Pacific Journal of Mathematics

COLORING MAPS OF PERIOD THREE

J.M. Aarts, R.J. Fokkink, and J. Vermeer

Volume 202 No. 2

February 2002

COLORING MAPS OF PERIOD THREE

J.M. AARTS, R.J. FOKKINK, AND J. VERMEER

We investigate the color number and genus for fixed-point free maps of order three. A result that has the flavor of the Ljusternik-Schnirelmann theorem for involutions is established. The Y-sphere, the combinatorial boundary of the product of tripods, is studied in detail. Problems of coloring non-invariant subspaces are touched upon.

Introduction.

All spaces are assumed to be separable metric and all mappings are assumed to be continuous.

Definition 1. Suppose that $f: X \to X$ is a map from X to itself. An open subset B of X is called a *color* of (X, f) if $f(B) \cap B = \emptyset$ or, equivalently, $f^{-1}(B) \cap B = \emptyset$. A *coloring* of (X, f) is a finite cover \mathcal{B} of X consisting of colors. The minimal cardinality of a coloring \mathcal{B} is called the *color number* col(X, f) of (X, f).

In the definition of color we could have used closed subsets as well. By shrinking an open coloring a closed coloring may be obtained and the colors of a closed coloring can be enlarged so as to obtain an open coloring. The situation is more delicate when considering non-invariant subspaces, as was shown in [8]. For a fixed-point free homeomorphism f of an n-dimensional space X we have $\operatorname{col}(X, f) \leq n + 3$; if moreover the map f is an involution then $\operatorname{col}(X, f) \leq n + 2$, [3].

In this paper we study fixed-point free maps $\sigma: X \to X$ of order 3, i.e., $\sigma^3(x) = x$ for each $x \in X$. It is to be noted that for a color B of (X, σ) , when σ has period 3, the sets B, $\sigma(B)$ and $\sigma^2(B)$ are pairwise disjoint. One of the reasons for studying maps of period 3 is that they provide examples of pairs (X, σ) with dim(X) = n and col $(X, \sigma) = n + 3$. A second reason is that there is an intimate relation between the color number and the genus, which we now define.

Definition 2. Let X be a space and $\sigma: X \to X$ a map of period 3 without fixed-points.

(1) A subset B of X is called a set of first type if there exists a color C of (X, σ) such that $B = C \cup \sigma(C) \cup \sigma^2(C)$; we also say that B is generated by C.

(2) We say that the genus of the space X is at most k if X can be written as a union of k sets of first type. Notation: $gen(X, \sigma) \leq k$.

Recall that if $f: X \to X$ and $g: Y \to Y$ are mappings then a mapping $h: X \to Y$ is said to be *equivariant* if $h \circ f = g \circ h$. Note that for an equivariant $h: X \to Y$ and mappings f and g of order 3 we have $\operatorname{col}(X, f) \leq \operatorname{col}(Y, g)$ and $\operatorname{gen}(X, f) \leq \operatorname{gen}(Y, g)$.

We now formulate the main results, which are generalizations of the Ljusternik-Schnirelmann theorem for involutions on S^n .

Theorem 1. Let X be a space and $\sigma: X \to X$ a map of period 3 without fixed-points. If gen $(X, \sigma) = n + 1$ and if A_1, \ldots, A_{n+1} are colors of X with $X = \bigcup_{i=1}^{n+1} [A_i \cup \sigma(A_i) \cup \sigma^2(A_i)]$ then

$$\bigcap_{i=1}^{n+1} [A_i \cup \sigma(A_i)] \neq \emptyset.$$

Theorem 2. Let X be a space and $\sigma: X \to X$ a map of period 3 without fixed-points. If $col(X, \sigma) = n + 3$ and $\{A_1, \ldots, A_{n+1}, A_{n+2}, A_{n+3}\}$ is a coloring of X then

$$\bigcap_{i=1}^{n+1} [A_i \cup \sigma(A_i)] \neq \emptyset.$$

We shall also obtain a bound on the color number of non-invariant subspaces, using the results of [3]. We shall use the results above to show that this bound is almost sharp. Theorem 1 can be extended to general periodic maps on paracompact spaces [1] by a different proof. The proof in the present paper concerns certain universal spaces, the Y-cube and the Y-sphere, which are interesting in their own right.

