Vol. 202, No. 2, 2002

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Chebyshev property of complete elliptic integrals and its application to abelian integrals

Armengol Gasull, Weigu Li, Jaume Llibre and Zhifen Zhang

Vol. 202 (2002), No. 2, 341–361
Abstract

This paper has two parts. In the first one we study the maximum number of zeros of a function of the form f(k)K(k) + g(k)E(k), where k (1,1), f and g are polynomials, and K(k) = 0π∕2√---d𝜃----
1−k2sin2𝜃 and E(k) = 0π∕2∘1-−-k2sin2𝜃d𝜃 are the complete normal elliptic integrals of the first and second kinds, respectively. In the second part we apply the first one to obtain an upper bound for the number of limit cycles which appear from a small polynomial perturbation of the planar isochronous differential equation ż = iz + z3, where z = x + iy .

Milestones
Received: 9 March 2000
Revised: 13 June 2000
Published: 1 February 2002
Authors
Armengol Gasull
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 Bellaterra
Barcelona
Spain
Weigu Li
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 Bellaterra
Barcelona
Spain
Jaume Llibre
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 Bellaterra
Barcelona
Spain
Zhifen Zhang
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 Bellaterra
Barcelona
Spain
Department of Mathematics
Peking University
Beijing 100871
China