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IRREDUCIBILITY OF TENSOR SQUARES, SYMMETRIC
SQUARES AND ALTERNATING SQUARES

Kay Magaard, Gunter Malle, and Pham Huu Tiep

We investigate the question when the tensor square, the
alternating square, or the symmetric square of an absolutely
irreducible projective representation V of an almost simple
group G is again irreducible. The knowledge of such repre-
sentations is of importance in the description of the maximal
subgroups of simple classical groups of Lie type. We show
that if G is of Lie type in odd characteristic, either V is a
Weil representation of a symplectic or unitary group, or G is
one of a finite number of exceptions. For G in even character-
istic, we derive upper bounds for the dimension of V which
are close to the minimal possible dimension of nontrivial irre-
ducible representations. Our results are complete in the case
of complex representations. We will also answer a question of
B. H. Gross about finite subgroups of complex Lie groups G
that act irreducibly on all fundamental representations of G.

1. Introduction.

Let R = R(`f ) be a finite classical group of Lie type. Let G < R be a
quasi-simple subgroup acting absolutely irreducibly on the natural module
of R, not of Lie type in characteristic `. In continuation of [18] we study
those cases where G has the same number of composition factors on the
adjoint module for R as R itself. These embeddings are of importance in
the determination of maximal subgroups of the finite classical groups of Lie
type.

Let V be the natural module for R. We will write Λ̃2(V ), Σ̃2(V ) respec-
tively Ã(V ) for the largest irreducible R-sub-quotient of Λ2(V ), Sym2(V ),
V ⊗ V ∗. In Table 1.1 we recall the dimension of X(V ) for certain choices
(R,X) with X ∈ {Λ̃2, Σ̃2, Ã}.

In this paper we study quasi-simple subgroups G of classical groups R
which act irreducibly on V as well as on X(V ) with X as in Table 1.1. It is
known that the following families of examples do occur:

(1) V is the heart of the natural permutation module of G = An (see [18]),
(2) V is a Weil module of G = Sp2n(q), q ∈ {3, 5, 9}, (see [19, 20]),
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Table 1.1. Choices for R and X.

R X dim(X(V )) condition

SLm Ã m2 − 1 6̀ |m
Ã m2 − 2 `|m

Spm Σ̃2 1
2m(m+ 1) ` odd

Σ̃2 1
2m(m− 1)− 1 ` = 2, m ≡ 2 (mod 4)

Σ̃2 1
2m(m− 1)− 2 ` = 2, m ≡ 0 (mod 4)

SOm Λ̃2 1
2m(m− 1) ` odd

Λ̃2 1
2m(m− 1)− 1 ` = 2, m ≡ 2 (mod 4)

Λ̃2 1
2m(m− 1)− 2 ` = 2, m ≡ 0 (mod 4)

Σ̃2 1
2m(m+ 1)− 1 6̀ |m

Σ̃2 1
2m(m+ 1)− 2 `|m, ` odd

(3) V is a Weil module of G = SUn(q), q ∈ {2, 3} (see [20, 14]),
(4) V is a module of dimension (2n− 1)(2n−1 − 1)/3, (2n + 1)(2n−1 + 1)/3

or (22n − 1)/3 for G = Sp2n(2) and X = Λ̃2 (see Prop. 7.4).

We expect that the above are the only infinite series of examples. Our
main result is somewhat weaker; in order to formulate it denote by l(G) the
(known lower bounds for the) minimal dimensions of nontrivial representa-
tions (Landázuri-Seitz-Zalesskii bound):

Theorem 1.2. Let G be quasi-simple and V a nontrivial absolutely irre-
ducible representation in characteristic ` ≥ 0 (which is different from the
defining characteristic if G is of Lie type). Let X = Ã if V is not self-dual,
and X = Σ̃2 or Λ̃2 otherwise. Then one of

(i) X(V ) is reducible, or
(ii) (G,V ) are as in (1)-(4) above, or
(iii) G = G(q) is classical, q ∈ {2, 4, 8} and dim(V ) is at most c · l(G)2, or
(iv) G = G(q) is exceptional, q is even and dim(V ) is at most 4l(G), or
(v) G is on a known finite list of groups.

More precise formulations can be found in Theorem 3.1 and the Proposi-
tions in Section 5.

Clearly this result is true for the finitely many sporadic groups, see also
Section 6. Complete results for alternating and special linear groups were
obtained by the first two authors [18] (see also the references given there).
The case of complex representations is completely solved in Theorem 7.14.
Observe that the classification of complex modules V with irreducible Σ̃2(V )
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has interesting applications in the theory of integral Euclidean lattices,
cf. [14].

Our analysis of the remaining groups of Lie type splits into two cases, the
second of which only occurs for groups defined over fields of characteristic 2.
The first case leads to the examples in (2) and (3) above. In the second case
we either show that X(V ) is reducible or at least derive upper bounds for
dim(V ) which are very close to l(G), the worst case being that of groups in
characteristic 2 over fields of characteristic 3.

Also we improve the Landázuri-Seitz-Zalesskii bounds for the twisted ex-
ceptional groups 3D4(q) and 2E6(q), which might be of independent interest
(see Section 4). To our knowledge, this only leaves the groups of types
2F4 and F4 for which no sharp lower bound for the dimension of nontrivial
representations in cross characteristic has been proved.

The finite irreducible complex reflection groups G are known to have the
property that all exterior powers of their reflection representations remain
irreducible. This can be rephrased by saying that G is a subgroup of G =
SLn(C) acting irreducibly in all fundamental representations of G. In the
final section of our paper we determine all finite subgroups of complex simple
simply-connected Lie groups with this property, thus answering a question
asked by B.H. Gross:

Theorem 1.3. Let G be a finite subgroup of a complex simple simply-con-
nected Lie group G which is irreducible in all fundamental representations of
G. Assume that the dimension d of the natural module V for G is at least 5
and G 6= Spin5(C) ∼= Sp4(C), G 6= Spin6(C) ∼= SL4(C). Then up to a finite
subgroup of the center Z(G) one of the following holds, where G denotes the
image of G in its action on the natural module for G:

(i) G = km.H is monomial on the natural module with k ≥ 2, d − 1 ≤
m ≤ d, G = SLd(C), and Ad ≤ H ≤ Sd or H is as in Table 7.18.

(ii) G = 2m.H is monomial on the natural module with d − 1 ≤ m ≤ d,
G = Spind(C) and Ad ≤ H ≤ Sd, or H is as in Table 7.18.

(iii) G = 23 · SL3(2) and G = G2(C).
(iv) G ≤ 51+2

+ : SL2(5) and G = SL5(C).
(v) G ≤ 21+6

+ ·S8 and G = Spin8(C).
(vi) G is almost quasi-simple and (G, G) are as in Table 7.22.

In particular, except for finitely many cases, G contains the derived group
of an irreducible complex reflection group.

2. Generalities.

Let G be a finite group and F an algebraically closed field of characteristic
`.
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Let V be any irreducible FG-module. We say that V is of type + if it
carries a nondegenerate G-invariant quadratic form, and that V is of type −
if it carries a bilinear alternating but no quadratic form. We would like to
define some modules arising from V . If V is not of type + (resp. not of type
−), then Σ̃2(V ) (resp. Λ̃2(V )) denotes Sym2(V ) (resp. Λ2(V )). Next, let Y
be V ⊗ V ∗ if V is not self-dual, Sym2(V ) if V is of type +, Λ2(V ) if V is of
type −. Then Y is self-dual and dim HomG(Y, 1G) = dim HomG(1G, Y ) = 1.
Let T be the (unique) submodule of Y such that Y/T ' 1G, and let I be
the unique trivial submodule of Y . Then we will denote T/(T ∩ I) by Ã(V ),
resp. Σ̃2(V ), Λ̃2(V ). If V is a composition factor of an FG-module U , we
will write V ↪→ U .

According to Table 1.1, Ã(V ), Σ̃2(V ), Λ̃2(V ) respectively is irreducible
for the ambient classical group.

Lemma 2.1. Let U be a uniserial FG-module with soc(U) = I being the
trivial module and U/I = V being irreducible, and V 6= I. Let D be a
subgroup of G, L a one-dimensional FD-module, and let W = L↑G. Suppose
that HomG(U,W ) has dimension t ≥ 1. Then V is a composition factor of
W of multiplicity at least t.

Proof. Pick a nonzero map f ∈ HomG(U,W ). Since U is uniserial, V ↪→
f(U), hence V ↪→ W and we get the statement for the case t = 1.

Next suppose that t ≥ 2 and fix a basis (f1, . . . , ft) of HomG(U,W ). Let
v be a generator of I. If fi(v) = 0 for all i, then fi ∈ HomG(V,W ) for
all i, whence dim HomG(V,W ) = t and the multiplicity of V in W is at
least t, as stated. Suppose f1(v) 6= 0. Observe that dim HomG(I,W ) =
dim HomD(1D, L) ≤ 1, since dimL = 1. Hence fi(v) = λif1(v) for some
λi ∈ F. Replacing fi by fi − λif1, we may assume that fi(v) = 0 for all
i ≥ 2. Let V ′ =

∑t
i=2 fi(U). Then V ′ is a sum of some copies of V . But

f2, . . . , ft are linearly independent elements of HomG(V, V ′). Therefore V ′

is a direct sum of t − 1 copies of V . Finally, let W ′ = f1(I) + V ′. Then
W ′ ' I ⊕ (t− 1)V . Since U is uniserial, f1(U) 6⊆W ′. Thus

V ' f1(U)/f1(I) = f1(U)/(f1(U) ∩W ′) ' (f1(U) +W ′)/W ′ ⊆W/W ′,

whence W/W ′ has V as a composition factor, and so the multiplicity of V
in W is at least t. �

Corollary 2.2. Let U be a uniserial FG-module with soc(U) = V being
irreducible, U/V ' I being the trivial module, and V 6= I. Let D be a
subgroup of G, L a one-dimensional FD-module, and let W = L↑G. Suppose
that HomG(W,U) has dimension t ≥ 1. Then V is a composition factor of
W of multiplicity at least t.

Proof. Dualize Lemma 2.1. �
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A key ingredient of our arguments is the following proposition, in which
X(V ) means either Σ̃2(V ) or Λ̃2(V ) if V is self-dual, and Ã(V ) if V is not
self-dual.

Proposition 2.3. Let V be an irreducible FG-module such that X(V ) is
irreducible. Let Z be an abelian `′-subgroup of G and denote C = CG(Z),
N = NG(Z). Suppose that V |Z affords at least t ≥ 2 linear characters αi,
1 ≤ i ≤ t, no two of which are dual to each other.

(i) If (type(V ), X) ∈ {(◦, Ã), (+, Σ̃2), (−, Λ̃2)}, then X(V ) is a composi-
tion factor of (1C)↑G of multiplicity at least t−1. If in addition at least
one αi is N -invariant, then X(V ) ↪→ (1N )↑G and so dimX(V ) ≤ (G :
N). If N/C is abelian then we also have dimX(V ) ≤ (G : N).

(ii) If (type(V ), X) ∈ {(−, Σ̃2), (+, Λ̃2)} and |Z| is odd, then X(V ) is a
composition factor of (1C)↑G of multiplicity at least t−1. If in addition
N/C is abelian, then dimX(V ) ≤ (G : N).

Proof. 1) Observe that the FZ-module V is semisimple. In Cases (i) and
(ii) we put D = C and write V |Z = A1 ⊕ . . . ⊕ As, where s = t, Ai,
1 ≤ i ≤ s− 1, can afford only the Z-characters αi and αi, and As affords all
the rest of Z-characters. In Case (i), if αi is N -invariant, we can also put
s = 2 and D = N . Assuming for definiteness that α1 is N -stable, we write
V |Z = A1 ⊕A2, where A1 can afford only α1 and α1, and A2 affords all the
rest of Z-characters. Clearly, each Ai is D-stable, hence we can view Ai as
an FD-module. The construction of Ai ensures that

HomZ(Ai, Aj) = HomZ(Ai, A∗j ) = 0(2.4)

whenever i 6= j. In particular, HomD(Ai, Aj) = HomD(Ai, A∗j ) = 0 if i 6= j.
We will let W = (1D)↑G.

2) Here we consider the subcase X(V ) = Ã(V ) of (i).
2a) Take D = C, s = t. Then

(V ⊗ V ∗)|D =
s∑
i=1

Ai ⊗A∗i ⊕
∑

1≤i6=j≤s
Ai ⊗A∗j .

As mentioned above, HomD(1D, Ai⊗A∗j ) = 0 if i 6= j. Hence the trivial FG-
module I inside V ⊗V ∗ has to be contained (as a subspace) in

∑
i(Ai⊗A∗i ).

Let J be the sum of the s (nonzero) D-fixed point subspaces inside Ai⊗A∗i ,
1 ≤ i ≤ s. Then I ⊂ J and

dim HomD(1D, J/I) ≥ s− 1,(2.5)

whence

s− 1 ≤ dim HomD(1D, Y (V )/I) = dim HomG(W,Y (V )/I),
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(recall Y (V ) = V ⊗ V ∗ in this case). If T ∩ I = 0, then Ã(V ) ' Y (V )/I,
and Ã(V ) is irreducible by assumption, so Ã(V ) has multiplicity at least
s − 1 in W . Suppose T ⊇ I. Then Y (V )/I is a uniserial FG-module with
socle equal Ã(V ). By Corollary 2.2, the multiplicity of Ã(V ) in W is again
at least s− 1 as stated.

2b) The same argument yields the statement for the subcase X(V ) =
Ã(V ) and αi is N -invariant: We just need to put D = N and s = 2.

2c) Now suppose that N/C is abelian. According to (2.5), HomC(1C ,
Y (V )/I) 6= 0. Thus the subspace F of C-fixed points in Y (V )/I is nonzero,
and F is acted on by N . But N/C is abelian, hence the N/C-module F con-
tains a one-dimensional FN -module L. In this case 0 6= HomN (L, Y (V )/I) '
HomG(L↑G, Y (V )/I). Arguing as in 2a) and using Corollary 2.2 if T ⊇ I,
we get Ã(V ) ↪→ L↑G; in particular, dim Ã(V ) ≤ (G : N).

3) It remains to consider the subcases X(V ) = Σ̃2(V ) and Λ̃2(V ). Take
D = C, s = t. Then V supports a nondegenerate G-invariant bilinear
form b. We claim that b|Ai is also nondegenerate. For, let A⊥i be the
orthogonal complement to Ai in V (with respect to b) and B =

∑
j 6=iAj .

Then B/(B ∩ A⊥i ) ' (B + A⊥i )/A⊥i ⊆ V/A⊥i ' A∗i . But due to (2.4), the
Z-modules B and A∗i have no common composition factors. Hence B ⊆ A⊥i .
Comparing the dimension we get B = A⊥i and so Ai ∩ A⊥i = 0, as stated.
Now for Y (V ) = Sym2(V ) or Λ2(V ) we have

Y (V )|D =
s∑
i=1

Y (Ai)⊕
∑

1≤i<j≤s
Ai ⊗Aj .

4a) In Case (i), let J be the sum of the D-fixed point subspaces inside
Y (Ai), 1 ≤ i ≤ s; all of them are nonzero because of the nondegeneracy
of b|Ai . Then dim J ≥ s. By (2.4) above, HomD(1D, Ai ⊗ Aj) = 0 if
i 6= j. Hence the trivial FG-module I inside Y (V ) has to be contained (as
a subspace) in J . We again have

dim HomD(1D, J/I) ≥ s− 1(2.6)

and so dim HomG(W,Y (V )/I) ≥ s − 1. At this point we can repeat the
arguments of 2a) to show that the multiplicity of X(V ) in W is at least
s− 1.

If in addition α1 is N -invariant, then we can use the same argument, with
changing D to N and s to 2.

Suppose N/C is abelian. According to (2.6), HomC(1C , Y (V )/I) 6= 0. At
this point we can repeat the argument of 2c).