1. The Y-cube Y^n and the Y-sphere S_Y^n .

The interval I = [-1, 1] with the antipodal-map is a standard space for the study of involutions and gives rise to the study of the *n*-cube I^n and the *n*-sphere S^n . We introduce a similar space for the study of maps of order 3. A natural candidate is the tripod, a Y-shaped space.

Consider in the complex plane the rotation γ of 120 degrees around 0 which is induced by the multiplication with $\zeta = \exp(\frac{2\pi i}{3})$. Let I denote the closed segment between 0 and 1. The subspace $Y = I \cup \zeta(I) \cup \zeta^2(I)$ is called the *closed Y-interval*. The points 1, ζ and ζ^2 are called the *end points* of Yand $Y^\circ = Y \setminus \{1, \zeta, \zeta^2\}$ is referred to as the *open Y-interval*. Both Y and Y° are invariant under γ . The space Y^n is called the *n-dimensional Y-cube*. The product map $\gamma^n : Y^n \to Y^n$ is a map of order 3 with a unique fixed point. The subspace S_Y^{n-1} of Y^n is defined by

$$S_Y^{n-1} = \{(x_1, \dots, x_n) \in Y^n : x_i \in \{1, \zeta, \zeta^2\} \text{ for some } i\}.$$

The space S_Y^{n-1} is called the (n-1)-dimensional Y-sphere. The 1-dimensional Y-sphere is the familiar bipartite cubic graph on six nodes K(3,3), which is a standard example of a non-planar graph.

Note that S_Y^{n-1} is invariant under γ^n and that γ^n has no fixed points in S_Y^{n-1} . As dim $(S_Y^n) = n$ we have

$$\operatorname{col}(S_Y^n, \gamma^{n+1}) \le n+3.$$

We will show later on that $\operatorname{col}(S_Y^n, \gamma) = n + 3$. So (S_Y^n, γ^{n+1}) is a pair of an *n*-dimensional space and a mapping for which the color number is maximal. The space S_Y^n can be obtained from S_Y^{n-1} as in the following way

$$S_Y^n = [S_Y^{n-1} \times Y] \cup \bigcup_{i=0}^2 [Y^n \times \{\zeta^i\}] \subset Y^{n+1}$$

and

$$S_Y^n = [S_Y^{n-1} \times Y^\circ] \cup \bigcup_{i=0}^2 [Y^n \times \{\zeta^i\}] \subset Y^{n+1}.$$

Lemma 1. Let X be a space and $\sigma: X \to X$ a map of order 3 without fixed-points. Suppose D is a closed subset such that $D \cap \sigma(D) = \emptyset$ and $E = D \cup \sigma(D) \cup \sigma^2(D)$, then there exist an equivariant map $f: X \to Y$ with $f^{-1}(1) = D$.

In the lemma, one may think of D and E as a closed color and closed set of the first kind.

Proof. By enlarging the $\sigma^i(D)$ for i = 0, 1, 2 we obtain open colors U_i . For i = 0, 1, 2 define real-valued Urysohn functions f_i on X such that $0 \le f_i(x) \le 1$ for all $x, f_i^{-1}(1) = \sigma^i(D)$ and $f_i^{-1}(0) = X \setminus U_i$. Let $f = f_0 + \zeta f_1 + \zeta^2 f_2$. \Box

Theorem 3. Let X be a space and $\sigma: X \to X$ a map of order 3 without fixed-points. The following statements are equivalent:

- (1) $\operatorname{col}(X,\sigma) \le n+3$,
- (2) $\operatorname{gen}(X, \sigma) \le n+1$,
- (3) there exist an equivariant map $f: (X, \sigma) \to (S_Y^n, \gamma^{n+1}),$
- (4) $X = \bigcup_{i=1}^{n+1} B_i$, where B_i is a σ -invariant subspace with $\operatorname{col}(B_i, \sigma) = 3$ for all *i*.

