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‘We obtain special values results for the triple product L-
function attached to a Hilbert modular cuspidal eigenform
over a totally real quadratic number field and an elliptic mod-
ular cuspidal eigenform, both of level one and even weight.
Replacing the elliptic modular cusp form by a specified Eisen-
stein series, we renormalize the integral defining the triple
product L-function in order to obtain an integral representa-
tion for a product of Asai L-functions. We hope in further
work to extend these results to triple-product L-functions at-
tached to automorphic representations and then study the
critical values of this renormalized triple product.

1. Introduction.

This paper investigates Zagier’s technique of renormalization ([Z]), applied
to an integral defining a certain triple product L-function. The renormalized
integral becomes the product of two Asai L-functions, one shifted by an in-
teger. As a by-product of these results, under a certain weight restriction on
the modular forms, special values results can be explicitly determined for the
triple product L-function in question. Such special values issues have been
studied in the representation-theoretic context by Piatetski-Shapiro and Ral-
lis ([PSR]), Garrett and Harris ([GH]), and Harris and Kudla ([HK]). The
foundation of this work is Garrett’s groundbreaking study of the Rankin
triple product L-function ([G1]).

The L-function in question, L(f ® G,s), is a variation of the Rankin
triple product L-function, defined for a holomorphic Hilbert modular cusp-
idal eigenform G and a holomorphic elliptic cuspidal eigenform f, both of
level one and even weights. If we let F3 denote the Siegel Eisenstein series
of degree 3, then under a certain embedding ¢2 1 of $3 into the Siegel upper
half-space of degree 3, following Garrett’s techniques ([G1]) we show:

Theorem 1.1. For Re(s) sufficiently large,

/ / Ey(19.1(Z, 2): 2k, $)G(3) F(23) (y1yays)*~2day dys di dj
I‘\ﬁ2 SL(2,Z)\$

= L(f ® G, s + 4k — 2) x (normalizing factors).
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For the result in the more general context of mixed weights, see Theo-
rem 5.4. Such a theorem was proved in the representation-theoretic context
by Garrett and Harris ([GH]) and leads to special values results.

Shimura developed a technique for determining special values for ratios
of zeta functions associated with cusp forms by using Rankin product L-
functions ([S2], [S3]). In the situations he considered, replacing one mod-
ular form in a Rankin product L-function by a specified Eisenstein series
leads to a product of the zeta functions in question. One can then extend
special values results for the product L-function to the product of the zeta
functions. When attempting to use the same procedure for the triple prod-
uct L-function, if we replace f by a specified Eisenstein series £, then the
integral no longer converges. However, by renormalizing the integral, we
obtain:

Theorem 1.2. For Re(s) sufficiently large,

RN, / / By(19.1(Z, 23): 2k, )G(3) E(z3)
'\$2 JSL(2,Z)\$

(y1y2y3)**2dws dys di d
= Lpsai(G, s 4+ 4k — 2)Lagai (G, s + 2k — 1)

X (normalizing factors).

Refer to Theorem 6.4 for the result in the mixed-weight case.

The function Las.i(G, s) is defined as in [A]. Namely, given the Hilbert
modular form G of weight (ki, k2), k1 > ko, on a quadratic number field F’
with Fourier coefficients b(¢), the Asai L-function is constructed as a sort of
“subseries” of the standard L-function attached to Hilbert modular forms,
summing up only over the rational integers:

Lasai(G,8) = ((2(s — k1 +1)) > b(n)n”*,
n=1

where ((s) is the Riemann zeta function.

Using the identities above, special values results for the triple product L-
function can then extend to the product of Asai L-functions, and therefore to
ratios of Asai L-functions, following the techniques of Shimura ([S2], [S3]).
However, the special values results for the triple product L-function must
be within a certain weight case for the modular forms, called the “indefinite
case” by Harris and Kudla ([HK]).

Throughout this paper, we consider only modular forms of level one in
the classical language. To follow Shimura’s techniques for obtaining special
values results, the generalization to higher levels is required, necessitating
the representation-theoretic approach. The basic structure of the paper fol-
lows a similar method to that of Garrett ([G1]). After setting up notational
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preliminaries, we outline the various embeddings and coset decompositions
required for the computations involving the Siegel Eisenstein series. We then
compute the integral representation for the L-function, from which we derive
the Euler product, functional equation, and special values result. Finally,
replacing the elliptic cusp form by a specified Eisenstein series, we compute
the renormalized integral, obtaining the product of Asai L-functions.

2. Preliminaries.

Let F' be a real quadratic extension of Q with ring of integers 0. We will
assume that the quadratic number field F' has narrow class number one.
Let D denote the discriminant of F, 6! the inverse different, and let 7
signify the nontrivial injection of F' into R. Write U™ for the group of totally
positive units of F.

For a commutative ring R, write M (n, R) for the space of n x n matrices
over R. GL(n, R) will signify the group of invertible n x n matrices, and
SL(n, R) the group of matrices with determinant one. I,, is the n x n identity

0o I,
-1, 0

The symbol $ will be used to denote the complex upper half-plane, and
H" represents the product of n copies of the complex upper half-plane. The
Siegel upper half-space of degree n is written

matrix, and let J,, =

9, ={Z € M(n,C)"Z = Z,Im(Z) > 0}.

The Siegel Eisenstein series is then defined as follows. The symplectic group
is given by

Sp(n, R) = {g € GL(2n, R)|'gJng = Jp.}.

There is a natural action of Sp(n,R) on $),, given by
ZwgZ =(AZ+B)(CZ+D)', g= < é g )
Let

P, o(Z) = { ( é g > € Sp(n,Z)‘C:O}.

ForseC,ke€Z,and Z = X +1Y € 9,, define the Eisenstein series

(detY)®
|det(CZ + D)|?s’

(2.1) En(Z;2k,s) =Y det(CZ + D)~
C, D
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where the sum is over all representatives ( 2 ; > for P, 0(Z)\Sp(n,Z).

