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Given a Heegaard splitting and an incompressible surface
S and a Heegaard splitting of an irreducible manifold, I shall
use a generalization of Haken’s lemma proved by Kobayashi in
order to define a pair of simple closed curves on the splitting
surface such that each bounds a disc in one of the handlebod-
ies of the splitting. By modifying the proof of Kobayashi’s
lemma, I shall show that the sequence of boundary compres-
sions used to isotope S places a bound on the distance between
these two simple closed curves in the complex of curves. This
will then place a bound on the distance of the Heegaard split-
ting.

1. Introduction.

Let Σ be a closed, orientable surface of genus g ≥ 2. Associated with Σ
is a “curve complex” C(Σ) that has been defined by Harvey [4]. A vertex
of this complex is an isotopy class of essential simple closed curves on Σ.
Two vertices are joined by an edge if the corresponding isotopy classes have
disjoint representatives1 .

Notation 1.1. Throughout this paper, I will use the notation c or ci to
denote a simple closed curve on the surface Σ, the isotopy class of that
curve, or the corresponding vertex in the complex of curves. Generally, the
distinction will be unimportant.

On this complex, we define the distance d between two vertices – between
two essential simple closed curves on Σ – to be the minimum number of edges
traversed to get from one vertex to the other. Essentially, the distance is
simply the metric on the 1-skeleton of C(Σ) gotten by letting each edge have
length 1. Recently, Hempel [6] and Masur and Minsky [9] independently
showed that the diameter of C(Σ) is infinite.

Suppose that Σ is the splitting surface for a Heegaard decomposition of a
3-manifold M . That is, suppose M is decomposed by handlebodies H1,H2

such that M = H1 ∪H2 and H1 ∩H2 = ∂H1 = ∂H2 = Σ. Let Ci(Σ) ⊂ C(Σ)

1In general, C(Σ) is a (3g− 4)-simplex such that each k cell corresponds to a collection
of k + 1 disjoint (and distinct) isotopy classes.
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denote the subcomplex consisting of essential closed curves that bound a
disc in Hi. Define the distance of the splitting to be

d(H1,H2) = min{d(c1, c2)|ci ∈ Ci(Σ)}.

Hempel showed (again in [6]) for any D, there is a manifold M that has
a Heegaard splitting (H1,H2; Σ) with d(H1,H2) > D. Whether there is
one manifold M with splittings of arbitrarily large distance is not known
(however, they would have to be non-Haken). Several results already known
about Heegaard splittings can now be expressed in terms of this distance
function:

• Reducibility implies distance 0: If M contains an essential sphere, then
for any Heegaard splitting of M , Haken’s lemma [2, 7] shows that
d(H1,H2) = 0. Specifically, Haken’s lemma states that the sphere can
be positioned so that it intersects Σ exactly once and bounds a disc
in each handlebody. Notice that stabilization creates a splitting of
distance 0 regardless of the original splitting’s distance.

• Strong irreducibility and distance: Recall that a splitting (H1,H2; Σ)
is called weakly reducible if there is a pair c1, c2 ⊂ Σ of essential simple
closed curves with empty intersection such that ci is the boundary of
a disc in Hi. A splitting that is not weakly reducible is called strongly
irreducible. Thus weakly reducible is equivalent to d(H1,H2) ≤ 1 and
strongly irreducible is equivalent to d(H1,H2) ≥ 2. A result of Casson
and Gordon [1] shows that if M contains a distance 1 splitting, then M
is Haken (a more specific description of the genus of the incompressible
surface is given in [5]).

• Conversely, Hempel [6] proved that if M contains an incompressible
torus, then d(H1,H2) ≤ 2 for any splitting (H1,H2; Σ).

In this paper, I will show the following generalization of the above results:

Theorem 1.2. Let M be a Haken 3-manifold containing an orientable in-
compressible surface of genus g. Then any Heegaard splitting of M has
distance at most 2g.