4b) Finally, we consider Case (ii). Note that, if ` = 2, we may argue as
above. Thus we may now assume that Y (V ) = X(V ) is irreducible. By
3), the restriction to Ai of the nondegenerate G-invariant bilinear form b is
nondegenerate. But unlike Case 4a), now we cannot conclude that Y (Ai)
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has nonzero D-fixed points for every i (the form b is not of the right type!).
We may assume that αi 6= 1Z for i ≥ 2. We claim that for each i ≥ 2, Y (Ai)
has nonzero D-fixed points. For, since V is self-dual, Ai|Z = Bi⊕B′i, where
Bi affords only αi (with some multiplicity) and B′i affords only αi. Since |Z|
is odd, αi 6= αi. Clearly, Bi and B′i are D-stable. Again by the self-duality
of V , B′i ' B∗i as D-modules. Now Bi ⊗ B∗i is a submodule of Y (Ai), and
Bi ⊗B∗i has nonzero D-fixed points, hence the claim follows.

Let J be the sum of the D-fixed point subspaces inside Y (Ai), 1 ≤ i ≤ s.
Then dimJ ≥ s− 1. Therefore

dim HomD(1D, J) ≥ s− 1(2.7)

and so dim HomG(W,Y (V )) ≥ s−1. SinceX(V ) = Y (V ) in (ii), we conclude
that the multiplicity of X(V ) in W is at least s− 1.

Now suppose in addition that N/C is abelian. According to (2.7) we have
that HomC(1C , X(V )) 6= 0. It remains to repeat the argument of 2c). �

In what follows, we will apply Proposition 2.3 in the following set-up:
G is a finite group of Lie type, defined over a field Fq in characteristic p
and of universal type, and Z is a long-root subgroup {xα(t) | t ∈ Fq}, α
a long root. A visual description of Z is given for instance in [19]. To
apply Proposition 2.3 efficiently, one therefore needs to know the spectrum
Spec(Z, V ) of abelian subgroups Z in any irreducible representation V , that
is, the set of (distinct) linear characters of Z occurring in V . If Z = 〈g〉, we
denote Spec(Z, V ) by Spec(g, V ). The following theorem is the main result
of [27]:

Theorem 2.8 ([27]). Let G be a finite group of Lie type, defined in charac-
teristic p and of universal type, and g ∈ G a non-central element of order p.
Suppose G has an irreducible representation V over an algebraically closed
field F of characteristic ` 6= p such that 1 < |Spec(g, V )| < p. Then p > 2
and one of the following holds.

(i) G = SU3(p) or Sp2n(p), and g is a transvection.
(ii) G = SL2(p2) or Sp4(p).

Moreover, if 1 /∈ Spec(g, V ) and G = [G,G] then p > 2 and

G ∈ {SL2(p),SL2(p2),SU3(p),Sp4(p)}.

The group Z is elementary abelian of order q and may be identified with
the additive group {t | t ∈ Fq}. Fix a pth primitive root ε of unity in C.
Then any irreducible Brauer character of Z in characteristic ` 6= p is of the
form

λc : t 7→ εtrFq/Fp (tc)

for some c ∈ Fq. Let Ω+, resp. Ω−, be the set of all λc, where c is any
square, resp. non-square, in F×q .

We will need the following supplement to Theorem 2.8:
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Lemma 2.9. Let G be a universal-type quasi-simple finite group of Lie type
defined over Fq, q = pf , and Z a long-root subgroup as above. Let F be an
algebraically closed field of characteristic ` 6= p and V a nontrivial irreducible
FG-module. Suppose Spec(Z, V ) 6= IBr`(Z). Then one of the following
holds.

(i) q > p, and Spec(Z, V ) = Ω+ ∪ Ω−.
(ii) G = SU3(p), p > 2, and Spec(Z, V ) = Ω+ ∪ Ω−.
(iii) G = Sp2n(q), n ≥ 3, p > 2, and Spec(Z, V ) = Ω+ ∪ {1Z}, or

Ω− ∪ {1Z}.
(iv) G = Sp4(q), p > 2, and Spec(Z, V ) = Ω+ ∪ {1Z}, Ω− ∪ {1Z}, or

Ω+ ∪ Ω−.
(v) G = SL2(q), p > 2, and Spec(Z, V ) = Ω+, Ω−, Ω+ ∪ {1Z}, Ω− ∪ {1Z},

or Ω+ ∪ Ω−.

Proof. Let P = NG(Z) and C = CG(Z). Assume that Spec(Z, V ) 6=
IBr`(Z).

First suppose G 6= Sp2n(q), or G = Sp2n(q) but q is even. Then P/C '
Zq−1 and P acts transitively on Ω+ ∪ Ω− = IBrr(Z)\{1Z}. Since Spec(Z, V )
contains at least one nontrivial linear character of Z, Spec(Z, V ) = Ω+ ∪ Ω−.
Moreover, if q = p, then G = SU3(p) by Theorem 2.8. Thus we arrive at (i)
or (ii).

If G = SL2(q), then we can check (v) directly.
So suppose that G = Sp2n(q), q is odd, and n ≥ 2. In this case, any

nontrivial element of Z is a transvection, and P -orbits on Ω+ ∪ Ω− are Ω+

and Ω−. Moreover, P contains a subgroup P ′ = QL, where Q is a normal
subgroup of extraspecial type of order q2n−1, with Z = Z(Q), and L =
Sp2n−2(q). Fix a nontrivial linear character λ occuring in V and consider
the λ-eigenspace V ′ for Z in V . Then, as an FP ′-module, V ′ 'W⊗U , where
W is an irreducible representation of degree qn−1 (extending an irreducible
representation of Q), and U is a representation of L = P ′/Q inflated to
P ′. Moreover, W |L is the sum of two Weil representations W± of degree
(qn−1± 1)/2 if r 6= 2, and has three composition factors, one of dimension 1
and two, say W1, W2, of dimension (qn−1 − 1)/2 if r = 2.

Since n ≥ 2, L contains a long-root subgroup Z ′ which is G-conjugate to
Z. Let n = 2. The above discussion shows that |Spec(Z ′,W )| ≥ (q + 1)/2.
(For, if r = 2 then 1Z′ ∈ Spec(Z ′,W ), hence the claim follows. If r 6= 2 then
|Spec(Z ′,W+)| = (q + 1)/2 and we are again done.) Thus |Spec(Z ′,W ⊗
U)| ≥ (q + 1)/2, whence

(q + 1)/2 ≤ |Spec(Z ′,W ⊗ U)| ≤ |Spec(Z ′, V )| = |Spec(Z, V )|.
Therefore we arrive at (iv).

Finally, suppose n ≥ 3. It suffices to show that 1Z′ ∈ Spec(Z ′,W ⊗ U).
Assume the contrary. If r = 2, then clearly 1Z′ ∈ Spec(Z ′,W ). If r 6= 2, then
we can embed Z ′ into a standard subgroup L′ of type Sp2(q), and W+|L′
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has a composition factor of dimension (q+1)/2, whence 1Z′ ∈ Spec(Z ′,W ).
Therefore 1Z′ /∈ Spec(Z ′, U). Due to (iv), Spec(Z ′, U) = Ω+ ∪ Ω−. In this
case, pick a character λc with c ∈ F×q occuring in Spec(Z ′,W ). Then λ−c ∈
Spec(Z ′, U), whence 1Z′ = λcλ−c ∈ Spec(Z ′,W ⊗ U), a contradiction. �

Corollary 2.10. Let G be a universal-type quasi-simple finite group of Lie
type defined over Fq, q = pf , and Z a long-root subgroup as above. Let F
be an algebraically closed field of characteristic ` 6= p and V a nontrivial
irreducible FG-module. Then either

(i) Spec(Z, V ) contains at least two distinct characters which are not dual
to each other, or

(ii) G ∈ {SL2(5), SU3(3), Sp4(3)}.
Proof. First assume that q = 2. Then Z is of order 2 and Z is not cen-
tral, hence V |Z affords both linear characters of Z, and they are real and
distinct, i.e., we are in (i). Next assume that q = 3 and G 6= SU3(3),
Sp4(3). By Lemma 2.9, Spec(Z, V ) contains 1Z and at least one more
character, so we arrive at (i). Assume that q = 5 and G 6= SL2(5). By
Lemma 2.9, |Spec(Z, V )| ≥ 3, which implies (i). Finally, if q = 4 or q ≥ 7,
then |Spec(Z, V )| ≥ 3 by Lemma 2.9, and we again arrive at (i). �

3. The good case.

We first treat the good cases where Proposition 2.3 applies, that is, if either
p 6= 2 or (type(V ), X) /∈ {(−, Σ̃2), (+, Λ̃2)}, where we obtain reasonably
complete results.

Let F be an algebraically closed field of characteristic `. The main result
of this section is the following:

Theorem 3.1. Let G be a quasi-simple group with S := G/Z(G) being a
finite group of Lie type in characteristic p. Suppose that G has a nontrivial
irreducible FG-module V such that X(V ) is irreducible, where X = Ã if V
is not self-dual, and X = Σ̃2 or Λ̃2 otherwise. Then one of the following
holds.

(i) S = S2n(q), q = 3, 5, 9, V is a Weil module of Sp2n(q) of degree
(qn ± 1)/2.

(ii) S = Un(q), q = 2, 3, and V is a Weil module of SUn(q) of degree
(qn + q(−1)n)/(q + 1) or (qn − (−1)n)/(q + 1).

(iii) S = 3D4(3), F4(2), F4(3), E6(2), 2E6(2), 2E6(3), E7(2) or E8(2).
(iv) “Small groups”: S is Ln(q) as in Table 3.1 of [18], or as in Table 3.2.
(v) p = 2 and (type(V ), X) ∈ {(−, Σ̃2), (+, Λ̃2)}.

Remark 3.3. The Weil modules of Sp2n(q), q = 3, 5, 9, and of SUn(q),
q = 2, 3, do indeed give irreducible examples. In characteristic ` = 0, this
question has been resolved in [19] for Sp2n(q), and in [20, 14] for SUn(q).
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Table 3.2. Non-generic examples.

G ` dim(V ) Λ̃2 Σ̃2 Ã

U3(4) 6= 2 12 ×
31.U4(3) 2 6 ×
61.U4(3) 6= 2, 3 6 ×
2.U6(2) 6= 2 56 ×
S4(4) 6= 2 18 ×
2.S6(2) 6= 2 8 ×
2.O+

8 (2) 6= 2 8 × ×
2. 2B2(8) 5 8 ×
G2(3) 2 14 ×
G2(3) 6= 2, 3 14 × ×
2.G2(4) 6= 2 12 × ×
2F4(2)′ 6= 2 26 ×
3D4(2) 3 25 ×

Proof. We start by making some obvious reductions. The corresponding
universal-type group of Lie type is the universal cover for S, with a few
exceptions. These exceptions as well as those groups emerging in Corol-
lary 2.10(ii) can be handled directly using [12], and the arising examples
are recorded in (iii) or (iv). Throughout the proof we will therefore as-
sume that V is a nontrivial (could be non-faithful) irreducible module of a
universal-type group G of Lie type defined over a field Fq of characteristic p
and satisfying Corollary 2.10(i). Moreover, we can and will assume that G
is not a special linear group, since that case has been treated in [18].

1) We will apply Proposition 2.3 to a long-root subgroup Z of G. If
C := CG(Z) and N := NG(Z), then N/C is a cyclic group, of order (q−1)/2
if G = Sp2n(q) with q odd, q2−1 if G = 2B2(q2), 2G2(q2), 2F4(q2), and q−1
otherwise.

By our initial reductions we may assume by Corollary 2.10 that (V,Z)
satisfies the assumptions of Proposition 2.3. According to Proposition 2.3(i)
and (ii), dimX(V ) ≤ (G : N). Since dimX(V ) ≥ dim(V )(dim(V )−1)/2−2,
this implies that

dim(V ) ≤ 1
2

+

√
2(G : N) +

17
4
.(3.4)

2) We assume that G is one of the groups in the following table, where
moreover (n, q) /∈ {(3, 3), (3, 4), (4, 2), (4, 3), (6, 2)} for G = SUn(q), (n, q) /∈
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{(2, 2), (2, 3), (3, 2)} for G = Sp2n(q). Then N is as indicated, cf. [13]. Here,
for an integer m, [m] is a certain group of that order.

Table 3.5. The group N .

G condition N

SUn(q) n ≥ 3 [q2n−3] · (SUn−2(q) · Zq2−1)

Sp2n(q) [q2n−1] · (Sp2n−2(q) · Zq−1)

Spin2n+1(q) n ≥ 3, (n, q) 6= (3, 3) [q4n−5] · (SL2(q)× Spin2n−3(q)) · Zq−1

Spinε2n(q) n ≥ 4, (n, q) 6= (4, 2) [q4n−7] · (SL2(q)× Spinε2n−4(q)) · Zq−1

2B2(q2) q2 > 8 [q4] · Zq2−1

2G2(q2) q2 ≥ 27 [q6] · Zq2−1

G2(q) q ≥ 5 [q5] · (SL2(q) · Zq−1)
3D4(q) q ≥ 3 [q9] · (SL2(q3) · Zq−1)

F4(q) q ≥ 3 [q15] · (Sp6(q) · Zq−1)
2F4(q2) q2 > 2 [q22] · ( 2B2(q2) · Zq2−1)

E6(q) [q21] · (SL6(q) · Zq−1)
2E6(q) q ≥ 3 [q21] · (SU6(q) · Zq−1)

E7(q) [q33] · (Spin+
12(q) · Zq−1)

E8(q) [q57] · (E7(q) · Zq−1)

Let d be the smallest degree of nontrivial irreducible projective repre-
sentations of G in cross-characteristics. Lower bounds on d were given in
[13, 23, 6, 9, 10]. The obvious lower bound dim(V ) ≥ d and the upper
bound (3.4) imply

√
2(G : N) + 17/4 + 1/2 ≥ d. The last inequality can

hold only when G is one of the following groups:

SUn(2), SUn(3), Sp2n(3), Sp2n(5), Sp2n(7), Sp2n(9), O±
2n(2),(3.6)

Spin+
8 (3), 3D4(3), F4(3), E6(2), 2E6(3), E7(2), E8(2).

(A typical calculation is given in the case of G = E8(q) as follows: (G : N) =
(q30−1)(q12+1)(q10+1)(q6+1)/(q−1) and d ≥ q(q12+1)(q10+1)(q6+1)−3
(cf. [10]), hence

√
2(G : N) + 17/4 + 1/2 < d if q ≥ 3.)

3) To complete the proof of the theorem, we have to analyze the groups
singled out in (3.6).

Assume G = SUn(q) and q = 2, 3. Then (3.4) implies that dimV < 2d.
By [7], Th. 16, V is one of the Weil modules of G.
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Assume G = Sp2n(q), n ≥ 2, q odd and q ≤ 9. If q ≥ 5, then

dimV ≤
√

2(G : N) + 17/4 + 1/2

=
√

2(q2n − 1)/(q − 1) + 17/4 + 1/2 < qn − 1.

Suppose q = 3. Since n ≥ 3, Spec(Z, V ) 3 1Z by Corollary 2.10. By
Proposition 2.3(i), X(V ) is a constituent of a reduction modulo ` of the
complex character ρ := (1N )↑G. Observe that ρ is the sum of the trivial
character, a character of degree (qn + 1)(qn − q)/2(q − 1), and a character
of degree (qn − 1)(qn + q)/2(q − 1). Therefore dimX(V ) ≤ (qn − 1)(qn +
q)/2(q − 1), whence dimV < qn − 1. Thus in all cases dimV < qn − 1. By
[6], Thm. 9.9.2, dimV = (qn ± 1)/2. This implies by the main result of [5]
that V is a Weil module. Now apply Prop. 5.5 in [19] and use that a Weil
module is self-dual if and only if q ≡ 1 (mod 4).

