COLORING MAPS OF PERIOD THREE

J.M. AARTS, R.J. FOKKINK, AND J. VERMEER

We investigate the color number and genus for fixed-point free maps of order three. A result that has the flavor of the Ljusternik-Schnirelmann theorem for involutions is established. The Y-sphere, the combinatorial boundary of the product of tripods, is studied in detail. Problems of coloring non-invariant subspaces are touched upon.

Introduction.

All spaces are assumed to be separable metric and all mappings are assumed to be continuous.

Definition 1. Suppose that $f: X \to X$ is a map from X to itself. An open subset B of X is called a color of (X, f) if $f(B) \cap B = \emptyset$ or, equivalently, $f^{-1}(B) \cap B = \emptyset$. A coloring of (X, f) is a finite cover B of X consisting of colors. The minimal cardinality of a coloring B is called the color number $\text{col}(X, f)$ of (X, f).

In the definition of color we could have used closed subsets as well. By shrinking an open coloring a closed coloring may be obtained and the colors of a closed coloring can be enlarged so as to obtain an open coloring. The situation is more delicate when considering non-invariant subspaces, as was shown in [8]. For a fixed-point free homeomorphism f of an n-dimensional space X we have $\text{col}(X, f) \leq n + 3$; if moreover the map f is an involution then $\text{col}(X, f) \leq n + 2$, [3].

In this paper we study fixed-point free maps $\sigma: X \to X$ of order 3, i.e., $\sigma^3(x) = x$ for each $x \in X$. It is to be noted that for a color B of (X, σ), when σ has period 3, the sets B, $\sigma(B)$ and $\sigma^2(B)$ are pairwise disjoint. One of the reasons for studying maps of period 3 is that they provide examples of pairs (X, σ) with $\dim(X) = n$ and $\text{col}(X, \sigma) = n + 3$. A second reason is that there is an intimate relation between the color number and the genus, which we now define.

Definition 2. Let X be a space and $\sigma: X \to X$ a map of period 3 without fixed-points.

(1) A subset B of X is called a set of first type if there exists a color C of (X, σ) such that $B = C \cup \sigma(C) \cup \sigma^2(C)$; we also say that B is generated by C.

257
(2) We say that the genus of the space X is at most k if X can be written as a union of k sets of first type. Notation: $\text{gen}(X, \sigma) \leq k$.

Recall that if $f: X \to X$ and $g: Y \to Y$ are mappings then a mapping $h: X \to Y$ is said to be equivariant if $h \circ f = g \circ h$. Note that for an equivariant $h: X \to Y$ and mappings f and g of order 3 we have $\text{col}(X, f) \leq \text{col}(Y, g)$ and $\text{gen}(X, f) \leq \text{gen}(Y, g)$.

We now formulate the main results, which are generalizations of the Ljusternik-Schnirelmann theorem for involutions on S^n.

Theorem 1. Let X be a space and $\sigma: X \to X$ a map of period 3 without fixed-points. If $\text{gen}(X, \sigma) = n + 1$ and if A_1, \ldots, A_{n+1} are colors of X with $X = \bigcup_{i=1}^{n+1} [A_i \cup \sigma(A_i) \cup \sigma^2(A_i)]$ then

$$\bigcap_{i=1}^{n+1} [A_i \cup \sigma(A_i)] \neq \emptyset.$$

Theorem 2. Let X be a space and $\sigma: X \to X$ a map of period 3 without fixed-points. If $\text{col}(X, \sigma) = n + 3$ and $\{A_1, \ldots, A_{n+1}, A_{n+2}, A_{n+3}\}$ is a coloring of X then

$$\bigcap_{i=1}^{n+1} [A_i \cup \sigma(A_i)] \neq \emptyset.$$

We shall also obtain a bound on the color number of non-invariant subspaces, using the results of [3]. We shall use the results above to show that this bound is almost sharp. Theorem 1 can be extended to general periodic maps on paracompact spaces [1] by a different proof. The proof in the present paper concerns certain universal spaces, the Y-cube and the Y-sphere, which are interesting in their own right.