In Section 2, I shall establish the main definitions and lemmas needed to
prove the theorem. The theorem itself will be proven in Section 3.

2. Euler characteristics and ∂-compressions.

A surface S embedded in a 3-manifold M is called compressible if there
is a simple closed curve c ⊂ S such that c bounds a disc in M , but not
in S. Otherwise S is called incompressible. A Haken manifold is an ir-
reducible manifold containing an incompressible surface of genus g ≥ 1. If
(S, ∂S) ⊂ (M,∂M) is a surface in a manifold with boundary, then S is called
∂-commpressible (boundary compressible) if there is an arc β ⊂ ∂M and an
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arc α ⊂ S essential in S such that β∩S = β∩α = ∂β = ∂α with the property
that α ∪ β bounds a disc in M \ S. Otherwise, S is called ∂-incompressible
(boundary incompressible). Note that if S is ∂-commpressible, then we can
“compress” along the arc α to simplify the surface.

Let M be a closed, orientable, irreducible 3-manifold. Let (H1,H2; Σ) be
a Heegaard splitting for M . Suppose S is a given closed, orientable, incom-
pressible surface in M . Note that if M contains an incompressible surface of
positive genus, then the statement of Theorem 1.2 allows the distance of the
splitting to be at least 2. Thus I shall assume that the splitting (H1,H2; Σ)
is strongly irreducible, and that the genus of S is positive.

Kobayashi [8] proved the following generalization of Haken’s lemma:

Lemma 2.1. If M = (H1,H2; Σ) is a strongly irreducible splitting of an
irreducible manifold, then any closed, orientable, incompressible surface S
is ambient isotopic to a surface S′ such that:

1) S′ intersects Σ transversely,
2) S′ ∩H1 contains exactly one disc component,
3) S′ ∩H2 does not contain any disc components.

Kobayashi used what Jaco [7] called an isotopy of type A in order to prove
this lemma2 . Because I will be using a similar isotopy to prove Theorem 1.2,
I shall describe it again here.

Suppose that S ∩ H1 is ∂-commpressible in H1. Let α ⊂ S ∩ H1 be an
essential compressing arc and β ⊂ ∂H1 = Σ be the arc such that α ∪ β
bounds a disc D in H1. To perform a ∂-commpression of S from H1 or
an isotopy of type A, we isotope S to S′ by “chopping” into S ∩ H1 and
pushing α through the disc D and across Σ (see Figure 1). In a similar way
we describe ∂-commpressions of S from H2.

Lemma 2.2. Suppose that S′ is the image of S after a ∂-commpression of
S from H1. Then χ(S′ ∩H1) = χ(S ∩H1) + 1.

Proof. To see this, notice that the effect of the ∂-commpression on S ∩ H1

is removal of a 1-handle. This 1-handle is homotopic to a 1-cell with Euler
characteristic -1, and so removal of this handle raises the Euler characteristic
by 1. �

Recall that if a surface S is decomposed by S = X ∪ Y , then the Euler
characteristic of S is given by

χ(S) = χ(X) + χ(Y )− χ(X ∩ Y ).

In our current case, we decompose S by S ∩H1 and S ∩H2 and notice that
all the intersections are circles (with zero Euler characteristic). Thus we see

2I find this terminology somewhat unintuitive and so I will usually refer to this isotopy
as a boundary compression, or ∂-commpression.
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Figure 1

that

χ(S) = χ(S ∩H1) + χ(S ∩H2).

With this in mind, we deduce the following corollary to Lemma 2.2:

Corollary 2.3. Suppose that S′ is the image of S after an ∂-commpression
of S from H1. Then χ(S′ ∩H2) = χ(S ∩H2)− 1.

