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We investigate the color number and genus for fixed-point
free maps of order three. A result that has the flavor of
the Ljusternik-Schnirelmann theorem for involutions is es-
tablished. The Y -sphere, the combinatorial boundary of the
product of tripods, is studied in detail. Problems of coloring
non-invariant subspaces are touched upon.

Introduction.

All spaces are assumed to be separable metric and all mappings are assumed
to be continuous.

Definition 1. Suppose that f : X → X is a map from X to itself. An open
subset B of X is called a color of (X, f) if f(B) ∩ B = ∅ or, equivalently,
f−1(B) ∩ B = ∅. A coloring of (X, f) is a finite cover B of X consisting of
colors. The minimal cardinality of a coloring B is called the color number
col(X, f) of (X, f).

In the definition of color we could have used closed subsets as well. By
shrinking an open coloring a closed coloring may be obtained and the colors
of a closed coloring can be enlarged so as to obtain an open coloring. The
situation is more delicate when considering non-invariant subspaces, as was
shown in [8]. For a fixed-point free homeomorphism f of an n-dimensional
space X we have col(X, f) ≤ n + 3; if moreover the map f is an involution
then col(X, f) ≤ n + 2, [3].

In this paper we study fixed-point free maps σ : X → X of order 3, i.e.,
σ3(x) = x for each x ∈ X. It is to be noted that for a color B of (X, σ),
when σ has period 3, the sets B, σ(B) and σ2(B) are pairwise disjoint. One
of the reasons for studying maps of period 3 is that they provide examples
of pairs (X, σ) with dim(X) = n and col(X, σ) = n + 3. A second reason is
that there is an intimate relation between the color number and the genus,
which we now define.

Definition 2. Let X be a space and σ : X → X a map of period 3 without
fixed-points.

(1) A subset B of X is called a set of first type if there exists a color C of
(X, σ) such that B = C∪σ(C)∪σ2(C); we also say that B is generated
by C.
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(2) We say that the genus of the space X is at most k if X can be written
as a union of k sets of first type. Notation: gen(X, σ) ≤ k.

Recall that if f : X → X and g : Y → Y are mappings then a map-
ping h : X → Y is said to be equivariant if h ◦ f = g ◦ h. Note that
for an equivariant h : X → Y and mappings f and g of order 3 we have
col(X, f) ≤ col(Y, g) and gen(X, f) ≤ gen(Y, g).

We now formulate the main results, which are generalizations of the
Ljusternik-Schnirelmann theorem for involutions on Sn.

Theorem 1. Let X be a space and σ : X → X a map of period 3 without
fixed-points. If gen(X, σ) = n + 1 and if A1, . . . , An+1 are colors of X with
X =

⋃n+1
i=1 [Ai ∪ σ(Ai) ∪ σ2(Ai)] then

n+1⋂
i=1

[Ai ∪ σ(Ai)] 6= ∅.

Theorem 2. Let X be a space and σ : X → X a map of period 3 with-
out fixed-points. If col(X, σ) = n + 3 and {A1, . . . , An+1, An+2, An+3} is a
coloring of X then

n+1⋂
i=1

[Ai ∪ σ(Ai)] 6= ∅.

We shall also obtain a bound on the color number of non-invariant sub-
spaces, using the results of [3]. We shall use the results above to show
that this bound is almost sharp. Theorem 1 can be extended to general
periodic maps on paracompact spaces [1] by a different proof. The proof
in the present paper concerns certain universal spaces, the Y -cube and the
Y -sphere, which are interesting in their own right.

1. The Y -cube Y n and the Y -sphere Sn
Y .

The interval I = [−1, 1] with the antipodal-map is a standard space for the
study of involutions and gives rise to the study of the n-cube In and the
n-sphere Sn. We introduce a similar space for the study of maps of order 3.
A natural candidate is the tripod, a Y -shaped space.