For Z € $,, and g = ( é g > € Sp(n, R), we will often write
(2.2) w(g, Z) = det(CZ + D).

The Eisenstein series converges for Re(s) sufficiently large, and can be con-
tinued to a meromorphic function in the entire s-plane (see [K]| or [L]). Its
poles have been studied by Ikeda ([I]).

3. Embeddings of symplectic spaces and coset decompositions.

To proceed with the integral representation of the triple product L-function,
we first need to determine an embedding from Sp(1, F) into Sp(2, Q), which
takes a group I' = Sp(1,0) to Sp(2,Z). Write Er for the determinant
mapping F? x F? — F, and define

1
Eg = Trpjgo Bp: F* x F? = Q.
Note that if we set M = 0@ §~ 1, then Eg: M x M — Z surjectively. Let
(3.1) I'=T(M,Er)={g € Sp(L, )| gM = M}.

Then I' = Sp(1,0). One can check at once that over Z, I'(M,z, Eg) =
Sp(2,Z). Let 8 € F be an element such that {1, 3} is a Z-basis of o, and

put
1 g
B:<1 57>'

We will define ¢ : $2 — $5 to be the embedding;:
u(z1,20) = B! - diag[z1, 2] - B,
It is compatible with the injection  of Sp(1, F') into Sp(2,Q) defined by
. a b (Bt 0 Aa) A(b) B 0
“Wed))”\ o B Alc) A(d) 0 B! )
where A(a) = diagla,a”], (a € F). Note that 7 : I' — Sp(2,Z). Define two
more embeddings

imn : Sp(m, Q) x Sp(n, Q) — Sp(m +n,Q)
and lmn - me X 9y — y)m—i—n

wa((&5) (& )

by

Al B

cQon
o

oUoWw
o

C’ D’
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and (2,2 = < g g/ >

Having determined the appropriate embeddings, following Garrett’s lead
([G1]) we now investigate the coset decompositions that are used to rewrite
the Siegel Eisenstein series. For a commutative ring R, consider the following
subgroups of Sp(n, R), where I, is the identity matrix of size m, 0,, is the
zero matrix of size m, and 0 < r < n:

In» 0 Op—p O
0 * 0 *
GTL,T(R) On—r 0 In—r 0 € Sp(n7 R) 9
0 * 0 *
* 0 Op—r O
0 I, 0 0
LTL,'I’(R> - On—r 0 * 0 e Sp(”? R) 9
0 0 0 I,
([ I, * *
0 I, 0
UTL,T(R) - 0 O In—r 0 € Sp(na R)
0 0 = I,
Set P, (R) = Gy r(R)Ly (R)Uy »(R), and let
Onfr 0 _1nfr 0
w 0 1, 0 0
" Ly—r 0 Op—r 0 |7
0 0 0 1,
Wn = Wn0

The following four results, which only involve the rational symplectic
spaces, are proved in [G1].

Proposition 3.1. The double coset space

Pot1,0(@))\Sp(n +1,Q)/2n,1(Sp(n, Q) x Sp(1,Q))

has irredundant representatives Iop 1o, €, where

§ = &oln,1 (L2n, w1)

I, 00 0
€0 = 0 10 0
°= V| o0, v I, 0

W 0 0 1
=1(0,...,0,1) € Q™.
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Proposition 3.2. The coset space

Pri10(Q)\Sp(n +1,Q)

has irredundant representatives consisting of the disjoint union of represen-
tatives for

in,1 (Pno(Q)\Sp(n, Q) x P1o(Q)\Sp(1,Q))
and for
§in,1(Pn,1(Q)\Sp(n, Q) x Sp(1,Q)),
where ¢ is defined in Proposition 3.1.
Lemma 3.3. Letv; € Sp(1,Z2), e € Z, ¢ > 0,

AE = < 861 0 > € Sp(la(@):

3

and & be as in Proposition 3.1 with n = 2. Then there is an element p. €
P5(Q) such that for all ¥ € Sp(2,7Z), v2 € Sp(1,Z),

pagZZl(;%’YlAefYQ) S Sp(37Z)7 and H(ptﬂ *) =g,
where p is defined by (2.2).
Lemma 3.4. The coset space Sp(1,Z)\Sp(1,Q)/Sp(1,Z) has irredundant

representatives
e o
{AE—( 0 0<e€eZ;.

Now we incorporate the quadratic number field F' into similar calculations.
Proposition 3.5. The double coset space
P1(Q)\Sp(2,Q)/i(Sp(1, F))
has just one orbit, and so one representative, I4.

Proof. Since P51(Q) is the stabilizer of a line and Sp(2, Q) acts transitively
on lines in Q%, the coset space P 1(Q)\Sp(2, Q) is naturally P3(Q). We may
consider Q* as F?2, so, as Sp(1, F) acts transitively on the nonzero vectors
of F2, there is only one orbit of Sp(1, F) on P3(Q). O

Proposition 3.6. The coset space Py 1(Q)\Sp(2,Q) has irredundant repre-
sentatives consisting of the disjoint union of representatives for

(U(F)\Sp(1, F)),

where U(F) = {( ! qfl ) € Sp(1,F), g € Q*}.
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Proof. We must find a subgroup H of Sp(1, F') so that h € H if and only if

P 1(Q)i(h) = P21 (Q).