1. **The Y-cube Y^n and the Y-sphere S^n_Y.**

The interval $I = [-1, 1]$ with the antipodal-map is a standard space for the study of involutions and gives rise to the study of the n-cube I^n and the n-sphere S^n. We introduce a similar space for the study of maps of order 3. A natural candidate is the tripod, a Y-shaped space.

Consider in the complex plane the rotation γ of 120 degrees around 0 which is induced by the multiplication with $\zeta = \exp(\frac{2\pi i}{3})$. Let I denote the closed segment between 0 and 1. The subspace $Y = I \cup \zeta(I) \cup \zeta^2(I)$ is called the closed Y-interval. The points 1, ζ, and ζ^2 are called the end points of Y and $Y^o = Y \setminus \{1, \zeta, \zeta^2\}$ is referred to as the open Y-interval. Both Y and Y^o are invariant under γ. The space Y^n is called the n-dimensional Y-cube. The product map $\gamma^n: Y^n \to Y^n$ is a map of order 3 with a unique fixed point. The subspace S^n_Y of Y^n is defined by

$$S^n_Y = \{(x_1, \ldots, x_n) \in Y^n: x_i \in \{1, \zeta, \zeta^2\} \text{ for some } i\}.$$
The space S^n_{Y} is called the \((n-1)\)-dimensional \(Y\)-sphere. The 1-dimensional \(Y\)-sphere is the familiar bipartite cubic graph on six nodes \(K(3, 3)\), which is a standard example of a non-planar graph.

Note that S^n_{Y} is invariant under γ^n and that γ^n has no fixed points in S^n_{Y}. As $\dim(S^n_{Y}) = n$ we have

$$\text{col}(S^n_{Y}, \gamma^{n+1}) \leq n + 3.$$

We will show later on that $\text{col}(S^n_{Y}, \gamma) = n + 3$. So (S^n_{Y}, γ^{n+1}) is a pair of an \(n\)-dimensional space and a mapping for which the color number is maximal.

The space S^n_{Y} can be obtained from S^{n-1}_{Y} as in the following way

$$S^n_{Y} = [S^{n-1}_{Y} \times Y] \cup \bigcup_{i=0}^{2}[Y^n \times \{\zeta^i\}] \subset Y^{n+1}$$

and

$$S^n_{Y} = [S^{n-1}_{Y} \times Y^0] \cup \bigcup_{i=0}^{2}[Y^n \times \{\zeta^i\}] \subset Y^{n+1}.$$

Lemma 1. Let X be a space and $\sigma : X \to X$ a map of order 3 without fixed-points. Suppose D is a closed subset such that $D \cap \sigma(D) = \emptyset$ and $E = D \cup \sigma(D) \cup \sigma^2(D)$, then there exist an equivariant map $f : X \to Y$ with $f^{-1}(1) = D$.

In the lemma, one may think of D and E as a closed color and closed set of the first kind.

Proof. By enlarging the $\sigma^i(D)$ for $i = 0, 1, 2$ we obtain open colors U_i. For $i = 0, 1, 2$ define real-valued Urysohn functions f_i on X such that $0 \leq f_i(x) \leq 1$ for all x, $f_i^{-1}(1) = \sigma^i(D)$ and $f_i^{-1}(0) = X \setminus U_i$. Let $f = f_0 + \zeta f_1 + \zeta^2 f_2$. \(\square\)

Theorem 3. Let X be a space and $\sigma : X \to X$ a map of order 3 without fixed-points. The following statements are equivalent:

1. $\text{col}(X, \sigma) \leq n + 3$,
2. $\text{gen}(X, \sigma) \leq n + 1$,
3. there exist an equivariant map $f : (X, \sigma) \to (S^n_{Y}, \gamma^{n+1})$,
4. $X = \bigcup_{i=1}^{n+1} B_i$, where B_i is a σ-invariant subspace with $\text{col}(B_i, \sigma) = 3$ for all i.