Proof. Suppose (1) holds. Let $\mathcal{A} = \{A_1, \ldots, A_{n+1}, A_{n+2}, A_{n+3}\}$ be an open coloring of X. If $x \in A_{n+2} \cup A_{n+3}$ then at least one of the points $\sigma(x)$ and $\sigma^2(x)$ does not belong to $A_{n+2} \cup A_{n+3}$, as \mathcal{A} is a coloring of X. It follows that

$$X = \bigcup_{i=1}^{n+1} [A_i \cup \sigma(A_i) \cup \sigma^2(A_i)],$$

whence (2) holds. If (X, σ) satisfies (2), then $X = \bigcup_{i=1}^{n+1} B_i$ with $B_i = C_i \cup \sigma(C_i) \cup \sigma^2(C_i)$ a set of first type. By shrinking the cover $\{\sigma^j(C_i) : i = 1, \ldots, n; j = 0, 1, 2\}$ one can find closed subsets $D_i \subset C_i$ such that $\{\sigma^j(D_i) : i = 1, \ldots, n; j = 0, 1, 2\}$ is a cover of X. By Lemma 1 there is for each *i* an equivariant map $f_i : X \to Y$ with the property $f_i^{-1}(1) = D_i$. The evaluation map $f = (f_1, \ldots, f_{n+1})$ of X to Y^{n+1} is equivariant and sends X to S_Y^n . So (3) holds. We have already observed that $\operatorname{col}(S_Y^n, \gamma^{n+1}) \leq n+3$. Thus (1) follows from (3).

To complete the proof we show that (2) and (4) are equivalent. If (X, σ) satisfies (2), then $X = \bigcup_{i=1}^{n+1} B_i$ where each $B_i = C_i \cup \sigma(C_i) \cup \sigma^2(C_i)$ is a set of first type. The subspaces B_i are invariant and have color number 3. Now, suppose that (4) holds. For each i let C_i be a color of the subspace B_i witnessing the fact that $\operatorname{col}(B_i, \sigma) = 3$. For each i the set C_i is open in the subspace B_i and the sets $C_i, \sigma(C_i)$ and $\sigma^2(C_i)$ are mutually disjoint subsets of B_i . As the sets $C_i, \sigma(C_i)$ and $\sigma^2(C_i)$ are mutually separated in X there is an color U_i of (X, σ) such that $B_i \cap U_i = C_i$. The set $V_i = U_i \cup \sigma(U_i) \cup \sigma^2(U_i)$ is of the first type and $X = \bigcup_{i=1}^{n+1} V_i$, whence $\operatorname{gen}(X, \sigma) \leq n+1$.

From the equivalence of (2) and (4) in the previous theorem and the construction of S_V^n out of S_V^{n-1} one can obtain

(1)
$$\operatorname{gen}(S_Y^n, \gamma^{n+1}) \le 1 + \operatorname{gen}(S_Y^{n-1}, \gamma^n).$$

To prove this formula let $S_Y^{n-1} = \bigcup_{i=1}^k B_i$, where B_i is a γ^n -invariant subspace with $\operatorname{col}(B_i, \sigma) = 3$ for all i and $k = \operatorname{gen}(S_Y^{n-1}, \gamma^n)$. Then $S_Y^n = [\bigcup_{i=1}^n B_i \times Y^\circ] \cup L^n$ and $\operatorname{gen}(S_Y^n, \gamma^{n+1}) \leq k+1$, where $L^n = Y^n \times \{1, 2, 3\}$.

Theorem 4. $col(S_Y^n, \gamma^{n+1}) = n+3 \text{ and } gen(S_Y^n, \gamma^{n+1}) = n+1.$

Proof. It has already been observed that $\operatorname{col}(S_Y^n, \gamma^{n+1}) \leq n+3$. It is known that for all odd n the standard sphere S^n with the standard map σ of period three has color number n+3. So there exists an equivariant map $f: (S^n, \sigma) \to (S_Y^n, \gamma^{n+1})$. It follows that $\operatorname{col}(S_Y^n, \gamma^{n+1}) \geq n+3$ and by Theorem 3 one obtains $\operatorname{gen}(S_Y^n, \gamma^{n+1}) = n+1$. Now suppose that n is even and $\operatorname{col}(S_Y^n, \gamma^{n+1}) < n+3$. By Theorem 3 it follows that $\operatorname{gen}(S_Y^n, \gamma^{n+1}) <$ n+1. Then by the formula (1) we get $\operatorname{gen}(S_Y^{n+1}, \gamma^{n+2}) < n+2$, which cannot be true, as n+1 is odd. \Box