Remark 2.4. On the surface Σ, the effect of the ∂-commpression is surgery
on a 1-submanifold:

β -

S ∩ Σ

S ∩ Σ S′ ∩ Σ

Notice that there are two possibilities for the arc β. Either it connects
two essential simple closed curves on Σ and forms a single simple closed
curve after the surgery; or it connects two points of the same simple closed
curve on Σ to form two disjoint simple closed curves. The argument for this
is given by Rubinstein and Scharlemann [11] to describe “saddle vertices”.
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In order to prove Theorem 1.2, in the next section I will define an ele-
mentary compression and prove a few facts regarding the definition.

3. Elementary compressions.

When performing ∂-commpressions on S ∩ H1 (or similarly for S ∩ H2),
there are generally choices for the compression arc α which are non-helpful.
Specifically, suppose there is an annular component of S ∩ H1 parallel to
∂H1 (such components will be referred to as ∂-parallel annuli). Then the
∂-commpression defined by a meridional arc α of this ∂-parallel annulus will
leave a component of S ∩H1 which is a disc parallel to Σ. In particular, the
component of S ∩ Σ formed by this move will be inessential in Σ. As I am
interested only in the components of S ∩Σ which are essential in Σ, I would
like to avoid this particular compression. However, the positioning of S in
M may be such that the only possible ∂-commpressions are along ∂-parallel
annuli.

To deal with this, I define a two step operation. The first is the removal
of ∂-parallel annular components of S ∩ H1. Note that this compression
along the meridional arc followed by pushing the resulting disc through Σ
will constitute the “removal” of a ∂-parallel annulus (by pushing it into H2).
This operation of “removing” a ∂-parallel annular component of S ∩H1 will
be referred to as an annular compression of S from H1.

The second step is a specific sort of ∂-commpression called an elementary
compression. Define an essential compressing arc α of S ∩H1 to be strongly
essential if it is not the meridian of a ∂-parallel annular component of S∩H1.
An elementary compression of S from W1 is a ∂-commpression of S ∩ H1

along a strongly essential arc α ⊂ S ∩H1.
Throughout this section, let (H1,H2; Σ) be a strongly irreducible Hee-

gaard splitting of M and S an incompressible surface intersecting Σ trans-
versely. In the following lemmas, I shall list several helpful properties of
both elementary and annular compressions. While all the lemmas in this
section will refer to elementary and annular compressions from H1, notice
that they are equally true if the roles of H1 and H2 are reversed.

Lemma 3.1. Suppose S ∩ H1 is incompressible in H1. If χ(S ∩ H1) ≤ 0,
then there is an elementary or an annular compression of S from H1.

Proof. Because S is incompressible in M , it must intersect Σ nontrivially,
and thus S ∩ H1 6= ∅. Further, the only incompressible, ∂-incompressible
surfaces in a handlebody are discs. If all the components of S∩H1 were discs,
then χ(S ∩H1) would be positive. Thus, as S ∩H1 is incompressible in H1,
there must be at least one component of S ∩H1 which is ∂-commpressible,
and so there is either an elementary compression of S from H1 or an annular
compression of S from H1. �
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Remark 3.2. Because any incompressible surface has a nonempty intersec-
tion with the Heegaard splitting surface, we can assume that S ∩H1 6= ∅.

In Lemma 2.2, we saw how an elementary compression (a special case of
∂-commpression) affects the Euler characteristic of S ∩ H1. The following
lemma provides the analogous statement for annular compressions.

Lemma 3.3. Suppose that S′ is the image of an annular compression of S
from H1. Then χ(S′ ∩H1) = χ(S ∩H1), and χ(S′ ∩H2) = χ(S ∩H2).

Proof. Note that the net effect of an annular compression is simply the
removal of an annulus. Removing an annulus has no net effect on χ(S∩H1),
as the Euler characteristic of an annulus is 0. The comments leading to
Corollary 2.3 show that there is also no change to χ(S ∩H2). �

Note that Lemmas 3.1 and 3.3 provide the following corollary:

Corollary 3.4. If S ∩H1 is incompressible in H1 and χ(S ∩H1) ≤ 0, then
(perhaps after some annular compressions) there is an elementary compres-
sion of S from H1.