4) Assume that G = Oε
2n(2) and n ≥ 4. Consider the natural module

F2n
2 for G and the stabilizer P of an isotropic vector in this module. Then
P = U ·L, where U is a normal elementary abelian subgroup of order 22n−2

and L = Oε
2n−2(2). The group L acts on IBr`(U) with three orbits, of

length 1, a := (2n−2 + ε1)(2n−1− ε1), and b := 2n−2(2n−1− ε1), respectively.
Observe that

max{a, b} < d ≤ dimV ≤
√

2(G : N) + 17/4 + 1/2 < 2 min{a, b}.

This shows that L has at least two different orbits on Spec(U, V ). Each
orbit gives rise to a direct summand in the P -module V . Thus we can write
V |P = V1⊕V2 with V1 and V2 having no common composition factors. Here
we have p = 2, so due to our assumption V is of type + if X = Σ̃2 and V

is of type − if X = Λ̃2. Arguing as in the proof of Proposition 2.3(i) (with
P in place of C), we see that X(V ) ↪→ (1P )↑G, in particular, dimX(V ) ≤
(G : P ). Thus

dimV ≤
√

2(G : P ) +
17
4

+
1
2

=

√
2(2n − ε1)(2n−1 + ε1) +

17
4

+
1
2
,

whence dimV ≤ 2n + 1 < d, a contradiction.
5) Let G = Spin+

8 (3). In this case (3.4) implies that dimV ≤ 270. We
can embed Spin7(3) in G. According to [12], the dimension of any faithful
representation of Spin7(3) in characteristic 6= 2, 3 is at least 520. From this
it follows that V is actually a representation of G/Z(G) = O+

8 (3). The
modular character tables of this group are known. �

For the groups in Case (iii) of Theorem 3.1, (3.4) implies at least the
upper bounds for dim(V ) given in the following table:
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G l(G) dim(V ) ≤
3D4(3) 216 231

F4(3) 5832 6601

E6(2) 1536 3188
2E6(3) 157464 175030

E7(2) 98304 192927

E8(2) 402653184 765625740

Here, l(G) denotes the lower bound for nontrivial irreducible represen-
tations in cross-characteristic from [13, 23, 10]. If ` = 0, then each G in
the table has exactly one nontrivial irreducible module V of the indicated
dimension, cf. [17], and one can check that dim(X(V )) does not divide |G|.
The complex characters of 2.F4(2) and 2. 2E6(2) can be checked by inspecting
the character table and using GAP. Finally, let G = 3. 2E6(2) or 6. 2E6(2),
and V a faithful irreducible CG-module. Then V is not self-dual, so we
need to consider only Ã(V ). Let z be an inverse image in G of a long-root
element and let Z = 〈z〉. In order to apply Proposition 2.3, we need to show
that z has at least two non-conjugate eigenvalues in V . Suppose not, then
z has exactly two eigenvalues say α and α−1. Write V = U ⊕W for the cor-
responding eigenspaces. Then A(V ) = A(U)⊕A(W )⊕ . . . contains at least
two copies of the trivial C-module (with C := CG(Z)), so Ã(V ) contains
1C . Thus in any case we have dim(V ) ≤

√
(G : C) + 1, i.e., dim(V ) ≤ 1991.

According to [17], there is no such faithful G-module.
Thus we have completed the good case for ` = 0.

4. Lower bounds for representations of 3D4(q) and 2E6(q).

In this section we improve the Landázuri-Seitz-Zalesskii bounds for the
smallest degree of a nontrivial representation in non-defining characteris-
tic for the twisted exceptional groups 3D4(q) and 2E6(q). Our method is a
direct extension of the one used by Hoffman [10] for the non-twisted groups
of type En.

Theorem 4.1. Let V be a nontrivial irreducible representation of 3D4(q)
in characteristic 6̀ |q. Then

dim(V ) ≥ q(q4 − q2 + 1)− 1.

Proof. Let N = Q.SL2(q3).Zq−1 be a maximal parabolic subgroup of 3D4(q)
with special unipotent radical Q of order q1+8. The restriction of V to Q
splits into V1⊕V2⊕V3 where V1 = CV (Q), V2 is the part on which Q acts by
nontrivial linear characters, and V3 = [Z(Q), V )]. Any non-linear irreducible
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representation of Q has degree q4, and all these are conjugate by an element
of order q − 1 in L. Thus dim(V3) = mq4(q − 1) for some positive m.

Let g be a long root element in Z(Q). Then the Brauer character on V3

takes value −mq4 on g. On the other hand, it vanishes on any long root
element in Q \ Z(Q) by [13], Lemma 2.3. Since all long root elements are
conjugate in 3D4(q) and Q acts trivially on V1 we conclude that V2 6= 0.

The space U of linear characters of Q is isomorphic to M ⊗MF ⊗MF 2
as

SL2(q3)-module, where M is the natural SL2-module and F is the Frobenius
map of Fq3/Fq. Clearly SL2(q3) has no fixed points on U , nor has the
maximal subgroup SL2(q). The Borel subgroup stabilizes a line, hence a
subgroup of index q−1 fixes a vector, giving an orbit of length (q3+1)(q−1).
All other subgroups of SL2(q3) have index at least 1

2q
2 times that large.

Hence dim(V2) ≥ (q3 + 1)(q − 1), and we obtain

dim(V ) ≥ dim(V2)+dim(V3) ≥ q4(q−1)+(q3+1)(q−1) = q(q4−q2+1)−1.

�

Note that, by the results of Lusztig, 3D4(q) has a complex irreducible
unipotent character of degree q(q4 − q2 + 1). Moreover, Harish-Chandra
induction of projectives from the Levi subgroup L = SL2(q3).Zq−1 shows
that in characteristic `|(q + 1) this splits off a trivial composition factor,
hence the above result is best possible. In particular our bound is better
than the bound q3(q2 − 1) given in [13]. In the case q odd and ` 6= 2 an
alternative proof of Theorem 4.1 using generalized Gelfand-Graev characters
was given in [17], 4.4.

Theorem 4.2. Let V be a nontrivial irreducible representation of 2E6(q)sc
in characteristic 6̀ |q. Then

dim(V ) ≥ q(q4 + 1)(q6 − q3 + 1)− 2.

Proof. Let N = Q.SU6(q).Zq−1 be a maximal parabolic subgroup of 2E6(q)
with special unipotent radical Q of order q1+20. We proceed as in the pre-
vious proof. Now V3 := [Z(Q), V ] has dimension mq10(q − 1) for some
positive m, and consideration of values of Brauer characters on long root
elements shows that the linear part V2 is nontrivial.

In order to determine the orbits of the Levi factor L := SU6(q).Zq−1 on
the linear characters of Q we first look at the case of the algebraic group
of type E6. By the result of Hoffman in the case of the untwisted group
[10], Sect. 2, the Levi subgroup of type SL6 has five nontrivial orbits on the
linear characters of the corresponding unipotent radical. Representatives for
these are known explicitly. Taking fixed points under the twisted Frobenius
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morphism of E6 then yields that in our case the nontrivial orbits have lengths

(q2 − 1)(q3 + 1)(q5 + 1), q2(q3 + 1)(q5 + 1)(q6 − 1)/(q + 1),

q4(q4 − 1)(q5 + 1)(q6 − 1), q9(q − 1)(q2 ∓ 1)(q3 ± 1)(q5 + 1)/2.

Thus we have dim(V2) ≥ (q2 − 1)(q3 + 1)(q5 + 1), the length of the shortest
orbit.

By Lusztig’s classification there exists a unipotent complex module Ṽ of
G of dimension q(q4 + 1)(q6 − q3 + 1). The preceding argument shows that
this satisfies

dim(CeV (Q)) = dim(Ṽ )− (q2 − 1)(q3 + 1)(q5 − 1)− q10(q − 1)

= (q6 + 2q + 1)/(q + 1).

The permutation character of the Weyl group of E6 on the cosets of S6

has five constituents, hence (by Harish-Chandra theory) L has at most five
trivial composition factors on CeV (Q). Any nontrivial L-composition factor
of CeV (Q) has dimension at least (q6 − 1)/(q + 1) (see for example [7]).
Comparison of the Brauer characters of V and Ṽ on long root elements
[10] shows that hence L must also act nontrivially on V1 = CV (Q), whence
dim(V1) ≥ (q6 − 1)/(q + 1). In conclusion we obtain

dim(V ) = dim(V1) + dim(V2) + dim(V3)

≥ (q6 − 1)/(q + 1) + (q2 − 1)(q3 + 1)(q5 + 1) + q10(q − 1)

= q(q4 + 1)(q6 − q3 + 1)− 2.

�

As stated in the proof, there exists a complex unipotent representation of
2E6(q) of degree q(q4 + 1)(q6 − q3 + 1). The lower bound given in [13] was
q9(q2 − 1).

5. The bad case.

In this section we deal exclusively with the bad case, that is, where p = 2 (so `
is odd) and (type(V ), X) ∈ {(−, Σ̃2), (+, Λ̃2)}. In particular we may assume
here that V carries a nondegenerate bilinear form and X(V ) = Y (V ).

We are able to eliminate all classical groups over fields Fq with q ≥ 16
(q ≥ 8 if G is not symplectic) and to derive upper bounds for dim(V ) for the
remaining q. These bounds are very close to the known lower bounds l(G)
for the dimension of nontrivial representations of G in cross characteristic,
the worst case occurring for (q, `) = (2, 3). For exceptional groups not of
type F4 we show that necessarily X = Λ̃2 and dim(V ) < 2l(G). Finally, for
2F4 and F4 we obtain that dim(V ) ≤ 4ql(G).
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5A. Groups of small rank.
We first show that certain small rank groups do not lead to examples.

For

G ∈ {SU3(q),Sp4(q),
2B2(q2)},

q even, we may argue as follows. A lower bound for the dimension of an
irreducible nontrivial FG-module is (q3−q)/(q+1), q(q−1)2/2, q/

√
2(q2−1)

(for q2 > 8) by [23]. On the other hand, the largest degree of an irreducible
complex representation for G is given by (q2 − 1)(q + 1), (q + 1)2(q2 + 1),
(q2− 1)(q2 +

√
2q+1) respectively (for example by Deligne-Lusztig theory).

The assumption that X(V ) is irreducible now leads to a contradiction for
q ≥ 8, q ≥ 8, q2 > 8 respectively. The tables of Brauer characters of the
remaining groups are contained in [12] and allow to verify that no examples
arise.

Lemma 5.1. Let G = G2(q), q ≥ 8 even, ` 6= 2, and V a self-dual absolutely
irreducible faithful FG-module. Then X(V ) is reducible for X ∈ {Λ̃2, Σ̃2}.

Proof. The largest ordinary character degree of G equals (q + 1)(q2 + q +
1)(q3 + 1), thus dim(V ) is bounded above by 2q3. By the known decom-
position numbers for G2(q) [8] this implies that V is the largest irreducible
constituent of the ordinary irreducible V̂ of degree q3 + ε (where q ≡ ε

(mod 3)). Moreover V̂ remains irreducible in positive characteristic unless
` = 3 and ε = 1, and in the latter case it splits off one trivial composition
factor. The ordinary character table of G2(q) is known, and it can be verified
with Chevie [2] that both the symmetric and the alternating square of the
character χ of V̂ contain several irreducible constituents in characteristic 0,
hence in characteristic ` 6= 3.

If ` = 3, one checks again in characteristic 0 that the tensor product of
χ−1 with itself decomposes positively, and neither alternating nor symmetric
square can be irreducible. �

5B. Unitary groups.
Recall that SU3(q) was handled in part A. For unitary groups in dimension

at least 4 we first assume that q 6= 2.

Proposition 5.2. Let G be a covering group of Un(q), n ≥ 4, 2 6= q even,
` 6= 2 and V a self-dual absolutely irreducible faithful FG-module. Then
X(V ) is reducible for X ∈ {Λ2,Sym2}.

Proof. We first claim that V must be the `-modular reduction of a Weil
representation by applying gap results for low-dimensional irreducible rep-
resentations and a recognition theorem for Weil representations proved in
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[7]. Thus assume that V can not be obtained in this way. Then we have

dim(V ) ≥


(q2 − q + 1)(q2 + 1)− 1 if n = 4,
qn−2(q − 1)(qn−2 − q)/(q + 1) if n ≥ 5 is odd,
qn−2(q − 1)(qn−2 − 1)/(q + 1) if n ≥ 6 is even,

by [7] Th. 16.
We now derive an upper bound for dim(X(V )). If n = 4, 5 we just take

the largest degree q(q+1)3(q2+1), resp. (q+1)3(q2+1)(q5+1) of an ordinary
irreducible character. This contradicts the lower bound. For n ≥ 6 let N
be the maximal parabolic subgroup considered in Section 3, the stabilizer
of an isotropic 1-space, with Levi subgroup L such that L′ = SUn−2(q)
and special unipotent radical Q of type q1+2(n−2). The restriction of V to
Q thus splits into a direct sum of CV (Q) = V1, V3 = [Z(Q), V ] and the
part V2 on which Q acts by nontrivial linear characters. Furthermore, V3

splits into the isotypic components Vψ for the q − 1 non-linear irreducible
characters ψ of Q of degree qn−2. Let M be an isotypic Q-component on
V3 of dimension dqn−2. By Lemma 2.3 and Proposition 2.4 in [19] M ⊗M
contains an N -submodule of dimension d2. Since V is self-dual and 2|q we
deduce that X(V ) also contains an N -submodule of dimension d(d ± 1)/2
(the sign depending on X and the type of Q). If d > 1, this gives the upper
bound dim(X(V )) ≤ [G : N ]d(d ± 1)/2, while on the other hand clearly
dim(V ) ≥ dqn−2(q − 1), which leads to a contradiction for q ≥ 4. Thus all
Q-isotypic parts of V3 are irreducible, and dim(V3) = qn−2(q − 1).

We next estimate the dimension of V2. Let µ denote the Brauer character
of V and µi the Brauer character of Vi, i = 2, 3. Let g ∈ Z(Q) be a central
involution ofQ. Since V3 contains all non-linear characters ofQ exactly once,
µ3(g) = −qn−2 and µ(g) = dim(V )−dim(V3)− qn−2 = dim(V )− qn−1 since
Z(Q) acts trivially on V1⊕V2. By the main result of [3], µ(g)/dim(V ) ≤ 3/4,
hence dim(V ) ≤ 4qn−1 . But this contradicts the lower bound given above.

Thus V is the `-modular reduction of a complex Weil representation V̂ and
has dimension (qn+(−1)nq)/(q+1) or (qn−(−1)n)/(q+1) (see [7], Th. 16).
In particular X(V ) is reducible unless the complex representation X(V̂ ) is
irreducible. The latter cannot happen according to [14], Prop. 3.8. �

Proposition 5.3. Let G be a covering group of Un(2), n ≥ 5, ` 6= 2 and V
a self-dual absolutely irreducible faithful FG-module. Then X(V ) is reducible
unless possibly if

dim(X(V )) ≤

{
22n−4(2n − (−1)n)(2n−1 + (−1)n)/9 if ` 6= 3,
2n(2n − (−1)n)(2n−1 + (−1)n)(2n−3 + 1)/3 if ` = 3.

Proof. The cases n ≤ 6 can be checked directly. Hence we may assume n ≥ 7
and consider V as a G-module with G = SUn(2).
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For ` 6= 3 consider the subgroup H = SU2(2)×SUn−2(2). The first factor
is isomorphic to the symmetric group S3. The nontrivial eigenspaces for
an element g of order 3 in this factor are dual to each other as C-modules,
where C := CG(g). Thus X(V ) contains a trivial C-module and so a 1-
dimensional module for M := NG(〈g〉). Observe that |M | = 3|H|. This
leads to the estimate

dim(X(V )) ≤ (G : M) = 22n−4 (2n − (−1)n)(2n−1 + (−1)n)
9

.

