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APPLYING FUNCTIONAL IDENTITIES TO SOME
LINEAR PRESERVER PROBLEMS

K.I. Beidar, M. Brešar, M.A. Chebotar, and Y. Fong

The theory of functional identities is used to obtain alge-
braic generalizations of some operator-theoretic results con-
cerning commutativity and normal preserving linear maps be-
tween algebras with involution.

1. Introduction.

Over the last decades there has been a considerable interest in linear algebra
and operator theory in the so-called linear preserver problems (see survey
articles [1, 13, 19, 20]). By a linear preserver we mean a linear map of
algebras which, roughly speaking, preserve certain properties of some ele-
ments in an algebra. In the literature these algebras are usually algebras
of matrices or algebras of bounded linear operators. The goal in the study
of linear preservers is to find their form. It turns out that often the only
solutions are just the most obvious ones, frequently (anti)isomorphisms or
at least maps related to them.

It is our impression that some linear preserver problems could be solved
in a more general setting using only ring-theoretic techniques. An example
illustrating this general conjecture is a characterization of bijective linear
maps of prime algebras that preserve commutativity, i.e., they map com-
muting pairs of elements into commuting pairs [10, Theorem 2] (see also
[2, 4] for some generalizations). This characterization was known before
only for some special prime algebras which are studied in linear algebra and
operator theory (see [10] for references). Moreover, it has turned out that
one does not really need to assume that the map, say θ, preserves the com-
mutativity of all elements, but only that θ(x) and θ(x2) commute for every
x. The fact that only this milder condition has to be asssumed has proved to
be useful when this result was applied to another linear preserver problem,
namely, the one concerning maps on the algebra of bounded linear operators
on a Hilbert space that preserve normal operators [12].

The proof of [10, Theorem 2] was based on a characterization of commut-
ing traces of biadditive maps [10, Theorem 1], which was one of the first
results in the area which is now called the theory of functional identities
in rings. Over the last few years this theory has been systematically devel-
oped. It is our goal in this paper to show that some of its most recent results
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258 BEIDAR, M. BREŠAR, CHEBOTAR, AND FONG

[5, 6, 7] can be used to obtain some further improvements in the study of
linear maps preserving commutativity or normal elements.

First we introduce some terminology and fix the notation. A prime al-
gebra A over a field F is said to be centrally closed over F if both the
center and the extended centroid of A are equal to F . We will consider
centrally closed prime algebras A,A′ over F with involution ∗ (by an invo-
lution we mean an additive involution, that is, ∗ satisfies (x+ y)∗ = x∗+ y∗,
(xy)∗ = y∗x∗ and (x∗)∗ = x). We say that a linear map θ : A → A′ is
∗-linear if θ(x∗) = θ(x)∗ for all x ∈ A. Let S = {x ∈ A | x∗ = x} be the
set of all symmetric elements in A, and K = {x ∈ A | x∗ = −x} be the set
of all skew elements in A. Similarly, by S′ and K ′ we denote the sets of all
symmetric and skew elements in A′, respectively. Next we set Fs = F

⋂
S.

We say that the involution ∗ is of the first kind if F = Fs (equivalently, ∗ is
F -linear); otherwise we say that ∗ is of the second kind. Given a subset R
of A, we write 〈R〉 for the subalgebra of A generated by R.

The concepts of the extended centroid and centrally closed prime alge-
bras are explained in detail in the book [8]. Nevertheless, as some readers
may be primarily interested in what is the meaning of our results in linear
algebra and operator theory, let us just mention that the algebras of square
matrices over a division ring, bounded linear operators on a Banach space
(and moreover, all its subalgebras containing the identity and all finite rank
operators) and prime unital C∗-algebras (in particular, von Neumann fac-
tors) are all examples of prime algebras centrally closed over their centers.
Also, if one wants to restrict the attention to the case when A and A′ are
algebras consisting of linear operators on a Hilbert space H and x∗ is the
adjoint of the operator x, then ∗ is of the first kind when H is a real space,
and ∗ is of the second kind when H is a complex space.

In Section 2 we gather together some results of the theory of functional
identities that are needed later on.

In Section 3 we extend the treatment of commutativity-preserving maps of
prime algebras [10] by considering maps from S onto S′. The result which
we obtain is a ring-theoretic extension of the results on maps preserving
commutativity of symmetric matrices (operators) [15, 14, 24]. Actually, as
in [10], we do not really assume that the map θ preserves the commutativity
of all elements in S, but only that θ(s) and θ(s2) commute for every s ∈ S.

In Section 4 we consider bijective linear maps of algebras with involution
of the second kind which preserve normal elements. As already mentioned,
the special case when the algebras under consideration are algebras of all
bounded linear operators on a complex Hilbert space was treated in [12]
(see also [15, 16]). It has turned out that Fuglede’s theorem [25, Corollary
1.18], upon which the proof in [12] depends, can be avoided when treating
this problem, and so we will be able to prove a ring-theoretic generalization
of the result of [12].
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The problem of describing normal-preserving maps is much more difficult
when the involution is of the first kind. First of all, the involution is then
a linear operator and so, for instance, a map of the form x 7→ µ1x + µ2x

∗,
where µ1, µ2 ∈ F , is linear and preserves normal elements. Thus, we cannot
expect the same result as in Section 4. Moreover, consider the following
example.

Let A = F 〈x, y〉, where F is a field, be a free algebra in two indeterminates
x and y (incidentally, A is a centrally closed prime algebra [8, Theorem
2.4.4]), and equip A with standard involution (given by x∗ = x, y∗ = y
and λ∗ = λ, λ ∈ F ). Let U be a linear span of all monomials in which
both x and y appear, and V be a linear span of all monomials xn, yn with
n ≥ 1 (in particular, V ⊂ S). Then A = F ⊕ U ⊕ V and note that a
nonzero element in U never commutes with a nonzero element in V . Now
let T : V → V be any bijective linear operator. Then the map A → A
defined by λ+ u+ v 7→ λ+ u+ T (v) is ∗-linear, bijective and maps normal
elements onto normal elements.