Lemma 3.5. Suppose that S ∩ H1 is incompressible in H1. Then the im-
age S′ of an elementary compression of S from H1 also has incompressible
intersection with H1.

Proof. Let the elementary compression of S be defined by the disc D ⊂ H1

with ∂D = α∪ β, where α ⊂ S ∩H1 and β ⊂ Σ – as described in Section 2.
Consider a small regular neighborhood of D in H1, say D × I (where I =
[0, 1]). This can be chosen so (∂D)× I = (α∪ β)× I, where α× I ⊂ S ∩H1

and β × I ⊂ Σ. The effect of the elementary compression on S ∩ H1 is to
replace the band α×I by the pair of discs D0 = D×{0} and D1 = D×{1}.
So if S′ ∩ H1 is the image of S ∩ H1 after the elementary compression, we
consider D0 and D1 as submanifolds of S ∩W1.

Let c ⊂ S′ ∩H1 be a simple closed curve such that c = ∂∆ for some disc
∆ ⊂ H1 \ S′. We can isotope c so that c ∩Di = ∅ for i = 0, 1. Further, we
can use an innermost disc argument (noting that H1 is irreducible) to see
that ∆ ∩Di = ∅ for i = 0, 1. Thus by undoing the elementary compression,
we can view ∆ as a compressing disc for S. Since S is incompressible in H1,
the curve c ⊂ S∩H1 must bound a disc in S. Because c∩Di = ∅, we see that
the disc bounded by c in S must be disjoint from the strip α× I. Thus we
can conclude that c bounds a disc in S′, and so S′ is also incompressible. �

Lemma 3.6. Suppose that S ∩H1 is incompressible in H1, that each com-
ponent of S ∩Σ is essential in Σ and that S′ is the image of an elementary
compression of S from H1. Then each component of S′ ∩ Σ is essential in
Σ.
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Proof. Assume there is a component c′ of S′ ∩ Σ which bounds a disc in
Σ. By the hypothesis of the lemma, c′ must be a curve generated by the
elementary compression of S. Consider the arc β ⊂ Σ along which the
boundary compression was defined. At this point we divide the proof into
two cases, depending on whether β joined together one or two components
of S ∩ Σ.

Case 1. Suppose that β joined two points of the same component c of S∩Σ.
Then c is broken into two components c′, c′′ by the ∂-commpression and we
assume c′ bounds a disc D in Σ. Suppose that c′ = ∂D is as indicated below.

c′ c′′
@@@@@@@@@

@@@@@@@@@

@@@@@
@@@@@
@@@@@

Then we see that c′′ ⊂ D. By the Jordan curve theorem, c′′ must bound a
disc in D, and thus in Σ. By looking at the preimage of this disc D in Σ
before the elementary compression,

β c@I
�	

@@@@@@@@@@

@@@@@@@@@@

@@@@@
@@@@@
@@@@@

we see that the simple closed curve c must bound a disc, contradicting the
hypothesis of the lemma.

On the other hand, suppose that c′ bounds the disc as indicated.

c′ c′′

@@@@
@@@@
@@@@

Then I claim that the ∂-commpression took place along an inessential arc
α ⊂ S ∩H1. To see this, notice that on the preimage we have the picture:

-

�
γ

γ

β c@I
�	@@@@@

@@@@@
@@@@@

The curve β∪γ is isotopic to c′ and thus bounds a disc in Σ. If α ⊂ S∩H1

is the compressing arc for the elementary compression, then α ∪ β bounds
a disc in H1. This implies that α ∪ γ must also bound a disc in H1. The
simple closed curve α∪ γ can be homotoped to a simple closed curve in the
interior of S ∩H1. The incompressibility of S in H1 shows that this simple
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closed curve is not essential in S ∩ H1, and thus α is not an essential arc,
contradicting the definition of an elementary compression.