Proof. Suppose (1) holds. Let $A = \{ A_1, \ldots, A_{n+1}, A_{n+2}, A_{n+3} \}$ be an open coloring of X. If $x \in A_{n+2} \cup A_{n+3}$ then at least one of the points $\sigma(x)$ and $\sigma^2(x)$ does not belong to $A_{n+2} \cup A_{n+3}$, as A is a coloring of X. It follows that

$$X = \bigcup_{i=1}^{n+1} [A_i \cup \sigma(A_i) \cup \sigma^2(A_i)],$$
whence (2) holds. If \((X, \sigma)\) satisfies (2), then \(X = \bigcup_{i=1}^{n+1} B_i\) with \(B_i = C_i \cup \sigma(C_i) \cup \sigma^2(C_i)\) a set of first type. By shrinking the cover \(\{ \sigma^j(C_i) : i = 1, \ldots, n; j = 0, 1, 2 \}\) one can find closed subsets \(D_i \subset C_i\) such that \(\{ \sigma^j(D_i) : i = 1, \ldots, n; j = 0, 1, 2 \}\) is a cover of \(X\). By Lemma 1 there is for each \(i\) an equivariant map \(f_i : X \to Y\) with the property \(f_i^{-1}(1) = D_i\). The evaluation map \(f = (f_1, \ldots, f_{n+1})\) of \(X\) to \(Y^{n+1}\) is equivariant and sends \(X\) to \(S^0_Y\). So (3) holds. We have already observed that \(\text{col}(S^n_Y, \gamma^{n+1}) \leq n + 3\). Thus (1) follows from (3).

To complete the proof we show that (2) and (4) are equivalent. If \((X, \sigma)\) satisfies (2), then \(X = \bigcup_{i=1}^{n+1} B_i\) where each \(B_i = C_i \cup \sigma(C_i) \cup \sigma^2(C_i)\) is a set of first type. The subspaces \(B_i\) are invariant and have color number 3. Now, suppose that (4) holds. For each \(i\) let \(C_i\) be a color of the subspace \(B_i\) witnessing the fact that \(\text{col}(B_i, \sigma) = 3\). For each \(i\) the set \(C_i\) is open in the subspace \(B_i\) and the sets \(C_i, \sigma(C_i)\) and \(\sigma^2(C_i)\) are mutually disjoint subsets of \(B_i\). As the sets \(C_i, \sigma(C_i)\) and \(\sigma^2(C_i)\) are mutually separated in \(X\) there is an color \(U_i\) of \((X, \sigma)\) such that \(B_i \cap U_i = C_i\). The set \(V_i = U_i \cup \sigma(U_i) \cup \sigma^2(U_i)\) is of the first type and \(X = \bigcup_{i=1}^{n+1} V_i\), whence \(\text{gen}(X, \sigma) \leq n + 1\). \(\square\)

From the equivalence of (2) and (4) in the previous theorem and the construction of \(S^n_Y\) out of \(S^0_Y\), one can obtain
\[
(1) \quad \text{gen}(S^n_Y, \gamma^{n+1}) \leq 1 + \text{gen}(S^n_Y, \gamma^n).
\]
To prove this formula let \(S^0_Y = \bigcup_{i=1}^{n+1} B_i\), where \(B_i\) is a \(\gamma^n\)-invariant subspace with \(\text{col}(B_i, \sigma) = 3\) for all \(i\) and \(k = \text{gen}(S^n_Y, \gamma^n)\). Then \(S^n_Y = [\bigcup_{i=1}^{n+1} B_i \times Y^n] \cup L^n\) and \(\text{gen}(S^n_Y, \gamma^{n+1}) \leq k + 1\), where \(L^n = Y^n \times \{1, 2, 3\}\).

Theorem 4. \(\text{col}(S^n_Y, \gamma^{n+1}) = n + 3\) and \(\text{gen}(S^n_Y, \gamma^{n+1}) = n + 1\).