That is, Z(h) € PgJ(@).
Looking at P, 1(Q) more closely, we see we can describe it as the following
set of matrices:

o ux v wo
0 A wA-uB B

PQ,I(Q) = 0 0 v 0 € Sp(27(@)|
0 C wC—-uD D

a,y#0,AD — BC #0

_(a b\ _(a+afB bi+bp
Ifh—(c d>_<cl+62ﬂ d1+d25>68p(1,F),then

al 52(12 b1/2 b2/2
as ar be/2 b1/23?

i(h) = 21 23%,  dy ds

28%cy 23%c1 [(Pdy dy
Combining the explicit descriptions for i(h) and the matrices in P> 1(Q), we
obtain the required result. O

Definition 3.7. Every totally positive element of F*/Q* has a unique rep-
resentative « which can be written o = s 4+ t3, where s,t € Z, s is positive,
and (s,t) = 1. We will call such a representative primitive.
Lemma 3.8. For a = s+ tf3 a primitive element of F™*, set
a 0
A:Aa:<0 a_1>€Sp(1,F)

Then there exists a matrix

N@)™ ¢ca 0 0
0 1 0 0

P = Pa 0 0 N(a) 0 € Pp(Q)N Py (Q)
0 0 do 1

such that for all v € T,
Pal(Aay) € Sp(2,Z).
Proof. Since

Pa Z(Aoﬂ') = Pa Z(Aa)z(’}') ,
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and () € Sp(2,Z), it suffices to consider the case where v = I5. To find ¢,
and d,, using the fact that s and t are relatively prime, let m,n € Z such
that sn 4+ tm = 1. Then set

—t3? — mN(a) 4 s — nN(a)
ch = — 7 R S
“ sN(a) ’ “ t
where N(a) = Normp/g(a). Direct multiplying out gives the result. O

4. The integral representation.

We now obtain the integral representation of the triple product L-function
L(f ® G,s). Let f(z) be a normalized holomorphic cuspidal eigenform of
weight 2] on SL(2,Z), and let G(z1, 22) be a normalized holomorphic cuspidal
eigenform of weight (2k1,2ke) on I', where I' is defined by Equation (3.1).
For Z = (21, 22) € $?, write the Fourier expansions of f and G as

flz) = Za(n)e(nz), e(z) = exp(2miz)

G(Z) = ) b(&)er(E?), er(2) = exp (2mi(z1 + 2)),
¢

where £ ranges over all totally positive elements of a lattice in F'. If we write
& for the trivial injection of ¢ into R and &; for the nontrivial injection of £
into R, then £z = (5121,§222).

In order to compute the integral, differential operators of Maass ([M]) and
Shimura ([S1]) are needed to raise the weights of the forms so they are all
equal. For z € 9, (21, 22) € $H2, and integers &, 7, A, 5, > 0 with v = 1,2,
define operators for the elliptic and Hilbert modular forms, respectively, by

1\ " (k+2r—2 9 k+2 0 K 0
(N — ( — S et S A B Y
(A1) o <2m'> ( 24y * 82’) < 24y * 82) <2z’y * 82)

(4.2)

s1+so 2
(s12) _ (1 ! Ay +2s, —2 0
O ) = <2m'> yl_[1 ( 24y, * Oz

Ay +2 n 0 Av n 0
21y, 0z, 2iy, 0z, )’
where 0/0z = (0/0x — i0/Jy)/2 as usual, and it is understood that 5

and 6((())\’10))\2) are the identity operators. It can be shown that (5,9) and 5(51’52)

(A1,A2)
raise the corresponding weights of modular forms of weight £ and (A1, A2)

to kK + 2r and (A1 + 2s1, A2 + 2s9), respectively ([S1], [S2]).
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As Orloff demonstrated ([BO]), we may write

(4.3) 5Me ZP (4my) In"Je(nz),

with integers Pj(r) defined by

(r) (r\ T(r+r)
4.4 P = (—-1y il S NV
Y = ()

Therefore, applying the operators given by (4.1) and (4.2) to the cusp forms
f and G in the case where k1 > [ > ko, we may write

k11
(4.5) S () =D a(n) Y Pa(dmy) " n*1!"e(nz)
n A=0
k1—ko
(46) Sl G(3) Zb > Qularys) Pef R Pep ().
B=0

Define the Dirichlet series

@7 DP(s) = a(n®n >,
(4.8) DﬁG(s): Z a(n)m(a2)k1—k2nl—l—k2(nN(a)2)1—s—2k1,

n,aU+

where U™ is the group of totally positive units of F, n ranges over the
positive integers, o ranges over the primitive elements of F* modulo U™,
and b(€) is the complex conjugate of b(&).

For z,s € C, y € R, and k € Z, put

Qrs(z) =2+ i]_Qs(z + i)_%

(4.9) ione(9) = [ daalle(-zp)io
(4.10) X2k,s(2) = |Z]72szf2k
(4.11)
ky—lki—
N2k (s Dl/2 PAQB 4m)~
A=0 B=0

o9 o)
/ (y1y2y3)5+2k_2yfAy§B(y1—I—y2+y3)1_2k_25
0 0

“Gok,s (Y1 + y2 + y3)exp(—27(y1 + y2 + y3))dy1 dy2 dys.
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The integrals exist for Re(s) sufficiently large. Define 7 : 2 — $ by

(4.12) - << : Z; >> = 209,

The following lemma provides the integral computation with respect to f.

Lemma 4.1. For w € 9, Re(s) sufficiently large, define
k1—1

fi(w) = a(n) Y Pa(dm) 0"~ e(n(Re(w))) / - yot2ki—2-4

n A=0 0
- (y + Im(w)) 72572 exp(—27ny) Gor, s (ny + nIm(w)) dy,
where the coefficients are defined by (4.4) and (4.5). Then, for Z € $9,

zZESYN,
/ E3(12,1(Z, 2); 2k1, 5)5§;_lf(z)y2k172d$ dy
SL(2,2)\$
= ((2s+2k) " DP (s + ka1 1)

Y _[det Im(32))° w(3, 2) 74 £ (7(32)),

Y

where the sum is over 7 € Pa1(Z)\Sp(2,Z), and ((z) is the Riemann zeta-
function.

The proof is almost identical to that of Garrett ([G1]), requiring appli-
cation of basic properties of the differential operators ([S1]).

Having integrated with respect to the elliptic cusp form, it remains to
compute the integral with respect to the Hilbert modular cusp form.

