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We give eight new examples of icosahedral Galois represen-
tations that satisfy Artin’s conjecture on holomorphicity of
their L-function. We give in detail one example of an icosahe-
dral representation of conductor 1376 = 25 · 43 that satisfies
Artin’s conjecture. We briefly explain the computations be-
hind seven additional examples of conductors 2416 = 24 · 151,
3184 = 24 · 199, 3556 = 22 · 7 · 127, 3756 = 22 · 3 · 313,
4108 = 22 · 13 · 79, 4288 = 26 · 67, and 5373 = 33 · 199. We
also generalize a result of Sturm on computing congruences
between eigenforms.

Introduction.

Consider a continuous irreducible Galois representation

ρ : Gal(Q/Q) → GLn(C)

with n > 1. Inspired by his reciprocity law, Artin conjectured in [1] that
L(ρ, s) has an analytic continuation to the whole complex plane. Many of
the known cases of this conjecture were obtained by proving the apparently
stronger assertion that ρ is automorphic, in the sense that the L-function of ρ
is equal to the L-function of a certain automorphic representation (whose
L-function is known to have analytic continuation). In the special case
where n = 2 and ρ is in addition assumed to be odd, the automorphic
representation in question should be the one associated to a classical weight 1
modular eigenform, and in fact there is conjectured to be a bijection between
such ρ and the set of all weight 1 cuspidal newforms, which should preserve
L-functions. It is this bijection that we are concerned with in this paper, so
assume for the rest of the paper that n = 2 and ρ is odd.

In this special case, the construction of [7] shows how to construct a
continuous irreducible odd 2-dimensional representation from a weight 1
newform, and the problem is to go the other way. Say that a representation
is modular if it arises in this way.

If the image of ρ is solvable, then ρ is known to be modular [11, 18];
if the image is not solvable, then Im(ρ) in PGL2(C) is isomorphic to the
alternating group A5, and the modularity of ρ is, in general, unknown. We
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call such a 2-dimensional representation an “icosahedral representation”.
The published literature contains only eight examples (up to twist) of odd
icosahedral Galois representations that are known to satisfy Artin’s conjec-
ture: One of conductor 800 = 25 · 52 (see [3]), and seven of conductors:
2083, 22 · 487, 22 · 751, 22 · 887, 22 · 919, 25 · 73, and 25 · 193 (see [8]).

After the first draft of this paper was written, the preprint [4] appeared,
which contains a general theorem that yields infinitely many (up to twist)
modular icosahedral representations. However, we feel that our work, al-
though much less powerful, is still of some worth, because it gives an effec-
tive computational approach to proving that certain mod 5 representations
are modular, without computing any spaces of weight 1 forms or using ef-
fective versions of the Chebotarëv density theorem. We also note that the
main theorem of [4] does not apply to any of the examples considered in the
present paper. Very recently, the preprint [17] appeared, which gives new
local conditions under which an icosahedral representation can be proved to
be modular. In particular, [17] also proves that the first three examples in
the present paper, of conductors 1376, 2416, 3184, are modular; these corre-
spond to the first, third, and fourth equations at the end of [17]. However,
[17] does not apply to our remaining five examples. Finally, we note that
this paper also contains a result (Corollary 1.7) generalizing the main results
of [16], which makes explicit computations with mod p modular forms much
more practical.

Let ρ be a continuous odd icosahedral representation. We briefly sum-
marise our approach for verifying modularity of ρ. As all the representations
we consider are unramified at 5, one can use the main theorem of [5] to re-
duce the problem to showing that the mod 5 reduction of ρ is modular. We
do this by using a computer to find a candidate mod 5 modular form at
weight 5 and then, using the table of icosahedral extensions of Q in [8] and
what we know about the 5-adic representation attached to our candidate
form, we deduce that the mod 5 representation attached to our candidate
form must be the reduction of ρ. In particular, this paper gives a computa-
tional method for checking the modularity of certain mod 5 representations
whose conductors are not too large.

We now explain something about a problematic point in this approach,
which is to verify that a given modular form which has been obtained by a
computation actually gives rise to an explicit mod 5 representation which
has been given by another computation. In each of our examples it is easy
to compute a few Hecke operators and be morally convinced that this is the
case; it is far more difficult to prove this. Effective variants of the Chebo-
tarëv density theorem require that we check vastly more traces of Frobenius
than is practical. Our approach was as follows. Let f be one of the forms
that we computed. We firstly used the compatibility of the Local and Global
Langlands correspondences for GL2 and some twisting tricks to deduce that
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the kernel of the projective mod 5 representation associated to f must cor-
respond to an A5-extension of Q. We then used the theory of companion
forms and a careful local analysis of the representations associated to the
forms to deduce strong local results about these A5-extensions. Finally we
used Table 2 of [8] to prove that in each case the A5-extension was precisely
the one we wanted it to be.

We carried out this program for icosahedral representations of the fol-
lowing conductors: 1376 = 25 · 43, 2416 = 24 · 151, 3184 = 24 · 199,
3556 = 22 · 7 · 127, 3756 = 22 · 3 · 313, 4108 = 22 · 13 · 79, 4288 = 26 · 67,
and 5373 = 33 · 199.