Proof. It has already been observed that \(\text{col}(S^n_Y, \gamma^{n+1}) \leq n + 3\). It is known that for all odd \(n\) the standard sphere \(S^n\) with the standard map \(\sigma\) of period three has color number \(n + 3\). So there exists an equivariant map \(f : (S^n, \sigma) \to (S^n, \gamma^{n+1})\). It follows that \(\text{col}(S^n_Y, \gamma^{n+1}) \geq n + 3\) and by Theorem 3 one obtains \(\text{gen}(S^n_Y, \gamma^{n+1}) = n + 1\). Now suppose that \(n\) is even and \(\text{col}(S^n_Y, \gamma^{n+1}) < n + 3\). By Theorem 3 it follows that \(\text{gen}(S^n_Y, \gamma^{n+1}) < n + 1\). Then by the formula (1) we get \(\text{gen}(S^n_Y, \gamma^{n+1}) < n + 2\), which cannot be true, as \(n + 1\) is odd. \(\square\)

2. Ljusternik-Schnirelmann for maps of order 3.

Theorem 2 is similar to the Ljusternik-Schnirelmann theorem which reads as follows. Suppose that \(\sigma\) is an involution on a space \(X\) and \(\text{col}(X, \sigma) = n + 2\). Suppose \(\{ A_1, \ldots, A_{n+1}, A_{n+2} \}\) is a coloring of \(X\). Then \(\bigcap_{i=1}^{n+1} A_i \neq \emptyset\). The reason why this is true follows. If the two points \(x_1 = (1, \ldots, 1)\) and \(x_2 = (-1, \ldots, -1)\) are deleted from the standard sphere \(S^n \subset [-1, 1]^{n+1}\) one
obtains a space with a strictly smaller coloring number (for \(n \geq 1 \)). For maps of order 3 one can not make a similar claim, \(\bigcap_{i=1}^{n+1} A_i \neq \emptyset \), as easy examples on \(S^1 \) already show. If in the space \(S^n_Y \) the three points \(x_i = (\zeta^i, \ldots, \zeta^3) \), \(i = 0, 1, 2 \), are deleted one obtains a space with the same coloring number. The color number decreases only if more points are deleted.

Consider the \(n \)-dimensional \(Y \)-sphere \(S^n_Y \) and define the subset \(\Lambda^n_Y \) by

\[
x = (x_i) \in \Lambda^n_Y \quad \text{if and only if} \quad x_i \in \{1, \zeta, \zeta^2\} \quad \text{for all} \quad i.
\]

Note that the cardinality of \(\Lambda^n_Y \) is \(3^{n+1} \) and that \(\Lambda^n_Y \) is invariant under \(\gamma^{n+1} \). From Theorem 5 it follows that the color number can be reduced if we delete the subset \(\Lambda^n_Y \) from \(S^n_Y \).

We define a subspace \(\Sigma^n \subset \Lambda^n_Y \) in the following way. For \(i = 0, 1, 2 \), the subset \(\Sigma^n_i \) of \(\Lambda^n \) is defined by

\[
\Sigma^n_i = \{ x = (x_j) : x_j = \zeta^{i-1} \quad \text{or} \quad x_j = \zeta^{i+1} \} \setminus \Delta,
\]

where \(\Delta \) is the diagonal of \(Y^{n+1} \), i.e., \(\Delta \) is the set of points all whose coordinates are equal. For example, \(x = (\zeta, \zeta^2, \zeta) \in \Sigma^n_2 \), but \(y = (\zeta, \zeta, \zeta) \notin \Sigma^n_2 \).

Note that the three sets \(\Sigma^n_i \), \(i = 0, 1, 2 \), are pairwise disjoint and \(\gamma^{n+1}(\Sigma^n_i) = \Sigma^n_{i+1} \mod 3 \). It follows that the set \(\Sigma^n = \Sigma^n_0 \cup \Sigma^n_1 \cup \Sigma^n_2 \) is \(\gamma^{n+1} \)-invariant.