Now assume that `=3. We first prove a crude upper bound for dim(X(V ))
as follows. Let H = SU3(2) × SUn−3(2). We may now restrict to the
eigenspaces of order-4 elements in the quaternion group contained in the
first factor to obtain a trivial composition factor for SUn−3(2) in the socle of
X(V ). The 3-modular Brauer characters of SU3(2) have degree at most 2,
and we conclude

dim(X(V )) ≤ 23n−8 (2n − (−1)n)(2n−1 + (−1)n)(2n−2 − (−1)n)
27

.(5.4)

To improve this bound, as above let N = Q.L be a maximal parabolic
subgroup of G with L′ = SUn−2(2). Assume first that CV (Q) =: V1 6= 0 and
let S be an L-composition factor of V1. By [5], Lemma 4.2(iii), this occurs
again as an L-composition factor of [V,Q]. So both the symmetric and the
alternating square of V contain a trivial L-composition factor and

dim(X(V )) ≤ [G : L] = 22n−3(2n − (−1)n)(2n−1 + (−1)n)/3.

Otherwise, as V is faithful for G, the center of the extraspecial group Q
doesn’t act by scalars. So there exists a nontrivial linear character λ of Q
such that the corresponding isotypic component Vλ of V is nonzero. Denote
by Iλ the stabilizer of λ in L. Then Iλ stabilizes two further characters
λ′, λ′′ of Q, and λ, λ′, λ′′ are conjugate by an element of order three in the
normalizer of Iλ. Write Q̃ for the intersection of the kernels of λ, λ′, λ′′, a
subgroup of Q of index 4. We distinguish two cases according to the type
of λ.

If λ is anisotropic, then Iλ = SUn−3(2). If 36 |n then λ, λ′, λ′′ are already
conjugate in the centralizer of Iλ. In particular the selfdual Q̃.Iλ-modules
Vλ, V ′λ are equivalent, so X(V ) contains a trivial Q̃.Iλ-composition factor in
the socle. This gives the upper bound

dim(X(V )) ≤ [G : Q̃.Iλ] ≤ 4.2n−3(2n−2 + 1)(2n − (−1)n)(2n−1 + (−1)n)/3.

When 3|n the trivial and the (at most two) Weil representations of Iλ are
invariant under the diagonal outer automorphism of order 3. Thus if the
socle of Vλ contains one of these representation, then the same is true for
Vλ′ , and we conclude as in the previous case. Otherwise, by [7], Th. 16, we
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have dim(Vλ) ≥ 2n−4(2n−6 − 1)/3, so

dim(V ) ≥ [L : Iλ] dim(Vλ) ≥ 2n−3(2n−2 − (−1)n)2n−4(2n−6 − 1)/3,

violating the upper bound (5.4) if n ≥ 10, respectively larger than the square
root of the largest character degree if n = 9 (note that 3|n).

It remains to consider the case of isotropic λ, with

Iλ = 21+2(n−4).GUn−4(2).

If the unipotent radical R of Iλ acts trivially on Vλ, we may argue as in the
previous case, either obtaining the upper bound

dim(X(V )) ≤ [G : Q̃.Iλ] ≤ 4.2n−2(2n−3 + 1)(2n − (−1)n)(2n−1 + (−1)n)/3

or a contradiction to (5.4) respectively to the largest degree of an ordinary
irreducible character when n = 9.

On the other hand, if Vλ contains a nontrivial linear character µ of R,
then

dim(V ) ≥ [L : Iλ] dim(Vλ)

≥ [L : Iλ][Iλ : Iλµ] = 2n−2(2n−3 + 1)2n−4(2n−5 + 1),

with the stabilizer Iλµ in GUn−4(2) of µ, too large compared to (5.4) for
n ≥ 7.

If finally Vλ contains the faithful character of R, then at least

dim(V ) ≥ [G : Q̃.Iλ]2n−4 dim(D) = 2n(2n−3 + 1)2n−4 dim(D)

with D an irreducible representation of SUn−4(2). If D is nontrivial, then
dim(D) ≥ (2n−4 − 2)/3, too large for n ≥ 7. Thus SUn−4(2) has a trivial
composition factor in the socle of Vλ, and the (unique) faithful representation
of R occurs in the socle of Vλ. But then the same is true for Vλ′ and we find
a trivial Ũ .Iλ-composition factor in the socle of X(V ). Arguing as before
we obtain the desired bound. �

5C. Symplectic groups.
We next deal with the symplectic groups S2n(q), n ≥ 3:

Proposition 5.5. Let G = S2n(q), q even, n ≥ 3, (n, q) 6= (3, 2), ` 6= 2,
(q, `) 6= (2, 3), and V a self-dual absolutely irreducible faithful FG-module.
Then X(V ) is reducible for X ∈ {Λ2,Sym2} unless possibly if X = Λ2 and

(qn − 1)(qn − q)
2(q + 1)

≤ dim(V ) ≤


2(q2n−1 − 1) if q = 2,
qn(qn−1 − 1) if q = 4,
1
2(qn − q)2/(q − 1) if q = 8.

Proof. The case G = S8(2) can be checked from [12] so we may also assume
(n, q) 6= (4, 2). Let G = S2n(q) and V a self-dual absolutely irreducible faith-
ful FG-module such thatX(V ) is irreducible. LetH := S2(q)×S2n−2(q) ≤ G
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be the stabilizer of a 2-dimensional subspace of the natural module. Upon
restriction to the Sylow 2-subgroup U of the first factor of H the module
V decomposes into a direct sum ⊕λVλ, λ ∈ Hom(U,F×). The Vλ for λ 6= 1
are permuted by the normalizer of U in the first factor of H, so they are
isomorphic S2n−2(q)-modules. For q ≥ 4 we thus obtain at least 3 trivial
S2n−2(q)-composition factors in the socle of X(V ). Hence X(V ) is a con-
stituent of 1GS2n−2(q). If q = 2, ` 6= 3, we consider instead the eigenspaces Vλ
of the element of order 3 in the first factor S2(2) of H and reach the same
conclusion. But the irreducible complex characters of S2(q) have degree at
most q + 1, so we obtain the estimate

dim(X(V )) ≤ (q + 1)[G : H] =
q2n−2(q2n − 1)

q − 1
.(5.6)

On the other hand by [23] any faithful FG-module V satisfies

dim(V ) ≥ (qn − 1)(qn − q)
2(q + 1)

.

This leads to a contradiction unless q ≤ 8.
Next we restrict V to the unipotent radical U of the maximal parabolic

subgroup N in Table 3.5, and decompose V as

V =
⊕

λ∈Hom(U,F×)

Vλ

into U -isotypic components. Now |U | = q2n−1, and the Levi factor L =
CSp2n−2(q) has orbits O1, O2, O3, O4 of lengths

1, q2n−2 − 1,
1
2
qn−1(qn−1 − 1)(q − 1),

1
2
qn−1(qn−1 + 1)(q − 1)

on Hom(U,F×). All elements in O2 have the invariant 1-dimensional sub-
space of U in their kernel, so since V is faithful, some Vλ for λ in O3 or O4

has to be nontrivial. Writing dλ for its dimension we get

dim(V ) ≥ 1
2
qn−1(qn−1 − 1)(q − 1)dλ

and comparison with (5.6) yields dλ = 1 if q = 8, dλ ≤ 2 if q = 4, dλ ≤ 6
if q = 2 and n ≥ 5, respectively. Thus the stabilizer Iλ in L of λ acts
trivially on Vλ. Hence if X = Sym2 or if dλ > 1 then for each λ in a
fixed orbit the module X(V ) has a trivial Iλ-composition factor in the socle.
But L permutes these λ, thus we obtain a trivial constituent in X(V ) for
the derived group of L. This forces dim(X(V )) ≤ q2n − 1 which gives a
contradiction to the Seitz-Zalesskii bound.

So we have q ≤ 8, dλ ≤ 1 for λ ∈ O3 ∪ O4 and X = Λ2. For q = 4, 8 the
upper bound stated in the Proposition now follows from (5.6). For q = 2
we obtain at least dim(V ) ≤ 2(|U | − 1). Indeed, each nontrivial orbit can
occur at most once, and the dimension of the fixed point space cannot be
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larger than the commutator, for otherwise the parabolic subgroup N and its
opposite (which together generateG) would have a common fixed vector. �

Proposition 5.7. Let G = S2n(2), n ≥ 4, ` = 3, and V a self-dual ab-
solutely irreducible faithful FG-module. Then X(V ) is reducible for X ∈
{Λ2,Sym2} unless possibly if

dim(X(V )) ≤ 24n−8 (22n − 1)(22n−2 − 1)
5

.

Proof. Let H = S4(2) × S2n−4(2) and note that S4(2) is isomorphic to the
symmetric group S6. We restrict V to a subgroup of order 5 of the first
factor. Since elements of order 5 are rational in S6, the eigenspaces for the
nontrivial eigenvalues are permuted transitively and hence are isomorphic
as S2n−4(2)-modules. Thus in X(V ) we find a trivial S2n−4(2)-module in the
socle. The largest degree of a 3-modular irreducible for S6 is 9, hence we
find an H-module of dimension at most 9 in the socle of X(V ). This shows

dim(X(V )) ≤ 24n−4 (22n − 1)(22n−2 − 1)
80

as claimed. �

In §7 we will show that G = S2n(2) does in fact lead to examples of
irreducible tensor products and irreducible alternating squares.

5D. Orthogonal groups.
The case of orthogonal groups is the least pleasant:

Proposition 5.8. Let G = Oε
2n(q), n ≥ 4, q even, ` 6= 2, (q, `) 6= (2, 3),

and V a self-dual absolutely irreducible faithful FG-module. Then X(V ) is
reducible for X ∈ {Λ2,Sym2} unless possibly if q = 2, 4 and

dim(X(V )) ≤

{
1
2q

2n−2(qn − ε1)(qn−1 + ε1)/(q − 1) if q = 4, ` = 5,
1
2q

2n−2(qn − ε1)(qn−1 − ε1)/(q + 1) if q = 2 or ` 6= 5.

Proof. Let G = Oε
2n(q) and let δ ∈ {±} be such that 6̀ |(q−δ1) and q−δ1 > 1

(which is possible since (q, `) 6= (2, 3)). We restrict V to a natural subgroup
Oδ

2(q)×Oεδ
2n−2(q). Let Vλ, Vλ−1 denote eigenspaces for the element of order

q − δ1 in the first factor of a nontrivial (q − δ1)-th root of unity λ and its
inverse. Since V is self-dual, both Vλ, Vλ−1 are singular with respect to the
nondegenerate form on V and dual to each other. Thus Vλ ⊗ Vλ−1 ≤ X(V )
has a trivial Oεδ

2n−2(q)-composition factor in the socle. If X(V ) is irreducible
this yields the upper bound

dim(X(V )) ≤ q2n−2(qn − ε1)(qn−1 + ε1)
2(q − 1)

.(5.9)
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Observe that if gcd(`, q+1) = 1 then we may choose δ = −, which gives the
better bound

dim(X(V )) ≤ q2n−2(qn − ε1)(qn−1 − ε1)
2(q + 1)

.(5.10)

On the other hand, let P = U.L be the parabolic subgroup with Levi com-
plement L of type Oε

2n−2(q). The restriction of V to the unipotent radical
U of P decomposes as V = ⊕λVλ for λ ∈ Hom(U,F×). The Levi factor
L acts on U and hence on Hom(U,F×) as on its natural module. It thus
has two nontrivial orbits on Hom(U,F×) of lengths (qn−1 − ε1)(qn−2 + ε1)
and qn−2(qn−1 − ε1)(q − 1), consisting of isotropic respectively anisotropic
elements. We first claim that dλ := dim(Vλ) = 0 for anisotropic λ unless
possibly q = 4, dλ = 1, or q = 2, dλ ≤ 2.

So assume that dλ 6= 0. Then

dim(V ) ≥ qn−2(qn−1 − ε1)(q − 1)dλ.(5.11)

Comparison with (5.9) yields dλ ≤ 1 if q ≥ 4 respectively dλ ≤ 3 if q = 2.
Thus Vλ has to be the trivial module for the stabilizer Iλ = O2n−3(q) of λ
in L. If q ≥ 4 the group Iλ stabilizes at least three different elements of
Hom(U1,F×). Thus if dλ > 1 or q ≥ 4 we get a trivial U ′1 : Iλ-constituent in
the socle of X(V ), where U ′1 = ker(λ), hence a linear constituent for U1 : Iλ
extended by an element of order q−1. So we obtain the better upper bound

dim(X(V )) ≤ qn−2(qn − ε1)(q2n−2 − 1)
q − 1

which violates (5.11) unless q = 4, dλ = 1, or q = 2, dλ ≤ 2.
So next assume that dλ 6= 0 for an isotropic λ. Then

dim(V ) ≥ (qn−1 − ε1)(qn−2 + ε1)dλ,(5.12)

and comparison with (5.9) shows that dλ < 2q−2. But the smallest degree of
a non-linear representation of Iλ is at least 2(q− 1) unless n = 4, q ∈ {2, 4},
ε = +. (Note that for n = 4, ε = +, we have Iλ = L2(q) o 2.) Thus
either G = O+

8 (2), G = O+
8 (4), or I ′λ has to act by a linear character of

order at most 2 on Vλ (in fact, trivially if (n, ε) 6= (4,+)). So each X(Vλ)
contains a trivial I ′λ-composition factor in the socle. The group L′1 permutes
the isotropic λ, so we get a trivial constituent for P ′ in X(V ). This yields
dim(X(V )) ≤ (qn − ε1)(qn−1 + ε1), which is a contradiction to (5.12).

Thus if X(V ) is irreducible, then q = 2, 4 and dim(X(V )) is bounded as
either in (5.10) or (5.9). �

Proposition 5.13. Let G = Oε
2n(2), n ≥ 5, ` = 3, and V a self-dual

absolutely irreducible faithful FG-module. Then X(V ) is reducible unless
possibly if

dim(X(V )) ≤ 24n−6(2n − ε1)(22n−2 − 1)(2n−2 − ε1)/15.
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Proof. Let H = O−
4 (2) × O−ε

2n−4(2). The first factor is isomorphic to L2(4).
The nontrivial eigenspaces of elements of order 5 in this factor yield isomor-
phic O−ε

2n−4(2)-modules, and hence we force a trivial constituent for O−ε
2n−4(2)

in the socle of X(V ). Since the largest 3-modular degree of L2(4) is 4 the
claim follows. �

5E. Large exceptional groups.
For the following statement we collect the lower bounds for cross-charac-

teristic representations of certain exceptional groups from Propositions 4.1
and 4.2 respectively from [10].

l(G) =



q(q4 − q2 + 1)− 1 if G = 3D4(q)
q(q4 + 1)(q6 + q3 + 1)− 1 if G = E6(q)
q(q4 + 1)(q6 − q3 + 1)− 2 if G = 2E6(q)
q(q4−q2+1)(q12+q10+q8+q6+q4+q2+1)−2 if G = E7(q)
q(q6 + 1)(q10 + 1)(q12 + 1)− 3 if G = E8(q).

Proposition 5.14. Let G = 3D4(q), E6(q)sc, 2E6(q)sc, E7(q) or E8(q),
q = 2n > 2, ` 6= 2, and V a self-dual absolutely irreducible faithful FG-
module. Then X(V ) is reducible unless possibly if X = Λ2, and

l(G) ≤ dim(V ) < 2l(G).

Proof. 1) Let N = Q.L be the maximal parabolic subgroup of G from Ta-
ble 3.5, with special unipotent radicalQ of type q1+2k where k = 4, 10, 10, 16,
28 respectively. The restriction of V to Q splits into the centralizer V1 :=
CV (Q), the part V2 on which Q acts nontrivial linearly, and V3 := [Z(Q), V ].
The non-linear characters of Q (of degree qk) are indexed by the q − 1 non-
trivial linear characters of the center Z(Q). Since Q is normal in N , each
isotypic part of V |Q is an L′-module.