Proposition 4.2. With notation as above, Z = (22, 23) € $2, and 1(3) = Z,

/ / E3(12,1(Z, 23); 2k1, 8)5§f_lf(21)
&2 JSL2.2)\H

Ol G(2) (yyays) 2 day dyn di d

= My ot (5)G(25 + 2h0) D (s 4k 1= 1)Dp(s).
Proof. By Lemma 4.1 the integral becomes

(4.13) ¢(25 + 2k1) DD (s + ky + 1 1) /r\m ;[det Im(52)]*

13, 2) 7 F (R (23 5 G () i d

(2k1,2k2)
with 4 € P2 1(Z)\Sp(2,Z).
Using the fact that

Pro(F)\Sp(1, F) &~ P10(0)\Sp(1, 0) ~ P o(D)\T,
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and remarking that any element of P o(F') can be written as A, times an
element of U(F) for some primitive a, then by Propositions 3.5 and 3.6, we
can write

’7 € L(AO/Y)a

where v € P o(I')\I.
With p, as in Lemma 3.8, let ¢ € P ¢(Q) N P,1(Q) be the matrix

o o= O

> (1 ( B*(vz2+7723) B(yz2 — " 23) ))
462\ B(yze —"23) vz +T23

Therefore (4.13) is equal to

414) g2 1DP e 1)
' /r\gz D) [det(Im(pai(Aay)e(2)))]* 1(Pai(Aay), 1(2)) M
« vy
- fs (a2722 + (a7)27723) W(y2y3)2kl’2d:‘ﬁ a3,

where « ranges over the primitive elements of F*, and v is in P; O(F)\F

Since f(pai(Aa?), 1(2)) = (7, 22)p(17 25), and det(Im(pai(Aay)i(2))) =
y2y3, by ‘unwinding’ as usual, we note that for fixed « the mtegral in (4.14)

is now

/P g £ (a?20 + (a7)?z3) 5(((2)kk11,2klz2))G( ) (y2ys) T2 ~2dz dy.
1,0
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From the Fourier expansions of f; and G, and summing over «, the Rankin
method shows that the integral becomes

x (2 2 (0,k1—k2) ~( =\ 7~ s4+2k1—2 3~
/Ri/m [/RQ/é—l Za:fs (%22 4 (a7)"23) Sop, op,y G(2)AE | (y2y3)" " 7 dy

:/ (vol( RQ/(S / Z na2 kl_l(na2)k1_k2
R2 /U+

k1 ! kl k2
Z Pa(4mn)” Z Qu(dma®n)~ P (yiyays) 202y Ay P

- (y1 + oy + (a7 ) yg)1 21728 oxp(—2mn(y; + o’y + (a7)%y3))
- Gok.s(ny1 + nays + n(a”)?ys)dys di.

Replacing 31 by v1/7, y2 by ya/na?, and y3 by y3/n(a”™)?, the right side is
simplified to become

1/2 Z na2 )k:l—kgnl—l—kg(nN(a)Q)l—s—le
aUt,n
k1—1
— S+2k1 2
: Z Pa(4m)~ Z Qp(4m)” " (yryans)
s P+ + ys)l 21 =2 eXp(—Qm(yl +yo +y3))

- Gok,s(ny1 + y2 + y3)dy1 dyo dys,

Substituting in the appropriate expressions provides the required result. [

5. The Euler product.

Before determining the Euler factors of L(f ® G,s), we first extend the
notion of primitive elements to ideals.

Definition 5.1. For 7 an ideal of F, write 7 as a product of prime ideals:
T = [ pi™pi™. Let vz = [[;(pipr)™@(m) and let J = Zvz. We will call
the ideal J primitive.

Note that there is a one-to-one correspondence between primitive elements
of F' modulo U and the primitive ideals. Defining the Fourier coefficients
of G(Z) on integral ideals (£) by b((€)) = b(€)E8 ™™ we may now rewrite
the Dirichlet series

Dyc(s) = Y a(m)b(n(a?))((a®)"n! = (nN((a))?)' 721,
(@)

where («) ranges over the primitive ideals of F'.
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Keeping the same notation as above, for each prime number p, define oy,
and «j, by

1—a(P)X +p*1X% = (1 — 0, X)(1 - o, X).
For each prime ideal p of F', define 3, and 6{3 by
1—b(p)X + NpFthe-lx? = (1 - 8,X)(1 - B, X).
Recall that

a(p™) = (a1 — )" ) (0 — ),

and similarly for b(p™). Also, the Fourier coefficients are weakly multiplica-
tive.
Now for V =p~% and v = p"1 %2~ put L(f ® G,s) = Hp Ly(s), where

(1 —apﬁpV)(l—apﬁ;V)(l—a;ﬁpV) ifp=p
X(1 = o, B, V)(1 — azv?V?)
x(1 - a)v?V?)

(1 - O‘P/ﬁmﬁpzv)(l - O‘pﬁ{glﬁpgv) if p=pip2
X (1= apBp, By, V) (1 — apBy, By, V)
x(1 - Oééyﬂmﬁsz)(l - a;/nﬂy/nﬂpzv)
x (1 = ap,Bp, By, V) (1 — a8y, By, V)

(5.1) Ly(s)™ =

(1— pB2V)(1 — B °V)(1 — ol B2V) if p = p.
(1= ahB°V)(1 — apoV)
x(1 = auV)

\

Note that the above provides an explicit description of the Euler factors
even at the ramified primes.

Theorem 5.2. The Dirichlet series
¢(25 + 2k1) D (s + by + 1 — 1) Dy 6(s)
s equal to
C(25+2k1) " 'C(4s + 4k — 2) 'L(fF @ G, s + 2k + ko + 1 — 2)
(first for Re (s) sufficiently large, then by analytic continuation).