This example somehow indicates that it is almost impossible to obtain a
definitive result for preservers of normal elements in the case the involution
is of the first kind. Nevertheless, even in this example the map acts very
simply on a rather large piece of A, namely on F ⊕U . In Section 5 we shall
see that under some technical conditions (in particular, we have to assume
that our map is ∗-linear) the action of normal-preservers can be described
on 〈K〉, which can certainly be considered as a “large piece” of A. In par-
ticular, except in some very special case, it contains a nonzero ideal of A
[8, Lemma 9.1.4 and Corollary 9.1.8]. Therefore, in simple algebras satisfy-
ing our technical assumptions, normal-preserving maps can be completely
determined.

2. Preliminaries.

The aim of this section is to give a brief and self-contained outline of some
parts the theory of functional identities, namely, those parts that shall really
be needed in the subsequent sections. For a more detailed account on this
theory we refer the reader to [11].

Throughout, the denotations F, Fs, A,K, S,A′,K ′ and S′ shall have the
meaning already explained in the introduction. Though not always needed,
we assume for simplicity that char(F ) 6= 2. Given x, y ∈ A, we set

[x, y] = xy − yx and x ◦ y = xy + yx.

Next, by deg(x) we shall mean the degree of x over F (if x is algebraic over
F ) or ∞ (if x is not algebraic over F ). Next we set

deg(A) = sup{deg(x) | x ∈ A}.
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For instance, deg(Mn(F )) = n for any field F . Moreover, from the structure
theory of rings with polynomial identities [23, 26] it can be deduced that
deg(A) = n < ∞ if and only if A is a subring of Mn(F ) such that FA =
Mn(F ), where F is the algebraic closure of F .

The goal in the study of functional identities is, roughly speaking, to
describe the form of maps satisfying certain identities. The first functional
identities that have been considered were those concerned with the so-called
commuting maps, i.e., maps whose values commute with the variable. Let
us now reword the basic result on commuting maps [9, Theorem 3.2] in the
following somewhat unusual but useful form.

Theorem 2.1. Let f, θ : A → A′ be linear maps such that [f(x), θ(x)] = 0
for all x ∈ A. If θ is bijective, then there is τ ∈ F and a linear map
ζ : A→ F such that f(x) = τθ(x) + ζ(x) for all x ∈ A.

Actually, [9] considers only the case when A = A′ and θ is the identity
map. However, the seemingly more general condition treated in Theorem 2.1
can be reduced to that one by replacing the map f by the map fθ−1. We
also remark that in [9] the result is stated for additive maps on rings and
not linear maps on algebras, but the necessary modifications in the proof are
obvious. The same remarks apply for the remaining results in this section.
Moreover, in these three theorems such terms as linearity and vector space
should be understood with respect to the field Fs rather than F .

A map q : A→ A′ is said to be a trace of a k-linear map if there is a map
B : Ak → A′, linear in each argument and such that q(x) = B(x, . . . , x) for
all x ∈ A (by a trace of a 0-linear map we shall mean a constant). In the case
when char(F ) = 0 or char(F ) > k, there is no loss of generality in assuming
that this map B is symmetric (namely, otherwise replace B(x1, . . . , xk) by
1
k!

∑
π∈Sk

B(xπ(1), . . . , xπ(k))).
The next theorem follows from [7, Theorem 5.5] and [5, Lemma 2.2].

Theorem 2.2. Let R be a vector subspace of A, and let R′ be either S′ or
K ′. Suppose that a trace of an n-linear map q : R→ A′ satisfies

m∑
i=0

µiθ(x)iq(x)θ(x)m−i = 0 for all x ∈ R,

where µ0, . . . , µm belong to F and not all of them are 0, and θ : R → R′

is a bijective linear map. Suppose that char(F ) = 0 or char(F ) > n and
deg(A′) > 2(m+ n). Then:

(i) q(x) =
∑n

k=0 λk(x)θ(x)
n−k, x ∈ R, where each λk : R → F is a trace

of a k-linear map;
(ii) if

∑m
i=0 µi 6= 0, then q = 0.

Keeping the notation of Theorem 2.2, assume that q(x)θ(x) ∈ F for all
x ∈ R, where q(x) = B(x, . . . , x) and B is an n-linear map. A standard
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approach, the so-called complete linearization, then shows that∑
π∈Sn+1

B(xπ(1), . . . , xπ(n))θ(xπ(n+1)) ∈ F.

Applying [7, Lemma 4.3] together with [5, Lemma 2.2] we then obtain:

Theorem 2.3. Let R be a vector subspace of A, and let R′ be either S′ or
K ′. Suppose that q : R → A′ is a trace of an n-linear map B : Rn → A′

such that q(x)θ(x) ∈ F for all x ∈ R (or θ(x)q(x) ∈ F for all x ∈ R),
where θ : R → R′ is a bijective linear map. If deg(A′) > 2n + 2, then∑

π∈Sn
B(xπ(1), . . . , xπ(n)) = 0. Thus, if char(F ) = 0 or char(F ) > n, then

q = 0.

We conclude this section with a result which might appear somewhat
strange. However, the conditions treated in this result really appear in the
proof of Theorem 5.1.