Let M be an isotypic part of V3 of dimension dqk. By Lemma 2.3 and
Proposition 2.4 in [19] the tensor square of M contains an N -submodule
of dimension d2. Since V is self-dual and 2|q we deduce that X(V ) also
contains an N -submodule of dimension d(d±1)/2 (the sign depending on X
and the type of Q). If d > 1, this gives the upper bound dim(X(V )) ≤ [G :
N ]d(d ± 1)/2, while on the other hand clearly dim(V ) ≥ dqk(q − 1). Using
the values

[G : N ] =



(q6−1)(q4−q2+1)
q−1 if G = 3D4(q),

(q4+1)(q6+q3+1)(q12−1)
q−1 if G = E6(q),

(q4+1)(q6−q3+1)(q12−1)
q−1 if G = 2E6(q),

(q4+q2+1)(q14−1)(q18−1)
(q−1)(q2−1)

if G = E7(q),
(q10+1)(q24−1)(q30−1)

(q−1)(q6−1)
if G = E8(q),
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this leads to a contradiction for q ≥ 4. Thus all Q-isotypic parts of V3 are
irreducible, and dim(V3) = qk(q − 1).

If Z ′ is a subgroup of index 2 in Z(Q), then Q/Z ′ is an extraspecial 2-
group of type ε for some ε = ±. Then any non-linear irreducible character
of Q has Schur-Frobenius indicator ε1. Since d = 1 and since we are in the
bad case, we see that (ε,X) = (+,Λ2) or (−,Sym2).

We next estimate the dimension of V2. Let µ denote the Brauer character
of V and µi the Brauer character of Vi, i = 2, 3. Let g ∈ Z(Q) be a central
involution of Q. Since V3 contains all non-linear characters of Q exactly
once, µ3(g) = −qk and µ(g) = dim(V ) − dim(V3) − qk = dim(V ) − qk+1

since Z(Q) acts trivially on V1 ⊕ V2. We now use the main result of [3]
which states that the value of any nontrivial irreducible Brauer character
on any non-identity unipotent element is equal to at most 3/4 of its degree.
Plugging this into our above computations we get

dim(V ) ≤ 4qk+1.

2) Let first G 6= 3D4(q), E6(q). The linear characters of Q are just the
irreducible characters of U := Q/Z(Q). The orbits of L on Hom(U,F×) are
known for G = E7(q), E8(q) [10] and given in the proof of Proposition 4.2
for 2E6(q).

Comparison with the upper bound dim(V2) ≤ 3qk+1 + qk shows that in
all cases only the shortest nontrivial orbit O1 can occur. For λ ∈ O1 let Vλ
denote the λ-isotypic component of V2 and Iλ the stabilizer of λ in L (of
semisimple type SL3(q2),SL6(q), E6(q)). The lower bounds for nontrivial
representations of I ′λ compared with the upper bound for dim(V2) above
implies that I ′λ acts trivially on Vλ. Assume that dλ := dim(Vλ) ≥ 2. Then
X(Vλ) contains a trivial composition factor for I ′λ, but clearly also for U
(since 2|q). The representation of L′ on the L′-orbit of that trivial submodule
is the permutation module of L′ on the cosets of I ′λ, thus it contains a trivial
L′-composition factor. We hence obtain that dim(X(V )) ≤ [G : N ′] which
gives a contradiction to the lower bound for dim(V ) from [23]. Thus dλ ≤ 1
and we find

dim(V ) ≤ 2(qk(q − 1) + |O1|) < 2l(G).
3) Let now G = 3D4(q). We first claim that G is generated by four long

root elements. Indeed, the normalizer of a Coxeter torus is maximal in G,
and does not contain long root elements. Thus any four long root elements
whose product is a generator of a Coxeter torus must generate G. Using the
character table in [2] it can be verified that the structure constant for the
corresponding 5-tuples is nonzero.

Thus in any irreducible representation V the ±1-eigenspaces of a long
root element g can have dimension at most 3/4 dim(V ). If µ denotes the
corresponding Brauer character, it follows that |µ(g)/µ(1)| ≤ 1/2. This
yields dim(V ) ≤ 2q5. Thus again only the shortest orbit O1 of L on the
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nontrivial linear characters of Q/Z(Q) can occur. In this case the stabilizer
Iλ of λ ∈ O1 is a subgroup of order q3(q2 + q + 1) of the Borel subgroup.
Its non-linear irreducible characters have degree q2 + q + 1. Comparison
with the upper bound for dim(V ) shows that Iλ has to act linearly. Since
V is self-dual, Vλ is also self-dual. If dim(Vλ) > 1 then X(V ) contains a
trivial composition factor for Iλ. Arguing as in 2) above this leads to a
contradiction, forcing dλ ≤ 1.

4) Let G = E6(q). Let P = U.Spin+
10(q).Zq−1 be the D5-parabolic sub-

group of G. Its unipotent radical U is elementary abelian of order q16, and
the Levi factor L has two nontrivial orbits O1, O2 on Hom(U,F×), of lengths

(q3 + 1)(q8 − 1), q3(q5 − 1)(q8 − 1)

(see [10]). For λ ∈ Hom(U,F×) let Vλ denote the λ-isotypic component of
the restriction of V to U and dλ its dimension. By part 1), dλ = 0 if λ ∈ O2

and dλ ≤ 5 if λ ∈ O1. Let λ ∈ O1 and denote by Iλ the stabilizer of λ in L2,
with semisimple part SL5(q). Since any nontrivial representation of I ′λ has
dimension at least (q5 − 1)/(q− 1)− 5 by [23], I ′λ has to act trivially on Vλ.
Assume that dλ ≥ 2. Then again X(Vλ) contains a trivial composition factor
for I ′λ. We may proceed as before to obtain that dim(X(V )) ≤ [G : P ′],
again contradicting the lower bound for dim(V ) from [13]. Thus dλ = 1 for
λ ∈ O1. In particular we find

dim(V ) ≤ 2|O1| = 2(q3 + 1)(q8 − 1) < 2l(G)

as claimed.
5) Finally, observe that (ε,X) = (+,Λ2). For, V |Q contains linear char-

acters of Q with multiplicity 1, and clearly those characters are of type +,
whence V itself is of type +. �

Proposition 5.15. Let G = 2F4(q2) with q2 > 2, or G = F4(q) with 2 6= q
even, and let ` 6= 2, and V a self-dual absolutely irreducible faithful FG-
module. Then X(V ) is reducible unless possibly if

dim(V ) ≤ 2q11(q + 1).

Proof. The largest degree of an irreducible complex character of G is (q2 −
1)(q6 +1)(q8−1)(q12 +1)/(q2−

√
2q+1)2, respectively (q2−1)(q6−1)(q8−

1)(q12− 1)/(q− 1)4, thus we get the trivial upper bound dim(V ) ≤ 2q11(q+
1). �

6. The sporadic groups.

Proposition 6.1. Let G be a covering group of a sporadic simple group in

{M11,M12, J1,M22, J2,M23,HS, J3,M24,McL,He,Suz,Co3,Co2},
` ≥ 0 and V an absolutely irreducible faithful FG-module. Then X(V ) is
reducible for X ∈ {Λ̃2, Σ̃2, Ã} unless (G, `, dim(V ), X) are as in Table 6.2.
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Table 6.2. Small sporadic groups.

G ` dim(V ) Λ̃2 Σ̃2 Ã

M11 3 5 ×
M11 11 9 ×
M11 6= 11 10 ×
M11 6= 2, 3 11 ×
2.M12 3 6 ×
M12 2 10 ×
M12 3 10 × ×
2.M12 6= 2 10 ×
M12 6= 2, 3 11 ×
2.M12 6= 2, 3 12 ×
J1 11 7 ×
3.M22 2 6 ×
M22 2 10 ×
2.M22 7 10 × ×
2.M22 6= 2, 7 10 ×
M22 11 20 ×
M22 6= 2, 11 21 ×
J2 2 6 ×
2.J2 6= 2 6 × ×
J2 3 13 ×
2.J2 6= 2 14 ×
M23 2 11 ×
M23 23 21 × ×
M23 6= 2, 23 22 ×
M23 7 45 × ×
M23 6= 2, 3, 5, 7 45 ×

Proof. This can be checked from the known tables of Brauer characters
[12]. �
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Table 6.2. Small sporadic groups (continued).

G ` dim(V ) Λ̃2 Σ̃2 Ã

HS 5 21 ×
HS 6= 2, 5 22 ×
3.J3 2 9 ×
J3 3 18 ×
3.J3 6= 3 18 ×
M24 2 11 ×
M24 3 22 × ×
M24 6= 2, 3 23 ×
M24 7 45 × ×
M24 6= 2, 3, 7 45 ×
McL 3 21 ×
McL 5 21 × ×
McL 2 22 ×
McL 6= 2, 3, 5 22 × ×
Ru 2 28 ×
2.Ru 6= 2 28 ×
3.Suz 2 12 ×
2.Suz 3 12 × ×
6.Suz 6= 2, 3 12 ×
Co3 2,3 22 ×
Co3 6= 2, 3 23 × ×
Co3 5 230 ×
Co3 6= 2, 3, 5 253 ×
Co2 2 22 ×
Co2 6= 2 23 × ×

Complete results for sporadic groups in characteristic 0 are given in the
next section.
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7. Results in characteristic 0.

In this section we complete the answer in the case of characteristic 0 (or more
generally, in the case of coprime characteristic). In order to achieve this, by
the remark following the proof of Theorem 3.1, we have to consider those
groups in the bad case not handled in Section 5. Here our proof relies very
much on Lusztig’s classification of the (degrees of) irreducible characters of
groups of Lie type, more precisely, on the Jordan decomposition of characters
and the determination of the degrees of unipotent characters. We refer to
[25] for a short survey of the phenomenology of the necessary results.
A. The classical groups in characteristic ` = 0.

First we handle the unitary groups.

Proposition 7.1. Let G be a cover of Un(q) with n ≥ 4 and V a nontrivial
irreducible CG-module. Then X(V ) is reducible unless q = 2, 3 and V is a
Weil module of G.

Proof. The results of §§3,5 allow us to assume that we are in the bad case
and that q = 2. The cases n ≤ 6 can be checked directly, hence we assume
that n ≥ 7, V is a module for G = SUn(2), V is not a Weil module, and
X(V ) is irreducible.

Suppose that V is extendible to H := GUn(2). But V is self-dual, so V H

is the sum of three irreducible H-modules, and at least one of them, which
we denote by the same letter V , is self-dual. Consider a pseudoreflection g
of order 3 in H. Then the nontrivial eigenspaces of g in V are dual to each
other as C-modules, where C = GU1(2) ×GUn−1(2). Thus X(V ) contains
the trivial C-module, and so dim(X(V )) ≤ (H : C) = (2n − (−1)n)2n−1/3,
which implies by [25] that V is a Weil module. Consequently, V cannot be
extended to H. In particular, we are done if gcd(n, 3) = 1.

So we may assume that n ≥ 9. The bound in Proposition 5.3 implies that
dim(V ) < 2n−1(2n−1 + 1)/3. Carefully following the proof of Theorem 4.1
of [25], one can show that G has exactly 9 nontrivial irreducible modules
satisfying this bound; namely three Weil modules, one of dimension (2n −
(−1)n)(2n−1 +4(−1)n)/9, two of dimension (2n− (−1)n)(2n−1− 2(−1)n)/9,
and three in the dimension (2n − (−1)n)(2n−1 + (−1)n)/9. From Lusztig’s
parametrization of irreducible characters of G andH, it follows that all these
modules extend to H, which completes the proof. �

The irreducible X(V ) for complex Weil modules V of SUn(2) and SUn(3)
are determined in [20] and [14].

To handle the symplectic and orthogonal groups, we need the following
observation, which follows from Lusztig’s classification of unipotent charac-
ters.

Lemma 7.2. Let χ be a complex irreducible unipotent character of a finite
group of Lie type G in characteristic p.
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(i) Let G be GLn(q) or GUn(q). Then the p-part χ(1)p of χ(1) is a power
of q, and this p-part is 1 if and only if χ is trivial.

(ii) Let G = S2n(q) and p = 2. Then either χ is trivial, or χ is labeled by
one of the symbols(

0 1 n

−

)
,

(
0 n

1

)
,

(
0 1

n

)
,

(
1 n

0

)
and χ(1)2 = q/2, or χ(1)2 ≥ q.

(iii) Let G = Oε
2n(q) with p = 2 and n ≥ 4. Then either χ is trivial, or χ is

the smallest unipotent character of degree (qn− ε)(qn−1 + εq)/(q2− 1),
or χ(1)2 ≥ q2/2.

Proof. We refer to [25], for example, for explicit formulae giving the degree
polynomials of unipotent characters. In Case (i), assume χ is labeled by
the partition (α1, α2, . . . , αm) of n (with 1 ≤ α1 ≤ α2 ≤ . . . ≤ αm) and let
λi = αi + i− 1 ≥ i. Then χ(1)p is qd, where

d =
m−1∑
i=1

(m− i)λi −
m−1∑
i=2

(
i

2

)
≥

m−1∑
i=1

(m− i)i−
m−1∑
i=2

(
i

2

)
=

(
m

2

)
.

In particular, if d = 0 then m = 1 and χ is the trivial character.
In Cases (ii), (iii), unipotent characters χ are labeled by symbols(

λ

µ

)
=

(
λ1 λ2 . . . λa

µ1 µ2 . . . µb

)
of rank n, where 0 ≤ λ1 < λ2 < . . . < λa, 0 ≤ µ1 < µ2 < . . . < µb, (λ1, µ1) 6=
(0, 0), with a − b odd in Case (ii) and even in (iii). While estimating the
2-powers dividing χ(1), we will also occasionally change the rank of the
symbols.

Assume a, b ≥ 1 and (a, b) 6= (1, 1). Then we can consider the unipotent
character χ′ corresponding to(

λ1 λ2 . . . λa−1

µ1 µ2 . . . µb−1

)
.

It follows from the explicit degree formulae that χ(1)2/χ′(1)2 is at least qd/2,
where

d =
a−1∑
i=1

λi +
b−1∑
j=1

µj +
b∑

j=1

min(λa, µj) +
a−1∑
i=1

min(λi, µb)−

(
a+ b− 2

2

)
,

and d will attain its smallest value when(
λ

µ

)
=

(
0 1 . . . a− 1

1 2 . . . b

)
,

(
1 2 . . . a

0 1 . . . b− 1

)
,
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for which d is exactly a + b − 2. It follows that χ(1)2 ≥ qa+b−2/2. In Case
(ii) we get χ(1)2 ≥ q/2. Moreover, if χ(1)2 = q/2 then a + b = 3, i.e.,
(a, b) = (2, 1). Direct calculation then shows that χ is labeled by one of the
symbols given in the statement.

In Case (iii) a+ b is even, so a+ b ≥ 4 and χ(1)2 ≥ q2/2. If (a, b) = (1, 1),

then G = O+
2n(q). Here either χ is trivial, or

(
λ

µ

)
=

(
1

n− 1

)
and χ(1) =

(qn − 1)(qn−1 + q)/(q2 − 1), or χ(1)2 ≥ q2/2.
Suppose b = 0 and a ≥ 3. Then we can consider the unipotent character

χ′′ corresponding to

(
λ1 λ2 . . . λa−2

−

)
. One can show that χ(1)2/χ′′(1)2 is

at least qd
′
/2, where

d′ = 2
a−2∑
i=1

λi + λa−1 −

(
a− 2

2

)
,

and d′ will attain its smallest value when λ = (0, 1, . . . , a− 2, λa), for which
d is exactly (a − 1)(a − 2)/2. It follows that χ(1)2 ≥ q/2. Moreover, if
χ(1)2 = q/2 then a = 3, G = S2n(q), and λ = (0, 1, n). In Case (iii) a is
even, so a ≥ 4 and χ(1)2 ≥ q3/2.