Proof. The proof uses the fact that the Dirichlet series D;Q)(s +k+1-1)
has an Euler product with p-factor

(1 +p1—23—2k1)
(1 _ alz)p2—2s—2k1—2l)(1 _ a;2p2—23—2k1—2l)’
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which can be computed using the previous remarks in this section regarding
the Fourier coefficients of f. The theorem will then follow from this factor-
ization and the fact that the Dirichlet series D (s) has an Euler product
with p-factor

(1 o p1—25—2k1)(1 o a2p2—23—4k1—2l)(1 —d 2p2—23—4k1—2l)
D p

X Lp(8+2k1+k2+l—2),

where Ly(s) is defined by (5.1) above.

We will prove the equality by investigating each p-factor of the Euler
product separately. By the weak multiplicativity of the Fourier coefficients,
we can write

Dya(s) = [ Prels)

where the precise description of D¢ g(s), depends on whether p is inert,
split, or ramified. Each case will be handled separately.

Case 1. p is inert. Since p =p, a = 1, and N(p) = p?, so

Dya(s)p =Y a(")b(pm)V"

n

where V = p2=s=2k1—hk2—l
an+1 — o n+1 ;H—l _ arntl
D ,G(S) — yn. P p . p
ol =2 W=y B
= (0~ a) (B — )"
(oo )
-V 1=pBV  1—-a,BV  1—-0a,8,V

= (ap — 04;3)_1
ap(l — B V) (1 = o, B, V) — a(1 = apBp V(1 — apB,V)
' < (1= apBpV)(1 = apByV)(1 — ), V)(1 — B V) )
1-— apoz;ﬂpﬁ,’gVQ
(1= apBpV)(1 = apByV)(1 — a5, V)(1 — B V)
1 — pl=2s—2k1
(1= apBpV)(1 = apBV)(1 = 0B V)(1 = 0, B V)

Case 2. p is split. In this case, p = p1p2, N(p1) = N(p2) = p, and since («)
is primitive, either p; or ps can divide («), not both. Then

Dyc(s)p =y a(p™)b(pi™™) b(py > )N X2

n,e,V
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where X = pl=5=2M1 N = p/*k2=1 and inf(e, v) = 0. We can write

an+1 o n+1
_ - +2e+42 P P
meb—ii@v“w T T
n,e,v p P
ﬂn+2€+1 ,3/ n+2e+1 ﬁn+2u+1 ﬁ, n+2v+1
)
ﬂ p1 ﬁpl 5 p2 ﬁm

and this is the case Garrett considers ([G1]), obtaining the required result.

Case 3. p is ramified. Here we consider p = p?, N(p) = p, and the two
sums below correspond to the cases where p J (a) and p | (a). Then

Dyc(s)p =Y a(p")b(p>) V" + Z bR VX

n

where V = p2—s—2ki—ka—l and X = p2f2sf3k1*k2

an+1 — o n+1 62n+1 ﬁ/ 2n+1
Dm@MZESGm'p ;

Qp — Qp B 613

n

«
+ X Vn . _bp P
En: ( ap — Bp — By
Dyc(s)y = (ap — o) (B = By) "
T _ahs B s e
L—BV  1-aBV 1=V 1-alB?V

s oy _ oy’ _ B n ap(By)°
L=V 1- B’V 1—a,BV  1-al B’V

ntl _ o/ n+1 ﬁ2n+3 ﬁ/ 2n+3>

=By — ﬂ;’a)fl

' K (B + X1 — at B2V)(1 — a3,V >
(1= apBV)(1 — By °V)(1 — @, B2V)(1 — 0, 34 °V))

_( (By + X8, (1 — 0pB2V) (1 — 03 °V) )
(1= 0pB2V)(1 — o B°V) (1 — aly BEV) (1 — ay 3,%V)
B 1 + applfsfklfl(l _ p172572k1)

(- BV (L — B V) (1 — afB2V) (1 — aly(3y)°V)

1-25—2k; )

app' M (1 —p —p

(1= apBV)(1 — apBy°V)(1 — e BRV) (1 — o (B5)*V)

2—4s—4kq
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(1 _ p172572k1)(1 4 applfsfklfl)(l 4 a;plfsfklfl)
(1= opB3V)(1 = B V)(1 = a V) (1 = e (8,)°V)
Comparing the above expressions for Dy (s), with the definition of Ly (s +

2k1 4 ko + 1 — 2) in (5.1), where v = pF1tk2=1l and V' = p?=s=2k—h2—l e
obtain the desired equality. O

The following results, which determine the functional equation for the
triple-product L-function, follow from the calculations of Sections 4 and 5,
and the combinatorial techniques of Garrett and Orloff ([G1], [BOJ]).

Proposition 5.3. The function ny, ,(s) defined by Equation (4.11) is com-
puted to be

Moy kgt (8) = (—1)F126—43=10k1 7 3—s—dky D/
T(s+2k1 —ka—DI(s+2ky — 1)I(s+ 2k + k2 — 1 — 1)
. (F(s+2k:1+l—k2—1)F(s+2k1+k2+l—2))
['(2s + 4k — 2)T'(s + 2k1)T'(s) '
Theorem 5.4. For Re(s) sufficiently large,

/ / E3(121(Z, 23); 2k1, 3)5§f_lf(zl)
&2 JSL2.2)\6

’ 5((3}:?72;]3)G(2)(y1y2y3)2k1*2dx1 dyy dz dy

= L(f ® G, s+ 2ky + kg + 1 — 2)(—1)F1207 47100 gd=s—din
- Dp2¢(2s + 2k1) 71 (2s + 4k — 2) 71
T(s+2k; — ko — DI (s + 2k — D)T(s +2ky + kg — 1 — 1)
T(s+2k1+1—ko— 1) (s+ 2k + k2 +1—2)
T(s) ' (s + 2k1) 7 'T(2s + 4k — 2)7!

where z; = x; +y; as usual. Hence, L(f ® G,s) has a meromorphic con-
tinuation to all of C; the above identity holds away from the poles of the
Eisenstein series. Under the transformation s — 2k + 21 + 2ko — 2 — s,

(2m) " BT(s)T(s — 2k1 4+ D)T(s — 21 + 1)D(s — 2ky + 1) L(f ® G, 5)
is multiplied by (—1).

