vn+1−i, for all 1 ≤ i ≤ n, J preserves the
quadratic form Q, since in both types Q(vi) = Q(vn+1−i). But for g ∈ L,
gt = Jg−1J , so gt ∈ L.

Notation 7.3. (1) Let g ∈ GL(V ) such that g = diag (Ik−2, s, Ik−2),
where s is some 4× 4 matrix. We denote s by s(g).

(2) Throughtout this section u := diag (Ik−2, s, Ik−2), where

s = s(u) =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 .

(3) Throughout this section we let

g = diag (ak, b
−1
k )

X = gu

where for m ≥ 1, am and bm are as in 1.1.9. Note that since char (F) =
2, am = bm.

(4) We denote by C, the ordered basis (w1 . . . , wn), where wi = vi, for
1 ≤ i ≤ k − 2, wk−1 = vk−1 + vk + vk+1, wi = vi+2, for k ≤ i ≤ n− 2,
wn−1 = vk + vk+1 and wn = vk + vk+2. Thus

C = (v1, v2, . . . , vk−2, vk−1 + vk + vk+1, vk+2, . . . , vn, vk + vk+1, vk + vk+2).

7.4. (1)

s(u) =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 (s(u))t =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 .

(2) u−1 = u.
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(3)

s(uut) =


1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

 .

(4)

s((uut)−1) = s(utu) =


0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1

 .

(5) s(u−1ut) = s(uut) and s((u−1ut)−1) = s(utu).
(6) [gt, u] = 1.

Proof. (1) is by definition. Clearly u−1 = u. For (3) and (4), we compute

s(uut) =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 ·


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 =


1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

 .

s((uut)−1) =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ·


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 =


0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1

 .

(5) follows from (2). For (6) we have, vig
tu = vig

t = viugt, for i /∈ {k + 1,
k + 2}. vk+1g

tu = (vk+1 + · · ·+ vn)u = vk−1 + vk + · · ·+ vn and vk+1ugt =
(vk−1 + vk+1)gt = vk−1 + vk + · · · + vn. vk+2g

tu = (vk+2 + · · · + vn)u =
vk + vk+2 + · · ·+ vn and vk+2ugt = (vk + vk+2)gt = vk + vk+2 + · · ·+ vn.
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7.5. (1)

X =



1 0 · · · · · 0
1 1 0 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 1 0
0 · · · · 0 1 1

1 0 1 0 · · · · · 0
1 1 1 1 0 · · · · 0
1 1 1 1 1 0 · · · 0
1 1 1 1 1 1 0 · · 0
· · · · · · · · · ·
· · · · · · · · · ·
1 1 1 · · · · 1 1 0
1 1 1 · · · · 1 1 1


where the blank spots are zeros. Also the upper submatrix of X is a
k × k matrix and the lower submatrix of X is a k × (k + 2) matrix.

(2) The matrix of X with respect to the basis C is

[X]C =



1 0 · · · · 0
1 1 0 · · · 0
0 1 1 0 · · 0
0 0 1 1 0 · 0
· · · · · · ·
· · · · · · ·
0 · · 0 1 1 0
0 · · · 0 1 1

1 1 0 · · · · 0
1 1 1 0 · · · 0
1 1 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
1 1 · · · · 1 0
1 1 · · · · · 1

1 0
1 1


where the blank spots are zeros. Also the upper submatrix of [X]C is a
(k− 1)× (k− 1) matrix, the middle submatrix of [X]C is a (k− 1)× k
matrix and of course the lower submatrix of [X]C is a 2× 2 matrix.

(3) X ∈ L.
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Proof. (1) and (2) are easy calculations and we omit the details. Next,
since Vk−1 and 〈vk+2, . . . , vn〉 are totally singular subspaces (in both types),
Q(viX) = 0, for 1 ≤ i ≤ k − 1. Also, for k + 2 ≤ i ≤ n, Q(viX) =
Q(vk−1 + vk + vk+1 + vk+2 + · · · + vi) = Q(vk−1 + vk + vk+1 + vk+2) =
Q(vk−1 + vk+2) + Q(vk + vk+1) = 1 + 1 = 0. Further, for s ∈ {k, k + 1},
Q(vsX) = Q(vk−1 + vs) = Q(vs).

We leave it for the reader to verify that XJXt = J , so X ∈ O(V, f).
Since CV (X) = 〈v1, vk + vk+1〉, X ∈ L, by 7.1.

7.6. Let B be the following (k + 1)× (k + 1) matrix

B =



1 0 · · · · · 0
0 1 0 · · · · 0
1 1 1 0 · · · 0
0 0 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 1 0
0 · · · · 0 1 1


.

Then:

(1) B−1 =



1 0 · · · · · 0
0 1 0 · · · · 0
1 1 1 0 · · · 0
1 1 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
1 1 · · · · 1 0
1 1 · · · · · 1


.

(2)

BtB =



0 1 1 0 · · · 0
1 0 1 0 · · · 0
1 1 0 1 0 · · 0
0 0 1 0 1 0 · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 0 1
0 · · · · 0 1 1


BtB−1 =



0 1 1 0 · · · 0
1 0 1 0 · · · 0
0 0 0 1 0 · · 0
0 0 0 0 1 0 · 0
· · · · · · · ·
· · · · · · · ·
0 0 · · · · 0 1
1 1 · · · · 1 1


.
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Proof. (1) is easy to check. For (2), we compute

BtB =



1 0 1 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · 0
0 0 0 1 1 0 · 0
· · · · · · · ·
· · · · · · · ·
0 0 · · · 0 1 1
0 0 · · · · 0 1


·



1 0 · · · · · 0
0 1 0 · · · · 0
1 1 1 0 · · · 0
0 0 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 1 0
0 · · · · 0 1 1



=



0 1 1 0 · · · 0
1 0 1 0 · · · 0
1 1 0 1 0 · · 0
0 0 1 0 1 0 · 0
· · · · · · · ·
· · · · · · · ·
0 · · · 0 1 0 1
0 · · · · 0 1 1


,

BtB−1 =



1 0 1 · · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · 0
0 0 0 1 1 0 · 0
· · · · · · · ·
· · · · · · · ·
0 0 · · · 0 1 1
0 0 · · · · 0 1


·



1 0 · · · · · 0
0 1 0 · · · · 0
1 1 1 0 · · · 0
1 1 1 1 0 · · 0
· · · · · · · ·
· · · · · · · ·
1 1 · · · · 1 0
1 1 · · · · · 1



=



0 1 1 0 · · · 0
1 0 1 0 · · · 0
0 0 0 1 0 · · 0
0 0 0 0 1 0 · 0
· · · · · · · ·
· · · · · · · ·
0 0 · · · · 0 1
1 1 · · · · 1 1


.

7.7. Set a = ak−1 and v = vk +vk+1. Let B be as in 7.6 and let ε ∈ {−1, 1}.
Then:

(1) XXt = guutgt, (XXt)−1 = (gt)−1(utu)g−1.
(2) X−1Xt = uutg−1gt and (X−1Xt)−1 = (gt)−1gutu.

(3) X =
[
a 0k−1,k+1

E B−1

]
with E some (k + 1)× (k − 1) matrix.
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(4) XεXt =
[
aεat R1,2

R2,1 R2,2

]
(XεXt)−1 =

[
R′

1,1 R′
1,2

R′
2,1 BtBε

]
with R′

1,1, R2,2,

R1,2, R
′
1,2, R2,1, R

′
2,1 some (k− 1)× (k− 1), (k +1)× (k +1), (k− 1)×

(k + 1), (k− 1)× (k + 1), (k + 1)× (k− 1), (k + 1)× (k− 1) matrices
respectively. Further, the first k − 2 rows of R1,2 are zero.

(5) Let S ∈ {Xt, XεXt}. Then for 1 ≤ i ≤ k − 2, viS = w + vi+1, with
w ∈ Vi. In particular, Vk−1 ⊆ 〈O(v1, S)〉.

(6) Let S ∈ {Xt, XεXt}. Then vk−1S = w + vn, with w ∈ Vn−1.
(7)(7i) Let S = Xt, then vk−1S

−1 = vk−1 + vk + vk+1 + vk+2, vkS
−1 =

vk + vk+2, and vk+1S
−1 = vk+1 + vk+2.

(7ii) Let S = XXt, then vk−1S
−1 = vk+2, vkS

−1 = vk+1 + vk+2, and
vk+1S

−1 = vk + vk+2.
(7iii) Let S = X−1Xt, then vk−1S

−1 = vk−2+vk+2, vkS
−1 = vk+1+vk+2,

and vk+1S
−1 = vk + vk+2.

(8) 〈O(v1, X
t)〉 = 〈Vk−1, v + vk+2, vk+3, . . . , vn〉. Further if we set W =

〈O(v1, X
t)〉, then W⊥ = 〈v, vk−1 + vk〉, vXt = v and (vk−1 + vk)Xt =

v + (vk−1 + vk).
(9) Let S = XXt. Then:

(9i) If k ≡ 1 or 2 (mod 3), then

〈O(v1, S)〉 = 〈Vk−1, v, vk+2, vk+3, . . . , vn〉.

(9ii) If k ≡ 0 (mod 3), then

〈O(v1, S)〉 =
〈
Vk−1, vk+2, v + vk+3j , v + vk+3j+1,

vk+3j+2, v + vn : 1 ≤ j ≤ 1
3
k − 1

〉
.

Further, in (9ii), if we set W = 〈O(v1, S)〉, then W⊥ = 〈v, v′〉, where

v′ = (v1 + v3) + (v4 + v6) + (v7 + v9) + · · ·+ (vk−2 + vk),

vS = v and v′S = v + v′.
(10) Let S = X−1Xt. Then

〈O(v1, S)〉 = 〈Vk−1, v, vk+2, vk+3, . . . , vn〉.

Proof. (1) is obvious, recalling (see 7.4.2) that u−1 = u. For (2), we have
X−1Xt = u−1g−1utgt. By 7.4.6, [g−1, ut] = 1, and (2) follows. For (3), just
observe that X is given in 7.5.

(4) follows from (3), except that we must show that the first k − 2 rows
of R1,2 are zero. This will of course follow from (5). To show (5), let 1 ≤
i ≤ k− 2. Suppose first that S = Xt. Then viS = viu

tgt = vig
t = vi + vi+1.

Next viuut = vi, so viX
−1Xt = vig

−1gt. Also vig ∈ Vi, so vig(uut) = vig
and viXXt = viggt. We conclude that:

(∗) For 1 ≤ i ≤ k − 2, viX
εY t = vig

εgt.
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Note that aε
k is unipotent, lower triangular and at

k is upper triangular unipo-
tent with (at

k)i,j = 0, for j > i + 1, and (at
k)i,i+1 = 1. This easily implies

(5), for S = XεY t.
To show (6), note that X is given in 7.5.1, so we have vk−1X

t = vk−1+vk+
· · ·+vn. Next, vk−1XXt = vk−1guutgt = (vk−2+vk−1)uutgt = (vk−2+vk−1+
vk+1)gt = vk−2 + vk + vk+1 + · · ·+ vn. Also vk−1X

−1Xt = vk−1uutg−1gt =
(vk−1 + vk+1)g−1gt = (v1 + · · ·+ vk−1 + vk+1)gt = v1 + vk + vk+1 + · · ·+ vn.

For (7) we compute vk−1(Xt)−1 = vk−1(gt)−1(ut)−1 = (vk−1 + vk)ut =
vk−1 + vk + vk+1 + vk+2. vk(Xt)−1 = vk(gt)−1(ut)−1 = vku

t = vk + vk+2

and vk+1(Xt)−1 = vk+1(gt)−1(ut)−1 = (vk+1 + vk+2)ut = vk+1 + vk+2. This
shows (7i). For (7ii) and (7iii), we use (7i). We compute (using (7i)) that,
for ε ∈ {1,−1}, vk−1(XεXt)−1 = (vk−1 + vk + vk+1 + vk+2)X−ε. If ε = 1, we
get (vk−1 + vk + vk+1 + vk+2)u−1g−1 = (vk+1 + vk+2)g−1 = vk+2. If ε = −1,
we get, (vk−1 + vk + vk+1 + vk+2)gu = (vk−2 + vk + vk+2)u = vk−2 + vk+2.

Next, vk(XεXt)−1 = (vk+vk+2)X−ε. If ε = 1, we get, (vk+vk+2)u−1g−1 =
vk+2g

−1 = vk+1 + vk+2. If ε = −1, we get (vk + vk+2)gu = (vk−1 + vk +
vk+1 + vk+2)u = vk+1 + vk+2.

Finally, vk+1(XεXt)−1 = (vk+1 + vk+2)X−ε. If ε = 1, we get (vk+1 +
vk+2)u−1g−1 = (vk−1 + vk + vk+1 + vk+2)g−1 = vk + vk+2. If ε = −1, we get
(vk+1 + vk+2)gu = vk+2u = vk + vk+2. This completes the proof of (7).

For (8), let W = 〈O(v1, X
t)〉. By (5), Vk−1 ⊆ W. Next, by (7i),

vk−1(Xt)−1 = vk−1 + vk + vk+1 + vk+2. Hence

v + vk+2 ∈ W.(i)

Using (3) and 7.6 and computing modulo Vk−1, (v + vk+2)(Xt)−1 ≡ v +
vk+2 + vk+3. Hence

vk+3 ∈ W.(ii)

Now, for k + 3 ≤ i ≤ n− 1, vi(Xt)−1 = vi + vi+1. Hence, by (ii)

〈vk+3, . . . , vn〉 ⊆ W.(iii)

Let W ′ = 〈Vk−1, v + vk+2, vk+3, . . . , vn〉. The reader may easily verify that
〈v, vk−1 + vk〉⊥ = W ′ and that vXt = v. We compute that (vk−1 + vk)Xt =
(vk−1 + vk)utgt = (vk−1 + vk + vk+1 + vk+2)gt = (vk−1 + vk)gt + (vk+1 +
vk+2)gt = vk−1 + vk+1 = v + vk−1 + vk. Hence 〈v, vk−1 + vk〉 is S-invariant,
and it follows that W ′ is S-invariant. It follows that W = W ′ and (8) is
proved.

For (9), let S = XXt and set W = 〈O(v1, S)〉. By (5), Vk−1 ⊆ W. Next,
by (7ii), vk−1S

−1 = vk+2. Hence

vk+2 ∈ W.(i′)
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Next, we mention that all our calculations are done modulo Vk−1 and we
use (4) and 7.6.2. We have vk+2S

−1 ≡ v + vk+3. Thus

v + vk+3 ∈ W.(ii′)

Now vS−1 = vkS
−1 + vk+1S

−1 = v, by (7ii). Thus

vS−1 = v.(iii′)

Next (v + vk+3)S−1 ≡ v + vk+2 + vk+4, hence, by (i′) and (ii′)

v + vk+4 ∈ W.(iv′)

By (ii′) and (iv′)

vk+3 + vk+4 ∈ W.(v′)

Now if k = 4, then (v+vk+2 +vk+4)S−1 ≡ v+v+vk+3 +vk+3 +vk+4 = vk+4,
so v8 ∈ W. It is easy to check now that by (v′), (iv′) and (ii′), (9i) holds.
So from now until the end of the proof of (9) we assume that k ≥ 5.