Consider in the complex plane the rotation γ of 120 degrees around 0
which is induced by the multiplication with ζ = exp(2πi

3 ). Let I denote the
closed segment between 0 and 1. The subspace Y = I ∪ζ(I)∪ζ2(I) is called
the closed Y -interval. The points 1, ζ and ζ2 are called the end points of Y
and Y ◦ = Y \{1, ζ, ζ2} is referred to as the open Y -interval. Both Y and Y ◦

are invariant under γ. The space Y n is called the n-dimensional Y -cube.
The product map γn : Y n → Y n is a map of order 3 with a unique fixed
point. The subspace Sn−1

Y of Y n is defined by

Sn−1
Y = {(x1, . . . , xn) ∈ Y n : xi ∈ {1, ζ, ζ2} for some i}.
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The space Sn−1
Y is called the (n− 1)-dimensional Y -sphere. The 1-dimen-

sional Y -sphere is the familiar bipartite cubic graph on six nodes K(3, 3),
which is a standard example of a non-planar graph.

Note that Sn−1
Y is invariant under γn and that γn has no fixed points in

Sn−1
Y . As dim(Sn

Y ) = n we have

col(Sn
Y , γn+1) ≤ n + 3.

We will show later on that col(Sn
Y , γ) = n + 3. So

(
Sn

Y , γn+1) is a pair of an
n-dimensional space and a mapping for which the color number is maximal.
The space Sn

Y can be obtained from Sn−1
Y as in the following way

Sn
Y = [Sn−1

Y × Y ] ∪
2⋃

i=0

[Y n × {ζi}] ⊂ Y n+1

and

Sn
Y = [Sn−1

Y × Y ◦] ∪
2⋃

i=0

[Y n × {ζi}] ⊂ Y n+1.

Lemma 1. Let X be a space and σ : X → X a map of order 3 without
fixed-points. Suppose D is a closed subset such that D ∩ σ(D) = ∅ and
E = D∪σ(D)∪σ2(D), then there exist an equivariant map f : X → Y with
f−1(1) = D.

In the lemma, one may think of D and E as a closed color and closed set
of the first kind.

Proof. By enlarging the σi(D) for i = 0, 1, 2 we obtain open colors Ui. For
i = 0, 1, 2 define real-valued Urysohn functions fi on X such that 0 ≤ fi(x) ≤
1 for all x, f−1

i (1) = σi(D) and f−1
i (0) = X \Ui. Let f = f0+ζf1+ζ2f2. �

Theorem 3. Let X be a space and σ : X → X a map of order 3 without
fixed-points. The following statements are equivalent:

(1) col(X, σ) ≤ n + 3,
(2) gen(X, σ) ≤ n + 1,
(3) there exist an equivariant map f : (X, σ) → (Sn

Y , γn+1),
(4) X =

⋃n+1
i=1 Bi, where Bi is a σ-invariant subspace with col(Bi, σ) = 3

for all i.

Proof. Suppose (1) holds. Let A = {A1, . . . , An+1, An+2, An+3 } be an open
coloring of X. If x ∈ An+2 ∪ An+3 then at least one of the points σ(x) and
σ2(x) does not belong to An+2 ∪ An+3, as A is a coloring of X. It follows
that

X =
n+1⋃
i=1

[Ai ∪ σ(Ai) ∪ σ2(Ai)],
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whence (2) holds. If (X, σ) satisfies (2), then X =
⋃n+1

i=1 Bi with Bi =
Ci ∪ σ(Ci) ∪ σ2(Ci) a set of first type. By shrinking the cover {σj(Ci) :
i = 1, . . . , n; j = 0, 1, 2 } one can find closed subsets Di ⊂ Ci such that
{σj(Di) : i = 1, . . . , n; j = 0, 1, 2 } is a cover of X. By Lemma 1 there is for
each i an equivariant map fi : X → Y with the property f−1

i (1) = Di. The
evaluation map f = (f1, . . . , fn+1) of X to Y n+1 is equivariant and sends X
to Sn

Y . So (3) holds. We have already observed that col(Sn
Y , γn+1) ≤ n + 3.