Theorem 2.4. Let f(x1, . . . , xm) be a multilinear polynomial in noncom-
muting variables x1, . . . , xm such that f(k1, . . . , km) ∈ K for all k1, . . . , km
∈ K. Let φ be a linear map of K onto K ′ such that

φ(f(k1, . . . , km)) = λf(φ(k1), . . . , φ(km)) for all k1, . . . , km ∈ K,

where λ is a nonzero element in F . Further, let a map B : K ×K → A′ be
such that

B(k, l) = −B(l, k)

for all k, l ∈ K, and

B(f(k1, . . . , km), l)

=
m∑
i=1

λf(φ(k1), . . . , φ(ki−1), B(ki, l), φ(ki+1), . . . , φ(km))

for all k1, . . . , km, l ∈ K. If deg(A′) > 4m+ 1, then there exists ρ ∈ F such
that

B(k, l)− ρ[φ(k), φ(l)] ∈ F for all k, l ∈ K.

For λ = 1, Theorem 2.4 can be deduced at once from the statements of
[5, Theorems 2.4] and [6, Theorem 2.9]. Almost the same proof, however,
still works in the case when λ is any nonzero element in F .

We have seen that excluding algebras of “small” degree one can obtain
definite results on functional identities. As a consequence, the proofs of our
main results will work as long as the degree of the algebra will be big enough.
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3. Commutativity-preservers on symmetric elements.

Having Theorems 2.2 and 2.3 in hand, the following result can be easily
obtained just by modifying the proof of [10, Theorem 2].

Theorem 3.1. Let A be A′ be centrally closed prime algebras over a field F
with involution. Let θ : S → S′ be a bijective Fs-linear map such that θ(s)
and θ(s2) commute for every s ∈ S. Suppose that deg(A) > 4, deg(A′) > 8
and char(F ) 6= 2, 3. Then θ is of the form θ(s) = αφ(s) + β(s) where
α ∈ Fs, α 6= 0, β is a Fs-linear map from S into Fs and φ : 〈S〉 → 〈S′〉 is
an Fs-algebra isomorphism.

Proof. We have θ(s)θ(s2) − θ(s2)θ(s) = 0 for all s ∈ S. Clearly, the map
s 7→ θ(s2) is a trace of a bilinear map and so Theorem 2.2 implies that

θ(s2) = λθ(s)2 + µ(s)θ(s) + ν(s)(1)

where λ ∈ F , µ : A → F is a linear and ν : A → F is a trace of a bilinear
map (again, the term linearity refers to Fs and not F ). We claim that
λ ∈ Fs and µ(s), ν(s) ∈ Fs for all s ∈ S. Indeed, since both θ(s) and θ(s2)
are symmetric for any s ∈ S, it follows that

λθ(s)2 + µ(s)θ(s) + ν(s) = λ∗θ(s)2 + µ(s)∗θ(s) + ν(s)∗

and so

{(λ− λ∗)θ(s) + µ(s)− µ(s)∗}θ(s) ∈ F for all s ∈ S.

Since deg(A′) is, in particular, > 4, Theorem 2.3 first gives

(λ− λ∗)θ(s) + µ(s)− µ(s)∗ = 0 for all s ∈ S,

which in turn implies, again by Theorem 2.3, that λ = λ∗ and µ(s) = µ(s)∗.
But then also ν(s) = ν(s)∗ for any s ∈ S.

Next we claim that θ(1) is a central element, that is, it lies in Fs. Just
as in [10, p. 535], substituting s + 1 for s in [θ(s2), θ(s)] = 0 we arrive
at [θ(s2 + s), θ(1)] = 0, and then repeating the same substitution we get
that [θ(s), θ(1)] = 0 for all s ∈ S. But then, since deg(A′) > 2, applying
Theorem 2.2 again (or just referring to the standard theory of rings with
involution) we infer that θ(1) is central.

Suppose that λ = 0. Then, since θ is Fs-linear, it follows that θ(s2 −
µ(s)s) ∈ Fs, which in turn implies, again using the Fs-linearity of θ together
with θ(1) ∈ Fs, that (s−µ(s))s ∈ Fs for all s ∈ S. Since deg(A) is assumed
to be > 4, Theorem 2.3 yields s−µ(s) = 0, which contradicts the assumption
deg(A) > 2. Therefore, λ 6= 0.

Now define ϕ : S → S′ by

ϕ(s) = λθ(s) +
1
2
µ(s), s ∈ S.
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Using (1) one can check that ϕ(s2) − ϕ(s)2 ∈ F for all s ∈ S. Hence
ϕ(s ◦ t) = ϕ(s) ◦ ϕ(t) + τ(s, t) for all s, t ∈ S, where s ◦ t = st + ts and
τ(s, t) ∈ F . Since (s ◦ s) ◦ (s ◦ s) = {(s ◦ s) ◦ s} ◦ s for all s ∈ S, we have

0 = ϕ([(s ◦ s) ◦ (s ◦ s)− {(s ◦ s) ◦ s} ◦ s])
= {ϕ(s) ◦ ϕ(s) + τ(s, s)} ◦ {ϕ(s) ◦ ϕ(s) + τ(s, s)}+ τ(s ◦ s, s ◦ s)
− {{ϕ(s) ◦ ϕ(s) + τ(s, s)} ◦ ϕ(s) + τ(s ◦ s, s)} ◦ ϕ(s) + τ({s ◦ s} ◦ s, s)

= 4τ(s, s)ϕ(s)2 − 4τ(s2, s)ϕ(s) + 2τ(s, s)2 + 4τ(s2, s2)− 4τ(s3, s)

for all s ∈ S. Substituting λθ(s) + 1
2µ(s) for ϕ(s) we see that

[λτ(s, s)θ(s)− (τ(s2, s)− τ(s, s)µ(s))]θ(s) ∈ F

for all s ∈ S. Using Theorem 2.3 twice we conclude that τ(s, s) = 0 for all
s ∈ S and so ϕ is a Jordan homomorphism. Let us show that ϕ is bijective.
Basically we shall just repeat arguments given at the end of the proof of
[10, Theorem 2]. Suppose that ϕ(s) = 0. Then θ(s) = − 1