2. Ljusternik-Schnirelmann for maps of order 3.

Theorem 2 is similar to the Ljusternik-Schnirelmann theorem which reads as follows. Suppose that σ is an involution on a space X and $\operatorname{col}(X, \sigma) = n+2$. Suppose $\{A_1, \ldots, A_{n+1}, A_{n+2}\}$ is a coloring of X. Then $\bigcap_{i=1}^{n+1} A_i \neq \emptyset$. The reason why this is true follows. If the two points $\mathbf{x_1} = (1, \ldots, 1)$ and $\mathbf{x_2} = (-1, \ldots, -1)$ are deleted from the standard sphere $S^n \subset [-1, 1]^{n+1}$ one obtains a space with a strictly smaller coloring number (for $n \ge 1$). For maps of order 3 one can not make a similar claim, $\bigcap_{i=1}^{n+1} A_i \ne \emptyset$, as easy examples on S^1 already show. If in the space S_Y^n the three points $\mathbf{x_i} = (\zeta^i, \ldots, \zeta^i)$, i = 0, 1, 2, are deleted one obtains a space with the same coloring number. The color number decreases only if more points are deleted.

Consider the *n*-dimensional Y-sphere S_Y^n and define the subset Λ_Y^n by

$$\mathbf{x} = (x_i)_i \in \Lambda_Y^n$$
 if and only if $x_i \in \{1, \zeta, \zeta^2\}$ for all *i*.

Note that the cardinality of Λ_Y^n is 3^{n+1} and that Λ_Y^n is invariant under γ^{n+1} . From Theorem 5 it follows that the color number can be reduced if we delete the subset Λ_Y^n from S_Y^n .

We define a subspace $\Sigma^n \subset \Lambda^n_Y$ in the following way. For i = 0, 1, 2, the subset Σ^n_i of Λ^n is defined by

$$\Sigma_i^n = \{ \mathbf{x} = (x_j)_j : x_j = \zeta^{i-1} \text{ or } x_j = \zeta^{i+1} \} \setminus \Delta,$$

where Δ is the diagonal of Y^{n+1} , i.e., Δ is the set of points all whose coordinates are equal. For example, $\mathbf{x} = (\zeta, \zeta^2, \zeta) \in \Sigma_0^2$, but $\mathbf{y} = (\zeta, \zeta, \zeta) \notin \Sigma_0^2$. Note that the three sets Σ_i^n , i = 0, 1, 2, are pairwise disjoint and $\gamma^{n+1}(\Sigma_i^n) = \Sigma_{(i+1) \mod 3}^n$. It follows that the set $\Sigma^n = \Sigma_0^n \cup \Sigma_1^n \cup \Sigma_2^n$ is γ^{n+1} -invariant.

Theorem 5. For $n \ge 1$,

$$\operatorname{col}(S_Y^n \setminus \Sigma^n, \gamma^{n+1}) \le n+2 \quad and \quad \operatorname{gen}(S_Y^n \setminus \Sigma^n, \gamma^{n+1}) \le n.$$

Proof. As the statements of the theorem are equivalent by Theorem 3, we prove the second. For n = 1 it is best to verify the statement by drawing a picture. There are six points in Σ^1 . We mentioned already that S_Y^1 is the graph K(3,3), which is cut by Σ^1 in six of its edges. The three edges that remain intact, connect vertices of two opposite parts of the graph. So $S_Y^1 \setminus \Sigma^1$ consists of three components, that are permuted by γ^2 . Thus $S_Y^1 \setminus \Sigma^1$ is a set of the first type.