Thus (1) follows from (3).
To complete the proof we show that (2) and (4) are equivalent. If (X, σ)

satisfies (2), then X =
⋃n+1

i=1 Bi where each Bi = Ci ∪ σ(Ci) ∪ σ2(Ci) is a
set of first type. The subspaces Bi are invariant and have color number 3.
Now, suppose that (4) holds. For each i let Ci be a color of the subspace Bi

witnessing the fact that col(Bi, σ) = 3. For each i the set Ci is open in the
subspace Bi and the sets Ci, σ(Ci) and σ2(Ci) are mutually disjoint subsets
of Bi. As the sets Ci, σ(Ci) and σ2(Ci) are mutually separated in X there is
an color Ui of (X, σ) such that Bi∩Ui = Ci. The set Vi = Ui∪σ(Ui)∪σ2(Ui)
is of the first type and X =

⋃n+1
i=1 Vi, whence gen(X, σ) ≤ n + 1. �

From the equivalence of (2) and (4) in the previous theorem and the
construction of Sn

Y out of Sn−1
Y one can obtain

gen(Sn
Y , γn+1) ≤ 1 + gen(Sn−1

Y , γn).(1)

To prove this formula let Sn−1
Y =

⋃k
i=1 Bi, where Bi is a γn-invariant sub-

space with col(Bi, σ) = 3 for all i and k = gen(Sn−1
Y , γn). Then Sn

Y =
[
⋃n

i=1 Bi × Y ◦] ∪ Ln and gen(Sn
Y , γn+1) ≤ k + 1, where Ln = Y n × {1, 2, 3}.

Theorem 4. col(Sn
Y , γn+1) = n + 3 and gen(Sn

Y , γn+1) = n + 1.

Proof. It has already been observed that col(Sn
Y , γn+1) ≤ n+3. It is known

that for all odd n the standard sphere Sn with the standard map σ of
period three has color number n + 3. So there exists an equivariant map
f : (Sn, σ) → (Sn

Y , γn+1). It follows that col(Sn
Y , γn+1) ≥ n + 3 and by

Theorem 3 one obtains gen(Sn
Y , γn+1) = n + 1. Now suppose that n is even

and col(Sn
Y , γn+1) < n + 3. By Theorem 3 it follows that gen(Sn

Y , γn+1) <

n + 1. Then by the formula (1) we get gen(Sn+1
Y , γn+2) < n + 2, which

cannot be true, as n + 1 is odd. �

2. Ljusternik-Schnirelmann for maps of order 3.

Theorem 2 is similar to the Ljusternik-Schnirelmann theorem which reads as
follows. Suppose that σ is an involution on a space X and col(X, σ) = n+2.
Suppose {A1, . . . , An+1, An+2 } is a coloring of X. Then

⋂n+1
i=1 Ai 6= ∅.

The reason why this is true follows. If the two points x1 = (1, . . . , 1) and
x2 = (−1, . . . ,−1) are deleted from the standard sphere Sn ⊂ [−1, 1]n+1 one
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obtains a space with a strictly smaller coloring number (for n ≥ 1). For maps
of order 3 one can not make a similar claim,

⋂n+1
i=1 Ai 6= ∅, as easy examples

on S1 already show. If in the space Sn
Y the three points xi = (ζi, . . . , ζi),

i = 0, 1, 2, are deleted one obtains a space with the same coloring number.
The color number decreases only if more points are deleted.

Consider the n-dimensional Y -sphere Sn
Y and define the subset Λn

Y by

x = (xi)i ∈ Λn
Y if and only if xi ∈ { 1, ζ, ζ2 } for all i.

Note that the cardinality of Λn
Y is 3n+1 and that Λn

Y is invariant under γn+1.
From Theorem 5 it follows that the color number can be reduced if we delete
the subset Λn

Y from Sn
Y .

