Vol. 203, No. 2, 2002

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On the probability of generating finite groups with a unique minimal normal subgroup

Andrea Lucchini and Fiorenza Morini

Vol. 203 (2002), No. 2, 429–440
Abstract

Assume that a finite group G has a unique minimal normal subgroup, say N. We prove that if the order of N is large enough then the following is true: If d randomly chosen elements generate G modulo N, then these elements almost certainly generate G itself.

Milestones
Published: 1 April 2002
Authors
Andrea Lucchini
Dipartimento di Matematica
Università di Brescia
Via Valotti 9, 25133 Brescia, Italy
Fiorenza Morini
Dipartimento di Matematica
Università di Brescia
Via Valotti 9, 25133 Brescia, Italy