This paper is divided into three sections. In Section 1, we give in detail
our proof that the icosahedral representation of minimal conductor 1376
satisfies Artin’s conjecture. The subsections of Section 1 follow the plan
outlined above. Section 2 summarizes the data necessary to deduce Artin’s
conjecture for all eight of our examples. Finally, Section 3 contains a brief
review of modular symbols, and contains some tables of running times.

1. Modularity of an icosahedral representation of
conductor 1376 = 25 · 43.

In this section we prove the following theorem.

Theorem 1.1. The icosahedral representations whose corresponding icosa-
hedral extension is the splitting field of x5 + 2x4 + 6x3 + 8x2 + 10x + 8 are
modular.

Let K be the splitting field of h = x5+2x4+6x3+8x2+10x+8. The Galois
group of K is A5, so we obtain a homomorphism GQ → A5 ⊂ PGL2(C);
let ρ : GQ → GL2(C) be a minimal lift, minimal in the sense that the
Artin conductor of ρ is minimal. By Table A5 of [3], the conductor of ρ is
N = 1376 = 25 · 43. Since h ≡ (x − 1)(x2 − x + 1)(x2 − x + 2) (mod 5),
and disc(h) is coprime to 5, any Frobenius element at 5 in Gal(K/Q) has
order 2.

We use the notation of Tables 3.1 and 3.2 of [3, p. 46], which gives a
complete classification of the way that ramified primes can behave in such
representations. In our case the ramified primes are 2 and 43. From Table
3.2 of [3] we see that the type of ρ at 2 is 17 and the type at 43 is 2. The
level N Dirichlet character ε̃ = det(ρ) factors as ε̃ = ε̃2 · ε̃43 where ε̃2 is a
character of conductor dividing 25 and ε̃43 is a character of conductor 43.
We can work out these characters explicitly as we know the type of ρ at 2
and 43—indeed, there is a character associated to each type in Buhler’s
table, which unfortunately is not tabulated. An easy local computation
shows that ε̃43 has order 3, and fortunately Buhler’s level 800 example also
was of type 17 at 2 (see the first line of [3, Table 3.2]), hence by [3, p. 80]
ε̃2 is the unique character of conductor 4 and order 2. We think of these
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characters now has having values in Q(ζ3) ⊆ Q, where ζ3 is a primitive cube
root of unity.

If ρ is modular, then there is a weight 1 newform f? ∈ S1(N, ε̃;Q) that
gives rise to ρ. Suppose for the moment that ρ is modular, so that f?

exists. The Eisenstein series E4 of level 1 and weight 4 is congruent to 1
modulo 5, so E4 · f? ∈ S5(N, ε̃;Q) reduces modulo a prime above 5 to a
form which is an eigenform for all Hecke operators Tq for q 6= 5 prime,
with the same eigenvalues mod 5 as f?, and hence is a mod 5 weight 5
eigenform giving rise to the mod 5 reduction of ρ. Using a computer, we
can search for such a mod 5 eigenform. In practice one computes a Z[ζ3]-
lattice in S5(N, ε̃;Q(ζ3)) and then reduces the lattice modulo 5; we refer
to the resulting quotient space as S5(N, ε;F25), abusing notation slightly,
where ε denotes the reduction of ε̃. (Similarly we write ε2 and ε43 to be the
reductions of ε̃2 and ε̃43.) We search for an eigenform f in this mod 5 space
of modular forms, whose existence is assured if we believe Artin’s conjecture.

Instead of multiplying f? by E4, we could have multiplied it by an ap-
propriate Eisenstein series of weight 1 and level 5. We used E4 because the
dimension of S5(N, ε;F5) is 696 whereas the dimension of the relevant space
S2(5 ·N, ε43) of weight 2 cusp forms is 1040.

1.1. Searching for the newform f . Using modular symbols we compute
the space S5(1376, ε;F25). By computing the kernels of various Hecke oper-
ators on this space, we find f . In the following computations, we represent
nonzero elements of F25 as powers of a generator α of F∗

25, which satisfies

α2 + 4α + 2 = 0.

If 2 is the least common multiple of the degrees of the factors of the
polynomial h modulo an unramified prime p, then Frobp ∈ Gal(K/Q) has
order 2, hence trace 0. The first three such p are 19, 31, 97. We computed the
mod 5 reduction S5(1376, ε;F25) = S5(1376, ε;F25)+ of the Z5[ζ3]-lattice of
modular symbols of level 1376 and character ε, where complex conjugation
acts as +1. The intersection V of the kernels of T19, T31, and T97 inside
S5(1376, ε;F25)+ has dimension 8, and no doubt all the eigenforms in this
space give rise to ρ or one of its twists. One of the eigenvalues of T3 on this
space is α16, and the kernel V1 of T3 − α16 is 2-dimensional over F25. The
Hecke operator T5 acted as a diagonalizable matrix on V1, with eigenvalues
α10 and α22, so the corresponding two systems of eigenvalues must corre-
spond to mod 5 modular eigenforms, and furthermore we must have found
all mod 5 modular eigenforms

∑
anqn of this level, weight and character,

such that a19 = a31 = a97 = 0 and a3 = α16.

Remark 1.2. The careful reader might wonder how we know that the sys-
tems of mod 5 eigenvalues really do correspond to mod 5 modular forms, and
not to perhaps some strange mod 5 torsion in the space of modular symbols.
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Table 1. Eigenvalues of f .