Now assume that the result holds for $(S_Y^{n-1} \setminus \Sigma^{n-1}, \gamma^n)$. As $S_Y^n = [S_Y^{n-1} \times Y^\circ] \cup \bigcup_{i=0}^2 [Y^n \times \{\zeta^i\}]$ and $(S_Y^{n-1} \times Y^\circ) \cap \Sigma^n = \emptyset$, we have

$$\begin{split} S_Y^n \backslash \Sigma^n &= \left[(S_Y^{n-1} \backslash \Sigma^{n-1}) \times Y^{\circ} \right] \ \cup \\ & \left[(\Sigma^{n-1} \times Y^{\circ}) \cup \bigcup_{i=0}^2 \left\{ (Y^n \times \{\zeta^i\}) \backslash \Sigma^n \right\} \right]. \end{split}$$

The induction hypothesis implies that $\operatorname{gen}((S_Y^{n-1} \setminus \Sigma^{n-1}) \times Y^\circ, \gamma^{n+1}) \leq n-1$. So it suffices to show that the remaining two sets $(\Sigma^{n-1} \times Y^\circ) \cup \bigcup_{i=0}^2 (Y^n \times \{\zeta^i\}) \setminus \Sigma^n$ form a set of genus 1. Define the sets A_i for i = 0, 1, 2 by

$$A_i = (\Sigma_i^{n-1} \times Y^\circ) \cup (Y^n \times \{\zeta^i\}) \backslash \Sigma^n.$$

One verifies that this set has the property $\gamma^{n+1}(A_i) \cap A_i = \emptyset$ and that $(\Sigma^{n-1} \times Y^{\circ}) \cup \bigcup_{i=0}^{2} (Y^n \times \{\zeta^i\}) \setminus \Sigma^n = A_0 \cup A_1 \cup A_2$. So the proof is finished once we verify that A_0 is a closed subset of $S_Y^n \setminus \Sigma^n$. It is obvious that $Y^n \times \{1\}$ is closed, so we have to verify that the closure of $\Sigma^{n-1} \times Y^{\circ}$ is contained in A_0 . Observe that the set of density points of $\Sigma_0^{n-1} \times Y^\circ$ in the Y-sphere is $\Sigma_0^{n-1} \times \{1, \zeta, \zeta^2\}$. So in $S_V^n \setminus \Sigma^n$ its set of density points is $\Sigma_0^{n-1} \times \{1\}$, which is a subset of $Y^n \times \{1\}$. We conclude that A_0 is closed in $S_V^n \setminus \Sigma^n$.

The previous theorem has as a corollary Theorem 2.

Proof. Note first that the three statements

- $\begin{array}{ll} (1) & \bigcap_{i=1}^{n+1} [A_i \cup \sigma(A_i)] \neq \emptyset, \\ (2) & \bigcap_{i=1}^{n+1} [\sigma(A_i) \cup \sigma^2(A_i)] \neq \emptyset, \\ (3) & \bigcap_{i=1}^{n+1} [\sigma^2(A_i) \cup A_i] \neq \emptyset, \end{array}$

are equivalent, as these sets are mapped onto each other by the map σ . Using the closed coloring $\{A_1, \ldots, A_{n+1}, A_{n+2}, A_{n+3}\}$, for $i = 1, \ldots, n+1$, we can define by Lemma 1 equivariant maps $f_i: X \to Y$ with $f_i^{-1}(1) = A_i$. The evaluation map $F = (f_1, \ldots, f_{n+1}): X \to Y^{n+1}$ is equivariant and $F(X) \subset S_Y^n$. Since $\operatorname{col}(X, \sigma) = n+3$ and $\operatorname{col}(S_Y^n \setminus \Sigma_n, \gamma^{n+1}) \leq n+2$, it can not occur that $F(X) \subset S_Y^n \setminus \Sigma^n$. Choose $x \in X$ with $F(x) = (f_i(x))_i \in \Sigma^n$, say $F(x) \in \Sigma_1^n$.