We define a subspace Σn ⊂ Λn
Y in the folowing way. For i = 0, 1, 2, the

subset Σn
i of Λn is defined by

Σn
i = {x = (xj)j : xj = ζi−1 or xj = ζi+1 } \∆,

where ∆ is the diagonal of Y n+1, i.e., ∆ is the set of points all whose coor-
dinates are equal. For example, x = (ζ, ζ2, ζ) ∈ Σ2

0, but y = (ζ, ζ, ζ) /∈ Σ2
0.

Note that the three sets Σn
i , i = 0, 1, 2, are pairwise disjoint and γn+1(Σn

i ) =
Σn

(i+1) mod 3. It follows that the set Σn = Σn
0 ∪ Σn

1 ∪ Σn
2 is γn+1-invariant.

Theorem 5. For n ≥ 1,

col(Sn
Y \Σn, γn+1) ≤ n + 2 and gen(Sn

Y \Σn, γn+1) ≤ n.

Proof. As the statements of the theorem are equivalent by Theorem 3, we
prove the second. For n = 1 it is best to verify the statement by drawing
a picture. There are six points in Σ1. We mentioned already that S1

Y is
the graph K(3, 3), which is cut by Σ1 in six of its edges. The three edges
that remain intact, connect vertices of two opposite parts of the graph. So
S1

Y \Σ1 consists of three components, that are permuted by γ2. Thus S1
Y \Σ1

is a set of the first type.
Now assume that the result holds for (Sn−1

Y \Σn−1, γn). As Sn
Y = [Sn−1

Y ×
Y ◦] ∪

⋃2
i=0[Y

n × {ζi}] and (Sn−1
Y × Y ◦) ∩ Σn = ∅, we have

Sn
Y \Σn = [(Sn−1

Y \Σn−1)× Y ◦] ∪[
(Σn−1 × Y ◦) ∪

2⋃
i=0

{(Y n × {ζi})\Σn}

]
.

The induction hypothesis implies that gen
(
(Sn−1

Y \Σn−1)×Y ◦, γn+1
)
≤ n−1.

So it suffices to show that the remaining two sets (Σn−1 × Y ◦)∪
⋃2

i=0(Y
n ×

{ ζi })\Σn form a set of genus 1. Define the sets Ai for i = 0, 1, 2 by

Ai = (Σn−1
i × Y ◦) ∪ (Y n × { ζi })\Σn.
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One verifies that this set has the property γn+1(Ai) ∩ Ai = ∅ and that
(Σn−1×Y ◦)∪

⋃2
i=0(Y

n×{ ζi })\Σn = A0∪A1∪A2. So the proof is finished
once we verify that A0 is a closed subset of Sn

Y \Σn. It is obvious that
Y n × {1} is closed, so we have to verify that the closure of Σn−1 × Y ◦ is
contained in A0. Observe that the set of density points of Σn−1

0 × Y ◦ in
the Y -sphere is Σn−1

0 × {1, ζ, ζ2}. So in Sn
Y \Σn its set of density points is

Σn−1
0 × {1}, which is a subset of Y n × {1}. We conclude that A0 is closed

in Sn
Y \Σn. �

The previous theorem has as a corollary Theorem 2.

Proof. Note first that the three statements
(1)

⋂n+1
i=1 [Ai ∪ σ(Ai)] 6= ∅,

(2)
⋂n+1

i=1 [σ(Ai) ∪ σ2(Ai)] 6= ∅,
(3)

⋂n+1
i=1 [σ2(Ai) ∪Ai] 6= ∅,

are equivalent, as these sets are mapped onto each other by the map σ.
Using the closed coloring {A1, . . . , An+1, An+2, An+3 }, for i = 1, . . . , n + 1,
we can define by Lemma 1 equivariant maps fi : X → Y with f−1

i (1) = Ai.
The evaluation map F = (f1, . . . , fn+1) : X → Y n+1 is equivariant and
F (X) ⊂ Sn

Y . Since col(X, σ) = n + 3 and col(Sn
Y \Σn, γn+1) ≤ n + 2, it can

not occur that F (X) ⊂ Sn
Y \Σn. Choose x ∈ X with F (x) =

(
fi(x)

)
i
∈ Σn,

say F (x) ∈ Σn
1 .