Next (v + vk+2 + vk+4)S−1 ≡ v + v + vk+3 + vk+3 + vk+5 = vk+5. Thus

vk+5 ∈ W.(vi′)

Suppose k = 5. By the above we get that V4∪{v7, v + v9, v8 + v9, v10} ⊆ W.
Also, v10S

−1 = v9 + v10 ∈ W and (9i) holds. So from now until the end of
the proof of (9) we assume that k ≥ 6.

Now vk+5S
−1 ≡ vk+4+vk+6 ∈ W, thus v+vk+4+vk+4+vk+6 = v+vk+6 ∈

W, so by (ii′)

vk+3 + vk+6 ∈ W.(vii′)

Now for i ≥ k + 3, (vi + vi+3)S−1 ≡ (vi−1 + vi+2) + (vi+1 + vi+4), since
vk+2 + vk+5 ∈ W, we conclude from (vii′) that:

For k + 2 ≤ i ≤ n− 3, vi + vi+3 ∈ W.(viii′)

Now (vn−3 + vn)S−1 ≡ (vn−4 + vn−1) + (vn−2 + vn), so from (viii′) we get

vn−2 + vn ∈ W.(ix′)

Note also that by (i′) and (viii′),

vk+j ∈ W, for all 2 ≤ j ≤ k, such that j ≡ 2 (mod 3).(x′)

Thus, by (x′), if k ≡ 2 (mod 3), vn ∈ W and if k ≡ 1 (mod 3), vn−2 ∈ W.
Thus, by (ix′), if k ≡ 1 or 2 (mod 3), vn−2, vn ∈ W. It follows from (viii′)
that:

If k ≡ 1 or 2 (mod 3) then there exists ν ∈ {0, 1} such that(xi′)

vk+j ∈ W, for all 2 ≤ j ≤ k, such that j ≡ ν (mod 3).

Since vk+3 + vk+4 ∈ W, we get from (iv′), (x′), (xi′) and (viii′) that:

If k ≡ 1 or 2 (mod 3), W ⊇ 〈Vk−1, vk + vk+1, vk+2, vk+3, . . . , vn〉.(xii′)
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Notice that v⊥ = 〈Vk−1, vk+vk+1, vk+2, vk+3, . . . , vn〉 is S-invariant, as vS =
v, so (9i) holds.

Suppose k ≡ 0 (mod 3). We get from (ii′), (iv′) and (viii′), that

v + vk+j ∈ W, for all 3 ≤ j ≤ k such that j ≡ 0 or 1 (mod 3).(xiii′)

This, together with (x′), shows that

W ′ :=
〈
Vk−1, vk+2, v + vk+3j ,

v + vk+3j+1, vk+3j+2, v + vn : 1 ≤ j ≤ 1
3
k − 1

〉
⊆ W.

It easy to check that 〈v, v′〉⊥ = W ′. We show that v′S = v + v′; this implies
that 〈v, v′〉 is S-invariant, and hence W ′ is S-invariant, so (9ii) holds. We
compute that

v′S = {(v1 + v3) + (v4 + v6) + (v7 + v9) + · · ·+ (vk−2 + vk)}guutgt

= {(v1 + v2) + (v4 + v5) + (v7 + v8) + · · ·+ (vk−2 + vk−1) + vk}uutgt

= {(v1 + v2) + (v4 + v5) + · · ·+ (vk−2 + vk−1) + vk + vk+1 + vk+2}gt

= {(v1 + v2) + (v4 + v5) + · · ·+ (vk−2 + vk−1) + vk}gt

+ (vk+1 + vk+2)gt

= {(v1 + v3) + (v4 + v6) + (v7 + v9) + · · ·+ (vk−5 + vk−3) + vk−2}
+ vk+1

= v + v′.

We now turn to the proof of (10). Set S = X−1Xt and W = 〈O(v1, S)〉.
By (5), Vk−1 ⊆ W. Next, by (7iii), vk−1S

−1 = vk−2 + vk+2. Thus

vk+2 ∈ W.(i′′)

Next, for k + 2 ≤ i ≤ n− 1, viS
−1 ≡ vi+1. Hence, by (i′′)

vi ∈ W, for all k + 2 ≤ i ≤ n.(ii′′)

Also vnS−1 ≡ v + vk+2 + · · ·+ vn, so by (ii′′)

v ∈ W.(iii′′)

Again, since v⊥ = 〈Vk−1, v, vk+2, vk+3, . . . , vn〉 and vS = v, (10) holds.

7.8. Let 1 6= h ∈ CL(X). Write H = [h]C and set Z := [X]C. Write

Z = diag (Z1, Z2), with Z1 = M(n−1,n,)(n−1,n)([X]C), and Z2 =
[
1 0
1 1

]
.

Then:
(1) h fixes 〈w1〉, 〈w1, w2〉, . . . , 〈w1, . . . , wn−4〉.
(2) h fixes 〈w1, wn−1〉 and 〈w1, w2, wn−1, wn〉.
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(3) H has the form

H =
[
R E
F P

]
such that:

(3i) In−2 6= R is an (n − 2) × (n − 2) matrix commuting with Z,P =[
1 0
δ 1

]
, with δ ∈ {0, 1}, E is an (n−2)×2 matrix whose first n−4

rows are zero, and En−3,2 = 0. F is a 2× (n−2) matrix whose last
n− 4 columns are zero and F1,2 = 0.

(3ii) Hi,i = 1, for all 1 ≤ i ≤ n.
(3iii) We fix the notation α := En−3,1, β := En−2,1, γ := F2,1. We have

α = En−2,2 = F1,1 = F2,2.
(4) There exists 1 ≤ r ≤ n− 3, such that R − In−2 ∈ Tn−2(r). We fix the

letter r to denote this integer.
(5)

(H − In)2 =
[
(R− In−2)2 + EF E′

F ′ 02,2

]
such that E′is a (n− 2)× 2 matrix with E′

n−2,1 = α(Rn−2,n−3 + δ) (δ
as in (3i) and α as in (3iii)) and E′

ij = 0 otherwise, F ′ is a 2× (n− 2)
matrix such that F ′

2,1 = α(R2,1 + δ) and F ′
ij = 0 otherwise. EF is

an (n − 2) × (n − 2) matrix such that (EF )n−3,1 = α2 = (EF )n−2,2,
(EF )n−2,1 = α(β + γ) and (EF )i,j = 0, otherwise.

Proof. First we mention that we think of h and H as the same linear oper-
ator, but they are distinct as matrices. The same remark holds for X and
[X]C . It is easy to check that ker([X]C−In) = 〈w1, wn−1〉, ker([X]C−In)2 =
〈w1, w2, wn−1, wn〉. Further, for j ≥ 2, im ([X]C − In)j = 〈w1, . . . , wn−j−2〉.
Thus (1) and (2) clearly hold.

Next, by (1), the first n− 4 rows of E are zero and by (2), the last n− 4
columns of F are zero. Also, since 〈w1, wn−1〉 is h-invariant, F1,2 = 0. Next

ZH =
[
Z1 0
0 Z2

]
·
[
R E
F P

]
=

[
Z1R Z1E
Z2F Z2P

]
HZ =

[
R E
F P

]
·
[
Z1 0
0 Z2

]
=

[
RZ1 EZ2

FZ1 PZ2

]
so since ZH = HZ, R commutes with Z1 and P commutes with Z2. Thus

P =
[
ρ 0
µ ρ

]
. Now (vk + vk+1)h = F1,1v1 + ρ(vk + vk+1). But 1 = Q(vk +

vk+1) = Q((vk + vk+1)h) = ρ2, so ρ = 1. Further, (vk + vk+1)h = F2,1v1 +
F2,2v2 + µ(vk + vk+1) + (vk + vk+2). Hence Q((vk + vk+2)h) = µ2 + νε + µ.
It follows that νε = Q(vk + vk+2) = Q((vk + vk+2)h) = µ2 + νε + µ. Thus

µ = 0 or 1 and P =
[
1 0
δ 1

]
, with δ ∈ {0, 1}.
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Next since R commutes with Z1, 1.13 implies that, Hi,i = Ri,i = Rj,j =
Hj,j , for all 1 ≤ i, j ≤ n− 2. Now

1 = f(v1, vn) = f(v1H, vnH)

= f(H1,1v1,Hn−2,n−2vn) = H1,1Hn−2,n−2.

Since H1,1 = Hn−2,n−2, we see that H1,1 = 1. Since Hn−1,n−1 = P1,1 = 1
and Hn,n = P2,2 = 1, we see that Hi,i = 1, for all 1 ≤ i ≤ n. Now
since R commutes with Z1, 1.13 implies that R − In−2 ∈ Tn−2(r), for some
1 ≤ r ≤ n− 3.

Let
[
α ρ
β µ

]
be the last two rows of E. Then the last two rows of Z1E

are
[

α ρ
α + β ρ + µ

]
and the last two rows of EZ2 are

[
α + ρ ρ
β + µ µ

]
. Since

Z1E = EZ2, ρ = 0 and α = µ. Thus:

The last two rows of E are
[
α 0
β α

]
.

Next let
[
ρ 0
γ µ

]
be the first two columns of F . Then the first two columns

of Z2F are
[

ρ 0
ρ + γ µ

]
and the first two columns of FZ1 are

[
ρ 0

γ + µ µ

]
.

Thus ρ = µ. Hence:

The first two columns of F are
[
ρ 0
γ ρ

]
.

Next (vk +vk+1)H = ρv1+vk +vk+1 and observe that vnH = w+vn+α(vk +
vk+2), with w ∈ 〈v1, . . . , vk−1, vk + vk+1, vk+2, . . . , vn−1〉 ⊆ 〈v1, vk + vk+1〉⊥.
Thus 0 = f(vk + vk+1, vn) = f((vk + vk+1)h, vnh) = f(ρv1 +(vk + vk+1), w +
vn +α(vk + vk+2)) = f(ρv1 +(vk + vk+1), vn +α(vk + vk+2)) = ρ+α. Hence
ρ = α. This completes the proof of (3) and (4), except that we must show
that R 6= In−2. Now if R = In−2, then, it follows that 0 = Q(vn−1) =
Q(vn−1H) = Q(vn−1 +α(vk +vk+1)) = α. Also, since 0 = Q(vn) = Q(vnH),
β = 0. Now δ (of (3i)) must be 0; so since h ∈ L, 7.1 implies that h = In,
contradicting h 6= In.

To prove (5) note that

(H − In)2 =
[
R− In−2 E

F P − I2

]
·
[
R− In−2 E

F P − I2

]
=

[
(R− In−2)2 + EF (R− In−2)E + E(P − I2)

F (R− In−2) + (P − I2)F FE + (P − I2)2

]
.

Now, since the last column of (R−In−2) is zero, (R−In−2)E is an (n−2)×2
matrix, whose (n−2, 1)-entry is αRn−2,n−3, and whose other entries are zero.
Hence it is easy to check that E′ = (R− In−2)E + E(P − I2), is as claimed.
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Next, since the first row of (R− In−2) is zero, F (R− In−2) is a 2× (n− 2)
matrix whose (2, 1)-entry is αR2,1 and whose other entries are zero. Hence,
it is easy to check that F ′ = F (R− In−2)+(P − I2)F is as claimed. Finally,
FE = 02,2 and clearly (P − I2)2 = 02,2. It is easy to check that EF has the
claimed shape and (5) is proved.

Before formulating the next lemma it is important that the reader will
recall that for a linear operator a on our vector space V , ai,j is the (i, j)-entry
of the matrix of a, with respect to the basis B, unless otherwise specified (see
the beginning of Chapter 1).

7.9. Let 1 6= h ∈ CL(X). Set T = h − In. Write H = [h]C. Let
R, P, E, F, δ, α, β, γ be as in 7.8.3 and r as in 7.8.4. Then:

(1) Suppose k − 1 ≤ r ≤ n− 3. Then, there exists i ∈ {1, 2} such that for
T := Ti, we have:

(1a) Vk−1 ⊆ ker(T ).
(1b) There exists 1 ≤ f ≤ n, such that Ts,f = 0, for all 1 ≤ s ≤ n − 1,

and Tn,f 6= 0.
Further, one of the following holds.

(1c) α 6= δ 6= 0, i = 2, f = k + 1 and im T = 〈v1, αv2 + vk + vk+1〉.
(1d) α 6= 0 = δ, i = 2, f = 2 and im T = 〈v1, v2〉.
(1e) α = 0 = δ, i = 1, f = n− r − 2 and

im T = 〈v1, v2, . . . , vn−r−2, vk + vk+1〉.

(1f) α = 0 = δ, i = 1, f = n− r − 2 and

im (T ) = 〈v1, v2, . . . , vn−r−3, vn−r−2 + µ(vk + vk+1)〉, µ ∈ F∗.

(1g) α = 0 = δ, i = 1, f = n− r − 2 and im T = Vn−r−2.
(1h) α = 0 = δ, r = n− 3, i = 1, f = k + 1 and im T = 〈v1, vk + vk+1〉.

(2) Suppose r = k − 2 α 6= 0 = δ. Then either T2 ∈ Tn(n − s), for some
s ∈ {1, 2}, or the following holds:

(2a) T2 = 0, Hk−1,1 = α = Hn−2,k−1, Vk−1 ⊆ ker T, and
(2b) For all S ∈ {Xt, XXt, X−1Xt}, ker(ST) ∩ ker T = Vk−2.

(3) Suppose 1 ≤ r < k − 1, but exclude the case of (2). Then one of the
following holds:

(3a) r = 1, and Tn−3 ∈ Tn(n− 1).
(3b) r > 1, α 6= 0 6= δ, and ker T = {v1, . . . , vr, ρvr+1 + µ(vk + vk+1)},

with ρ, µ ∈ F∗.
(3c) r = k − 2, α 6= 0 6= δ, Hk−1,1 = α, and ker T = Vk−1. Further,

Ts,k−1 = 0, for all 1 ≤ s ≤ n− 1, and Tn,k−1 6= 0.
(3d) r = k − 2, α 6= 0 6= δ, Hk−1,1 = α, and im T2 = 〈v1, vk + vk+1〉.
(3e) There exists i ≥ 1 and 1 ≤ m ≤ k − 2, such that im Ti = 〈v1, . . . ,

vm〉, Vk−1 ⊆ ker Ti and Ti ∈ Tn(n−m).
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(3f) There exists i ≥ 1, such that im Ti = 〈v1, . . . , vk−2, vk−1+vk+vk+1〉
and Vk−1 ⊆ ker Ti. Further, (Ti)s,k−1 = 0, for all 1 ≤ s ≤ n − 1,
and (Ti)n,k−1 6= 0.