2λµ(s) ∈ F . Since
0 6= θ(1) ∈ Fs, θ(Fs) = Fs, and so s ∈ Fs. Therefore the linearity of ϕ
implies that ϕ(1) = 0. Since ϕ is a Jordan homomorphism, this yields

2ϕ(t) = ϕ(1 ◦ t) = ϕ(1) ◦ ϕ(t) = 0 for all t ∈ S

forcing θ(S) ⊆ Fs and so S′ = Fs, a contradiction. Hence ϕ is injective.
Further, 2ϕ(1) = ϕ(1) ◦ ϕ(1) and ϕ(1) ∈ Fs together yield that ϕ(1) = 1.
Since ϕ is linear, ϕ(σ) = σ for all σ ∈ Fs. It is now straightforward to
check that θ(s) = ϕ(λ−1s − 1

2λ
−1µ(s)) for all s ∈ S and so ϕ is a Jordan

isomorphism of S onto S′. Now it follows from [17] (see also [21, 22]) that
ϕ can be extended to a surjective ∗-linear homomorphism (which we also
denote by ϕ) of associative Fs-algebras 〈S〉 and 〈S′〉. If I = ker(ϕ), then
I∗ = I and I ∩ S = 0. Therefore x∗ + x ∈ I ∩ S = 0 for all x ∈ I and so
x2 ∈ I ∩ S = 0 for all x ∈ I. On the other hand, the ring 〈S〉 is prime [18,
Theorem 3.4], and so I = 0. That is, ϕ is an isomorphism.

Let us finally mention that the bound deg(A′) > 8 in the theorem is not
the best possible. For example, one can lower it to deg(A′) > 6 arguing
similarly as in the proof [10, Theorem 2]. However, this makes the proof
considerably longer.

4. Normal-preservers: The case of involution of the second kind.

Theorem 4.1. Let A be A′ be centrally closed prime algebras over a field F
with involution of the second kind. Suppose that deg(A) > 2, deg(A′) > 2,
and that char(F ) 6= 2, 3. Let θ : A→ A′ be a bijective F -linear map with the
property that θ(x) is normal whenever x ∈ A is normal. Then θ is of the
form θ(x) = αφ(x) + β(x) where α ∈ F , α 6= 0, β : A → F is a linear map
and φ is either a ∗-isomorphism or a ∗-antiisomorphism of A onto A′.
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Proof. Let ε ∈ F be such that ε∗ = −ε. Then A = S + εS.
First we show that θ(1) ∈ F , that is, that θ(1) is a central element in A′.

Since s + λ is a normal element for every s ∈ S and λ ∈ F , it follows that
θ(s+λ) = θ(s) +λθ(1) is normal, that is, [θ(s) +λθ(1), θ(s)∗+λ∗θ(1)∗] = 0
and hence λ[θ(1), θ(s)∗] + λ∗[θ(s), θ(1)∗] = 0. First setting λ = 1 and then
λ = ε it follows that [θ(1), θ(s)∗] = 0, which in turn implies that θ(1) is
central for A = S + εS and θ is bijective.

Next, s2 + λs is normal for s ∈ S and λ ∈ F , and so θ(s2) + λθ(s) is
normal which implies that [θ(s2), θ(s)∗] = 0. Linearizing we get

[θ(s2), θ(t)∗] + [θ(s ◦ t), θ(s)∗] = 0 for all s, t ∈ S.
Again using A = S + εS it follows easily that [θ(x2), θ(x∗)∗] = 0 for all
x ∈ A. Replacing x by x+1 and using the fact that θ(1) is central it follows
that [θ(x), θ(x∗)∗] = 0 for all x ∈ A. Now, using Theorem 2.1 we see that
there is τ ∈ F and a map ζ : A→ F such that θ(x∗)∗ = τθ(x)+ζ(x), x ∈ A.
Of course, τ 6= 0 for otherwise A′ would be commutative, contrary to the
assumption. Consequently, [θ(x2), θ(x)] = 0 for all x ∈ A. Thus, all the
requirements of [10, Theorem 2] are fulfilled, and so it follows that θ is of
the form θ(x) = αφ(x)+β(x) where α ∈ F , α 6= 0, β is a linear map from A
into the center of A′ and φ is either an isomorphism or an antiisomorphism
of A onto A′.

All it remains to show is that φ(x∗) = φ(x)∗, x ∈ A.
Assume that φ is an isomorphism. Then ψ(x) = φ(x∗)∗ also defines an

isomorphism. We want to show that φ = ψ. We have

α∗ψ(x) + β(x∗)∗ = θ(x∗)∗ = τθ(x) + ζ(x) = ταφ(x) + τβ(x) + ζ(x).

Since α 6= 0 and τ 6= 0 it follows that ν(x) = ψ(x) − γφ(x) ∈ F for every
x ∈ A, where γ = ατ

α∗ is a nonzero element in F . Whence

ν(xy) = ψ(x)ψ(y)− γφ(x)φ(y) = ν(x)ψ(y) + γφ(x)(ψ(y)− φ(y)).

Commuting this expression with ψ(y) it follows, since γ 6= 0 and ψ(y)−φ(y)
commutes with ψ(y), that [φ(x), ψ(y)](ψ(y) − φ(y)) = 0 for all x, y ∈ A.
Replacing x by xz we get at once that [A′, ψ(y)]A′(ψ(y) − φ(y)) = 0 for
every y ∈ A. Since A′ is prime this shows that given y ∈ A, either ψ(y) is
central or ψ(y) = φ(y). Since a group cannot be the union of two proper
subgroups and since A′ is noncommutative, it follows that ψ(y) = φ(y) for
all y ∈ A. Similarly we discuss the case when φ is an antiisomorphism.