2 0
3 α16

5 α22

7 α14

11 4
13 α14

17 α14

19 0
23 α16

29 α8

31 0
37 α10

41 1
43 α10

47 1
53 α22

59 4
61 α14

67 α4

71 α20

73 α2

79 α20

83 α4

89 α10

97 0
101 α8

103 α14

107 0
109 α10

113 2
127 0
131 2

137 0
139 α22

149 α4

151 1
157 α14

163 0
167 α22

173 4
179 α2

181 α14

191 α10

193 4
197 0
199 3
211 0
223 0

227 α10

229 0
233 α14

239 0
241 α2

251 α2

257 3
263 α16

269 2
271 α8

277 0
281 α16

283 0
293 3
307 α4

311 α22

313 0
317 0
331 α14

337 0
347 α16

349 α4

353 0
359 0
367 α22

373 0
379 3
383 3
389 1
397 α16

401 0
409 2

419 3
421 α20

431 4
433 α4

439 α20

443 0
449 0
457 0
461 0
463 α10

467 0
479 0
487 α8

491 α2

499 α20

503 α2

509 α8

521 α10

523 α14

541 α20

547 α22

557 3
563 1
569 α16

571 α22

577 α14

587 α20

593 0
599 α22

601 0
607 α16

613 2

However, we eliminated this possibility by computing the dimension of the
full space of mod 5 modular symbols where complex conjugation acts as +1,
and checking that it equals 696, the dimension of S5(1376, ε̃,C), which we
computed using the formula in [6].

Let f be the eigenform in V1 that satisfies a5 = α22; the q-expansion of f
begins

f = q + α16q3 + α22q5 + α14q7 + α14q9 + 4q11 + · · · .

Further eigenvalues are given in Table 1. The primes p in the table such
that ap = 0 are exactly those predicted by considering the splitting behavior
of h. This is strong evidence that ρ is modular, and also that our modular
symbols algorithms have been correctly implemented.

1.2. Twisting into GL(2,F5). Although there is a representation ρf :
GQ → GL(2,F25) attached to the weight 5 mod 5 eigenform f , it is dif-
ficult to say anything about its image without further work. We use a trick
to show that the image of ρf is small. Firstly, for a character χ : GQ → F5,
let χ̃ denote its Teichmüller lift to Q5. Consider the Z-algebra of Hecke
operators acting on S5(N, ε̃;Q5). By choosing a minimal prime under the
maximal ideal of this algebra corresponding to f , we see that there is a
characteristic 0 eigenform f̃ ∈ S5(N, ε̃;Q5) lifting f .

The component ε43 of ε at 43 is represented by the map sending (1, 3) ∈
(Z/25Z)∗ × (Z/43Z)∗ to 2α + 1 and sending the subgroup (Z/25Z)∗ × {1}
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Table 2. Eigenvalues of g = f ⊗ ε43.

2 ∗
3 1
5 ∗
7 2

11 4
13 2
17 2
19 0
23 1
29 1
31 0
37 3
41 1
43 ∗
47 1
53 2

59 4
61 2
67 4
71 4
73 3
79 4
83 4
89 3
97 0

101 1
103 2
107 0
109 3
113 2
127 0
131 2

137 0
139 2
149 4
151 1
157 2
163 0
167 2
173 4
179 3
181 2
191 3
193 4
197 0
199 3
211 0
223 0

227 3
229 0
233 2
239 0
241 3
251 3
257 3
263 1
269 2
271 1
277 0
281 1
283 0
293 3
307 4
311 2

313 0
317 0
331 2
337 0
347 1
349 4
353 0
359 0
367 2
373 0
379 3
383 3
389 1
397 1
401 0
409 2

419 3
421 4
431 4
433 4
439 4
443 0
449 0
457 0
461 0
463 3
467 0
479 0
487 1
491 3
499 4
503 3

509 1
521 3
523 2
541 4
547 2
557 3
563 1
569 1
571 2
577 2
587 4
593 0
599 2
601 0
607 1
613 2

617 0
619 4
631 4
641 4
643 1
647 4
653 1
659 2
661 2
673 1
677 4
683 0
691 1
701 2
709 4
719 4

to 1. Note that 3 is a primitive root mod 43, and that 2α+1 has order 3. The
complementary character ε2 is defined by ε = ε2 · ε43. The twist g̃ = f̃ ⊗ ε̃43

is, by [14, Prop. 3.64], an eigenform in S5(43N, ε̃2;Q5), and its reduction
is a form g ∈ S5(43N, ε2;F25). The eigenvalues ap(g) = ap(f)ε43(p), for the
first few p - 5N , are given in Table 2.

Proposition 1.3. Let g = f ⊗ ε43. Then ap(g) ∈ F5 for all p - 5N .

Proof. Consider an eigenform f̃ ∈ S5(N, ε̃;Q5) lifting f as above. Associ-
ated to f̃ there is an automorphic representation π = ⊗′

vπv of GL(2,A),
where A is the adèle ring of Q. Because 43 || N , and 43 divides the conduc-
tor of ε, we see that the local component π43 of π at 43 must be ramified
principal series. By the compatibility of the local and global Langlands
correspondence, proved by Deligne, Langlands and Carayol, we see that
ρ ef |D43 ∼

(
Ψ1 0
0 Ψ2

)
with, without loss of generality, Ψ2 unramified. We have

(Ψ1 ·Ψ2)|I43 = ε̃|I43 = ε̃43, therefore, ρ ef |I43 ∼ ( eε43 0
0 1

)
.