Finally, let b = 0 and a ≤ 2. If a = 2, then G = O−
2n(q), and either

χ is trivial, or λ = (1, n − 1) and χ(1) = (qn + 1)(qn−1 − q)/(q2 − 1), or
χ(1)2 ≥ q2. If a = 1, then G = S2n(q) and χ is trivial. �

Next we handle the bad case for symplectic groups G = S2n(q), q even.
Let W = F2n

q be the natural module for G, and we consider the permutation
character ω of G on W . Then ω(g) = qdim Ker(g−1) for any g ∈ G. We will
also consider the class function

ω̃n : g 7→ (−q)dim Ker(g−1) .

Using certain dual pairs in characteristic 2, it was shown in [24] that the
permutation action of G on the 1-spaces of W affords the character 1G+ρ1+
ρ2 where ρ1 and ρ2 are irreducible characters of degree (qn+1)(qn−q)/2(q−
1) and (qn − 1)(qn + q)/2(q − 1) respectively, and that ω̃n is actually the
restriction of the (reducible) Weil character

∑q
i=0 ζ

i
n of SU2n(q) to G, when

G is naturally embedded in SU2n(q). Moreover, ζ0
n|G = αn + βn, where

αn and βn are irreducible characters of degree (qn + 1)(qn + q)/2(q + 1)
and (qn − 1)(qn − q)/2(q + 1) respectively, and ζin|G = ζq+1−i

n |G = γin is an
irreducible character of degree (q2n− 1)/(q+ 1) when 1 ≤ i ≤ q/2. If q = 2,
then we will use the notation γn instead of γ1

n. If ξ, resp. δ, is a primitive
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(q + 1)th-root of unity in C, resp. in Fq2 , then

ζjn(g) =
1

q + 1

q∑
i=0

ξij(−q)dim Ker(g−δi).(7.3)

Proposition 7.4. Let G = S2n(2), n ≥ 3. Then the characters Λ2(αn),
Λ2(βn), Λ2(γn), and αnβn are irreducible. Moreover, if n ≥ 4 then all the
other X(χ) with χ ∈ {αn, βn, γn} and X ∈ {Ã, Σ̃2, Λ̃2}, and αnγn, βnγn,
are reducible.

Proof. The cases n = 3, 4 are easy to check, so we will assume n ≥ 5. We
begin with the obvious observation that ω2 = ω̃2

n. Next, µ := ω−1G = 1G+
ρ1+ρ2 is the permutation character ofG onW×. Hence, ((ω−1G)2, ω−1G)G,
resp. ((ω−1G)2, (ω−1G)2)G is the number of G-orbits on W××W××W×,
resp. on W× ×W× ×W× ×W×, which is 17, resp. 179, as can be seen by
direct counting. Thus

(ω̃2
n − 3 · 1G − 2ρ1 − 2ρ2, µ)G = 17,(7.5)

(ω̃2
n − 3 · 1G − 2ρ1 − 2ρ2, ω̃

2
n − 3 · 1G − 2ρ1 − 2ρ2)G = 179.(7.6)

It is known that ζ0
n has Schur-Frobenius indicator 1, and so do αn and

βn. We write

Sym2(αn) = 1G + χ1 + a1ρ1 + b1ρ2, Λ2(αn) = χ2 + a2ρ1 + b2ρ2,

Sym2(βn) = 1G + χ3 + a3ρ1 + b3ρ2, Λ2(βn) = χ4 + a4ρ1 + b4ρ2,

Sym2(γn) = c1 · 1G +χ5 + a5ρ1 + b5ρ2, Λ2(γn) = c2 · 1G +χ6 + a6ρ1 + b6ρ2,

αnβn = χ7 +a7ρ1 + b7ρ2, αnγn = χ8 +a8ρ1 + b8ρ2, βnγn = χ9 +a9ρ1 + b9ρ2

for some non-negative integers ai, bi, ci; furthermore, each χi is either 0 or
a G-character not involving 1G, ρ1, ρ2. Clearly c1 + c2 = 1. From the
decomposition

ω̃2
n = α2

n + β2
n + 4γ2

n + 2αnβn + 4αnγn + 4βnγn

and (7.5) it follows that a + b = 18, where a =
∑9

i=0 tiai, b =
∑9

i=0 tibi,
with ti = 1 for 1 ≤ i ≤ 4, 2 for i = 7, and 4 otherwise. In this case
(a− 2)2 + (b− 2)2 ≥ 98. Together with (7.6), this implies that(

9∑
i=1

tiχi,

9∑
i=1

tiχi

)
G

≤ 179− 9− 98 = 72 =
9∑
i=1

t2i .(7.7)

On the other hand, by looking at the character degree and using the equality
a + b = 18 we see that all χi are nonzero. Thus (7.7) means that the χi,
1 ≤ i ≤ 9, are distinct irreducible characters of G.

Next we restrict various characters to the first parabolic subgroup P of
G. Recall that P = U.L, where U is elementary abelian of order 22n−1 and
L ' S2n−2(2). We can define the characters αn−1, βn−1, γn−1 of L in a
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similar manner. Also, L acts on the set of linear characters of U with four
orbits Oj , 1 ≤ j ≤ 4, see the proof of Prop. 5.5. Restricting to L and using
the explicit formula (7.3), we see that the restriction of αn, βn, and γn to
L involves only the characters αn−1, βn−1, γn−1. Knowing this information
and the length of each Oj , we can show that

βn|P = β′ + βn−1,(7.8)

where βn−1 is inflated from L to P and β′|U =
∑

λ∈O3
λ, in particular, β′ is

irreducible over P . Thus

2 = (βn|P , βn|P )P = (β2
n, 1

G
P )G = (β2

n, µ)G,

i.e., a3 + b3 + a4 + b4 = 1. By Theorem 3.1 Sym2(βn) − 1G is reducible.
Consequently, a3 + b3 = 1, a4 = b4 = 0, i.e., Λ2(βn) is irreducible.

Similarly,

αn|P = α′ + αn−1,(7.9)

where α′|U =
∑

λ∈O4
λ, in particular, α′ is irreducible over P . Arguing

as above, we see that a1 + b1 = 1, a2 = b2 = 0, i.e., Sym2(αn) − 1G is
reducible and Λ2(αn) is irreducible. Also, (7.8) and (7.9) imply that 4 =
((αn+βn)|P , (αn+βn)|P )P = ((αn+βn)2, µ)G. But (α2

n, µ)G = (β2
n, µ)G = 2,

hence (αnβn, µ)G = 0. Thus a7 = b7 = 0, i.e., αnβn is irreducible.
Now let g be the central involution in P . Since γn(g) = −(22n−1 + 1)/3,

the g-fixed point subspace V+ in the representation space V for γn has
dimension equal to γn−1(1) and less than |Oj | for any j > 1. Again, every
constituent of γn|L is either αn−1, βn−1, or γn−1. Comparing the character
degrees we see that U acts trivially on V+ and V+ affords the L-character
γn−1. Also, the −1-eigenspace for g on V has to afford the P -characters γ′

and γ′′, where γ′|U =
∑

λ∈O3
λ, and γ′′|U =

∑
λ∈O4

λ, in particular, γ′ and
γ′′ are distinct irreducible P -characters. Thus

γn|P = γ′ + γ′′ + γn−1.(7.10)

Arguing inductively on n, we see that γn has Schur-Frobenius indicator 1,
i.e., c1 = 1 and c2 = 0. From (7.10) it follows that 3 = (γn|P , γn|P )P =
(γ2
n, µ)G, and so a5 + b5 + a6 + b6 = 2. From (7.9) and (7.10) one obtains

1 ≥ (αn|P , γn|P )P = (αnγn, µ)G, i.e., a8 + b8 ≤ 1. Similarly, (7.8) and (7.10)
imply that a9 + b9 ≤ 1. But we know that a + b = 18, so in fact we have
equality in all three previous inequalities. Thus a8 + b8 = a9 + b9 = 1
(which means αnγn and βnγn are reducible), α′ = γ′′ and β′ = γ′. Since
a2 = b2 = 0, we see that Λ2(γ′′)|P does not involve 1P . Similarly, a4 = b4 = 0
implies that Λ2(γ′)|P does not involve 1P . Recall that γn−1 is of type + and
γn−1, γ′, and γ′′ are distinct irreducibles. Together with (7.10), this implies
that 0 = (Λ2(γn)|P , 1P )P = (Λ2(γn), µ)G, i.e., a6 + b6 = 0 and Λ2(γn) is
irreducible. Finally, we see that a5 + b5 = 2 and Sym2(γn) is reducible. �
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Proposition 7.11. Let G = S2n(q), q even, n ≥ 3, (n, q) 6= (3, 2), and V
a self-dual nontrivial irreducible CG-module. Then X(V ) is reducible for
X ∈ {Λ2,Sym2} unless q = 2, X = Λ2, and V affords one of the characters
αn, βn, γn.

Proof. The case G = S8(2) can be checked from [1] so we may also assume
(n, q) 6= (4, 2). Let G = S2n(q) and V a self-dual nontrivial irreducible CG-
module such that X(V ) is irreducible. By Proposition 5.5, X = Λ2, q ≤ 8,
and dim(V ) < (q2n − 1)/(q − 1). Denote d = dim(V ), e = dim(X(V )) =
d(d− 1)/2, and let ρ and χ be the character of V and X(V ), respectively.

1) Recall that we are assuming n ≥ 3 if q ≥ 4 and n ≥ 5 if q = 2.
Following the proof of Proposition 5.1 and Theorem 5.5 of [25], one can
show that G has exactly 4 + q/2 nontrivial irreducible characters of degree
< (q2n − 1)/(q − 1), namely 4 unipotent characters αn, βn, ρ1, ρ2, labeled
by (

0 1

n

)
,

(
0 1 n

−

)
,

(
1 n

0

)
,

(
0 n

1

)
respectively, and q/2 semisimple characters γin, 1 ≤ i ≤ q/2.

2) Let q = 8. By Proposition 5.5, dim(V ) ≤ (qn−q)2/2(q−1). According
to 1), ρ is either αn or βn. In particular, d ∈ 8Z + 4, whence e ∈ 4Z + 2.
Suppose that χ corresponds to a semisimple class (s) in the dual group
G∗ ' G and a unipotent character ψ of C := CG∗(s) in Lusztig’s Jordan
decomposition of characters. One can show that C is a direct product of
subgroups of the form GLm(qk), GUm(qk), and S2m(q). By Lemma 7.2,
if ψ(1) > 1 then ψ(1) and so e is divisible by 4, a contradiction. Hence
ψ(1) = 1 and so e = (G∗ : C)2′ is odd, again a contradiction.

Henceforth we may assume that q ≤ 4. By Zsigmondy’s Theorem [28], if
m ≥ 3 and (q,m) 6= (2, 6), then qm− 1 has a prime divisor which is coprime
to
∏m−1
i=1 (qi − 1). We will denote such a prime by `m,q.

3) Assume that q = 4 and ρ is either ρ1 or ρ2. Then d − 1 is divisible
by `4n−2,2 or `2n−1,2 respectively. Neither of these primes divides |G|, a
contradiction. Thus d = (42n−1)/5, (4n+1)(4n+4)/10 or (4n−1)(4n−4)/10.
In particular, e is odd. Using Lemma 7.2 and arguing as in 2), we see that
χ is a semisimple character and e = (G : CG(s))2′ for some semisimple
element 1 6= s ∈ G. First suppose that 3 ≤ n ≤ 5. The condition e divides
|G| implies that (n, d, e) = (3, 442, 97461) or (4, 6426, 20643525). In neither
case has G a semisimple element s such that e = (G : CG(s))2′ . Hence we
may assume that n ≥ 6. Then e is coprime to `2n−4,4.

In the case q = 2, the characters αn, βn, and γn have already been treated
in Proposition 7.4, hence we may assume that ρ is either ρ1 or ρ2. Since e
does not divide |G| when n = 5, we must have n ≥ 6, in which case e is odd
and coprime to `2n−4,2. Now Lemma 7.2 implies that χ is not unipotent,
and so χ corresponds to a semisimple element s 6= 1 in G ' G∗.



412 K. MAGAARD, G. MALLE, AND P.H. TIEP

Thus in either case we obtain a semisimple element 1 6= s ∈ G such that
the 2′-part of the index of C := CG(s) in G is coprime to `2n−4,q and smaller
than q4n−2. Recall that C is a direct product of subgroups of the form
GLm(qk) or GUm(qk) with mk ≤ n, or S2m(q) with m ≤ n − 1. Since |C|
is divisible by `2n−4,q, it follows that C has a subgroup D = GUm(qk) with
mk ≥ n − 2 or S2m(q) with m = n − 2, n − 1. Also, we are assuming that
n ≥ 6.

Assume D = GUm(qk). If mk = n and n ≥ 7 or (n, k) 6= (6, 1) then
(G : C)2′ ≥ q4n−2, a contradiction. If m = n = 6 then (G : C) is divisible
by `2n−4,q, again a contradiction. If mk = n − j with j = 1, 2, then C ≤
S2j(q)×GUm(qk), whence (G : C)2′ ≥ q4n−2, a contradiction.

Thus D = S2n−2j(q) with j = 1 or 2. Therefore C ≤ S2j(q) × S2n−2j(q).
If q = 4, then, as shown above, e = (G : C)2′ , whence (42n − 1)(42n−2 − 1)
is divisible by e = (42n − 1)(42n − 6)/50, (42n − 1)(4n + 4)(4n + 6)/200, or
(42n − 1)(4n − 4)(4n − 6)/200, a contradiction. If q = 2, then 45 · (G : C)2′
is divisible by 22n − 1, which implies that 22n − 1 divides 45e, with e =
(2n+1)(2n−1−1)(2n−2(2n−1)−1) or e = (2n−1)(2n−1+1)(2n−2(2n+1)−1),
again a contradiction. �

Proposition 7.12. Let G = Oε
2n(q), n ≥ 4, q even, and V a self-dual non-

trivial irreducible CG-module. Then X(V ) is reducible for X ∈ {Λ2,Sym2}.

Proof. 1) The case O±
8 (2) can be checked directly, hence we may assume

that (n, q) 6= (4, 2). Assume that X(V ) is irreducible. Denote d = dim(V ),
e = dim(X(V )) = d(d ± 1)/2, and let ρ and χ be the character of V and
X(V ), respectively. By Proposition 5.8, q = 2, 4 and d < q2n−2. Applying
Propositions 7.1 and 7.2 of [25] in the case ρ is unipotent, and following the
proof of Theorem 7.6 of [25] in the non-unipotent case, we conclude that
either ρ is the smallest unipotent character ρn of degree (qn − ε)(qn−1 +
εq)/(q2 − 1), or it is one of q/2 semisimple characters ϑin, 1 ≤ i ≤ q/2, of
degree (qn − ε)(qn−1 − ε)/(q + 1), or G = O+

8 (4) and ρ(1) = 3213.
2) Suppose q = 4. First we consider the case G = O+

8 (4). Then either
d = 1156 or d = 3213, and in either case neither d − 1 nor d + 1 divides
|G|, a contradiction. Hence we may assume that (n, ε) 6= (4,+). Under this
assumption, the proof of Proposition 5.8 shows that the restriction of ρ to
the parabolic subgroup P = U.L (in the notation of that proof) contains
a linear character of the elementary abelian 2-group U with multiplicity 1.
Since this linear character obviously is of type +, ρ itself is of type +, and
so X = Λ2, e = d(d−1)/2. Since ρ is either ρn or ϑin, we see that e ∈ 4Z+2.
Assume that under the Jordan decomposition χ corresponds to a semisimple
class (s) in G∗ ' G and a unipotent character ψ of C := CG∗(s). One can
show that C is a direct product of subgroups of the form GLm(qk), GUm(qk)
or O±

2m(q). Hence by Lemma 7.2 ψ(1) is either 1 or divisible by 4. Thus
e = (G∗ : C)2′ψ(1) cannot belong to 4Z + 2, again a contradiction.
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3) We are reduced to consider q = 2. The case G = O±
10(2) can be checked

directly. Therefore we are left with the case q = 2, n ≥ 6, and ρ is either
ρn or ϑn := ϑ1

n. Recall that, in the notation of the proof of Proposition 5.8,
the Levi subgroup L of P acts on the nontrivial linear characters of U with
two orbits say Oi and Oa of lengths (2n−1− ε)(2n−2 + ε) and 2n−2(2n−1− ε),
and Oi does not occur on V . Observe that d < 2|Oa| and also U cannot act
trivially on V . Thus each character from Oa occurs on V with multiplicity
1. It follows that ρ|P = λ+ β, where λ is an irreducible P -character whose
restriction to U is

∑
α∈Oa

α, and β is an L-character inflated to P . Also,
the type of ρ is +, whence X = Λ2 and e = d(d− 1)/2.