Theorem 5. For \(n \geq 1 \),

\[
\text{col}(S^n_Y \setminus \Sigma^n, \gamma^{n+1}) \leq n + 2 \quad \text{and} \quad \text{gen}(S^n_Y \setminus \Sigma^n, \gamma^{n+1}) \leq n.
\]

Proof. As the statements of the theorem are equivalent by Theorem 3, we prove the second. For \(n = 1 \) it is best to verify the statement by drawing a picture. There are six points in \(\Sigma^1 \). We mentioned already that \(S^1_Y \) is the graph \(K(3, 3) \), which is cut by \(\Sigma^1 \) in six of its edges. The three edges that remain intact, connect vertices of two opposite parts of the graph. So \(S^1_Y \setminus \Sigma^1 \) consists of three components, that are permuted by \(\gamma^2 \). Thus \(S^1_Y \setminus \Sigma^1 \) is a set of the first type.

Now assume that the result holds for \((S^n_{Y-1} \setminus \Sigma^{n-1}, \gamma^n) \). As \(S^n_Y = [S^n_{Y-1} \times Y^o] \cup \bigcup_{i=0}^{2} [Y^n \times \{\zeta^i\}] \) and \((S^n_{Y-1} \times Y^o) \cap \Sigma^n = \emptyset \), we have

\[
S^n_Y \setminus \Sigma^n = [(S^n_{Y-1} \setminus \Sigma^{n-1}) \times Y^o] \cup \left(\Sigma^{n-1} \times Y^o \right) \cup \bigcup_{i=0}^{2} \left((Y^n \times \{\zeta^i\}) \setminus \Sigma^n \right).
\]

The induction hypothesis implies that \(\text{gen}((S^n_{Y-1} \setminus \Sigma^{n-1}) \times Y^o, \gamma^{n+1}) \leq n-1 \), so it suffices to show that the remaining two sets \((\Sigma^{n-1} \times Y^o) \cup \bigcup_{i=0}^{2} (Y^n \times \{\zeta^i\}) \setminus \Sigma^n \) form a set of genus 1. Define the sets \(A_i \) for \(i = 0, 1, 2 \) by

\[
A_i = (\Sigma^{n-1} \times Y^o) \cup (Y^n \times \{\zeta^i\}) \setminus \Sigma^n.
\]
One verifies that this set has the property \(\gamma^{n+1}(A_i) \cap A_i = \emptyset \) and that
\((\Sigma^{n-1} \times Y^o) \cup \bigcup_{i=0}^{2^n} (Y^n \times \{\zeta^i\}) \setminus \Sigma^n = A_0 \cup A_1 \cup A_2 \). So the proof is finished
once we verify that \(A_0 \) is a closed subset of \(S_Y^n \setminus \Sigma^n \). It is obvious that
\(Y^n \times \{1\} \) is closed, so we have to verify that the closure of \(\Sigma^{n-1} \times Y^o \) is
contained in \(A_0 \). Observe that the set of density points of \(\Sigma^{n-1} \times Y^o \) in
the \(Y \)-sphere is \(\Sigma^1 \). So in \(S_Y^n \setminus \Sigma^n \) its set of density points is
\(\Sigma^1 \), which is a subset of \(Y^n \times \{1\} \). We conclude that \(A_0 \) is closed
in \(S_Y^n \setminus \Sigma^n \). \(\square \)

The previous theorem has as a corollary Theorem 2.

Proof. Note first that the three statements

\[
(1) \quad \bigcap_{i=1}^{n+1} [A_i \cup \sigma(A_i)] \neq \emptyset,
\]
\[
(2) \quad \bigcap_{i=1}^{n+1} [\sigma(A_i) \cup \sigma^2(A_i)] \neq \emptyset,
\]
\[
(3) \quad \bigcap_{i=1}^{n+1} [\sigma^2(A_i) \cup A_i] \neq \emptyset,
\]

are equivalent, as these sets are mapped onto each other by the map \(\sigma \).