Proof. Assume the hypothesis of (1). Note that since r ≥ k − 1, R2,1 =
Rn−2,n−3 = 0. Notice also that (R− In−2)2 = 0n−2,n−2. Suppose α 6= 0 6= δ,
then it is easy to verify, using 7.8.5, that (1c) holds. Similarly if α 6= 0 = δ,
then by 7.8.5, E′ = 0n−2,2 (E′ as in 7.8.5) and it is easy to verify using 7.8.5
that (1d) holds (both in the case when γ = 0 and in the case γ 6= 0). Hence
we may assume that α = 0.

We claim that:

If r = n− 3 then δ = 0.(i)

For suppose r = n − 3. Then vnH = Rn−2,1v1 + vn + β(vk + vk+1). Hence
0 = Q(vn) = Q(vnH) = Rn−2,1 + β2. Since by 7.8.3i, R 6= In−2, we get
that 0 6= Rn−2,1 = β2. Also, 0 = f(vn, vk + vk+2) = f(vnH, (vk + vk+2)H) =
f(Rn−2,1v1+vn+β(vk+vk+1), γv1+δ(vk+vk+1)+(vk+vk+2)) = γ+β. Hence
γ = β. Now if δ = 1, then we get that im (H − In) = βv1 +(vk + vk+1). But
then dim CV (h) = n−1 is odd, this contradicts 7.1, since h ∈ L. So (i) holds.
Further, if r = n− 3, then, vnT = β2v1 + β(vk + vk+1), vkT = vk+1T = βv1

and ker T = 〈Vk−1, vk + vk+1, vk+2, . . . , vn−1〉. Hence (1h) holds. So from
now on we also assume that k − 1 ≤ r < n− 3.

Note that since α = 0, vk + vk+1 ∈ ker(H − In). Hence

vkT = vk+1T(ii)

also, vk = vk+2 + (vk + vk+2), so vk(H − In) = vk+2(H − In) + (vk +
vk+2)(H − In) = Hk,1v1 + γv1 + δ(vk + vk+1). It follows from (ii) that since
k − 1 ≤ r < n− 3,

Tk,n−r−2 = Tk+1,n−r−2 = 0.(iii)

Since vk−1 + vk + vk+1, vk + vk+1 ∈ Ker (H − In), vk−1 ∈ Ker T, so
since Vk−2 ⊆ Ker T, we get that Vk−1 ⊆ ker T, so (1a) holds. Also, since
R − In−2 ∈ Tn−2(r), and α = 0, vi(H − In) = vi(h − In) ∈ Vn−r−3, for
k + 2 ≤ i ≤ n− 1. Thus (h− In)i,n−r−2 = 0, for k + 2 ≤ i ≤ n− 1. Finally,
since R − In−2 ∈ Tn−2(r), Hn−2,n−r−2 6= 0, so (h − In)n,n−r−2 6= 0. We
showed that:

If α = 0, then Ts,n−r−2 = 0, for all 1 ≤ s ≤ n− 1, and Tn,n−r−2 6= 0.(iv)

So (1b) holds for f = n− r − 2.
Suppose δ 6= 0. We leave it for the reader to verify that im T = 〈v1, v2, . . . ,

vn−r−2, vk + vk+1〉. Hence (1e) holds.
Suppose next that δ = 0 = β, then either r > k − 1, in which case

im T = Vn−r−2 and (1g) holds, or r = k − 1, in which case (1f) holds, with
µ = 1.



ANISOTROPIC GROUPS 195

Finally suppose δ = 0 6= β. If r > k − 1, then (1f) holds, with µ =
β/Hn−2,n−r−2, and if r = k−1, then either (1g) holds (in case Hn−2,k−1 = β),
or (1f) holds (otherwise). This completes the proof of (1).

Assume the hypothesis of (2). Suppose first that (H − In)2 6= 0. Notice
that since δ = 0, 7.8.5 implies that

(H − In)2 =
[
(R− In)2 + EF 0n−2,2

02,n−2 02,2

]
.

Also, since r = k − 2, (R − In)2 ∈ Tn−2(n − 4). Notice further, that by
1.13.3, Rr+i,i = Rr+s,s, for all 1 ≤ i, s ≤ n − r − 2. Thus the (n − 3, 1)-
entry and the (n − 2, 2)-entry of (R − In)2 are both equal to R2

r+1,1. Since
(EF )n−3,1 = (EF )n−2,2 = α2, it is clear that (h− In)2 ∈ Tn(n−s), for some
s ∈ {1, 2}.

Suppose next that (H − In)2 = 0. Then, the above considerations imply
that Rr+i,i = α, for all 1 ≤ i ≤ n − r − 2. Note that Vk−2 ⊆ ker T. Also
vk−1(H−In) = (vk−1+vk+vk+1)(H−In)+(vk+vk+1)(H−In) = αv1+αv1 =
0. So vk−1 ∈ ker T. Thus (2a) is proved.

Next note that dim(im (H−In)) = dim(ker(H−In)), so since (H−In)2 =
0, im (H − In) = ker(H − In). Also vn(H − In) = v′ + Rn−2,k−1(vk−1 + vk +
vk+1)+αvk+2 +β(vk +vk+1)+α(vk +vk+2) = v′′+αvk +(Rn−2,k−1 +β)(vk +
vk+1), with v′ ∈ Vk−2 and v′′ ∈ Vk−1. Hence

vn(H − In) ≡ αvk + (Rn−2,k−1 + β)(vk + vk+1)(mod Vk−1).(v)

Since Vk−1 ⊆ ker(H − In), we get from (v) that

ρvk + µvk+1 ∈ ker(H − In), for some µ, ρ ∈ F, with µ 6= ρ.(vi)

Thus

ker T = 〈Vk−1, ρvk + µvk+1〉 ρ, µ as in (vi).(vii)

For (2b), we’ll show that if ρ, µ are as in (vi) and S ∈ {Xt, XXt, X−1Xt},
〈vk−1S

−1, (ρvk +µvk+1)S−1〉∩ker T = (0). This easily implies ker T∩ker ST
has dimension ≤ k−2. Since, by (vii) and 7.7.5, Vk−2 ⊆ ker T∩ker ST, (2b)
follows. Let v ∈ 〈vk−1S

−1, (ρvk + µvk+1)S−1〉.
Suppose S = Xt. By 7.7.7i, v = θ1vk−1S

−1 + θ2(ρvk + µvk+1)S−1 =
θ1(vk−1 + vk + vk+1 + vk+2) + θ2(ρ(vk + vk+2) + µ(vk+1 + vk+2)) = θ1vk−1 +
(θ1 +θ2ρ)vk +(θ1 +θ2µ)vk+1 +(θ1 +θ2(ρ+µ))vk+2. So if v ∈ ker T, then, by
(vii), θ1 +θ2(ρ+µ) = 0. Thus, θ1 +θ2ρ = θ2µ and θ1 +θ2µ = θ2ρ. It follows
that θ2µvk+θ2ρvk+1 ∈ ker T. Hence, we may assume that θ2µvk+θ2ρvk+1 =
ρvk + µvk+1. Hence θ2µ + ρ = θ2ρ + µ = 0. This is possible only if ρ = µ, a
contradiction.

Suppose S = XXt. Then, by 7.7.7ii, v = θ1vk−1S
−1+θ2(ρvk +µvk+1)S−1

= θ1vk+2 + θ2{ρ(vk+1 + vk+2) + µ(vk + vk+2)} = θ2µvk + θ2ρvk+1 + (θ1 +
θ2(ρ + µ))vk+2. So if v ∈ ker(h− In), then, by (vii), θ1 + θ2(ρ + µ) = 0 and
θ2µvk + θ2ρvk+1 ∈ ker T, which we have seen to be impossible.
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Suppose S = X−1Xt. Then, by 7.7.7iii, v = θ1vk−1S
−1 + θ2(ρvk +

µvk+1)S−1 = θ1(vk−2 + vk+2) + θ2(ρ(vk+1 + vk+2) + µ(vk + vk+2)) and as in
the case S = XXt, we get a contradiction. This completes the proof of (2).

Assume the hypothesis of (3).

Case 1. r = 1.

By 7.8.5, (H − In)2 =
[

t E′

F ′ 02,2

]
, with t ∈ Tn−2(2). Then, it is easy to

verify that (H − In)3 =
[
t′ 0
0 02,2

]
, with t′ ∈ Tn−2(3) and from that (3a)

follows easily.
So from now on we assume that r > 1.

Case 2. α 6= 0 6= δ.
If r 6= k−2, or r = k−2 and Hk−1,1 6= α, then it is easily checked that (3b)

holds. So suppose that r = k − 2, and Hk−1,1 = α. Then vk−1T = (vk−1 +
vk+vk+1)T+(vk+vk+1)T = αv1+αv1 = 0. So clearly ker T = Vk−1. Also, for
k+2 ≤ s ≤ n−2, vsT ∈ Vk−2. Further, (vk+vk+2)T = γv1+αv2+(vk+vk+1)
and vk+2T = Rk,1v1+Rk,2v2. Since vkT = vk+2T+(vk+vk+2)T, we conclude
that Tk,k−1 = 0. Also since (vk + vk+1)T = αv1, we see that Tk+1,k−1 = 0.
Hence, we see that Ts,k−1 = 0, for all 1 ≤ s ≤ n − 1. Now vnT = v′ +
Rn−2,k−1(vk−1 +vk +vk+1)+Rn−2,kvk+2 +β(vk +vk+1)+α(vk +vk+1), with
v′ ∈ Vk−2. Hence, if Rn−2,k−1 6= 0, then Tn,k−1 6= 0, and case (3c) holds.
Finally, suppose Rn−2,k−1 = 0. Then vnh = vnH = v′′ + vn + βwn−1 + αwn,
with v′′ ∈ 〈Vk−2, vk+2〉 and wnh = γv1 + αv2 + wn−1 + wn. Hence 0 =
f(vn, wn) = f(vnh, wnh) = γ + β + α. Hence β + γ = α. Also, vk+2h =
Rk,1v1 + Rk,2v2 + vk+2. Hence, 0 = f(vk+2, vn) = f(vk+2h, vnh) = Rk,1.
So Rk,1 = 0. Since β + γ = α, 7.8.5 yields (EF )n−2,1 = α2. Then, since
Rk,1 = Rn−2,k−1 = 0 and Rk−1,1 = Rn−2,k = α (see 1.13.3), we get, using
7.8.5, that (R − In−2)2 + EF ∈ Tn−2(n − 3). Now using 7.8.5, it is easy to
check that (3d) holds.

Case 3. α 6= 0 = δ and r 6= k − 2; or α = 0.
Using 7.8.5 we get that

(H − In)2 =
[
(R− In)2 + EF 0n−2,2

02,n−2 02,2

]
.

Now if α = 0, EF = 0, while if α 6= 0 = δ, and r 6= k − 2, then (R− In)2 +
EF ∈ Tn−2(r′), for some 1 ≤ r′ < n− 2. Thus in either case

(H − In)2 =
[

t 0n−2,2

02,n−2 02,2

]
with t ∈ Tn−2(r′), for some 1 ≤ r′ < n− 2. It follows that for some i,

(H − In)i =
[

t′ 0n−2,2

02,n−2 02,2

]
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with t′ ∈ Tn−2(r′′), for some k−1 ≤ r′′ < n−2. If r′′ > k−1, we get case (3e).
So suppose r′′ = k− 1. Clearly, im Ti = 〈v1, . . . , vk−2, vk−1 + vk + vk+1〉 and
Vk−1 ⊆ ker Ti. So, to establish (3f), it remains to show that (Ti)s,k−1 = 0, for
all 1 ≤ s ≤ n−1, and (Ti)n,k−1 6= 0. Now for k+2 ≤ s ≤ n−1, vs(H−In)i ∈
Vk−2, so (Ti)s,k−1 = 0. Further since (vk + vk+1)Ti = (vk + vk+2)Ti = 0,
vkTi = vk+1Ti = vk+2Ti ∈ 〈v1〉. Hence (Ti)k,k−1 = (Ti)k+1,k−1 = 0. Finally,
since t′ ∈ Tn−2(k − 1), (Ti)n,k−1 6= 0. Thus, (3f) holds.

7.10. Let ε ∈ {−1, 1} and let S ∈ {Xt, XεXt}. Let R ∈ CL(S) and suppose
v1 is a characteristic vector of R. Then R = 1.

Proof. Set W = 〈O(v1, S)〉. Using, 7.7.8, 7.7.9 and 7.7.10, it is clear that W
is nonsingular (in all cases) and hence R centralizes W. Set v = vk + vk+1.

Suppose first that S = Xt. Then, by 7.7.8, W⊥ = 〈v, v′〉, with v′ =
vk−1 + vk, vS = v and v′S = v + v′. Clearly W⊥ is R-invariant and since
R ∈ CL(S), vR = αv and v′R = βv + αv′. Since Q(v) = 1, α = 1. Hence R
centralizes 〈W, v〉 of dimension n− 1. Thus, by 7.1 (and since det(R) = 1),
R = 1.

Suppose next that S = XXt and that k ≡ 0 (mod 3). Then using 7.7.9
and arguing exactly as in previous paragraph we get R = 1.

Finally suppose S = XXt and k 6≡ 0 (mod 3), or S = X−1Xt. By 7.7.9
and 7.7.10, dim(W) = n− 1, so by 7.1, R = 1.

7.11. Let ε ∈ {1,−1} and let S ∈ {Xt, XεXt}. Suppose R ∈ ∆≤2(X) ∩
∆≤1(S). Then v1 is a characteristic vector of R.

Proof. Let h ∈ ∆≤1(X) ∩∆≤1(R). We’ll show that there exists i ≥ 1, such
that if we set T = (h− In)i, then there are integers j,m, ` ≥ 0 such that all
the hypotheses of 1.15 are satisfied for S, T and R. The lemma will follow
from 1.15. We’ll use 7.9, so we adopt the notation of 7.9. For a subspace
W ⊆ V , let S(W) = 〈w ∈ W : Q(w) = 0〉 (the singular vectors of W).

Case 1. k − 1 ≤ r ≤ n− 3.
In each case (1c)-(1h) of 7.9.1 we pick i as defined in these cases. We

take j = k − 2, in all cases. Notice that by 7.7.5, hypothesis (a) of 1.15 is
satisfied. We let m = dim{S(im T )} and ` = 1. Using 7.7.6 and (1b) of
7.9.1, we get hypothesis (c) of 1.15. The remaining hypotheses of 1.15 are
readily verified using 7.9.1.