Now twist f̃ by ε̃−1
43 ; we find that ρ ef⊗eε−1

43
|I43 ∼

(
1 0
0 eε−1

43

)
. In particular,

there is an eigenform f̃ ′ ∈ S5(N, ε̃2ε̃
−1
43 ;Q5) whose associated Galois rep-

resentation is the twist by ε̃−1
43 of that of f̃ (recall that N = 1376 so 43

divides N exactly once). Let f ′ denote the mod 5 reduction of f̃ ′. Then one
checks easily that f ′ ∈ S5(N, ε2ε

−1
43 ;F25) = S5(N, ε5;F25).
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For all primes p - 5N we have ap(f ′) = ε43(p)−1ap(f). In particular, we
have ap(f ′) = 0 for p = 19, 31. Also, ε43(3) = α8 and ε43(5) = α8, so

a3(f ′) = α16/α8 = α8 = (α16)5

a5(f ′) = α22/α8 = α14 = (α22)5.

Now if σ is the nontrivial automorphism of F25, then σ(f ′) and f both lie in
S5(1376, ε;F25) and have the same ap for p = 3, 5, 19, 31, so they are equal
because we found f by computing the unique eigenform with given ap for
p = 3, 5, 19, 31. So g = f ⊗ ε43 = σ(f) ⊗ ε2

43. Thus for all p - 5N , we see
that ap(g) = ap(f)5ε2

43 has fifth power ap(g)5 = ap(f)25ε10
43 = ap(f)ε43 =

ap(g). �

1.3. Proof that ρg is unramified at 5. We begin with a generalization
of [16]. Let M > 4 be an integer, and let h =

∑
n≥1 cnqn be a normalized

cuspidal eigenform of some weight k ≥ 1, level M and character χ, defined
over some field of characteristic not dividing M . Even though the base field
might not have characteristic zero, we may still define the conductor of χ to
be the smallest divisor f of M such that χ factors through (Z/fZ)×. Let I
be a set of primes, with the property that for all p in I, one of the following
conditions hold:

(i) p divides M but p does not divide M/ cond(χ), or
(ii) p divides M exactly once, and h is p-new, in the sense that there is

no eigenform h′ of level M/p such that the Tn-eigenvalues of h and h′ agree
for all n prime to p.

Let C denote the orbit of the cusp ∞ in X1(M) under the action of the
group generated by wp for p ∈ I, and the Diamond operators 〈d〉M . The
orbit of ∞ under the Diamond operators has size φ(M)/2, and each wp

increases the size of the orbit by a factor of 2. In this situation, we have:

Lemma 1.4. The first t terms of the q-expansion of h at any cusp in C are
determined by M , k, χ, cp for p in I, and cn for 1 ≤ n ≤ t.

Remark 1.5. Our proof is just a translation of Corollary 4.6.18 of [13] into
the language of moduli problems (Miyake’s argument technically is only valid
over the complex numbers).

Proof. If J ⊆ I is any subset, and wJ denotes the product of wp for p ∈ J ,
then h|wJ is an eigenform for all the Diamond operators, and this ob-
servation reduces the proof of the lemma to showing that for p ∈ I, if
h|wp =

∑
m dmqm, then dj for 1 ≤ j ≤ n and dq for all q ∈ I are determined

by M , k, χ, p, cj for 1 ≤ j ≤ n and cq for all q ∈ I.
We first deal with primes p of the form (i). Say M = pmR, where R

is prime to p. Thinking of h as a rule for attaching k-fold differentials to
elliptic curves equipped with points of order pm and R, we have by definition
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that

h(Gm/qZ, ζ, ζR) =
(∑

cnqn
)

(dt/t)k,

where ζ = ζpm and ζR are fixed pmth and Rth roots of unity in Gm which
correspond to the cusp ∞, and dt/t is the canonical differential on the Tate
curve Gm/qZ. We normalize things such that

h(Gm/qpmZ, q, ζR) =
(∑

dnqn
)

(dt/t)k,

and remark that because h is an eigenvector for the Diamond operators,
we do not have to worry too much about whether this corresponds to the
standard normalization of the wp-operator.

We recall that the operator pUp in this setting can be thought of as being
defined by the rule:

(pUph)(E,P, Q) =
∑
C

π∗h(E/C,P ,Q),

where C runs through the subgroups of E of order p which have trivial
intersection with 〈P 〉, and π denotes the canonical projection E → E/C.
We see that

(pcp)m
(∑

dnqn
)

(dt/t)k = (pmUpmh)(Gm/qpmZ, q, ζR)

=
pm−1∑
c=0

π∗h(Gm/〈qpm
, ζqc〉, q, ζR),

where π denotes the canonical projection from Gm/〈qpm〉 to the appropriate
quotient. This last sum can be written as a double sum

∑
c∈(Z/pmZ)×

π∗h(Gm/〈qpm
, ζqc〉, q, ζR) +

pm−1−1∑
a=0

π∗h(Gm/〈qpm
, ζqpa〉, q, ζR)