Case 2. Suppose that β joined two different components of S ∩ Σ. In this
case, both “components” of the image (near the arc β)

belong to the same curve c′. There are then two ways in which c′ can bound
a disc:

or

@@@@@@@@@

@@@@@@@@@

@
@
@ @

@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@ @

@
@

In the first case, the two curves comprising the preimage (before the
elementary compression)
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must also have bounded discs in Σ, contradicting the initial hypothesis.
In the second case, we see that the preimage
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must have bounded an annulus in Σ. In addition, we can push c′ into H1

so it defines a compressing disc for S′ ∩ H1. By Lemma 3.5, we see that c′

must be innessential in S′∩H1. Thus we see that rather than an elementary
compression, this must have been the first step of an annular compression.

Thus we see that S′ ∩ Σ consists only of simple closed curves which are
essential in Σ. �

Lemma 3.7. Suppose that S ∩ H1 is incompressible in H1 and each com-
ponent of S ∩ Σ is essential in Σ. If S′ is the image of S by an annular
compression from H1, then S′ ∩ H1 is incompressible in H1 and each com-
ponent of S′ ∩ Σ is essential in Σ.
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Proof. Because an annular compression simply deletes a component of S∩H1

(by moving it into H2), all the remaining components will still be incom-
pressible in H1. Similarly, the effect of the annular compression on the
splitting surface Σ is to delete two components of S ∩ Σ, and thus all the
remaining components of S ∩ Σ will still be essential in Σ. �

Finally, we close the section with the lemmas that tie together the notion
of distance and these elementary compressions:

Lemma 3.8. Suppose S′ is the image of an elementary compression of S.
Let c ⊂ S∩Σ and c′ ⊂ S′∩Σ be any choice of components that are essential
in Σ. Then d(c, c′) ≤ 1.

Proof. Suppose c is not a component of S ∩ Σ affected by the elementary
compression. Then d(c, c′) ≤ 1, as either c ' c′ or c∩c′ = ∅. Similarly, if c′ is
not in the image of the affected component(s) of the elementary compression,
then d(c, c′) ≤ 1. So suppose c is a component of S ∩ Σ affected by the
elementary compression and c′ is in the image of this ∂-commpression.

By considering the arc β ⊂ Σ along which the elementary compression is
defined,

β

we can divide the proof into two cases, depending on whether β connects
one or two components of S ∩ Σ.

Case 1. If β connects two components ca, cb of S ∩ Σ, then we can choose
normal directions on ca and cb in Σ in such a way that near β we have the
picture below.

66666666666666666

?????????????????

β

?

c′

ca

cb

ca

cb

The image of this 1-surgery will be a single curve c′ and this choice of a
normal direction on ca, cb in Σ ensures that c′ ∩ ca = c′ ∩ cb = ∅.
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Case 2. Suppose that β connects two points of the same component c
of S ∩ Σ. Consider the compressing arc α ⊂ S ∩ H1 for the boundary
compression as well as the compressing disc D with ∂D = α∪β. Because S
is orientable, we can choose a nonzero normal vector field N(S) of S ⊂ M .
If we then let Sε be the image of S after flowing in the direction N(S) for
a very short time, then Sε ∩ S = ∅. Further, this normal direction can be
chosen so that Sε∩D = ∅. Note that on Σ, we then get the following picture.

β�
��

@
@R

HHY
���

Sε ∩ Σ S ∩ Σ

Let cε ⊂ Sε ∩ Σ be the isotope of c ⊂ S ∩ Σ. Then after the elementary
compression of S, we see the intersections of S′ and Sε with Σ as below.





�

J
JĴ

cε

c′

From this we see that even if c ∩ c 6= ∅, the curve c is isotopic to a curve
cε ⊂ Σ which is disjoint from c′. Thus d(c, c′) ≤ 1. �

Lemma 3.9. Suppose that S′ is the image of S by an annular compression
from H1. Then the collection S′∩Σ of simple closed curves is (up to isotopy)
a proper subset of the collection S ∩ Σ.