Case 2. r = k − 2 and α 6= 0 = δ.
In this case, if (h − In)2 ∈ Tn(n − s), for some s ∈ {1, 2}, we take i = 2,

m = s, j = k − 2 and ` = 1. Otherwise we take i = 1, j = k − 2 = m and
` = 1. Using 7.9.2, we see that the hypotheses of 1.15 are satisfied.

Case 3. 1 ≤ r < k − 1, but Case 2 does not occur.
If case 7.9.3a holds, take i = n− 3 and m = 1, to get the lemma trivially.

If case 7.9.3b holds, take i = 1, j = m = dim(S(ker T )) and ` = 0. If
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case 7.9.3c holds, take i = 1, j = k − 2, m = k − 1 and ` = 1. Notice
again that by 7.7.6, hypothesis (c) of 1.15 holds. If case 7.9.3d holds, then
S(im (h− In)2) = 〈v1〉 and trivially, 〈v1〉 is R-invariant. If case 7.9.3e holds,
take i as in 7.9.3e, j = k − 2, m as in 7.9.3e and ` = 1. If case 7.9.3f holds,
take i as in 7.9.3f, j = k− 2, m = dim{S(im (T )} = k− 2, and ` = 1. Using
7.7.6, the hypotheses of 1.15 are readily verified in cases 7.9.3e and 7.9.3f
and the proof of 7.11 is complete.

7.12. Let Λ = ∆(L), ε ∈ {1,−1} and let S ∈ {Xt, XεXt}. Then dΛ(X, S)
≥ 4.

Proof. Suppose dΛ(X, S) ≤ 3 and let R ∈ ∆≤2(X) ∩∆≤1(S). By 7.11, v1 is
a characteristic vector of R and by 7.10, R = 1, a contradiction.

Theorem 7.13. ∆(L) is balanced.

Proof. Let Λ = ∆(L). Note that 7.12 implies that BΛ(X, Xt) and by 1.9,
BΛ(Xt, X), so Λ is balanced.

Chapter 2. The Exceptional Groups of Lie type.

In Section 8 we prove that for all exceptional groups of Lie type L ex-
cluding E7(q), the commuting graph ∆(L) is disconnected (Theorem 8.8).
In Section 9 we prove that if L ∼= E7(q), then ∆(L) is balanced (see 1.3.2).

8. The Exceptional Groups excluding E7(q).

In this section L is a finite exceptional group of Lie type, excluding E7(q).
We take L = Gσ, where G is a simply connected simple algebraic group
and σ is a Frobenius morphism. Hence L is one of the following groups:
2B2(22m+1), G2(q), 2G2(32m+1), 3D4(q), F4(q), 2F4(22m+1), E6(q), 2E6(q),
E8(q). We exclude certain small cases where L is either solvable or L′ is of
classical type. So we exclude 2B2(2), G2(2),2G2(3). The remaining groups
are all quasisimple, with the exception of 2F4(2), which has derived group of
index 2. We let L∗ = L/Z(L). Of course Z(L) = 1, except when L ∼= E6(q),
in which case |Z(L)| = (3, q − 1), and when L ∼= 2E6(q), in which case
|Z(L)| = (3, q + 1).

8.1. Assume G is a simply connected simple algebraic group and σ is a
Frobenius morphism with quasisimple fixed point group Gσ. Let T be a σ
invariant maximal torus. Suppose s ∈ Tσ is an element such that s /∈ Sσ, for
any σ-invariant maximal torus S, such that |Sσ| 6= |Tσ|. Then CGσ(s) = Tσ.
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Proof. It will suffice to show that CG(s) = T . As G is simply connected,
CG(s) = CG(s)0 ([1, II, 3.9]) and this is a reductive group. Write CG(s) =
DZ, where Z = Z(CG(s))0 and D = CG(s)′. Thus D is a semisimple group.
Note that T ≤ CG(s) and that s is contained in all maximal tori of CG(s)
(as maximal tori are self centralizing).

If D = 1, then CG(s) = T , as required. Suppose this is not the case and
let {D1, . . . , Dr} be an orbit of 〈σ〉 on simple components of D. Then σr

induces a Frobenius morphism on each Di. By [1, I, 2.9], this Frobenius
morphism normalizes a maximal torus contained in an invariant Borel of
D1. Taking images under powers of σ we get a maximal torus of each Di

with the same properties.
For the moment exclude the case where p = 2 and Di = B2, C2. Then σr

acts on the various root systems, stabilizing the positive roots, and fixing
the root of highest height and its negative. Hence for each i, σr normalizes
Ji, the fundamental SL2 generated by the corresponding root subgroups.
Also σ normalizes J1 · · ·Jr. The centralizer in CG(s) of this group is also
σ-stable and so contains a σ-stable maximal torus, say E.

There are two classes of σ-invariant maximal tori in J1 · · ·Jr. These
correspond to maximal tori in the fixed point group (of type A1(qr) of order
qr + 1 and qr − 1). Hence there are two classes of σ-invariant maximal tori
of (J1 · · ·Jr)E whose fixed points in J1 · · ·Jr have order qr +1 and qr−1. A
representative of one of these tori, say T has fixed points of order different
than that of Tσ, however, by earlier remarks, s ∈ T σ, contradicting the
hypothesis.

Finally consider the case p = 2, and Di = B2, C2. This is only possible
when G = F4. There cannot be more than one such simple component in D,
since the product of two has trivial centralizer, so cannot lie in CG(s). Thus
D1 is σ-invariant and we can use the same argument unless (D1)σ = Sz(q).
Here too there are at least two classes of maximal tori, so we can proceed
as above.

Corollary 8.2. Let G be a simple connected simple algebraic group and let
σ be a Frobenius morphism of G such that Gσ = L. Let T be a σ-invariant
torus and assume:

(a) If S ≤ G is a σ-invariant maximal torus such that |Sσ| 6= |Tσ|, then
(|Tσ|, |Sσ|) = |Z(L)|.

(b) (|Tσ : Z(L)|, |Z(L)|) = 1.

Let T ∗
σ be the image of Tσ in L∗. Then T ∗

σ −{1} is a component of ∆(L∗).

Proof. We’ll show that CL∗(s) = T ∗
σ , for every 1 6= s∗ ∈ T ∗

σ . Let s ∈
Tσ − Z(L). We claim that s /∈ Sσ, for every σ-invariant maximal torus S
of G, such that |Sσ| 6= |Tσ|. Indeed, since s ∈ Tσ − Z(L), (b) implies that
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|s| - |Z(L)|, where |s| is the order of s. However, if s ∈ Sσ, for some σ-
invariant maximal torus S of G, then |s| divides (|Tσ|, |Sσ|). Hence, by (a),
|Sσ| = |Tσ|.

By 8.1, CL(s) = Tσ. Hence, from (b) we get that CL∗(s∗) = T ∗
σ .

Notation and definitions. We denote by Φn(x), the n-th cyclotomic
polynomial (of degree φ(n)). Given a prime p and an integer b, the p-share
of b is the largest power of p dividing b.

8.3. Let n, a ≥ 2 and let p be a prime. When (a, p) = 1, denote by dp(a)
the order of a mod p. Then:

(1) p | Φn(a) iff (a, p) = 1, and n = pedp(a), for some e ≥ 0.
(2) If n ≥ 3, and p | Φn(a), then either n = dp(a), or the p-share of Φn(a)

is p.

Proof. This is well-known, see, e.g., [9, p. 27].

Corollary 8.4. Let r be a prime, q a positive power of r and 2 ≤ m < n.
Then:

(1) If m - n or if n
m is not a prime power, then (Φn(q),Φm(q)) = 1.

(2) If n
m = pf , with r 6= p a prime and f ≥ 1, then (Φn(q),Φm(q)) = pt,

with t ≥ 0.

Proof. Let p be a prime such that p | (Φn(q),Φm(q)). By 8.3.1, p 6= r,
m = pe1dp(q) and n = pe2dp(q). Thus m | n and n

m = pe2−e1 . This shows
(1). It also shows (2), since, we just saw that there can be at most one prime
dividing (Φn(q),Φm(q)).

In the following lemma we list the cyclotomic polynomials of degree ≤ 8.
These are the relevant cyclotomic polynomials in calculating the order of
maximal tori in exceptional groups of Lie type.

8.5. The cyclotomic polynomials of degree ≤ 8 are given in the following
table.
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The degree The cyclotomic polynomials

1 Φ1(x) = x− 1, Φ2(x) = x + 1.

2 Φ3(x), Φ4(x) = x2 + 1, Φ6(x) = x2 − x + 1.

4 Φ5(x), Φ8(x) = x4 + 1, Φ10(x) = x4 − x3 + x2 − x + 1,

Φ12(x) = x4 − x2 + 1.

6 Φ7(x), Φ9(x) = x6 + x3 + 1,

Φ14(x) = x6 − x5 + x4 − x3 + x2 − x + 1,

Φ18(x) = x6 − x3 + 1.

8 Φ15(x) = x8 − x7 + x5 − x4 + x3 − x + 1, Φ16(x) = x8 + 1,

Φ20(x) = x8 − x6 + x4 − x2 + 1, Φ24(x) = x8 − x4 + 1,

Φ30 = x8 + x7 − x5 − x4 − x3 + x + 1.

Proof. The degree of Φn(x) is φ(n) =
∏k

i=1 pmi−1
i (pi−1), where n =

∏k
i=1 pmi

i
and it is easy to calculate the table.

Corollary 8.6. Let q be a positive power of a prime r. Then:
(1) (Φ12(q), f(q)) = 1, for any cyclotomic polynomial f(x) of degree ≤ 4

distinct from Φ12(x).
(2) Let f(x) be a cyclotomic polynomial of degree ≤ 6, distinct from Φ9(x).

Then:
(i) If f(x) /∈ {Φ1(x),Φ3(x)}, then (Φ9(q), f(q)) = 1.
(ii) The 3-share of Φ9(q) is (3, q − 1).
(iii) If f(x) ∈ {Φ1(x),Φ3(x)}, then (Φ9(q), f(q)) = (3, q − 1).

(3) Let f(x) be a cyclotomic polynomial of degree ≤6, distinct from Φ18(x).
Then:
(i) If f(x) /∈ {Φ2(x),Φ6(x)}, then (Φ18(q), f(q)) = 1.
(ii) The 3-share of Φ18(q) is (3, q + 1).
(iii) If f(x) ∈ {Φ2(x),Φ6(x)}, then (Φ18(q), f(q)) = (3, q + 1).

(4) (Φ30(q), f(q)) = 1, for any cyclotomic polynomial f(x), of degree ≤ 8,
distinct from Φ30(x).

(5) Let f(x) be a cyclotomic polynomial of degree ≤6, distinct from Φ14(x).
Then:
(i) If f(x) 6= Φ2(x), then (Φ14(q), f(q)) = 1.
(ii) (Φ14(q),Φ2(q)) = (q + 1, 7).

(6) Let f(x) be a cyclotomic polynomial of degree ≤ 6, distinct from Φ7(x).
Then:
(i) If f(x) 6= x− 1, then (Φ7(q), f(q)) = 1.
(ii) (Φ7(q), q − 1) = (q − 1, 7).



202 YOAV SEGEV AND GARY M. SEITZ

Proof. (1): We have Φ12(x) = x4−x2 +1, hence clearly (Φ12(q),Φ1(q)) = 1.
Let Φ12(x) 6= f(x) be a cyclotomic polynomial of degree ≤ 4. Note that
Φ12(q) is odd and Φ12(q) ≡ 1 (mod 3). Now, by 8.5, f(x) = Φm(x), with
m < 12, so (1) follows from 8.4.

(2): Next Φ9(x) = q6 + q3 + 1. Let Φ9(x) 6= f(x) be a cyclotomic polyno-
mial of degree ≤ 6. Since Φ9(q) is odd, 8.4 implies that (Φ9(q),Φ18(q)) = 1.
Now, by 8.5 and 8.4, (Φ9(q), f(q)) = 1, except when q ≡ 1 (mod 3) and
f(x) = Φ1(x) or Φ3(x), in which case (Φ9(q), f(q)) = 3t, for some t ≥ 1.
Suppose q ≡ 1 (mod 3), then d3(q) = 1, so by 8.3.2, the 3-share of Φ9(q) is
3 and (2) follows.

(3): Next, Φ18(x) = x6−x3+1. We already observed that (Φ18(q),Φ9(q))
= 1. Let Φ18(x) 6= f(x) be a cyclotomic polynomial of degree ≤ 6. No-
tice that (Φ18(q),Φ1(q)) = 1. Since Φ18(q) is odd, 8.5 and 8.4 imply that,
(Φ18(q), f(q)) = 1, except when f(x) = Φ2(x) or Φ6(x) and q ≡ −1 (mod 3),
in which case (Φ18(q), f(q)) = 3t, for some t ≥ 1. But by 8.3.2, if q ≡ −1
(mod 3), the 3-share of Φ18(q) is 3 and (3) holds.

(4): Let Φ30(x) 6= f(x) be a cyclotomic polynomial of degree ≤ 8 and
suppose (Φ30(q), f(q)) 6= 1. Now Φ30(x) = x8 + x7 − x5 − x4 − x3 + x + 1,
so Φ30(q) is odd. Notice that (Φ30(q),Φ1(q)) = 1. By 8.5 and 8.4, f(x) =
Φm(x) for some 1 < m < 30. By 8.4, if p is a prime dividing (Φ30(q), f(q)),
then p = 3 or 5. Now by 8.3.1, Φ30(q) 6≡ 0 (mod 3) and Φ30(q) 6≡ 0 (mod 5)
so (4) follows.

(5): Let Φ14(x) 6= f(x) be a cyclotomic polynomial of degree ≤ 6 and
suppose (Φ14(q), f(q)) 6= 1. Now Φ14(x) = x6 − x5 + x4 − x3 + x2 − x +
1, so Φ14(q) is odd. Using 8.5 and 8.4, we see that f(x) = Φ2(x) and
(Φ14(q),Φ2(q)) = 7t, for some t ≥ 1. Hence q ≡ −1 (mod 7) and by 8.3.2,
t = 1.

(6): Let Φ7(x) 6= f(x) be a cyclotomic polynomial of degree ≤ 6 and
suppose (Φ7(q), f(q)) 6= 1. Now Φ7(x) = x6 + x5 + x4 + x3 + x2 + x + 1, so
Φ7(q) is odd. Using 8.5 and 8.4, we see that f(x) = x − 1. Now Φ7(x) =
(x5 + 2x4 + 3x3 + 4x2 + 5x + 6)(x− 1) + 7. Hence (Φ7(q), q− 1) = (q− 1, 7).