5. Normal-preservers: The case of involution of the first kind.

Theorem 5.1. Let A be A′ be centrally closed prime algebras over a field F
with involution of the first kind. Suppose that deg(A) > 6, deg(A′) > 13 and
char(F ) 6= 2, 3. Further, let θ : A→ A′ be a bijective ∗-linear map with the
property that θ(x) is normal whenever x ∈ A is normal. Then there exist
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µ1, µ2 ∈ F , µ1 6= ±µ2, a linear map ω : 〈K〉 → F , and a ∗-isomorphism ψ
of 〈K〉 onto 〈K ′〉 such that θ(x) = ψ(µ1x+µ2x

∗)+ω(x+x∗) for all x ∈ 〈K〉.
First note that, since θ is ∗-linear, the condition that θ maps normal

elements into normal elements is equivalent to the condition that θ(s) and
θ(k) commute whenever s ∈ S and k ∈ K commute. In particular, for any
k ∈ K, k2 is a symmetric element commuting with skew elements k and k3,
so that [θ(k2), θ(k)] = 0 and [θ(k2), θ(k3)] = 0. One can note from the proof
that this is essentially all that we need; more precisely, in the theorem we
could replace the condition that θ preserves normal elements by a milder
condition that θ satisfies these two identities and that θ(F ) = F .

The proof of Theorem 5.1 is broken up into a series of lemmas. We begin
with:

Lemma 5.2. There exists λ0 6= 0 in F such that the map φ = λ0θ satisfies
φ(k2)− φ(k)2 ∈ F for all k ∈ K.

Proof. As already observed, [θ(k), θ(k2)] = 0 for all k ∈ K. But then it fol-
lows from Theorem 2.2 that there exist λ0 ∈ F and a linear map µ0 : K → F
such that θ(k2)− λ0θ(k)2 − µ0(k)θ(k) ∈ F for every k ∈ K. However, since
θ is ∗-linear and ∗ is of the first kind, µ0 must be zero. Hence we see that
φ = λ0θ indeed satisfies φ(k2) − φ(k)2 ∈ F , k ∈ K. Finally, assuming that
λ0 is zero we arrive at θ(k2) ∈ F ; however, θ(F ) = F for θ(1) ∈ F (namely,
θ(1) commutes with K ′ = θ(K) and deg(A′) > 2 — cf. the proof of Theo-
rem 2.2), and so k2 lies in F for every k ∈ K. But Theorem 2.3 tells us that
this is impossible. The lemma is thereby proved.

Of course, φ has the same properties as θ, that is, it is ∗-linear, bijective
and preserves normal elements.

Define ε : K ×K → F by

ε(k, l) =
1
2
{φ(k ◦ l)− φ(k) ◦ φ(l)}.(2)

Clearly, ε is a bilinear symmetric map.

Lemma 5.3. There exist λ 6= 0 in F and a symmetric bilinear map µ :
K ×K → F such that

φ(klk) = λφ(k)φ(l)φ(k) + µ(k, l)φ(k)

for all k, l ∈ K.

Proof. If k ∈ K, then k2 ∈ S and k3 ∈ K, so that [φ(k3), φ(k2)] = 0.
However, φ(k2) = φ(k)2 + ε(k, k) and so [φ(k3), φ(k)2] = 0 for every k ∈ K.
Since deg(A′) > 10, Theorem 2.2, together with the fact that φ is ∗-linear
and ∗ is of the first kind, shows that there are λ ∈ F and a symmetric
bilinear map µ : K ×K → F such that

φ(k3) = λφ(k)3 + µ(k, k)φ(k) for all k ∈ K.(3)
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Note that λ = 0 yields k3 = µ(k, k)k which is, since deg(A) > 6, impossible
by Theorem 2.3. Thus, λ 6= 0.

Linearizing (3) we get

φ(k2l + klk + lk2) = λ{φ(k)2φ(l) + φ(k)φ(l)φ(k) + φ(l)φ(k)2}(4)

+ µ(k, k)φ(l) + 2µ(k, l)φ(k).

Next we compute φ(k2lk + klk2) in two different ways. First using (2) we
get

2φ(k2lk + klk2)

= φ(k ◦ {k2 ◦ l + klk})− φ(k3 ◦ l)
= φ(k) ◦ φ(k2 ◦ l + klk) + 2ε(k, k2 ◦ l + klk)− φ(k3) ◦ φ(l)− 2ε(k3, l),

so that

2φ(k2lk + klk2)− φ(k)φ(k2l + klk + lk2)

− φ(k2l + klk + lk2)φ(k) + φ(k3)φ(l) + φ(l)φ(k3) ∈ F.

Applying (3) and (4) it follows that

2φ(k2lk + klk2)

− φ(k){λφ(k)2φ(l) + λφ(k)φ(l)φ(k) + λφ(l)φ(k)2

+ µ(k, k)φ(l) + 2µ(k, l)φ(k)}
− {λφ(k)2φ(l) + λφ(k)φ(l)φ(k) + λφ(l)φ(k)2

+ µ(k, k)φ(l) + 2µ(k, l)φ(k)}φ(k)

+ {λφ(k)3 + µ(k, k)φ(k)}φ(l) + φ(l){λφ(k)3 + µ(k, k)φ(k)} ∈ F,

and hence

φ(k2lk + klk2)− λ(φ(k)2φ(l)φ(k) + φ(k)φ(l)φ(k)2)− 2µ(k, l)φ(k)2 ∈ F.

On the other hand, (2) implies that

φ(k2lk + klk2) = φ(k ◦ {klk}) = φ(k) ◦ φ(klk) + 2ε(k, klk).