=
∑

b∈(Z/pmZ)×

π∗h(Gm/〈qpm
, ζ−bq〉, q, ζR)

+ pm−1π∗Upm−1h(Gm/〈qpm
, ζpm−1〉, q, ζR)

=
∑

b∈(Z/pmZ)×

π∗h(Gm/〈ζ−bq〉, ζb, ζR)

+ (pcp)m−1π∗h(Gm/〈qpm
, ζpm−1〉, q, ζR)

=
∑

b

χp(b)
∑
n≥1

cn(ζ−bq)n(dt/t)k + pk(pcp)m−1π∗h(Gm/〈qpm+1〉, qp, ζp
R),
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where we have written χ = χRχp, for χR a character of level R and χp a
character of level pm. We deduce that

(pcp)m
(∑

dnqn
)

(dt/t)k − pk(pcp)m−1χR(p)π∗h(Gm/〈qpm+1〉, qp, ζR)

=

(∑
n

(∑
b

χp(b)ζ−bn

)
cnqn

)
(dt/t)k

= W (χp)

∑
p-n

χp(−n)−1cnqn

 (dt/t)k

where W (χp) =
∑

b∈(Z/pmZ)× χp(b)ζb can be checked to be nonzero because
the conductor of χp is pm. Hence

(pcp)m
∑

n

dnqn − pk(pcp)m−1χR(p)
∑

n

dnqnp

= W (χp)χp(−1)
∑
p-n

χp(n)−1cnqn.

Equating coefficients of q we deduce that W (χp)χp(−1) = (pcp)md1, and
because h|wp is an eigenform for Tn for all n prime to p, with eigenvalues
determined by χ and cn, we deduce that we can determine dn for n prime
to p from cn. It remains to establish what dp is, and equating coefficients of
qp in the above equation gives us that (pcp)mdp = pk(pcp)m−1χR(p)d1 and
hence that dp is determined by χ and cp. Note that as a consequence we
see that dp/d1 = pk−1χR(p)/cp, a classical formula if the base field is the
complexes.

Now we deal with primes of the form (ii) (note that we never use this
case in the rest of the paper). We think of h as a rule associating k-fold
differentials to triples (E,C,Q) where C a cyclic subgroup of order p and Q
a point of order R = M/p. Because h is p-new, the trace of h down to
X1(M/p) must be zero, and hence we see that for any elliptic curve E
equipped with a point Q of order R,∑

C

π∗h(E/C,E[p]/C,Q) = 0.

As before, normalize things so that

h(Gm/qZ, µp, ζR) =
(∑

n

cnqn

)
(dt/t)k

and

h(Gm/qpZ, 〈q〉, ζR) =
(∑

n

dnqn

)
(dt/t)k.
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The fact that the trace of h is zero implies that

(pUp)h(Gm/qpZ, 〈q〉, ζR) + π∗h(Gm/qZ, µp, ζR) = 0,

and hence that
cp

∑
dnqn + pk−1

∑
cnqn = 0

from which we deduce that the dn can be read off from cp and the cn. �

Remark 1.6. The size of C is φ(M)·2|I|−1, and the usefulness of this lemma
is that if h1 and h2 are two normalized eigenforms of the same level, weight
and character as above, both new at all primes in I, and the coefficients
of qn in the q-expansions of h1 and h2 agree for n ∈ I and n ≤ t, then
h1 − h2 has a zero of order at least t + 1 at all cusps in C, and in particular
if φ(M) · 2|I|−1(t + 1) > k

24 [SL2(Z) : Γ1(M)] = deg(ωk) on X1(M) then
h1 = h2. Using the fact that [Γ0(M) : Γ1(M)] = φ(M), we deduce:

Corollary 1.7. Let h1 and h2 be two normalized eigenforms as above. If
the coefficients of qn in the q-expansions of h1 and h2 agree for all primes
in I and for all n ≤ k

12 [SL2(Z) : Γ0(M)]/2|I| then h1 = h2.

Remark 1.8. One can certainly do better than this corollary in many cases.
For example, when n > 1 and pn exactly divides both the level of an
eigenform and the conductor of its character, then one can compute the
q-expansion of the eigenform at many “middle cusps” too, and hence in-
crease the size of C in the result above. The general result however is rather
messy to state and prove, and so for simplicity we have chosen to prove only
what we needed in the cases we were interested in.

We now go back to the explicit situation we are concerned with. Al-
though g is an eigenform of level 59168 = 25 · 432, we can still consider
the corresponding representation ρg : GQ → GL(2,F5), and then directly
analyze its ramification.

Proposition 1.9. The representation ρg is unramified at 5.

Proof. Continuing the modular symbols computations as above, we find
that V1 is spanned by the two eigenforms

f = q + α16q3 + α22q5 + α14q7 + α14q9 + 4q11 + · · ·
f1 = q + α16q3 + α10q5 + α14q7 + α14q9 + 4q11 + · · · .

For p 6= 5 and p ≤ 997, we have ap(f1) = ap(f). To check that ap(f) =
ap(f1) for all p 6= 5, it suffices to show that the difference f − f1 has
q-expansion involving only powers of q5; for this we use the θ-operator
q d

dq : S5(1376, ε;F25) → S11(1376, ε;F25). Since θ sends normalized eigen-
forms to normalized eigenforms, it suffices to check that the subspace of
S11(1376, ε;F25) generated by θ(f) and θ(f1) has dimension 1. Corollary 1.7
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implies that it suffices to verify that the coefficients ap(θ(f)) and ap(θ(f1))
are equal for all

p ≤ 11
12
· [SL2(Z) : Γ0(1376)] · 1

2
= 968.