8.7. There exists a maximal torus Tσ ≤ L satisfying the hypotheses of 8.2.

Proof. We begin with the Suzuki and Ree groups 2B2(q), 2G2(q), 2F4(q),
where p = 2, 3, 2 respectively. Here q = p2m+1 and we set q0 =

√
q. Suppose

first that L ' 2B2(q). As is well-known, (see, e.g., [1, p. 191]) there are 3
classes of maximal tori in L of orders (q−1), (q−

√
2q+1) and (q+

√
2q+1).

So taking, e.g., |Tσ| = q − 1, we are done.
Suppose next that L ∼= 2G2(q). Then, there are 4 classes of maximal

tori in L (see, e.g., [1, p. 213]) of orders (q − 1), (q + 1), q −
√

3q + 1 and
q +

√
3q + 1 and taking, e.g., |Tσ| = q +

√
3q + 1, we are done.

Suppose that L ∼= 2F4(q). By [17], the order of a maximal torus of L either
divides [Φ1(q)]2[Φ2(q)]2Φ4(q)Φ6(q), or is of order q4

0 +ε
√

2q3
0 +q2

0 +ε
√

2q0+1,
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ε ∈ {1,−1} and hence divides Φ12(q). Let |Tσ| = q4
0 +

√
2q3

0 + q2
0 +

√
2q0 + 1

and let Sσ ≤ L be a maximal torus with |Sσ| 6= |Tσ|. Since |Tσ| divides
Φ12(q), we deduce from 8.6.1, that (|Tσ|, |Sσ|) = 1, except perhaps when
|Sσ| = q4

0 −
√

2q3
0 + q2

0 −
√

2q0 + 1. But it is easy to check that (q4
0 +

√
2q3

0 +
q2
0 +

√
2q0 + 1, q4

0 −
√

2q3
0 + q2

0 −
√

2q0 + 1) = 1.
Suppose L is one of the remaining types. Let Sσ ≤ L be a maximal torus.

As is well-known, if n is the rank of L, then

|Sσ| = g(q)(∗)

where g(x) is a polynomial of degree n, a product of cyclotomic polynomials.
If L ∼= G2(q), with q 6≡ −1 (mod 3) we let |Tσ| = Φ6(q), while if q ≡ −1

(mod 3), we let |Tσ| = Φ3(q). If L ∼= 3D4(q), we let |Tσ| = Φ12(q). If
L ∼= F4(q), we let |Tσ| = Φ12(q). If L ∼= E6(q) we let |Tσ| = Φ9(q). If
L ∼= 2E6(q), we let |Tσ| = Φ18(q). Finally, if L ∼= E8(q), we let |Tσ| = Φ30(q).

In all cases Tσ exists (see, e.g., [1, pp. 304-305] and [5]). By 8.6 and (∗),
Tσ satisfies the hypotheses of 8.2.

Theorem 8.8. Let L∗ be an exceptional finite simple group of Lie type.
Suppose L∗ is not of type E7. Then ∆(L∗) is disconnected.

Proof. This is immediate from 8.2 and 8.7.

9. The group E7(q).

In this section q is a prime power and L is a simple group with L ∼= E7(q).
We let δ = gcd (q − 1, 2). Recall that

|L| = 1
δ
q63(q18 − 1)(q14 − 1)(q12 − 1)(q10 − 1)(q8 − 1)(q6 − 1)(q2 − 1).

Thus if L̃ is the universal group of type E7 defined over the field of q el-
ements, then |Z(L̃)| = δ and L̃/Z(L̃) = L. We let ∆ = ∆(L) be the
commuting graph of L. Our notation for graphs and the commuting graph
are as introduced in Section 1 (see 1.3), in particular, for a ∈ ∆, ∆i(a) =
{x ∈ ∆ : d(a, x) = i} (d is the distance function) and ∆(a) = ∆1(a).

The purpose of this section is to prove that ∆ is balanced (Theorem 9.14),
we do this by showing that, in the notation of 9.2 (below), there exists a ∈ ∆
such that Ξ(a) 6= ∅. Then, by definition, for each b ∈ Ξ(a), B∆(a, b) and
B∆(b, a), so ∆ is balanced.

Notation. We denote SLε
n(q) = SLn(q), SUn(q), according to whether ε =

1,−1. Similarly for GLε
n and PSLε

n.
In what follows we take ε = 1, unless 4 | q − 1, in which case we take

ε = −1. Of course 4 - q − ε.

9.1. (1) L contains a subgroup K ∼= PSLε
8(q).
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(2) K contains a subgroup H ∼= GLε
7(q)/Z(2,q−ε), which contains a cyclic

maximal torus of order (q7 − ε)/(2, q − ε).
(3) Z(H) ∼= Z(q−ε)/(2,q−ε), a group of odd order.
(4) Let 1 6= a ∈ Z(H). Then CL(a) = H.

Proof. View L = (Lσ)′, where L is an adjoint group of type E7 and σ is
a Frobenius morphism. Then L has index δ in Lσ. There is a σ-invariant
maximal rank subgroup A7 < L with center of order δ. Then NE7(A7) =
A7.2, the extra involution being the long word in a suitable Weyl group and
inducing a graph automorphism on A7. It follows from [1, I, 2.8], that there
are two classes of σ-invariant conjugates of A7. For elements in one class σ
induces a field morphism and on the other a graph-field morphism. Let E
be an element of one of these classes, determined by ε. Then Eσ < Lσ.

Let Ê = SL8, the simply connected group of type A7. There is a surjective
homomorphism θ : Ê → E, with kernel of order 4 or 1, according to whether
q is odd or even. Moreover, there is a Frobenius morphism of Ê, which we
also call σ, which commutes with θ.

Now K̂ = (Ê)σ = SLε
8(q) and this group contains Ĥ ∼= GLε

7(q), which
arises by taking fixed points of a σ-invariant subgroup of Ê of type A6T1.

Set K = θ(K̂), so that K ∼= SLε
8(q)/Z(4,q−ε). Our choice of ε forces

K ∼= PSLε
8(q) giving (1).

Let D = θ(A6T1) < E. Then Dσ and (A6T1)σ have the same order (see
the proof of (2.12) in [15]), so Dσ ≥ θ(GLε

7(q)) as a subgroup of index
(4, q − ε). Also Dσ covers Lσ/L.

Our choice of ε implies that GLε
7(q) = J×S, where J = O2′(GLε

7(q)) and
S ∼= Z(2,q−ε). Then θ restricts to an isomorphism on J and setting H = θ(J)
we obtain (2). We note that H has index (2, q − ε) in Dσ, and if the index
is 2, then there is an involution in Dσ which is in Lσ − L ((2.12) in [15]).
Also H contains a cyclic maximal torus of order (q7− ε)/(2, q− ε). Thus (2)
holds. (3) follows from (2) and our choice of ε.

Fix 1 6= a ∈ Z(H). Then C
L

(a)0 ≥ D, a maximal rank group of type
A6T1. If the containment is strict, then C

L
(a)0 would have to be a semisim-

ple group of rank 7. But a consideration of root systems shows that the only
such subgroups of E7 containing A6 are of type A7 and such a group has
centralizer of order at most 2. Thus equality holds and taking fixed points
we have C

Lσ
(a) = Dσ. Intersecting with L yields (4).

9.2. Notation and definitions.
(1) T denotes the set of maximal tori in L of order (q7 − ε)/(2, q − ε) as

in 9.1.2. Of course T is a conjugacy class of tori in L.
(2) Given T ∈ T , we denote by RT ≤ T , the unique subtorus of order

(q − ε)/(2, q − ε). We let ΛT = T − RT . We set Λ = ∪T∈T ΛT and we
let λ = |Λ|.
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(3) Given T ∈ T , we let HT = CL(RT ).
Let a ∈ Λ.

(4) We let Θ(a) = ∆≤3(a). We denote θ = |Θ(a)|. We’ll see in 9.3 below
that θ is independent of a.

(5) We let Γ(a) = {b ∈ Λ : d(a, ab) > 3 < d(a, a−1b)}.
(6) We denote Γ∗(a) = {b ∈ Λ : a ∈ Γ(b)}.
(7) We denote Ξ(a) = Γ(a) ∩ Γ∗(a) ∩ Λ>3(a).

9.3. Let a ∈ Λ. Then:
(1) There exists a unique T ∈ T such that a ∈ T . Further, CL(a) = T .

Let T ∈ T be the unique torus containing {a}. Then:
(2) ∆(a) = T − {1, a}.
(3) ∆2(a) = HT − T .
(4) |∆k(a)| = |∆k(b)|, for all b ∈ Λ and all k.

Proof. Let a ∈ Λ. To show (1), suppose first that the order of a, |a| is not a
power of 7. We claim that a satisfies the hypotheses for s in 8.1. Recall that
if Sσ ≤ L̃ is a maximal torus, then |Sσ| = g(q), where g(x) is a polynomial
of degree 7, a product of cyclotomic polynomials, hence the hypotheses of
8.1 follow from 8.6.5 if ε = −1 and from 8.6.6, if ε = 1. So suppose |a| is a
power of 7. Let T ∈ T such that a ∈ T . Since T is cyclic, 1 6= ak ∈ RT ,
for some k ≥ 2. Then CL(a) ≤ CL(ak) = CL(RT ), by 9.1.4. Hence, (1)
follows from inspecting CH(a), where H = HT . This shows (1). Now, (2)
is immediate from (1), and (3) is immediate from (2) and 9.1.4. Also (3)
says that ∆2(x) = ∆2(y), for x, y ∈ ΛT , so since T is a conjugacy class of
subgroups, (4) follows.

9.4. Let a ∈ Λ and set Θ = Θ(a). Then:
(1) Γ(a) = Λ− ((a−1(aΛ ∩Θ)) ∪ (a(a−1Λ ∩Θ))).
(2) |Γ(a)| ≥ λ− 2θ.

Proof. Note that {b ∈ Λ : d(a, ab) ≤ 3} = a−1(aΛ ∩ Θ(a)) and {b ∈ Λ :
d(a, a−1b) ≤ 3} = a(a−1Λ ∩ Θ(a)). Hence (1) holds. (2) is immediate from
(1).

9.5. There exists a ∈ Λ such that |Γ∗(a)| ≥ λ− 2θ.

Proof. Let M = Maxb∈Λ|Γ∗(b)|. Count the number of pairs X = {(a, b) :
a, b ∈ Λ and b ∈ Γ(a)}. Using 9.4, we have λ(λ−2θ) ≤

∑
a∈Λ |Γ(a)| = |X| =∑

b∈Λ |Γ∗(b)| ≤ λM . Thus M ≥ (λ− 2θ) as asserted.

9.6. Notation. From now on we fix a ∈ Λ such that |Γ∗(a)| ≥ λ− 2θ, and
we set Θ = Θ(a), Ξ = Ξ(a) and ξ = |Ξ|. Let T denote the unique member
of T containing {a} and set H = HT .

9.7. (1) |Γ(a) ∩ Γ∗(a)| ≥ λ− 4θ.
(2) ξ ≥ λ− 5θ.
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Proof. |Γ(a)∩Γ∗(a)| ≥ |Γ(a)|−|Λ−Γ∗(a)| ≥ (λ−2θ)−(λ−(λ−2θ)) = λ−4θ.
The proof of (2) is similar.

The remainder of this section is devoted to showing that Ξ 6= ∅, or that
ξ > 0. It will be done by producing an upper bound to θ. To estimate sizes
of subgroups we’ll use the following lemma.

9.8. Let 2 ≤ a1 < a2 < . . . < ak be integers and let ε1, ε2, . . . , εk ∈ {1,−1}.
Then

1
2
≤ (qa1 + ε1)(qa2 + ε2) · · · (qak + εk)

qa1+a2+···+ak
≤ 2.

Proof. This is taken from [18, p. 2100]. We include the proof in [18]. For
i ≥ 2, we have

1− 1
2i
≥

1
2 + 1

2i

1
2 + 1

2i−1

, 1 +
1
2i
≤

1− 1
2i

1− 1
2i−1

.

Therefore the fraction

(qa1 + ε1)(qa2 + ε2) · · · (qak + εk)
qa1+a2+···+ak

is at least
k∏

i=1

(
1− 1

qai

)
≥

K∏
i=2

(
1− 1

qi

)
≥

K∏
i=2

(
1− 1

2i

)

≥
K∏

i=2

1
2 + 1

2i

1
2 + 1

2i−1

=
1
2

+
1

2K
>

1
2
,

(where K = ak) and at most

k∏
i=1

(
1 +

1
qai

)
≤

K∏
i=2

(
1 +

1
qi

)
≤

K∏
i=2

(
1 +

1
2i

)

≤
K∏

i=2

1− 1
2i

1− 1
2i−1

= 2− 1
2K−1

< 2.

9.9. (1) |H| ≤ 3q49 ≤ q51.
(2) |L| ≥ 1

2δ q133.
(3) λ ≥ 1

14δ q133.

Proof. By 9.1.2, |H| = 1
(2,q−ε) |GLε

7(q)|. By 9.8, |SLε
7(q)| ≤ 2q48. Hence,

1
(2,q−ε) |GLε

7(q)| = 1
(2,q−ε)(q−ε)|SLε

7(q)| ≤ 2
(2,q−ε)(q−ε)q48 ≤ 3q49. (2) follows

immediately from 9.8. Now |ΛT | = |T − RT | = 1
(2,q−ε){q

7 − ε − (q − ε)} =
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1
(2,q−ε)(q

7 − q). Since every element of Λ lies in a unique member of T , we
get that

|Λ| = |ΛT | |T | ≥
1

(2, q − ε)
(q7 − q) · |L|

7|T |
=

1
7δ
|L| q

7 − q

q7 − ε

=
1
7δ

q63(q7−q)(q7+ε)(q18−1)(q12−1)(q10−1)(q8−1)(q6−1)(q2−1)

≥ 1
14δ

q133

by 9.8; notice that the argument in the proof of 9.8 applies even though we
have q6 − 1 appearing twice in the last product.

Corollary 9.10. (1) Suppose θ < 1
70δ q133. Then ξ > 0.

(2) Suppose θ < q126. Then ξ > 0.

Proof. By 9.7.2, ξ ≥ λ−5θ. Now λ−5θ > 0, iff λ > 5θ iff θ < 1
5λ. By 9.9.3,

λ ≥ 1
14δ q133, so 1

5λ ≥ 1
70δ q133. (2) follows immediately from (1).