It follows that $x \in \bigcap_{i=1}^{n+1} [A_i \cup \sigma^2(A_i)] \neq \emptyset$ and so $\sigma(x) \in \bigcap_{i=1}^{n+1} [A_i \cup \sigma^2(A_i)]$ $\sigma(A_i) \neq \emptyset$. Similar arguments can be used for the cases $F(x) \in \Sigma_2^n$ and $F(x) \in \Sigma_0^n$. \square

3. Colorings of non-invariant subspaces.

We have defined colors as special open subsets. It was already observed that in defining colors we could have used closed sets as well. However, when studying non-invariant subspaces we must stick to open colors.

Definition 3. Suppose that $f: X \to X$ is a map from X to itself. Let A be a subset of X. A coloring of the subset A is a finite collection \mathcal{B} consisting of colors of (X, f) such that $A \subset \bigcup \mathcal{B}$. We denote the minimal cardinality of such a collection by col(A, X, f).

With the technique of the proof of Theorem 3, the equivalence of (2)and (4) one can prove the following lemma. We use the notation σ_B to denote the restriction of the map σ to the subspace B.

Lemma 2 ([8]). Let X be a space and $\sigma: X \to X$ a map of period 3 without fixed-points. If $A \subset B \subset X$ and B is σ -invariant, then

$$\operatorname{col}(A, X, \sigma) = \operatorname{col}(A, B, \sigma_B).$$

It is a consequence of the lemma that to compute the color number of a subset A of X, we may assume that $X = A \cup \sigma(A) \cup \sigma^2(A)$. The following theorem provides an upper bound for the color number of a subset related to its dimension.

Theorem 6. Suppose that $\sigma: X \to X$ is a map of period 3 without fixedpoints. If A is a subset of X and dim $(A) \leq n$ then $col(A, X, \sigma) \leq 3n + 5$.

Proof. The σ -invariant subspace $T = A \cup \sigma(A) \cup \sigma^2(A)$ has dimension at most 3n+2 and contains no fixed points of σ . So $\operatorname{col}(T, \sigma_T) \leq \dim(T) + 3 = 3n+5$. The result follows from the previous lemma.

We shall present an example of a map σ of period 3 with $\operatorname{col}(A, X, \sigma) \geq 3n + 4$. We refer to [8] for a related example of an involution ι with color number $\operatorname{col}(A, X, \iota) = 2n + 3$. For the construction we need the following result, which is a consequence of Theorem 1.

Theorem 7. Let $\sigma : X \to X$ be a map of period 3 without fixed-points. Suppose $\operatorname{col}(X, \sigma) = n + 3$. If A is a dense subset of X with $A \cup \sigma(A) \cup \sigma^2(A) = X$ then $\operatorname{col}(A, \sigma) \ge n + 2$.

Proof. We argue by contradiction. Assume that $\{U_1, \ldots, U_{n+1}\}$ is a coloring of (A, X, σ) . Then $X = \bigcup_{i=1}^{n+1} (U_i \cup \sigma(U_i) \cup \sigma^2(U_i))$. As $\operatorname{col}(X, \sigma) = n+3$, we have $\operatorname{gen}(X, \sigma) = n+1$. From Theorem 1 it follows that $\bigcap_{i=1}^{n+1} [\sigma^{-1}(U_i) \cup \sigma(U_i)]$ is a nonempty open set, which by the density of A contains an element $a \in A$. For each index i we have either $\sigma(a) \in U_i$ or $\sigma^{-1}(a) \in U_i$ and therefore $a \notin U_i$. This contradicts that the U_i cover A.

For the construction of our example we need the following lemmas. The first lemma is a special case of a result in [4].

Lemma 3. Let X be a space of dimension 2 with a fixed-point free map $\sigma: X \to X$ of period 3. Then there exists a subspace A of X with the following properties

- (1) A is dense in X,
- (2) $\dim A = 0$,
- (3) $A \cup \sigma(A) \cup \sigma^2(A) = X$.

The following lemma follows easily from the fact that a subset of X is contained in a G_{δ} -subset of the same dimension.

Lemma 4. Let X be a space with a fixed-point free map $\sigma: X \to X$ of period 3. If A is a σ -invariant subspace of X with $\dim(A) = k$ then there exists a σ -invariant G_{δ} subset A' of X with $A \subset A'$ and $\dim A' = \dim A$.