Using the closed coloring \(\{A_1, \ldots, A_{n+1}, A_{n+2}, A_{n+3}\} \), for \(i = 1, \ldots, n+1 \),
we can define by Lemma 1 equivariant maps \(f_i : X \to Y \) with \(f_i^{-1}(1) = A_i \).

The evaluation map \(F = (f_1, \ldots, f_{n+1}) : X \to Y^{n+1} \) is equivariant and
\(F(X) \subset S_Y^n \). Since \(\text{col}(X, \sigma) = n + 3 \) and \(\text{col}(S_Y^n \setminus \Sigma, \gamma^{n+1}) \leq n + 2 \), it can
not occur that \(F(X) \subset S_Y^n \setminus \Sigma^n \). Choose \(x \in X \) with \(F(x) = (f_i(x))_i \in \Sigma^n \),
say \(F(x) \in \Sigma^n \).

It follows that \(x \in \bigcap_{i=1}^{n+1} [A_i \cup \sigma(A_i)] \neq \emptyset \) and so \(\sigma(x) \in \bigcap_{i=1}^{n+1} [A_i \cup \sigma(A_i)] \neq \emptyset \). Similar arguments can be used for the cases
\(F(x) \in \Sigma^n \setminus \Sigma^n \) and \(F(x) \in \Sigma^n \setminus \Sigma_0^n \). \(\square \)

3. **Colorings of non-invariant subspaces.**

We have defined colors as special open subsets. It was already observed
that in defining colors we could have used closed sets as well. However,
when studying non-invariant subspaces we must stick to open colors.

Definition 3. Suppose that \(f : X \to X \) is a map from \(X \) to itself. Let \(A \) be
a subset of \(X \). A **coloring** of the subset \(A \) is a finite collection \(B \) consisting
of colors of \((X, f) \) such that \(A \subset \bigcup B \). We denote the minimal cardinality
of such a collection by \(\text{col}(A, X, f) \).

With the technique of the proof of Theorem 3, the equivalence of (2)
and (4) one can prove the following lemma. We use the notation \(\sigma_B \) to
denote the restriction of the map \(\sigma \) to the subspace \(B \).

Lemma 2 ([8]). Let \(X \) be a space and \(\sigma : X \to X \) a map of period 3 without
fixed-points. If \(A \subset B \subset X \) and \(B \) is \(\sigma \)-invariant, then
\[
\text{col}(A, X, \sigma) = \text{col}(A, B, \sigma_B).
\]
It is a consequence of the lemma that to compute the color number of a subset \(A \) of \(X \), we may assume that \(X = A \cup \sigma(A) \cup \sigma^2(A) \). The following theorem provides an upper bound for the color number of a subset related to its dimension.

Theorem 6. Suppose that \(\sigma : X \to X \) is a map of period 3 without fixed-points. If \(A \) is a subset of \(X \) and \(\dim(A) \leq n \) then \(\text{col}(A, X, \sigma) \leq 3n + 5 \).

Proof. The \(\sigma \)-invariant subspace \(T = A \cup \sigma(A) \cup \sigma^2(A) \) has dimension at most \(3n + 2 \) and contains no fixed points of \(\sigma \). So \(\text{col}(T, \sigma_T) \leq \dim(T) + 3 = 3n + 5 \). The result follows from the previous lemma.

We shall present an example of a map \(\sigma \) of period 3 with \(\text{col}(A, X, \sigma) \geq 3n + 4 \). We refer to [8] for a related example of an involution \(\iota \) with color number \(\text{col}(A, X, \iota) = 2n + 3 \). For the construction we need the following result, which is a consequence of Theorem 1.

Theorem 7. Let \(\sigma : X \to X \) be a map of period 3 without fixed-points. Suppose \(\text{col}(X, \sigma) = n + 3 \). If \(A \) is a dense subset of \(X \) with \(A \cup \sigma(A) \cup \sigma^2(A) = X \) then \(\text{col}(A, \sigma) \geq n + 2 \).