9.11. Let M = {h ∈ H − {1} : |CL(h)| ≥ q74}. Set M = ∪h∈MCL(h) and
µ = |M|. If µ ≤ q125, then ξ > 0.

Proof. By 9.10.2, it suffices to show that θ ≤ q126. Of course, by 9.3.3, any
element in Θ centralizes a nontrivial element of H. Hence

θ ≤

∣∣∣∣∣∣
⋃

h∈H−{1}

CL(h)

∣∣∣∣∣∣ .(i)

Let M1 =
⋃
{CL(h) : 1 6= h ∈ H−M}. Of course, |M1|≤

∑
1 6=h∈H−M |CL(h)|

< |H|q74 ≤ q125. Also,
⋃
{CL(h) : 1 6= h ∈ H} = M1 ∪ M, so by (i),

θ ≤ |M1|+ |M| ≤ q125 + q125 ≤ q126.
Hence, it remains to show that µ ≤ q125.

9.12. Let x ∈ H satisfy |CL(x)| ≥ q74. Then one of the following holds:
(1) x is unipotent of class A1, |CL(x)| ≤ 2q99, xL∩H is a conjugacy class

of H and |H : CH(x)| ≤ 4q12.
(2) x is unipotent of class 2A1, |CL(x)| ≤ 2q81, xL ∩ H is a conjugacy

class of H, and |H : CH(x)| ≤ 4q20.
(3) x is semisimple, CL(x)′ ∼= E6(q) or 2E6(q) according to whether ε = 1

or −1. CL(x) = CL(x)′S, where S is cyclic of order (q − ε)/(2, q − ε).
Hence |CL(x)| ≤ 3q79. Either |H : CH(x)| = |GLε

7(q) : GLε
5(q)GLε

2(q)|
≤ 4q20 or |H : CH(x)| = |GLε

7(q) : GLε
6(q)GLε

1(q)| ≤ 2q12.

Proof. Write x = su as a commuting product of a semisimple and a unipo-
tent element. Then CL(x) ≤ CL(s). The latter group is obtained by taking
the set of fixed points under σ from the centralizer in the algebraic group,
then intersecting with L. In the algebraic group the centralizer is a reductive
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subgroup of maximal rank and a trivial check of subsystems shows that the
only subsystems giving a large enough centralizer are of type E7 or E6T1.
In the first case, s = 1 and in the latter case u = 1 in order to have large
enough centralizer (see [7]).

Suppose s = 1, so that x is unipotent. Then a check of [8] shows that x
has types A1, (2A1), or (3A1)′′. Now x is contained in a subsystem subgroup
of L̃ of type A6. The Jordan form of a unipotent element of A6 determines
a subsystem group containing the unipotent element as a regular element.
Each of the relevant subsystems is a Levi factor, so by the classification of
unipotent elements, x must also be of type A1, 2A1, or 3A1 within A6.

Now E7 has just one class of subsystem groups of type A1 and 2A1, but
it has two classes of subsystem groups of type 3A1 and we claim that the
class (3A1)′′ is not represented in A6. To see this start from a subsystem
group of type A1, with centralizer D6. Working in A1D6 we see that there
are two classes of groups of type 3A1, with centralizers D4, 4A1, respectively.
Only unipotent elements of type (3A1)′′ have centralizer involving D4, so the
former class is of type (3A1)′′. On the other hand, the group 3A1 in A6 is
contained in A1A4, so from the centralizer of the first factor we get A4 < D6

and from here we see that the full centralizer of 3A1 cannot contain D4, so
this must be the class (3A1)′, establishing the claim.

One checks that the centralizers of unipotent elements of type A1 and
2A1 in A6T1

∼= GL7 are connected, so each type is represented by a single
class in GLε

7(q) ([1, I, 2.8]) and hence in H. Centralizers are given in [8], so
the numerical information in (1) and (2) follows by taking fixed points and
using 9.8.

Now suppose s 6= 1. We again consider the group A7 = E < L. It is
shown in (2.3) of [6] the the 56-dimensional restricted module for a simple
connected group of type E7 restricts to a subgroup of type A7 as the wedge
square of the natural module and its dual. In each of these three irreducible
modules the Weyl group of E7 or A7 with respect to a maximal torus is
transitive on weight spaces within the module. The stabilizer in W (E7) of
a weight space is W (E6) and this is also the centralizer in W (E7) of the
central torus in CL(s).

Choose a σ-invariant maximal torus R < E. Taking Weyl groups with
respect to R, it follows from the above paragraph that W (A7) has two
orbits on 1-dimensional tori in R, with centralizer of type W (E6). Each
has stabilizer in W (A7) of type W (A5)W (A1). So for such a 1-dimensional
torus, the centralizer in A7 is a reductive group with Weyl group of type
W (A5)W (A1). The only possibility is that the centralizer has the form
A5A1T1.

Elements of the above 1-dimensional torus are represented in E as images
of elements of SL8 having one eigenvalue of multiplicity 6 and another of
multiplicity 2. Taking fixed points and working in GLε

7(q) we see that there
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are two types of semisimple elements in H of the correct type. In the
action on the natural 7-dimensional module one type has one eigenvalue of
multiplicity 6 and one eigenvalue of multiplicity 1, while for the other class
there is one eigenvalue of multiplicity 5 and another of multiplicity 2. The
conclusion follows.

Corollary 9.13. µ ≤ q125.

Proof. For i = 1, 2 let ui denote a unipotent element as in 9.12.1, and
set Mi = uL

i ∩ H. Let S1, S2 be subgroups of order (q − ε)/(2, q − ε) in
H corresponding to subgroups of GLε

7(q) with centralizer GLε
5(q)GLε

2(q) or
GLε

6(q)GLε
1(q), respectively. We claim that CL(S) = CL(y), for S ∈ {S1, S2}

and 1 6= y ∈ S. This follows from the fact that the preimage of S in L̃ has
centralizer of type E6T1, which is maximal among reductive subgroups of
E7. Recall that we defined M = {h ∈ H − {1} : |CL(h)| ≥ q74} and
M =

⋃
h∈M CL(h). By 9.12 we have

µ = |M| ≤
∑

x∈M1

|CL(x)|+
∑

x∈M2

|CL(x)|+
∑

x∈SH
1

|CL(x)|+
∑

x∈SH
2

|CL(x)|.

Hence µ ≤ (2q99)(4q12) + (2q81)(4q20) + (3q79)(4q20) + (3q79)(4q12) ≤ q125.

Theorem 9.14. ∆ is balanced.

Proof. By 9.13, µ ≤ q125, so by 9.11 ξ > 0. Hence Ξ(a) 6= ∅ and as we
remarked at the beginning of Section 9, this shows (by definition) that ∆ is
balanced.

10. The Alternating Groups.

In this section Am denote the Alternating Group on {1, 2, . . . , m}. The
purpose of this section is to prove the following theorem:

Theorem 10.1. Let m > 3 and let L ∼= Am. Then diam (∆(L)) > 4.

Throughout this section n > 2 is a fixed even integer, such that n − 1 is
not a prime. We let G be the Symmetric Group on {1, 2, . . . , n}. We use
cyclic notation for permutations in G. We apply permutations on the right,
so for σ ∈ G, and i ∈ {1, 2, . . . , n}, iσ is the image of i under σ. In addition,
when we write a permutation as a product of cycles, the even numbers that
occur are bolded and enlarged. For example, if 1 ≤ k ≤ n is an odd number
congruent to 1 (mod 4), then

ρ = (1, 5, 9, · · · , k)(k + 1,k + 3, · · · ,2k)

is the permutation with iρ = i+4, if 1 ≤ i ≤ k−4 is congruent to 1 (mod 4),
kρ = 1, iρ = i + 2, if k + 1 ≤ i ≤ 2k − 2 is even, and (2k)ρ = k + 1.
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Another convention that we’ll use is that · · · means continue with the
same pattern. Thus for example, in ρ, the · · · after 9 means that 9ρ = 13,
13ρ = 17, and so on until we get to k − 4. Another example is

η = (1,2, 3, · · · ,k−1,k + 3, · · · ,4k)

is a cycle such that iη = i+1, 1 ≤ i ≤ k−2, iη = i+4, if k−1 ≤ i ≤ 4k−4,
is congruent to 0 (mod 4) and (4k)η = 1.

Notation. (1) For a permutation σ ∈ G, we denote by supp (σ) the set
of elements moved by σ.

(2) We fix once and for all the letter g to denote the permutation

g = gn = (1,2, 3, · · · ,n−2, n− 1).

(3) We fix once and for all the letter s to denote the permutation

s = sn = (3,4)(5,6) · · · (n− 1,n).

(4) Let p be a prime divisor of n−1. We write np = n−1
p . Thus n−1 = pnp.

(5) Let p be a prime divisor of n− 1. We denote

θp = gnp .

The main result of this section, from which Theorem 10.1 follows, is the
following theorem.

Theorem 10.2. Let n > 2 be an even number. Suppose n−1 is not a prime
and let p, q be prime divisors of n−1, with p ≤ q. Let Γ = 〈θp, sθ

−1
q s〉. Then:

(1) Γ is a transitive subgroup of G.
(2) CG(Γ) = {1}.

We’ll now prove Theorem 10.1, under the assumption that Theorem 10.2
holds.

Proof of Theorem 10.1. Let L = Am. We assume that Theorem 10.2
holds and we prove Theorem 10.1. Let d be the distance function on ∆(L).
Suppose first that m is even. If m−1 is a prime, then it is easy to check that
〈gm〉−{1} is a connected component of ∆(L). So assume m−1 is a composite
odd number. Let g = gm and s = sm. We’ll show that d(g, sg−1s) > 4. So
suppose d(g, sg−1s) ≤ 4. Since CL(g) = 〈g〉, and CL(sg−1s) = 〈sg−1s〉, there

are prime divisors p, q of m − 1 such that π := g, g
(m−1)

p , x, sg
(1−m)

q s, sg−1s

is a path in ∆(L). But then x ∈ CL

(〈
g

(m−1)
p , sg

(1−m)
q s

〉)
, so if p ≤ q,

this contradicts Theorem 10.2, while if p > q, then inverting the path π and

conjugating by s, we get that g, g
(m−1)

q , sx−1s, sg
(1−m)

p s, sg−1s is also a path
in ∆(L), and this contradicts Theorem 10.2.

Suppose next that m is odd. If m − 2 is a prime, then 〈gm−1〉 − {1}
is a connected component of ∆(L). So assume m − 2 is a composite odd
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number. Let g = gm−1 and s = sm−1. Let p, q be prime divisors of m − 2.

Let Γ =
〈

g
(m−2)

p , sg
(2−m)

q s

〉
. By Theorem 10.2, {1, 2, · · · ,m−1} is an orbit

of Γ, so the centralizer of Γ in L fixes m, and hence by Theorem 10.2, it
is trivial. Then, the same proof as in the case when m is even shows that
d(g, sg−1s) > 4.

10.3. Let p be a prime divisor of n− 1. Then:
(1) θp = (1,np +1, · · · , (p− 1)np + 1)(2, np + 2, · · · , (p−1)np +2) · · ·

(np,2np, · · · , n− 1) and θp fixes n.
(2) Two indices i, j ∈ {1, 2, · · · , n− 1} are in the same orbit of θp, iff they

are congruent modulo np.
(3) For all 1 ≤ i ≤ n − 1, and all integers k, igk = k + i, in particular,

iθp = np+i, and iθ−1
p = i−np, where indices are taken modulo (n−1).

(4) For σ∈G, and i, k∈{1, . . . , n− 1}, if iσ=j 6=n, then (k + i)g−kσgk =
k+j and (i−k)gkσg−k = j−k, in particular, (np + i)θ−1

p σθp = np +j,
(i−np)θpσθ−1

p = j−np and (np−nq+i)g(nq−np)σg(np−nq) = np−nq+j,
where indices are taken modulo (n− 1).

Proof. The proof is straightforward.

Important Remark. In order to verify the calculations in this section,
we emphasize that np denotes n – 1

p and not n
p . In addition igk = i + k,

modulo (n – 1) and not modulo n.

Notation. From now on we fix two primes p and q dividing n − 1, such
that p ≤ q.

10.4.
(1) θ−1

q sθq = (nq +3, nq +4)(nq +5, nq +6) · · · (n−2, n−1)(1,2)(3,4)
· · · (nq − 2,nq −1)(nq,n).

(2) θqsθ
−1
q = (n−nq +2,n−nq +3) · · · (n−3,n−2)(n−1, 1)(2, 3)(4, 5)

· · · (n−nq −3, n− nq − 2)(n−nq −1,n).
(3) θ−1

q sθqs = (nq, n−1, n−3, · · · , nq+4, nq+2,nq+3,nq+5, · · · ,n−2,

n,nq + 1)(1,2).
(4) θqsθ

−1
q s = (2,4, · · · ,n − nq − 1, n − 1, 1,n, n − nq − 2, n − nq − 4,

· · · , 3)(n− nq,n−nq + 1).
(5) [θp, sθ

−1
q s] = g(nq−np)θ−1

q sθqsg
(np−nq)θqsθ

−1
q s.

(6) If p 6= q, then

g(nq−np)θ−1
q sθqsg

(np−nq) =

(np,np −nq,np −nq −2, · · · ,2, n−1, n−3, · · · , np + 2,np + 3,np + 5,

· · · ,n−2, 1, 3, · · · , np − nq − 1,n,np + 1)(np − nq + 1,np −nq + 2).
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Proof. For (1), we have,
θ−1
q sθq = (3θq, 4θq)(5θq, 6θq) · · · ((n− 1)θq, nθq) =

(nq + 3, nq + 4)(nq + 5, nq + 6) · · · (n−2, n− 1)(1,2)(3,4)

· · · (nq − 2,nq − 1)(nq,n)

where we use 10.3 to verify this equality, noting that θq fixes n. (2) is proved
similarly.

We now prove (3). We first write θ−1
q sθq and s one below the other.

(nq + 3, nq + 4)(nq + 5, nq + 6) · · · (n−2, n− 1)(1,2)(3,4)

· · · (nq − 2,nq −1)(nq,n) ·

(3,4)(5,6) · · · (n− 3,n−2)(n− 1,n) = .

Note that (3,4)(5,6) · · · (nq − 2,nq −1) is canceled. Hence

= (nq + 3, nq + 4)(nq + 5, nq + 6) · · · (n−2, n− 1)(1,2)(nq,n) ·

(nq,nq + 1)(nq + 2,nq + 3) · · · (n− 3)(n−2)(n− 1,n) = .

Now start with nq and carefully work though the product.

= (nq, n− 1, n− 3, · · · , nq + 4, nq + 2,nq + 3,nq + 5, · · · ,

n−2,n,nq + 1)(1,2).

Next we prove (4). We first write θqsθ
−1
q and s one below the other.