Lemma 5. Let X be a space with dim X = n and with a fixed-point free map $\sigma: X \to X$ of period 3. Then $X = X_0 \cup \ldots \cup X_n$, where dim $X_i = 0$ and each X_i is σ -invariant.

Proof. This is a version of the Decomposition Theorem [11]. We use induction on the dimension. If dim X = 0 the result is trivial. Assume the result holds for all spaces of dimension $\leq k - 1$ and all maps of order 3 without fixed-point. Let X be a space with dim X = k and let $\sigma: X \to X$ be a map of period 3 without fixed-points. Let $\{U_n; n \in \omega_0\}$ be a countable base with dim $(\operatorname{cl} U_n \setminus U_n) \leq k - 1$, for all n. If we define

$$X_k = X \setminus \left[\bigcup_n (\operatorname{cl} U_n \setminus U_n) \cup \bigcup_n \sigma(\operatorname{cl} U_n \setminus U_n) \cup \bigcup_n \sigma^2(\operatorname{cl} U_n \setminus U_n) \right]$$

then X_k is σ -invariant, dim $X_k = 0$ and dim $(X \setminus X_k) \leq k - 1$. So the induction argument applies.

Finally we construct the example of a complete *n*-dimensional subspace that cannot be colored with less than 3n + 4 colors.

Example 1. Consider the space S_Y^{3n+2} with the standard map $\gamma: S_Y^{3n+2} \to S_Y^{3n+2}$ of order 3. We know that $\operatorname{col}(S_Y^{3n+2}, \gamma) = 3n + 5$. Since the S_Y^{3n+2} is (3n+2)-dimensional it can be written as the union of 3n+3 zero-dimensional subspaces, say $S_Y^{3n+2} = B_1 \cup \ldots \cup B_{3n+3}$ such that each B_i is zero-dimensional and γ -invariant. Let $X_i = B_{3i-2} \cup B_{3i-1} \cup B_{3i}$ for $i = 1, \ldots, n+1$. Then each X_i is ≤ 2 -dimensional, invariant under γ . Lemma 3 implies that each X_i has a dense zero-dimensional subspace A_i such that $A_i \cup \gamma(A_i) \cup \gamma^2(A_i) = X_i$. Write $A' = A_1 \cup \ldots \cup A_{n+1}$. Then, A' is dense, A' has dimension $\leq n$ and A' also has the property

(2)
$$A' \cup \gamma(A') \cup \gamma 2(A') = S_Y^{3n+2}.$$

Note that Property (2) implies that dim A' = n. We enlarge A' to a dense G_{δ} subset A of dimension n. Then A satisfies Property (2). Finally, by Theorem 7 we have $\operatorname{col}(A, X, \gamma) \geq 3n + 4$.

4. Some remarks on periodic maps.

For a general fixed-point free homeomorphism $f: X \to X$ we were unable to obtain bounds on col(A, X, f) in terms of dim A. Indeed, we do not even know whether such a bound exists. However, we can find such a bound in the special case that the map is periodic.

We need the following result of Steinlein.

Theorem 8 ([15]). If $f: S^{(m-1)(p-1)-1} \to S^{(m-1)(p-1)-1}$ is a fixed-point free map of prime-period p, then

$$\operatorname{col}(S^{(m-1)(p-1)-1}, f) \le 4m.$$

To obtain our final result, one should know that any free periodic homeomorphism $f: X \to X$ on a space of dim X = n can be conjugated to a free periodic homeomorphism on S^n [15], so that it suffices to consider homeomorphisms on S^n .

Theorem 9. Let $\sigma : X \to X$ be a map of prime-period p, without fixedpoints and suppose that p-1 divides n+1. If A is a n-dimensional subset of X then $\operatorname{col}(A, X, \sigma) \leq 5n + 12$.