The special values result proceeds as follows. Let Q(f, G) denote the field
generated over Q by the Fourier coefficients of f and G.

Theorem 5.5. With f and G as above, ko +1 > ki, and with the usual
Petersson inner products, for 2k < n < 2ko + 21 — 2, let

A(n; f,G) = g2+ 2ke=3=np 12(r 1\ =G YTLL(f © G, n).
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Then A(n; f,G) € Q(f,G). Moreover, if o € Aut(C), then
A(n; f,G) = A(n; f7,G7),

where the action of the Galois group on modular forms is the action on
Fourier coefficients.

Note that we must restrict the weights in Theorem 5.5, for if ko 4+ 1 < kq,
gamma factors in Theorem 5.4 vanish at the critical points. The proof
is similar to those of Garrett ([G1]) and Orloff ([BO]) and will not be
reproduced here.

6. Renormalization.

In this section, where we obtain a product of Asai L-functions from the
triple product L-function L(f ® G, s), we will consider the case where the
normalized holomorphic cuspidal eigenform f of weight 2/ is replaced by the
holomorphic Eisenstein series of weight 2[ > 4 given by

o0

(6.1) 5@y_§i;$£ > (mz+n)?

m,n=—0oo

<mh¢mm

B z
=24 ZUzz 1
o0
= Z a(n)e(nz)
n=0
where B,, is the m-th Bernoulli number, and

2l-1
oa-1(n) = > d

0<d|n
Then we may write
0o k1—1
5];;_l5(z) = Z a(n) Z Py (4my) Ak 4e(nz)
n=0 A=0
_ By

== —— Py, —i(4my)~ —k1+

k1—1
+ ZPA 47Ty —A kl - AZU% 1 27rmz.

6.1. The Petersson 1nner product. Let f and g be two level one holo-
morphic elliptic modular forms of weight k. Recall that if at least one of
them is a cusp form, we can define the Petersson inner product by

(f.9)= |  f(2)g(z)y" *dzdy.

e
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Rankin showed that the inner product is in fact equal to

oo
(6.2) (£.9) = % (= D)I(4m) FRes, (Z bn> ,
n=1

where a,, and b, are the Fourier coefficients of f and g respectively ([R]). If
neither f nor g is a cusp form, then the integral diverges. However we can
renormalize the integrand f(z)g(z)y*, following Zagier’s ideas ([Z]). Note
that the integrand is of slow growth, so by subtracting an appropriate poly-
nomial piece, Zagier defines the corresponding Rankin-Selberg transform
and proves analogous results to the classical case where the integrand is of
rapid decay. In particular, he relates this renormalized integral to a residue
of the Rankin-Selberg transform. Performing this computation in the situa-
tion above, Zagier shows that after renormalization, (6.2) still holds. Hence
we may define (f, g) as its renormalized integral, thus extending the Peters-
son inner product to the space of all modular forms. The technique will be
made explicit in the proof of the following lemma, where R.N. is used to
denote a renormalized integral.

Lemma 6.1. Let F1(z;2k1,s) and E(z) be the Fisenstein series defined by
Equations (2.1) and (6.1), respectively. Then, for Re (s) sufficiently large,

(F1(2;2k1, 5), 001 71€(2))

= R.N. Ey(z;2k;, s)égfflg(z)y%lddx dy
SL(2,2)\$
= 0.

Proof. The integrand is of slow growth, that is, we can write
H(z) = E1(z2k1, )05 ' E(2)y™" = o(y) + Oy™)  (VN) as y — oo

where ¢ is a function of the form

m

C; ) )
oly) =Dy log™y (¢, € C,0 < n; € 7).
i=1

Using the Fourier expansion of H
H(z) = 3 euly)e®™™,
n=0
define the Rankin-Selberg transform of H by
RO = [l = o)y (Re(t) > 0)

Then as in [Z], we can compute

(B (2;2k1,5), 00 '€(2)) = 2Resy—1 R*(H; t),
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where R*(H;t) = ¢*(2t)R(H;t) := m'T'(¢)C(2t) R(H; t).
The explicit calculation proceeds as follows. Write the Fourier expansion
of Fy(z;2ky,s) as

E1(z; 2k, s)

\/771“ (28 + 22]6‘1 — 1) r (28 —Ele) 4(28 + 2k — 1)
y2k’1+s—1(_1)/€1r(5)f‘(5 + 2k1)C(2s + 2ky)

:yS+

92k1 s+2k1 220:1(02k1+28_1(n)n—SSQwinzw(47rny; 2k + s, 8))
(—1)MT(s + 2k1)C(25 + 2k1)

s Zzo:l(02k1+23_1(n)n_s_%le%m?w(élﬂny; s,2k1 + )

+ y2k122k1 (_1)k11"(s)<'(28 + le) )
where
(6.3) w(z;a, B) =T(8)~"2" /Oo e (u+ 1) du.
0

2k1

Multiplying the expansions for Ej(z;2k1,s) and 6]5;_l5(z)y , we find

that

_ B _
—Z Py, _i(47y) k1+lys+2k1 _ %Pkl_l(émy) k1+l

(=) T(s)T(s + 2k1)C (25 + 2k1)