(n− nq + 2,n−nq + 3) · · · (n− 3,n−2)(n− 1, 1)(2, 3)(4, 5) · · ·

(n−nq −3, n− nq − 2)(n−nq −1,n) ·

(3,4)(5,6) · · · (n− 3,n−2)(n− 1,n) = .

Note that (n− nq + 2,n−nq + 3) · · · (n− 3,n−2) is canceled. Hence

= (n− 1, 1)(2, 3)(4, 5) · · · (n−nq −3, n− nq − 2)(n−nq −1,n)

(3,4)(5,6) · · · (n− nq − 2,n−nq −1)(n− nq,n−nq + 1)(n− 1,n)

= (2,4, · · · ,n−nq −1, n− 1, 1,n, n− nq − 2, n− nq − 4,

· · · , 3)(n− nq,n−nq + 1).

We now compute [θp, sθ
−1
q s] = θ−1

p sθqsθpsθ
−1
q s. Recall that by definition,

θp = gnp and θq = gnq . Hence [θp, sθ
−1
q s] = g(nq−np)θ−1

q sθqsg
(np−nq)θqsθ

−1
q s.
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Finally,

g(nq−np)θ−1
q sθqsg

(np−nq)

= g(nq−np)(nq, n− 1, n− 3, · · · , nq + 4, nq + 2,nq + 3,nq + 5,

· · · ,n−2,n,nq + 1)(1,2)g(np−nq).

Now using 10.3.4 we get

= (np,np −nq,np −nq −2, · · ·2, n− 1, n− 3,

· · · , np + 2,np + 3,np + 5, · · · ,n−2,

1, 3, · · · , np − nq − 1,n,np + 1)(np − nq + 1,np −nq + 2).

10.5. Suppose np − nq > 2, then:

(1) The fixed points of [θp, sθ
−1
q s] are

{3,4, . . . , np − nq − 3,np −nq −2,np −nq}

where if np − nq = 4, then {4} is the unique fixed point.
(2) If n− np − nq ≡ 2 (mod 4), then [θp, sθ

−1
q s] =

(1,2) ·

(np − nq − 1, n− nq − 2, n− nq − 6, · · · , np,np −nq + 2) ·

(np − 2, np − 4, · · · , np − nq + 1,np −nq + 4,

np −nq + 6, · · · ,np −1,np + 1) ·

(n− nq, n− nq − 4, · · · , np + 4, np + 2,np + 5,np + 9, · · · ,n−nq −1) ·

(n− 1, n− 3, · · · , n− nq + 2,n−nq + 1,n−nq + 3, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−nq −3).
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(3) If n− np − nq ≡ 0 (mod 4), then [θp, sθ
−1
q s] =

(1,2) ·

(np − nq − 1, n− nq − 2, n− nq − 6, · · · , np + 2,

np + 5,np + 9, · · · ,n−nq −3,

n− 1, n− 3, · · · , n− nq + 2,n−nq + 1,n−nq + 3, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−nq −5,n−nq −1,

n− nq, n− nq − 4, · · · , np + 4, np,np −nq + 2) ·

(np − 2, np − 4, · · · , np − nq + 1,np −nq + 4,

np −nq + 6, · · · ,np −1,np + 1).

Proof. Note, np − nq > 2 implies np > 5. By 10.4.5,

[θp, sθ
−1
q s] = g(nq−np)θ−1

q sθqsg
(np−nq) · θqsθ

−1
q s

so by 10.4, [θp, sθ
−1
q s] =

(np,np −nq,np −nq −2, · · · ,2, n− 1, n− 3, · · · , n− nq, · · · , np + 2,

np + 3,np + 5, · · · ,n−2, 1, 3, · · · , np − nq − 1,n,np + 1) ·

(np − nq + 1,np −nq + 2) ·

(2,4, · · · ,n−nq −1, n− 1, 1,n, n− nq − 2, n− nq − 4, · · · , 3) ·

(n− nq,n−nq + 1).

Now we leave it for the reader to verify that the fixed points are as claimed.

Case 1. n−nq −np −2 ≡ 0 (mod 4).
We write the cycles of [θp, sθ

−1
q s] and let the reader verify the product.

[θp, sθ
−1
q s] =

(1,2) ·

(np − nq − 1, n− nq − 2, n− nq − 6, · · · , np,np −nq + 2) ·

(np − 2, np − 4, · · · , np − nq + 1,np −nq + 4,

np −nq + 6, · · · ,np −1,np + 1) ·

(n− nq, n− nq − 4, · · · , np + 6, np + 2,np + 5,np + 9, · · · ,n−nq −1) ·

(n− 1, n− 3, · · · , n− nq + 2,n−nq + 1,n−nq + 3, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−nq −3).
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Case 2. n−np −nq ≡ 0 (mod 4).
[θp, sθ

−1
q s] =

(1,2) ·

(np − nq − 1, n− nq − 2, n− nq − 6, · · · , np + 2,

np + 5,np + 9, · · · ,n−nq −3,

n− 1, n− 3, · · · , n− nq + 2,n−nq + 1,n−nq + 3, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−nq −5,n−nq −1, n− nq,

n− nq − 4, · · · , np + 4, np,np −nq + 2) ·

(np − 2, np − 4, · · · , np − nq + 1,np −nq + 4,

np −nq + 6, · · · ,np −1,np + 1).

10.6. Suppose np − nq = 2. Then:

(1) If n− 2np ≡ 2 (mod 4), then [θp, sθ
−1
q s] =

(1, n− np, n− np − 4, · · · , np + 2,np + 5,np + 9, · · · ,n−np −1,

n− 1, n− 3, · · · , n− np + 4,n−np + 3,n−np + 5, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−np + 1, n− np + 2, n− np − 2, · · · , np,4,2) ·

(6,8, · · · ,np + 1, np − 2, , np − 4, · · · , 5, 3).

(2) If n− 2np ≡ 0 (mod 4), then [θp, sθ
−1
q s] =

(1, n− np, n− np − 4, · · · , np,4,2) ·

(6,8, · · · ,np + 1, np − 2, np − 4, · · · , 5, 3) ·

(n− 1, n− 3, · · · , n− np + 4,n−np + 3,n−np + 5,

· · · ,n−2,n,np + 3,np + 7, · · · ,n−np −1) ·

(n− np + 2, n− np − 2, · · · , np + 2,np + 5,np + 9, · · · ,n−np + 1).

Proof. By 10.4.5, [θp, sθ
−1
q s] =

g(nq−np)θ−1
q sθqsg

(np−nq) ·

θqsθ
−1
q s
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so by 10.4, (replacing nq by np − 2), [θp, sθ
−1
q s] =

(np,2, n− 1, n− 3, · · · , n− np + 2, · · · , np + 2,

np + 3,np + 5, · · · ,n−2, 1,n,np + 1)(3,4) ·

(2,4, · · · ,n−np + 1, n− 1, 1,n, n− np, n− np − 2, · · · , 3) ·

(n− np + 2,n−np + 3).

Case 1. n−2np −2 ≡ 0 (mod 4).
We write the cycles of [θp, sθ

−1
q s] and let the reader verify the product.

[θp, sθ
−1
q s] =

(1, n− np, n− np − 4, · · · , np + 2,np + 5,np + 9, · · · ,n−np −1,

n− 1, n− 3, · · · , n− np + 4,n−np + 3,n−np + 5, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−np + 1, n− np + 2, n− np − 2, · · · , np,4,2) ·

(6,8, · · · ,np + 1, np − 2, np − 4, · · · , 5, 3).

Case 2. n−2np ≡ 0 (mod 4)

[θp, sθ
−1
q s] =

(1, n− np, n− np − 4, · · · , np,4,2) ·

(6,8, · · · ,np + 1, np − 2, np − 4, · · · , 5, 3) ·

(n− 1, n− 3, · · · , n− np + 4,n−np + 3,n−np + 5,

· · · ,n−2,n,np + 3,np + 7, · · · ,n−np −1) ·

(n− np + 2, n− np − 2, · · · , np + 2,np + 5,np + 9, · · · ,n−np + 1).

We can now complete the proof of Theorem 10.2.

Proof of Theorem 10.2. First we show that (1) implies (2). Since Γ is
transitive, CG(Γ) is a semi-regular subgroup of G. But [θp, CG(Γ)] = 1, and
θp has a single fixed point, hence CG(Γ) = 1.

We proceed with the proof of (1). Assume first that p = q. Then
θqsθ

−1
q s ∈ Γ. Recall from 10.4 that

θqsθ
−1
q s =

(2,4, · · · ,n−nq −1, n− 1, 1,n, n− nq − 2, n− nq − 4,

· · · , 3)(n− nq,n−nq + 1).

Hence {1,2, 3,4, · · · ,n − nq − 1} are in the same orbit of Γ. However,
since q ≥ 3, n − nq − 1 > nq, and the above set contains a representative
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from each orbit of θq. Hence {1, 2, · · · , n − 1} are in the same orbit of Γ,
and looking at θqsθ

−1
q s, we see that n is also there.

Suppose next that np − nq > 2. Note that [θp, sθ
−1
q s] ∈ Γ. Assume first

that n − nq − np ≡ 2 (mod 4). We use 10.5.2. We write the cycles in
[θp, sθ

−1
q s]

σ1 = (1,2)

σ2 = (np − nq − 1, n− nq − 2, n− nq − 6, · · · , np,np −nq + 2)

σ3 = (np − 2, np − 4, · · · , np − nq + 1,

np −nq + 4,np −nq + 6, · · · ,np −1,np + 1)

σ4 = (n− nq, n− nq − 4, · · · , np + 4, np + 2,

np + 5,np + 9, · · · ,n−nq + 1)

σ5 = (n− 1, n− 3, · · · , n− nq + 2,n−nq + 1,n−nq + 3,

· · · ,n−2,n,np + 3,np + 7, · · · ,n−nq −3).

Recall that the orbits of θp are

Xi = {i, np + i, 2np + i, · · · , (p− 1)np + i}, 1 ≤ i ≤ np.

Let O be the orbit of 1 (under Γ), then supp (σ1) ⊆ O. Note that 1, np +1 ∈
X1 hence supp (σ3) ⊆ O. Note that np−1, n−2 ∈ Xnp−1, hence supp (σ5) ⊆
O. Note that 2, np + 2 ∈ X2, hence supp (σ4) ⊆ O. Also np, n − 1 ∈ Xnp ,
hence supp (σ2) ⊆ O. Since no two elements in Fix ([θp, sθ

−1
q s]), are in the

same orbit of θp, O = {1, 2, · · · , n} and Γ is transitive.
Assume next that n−nq −np ≡ 0 (mod 4). We use 10.5.3. We write the

cycles in [θp, sθ
−1
q s]

γ1 = (1,2).

γ2 = (np − nq − 1, n− nq − 2, n− nq − 6, · · · , np + 2,

np + 5,np + 9, · · · ,n−nq −3,

n− 1, n− 3, · · · , n− nq + 2,n−nq + 1,n−nq + 3, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−nq −5,n−nq −1,

n− nq, n− nq − 4, · · · , np + 4, np,np −nq + 2).

γ3 = (np − 2, np − 4, · · · , np − nq + 1,

np −nq + 4,np −nq + 6, · · · ,np −1,np + 1).



218 YOAV SEGEV AND GARY M. SEITZ

Let O be the orbit of 1. Then supp (γ1) ⊆ O. Then, as 1, np + 1 ∈ X1,
supp (γ3) ⊆ O, and as 2, np + 2 ∈ X2, supp(γ2) ⊆ O, so as above, O =
{1, 2, · · · , n}.

Finally, suppose that np−nq = 2. Assume first that n−2np ≡ 2 (mod 4).
We use 10.6.1. We write the cycles in [θp, sθ

−1
q s]

α1 = (1, n− np, n− np − 4, · · · , np + 2,np + 5,np + 9, · · · ,n−np −1,

n− 1, n− 3, · · · , n− np + 4,n−np + 3,n−np + 5, · · · ,n−2,n,

np + 3,np + 7, · · · ,n−np + 1, n− np + 2, n− np − 2, · · · , np,4,2).

α2 = (6,8, · · · ,np + 1, np − 2, np − 4, · · · , 5, 3).

Let O be the orbit of 1. Then supp (α1) ⊆ O. Then as 1, np + 1 ∈ X1,
supp (α2) ⊆ O so O = {1, 2, · · · , n}.

Finally, assume that n− 2np ≡ 0 (mod 4). We use 10.6.2. We write the
cycles in [θp, sθ

−1
q s]

β1 = (1, n− np, n− np − 4, · · · , np,4,2)

β2 = (6,8, · · · ,np + 1, np − 2, np − 4, · · · , 5, 3)

β3 = (n− 1, n− 3, · · · , n− np + 4,

n−np + 3,n−np + 5, · · · ,n−2,n,np + 3,np + 7, · · · ,n−np −1)

β4 = (n− np + 2, n− np − 2, · · · , np + 2,np + 5,np + 9, · · · ,n−np + 1).

Let O be the orbit of 1. Then supp (β1) ⊆ O. Then as 1, np + 1 ∈ X1,
supp (β2) ⊆ O, and as 3, np + 3 ∈ X3, supp (β3) ⊆ O. Now, since 2,
np + 2 ∈ X2, supp (β4) ⊆ O, so O = {1, 2, · · · , n}. This completes the proof
of Theorem 10.2.

11. The Sporadic Groups.

In this short section we point out the following theorem.

Theorem 11.1. Let L be a Sporadic finite simple group. Then ∆(L) is
disconnected.

Proof. Let L be a sporadic group. We show that there exists a prime p =
p(L), such that if x ∈ L is an element of order p, then CL(x) = 〈x〉. Of
course 〈x〉 − {1} is a connected component of ∆(L). We use the Atlas [2].
The following table gives the value of p(L).
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L p(L) L p(L) L p(L)

M11 11 M12 11 M22 11

M23 23 M24 23 Co1 23

Co2 23 Co3 23 J1 19

J2 7 J3 19 J4 43

Fi22 13 Fi23 23 Fi′24 29

F1 71 F2 47 F3 31

F5 19 He 17 McL 11

HS 11 Suz 13 O’N 31

Ly 67 Ru 29

12. Concluding results.

In this section we prove Theorem 4 of the introduction and present related
results on division algebras. In addition, we include a number of results and
remarks related to the commuting graph of the classical groups. Throughout
G will denote a connected reductive algebraic group over an algebraically
closed field defined over an infinite field K. Let G(K) denote the K rational
points.

12.1. ([10, Thm. 2.2].) Let G be a connected nonabelian reductive group
defined over an infinite field K. Then G(K) is Zariski dense in G.

12.2. Let K be an abelian field and G a nonabelian reductive algebraic group
defined over K. Then:

(1) G(K)/Z(G(K)) does not have finite exponent.
(2) Let Z ≤ Z(G(K)). If A/Z is an abelian normal subgroup of G(K)/Z,

then A ≤ Z(G(K)).
(3) G(K) is not solvable.