The eigenform f must be new because we computed it by finding the in-
tersections of the kernels of Hecke operators Tp with p - 1376; if f were an
oldform then the intersection of the kernels of these Hecke operators would
necessarily have dimension greater than 1. Because it takes less than a sec-
ond to compute each ap(θ(f)), we were easily able to verify that the space
generated by θ(f) and θ(f1) has dimension 1.

Remark 1.10. In this example (but not some of the other seven examples!)
it is possible to avoid appealing to Corollary 1.7 by using one of the following
two alternative methods:

1) Define θ directly on modular symbols and compute it. On modular
symbols, the analogue of the θ operator seems to be multiplication
by XpY − XY p; thus, if p = k = 5 then θ(X3{0,∞}) = (X8Y −
X4Y 5){0,∞}. The main point in the proof is that one can check easily
from the definitions that Tqθ = qθTq for q a good prime, and hence
this map theta must correspond with the “classical” theta up to a
constant; one should perhaps worry that this constant could be zero,
but in practice given an f one can check explicitly that θ(f) 6= 0 by
direct computation.

2) Compute the intersection⋂
p≥2

ker(Tp − pap(f)) ⊂ S11(1376, ε;F25).

Since θ(f) and θ(f1) both lie in the intersection, the moment the di-
mension of a partial intersection is 1, it follows that θ(f − f1) = 0.

We successfully carried out both alternatives. For the second, we find that
after intersecting kernels for p ≤ 11, the dimension is already 1. The first of
these two methods took much less time than the second.

Next we use that θ(f−f1) = 0 to show that ρg is unramified, thus finishing
the proof of the proposition. Since f is ordinary, Deligne’s theorem (see [9,
§12]) implies that

ρf |D5 ∼
(

γ ∗
0 δ

)
over F5

with γ and δ unramified characters, γ(Frob5) = ε(5)/a5 = α8/α22 = α10,
and δ(Frob5) = α22. Since ap(f1) = ap(f), for p 6= 5, we have

ρf |D5 ∼ ρf1 |D5 ∼
(

γ′ ∗
0 δ′

)
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with γ′(Frob5) = α8/α10 = α22 and δ′(Frob5) = α10; in particular, γ′ = δ.
Thus ρf |D5 contains γ ⊕ δ, so ρf |D5 ∼ γ ⊕ δ and hence there is a choice of
basis so that ∗ = 0. �

1.4. The image of proj ρg.

Proposition 1.11. The image of proj ρg is A5.

Proof. The image H of proj ρg in PGL2(F5) is easily checked to lie in
PSL2(F5) ∼= A5 because of what we know about the determinant of ρg.
Hence H is a subgroup of A5 that contains an element of order 2 (complex
conjugation) and an element of order 3 (for example, ρg(Frob7) has char-
acteristic polynomial x2 − 2x − 1). This proves that H is isomorphic to
either S3, A4, or A5. Let L be the number field cut out by H. If L were
an S3-extension, then there would be a quadratic extension contained in it
which is unramified outside 2 · 5 · 43; it is furthermore unramified at 5 by
the previous section and unramified at 43 because I43 has order 3. Thus
it is one of the three quadratic fields unramified outside 2. In particular,
the trace of Frobp would be zero for all primes in a certain congruence class
modulo 8. However, there are primes p congruent to 3, 5, and 7 mod 8 such
that ap(g) 6= 0, e.g., 3, 7, and 13.

If H were isomorphic to A4, then let M denote the cyclic extension of
degree 3 over Q contained in L. Now M is unramified at 2 and 5, and hence
is the subfield of Q(ζ43) of degree 3. Choose p - 1376 · 5 that is inert in M ,
i.e., so that p is not a cube mod 43. The order of ρg(Frobp) in GL2(F5) must
be divisible by 3. However, a quick check using Table 2 shows that this is
not the case for p = 3. �

1.5. Bounding the ramification at 2 and 43. Let L be the fixed field of
ker(proj(ρg)). We have just shown that Gal(L/Q) is isomorphic to A5. By
a root field for L, we mean a non-Galois extension of Q of degree 5 whose
Galois closure is L.

Proposition 1.12. The discriminant of a root field for L divides (43 ·8)2 =
3442, and in particular, L must be mentioned in Table 1 of [8, pg. 122].

Proof. The analysis of the local behavior of ρf at 43 given in Proposition 1.3
shows that the inertia group at 43 in Gal(L/Q) has order 3. Using Table 3.1
of [3], we see that if Gal(L/Q) ∼= A5 then it must be of type 2 at 43, and
hence the discriminant of a root field of L, that is, of a non-Galois extension
of Q of degree 5 whose Galois closure is L, must be 432 at 43.