Proof. We argue by contradiction. Assume that \(\{U_1, \ldots, U_{n+1}\} \) is a coloring of \((A, X, \sigma) \). Then \(X = \bigcup_{i=1}^{n+1} (U_i \cup \sigma(U_i) \cup \sigma^2(U_i)) \). As \(\text{col}(X, \sigma) = n + 3 \), we have \(\text{gen}(X, \sigma) = n + 1 \). From Theorem 1 it follows that \(\bigcap_{i=1}^{n+1} [\sigma^{-1}(U_i) \cup \sigma(U_i)] \) is a nonempty open set, which by the density of \(A \) contains an element \(a \in A \). For each index \(i \) we have either \(\sigma(a) \in U_i \) or \(\sigma^{-1}(a) \in U_i \) and therefore \(a \notin U_i \). This contradicts that the \(U_i \) cover \(A \).

For the construction of our example we need the following lemmas. The first lemma is a special case of a result in [4].

Lemma 3. Let \(X \) be a space of dimension 2 with a fixed-point free map \(\sigma : X \to X \) of period 3. Then there exists a subspace \(A \) of \(X \) with the following properties

1. \(A \) is dense in \(X \),
2. \(\dim A = 0 \),
3. \(A \cup \sigma(A) \cup \sigma^2(A) = X \).

The following lemma follows easily from the fact that a subset of \(X \) is contained in a \(G_\delta \)-subset of the same dimension.

Lemma 4. Let \(X \) be a space with a fixed-point free map \(\sigma : X \to X \) of period 3. If \(A \) is a \(\sigma \)-invariant subspace of \(X \) with \(\dim(A) = k \) then there exists a \(\sigma \)-invariant \(G_\delta \) subset \(A' \) of \(X \) with \(A \subset A' \) and \(\dim A' = \dim A \).

Lemma 5. Let \(X \) be a space with \(\dim X = n \) and with a fixed-point free map \(\sigma : X \to X \) of period 3. Then \(X = X_0 \cup \ldots \cup X_n \), where \(\dim X_i = 0 \) and each \(X_i \) is \(\sigma \)-invariant.
Proof. This is a version of the Decomposition Theorem [11]. We use induction on the dimension. If \(\dim X = 0 \) the result is trivial. Assume the result holds for all spaces of dimension \(\leq k - 1 \) and all maps of order 3 without fixed-point. Let \(X \) be a space with \(\dim X = k \) and let \(\sigma : X \to X \) be a map of period 3 without fixed-points. Let \(\{ U_n ; n \in \omega \} \) be a countable base with \(\dim (\text{cl} \ U_n \setminus U_n) \leq k - 1 \), for all \(n \). If we define

\[
X_k = X \setminus \left[\bigcup_n (\text{cl} \ U_n \setminus U_n) \cup \bigcup_n \sigma(\text{cl} \ U_n \setminus U_n) \cup \bigcup_n \sigma^2(\text{cl} \ U_n \setminus U_n) \right]
\]

then \(X_k \) is \(\sigma \)-invariant, \(\dim X_k = 0 \) and \(\dim (X \setminus X_k) \leq k - 1 \). So the induction argument applies.

Finally we construct the example of a complete \(n \)-dimensional subspace that cannot be colored with less than \(3n + 4 \) colors.

Example 1. Consider the space \(S^{3n+2} \) with the standard map \(\gamma : S^{3n+2} \to S^{3n+2} \) of order 3. We know that \(\text{col}(S^{3n+2}, \gamma) = 3n + 5 \). Since the \(S^{3n+2} \) is \((3n+2) \)-dimensional it can be written as the union of \(3n+3 \) zero-dimensional subspaces, say \(S^{3n+2} = B_1 \cup \ldots \cup B_{3n+3} \) such that each \(B_i \) is zero-dimensional and \(\gamma \)-invariant. Let \(X_i = B_{3i-2} \cup B_{3i-1} \cup B_{3i} \) for \(i = 1, \ldots, n+1 \). Then each \(X_i \) is \(\leq 2 \)-dimensional, invariant under \(\gamma \). Lemma 3 implies that each \(X_i \) has a dense zero-dimensional subspace \(A_i \) such that \(A_i \cup \gamma(A_i) \cup \gamma^2(A_i) = X_i \).