—S

2k ki1

y —
(1) (s + 2k1)C(25 + 2k1) AEZ:O Py (4my) A

o0

. Z(Ugl,l(n)agkl+gs,1(n)nkl*l*A*Se*M”yw(élﬂny; 2k + s, 5))

n=1

22k1 7Ts+2k1

+

By _ By _
90(2/) _ _gpklfl(élﬂ'y) k1+lys+2k1 o gpklfl(zlﬂ'y) k1+l

JAT (25 + 2 — 1) T (23 22’“1) C(25+2k —1)
(“1)FT(s)D(s + 2k1)C (25 + 2k1) Y

—S
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Therefore

22k1 7.r8+2k‘1 k11

—A_k1—l-A
(—1)klr(8+2k:1)<(25+2k1) AZZ:OPA(ZLTF) n

Z (Uzz 1(n)ook, +2s—1(n)n"*

R(H;t) =

o
/ e~y (dmny; 2k, —|—s,s)y2k1+t_A_2dy>
0

22k rst+2k1 L2k +t+s— DI(t — s)
( 1)k (s + 2k1)C(2s + 2k1) < I'(t) )

><3F2(1 ]{?1—l,—kl—|—l,1—t;2—2k‘1—$—t,1+8—t;1)

Y ou1(n)oaky sos— (m)nFITEH

and we obtain

272 2 2ms D (2 + ¢+ 5 — )T(t — s)
(=DM T (s + 2k1)T(£)C(2s + 2k1 )

><3F2(1—k21—l,—k1+l71—t;2—2k1—8—t,1+8—t;1)

R(H;t) =

X (k1 —l4+t+8)C(l—ki+t—s)C(ki+1+t+s5—1)

X ((—ky —1+t—s+1)C2t)7 !

where 3Fy(a,b,c;d,e;1) denotes the generalized hypergeometric function
with unit argument. Then

R*(H;t) = n'T(t)C(2t)R(H; )
(—1)k127 220252000 (2ky £ + 5 — 1)I(t — 5)
N T(s + 2k1)((2s + 2k1)
cgFy(1—ky — 1, —k1 + 1,1 —t;2—2k; —s—t,1+s—t;1)
bk —l+t+s)C(l—ki+t—s)C(ky+1+t+s—1)
(k1 +t—s+1)
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_(—Dka 222k s D (2 ¢ s — DTt — 5)
(s + 2k1)C(2s + 2k1)
-3F2(1—k1—l,—k1+l,1—t;2—2k‘1—S—t,1+8—t;1)

_F(k1—l;t+s)_1r(l—k1;t—s>_1

-r(k1+l+2t+8_1)_lr<_k1_l+2t_s+1>_l

ki —l+t+s)"(l—ki1+t—s)
ki Hl+t+s—1)C (ki —1l+t—s+1).

Using properties of the I'-function, we can compute that for k&1 = [ (mod 2),

k1+l1

R*(H t) B 2172k1+2lﬂ.k17l+s 21_[—1 fts L l—t+s L
T (s 2k)C2s + 2k) AL T2 J 2 J
J="3"

. T(t —s)T(t+ s+ 2k — 1)
D(t—s+1—k)(t+s+k +1-1)

31—k — 1, —ki + 1,1 —t;2—2k1 —s—t,1+s—1t;1)
Sk — L4t 4 8)C (L =k +t —5)

ki Hl+t+s—DC (k1 —1l+t—s+1).

The computation for the case where k; # [ (mod 2) is similar. Using rela-
tionships between hypergeometric series ([B], p. 18), the above description
of R*(H;t) makes clear the functional equation R*(H;t) = R*(H;1 — t).
Computing the residue at ¢t = 1, we see that for Re(s) significantly large,

(B1(2;2k, 5), 057 €(2)) = 2Resy— R*(H;t) = 0,

as required.

One may also note that certain values of s provide instances where the
inner product is finite and nonzero, due to cancellation of factors introducing
poles. For example, at s = —k; + [, we obtain

(B (2;2k1, —k1 + 1), 00 71E(2)) = 2072 =2p =20 (9] _ 9)1¢ (21 — 1).
O

6.2. The integral representation. We can now extend the previous re-
sults to determine the renormalized integral representation. For the follow-
ing, recall the definitions of the Dirichlet series Dg)(s) and Dg ¢(s) given
by (4.7) and (4.8), respectively. Then Lemma 4.1 has the following analogue:
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Lemma 6.2. Let § be given by (4.9), and let a(n) be the Fourier coefficients
of € defined in (6.1). For w € $), Re(s) sufficiently large, define

k1—1

(6.4) Ex(w) = a(n) 3 Padm)~4nf1 = Ae(n(Re(w))) /oo o2 —2-A
n A=0

0
- (y + Im(w)) ' > exp(—=2mny) ok, s (ny + nlm (w)) dy,

where the coefficients are defined by (4.4) and (4.5). Then, for Z € $2,
zZ€EN,

(6.5) R.N. (/ Es3(12,1(Z, z);2k1,5)5511715(z)y2k1_2d:n dy)
SL(2,2)\

= Fo(Z; 2k, 8)(E1(z; 2k1, 5), 051 71 £(2))
+C(25+2k) D (s + ky +1—1)
Y [det Im(32)]° (3, Z2) M E; (r(72)),
¥
where the sum is over ¥ € Py 1(Z)\Sp(2,7Z).

To see why this is true, let xo, s and p be defined as in (4.10) and (2.2)
respectively, and note that for Z € $),, and g € Sp(n, Z),
det(Im(92))*u(g, Z) 2" = det(Im(2))*Xan, s(1(9, Z)).

Then using the coset decomposition of Proposition 3.2, we have
(6.6)  E3(121(Z,2);2k1,s)
= (detIm(Z))*Im(z )Sme, 1y, Z)p(y, 2))

+ (det Im(Z))*Im(z Z Xoky,s (R(PEL21 (V1) 2,1(Z, 2))),

where in the first sum 4 € P270( )\Sp(2,Z), 0% 1,0(Z)\Sp(1,Z), and
in the second sum 74" € P»1\Sp(2,Z), v € Sp( ) ¢ is defined as in
Proposition 3.1, and for each +/, choose p € P;(Q) such that

p€ia1(7', ') € Sp(3,Z).