Proof. As in Lemma 3.7, this is due to the fact that annular compression
simply removes two components of S ∩ Σ, leaving the rest in place. �

Together, Lemmas 3.8 and 3.9 will provide the means to place a bound
on the distance d(H1,H2). The idea in Section 4 will be to use a series
of elementary compressions in order to develop a chain of essential simple
closed curves on Σ, each distance 1 from the next. Because there may be
∂-parallel annuli in the way of this plan, some annular compressions may be
needed at each stage. Lemma 3.9 ensures that this action will not affect the
chain of essential curves.

4. Proof of Theorem 1.2.

Let M be a closed, orientable, irreducible 3-manifold and suppose S ⊂ M
is a closed, orientable, incompressible surface of positive genus. Using an
ambient isotopy, assume that S meets Σ transversely and minimally. That
is, among all surfaces isotopic to S in M , the number of components of S∩Σ
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is minimal. In most of the lemmas from Section 3, the embedded surface
S was required to have incompressible intersection with H1 and/or have all
components of S ∩Σ essential in Σ. The following pair of lemmas show that
these conditions are satisfied by placing S in this minimal position with
respect to Σ.

Lemma 4.1. Suppose that S intersects Σ minimally. Then for i = 1, 2, the
intersection S ∩Hi is incompressible in Hi.

Proof. Suppose that S ∩Hi has a compressible component. Then there is a
disc (D, ∂D) ⊂ (Hi, S ∩Hi) such that ∂D does not bound a disc in S ∩Hi.
Because S is incompressible in M , there is a disc D′ ⊂ S with ∂D′ = ∂D.
Note that D′ ∩ Σ 6= ∅. Because the manifold M is irreducible, the sphere
D ∪D′ bounds a ball in M . Thus the surface S′ = (S \D′) ∪D is isotopic
to S and S′ ∩ Σ has strictly fewer components than S ∩ Σ. �

Lemma 4.2. If the number of components of S ∩ Σ is minimal, then each
component of S ∩ Σ is a simple closed curve which is essential in Σ.

Proof. Suppose c ⊂ S ∩ Σ is non-essential on Σ. Then let D ⊂ Σ be the
disc with ∂D = C. The incompressibility of S in M provides a disc D′ ⊂ S
with ∂D′ = c. Then the surface S′ = (S \ D′) ∪ D is isotopic to S as M is
irreducible. We can then push the closed disc D ⊂ S′ slightly off Σ so that
S′ ∩ Σ has strictly fewer components than S ∩ Σ. �

Lemma 4.3. If the number of components of S ∩Σ is minimal, then there
are no ∂-parallel annular components of either S ∩H1 or S ∩H2.

Proof. This follows as a direct consequence of Lemma 3.9. �

The crux of the main theorem lies in the following pair of lemmas. The
idea for the first lemma is to assume that S ∩ Σ is in minimal position and
S∩H2 already has disc components of intersection. I want to move S across
Σ until there is only one disc component. From that point, I will count the
number of elementary compressions it takes to move S further across Σ to
where S ∩H1 contains a disc component.

Lemma 4.4. Let M = (H1,H2; Σ) describe a strongly irreducible splitting
of an irreducible manifold M . Suppose that S ⊂ M is a closed, incompress-
ible surface such that each component of S ∩ Σ is essential in Σ and each
component of S ∩ H1 is incompressible in H1. If S ∩ H2 contains essential
discs, then there is a sequence of isotopies

S ' S0 ' S1 ' · · · ' Sk ' Sk+1 ' · · · ' Sn

of S having the following properties:
• Each component of Si ∩ Σ is essential in Σ (and each Si ∩ H1 is in-

compressible in H1).
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• For any choice of components ci of Si∩Σ, d(ci, ci+1) ≤ 1 for 0 ≤ i < n.
• For 0 ≤ i ≤ k, Si ∩H2 contains disc components.
• k ≤ n − 2, and for k + 1 ≤ i ≤ n − 1, neither Si ∩ H1 nor Si ∩ H2

contains any disc components.
• Sn ∩H1 contains a single disc component.