Comparing we obtain

φ(k) ◦ {φ(klk)− λφ(k)φ(l)φ(k)− µ(k, l)φ(k)} ∈ F

for all k, l ∈ K. According to the statement (ii) of Theorem 2.2 we must
then have φ(klk)− λφ(k)φ(l)φ(k)− µ(k, l)φ(k) = 0 for all k, l ∈ K, and the
lemma is proved.
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We shall need the conclusion of Lemma 5.3 in the following form

φ(k1lk2 + k2lk1) = λ{φ(k1)φ(l)φ(k2) + φ(k2)φ(l)φ(k1)}(5)

+ µ(k1, l)φ(k2) + µ(k2, l)φ(k1)

for all k1, k2, l ∈ K.

Lemma 5.4. µ(k, l) = 0 for all k, l ∈ K.

Proof. The proof is based on computing φ(kl1kl2k+ kl2kl1k), where k, l1, l2
are arbitrary elements in K, in two different ways. First, applying (5) we
get

φ(kl1kl2k + kl2kl1k)

= φ((kl1k)l2k + kl2(kl1k))

= λ{φ(kl1k)φ(l2)φ(k) + φ(k)φ(l2)φ(kl1k)}+ µ(kl1k, l2)φ(k)

+ µ(k, l2)φ(kl1k)

= λ2{φ(k)φ(l1)φ(k)φ(l2)φ(k) + φ(k)φ(l2)φ(k)φ(l1)φ(k)}
+ 2λµ(k, l1)φ(k)φ(l2)φ(k) + λµ(k, l2)φ(k)φ(l1)φ(k)

+ {µ(kl1k, l2) + µ(k, l2)µ(k, l1)}φ(k).

However, l1 and l2 appear symmetrically in the expression kl1kl2k+kl2kl1k
and so, on the other hand, we must have

φ(kl1kl2k + kl2kl1k)

= λ2{φ(k)φ(l2)φ(k)φ(l1)φ(k) + φ(k)φ(l1)φ(k)φ(l2)φ(k)}
+ 2λµ(k, l2)φ(k)φ(l1)φ(k) + λµ(k, l1)φ(k)φ(l2)φ(k)

+ {µ(kl2k, l1) + µ(k, l1)µ(k, l2)}φ(k).

Comparing both relations we obtain

λφ(k){µ(k, l2)φ(l1)− µ(k, l1)φ(l2)}φ(k) = {µ(kl1k, l2)− µ(kl2k, l1)}φ(k)

for all k, l1, l2 ∈ K. Now using Theorem 2.3 twice it follows that

µ(k, l2)φ(l1)− µ(k, l1)φ(l2) = 0 for all k, l1, l2 ∈ K,

which readily implies the assertion of the lemma.

Thus, (5) now reduces to

φ(k1lk2 + l2kl1) = λ{φ(k1)φ(l)φ(k2) + φ(k2)φ(l)φ(k1)}.(6)
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Lemma 5.5. There exists ρ ∈ F such that ρ2 = λ and φ([k, l]) =
ρ[φ(k), φ(l)] for all k, l ∈ K.

Proof. We have arrived at the situation when Theorem 2.4 can be applied.
Taking a polynomial f to be f(x1, x2, x3) = x1x2x3 + x3x2x1 and a map
B to be equal to B(k, l) = φ([k, l]), we see, by making use of (6), that
all the conditions of this theorem are fulfilled (this is the place when the
condition deg(A′) > 13 is used). It follows that there exists ρ ∈ F such
that φ([k, l]) − ρ[φ(k), φ(l)] ∈ F for all k, l ∈ K; however, since ∗ is of the
first kind, this clearly yields φ([k, l]) = ρ[φ(k), φ(l)]. It remains to show that
ρ2 = λ. We have

φ([[k1, k2], k3]) = ρ[φ([k1, k2]), φ(k3)] = ρ2[[φ(k1), φ(k2)], φ(k3)].

On the other hand, using (6), we get

φ([[k1, k2], k3]) = φ(k1k2k3 + k3k2k1)− φ(k2k1k3 + k3k1k2)

= λ[[φ(k1), φ(k2)], φ(k3)].

Whence (ρ2 − λ)[[K ′,K ′],K ′] = 0. Suppose that [[K ′,K ′],K ′] = 0. Then
applying [8, Theorem 9.1.13] we get that deg(A′) ≤ 2, a contradiction.
Therefore ρ2 = λ and the lemma is proved.

Lemma 5.6. There exist a ∗-isomorphism ψ of an algebra 〈K〉 onto an
algebra 〈K ′〉 and a linear map τ : K ◦K → F such that ψ(k) = ρφ(k) for
all k ∈ K and ψ(s) = λφ(s)− τ(s) for all s ∈ K ◦K.

Proof. We first define ψ on K by ψ(k) = ρφ(k), k ∈ K. Since φ = λ0θ and
θ is a ∗-linear map, ψ(K) = θ(K) = K ′. It follows from Lemmas 5.3, 5.4
and 5.5 together that

ψ([k, l]) = [ψ(k), ψ(l)] and ψ(k3) = ψ(k)3 for all k, l ∈ K.(7)

Now both (7) and [8, Lemma 9.4.5] imply that ψ can be uniquely extended
to an isomorphism (which we also denote by ψ) of associative rings 〈K〉 and
〈K ′〉. Since ψ|K is a linear map and K generates 〈K〉, ψ is an isomorphism
of algebras. Clearly

ψ(K) = K ′ and ψ(K ◦K) = ψ(K) ◦ ψ(K) = K ′ ◦K ′.(8)
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According to [8, Lemma 9.1.5], 〈K〉 = K + K ◦ K and 〈K ′〉 = K ′ + K ′ ◦
K ′. Obviously K (respectively, K ◦ K) is the set of skew (respectively,
symmetric) elements of the algebra 〈K〉. It now follows from (8) that ψ is
a ∗-isomorphism.