At 2 the behavior of ρ is more subtle and we shall not analyze it fully. But
we can say that, because ρ has arisen from a form of level 1376 = 25 · 43, we
must be either of type 5 or one of types 14–17, in the notation of Table 3.2
of [3]. In particular, the discriminant at 2 of a root field for L will be at
most 26.
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Finally, L is unramified at all other primes, because ρ is. Hence the
discriminant of a root field for L, assuming that Gal(L/Q) ∼= A5, divides
(43.8)2 = 3442. �

We know that L is an icosahedral extension of Q with discriminant di-
viding 432 · 26. Table 1 of [8, p. 122] contains all icosahedral extensions,
such that the discriminant of a root field is bounded by 20832. The table
must contain L; there is only one icosahedral extension with discriminant
dividing 432 · 26, so L = K.

1.6. Obtaining a classical weight one form. We have shown that a
twist of the icosahedral representation ρ : GQ → GL(2,C), obtained by
lifting GQ → Gal(K/Q) ≈ A5, has a mod 5 reduction ρg : GQ → GL2(F5)
that is modular. Since ρ ramifies at only finitely many primes, and ρ is
unramified at 5 with distinct eigenvalues, [5] implies that ρ arises from a
classical weight 1 newform.

2. More examples.

The data necessary to deduce modularity of each of our eight icosahedral
examples is summarized in Tables 3–6.

Table 3. Data on icosahedral representations mod 5.

N h ord(Frob5) p with ap = 0 ε dim S5(N, ε)
1376 [2, 6, 8, 10, 8] 2 19, 31, 97 [2, 1, 3] 696
2416 [0,−2, 2, 5, 6] 2 53, 97, 127 [2, 1, 3] 1210
3184 [5, 8,−20,−21,−5] 2 31, 89, 97 [2, 1, 3] 1594
3556 [3, 9,−6,−4,−40] 3 19, 29, 89 [1, 2, 3] 2042
3756 [0,−3, 10, 30,−18] 3 17, 61, 67 [1, 2, 3] 2506
4108 [4, 3, 9, 4, 5] 3 17, 23, 31, 89 [1, 3, 2] 2234
4288 [4, 5, 8, 3, 2] 3 19, 23, 47 [1, 2, 3] 2164
5373 [2, 1, 7, 23,−11] 2 7, 23, 37, 79, 89 [2, 3] 2394

The notation in Table 3 is as follows. The first column contains the
conductor. The second column contains a 5-tuple [a4, a3, a2, a1, a0] such
that the A5-extension is the splitting field of the polynomial h = x5 +
a4x

4 + a3x
3 + a2x

2 + a1x + a0. The column labeled ord(Frob5) contains the
order of the image of Frob5 in A5. The next column, which is labeled “p
with ap = 0”, contains the first few p such that ap is easily seen to equal 0 by
considering the splitting of h mod p. The ε column contains the character
of the representation, where the notation is as follows. Write (Z/NZ)∗

as a product of cyclic groups corresponding to the prime divisors of N in
ascending order, and then the tuples give the orders of the images of these
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Table 4. The newform f and the companion form bound.

N f bound
1376 q + α16q3 + α22q5 + α14q7 + α14q9 + 4q11 + α14q13 + · · · 968
2416 q + 3q3 + α22q5 + α16q7 + α4q11 + α2q13 + α16q15 + · · · 1672
3184 q + α16q3 + 3q5 + α22q7 + α14q9 + 3q11 + α22q13 + · · · 2200
3556 q + α16q3 + α14q5 + α10q7 + α14q9 + α2q11 + α22q13 + · · · 1408
3756 q + α14q3 + α14q5 + 3q7 + α4q9 + α16q11 + α10q13 + · · · 1727
4108 q + α16q3 + α11q5 + α20q7 + α14q9 + α10q11 + 4q13 + · · · 1540
4288 q + 3q3 + α14q5 + α20q7 + 3q9 + α20q11 + α16q13 + · · · 2992
5373 q + α16q2 + α14q4 + 4q5 + 3q8 + α4q10 + 2q11 + · · · 3300

cyclic factors; when 8 | N , there are two cyclic factors corresponding to the
prime 2. Finally, the last column records the dimension of S5(Γ1(N), ε).

The notation in Table 4 is as follows. The first column contains the con-
ductor. The second column contains an eigenform that was found by first
intersecting the kernels of the Hecke operators Tp with p as in Table 3, and
then locating an eigenform. In each case, a companion form was found,
by computing ap(f) for p ≤ bound, where bound is the bound from Corol-
lary 1.7.

Table 5 shows that the fixed field of the image of each proj(ρg) is icosa-
hedral. The first column contains the conductor N . The second column
contains a twist g of f such that ap(g) ∈ F5 for all p - 5N . The third col-
umn contains a Frobp such that proj(ρg(Frobp)) has order 3, along with the
characteristic polynomial of ρg(Frobp). As in the proof of Proposition 1.11,
the other two boxes give data that allows us to deduce that the fixed field
of the image of proj(ρg) is icosahedral. The case 5373 must be treated sep-
arately, because there are three possibilities M1, M2, and M3 for the cubic
field M of the analogue of Proposition 1.11. For M1 we find a prime p such
that

(p2 mod 9, p66 mod 199) 6∈ {(1, 1), (4, 1), (7, 1)}
with ρg(Frobp) of order not divisible by 3; for this, p = 2 suffices, since the
characteristic polynomial of ρg(Frob2) is (x + 2)2 and (p2 mod 9,
p66 mod 199) = (4, 106). For M2 we find a prime p such that

(p2 mod 9, p66 mod 199) 6∈ {(1, 1), (4, 92), (7, 106)}
with ρg(Frobp) of order not divisible by 3; again, p = 2 suffices. For M3 we
find a prime p such that

(p2 mod 9, p66 mod 199) 6∈ {(1, 1), (4, 106), (7, 92)}
with ρg(Frobp) of order not divisible by 3; here, p = 13 suffices, as the char-
acteristic polynomial of ρg(Frobp) is (x+4)2 and (p2 mod 9, p66 mod 199) =
(7, 106).
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Table 5. Verification that the image of proj(ρg) is A5.