It follows that x ∈
⋂n+1

i=1 [Ai ∪ σ2(Ai)] 6= ∅ and so σ(x) ∈
⋂n+1

i=1 [Ai ∪
σ(Ai)] 6= ∅. Similar arguments can be used for the cases F (x) ∈ Σn

2 and
F (x) ∈ Σn

0 . �

3. Colorings of non-invariant subspaces.

We have defined colors as special open subsets. It was already observed
that in defining colors we could have used closed sets as well. However,
when studying non-invariant subspaces we must stick to open colors.

Definition 3. Suppose that f : X → X is a map from X to itself. Let A be
a subset of X. A coloring of the subset A is a finite collection B consisting
of colors of (X, f) such that A ⊂

⋃
B. We denote the minimal cardinality

of such a collection by col(A,X, f).

With the technique of the proof of Theorem 3, the equivalence of (2)
and (4) one can prove the following lemma. We use the notation σB to
denote the restriction of the map σ to the subspace B.

Lemma 2 ([8]). Let X be a space and σ : X → X a map of period 3 without
fixed-points. If A ⊂ B ⊂ X and B is σ-invariant, then

col(A,X, σ) = col(A,B, σB).
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It is a consequence of the lemma that to compute the color number of a
subset A of X, we may assume that X = A ∪ σ(A) ∪ σ2(A). The following
theorem provides an upper bound for the color number of a subset related
to its dimension.

Theorem 6. Suppose that σ : X → X is a map of period 3 without fixed-
points. If A is a subset of X and dim(A) ≤ n then col(A,X, σ) ≤ 3n + 5.

Proof. The σ-invariant subspace T = A∪σ(A)∪σ2(A) has dimension at most
3n+2 and contains no fixed points of σ. So col(T, σT ) ≤ dim(T )+3 = 3n+5.
The result follows from the previous lemma. �

We shall present an example of a map σ of period 3 with col(A,X, σ) ≥
3n + 4. We refer to [8] for a related example of an involution ι with color
number col(A,X, ι) = 2n + 3. For the construction we need the following
result, which is a consequence of Theorem 1.

Theorem 7. Let σ : X → X be a map of period 3 without fixed-points.
Suppose col(X, σ) = n + 3. If A is a dense subset of X with A ∪ σ(A) ∪
σ2(A) = X then col(A, σ) ≥ n + 2.

Proof. We argue by contradiction. Assume that {U1, . . . , Un+1 } is a color-
ing of (A,X, σ). Then X =

⋃n+1
i=1 (Ui∪σ(Ui)∪σ2(Ui)). As col(X, σ) = n+3,

we have gen(X, σ) = n+1. From Theorem 1 it follows that
⋂n+1

i=1 [σ−1(Ui)∪
σ(Ui)] is a nonempty open set, which by the density of A contains an ele-
ment a ∈ A. For each index i we have either σ(a) ∈ Ui or σ−1(a) ∈ Ui and
therefore a /∈ Ui. This contradicts that the Ui cover A. �

For the construction of our example we need the following lemmas. The
first lemma is a special case of a result in [4].

Lemma 3. Let X be a space of dimension 2 with a fixed-point free map
σ : X → X of period 3. Then there exists a subspace A of X with the
following properties

(1) A is dense in X,
(2) dim A = 0,
(3) A ∪ σ(A) ∪ σ2(A) = X.

The following lemma follows easily from the fact that a subset of X is
contained in a Gδ-subset of the same dimension.

Lemma 4. Let X be a space with a fixed-point free map σ : X → X of
period 3. If A is a σ-invariant subspace of X with dim(A) = k then there
exists a σ-invariant Gδ subset A′ of X with A ⊂ A′ and dim A′ = dim A.