Now define a linear map τ on K ◦K by τ(s) = λφ(s) − ψ(s). We claim
that τ(s) lies in F for any s ∈ K ◦K. Indeed, clearly the vector space K ◦K
is spanned by the set {k2 | k ∈ K}. Given k ∈ K, we have

τ(k2) = λφ(k2)− ψ(k2) = λφ(k2)− ψ(k)2

= λφ(k2)− {ρφ(k)}2 = λ{φ(k2)− φ(k)2} ∈ F

by Lemma 5.2 which proves our claim.

Finally, invoking the definition of φ we see from Lemma 5.6 that for any
x ∈ 〈K〉 we have

θ(x) = λ0φ(x) =
λ0

2
φ(x− x∗) +

λ0

2
φ(x+ x∗)

=
λ0ρ

−1

2
ψ(x− x∗) +

λ0λ
−1

2
ψ(x+ x∗) +

λ0λ
−1

2
τ(x+ x∗).

Now set µ1 = 1
2λ0(λ−1 + ρ−1), µ2 = 1

2λ0(λ−1 − ρ−1), ω(x− x∗) = 0, ω(x+
x∗) = 1

2λ0λ
−1τ(x+ x∗) and note that the desired conclusion holds true.
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FLOW EQUIVALENCE OF SHIFTS OF FINITE TYPE VIA
POSITIVE FACTORIZATIONS

Mike Boyle

Together with M. Boyle and D. Huang (2000), this paper
gives an alternate development of the Huang classification of
shifts of finite type up to flow equivalence, and provides ad-
ditional functorial information, used to analyze the action of
the mapping class group of the mapping torus of a shift of fi-
nite type on the “isotopy futures” group, which is introduced
here. For a shift of finite type σA, this group is isomorphic to
the Bowen-Franks group cok(I−A). The action on the isotopy
futures group of a subshift is the flow equivalence analogue of
the dimension group representation.

1. Introduction.

Shifts of finite type (SFTs) are the fundamental building blocks of sym-
bolic dynamics, with applications to hyperbolic dynamics, ergodic theory,
topological dynamics, matrix theory and other areas [Bow, DGS, Ki, LM,
Rob, S]. Any SFT is conjugate to an SFT σA defined by a matrix A with
nonnegative integer entries. A fundamental question about SFTs, when are
they flow equivalent, is important also for the study of certain C∗-algebras
[C, CK, H2, H3, R]. This question was solved in the irreducible case by
Franks [F], extending earlier work of Parry and Sullivan [PS] and Bowen and
Franks [BowF], and then in the general case by Huang [H4, H5], following
earlier work on more tractable special cases [H1, H3]. Huang [H4, H5] de-
veloped complete algebraic invariants (defined in terms of the given matrix
A) for flow equivalence of SFTs.

This paper has three main features.
(1) Taken together with [BH], the paper gives a self-contained alternate

development of the Huang classification of SFTs up to flow equiva-
lence. This development separates algebraic and positivity issues, and
provides additional functorial information.

(2) We introduce the isotopy futures group FS of the mapping torus YS of
a subshift S, and when S is an SFT σA we construct an isomorphism of
FS and the Bowen-Franks group cok(I −A), and analyze the induced
action of the mapping class group of YS on FS .

273
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(3) We integrate the study of flow equivalence of SFTs into the “positive
K-theory” framework for classification problems in symbolic dynamics.

We now discuss these features in more detail.
1. To study reducible SFTs, we work with certain infinite block trian-

gular integral matrices with block rows and columns indexed by a finite
poset P: If i � j in P, then the ij block of the matrix must be zero. The
elements of P, and their ordering, correspond to the irreducible compo-
nents of the SFT, and their asymptotic transitions; the isomorphism class
of the poset P is an invariant of flow equivalence. We say two such matrices
B,B′ are SLP(Z) equivalent if there are matrices U, V satisfying the same
zero-subblock conditions, and with all diagonal blocks having determinant
1, such that UBV = B′. After fixing a choice of P, and allowing a per-
mutation of P, we show that A,A′ define flow equivalent SFTs if and only
if the matrices I − A and I − A′ are SLP(Z) equivalent by an equivalence
which is “positive on cycle components”(a technical condition which may
be removed after reduction to a standard form, see Theorem 3.4). The key
to this result is the Factorization Theorem 3.3, which gives necessary and
sufficient conditions for an SLP(Z) equivalence to be a composition of “pos-
itive” elementary equivalences (which induce flow equivalences). Complete
algebraic invariants for SLP(Z) equivalence are contained in the joint work
[BH] with Danrun Huang. (The proofs in the current paper are very differ-
ent from those of Huang [H4, H5], but the algebraic sequel [BH] depends
completely on the ideas introduced by Huang in [H4, H5].)

In Huang’s development, the proofs involve creating positive matrix mod-
els realizing given isomorphisms of an associated “K-web” of exact sequences
of associated groups; the difficult positivity and algebraic issues are inter-
twined. By interposing the SLP(Z) equivalence relation between the SFTs
and the complicated K-web algebraic invariants, we separate the positivity
issues (which we address in this paper) from purely algebraic issues (which
are addressed in [BH]). This clarifies the meaning of the invariants and
the structure of the problem. It also facilitates the application of algebraic
results.

2. The analysis of the induced action on cok(I−A) uses the Factorization
Theorem 3.3 together with purely algebraic results from [BH] on SLP(Z)
equivalence. There is a plausible program (7.15) for extending these ideas
to obtain more information.