First we suppose that ρ = ρn. Then β is an L-character of degree (22n−3+
9ε2n−2 − 2)/3 < 22n−4 as n ≥ 6. According to 1) applied to L = Oε

2n−2(2),
β = a · 1L + b · ρn−1 + c · ϑn−1 for some non-negative integers a, b, c. Thus

22n−3 + 9ε2n−2 − 2
3

= a+ b
22n−3 + 3ε2n−2 − 2

3
+ c

22n−3 − 3ε2n−2 + 1
3

.

Since a, b, c are non-negative integers, we come to the conclusion that a ≥
2n−1. Hence 2n−1 ≤ (ρ|P , 1P )P = (ρ, 1GP )G, and so ρ(1) ≤ (G : P )/2n−1, a
contradiction.

Finally, let ρ = ϑn. Since e, and so |G|, is divisible by (22n−1)/3, we must
have that ε = − and n ≥ 6 is even. Since e is odd, χ cannot be unipotent
by Lemma 7.2. Suppose that χ corrersponds to a semisimple class (s) in
G and a unipotent character ψ of C := CG(s). One can show that either
C ≤ GU2(2)×O−

2n−4(2), or C is a direct product of subgroups of the forms
GLm(qk), GUm(qk), O±

2m(q). In the former case (G : C)2′ is divisible by
`n−1,2 if n 6= 7, and by 31 if n = 7, meanwhile e is not, a contradiction. In
the latter case, the oddness of e and Lemma 7.2 imply that e = (G : C)2′ .
In the case n = 6, one can show directly that G = O−

12(2) has no such C
with e = (G : C)2′ = 255255. Therefore we assume that n ≥ 8 is even. In
this case, e is not divisible by `2n−6,2, whence C must contain a subgroup D
of the form GUm(qk) with mk ≥ n− 3 or O±

2m(q) with n− 3 ≤ m ≤ n− 1.
Assume D = GUm(qk). If mk = n, then |C| is divisible by 2n ± 1, and so
(G : C)2′ is not divisible by `2n,2 or `n,2, while e is divisible by that prime,
a contradiction. If mk = n − 1, then e, but not (G : C)2′ , is divisible by
`2n−2,2. If mk = n − 2 or n − 3, then (G : C)2′ , but not e, is divisible by
`n−1,2. Assume D = O±

2m(q). If m = n− 3 or n− 2, then (G : C)2′ , but not
e, is divisible by `n−1,2. If m = n− 1, then e, but not (G : C)2′ , is divisible
by `2n−4,2. �

7B. The exceptional groups in characteristic ` = 0.
For the exceptional groups we can obtain a complete answer in charac-

teristic 0 thanks to the tables of low-dimensional irreducible representations
compiled by Frank Lübeck [17]. These in turn again rely on Lusztig’s clas-
sification of irreducible characters of finite reductive groups.
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Proposition 7.13. Let G be a quasi-simple exceptional group of Lie type
and V a nontrivial irreducible CG-module. Then X(V ) is reducible unless
possibly if (G, dim(V ), X) are as in Table 7.15.

Proof. By Theorem 3.1 and the remark after its proof we may assume that
q is even and we are in the bad case. The cases 2B2(q2) and G2(q) were
treated in 5A. Now assume that G = 3D4(q). By [17] the smallest degree of
a nontrivial complex irreducible representation of G is q(q4 − q2 + 1), while
the next largest is d2 = q3(q− 1)2(q4 − q2 + 1)/2 (since q is even). Using [1]
we may moreover assume that q > 2. Then d2(d2 − 1)/2 is already larger
than the largest degree of an irreducible complex character of G, hence only
the smallest nontrivial character of G remains. But dim(X(V )) involves a
factor q4 ± q3 + 1 which does not divide the order of G.

For G = 2F4(q2)′ or G = F4(q) the cases q2 = 2 respectively q = 2 can be
dealt with by [1]. Otherwise Proposition 5.15 gives dim(V ) ≤ 2q11(q + 1).
By the tables in [17] this forces dim(V ) =

√
2q(q4−1)(q6+1)/2 respectively

dim(V ) ∈
{

1
2
q(q3 − 1)2(q4 + 1),

1
2
q(q4 + 1)(q6 + 1),

1
2
q(q3 + 1)2(q4 + 1)

}
.

In the first case the precise power of 2 dividing dim(X(V )) is
√

2q/4, but
2F4(q2) does not have an irreducible character with this property unless
q2 = 8. For q2 = 8 it is readily checked that dim(X(V )) does not divide
| 2F4(8)|. In the second case, the precise power of q dividing dim(X(V )) is
q/4. If q > 4 then F4(q) does not have such a character. For q = 4 the
dimension dim(X(V )) does not divide |G|.

Now assume that G = 2E6(q) or G = En(q) with n = 6, 7, 8. We may
treat the covering groups of 2E6(2) as follows: The faithful characters of
coverings with center of order divisible by 3 cannot be self-dual. The re-
maining characters are printed in [1]. By Proposition 5.14 and [17] we
are reduced to the case where the character χ of V is the smallest non-
trivial one of G, that is, χ = φ′2,4, φ6,1, φ7,1, φ8,1 respectively, or q = 2.
In the first case, dim(X(V )) does not divide |G|. For G = E6(2) the
tables in [17] show that only dim(V ) ∈ {2482, 137020, 443548} are be-

low
√

2
√
|G|, and for any of them dim(X(V )) does not divide |G|. Sim-

ilarly, for G = E7(2) only the first five characters, of degrees 141986,
86507701, 95420052, 181785768, 2422215628 can occur, but for none of these
dim(X(V )) divides |G|. For G = E8(2) only the first seven characters, of de-
grees 545925250, 76321227908420, 46453389380074796, 51320060161363500,
97697128859455125, 144074197011621500, 148940867792910204 can occur,
but for none of these dim(X(V )) is the degree of an irreducible character of
G. (The authors are thankful to Lübeck for kindly providing them with the
table of character degrees for E8(2).) �
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Thus, together with the results from [18] we have completed the case
` = 0 (see also [20] for the case X = Ã):

Theorem 7.14. Let G be a quasi-simple group and let S := G/Z(G). Sup-
pose that G has a nontrivial irreducible CG-module V such that X(V ) is
irreducible, where X = Ã if V is not self-dual and X = Σ̃2 or Λ̃2 otherwise.
Then one of the following holds.

(i) S = An and V is the heart of the natural permutation module.
(ii) S = S2n(q), q = 3, 5, 9, V is a Weil module of Sp2n(q) of degree

(qn ± 1)/2.
(iii) S = S2n(2), X = Λ2, and the character of V is one of the unipotent

characters αn, βn labeled by

(
0 1 n

−

)
,

(
0 1

n

)
, of degree (2n+ε)(2n−1+

ε)/3 with ε = ±1, or a (unique) semisimple character γn of degree
(22n − 1)/3.

(iv) S = Un(q), q = 2, 3, and V is a Weil module of SUn(q) of degree
(qn + q(−1)n)/(q + 1), (qn − (−1)n)/(q + 1).

(v) “Small groups”: (G,dim(V ), X) is as in Table 7.15.

7C. A question of Gross.
B.H. Gross asked the question which finite subgroups G of complex simple

simply-connected Lie groups G have the property that they act irreducibly
in all fundamental representations of G. A well-known family of examples
is provided by the finite irreducible complex reflection groups: All exterior
powers of their reflection representations remain irreducible, thus they give
examples where G = SLn(C) (see for example Sn+1 < SLn(C)).

Clearly, if G has the above mentioned property, then so has the product of
G with any subgroup Z of the centre of G. We adopt the following notation:
If G < G = Spind(C) then we write G for the image of G in SOd(C), and
otherwise set G = G.

We start our investigation by reducing the general case of Gross’ question
to the monomial and the almost quasi-simple case, which will then be treated
subsequently.

Theorem 7.16. Let G be a finite subgroup of the simple simply-connected
complex Lie group G which is irreducible in all fundamental representations
of G. Assume that the dimension d of the natural module V for G is at least
5. Then up to a finite subgroup of Z(G) one of the following holds.

(i) G is an irreducible monomial group in GL(V ).
(ii) G = 23 · SL3(2) and G = G2(C).
(iii) G ≤ 51+2

+ : SL2(5) and G = SL5(C).
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Table 7.15. Non-generic examples for ` = 0.

G dim(V ) Λ̃2 Σ̃2 Ã

3.A6 3 ×
2.A7 4 ×
6.A7 6 ×
2.A8 8 ×
2.A9 8 × ×
L2(7) 3 ×
6.L3(4) 6 ×
41.L3(4) 8 ×
U3(4) 12 ×
61.U4(3) 6 ×
2.U6(2) 56 ×
S4(4) 18 ×
S6(2) 7 × ×
2.S6(2) 8 ×
2.O+

8 (2) 8 × ×
G2(3) 14 × ×
2.G2(4) 12 × ×
2F4(2)′ 26 ×
2.F4(2) 52 × ×
2. 2E6(2) 2432 ×
M11 10 ×
M11 11 ×
2.M12 10 ×
M12 11 ×

(iv) G ≤ 21+6
+ ·S8 and G = Spin8(C).

(v) G is almost quasi-simple.

Proof. 1) First we assume that G is an exceptional group. Suppose G is not
Lie primitive (in the sense of [4]). Then there is a proper closed subgroup H
of G which contains G, whence H and G are not irreducible on the adjoint
fundamental representation. So G is Lie primitive. By Theorem 1.7 of [4],
either we are in Case (v) or (the image of) G in Gad is contained in the
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Table 7.15. Non-generic examples for ` = 0 (continued).

G dim(V ) Λ̃2 Σ̃2 Ã

2.M12 12 ×
2.M22 10 ×
M22 21 ×
2.J2 6 × ×
2.J2 14 ×
M23 22 ×
M23 45 ×
HS 22 ×
3.J3 18 ×
M24 23 ×
M24 45 ×
McL 22 × ×
2.Ru 28 ×
6.Suz 12 ×
Co3 23 × ×
Co3 253 ×
Co2 23 × ×
3.ON 342 ×
Fi22 78 × ×
HN 133 × ×
Th 248 × ×
2.Co1 24 × ×
J4 1333 ×
B 4371 ×

normalizer N = NG(J) of a so-called Jordan subgroup J . If G = G2(C),
then J = 23 and N = 23 · SL3(2). One can check that N is irreducible on
both fundamental representations of G, and no proper subgroup of N has
this property, so G = N . In the other cases, |N | is not divisible by 7, 5, 19,
respectively, whence N and G cannot act irreducibly on the fundamental
representation of degree 273, resp. 2925, 147250, of G = F4(C), resp. E6(C),
E8(C).
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From now on we assume that G is classical. We apply the main result of
[15] to G and see that we are in case (v) or G is in one of the families Cj
with 1 ≤ j ≤ 6 defined in [15].

Suppose that G is in C6. Then G = SL(V ), G = G ≤ NG(H) = Z ∗ H,
where Z = Z(G) and H = Sp(V ) or SO(V ). Set H = ZG ∩ H. Clearly
ZG = Z ∗H, and the finite subgroups ZG and H also act irreducibly on all
fundamental representations of G. At this point we may apply [15] again
to the subgroup H of H. Thus we may assume that G ∈ Cj with j ≤ 5.
Moreover, j > 1 since G is irreducible on the natural module V of G.

2) Assume G is in C2 ∪ C3, i.e., G preserves a direct sum decomposition
V = ⊕mi=1Vi with dim(Vi) = e and m > 1. Then W ′ := ⊕iΛ2(Vi) is a G-
submodule of W := Λ2(V ). If e ≥ 2, then 2 ≤ dim(W ′) ≤ dim(W )− 2. On
the other hand, the second fundamental representation of G is of codimen-
sion ≤ 1 in W . Therefore G cannot act irreducibly on this representation,
a contradiction. Hence e = 1, which means G is an irreducible monomial
group in GL(V ).

3) Next assume that G is in C5, that is, G ≤ N := NG(E) where either
E is an extraspecial r-group of order r2m+1, or Z2t ∗ 21+2m

+ . In particular,
d = rm, resp. 2m.

Suppose d = 5, so r = 5. Then G = SL5(C). ClearlyN acts irreducibly on
V and Λ4(V ). We claim that N is also irreducible on Λ2(V ) and so on Λ3(V )
as well. Assume N is reducible on Λ2(V ). Then the character χ of N on this
module is a sum of two faithful irreducible characters of degree 5. Each of
them restricted to SL2(5) is a reducible Weil character of degree 5 and so it
takes value 1 on the central involution z of SL2(5). Thus χ(z) = 2. On the
other hand, z acts on Λ2(V ) with trace −2, a contradiction. Consequently,
N is irreducible on all fundamental representations of G. Now G can be any
subgroup of N of the form E : H, where H is a subgroup of SL2(5) which
acts irreducibly on a 2-dimensional complex representation of SL2(5).

Suppose d = 7. Then G = SL7(C), G ≤ 71+2
+ : SL2(7), and 5 does not

divide |G|, so G is not irreducible on Λ3(V ).
Suppose d = 8. Then G = Sp8(C), SL8(C) or Spin8(C). In the first

case, the order of N = 21+6
− · O−

6 (2) is not divisible by 7, so N is reducible
on the fourth fundamental representation of Sp8(C). In the second case,
the character of E on Λ4(V ) is a sum of some linear characters of E, at
least two of which are distinct. Since N is irreducible on Λ4(V ), this sum
is 70/s times the sum of s ≥ 2 distinct linear characters of E. On the
other hand, N/E ' Sp6(2) does not have a subgroup of such an index s, a
contradiction. So we are in the third case: N = 21+6

+ ·S8. Clearly, N acts
irreducibly on V . N is also irreducible on Λ2(V ), since N acts transitively
on 28 linear characters of E occurring on Λ2(V ). The third and the fourth
fundamental representations of Spin8(C) have kernel Z2 and dimension 8.
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So E acts nontrivially on them. If Z(E) is nontrivial on any of them, then
E is irreducible on that representation. On the other hand, if Z(E) acts
trivially on one of them, then N is irreducible on it since N is transitive on
the linear characters of E occurring on it. Thus N is indeed irreducible on
all fundamental representations. A similar argument shows that G has this
property if G = E ·H where H is any 2-transitive subgroup of S8.

Suppose d ≥ 9. If d 6= 11 then by Lemma 7.19 there is a prime p such that
[d/2]+3 ≤ p ≤ d−2 and p divides the degree of a fundamental representation
of G, see the proof of Proposition 7.21. If d = 11 then G = SL11(C), and 7
divides the degree of the fifth fundamental representation of G, so we may
choose p = 7. By assumption p divides |G|, and clearly p 6= r. So p divides
the order of G/E ≤ Sp2m(r). Such a prime is either ≤ rm−1 + 1 ≤ d/2 + 1,
or ≤ (rm + 1)/2 = (d + 1)/2, or equal to rm ± 1 = d ± 1. Any of these
(in)equalities contradicts the choice of p.

4) Let G be in C4 (i), i.e., G preserves a tensor product decomposition
V = V1 ⊗ V2, with dim(Vi) = ei > 1 and e2 ≥ e1.