Proof. By 12.1, G(K) is Zariski dense in G. As centralizers of elements in G
are Zariski closed, it follows that Z(G(K)) ≤ Z(G). Then G(K)/Z(G(K))
is Zariski dense in G/Z(G(K)).

(1): If G/Z(G(K)) has exponent n, then, as the set of elements of order
n in G/Z(G(K)) is Zariski closed, this forces G/Z(G(K)) to be of finite
exponent. But this is clearly false as seen by considering a torus.

Let Z ≤ Z(G(K)) and suppose 1 < A/Z C G(K)/Z with A/Z abelian.
The Zariski closure, say B/Z, of A/Z in G/Z is abelian (indeed the center of⋂

a∈A CG/Z(Za) is a closed abelian subgroup of G/Z containing A/Z). Also
B/Z is normalized by G(K)/Z. Now normalizers are closed, so B/Z is an



220 YOAV SEGEV AND GARY M. SEITZ

abelian normal closed subgroup in G/Z. But as G is a connected reductive
group, B ≤ Z(G), a contradiction. This proves (2) and (3) follows.

Corollary 12.3. Let D be a division algebra over K. Then D∗ is not solv-
able.

Proof. This follows from 12.2.3 by noting that D∗ can be realized as the K
rational points of GLd, where d = deg(D).

We can now derive Theorem 4 of the introduction.

Theorem 12.4. Let D be a finite dimensional division algebra over a num-
ber field K. Let N be a noncentral normal subgroup of D∗. Then D∗/N
solvable.

Proof. Let S := SL1(D) be the elements of D∗ whose reduced norm is 1.
Then N/(N ∩ S) ∼= NS/S is abelian, so by 12.2.2, N ∩ S is noncentral in
D∗ (alternatively, use [13]).

Hence it suffices to show that if M is a noncentral normal subgroup of
SL1(D), then SL1(D)/M is solvable. Here we take G a simple, simply
connected algebraic group of type An such that G(K) = SL1(D).

Suppose M C G(K) and M is not central. We apply Theorem 2 (of the in-
troduction). If T = ∅, then M = G(K) and there is nothing to prove. Thus
we suppose T 6= ∅. Hence we can consider G(K) <

∏
v∈T G(Kv), via the di-

agonal embedding. By Theorem 2, M = G(K)∩L, where L C
∏

v∈T G(Kv),
with L open. Then G(K)/M = G(K)/(G(K) ∩ L) ∼= G(K)L/L and so it
suffices to show that

∏
v∈T G(Kv)/L is solvable.

Notice that for each v ∈ T , [G(Kv), L] ≤ G(Kv)∩L is a normal subgroup
of G(Kv) and of course

∏
v∈T G(Kv)/L is an image of

∏
v∈T (G(Kv)/[G(Kv),

L]). So it suffices to show that G(Kv)/[G(Kv), L] is solvable. Let Mv

(resp. Lv) be the projection of M (resp. L) on G(Kv). Since M is non-
central in G(K), Mv and hence Lv is noncentral in G(Kv). Then, by 12.2.2,
[G(Kv), L] = [G(Kv), Lv] is noncentral in G(Kv). Then, by [12] (see also
[10, Prop. 1.8, p. 32]), [G(Kv), L] contains Cs, for some s, where Cs are the
congruence subgroups of G(Kv) = SL1(Dv) (where Dv = D⊗K Kv). These
congruence subgroups are defined in [10, p. 31 (1.4.4)]. Since G(Kv)/Cs is
solvable ([10, Corollary, p. 32]), we are done.

Next we focus our attention on the commuting graph of the classical
groups. We mention that as noted in Theorem 5 of the Introduction, the
elements x, y required for showing that ∆(L) is balanced can be taken as
opposite unipotent elements. We remark that except for some small cases
this usually implies d(x, y) = 4. To see this note that CL(x), CL(y) contain
root elements r, s lying in root groups corresponding to opposite long roots of
the root system. The normalizer of these root groups are opposite parabolic
subgroups, hence contain a common Levi factor. Choosing 1 6= t in this Levi
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factor (which is possible in all but a few cases) we have a path x, r, t, s, y of
length 4.

In the following theorem we use the same ε notation as given in the
beginning of Section 9.

Theorem 12.5. Let G(q) be a simple classical group with q > 5. Then
∆(G(q)) is disconnected if and only if one of the following holds:

(i) G(q) ' Lε
n(q) and n is a prime.

(ii) G(q) ' Lε
n(q), n− 1 is a prime and q − ε | n.

(iii) G(q) ' S2n(q), O−
2n(q), or O2n+1(q) and n = 2c, for some c.

Moreover, if ∆(G(q)) is connected then diam (∆(G(q))) ≤ 10.

Proof. Let Ĝ(q) denote the corresponding quasisimple classical group and let
V be the natural module for Ĝ(q). For a nondegenerate subspace W ≤ V , we
write I(W ) for GL(W ), GU(W ), Sp(W ) or SO(W ), in the respective cases.
We let Ĝ(W ) ≤ Ĝ(q) be the subgroup acting trivially on W⊥ (and acting
trivially on a specified complement U , in the case when Ĝ(q) ' SLn(q), the
complement U in this case will be clear from the context).

For the orthogonal groups we assume that dim(V ) ≥ 7. First suppose
that G(q) does not satisfy any of the conditions (i)-(iii). Here we will show
that diam (∆(G(q))) ≤ 10. The following is the key step.
(∗) Each g ∈ G(q) is at distance at most 3 from some unipotent element

in ∆(G(q)).
We proceed by contradiction assuming that (∗) does not hold. If g is the
commuting product of a nontrivial unipotent element and a semisimple el-
ement, then (∗) is obvious. Therefore g is a semisimple element.

Let h be a preimage of g in Ĝ(q). Then h is contained in a maximal
torus T of I(V ). When I(V ) ' SO2n+1(q), all maximal tori are contained
in SOε

2n(q), for ε = 1 or −1, so here all considerations can be reduced to
even dimensional orthogonal groups and we therefore ignore odd dimensional
orthogonal groups in the following.

The action of T on V is completely reducible and given by Lemma 2 of [16]
(the q > 5 hypothesis is sufficient to establish that lemma). Alternatively,
one can obtain a suitable torus working directly from a decomposition of V
under the action of h. In any case, T preserves a decomposition V = V1 ⊥
. . . ⊥ Vk ⊥ (Vk+1 ⊕ V ′

k+1) ⊥ . . . ⊥ (V` ⊕ V ′
` ), where if we set dim(Vi) = ri,

1 ≤ i ≤ `, then r1 ≥ . . . ≥ rk, and for k < i ≤ `, dim(Vi) = dim(V ′
i ), with

both subspaces being totally singular.
Corresponding to this decomposition we have T = T1×· · ·×T`, such that

for 1 ≤ i ≤ `, Ti induces a Singer cycle on Vi and for k < i ≤ `, Ti also
induces a Singer cycle on V ′

i . We note that k = ` in the general linear case.
Also for 1 ≤ i ≤ k, one of the following holds: |Ti| = qri − 1, qri + 1 (with ri

odd), qri/2 +1, qri/2 +1, with I(Vi) = GLri(q), GUri(q), Spri(q), or SO−
ri

(q),
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respectively. We make a series of reductions under the assumption that (∗)
fails to hold for g.

Step 1. dim(Vi) = 1, for each i > k.
For suppose k < i ≤ ` and dim(Vi) > 1, Ti ≤ GLri(q) (GLri(q

2) in the
unitary case) with dual action on Vi and V ′

i . Then Ti contains a subgroup
Zi of order q− 1 (q2− 1 in the unitary case) which induces (inverse) scalars
on Vi, and V ′

i . Elements of Zi have determinant 1 and since we are assuming
q > 5, we can find a noncentral element of Zi in Ĝ(q). Since all elements
of this group centralize unipotent elements of GLri(q), we obtain (∗) in this
case, a contradiction.

Step 2. ` ≤ k + 1, if G(q) 6= Oε
2n(q). Otherwise ` ≤ k + 2.

For suppose ` > k. Then Zk+1 centralizes Ĝ(Vk+2 ⊕ · · · ⊕ V ′
` ), so this

group contains no unipotent elements. Hence either ` = k +1, or G(q) is an
orthogonal group and ` = k + 2.

Step 3. k = `.
First assume k = 0. Then Step 1 and Step 2 show that either dim(V ) = 2,

or dim(V ) = 4, with G(q) ' O−
4 (q) (as G(q) is simple). In either case (i)

or (iii) holds, a contradiction. Now suppose 0 < k < `. Then Z` commutes
with Ĝ(V1⊕· · ·⊕Vk) and the latter group contains unipotent elements unless
either V1 ⊕ · · · ⊕ Vk is a 2-dimensional orthogonal space or a 1-dimensional
unitary space (we already mentioned that k = ` if G(q) ' Ln(q)). In
the former case Step 2 implies dim(V ) ≤ 6, against our supposition. And
in the unitary case, dim(V ) = 3 and hence satisfies (i). This is again a
contradiction.

Step 4. r1 > 1.
Suppose r1 = 1. This can only occur for G(q) = Lε

n(q). We are assuming
that (i) does not hold, so here k = n ≥ 4. Then (T1 × T2)∩ Ĝ(q) contains a
noncentral subgroup of order q−ε centralizing unipotent elements in Ĝ(V3⊕
· · · ⊕ Vk), a contradiction.

Step 5. Either V = V1 or G(q) = Lε
n(q), V = V1 ⊕ V2, and dim(V2) = 1.

It follows from Step 4 that T1 contains noncentral elements of Ĝ(q). Since
we are assuming that (∗) does not hold, Ĝ(V2 ⊕ · · · ⊕ Vk) contains no non-
identity unipotent elements.

If G = Lε
n(q), this forces dim(V2 ⊕ · · · ⊕ Vk) ≤ 1. In the symplectic case,

necessarily V = V1. We argue that this holds for the orthogonal case as
well. For otherwise, k = 2 and dim(V2) = 2. Hence dim(V1) ≥ 5. But then
there are noncentral elements of T2 which centralize unipotent elements of
Ĝ(V1), a contradiction.

We now treat the remaining configurations. First assume V = V1, so that
r1 = n. If G(q) = Lε

n(q), then |T | = qn−ε. Also n is odd in the unitary case.
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We are assuming that n is not a prime, so we may write n = rs, with r, s > 1
and such that s is odd in the unitary case. Then there is a (cyclic) subgroup
E < T of order qr− ε intersecting Ĝ(q) in a noncentral subgroup. As T acts
irreducibly on V , E acts homogeneously, so that V = W1 ⊕ · · · ⊕Ws, with
each Wi of dimension r and irreducible under the action of E. In the unitary
case where s is odd, it is easily checked that we may take W1 nondegenerate
and perpendicular to the remaining summands. Now h centralizes E which
in turn centralizes a Singer cycle in Ĝ(W1). This Singer cycle centralizes a
unipotent element in Ĝ(W2 ⊕ · · · ⊕Ws) so we have (∗), a contradiction.

In the symplectic and orthogonal cases, we have |T | = qn + 1. Here we
are assuming that n is not a power of 2, so the same argument works.

The final case is where V = V1 ⊕ V2, with dim(V2) = 1 and G = Lε
n(q).

Then r1 = n − 1. If n − 1 is not a prime, we argue as above, working in
SLε

n−1(q). Suppose n− 1 is a prime. Then T contains a subgroup of order
(q − ε)2 which induces scalars on Vi. Intersecting with Ĝ(q) we get a group
of order q − ε so this gives a noncentral element centralizing a unipotent
element of Ĝ(V1), unless q − ε | n. This concludes the proof of (∗).

It is now an easy matter to show that ∆(G(q)) is connected of diameter
at most 10. By (∗) g is at distance at most 3 from a nontrivial unipotent
element of G(q). The center of a maximal unipotent subgroup of G(q)
contains long root elements. Hence g is at distance at most 4 from a long
root element.

Now let g, g′ ∈ ∆(G(q)). Let u, u′ be long root elements at distance at
most 4 from g, g′ respectively. It is well-known that either u, u′ commute,
lie in an extraspecial p-subgroup (hence commute with the center), or lie in
a group J = SL2(q) generated by the long root subgroups corresponding to
u, u′. In the latter case, we can choose a root element w lying in a conjugate
of J and commuting with J . This completes the argument.

To complete the proof of the theorem we now assume that G(q) satisfies
either (i), (ii) or (iii). Here we argue that ∆(G(q)) is disconnected. If (i)
holds with n = p a prime, then GLε

p(q) contains a cyclic maximal torus T
of order qp − ε. If p = 2, then we immediately see that opposite unipotent
elements cannot be joined. So assume p is odd. Let h ∈ E = T∩SLε

p(q) with
h /∈ Z(SLε

p(q)). So h acts irreducibly on V . Suppose y ∈ SLε
p(q) centralizes

h projectively. Hence hy = hz, where z ∈ Z(SLε
p(q)). The centralizer of h

and of hy in SLε
p(q) is E, so y normalizes E, hence induces an automorphism

on E of order dividing p. Hence z has order dividing (p, q − ε). So either
z = 1, or is of order p. In the latter case, by 8.3, |E/(E ∩ Z(SLε

p(q)))| has
order prime to p, so we may assume h has order prime to p, and this also
forces z = 1. But the centralizer of h in SLε

p(q) is E, so the image of E−{1}
in G(q) is a connected component of ∆(G(q)).
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The same argument applies if (iii) holds, taking T to be a Singer cycle of
order qn +1 and noting that the resulting torus of the simple group has odd
order.

The last case is where (ii) holds with n−1 = p a prime and q− ε dividing
n = p+1. In this case take a decomposition V = V1 ⊥ V2, with dim(V1) = p.
Then GLε

n(q) contains a maximal torus T1×T2 of order (qp− ε)(q− ε). The
resulting torus E < SLε

n(q) has order (qp − ε) and in the simple group the
torus has order (qp − ε)/(q − ε). The argument is thus the same as in the
case where (i) holds. This completes the proof of Theorem 12.5.

Remarks. (1) In the papers [19] and [4] the connected components of
the prime graph of all nonabelian finite simple groups are determined. It is
easy to see that the prime graph is connected if and only if the commuting
graph is connected. Thus the nonabelian finite simple groups L for which
∆(L) is disconnected are known. We note that in the connected case of
Theorem 12.2 we prove that the diameter of ∆(G(q)) is bounded.

(2) We assume q > 5, in the above result, in order to simplify the state-
ment and the proof. With extra work one should be able to obtain infor-
mation for smaller values of q. However, there will be additional examples
where the graph is disconnected.
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