Find a Frobenius element with projective order 3.

N g proj. order 3 charpoly
1376 f ⊗ ε43 Frob7 x2 − 2x− 1
2416 f ⊗ ε151 Frob19 x2 + 2x− 1
3184 f ⊗ ε199 Frob7 x2 + 3x + 4
3556 f ⊗ ε127 Frob13 x2 + 3x + 4
3756 f ⊗ ε313 Frob23 x2 + 2x + 4
4108 f ⊗ ε13 Frob29 x2 + 3x + 4
4288 f ⊗ ε67 Frob11 x2 + x + 1
5373 f ⊗ ε199 Frob11 x2 + 3x + 4

Not S3: For all t ∈ T , find unramified p s.t. t 6≡ � mod p and ap(g) 6= 0.

N T p
1376 {−1,−2} 3, 7
2416 {−1,−2} 3, 7
3184 {−1,−2} 3, 7
3556 {−1,−2,−7,−14} 3, 13, 3, 11
3756 {−1,−2,−3,−6} 7, 7, 11, 13
4108 {−1,−2,−79,−158} 3, 7, 3, 7
4288 {−1,−2} 3, 7
5373 {−3} 11

Not A4: Unramified p, not cube mod `, order of ρg(Frobp) not divisible
by 3.

N ` p charpoly(ρg(Frobp))
1376 43 3 (x + 2)2

2416 151 7 (x + 2)2

3184 199 3 (x + 2)2

3556 127 3 (x + 2)2

3756 313 11 (x + 2)2

4108 13 3 (x + 2)2

4288 67 7 (x + 3)2

5373 — (see text)

Table 6 gives upper bounds on the ramification of the fixed field of the
image of proj(ρg). These bounds were deduced using Table 3.1 of [3] by
restricting the possible “types” using information about the character ε.
Note that though the bounds are not sharp, e.g., the discriminant of the
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Table 6. Bounding the discrimant of the fixed field of proj(ρg).

N Bound on discriminant
1376 26 · 432

2416 26 · 1512

3184 26 · 1992

3556 22 · 72 · 1272

3756 22 · 32 · 3132

4108 22 · 132 · 792

4288 26 · 672

5373 34 · 1992

representation of conductor 2416 is 24 · 1512, they are all less than 20832, so
the corresponding field must appear in Table 2 of [8].

3. Computing mod p modular forms.

3.1. Higher weight modular symbols. The second author developed
software that computes the space of weight k modular symbols Sk(N, ε),
for k ≥ 2 and arbitrary ε. See [12] for the standard facts about higher
weight modular symbols, and [15] for a description of how to compute with
them.

Let K = Q(ε) be the field generated by the values of ε. The cuspidal mod-
ular symbols Sk(N, ε) are a finite dimensional vector space over K, which
is generated by all linear combinations of higher weight modular symbols

XiY k−2−i{α, β}
that lie in the kernel of an appropriate boundary map. There is an involu-
tion ∗ that acts on Sk(N, ε), and Sk(N, ε)+⊗K C is isomorphic, as a module
over the Hecke algebra, to the space Sk(N, ε;C) of cusp forms.

Fix k = 5. In each case considered in this paper, there is a prime ideal λ
of the ring of integers O of K such that O/λ ∼= F25. Let L be the O-module
generated by all modular symbols of the form XiY 3−i{α, β}, and let

S5(N, ε;F25) = (L ∩ S5(N, ε))⊗O F25.

This is the space that we computed. The Hecke algebra acts on S5(N,ε;F25),
so when we find an eigenform we find a maximal ideal of the Hecke algebra.

As an extra check on our computation of S5(N, ε;F25), we computed the
dimension of S5(N, ε;C) using both the formula of [6] and the Hijikata trace
formula (see [10]) applied to the identity Hecke operator.

3.2. Complexity. We implemented the modular symbols algorithms men-
tioned above in Magma (see [2]) because of its robust support for linear
algebra over small finite fields.
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The following table gives a flavor of the complexity of the machine com-
putations appearing in this paper. The table indicates how much CPU time
on a Sun Ultra E450 was required to compute all data for the given level,
including the matrices Tp on the 2-dimensional spaces, for p < 2000. For
example, the total time for level N = 1376 was 6 minutes and 58 seconds.

N time (minutes)
1376 6:58
2416 10:42
3184 14:16
3556 19:55
3756 27:47
4108 23:11
4288 15:18
5376 24:49

Acknowledgment. Some of the computing equipment was purchased by
the second author using a UC Berkeley Vice Chancellor Research Grant.
Additional computer runs were made on the Sun Ultra E450 of the Compu-
tational Algebra Group at the University of Sydney. Allan Steel was very
helpful in optimizing our code.
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