First assume that d > 6 and d 6= 9. Then 1 < e1 ≤ d/2− 2. If G is not of
type C, then the fixed point subspace F for SL(V1) on the fundamental rep-
resentation Λe1(V ) is clearly a nonzero proper GL(V1)⊗GL(V2)-submodule,
a contradiction. If G is of type C, then we may assume G ≤ O(V1)⊗Sp(V2).
Fix a nonzero singular vector e ∈ V2. Then V ′ = V1 ⊗ e is totally singular,
whence 0 6= U := Λe1(V ′) is contained in the kernel of the contraction map
Λe1(V ) → Λe1−2(V ). Thus U is contained in the e1th fundamental represen-
tation of G, and clearly U is fixed by SO(V1) pointwise. Now we can repeat
the above argument with SO(V1) instead of SL(V1).

Observe that this argument also works if d = 9, or if d = 6 and G 6=
Spin6(C), as Λe1(V ) is a fundamental representation for G. The case
Spin6(C) can be viewed as SL4(C), in which case we apply the same ar-
gument to Λ2(V ).

5) Finally, let G be in C4 (ii), i.e., G preserves a tensor power decom-
position V = U1 ⊗ U2 ⊗ . . . ⊗ Um, with Ui ' U and dim(U) = e > 1.
Fix a Borel subgroup B1 in GL(U1) and a nonzero singular B1-invariant
subspace 〈v〉C. Set V ′ = v ⊗ U2 ⊗ . . . ⊗ Um. Then V ′ is totally singu-
lar, so as in 4), T := Λs(V ′) is contained in the sth fundamental repre-
sentation W of G, where s = em−1. Also, T is one-dimensional and in-
variant under B := B1 ⊗ GL(U2) ⊗ . . . ⊗ GL(Um). Thus T is a highest
weight subspace for B (affording the highest weight sω1 for B1), so W
contains a nonzero H-submodule say W1 of dimension at most es, where
H = GL(U1) ⊗ . . . ⊗ GL(Um). Repeating the same argument for i instead
of 1 we get a nonzero H-submodule Wi, i = 1, . . . ,m. Observe that Sm

permutes the Wi’s, so W ′ :=
∑

iWi is a G-submodule of dimension at most
mes, as G ≤ H : Sm. Now if d = em 6= 8 then mes < dim(W ), a contra-
diction. If d = 8 then m = 3, e = 2, and instead of dim(Wi) ≤ 16 we have
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the better bound dim(Wi) ≤ 11 (as W1 is a GL(U1)-submodule of U⊗4
1 and

dim(Sym4(U1)) = 5), whence dim(W ′) ≤ 33 < 42 ≤ dim(W ) as well. �

One can say more about the monomial case in this theorem:

Lemma 7.17. In Case (i) of Theorem 7.16 we have G = E ·H, where E is
a normal abelian homocyclic subgroup and either Ad ≤ H ≤ Sd, or d ≤ 11
and (G,H) are as in Table 7.18, where moreover |E| = 2s with d−2 ≤ s ≤ d
when G = Spind(C).

Proof. By the proof of Thm. 7.16 we have that G is a classical group on
V , and G permutes a basis of V and is of the form E.H with E a normal
abelian subgroup and H ≤ Sd.

The set of weight spaces of E is a G-invariant decomposition of V , so as
in part 2) of the proof of Thm. 7.16, each one is one dimensional (else we
violate irreducibility), and H acts transitively on the E-weight spaces of V .
By transitivity of H either all weight spaces are singular or non-singular. In
the latter case G is Spin and E is an elementary abelian 2-group and the
weight spaces form an orthonormal basis of V .

Now we assume that all E-weight spaces Vχi of V are singular and one
dimensional. If f is the G-invariant bilinear form and vi ∈ Vχi , then for all
g in E

f(vi, vj) = f(gvi, gvj) = χi(g)χj(g)f(vi, vj).

So f(vi, vj) = 0 unless χi(g) = χj(g)−1. As f is nondegenerate there exists
for every weight space Vχi at least one weight space Vχj outside of the
orthogonal complement of Vχi . By the computation above Vχj = V−χi .
Thus the set of E-weight spaces is a G invariant hyperbolic basis of V . As
G is transitive on hyperbolic bases, and the normalizer of a hyperbolic basis
is the normalizer of a split torus, we get the embedding of G into NG(T ).
But in this case we observe that when G is not a linear group, then the zero
weight space of the heart of Λ2(V ) is a proper nontrivial NG(T ) submodule,
by [11], Ex. 13.13. But we assumed that G is conjugate to a subgroup of
NG(T ), so G must be linear in the second case.

Since Λ2(V ) is a fundamental representation for G, it is irreducible, so
H is 2-transitive. Note that if Λk(V ) is irreducible then H must be a k-
homogeneous subgroup of Sd. We first deal with the linear case. Since
Λr(V ) is a fundamental representation of SLd(C) for any r ≤ d − 2, the
group H must act r-homogeneously for those r. According to [16], a 6-
homogeneous group is 6-transitive if d ≥ 12, hence contains the alternating
group. We conclude that in the linear case either H ≥ Ad or d ≤ 11. Among
the transitive groups of degree 5 ≤ d ≤ 11 not containing Ad only H = 5: 4
with d = 5, H = PGL2(5) with d = 6, and H = L2(8), H = L2(8) : 3 with
d = 9 are r-homogeneous for all r ≤ d− 2. These give rise to examples.
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Now assume that G = Spind(C). Here Λr is irreducible for r ≤ b(d−3)/2c,
thus H is b(d − 3)/2c-homogeneous. Arguing as before we conclude that
either d ≤ 14 or H ≥ Ad. Among the transitive groups of degree d ≤ 14
only the following ones are r-homogeneous for all r ≤ b(d− 3)/2c:

d = 7 : 7: 3, 7: 6, L3(2)

d = 8 : 23 : 7, 23 : 7 : 3, L2(7), PGL2(7), 23 : L3(2)

d = 9 : L2(8), L2(8) : 3

d = 10 : PGL2(9), M10, Aut(A6)
d = 11 : M11

d = 12 : M12.

Now note that, whenever |E| ≥ 2d−1 if d is odd, respectively |E| ≥ 2d−2

if d is even, then E lifts to an extraspecial group E in Spind(C). This
E has a faithful representation of degree equal to the degree of the spin
representation, which moreover lifts to the extension EH. Hence, for any of
the groups H above, whenever |E| is large enough we get an example. �

Note that the extensions G = E ·H in Lemma 7.17 need not necessarily
split, as is shown by the example of Weyl groups in SLn(C).

Table 7.18. Monomial subgroups G = E.H of complex sim-
ple Lie groups G irreducible in all fundamental representa-
tions.

G H

SL5 5: 4

SL6 PGL2(5)

SL9 L2(8), L2(8) : 3

Spin7 7: 3, 7: 6, L3(2)

Spin8 23 : 7, 23 : 7 : 3, L2(7), PGL2(7), 23 : L3(2)

Spin9 L2(8), L2(8) : 3

Spin10 PGL2(9), M10, Aut(A6)

Spin11 M11

Spin12 M12

We now turn to the almost quasi-simple case. For this we first need the
following lemma:
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Lemma 7.19. Let n ≥ 13 be an integer. Then the interval (2
3n, n] contains

at least two different primes.

Proof. The statement can be checked directly if 13 ≤ n ≤ 37. Let n ≥ 38.
Then x = 2n/3 > 25, hence the intervals (x, 6x/5) and (6x/5, 36x/25) both
contain at least one prime, cf. [22], whence the result follows. �

For a finite group G, let d(G) denote the smallest degree of a faithful
complex projective representation of G.

Lemma 7.20. Let S be a finite simple group with d(S) ≥ 13. Suppose that

(i) S has a faithful projective complex representation Φ of degree e, and
(ii) |S| has at least two prime divisors p, p′ with p > p′ > 2

3e.

Then either S = An and Φ is the smallest representation of degree n− 1
of S, or S = L2(q) with q = p, p′ = (q ± 1)/2 and e = (q ± 1)/2.

Proof. First suppose that S = An. Then e ≥ d(S) ≥ 13, whence n ≥ 14.
Next, n ≥ p > 2e/3, whence e < 3n/2. This implies by [26] and [21] that
e = n− 1 and Φ is the smallest complex representation of degree n− 1.

Next, direct check using [1] shows that S cannot be a sporadic simple
group. So we may assume that S is of Lie type. Clearly, p > 2e/3 ≥ 2d(S)/3,
whence 13 ≤ d(S) < 3p/2. This condition excludes all finite groups of Lie
type, except possibly S = S2n(q) with n ≥ 2 and q odd, Ln(q) with n ≥ 2,
Un(q) with n ≥ 3. Assume S = S2n(q), n ≥ 2, and q odd. Since d(S) ≥ 13,
we have qn ≥ 27 and d(S) = (qn − 1)/2. Now

p > 2d(S)/3 = (qn − 1)/3 > max{(qn−1 + 1)/2, (qn + 1)/4, q, 2}.

But p is a prime divisor of |S|, hence p = (qn± 1)/2. The same holds for p′.
Thus both (qn− 1)/2 and (qn + 1)/2 are primes, a contradiction. The cases
Ln(q), n ≥ 3, and Un(q) can be excluded similarly. �

Proposition 7.21. Let S be a finite simple group with d(S) ≥ 13 and G
a finite group such that S ≤ G/Z(G) ≤ Aut(S). Suppose that G can be
embedded in a simple simply-connected complex classical group G in such a
way that G acts irreducibly on all fundamental representations of G. Then
S = An, Z(G)× An ≤ G ≤ Z(G) ∗Sn, G = SLn−1(C).

Proof. Let K = G(∞), C = CG(K) = Z(G), L = K ∗ C. Then K is a
finite quasi-simple group and K/Z(K) ' S. Let V be the natural module
for G and let d = dim(V ). By Clifford’s Theorem, V |K is a direct sum
of irreducible K-modules of dimension say e, each of which is a faithful
projective representation of S. In particular, d ≥ e ≥ d(S) ≥ 13. By
Lemma 7.19, one can find primes p > p′ in the interval (2

3d, d]. Since d ≥ 13,
we have p > p′ ≥ [d/2]+3. Now the (d−p+1)th-fundamental representation



SYMMETRIC AND ALTERNATING SQUARES 423

W of G has dimension (
d

d− p+ 1

)
=
p(p+ 1) . . . d
(d− p+ 1)!

if G is of type A, B or D. If G is of type C, then the (d−p+3)th-fundamental
representation W of G has dimension(

d

d− p+ 3

)
−

(
d

d− p+ 1

)
=

(p− 2)(p− 1)p . . . d
(d− p+ 3)!

− p(p+ 1) . . . d
(d− p+ 1)!

.

In either case, dim(W ) is divisible by p.
By assumption, W |G is irreducible. Hence by Clifford’s Theorem, W |L is

a direct sum of t irreducible L-modules, each of dimension l, and t|(G : L).
Clearly, p divides lt. Assume that p does not divide |S|. Since p > 2d(S)/3,
we can conclude that p does not divide |Aut(S)| and |Mult(S)|. Thus p
does not divide (G : L), and so p|l. But l is an irreducible degree of
L = K ∗ C and C = Z(G) is abelian. Therefore, p divides |K|, a con-
tradiction. Consequently, p divides |S|. Similarly, p′ divides |S|. Now we
can apply Lemma 7.20. Observe that the case S = L2(q) with q = p is
impossible: (G : L) ≤ 2 and d ≥ e ≥ (q − 1)/2, and so already the third
fundamental representation has degree too big to be a sum of ≤ 2 irreducible
representations of L. �

The simple groups with a nontrivial projective complex representation
of degree at most twelve are A5,6,7,8,9,10,11,12,13, L2(7, 8, 11, 13, 17, 19, 23, 25),
L3(3, 4), U3(3, 4), U4(2, 3), U5(2), S4(5), S6(2), O+

8 (2), G2(4), M11, M12, J2,
M22 and Suz. The character tables of all these groups are contained in the
Atlas [1] and can be checked directly.

The quasi-simple subgroups of simple complex exceptional groups have
been classified, see for example [4] for references. Apart from the groups
listed above, these are A14,15,16,17, L2(16, 27, 29, 31, 32, 37, 41, 49, 61), L3(5),
U3(8), G2(3), 3D4(2), 2B2(8) and 2F4(2)′. The groups E7(C) and E8(C)
both have fundamental representations of degrees divisible by 13 and by 19.
None of the quasi-simple groups from the above lists has this property. The
only groups with an irreducible complex representation of degree 27 are
A9, L2(53), U3(3), S6(2), 3.O7(3), 3.G2(3), and 2F4(2)′. None of these has
a character of degree 2925. The only groups with an irreducible complex
representation of degree 26 are L2(25), L2(27), L2(53), L4(3), 3D4(2) and
2F4(2)′. Of these, only 3D4(2) has characters of degree 52, 273, 1274 as well.
The only groups with an irreducible complex representation of degree 7 are
A8, L2(8), L2(13), U3(3) and S6(2). Of these, only A8, L2(13) and U3(3)
also have a projective character of degree 14. But 2.A8 is known not to be
contained in G2(C).
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Table 7.22. Almost quasi-simple subgroups G of complex
simple Lie groups G irreducible in all fundamental represen-
tations.

G G ext. remarks

SLn Sn+1 Weyl(An)

SL3 A5 Weyl(H3)

SL3 L3(2) CRG(24)

SL3 3.A6 CRG(27)

SL4 2.L3(2)

SL4 2.U4(2) CRG(32)

SL4 2.A7

SL5 L2(11)

SL5 U4(2) CRG(33)

SL6 6.L3(4).21

SL6 U4(2).2 Weyl(E6)

SL6 61.U4(3) 22 CRG(34)

SL6 6.A7

SL7 S6(2) Weyl(E7)

SL8 41.L3(4).23

SL8 2.O+
8 (2).2 Weyl(E8)

SL10 2.M22.2

In Table 7.22, the examples in Lie groups of type A or C can be seen to
occur (using GAP for instance). Gross observed (cf. for instance [14]) that
U3(3), resp. 3D4(2), give rise to examples for type G2, resp. F4. Next, let
G = L2(13). It is known that G embeds in G = G2(C), cf. [4]. If ω is the
fundamental representation of degree 7 of G, then ω′ := Λ2(ω) − ω is the
fundamental representation of degree 14 of G. Now it is easy to check that
the restrictions of ω and ω′ to G are irreducible.

Finally, let G = Spinn(C). If n = 8 then clearly G = 2.O+
8 (2) or 2.A9

embeds in G, and since d(G) = 8 one sees that each G gives rise to an
example in G. Let n = 7 and let ω1 be the fundamental representation
of G (on a 7-dimensional module V ). Let G = L2(8).3 or 2.S6(2). Then
G embeds in O7(C) = O(V ), and the restrictions of ω1 and ω2 = Λ2(ω1)
to G are irreducible. It is known that the square of the third fundamental
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Table 7.22. Almost quasi-simple subgroups G of complex
simple Lie groups G irreducible in all fundamental represen-
tations (continued).

G G ext.

Sp4 2.A5

Sp4 2.A6 21

Sp6 2.L2(13)

Sp6 2.J2

Spin7 L2(8).3

Spin7 2.S6(2)

Spin8 2.O+
8 (2) 2

Spin8 2.A9

G2 L2(13)

G2 U3(3) 2

F4
3D4(2) 3

representation, ω3, of G is just the representation of G on the even part of
the Clifford algebra C(V ). Hence

ω2
3 = 1 + Λ2(ω1) + Λ4(ω1) + Λ6(ω1) =

3∑
i=0

Λi(ω1).

In particular, if g ∈ G is of order 9, then ω3(g)2 = 1. Since ω3|G is a complex
representation of degree 8, this implies that ω3|G is irreducible.

Thus all examples in Table 7.22 do indeed occur. This completes the
proof of Theorem 1.3.
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