Proof. Suppose that $f: X \to X$ is a map of order p and let A be subspace of X of dimension n. We can assume that $p \ge 5$, since the case p = 2is done in [8] and p = 3 is done above. As we can assume that $X = A \cup f(A) \cup \cdots \cup f^{p-1}(A)$, we see that the maximal dimension of X is pn+p-1. Choose a minimal m such that $\dim(X) \le (m-1)(p-1)-1$ and so

$$pn + p - 1 \le (m - 1)(p - 1) - 1.$$

This implies that we can take

$$m = \left\lceil \frac{pn+p}{p-1} + 1 \right\rceil.$$

We conclude that we can color X, hence A, with $4m = 4\lceil \frac{pn+p}{p-1} + 1 \rceil \le 5n+12$ colors.

References

- [1] J.M. Aarts, G.A. Brouwer, R.J. Fokkink and J. Vermeer, *Intersection properties of coverings of G-spaces*, to appear in Topology Appl.
- [2] J.M. Aarts and R.J. Fokkink, An addition theorem for the color number, Proc. Amer. Math. Soc., **129**(9) (2001), 2803-2807 (electronic), CMP 1 838 806, Zbl 0963.54026.
- [3] J.M. Aarts, R.J. Fokkink and J. Vermeer, Variations on a theorem of Lusternik and Schnirelman, Topology, 35 (1996), 1051-1056, MR 98e:55003, Zbl 0918.54011.
- [4] $\underline{\qquad}$, A dynamic decomposition theorem, to appear in Acta Math. Hungar., **94(3)**, (2002).
- [5] A. Błaszczyk and J. Vermeer, Some old and some new results on combinatorial properties of fixed-point free maps, Ann. New York Acad. Sci., 767 (1995), 1-16, MR 98g:54100, Zbl 0919.54034.
- [6] A. Błaszczyk and Kim Dok Yong, A topological version of a combinatorial theorem of Katětov, Com. Math. Univ. Car., 29 (1988), 657-663.
- [7] J. Dugundji and A. Granas, *Fixed Point Theory*, Polish Scientific Publishers, Warszawa, 1988, MR 83j:54038, Zbl 0483.47038.
- [8] J.A.M. de Groot and J. Vermeer, Liusternik, Schnirelmann for subspaces, Topology Appl., 115(3) (2001), 343-354, CMP 1 848 134.
- [9] M. van Hartskamp, Colorings of fixed-point free maps, Thesis, Free University, Amsterdam, 1999.
- [10] M. van Hartskamp and J.Vermeer, On colorings of maps, Topology Appl., 73 (1996), 181-190, MR 97i:55006, Zbl 0867.55003.

- [11] W. Hurewicz and H. Wallman, *Dimension Theory*, Princeton University Press, Princeton NJ, 1941, MR 3,312b, Zbl 0060.39808.
- [12] M.A. Krasnoselski, On special coverings of a finite dimensional sphere, Dokl. Akad. Nauk SSSR, 103 (1955), 961-964 (Russian), MR 18,406a.
- [13] K. Kuratowski, Topology I, Academic Press, 1966, MR 36 #840, Zbl 0158.40802.
- J. van Mill, Easier proofs of coloring theorems, Topology Appl., 97 (1999), 155-163, MR 2000i:54066, Zbl 0947.54019.
- [15] H. Steinlein, On the theorems of Borsuk-Ulam and Ljusternik-Schnirelmann-Borsuk, Canad. Math. Bull., 27 (1984), 192-204, Zbl 0531.55002.
- [16] H. Steinlein, Borsuk's antipodal theorem and its generalizations and applications: A survey, in 'Methodes topologiques en Analyse non lineaire', les presses de l'universite de Montreal, A.Granas, 1985, MR 86k:55002, Zbl 0573.55003.

Received May 16, 2000 and revised August 29, 2000.

TECHNICAL UNIVERSITY DELFT FACULTY I.T.S. P.O. BOX 5031 2600 GA DELFT THE NETHERLANDS *E-mail address*: Aarts@its.tudelft.nl

TECHNICAL UNIVERSITY DELFT FACULTY I.T.S. P.O. Box 5031 2600 GA DELFT THE NETHERLANDS *E-mail address:* fokkink@its.tudelft.nl

TECHNICAL UNIVERSITY DELFT FACULTY I.T.S. P.O. BOX 5031 2600 GA DELFT THE NETHERLANDS *E-mail address*: J.Vermeer@its.tudelft.nl