Proof. If there are any ∂-parallel annular components of S∩H1, use annular
compressions to remove them and form S0. Form Ŝ1 be performing an
elementary compression on S0 from H1. If Ŝ1∩H1 has any ∂-parallel annuli,
perform annular compressions on Ŝ1 from H1 to form S1. Otherwise, let
S1 = Ŝ1. Continue in this way recursively to form Ŝi and Si for 1 ≤ i ≤ n.
The first point then follows inductively from Lemma 3.6 and Lemma 3.7.

Suppose that ci is a component of Si ∩ Σ. Then by Lemma 3.8 we know
d(ci, ĉi+1) ≤ 1 for any component ĉi+1 of Ŝi+1 ∩Σ. Further, by Lemma 3.9,
we know that the collection of components of Si+1 ∩ Σ is a subset of the
collection of components of Ŝi+1∩Σ. Thus for any choice ci+1 of component
of Si+1 ∩ Σ, we get the bound d(ci, ci+1) ≤ 1.

Let k be the greatest number such that Sk contains a disc component
of intersection with H2. By noting Lemmas 2.2 and 3.3, we see that the
Euler characteristic changes by exactly 1 through each stage. Thus if k is
the greatest number such that Sk ∩H2 has a disc component, then Sk ∩H2

must have exactly one disc component. Otherwise, χ(Sk+1 ∩H1) ≥ χ(Sk ∩
H1) + 2. Similarly, n is chosen to be the least number such that Sn has disc
intersection with H1 and we see that Sn has exactly one disc component
of intersection with H1. Again, from Lemma 2.2, we know that such an n
exists, as after a finite number of compressions, the Euler characteristic will
be positive, forcing there to be a disc component.

Note that because the splitting is strongly irreducible, we cannot have the
case where S ∩H1 and S ∩H2 both have disc intersections. Recall from the
remarks in the introduction that if k = n, then the splitting is reducible. If
k = n − 1, then by applying Lemma 3.8, we would find that the splitting
is weakly reducible. Thus the inequality k ≤ n − 2 is due to the fact that
(H1,H2; Σ) is strongly irreducible. �

If S ∩H1 has disc intersections, then we can apply the above lemma with
the roles of H1 and H2 reversed. If, however, neither S ∩ H1 nor S ∩ H2

have disc intersections when S ∩ Σ is minimal, then we need to restate the
lemma slightly. The idea here is to boundary compress S in both directions,
until we reach a disc intersection on either side.

Lemma 4.5. Let M = (H1,H2; Σ) describe a strongly irreducible splitting
of an irreducible manifold M . Suppose that S ⊂ M is a closed, incompress-
ible surface such that each component of S ∩ Σ is essential in Σ and each
component of S ∩Hi is essential in Hi (for i = 1, 2). If neither S ∩H2 nor
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S ∩H1 contains essential disc components, then there is a sequence

S−m ' S−m+1 ' · · · ' S = S0 ' · · · ' Sn

of isotopic copies of S having the following properties:
• Each component of Si ∩ Σ is essential in Σ.
• Sn ∩H1 contains a disc component, as does S−m ∩H2.
• For −m + 1 ≤ i ≤ n − 1, neither Si ∩ H1 nor Si ∩ H2 contains any

disc components.
• For any choice of components ci of Si ∩ Σ, d(ci, ci+1) ≤ 1, where
−m ≤ i < n.

Proof. For i > 0, define Ŝi and Si exactly as in Lemma 4.4, again noting
that there is a least n such that Sn∩H1 has a disc component. To define Ŝi

and Si for i < 0, we use the same method, but with the roles of H1 and H2

reversed. Yet again, note that there is a least m such that S−m ∩H2 has a
disc component.