Write \(A' = A_1 \cup \ldots \cup A_{n+1} \). Then, \(A' \) is dense, \(A' \) has dimension \(\leq n \) and \(A' \) also has the property

\[
A' \cup \gamma(A') \cup \gamma^2(A') = S^{3n+2}.
\]

Note that Property (2) implies that \(\dim A' = n \). We enlarge \(A' \) to a dense \(G_\delta \) subset \(A \) of dimension \(n \). Then \(A \) satisfies Property (2). Finally, by Theorem 7 we have \(\text{col}(A, X, \gamma) \geq 3n + 4 \).

4. Some remarks on periodic maps.

For a general fixed-point free homeomorphism \(f : X \to X \) we were unable to obtain bounds on \(\text{col}(A, X, f) \) in terms of \(\dim A \). Indeed, we do not even know whether such a bound exists. However, we can find such a bound in the special case that the map is periodic.

We need the following result of Steinlein.

Theorem 8 ([15]). If \(f : S^{(m-1)(p-1)-1} \to S^{(m-1)(p-1)-1} \) is a fixed-point free map of prime-period \(p \), then

\[
\text{col}(S^{(m-1)(p-1)-1}, f) \leq 4m.
\]

To obtain our final result, one should know that any free periodic homeomorphism \(f : X \to X \) on a space of \(\dim X = n \) can be conjugated to
a free periodic homeomorphism on \(S^n \) \cite{15}, so that it suffices to consider homeomorphisms on \(S^n \).

Theorem 9. Let \(\sigma : X \to X \) be a map of prime-period \(p \), without fixed-points and suppose that \(p - 1 \) divides \(n + 1 \). If \(A \) is a \(n \)-dimensional subset of \(X \) then \(\text{col}(A, X, \sigma) \leq 5n + 12 \).

Proof. Suppose that \(f : X \to X \) is a map of order \(p \) and let \(A \) be subspace of \(X \) of dimension \(n \). We can assume that \(p \geq 5 \), since the case \(p = 2 \) is done in \cite{8} and \(p = 3 \) is done above. As we can assume that \(X = A \cup f(A) \cup \cdots \cup f^{p-1}(A) \), we see that the maximal dimension of \(X \) is \(pn + p - 1 \). Choose a minimal \(m \) such that \(\dim(X) \leq (m - 1)(p - 1) - 1 \) and so

\[
\begin{align*}
 pn + p - 1 &\leq (m - 1)(p - 1) - 1.
\end{align*}
\]

This implies that we can take

\[
 m = \left\lceil \frac{pn + p}{p - 1} + 1 \right\rceil .
\]

We conclude that we can color \(X \), hence \(A \), with \(4m = 4\lceil \frac{pn + p}{p - 1} + 1 \rceil \leq 5n + 12 \) colors. \(\square \)

References

Received May 16, 2000 and revised August 29, 2000.

TECHNICAL UNIVERSITY DELFT
FACULTY I.T.S.
P.O. Box 5031
2600 GA DELFT
THE NETHERLANDS
E-mail address: Aarts@its.tudelft.nl

TECHNICAL UNIVERSITY DELFT
FACULTY I.T.S.
P.O. Box 5031
2600 GA DELFT
THE NETHERLANDS
E-mail address: fokkink@its.tudelft.nl

TECHNICAL UNIVERSITY DELFT
FACULTY I.T.S.
P.O. Box 5031
2600 GA DELFT
THE NETHERLANDS
E-mail address: J.Vermeer@its.tudelft.nl