Lemma 5. Let X be a space with dim X = n and with a fixed-point free
map σ : X → X of period 3. Then X = X0 ∪ . . . ∪ Xn, where dim Xi = 0
and each Xi is σ-invariant.
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Proof. This is a version of the Decomposition Theorem [11]. We use induc-
tion on the dimension. If dim X = 0 the result is trivial. Assume the result
holds for all spaces of dimension ≤ k − 1 and all maps of order 3 without
fixed-point. Let X be a space with dim X = k and let σ : X → X be a map
of period 3 without fixed-points. Let {Un;n ∈ ω0} be a countable base with
dim(cl Un\Un) ≤ k − 1, for all n. If we define

Xk = X
∖ [⋃

n

(cl Un\Un) ∪
⋃
n

σ(cl Un\Un) ∪
⋃
n

σ2(cl Un\Un)

]
then Xk is σ-invariant, dim Xk = 0 and dim(X\Xk) ≤ k − 1. So the
induction argument applies. �

Finally we construct the example of a complete n-dimensional subspace
that cannot be colored with less than 3n + 4 colors.

Example 1. Consider the space S3n+2
Y with the standard map γ : S3n+2

Y →
S3n+2

Y of order 3. We know that col(S3n+2
Y , γ) = 3n + 5. Since the S3n+2

Y is
(3n+2)-dimensional it can be written as the union of 3n+3 zero-dimensional
subspaces, say S3n+2

Y = B1∪. . .∪B3n+3 such that each Bi is zero-dimensional
and γ-invariant. Let Xi = B3i−2 ∪ B3i−1 ∪ B3i for i = 1, . . . , n + 1. Then
each Xi is≤ 2-dimensional, invariant under γ. Lemma 3 implies that each Xi

has a dense zero-dimensional subspace Ai such that Ai∪γ(Ai)∪γ2(Ai) = Xi.
Write A′ = A1 ∪ . . . ∪ An+1. Then, A′ is dense, A′ has dimension ≤ n and
A′ also has the property

A′ ∪ γ(A′) ∪ γ2(A′) = S3n+2
Y .(2)

Note that Property (2) implies that dim A′ = n. We enlarge A′ to a dense
Gδ subset A of dimension n. Then A satisfies Property (2). Finally, by
Theorem 7 we have col(A,X, γ) ≥ 3n + 4.

4. Some remarks on periodic maps.

For a general fixed-point free homeomorphism f : X → X we were unable
to obtain bounds on col(A,X, f) in terms of dim A. Indeed, we do not even
know whether such a bound exists. However, we can find such a bound in
the special case that the map is periodic.

We need the following result of Steinlein.

Theorem 8 ([15]). If f : S(m−1)(p−1)−1 → S(m−1)(p−1)−1 is a fixed-point
free map of prime-period p, then

col(S(m−1)(p−1)−1, f) ≤ 4m.

To obtain our final result, one should know that any free periodic home-
omorphism f : X → X on a space of dim X = n can be conjugated to
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a free periodic homeomorphism on Sn [15], so that it suffices to consider
homeomorphisms on Sn.

Theorem 9. Let σ : X → X be a map of prime-period p, without fixed-
points and suppose that p− 1 divides n + 1. If A is a n-dimensional subset
of X then col(A,X, σ) ≤ 5n + 12.

Proof. Suppose that f : X → X is a map of order p and let A be subspace
of X of dimension n. We can assume that p ≥ 5, since the case p = 2
is done in [8] and p = 3 is done above. As we can assume that X =
A∪f(A)∪· · ·∪fp−1(A), we see that the maximal dimension of X is pn+p−1.
Choose a minimal m such that dim(X) ≤ (m− 1)(p− 1)− 1 and so

pn + p− 1 ≤ (m− 1)(p− 1)− 1.

This implies that we can take

m =
⌈

pn + p

p− 1
+ 1

⌉
.

We conclude that we can color X, hence A, with 4m = 4dpn+p
p−1 +1e ≤ 5n+12

colors. �
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