Now the proof for each of the points of the lemma is completely analogous
to the proof of Lemma 4.4. �

Remark 4.6. If the number of components of S ∩ Σ is minimal, then the
hypotheses of either Lemma 4.4 or Lemma 4.5 must be satisfied, depending
on whether S ∩H1, S ∩H2, or neither contains disc components.

In either case, the idea is actually to start the incompressible surface in
the position described in the conclusion to Kobayashi’s lemma (Lemma 2.1).
From there, we use a sequence of elementary compressions (together with an-
nular compressions as necessary) to move the incompressible surface across
Σ until it again satisfies Lemma 2.1, but with the roles of H1 and H2 re-
versed. We then merely need to count the number of elementary compres-
sions needed.

Main Theorem. If M is a Haken 3-manifold containing an orientable
incompressible surface of genus g, then any Heegaard splitting of M has
distance at most 2g.

Proof. Recall that we have an irreducible manifold M decomposed by a
strongly irreducible splitting (H1,H2; Σ). A closed, incompressible surface
S lies in M such that the intersection S ∩Σ is transverse and has a minimal
number of components. If g is the genus of S, we wish to show that there are
a pair of essential simple closed curves c1 and c2 in Σ such that ci bounds a
disc in Hi and d(c1, c2) ≤ 2g.

First, suppose that S in this starting minimal position satisfies the hy-
pothesis of Lemma 4.4. That is, the intersection of S with H2 already
contains disc components. Then the conclusion of the lemma provides (up
to a relabeling of the indices) a sequence S0, · · · , S` such that S0 has a single
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disc component of intersection with H2, S` has a single disc component of
intersection with H1, and all components of Si ∩ Σ are essential in Σ for
0 ≤ i ≤ `. Notice by Lemma 2.2 that χ(Si ∩ H1) = χ(Si−1 ∩ H1) + 1 for
each 0 < i ≤ `.

Note that by relabeling indices, an identical sequence can be constructed
if S ∩H1 (instead of S ∩H2) contained disc components.

On the other hand, suppose S in this starting minimal position does not
have disc intersections with either H1 or H2. Then by relabeling the indexing
of the sequence formed in Lemma 4.5, we again have a sequence S0, · · · , S`

such that S0 ∩ H2 and S` ∩ H1 each contain a single disc component and
each component of Si ∩ Σ is essential in Σ for all i. Using both Lemma 2.2
and Corollary 2.3, we again see that χ(Si ∩H1) = χ(Si−1 ∩H1) + 1 for each
0 < i ≤ `.

In any case, let c2 be the boundary of the disc component of S0 ∩H2 and
let c1 be the boundary of the disc component of S` ∩ H1. We know that
if we choose any components γi of Si ∩ Σ, then d(γi, γi+1) ≤ 1. By letting
γ0 = c2 and γ` = c1, we get the bound d(c1, c2) ≤ `. Now it is left to show
that this number ` is at most 2g.

Recall the remarks leading to Corollary 2.3 that the decomposition of S
into S ∩H1 and S ∩H2 gives the equation

χ(S) = χ(S ∩H1) + χ(S ∩H2).

Because each Si is isotopic to S, it is also true that

χ(S) = χ(S0 ∩H1) + χ(S0 ∩H2).

Since S0∩H2 contains exactly one disc component, note that χ(S0∩H2) ≤ 1.
Substituting the well-known formula for χ(S), we see

χ(S) ≤ χ(S0 ∩H1) + 1

1− 2g ≤ χ(S0 ∩H1).

Using the inductive equation χ(Si ∩H1) = χ(Si−1 ∩H1) + 1, it is now clear
that S2g ∩H1 is forced to have at least one disc component of intersection.
Because we chose ` to be the least integer with this property, we finally
conclude that

d(H1,H2) ≤ d(c1, c2) ≤ ` ≤ 2g.

�
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