The first sum is clearly equal to F5(Z;2k1,s)E1(z;2k1, s), as desired, and
the rest of the lemma follows as before.
Now consider the integral over F\.‘fJQ. If we combine the results of Lem-
mas 6.1 and 6.2, and note that
By((2); 2Ky, 5)6 01 F2) G 3y 52k -2 g = 0,

T2 (2k1 ,2k2)
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then we see the first term on the right-hand side of Equation (6.5) will
contribute nothing. Likewise, if we apply the Rankin method as in the
proof of Proposition 5.4, the term of £ involving a(0) will disappear. Thus
the argument of Proposition 5.4 applies in the case where the cusp form
f(2) is replaced by the Eisenstein series £(z), and yields the corresponding
result:

Proposition 6.3. With notation as above and the Dirichlet series corre-
sponding to (4.7) and (4.8), then for Z = (21, 22) € % and 1(2) = Z,

R.N. (/ / E3(L271(Z, Zl);2k1,$)5§;715(21)
mM$2 JSL2,2)\$
Jo—k N _ o
'5(((2)k11,2k22))G(2)(y1y2y3)2k1 *dxy dy, di dy)
= Tkt (8625 + 2k1) T DEY (s + b + 1= 1) De(s)
for the real part of s sufficiently large.

6.3. The Euler product. Regarding the Euler product computation, the
proof of Theorem 5.2 is still valid. We can compute the roots of the Fuler
p-factor of the L-function attached to £(z) explicitly. Namely,

L& s) = [[I(1—p~)(1 = p~=*# )7,

p

so o =1 and aj, = p?~1. Substituting these values into Equation (5.1), for

V=p° V' =p 521 and v = p?*1=1, we obtain

(1= B,V)(1 = B,V)(1 = B, V)
(1= BV")(1 = v?V2) (1 — v?V"?) if p=rp

(1 - /BPMBPzV)(l - ﬂ;nﬂpzv)(l - ﬂmﬂylnv)
Ly(s)™' = (1= B35, B, V)L = Boy B, V(L = By, B, V') if p = p1po
(1= Bp, B, V) (L = B}, By, V')

(1—B2V)(1 = B,°V)(1 - B2V)
(1-B2V)(1—oV)(1 — V) if p = p2.
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As in [A], the Euler product of Las.i(G,s) has the following form. For
V=p%and v=p"l Laui(G,s) = [1, Ly(s), where

((1-B,V)(1 =B, V)(1 —v?V?) if p=p

(1 - ﬁplﬁpzv)(l - ﬁ)lalﬁ}wv) lfp = p1p2

6.7)  Ly(s)™' =
(6.7) p(8) X (1= Bp, By, V(L = By, By, V)

(1 - B2V)(1—B2V)(1 - V) if p = p.
Thus, we can see that
L(S ® G, S) = LAsai(Gv S)LAsai(G7 s—2l+ 1)'
Hence we have the analogue of Theorem 5.4:

Theorem 6.4. For Re (s) sufficiently large,

R.N. (/ / E3(121(Z, 23); 2/{1,3)W
MN$H2 JSL(2,2)\$
OB G(Z) (yryoys) ™ ~2dan dyy di dg)

= LAsai(Ga s+2k1 +ko+1— 2)LAsai(G7 s+ 2k1 + ko — 1 — 1)
. (_1)k1 26745710]61 7_‘_37574]61

- Dpt/%C(2s + 2k1) (25 4 4k — 2) 7!

T(s+2ky — kg — D)T(s + 2k — 1)D(s + 2k + ko — 1 — 1)
T(s+2k+1—ky— 1D)I(s+2k1 + ko +1—2)
T(s)7I0(s + 2k1)~'0(2s + 4k — 2)7L.

The above identity holds away from the poles of the Fisenstein series.

7. Concluding remarks.

The next logical step is to generalize the above results to the setting of
automorphic representations, in order to be able to derive the desired special
values results. We can investigate Deligne’s conjecture for the critical values
of the product of Asai L-functions, obtained above. Specializing the result
in the Appendix of [BO] to our case, we can determine the critical strip for
the triple product L-function. Given any three positive integers k > 1 > m,
corresponding to the weights of the forms, there are always two cases to
consider, depending on whether

(1) I+m >k, or

(2) I+m < E.
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The special values results of Garrett, Harris, and Orloff that deal with
the triple product L-function attached to cusp forms ([G2], [G1], [GH],
[BOJ), all fall under Case (1) and conform with Deligne’s conjecture ([D]).
However, once we replace the cusp form f with the Eisenstein series £, we
are always in the situation of Case (2). More precisely, suppose our Hilbert
modular form G is of weight (k1, k2), k1 > k2, and k1 = kg (modulo 2). The
Eisenstein series £ will be of weight [ < k1. Set

w="Fk +k+1-3
and
co=ko+1—-1.
Then the critical strip is given by
CSo=lco,. . ,w—co+1]=[ka+1-1,... Kk —1].

The critical strips corresponding to the Asai L-functions appearing in The-
orem 6.4 will be

CSlz[kg,...,kl—l] and CSQI[k2+l—1,...,k1+l—2].
Therefore
CSy=0851nNCS,,

as one would expect.

Let w signify the central character for G, and let (G,G)p denote the
Petersson inner product normalized by an appropriate factor, as in the Ap-
pendix to [BOJ]. Then by Deligne’s conjecture, for two primitive Dirich-
let characters & and x and the Gauss sum g, we would expect that for
neCSy=lka+1—-1,... k —1],

LAsai (G7 n, g)LAsai(G7 n—1 + 1) X)
(2mi 2 D= g (wEx)?) DY (G G

In the situation of Case (2), Harris and Kudla ([HK]) have provided the
only general special value result, for the center of the critical strip. Ex-
tending their results to the other integers in the critical strip and applying
Shimura’s methods ([S2], [S3]) should then lead to algebraicity results for

ratios of the Asai L-function at different integers, twisted by Hecke charac-
ters.

€Q(G,E).
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