It seems to be nontrivial to construct a functor which attaches isomor-
phisms of Bowen-Franks groups to isotopy classes of flow equivalences of
SFTs. (For example, we do not know if it is possible to construct a ho-
momorphism from Ȟ1(YσA) onto the Bowen-Franks group cok(I − A) such
that the natural action of the mapping class group on Ȟ1(YσA) induces an
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automorphism of cok(I − A); and we suspect there is no such homomor-
phism.) An alternate approach using work of Badoian is discussed at the
end of Section 7. Another possible approach would be to extend ideas of
Bowen and Franks, who computed cok(I −A) as a relative homology group
in the context of basic sets of Smale flows ([BowF, F]).

3. In the framework of positiveK-theory (a term introduced by Wagoner),
some class of matrices A presents some category of dynamical system, and
multiplication of I − A by elementary matrices satisfying some positivity
condition induces isomorphisms of the system presented by A. This frame-
work was born in [KRW2, KRW3], where matrices over tZ+[t] presented
SFTs, and multiplication of I −A by certain elementary matrices over Z[t]
gave a completely new method of constructing topological conjugacies, which
allowed the solution of a difficult and important open problem. This frame-
work for SFT’s is developed or exploited further in [BW, B1, KR1, W2];
in the last reference [W2], the K-theory connection is more than a for-
mal analogy and gives new counterexamples to Williams’ shift equivalence
conjecture. In [G], the matrix entries lie in a certain ring of formal power
series, and the elementary matrix multiplications induce good finitary iso-
morphisms of Markov chains. In this paper and in [Ba1], the matrices have
integer (or zero-one) entries, and the elementary multiplications induce flow
equivalences. There is a passage from the topological conjugacy case to the
flow equivalence case by “setting t equal to 1” (applying the coinvariants
functor), as described in [B1]. The positive K-theory approach gives a uni-
fied and useful framework for classification problems in symbolic dynamics,
and we view this paper as a significant piece of the theory for the case of
flow equivalence of SFTs. It is possible that the methods of this paper may
be suggestive for the case of topological conjugacy of SFTs.

Some of our results on flow equivalence have alternate proofs based on
the work of Leslie Badoian [Ba1], who develops for irreducible SFTs a flow
equivalence theory analogous to the theory created by Wagoner for topolog-
ical conjugacies of SFTs. At the end of Section 7, we summarize the main
results of [Ba1], and discuss those alternate proofs.

Now some words on the structure of the paper. In Section 2 we give
some definitions and technical results necessary for the statement of the
main results in Section 3. The proof of the Factorization Theorem is carried
out in Sections 4-5 and the Appendix. Shifts of finite type and the relation
of flow equivalence to the matrix results are addressed in Section 6. The
isotopy futures group and connections to flow equivalence are studied in
Section 7. For the simple general statement of our Factorization Theorem for
matrices, we need preliminary technical arguments to reduce our matrices to
a nondegenerate form. These preliminaries are complicated, and we banish
them to the Appendix.
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The basic approach of this paper, and the Factorization Theorem in the
“no cycle components” case under additional technical assumptions since
removed, were announced in [B1].

I thank Danrun Huang for many helpful comments, and for a very satis-
fying collaboration in our sequel paper [BH]. Also, without his earlier work,
this paper would not exist.

2. Definitions.

2.1. Poset blocked matrices. For the rest of the paper, we let P =
{1, . . . , N} denote a finite poset (partially ordered set). We describe the
order with a relation ≺ satisfying the following conditions (in which < refers
to the usual order on N) for all i, j, k in P:

i ≺ j =⇒ i < j,

i ≺ j ≺ k =⇒ i ≺ k.

We write i � j to mean that i ≺ j or i = j. We can visualize the poset as
an acyclic directed graph with vertex set {1, . . . , N} and transitions i → j
iff i ≺ j.

We say that a matrix (or a block in a matrix) is square if its rows and
columns are indexed by the same set (which may be finite or countably
infinite). Suppose that n1, . . . , nN lie in the set {1, 2, . . . ,∞}. Let n =
(n1, . . . , nN ). We say a square matrix M is “n-blocked” if it splits into
blocks Mij , 1 ≤ i, j ≤ N , where Mij denotes the intersection of the ith block
row and the jth block column, and has size ni × nj . (We will also use the
notation M{i, j} to denote Mij .) Given an n-blocked matrix M , we let Ij
denote the set of indices for rows/columns through the block Mjj .

Definition 2.1. MP(n,Z) is the set of n-blocked matrices with entries in
Z satisfying the following conditions:

(1) For 1 ≤ i ≤ N , the block Mii equals the identity matrix in all but
finitely many entries.

(2) For 1 ≤ i, j ≤ N and i 6= j, the block Mij is zero in all but finitely
many entries.

(3) If i 6� j, then the block Mij is zero.

The matrices in the semiring MP(n,Z) are block upper triangular and in
addition certain blocks above the diagonal must be zero. MP(n,Z) is closed
under addition and (because ≺ is transitive) under matrix multiplication.

A nonnegative matrix A is irreducible if it is square with all entries non-
negative, and for every (i, j) there exists n > 0 such that An(i, j) > 0. (In
particular, for us a zero matrix is not irreducible.) A square matrix is essen-
tially irreducible if it has a unique principal submatrix which is irreducible
and which is contained in no larger irreducible principal submatrix.
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Definition 2.2. M◦
P,+(n,Z) is the set of n-blocked nonnegative integral

matrices with only finitely many nonzero entries, satisfying the following
conditions:

(1) Each diagonal block Mii is essentially irreducible.
(2) If i 6� j, then the block Mij is zero.
(3) If i ≺ j, then there is an index i′ occuring on a cycle of Mii and an

index j′ occuring on a cycle of Mjj and a positive integer n, such that
An(i′, j′) > 0.

Definition 2.3. SLP(n,Z) is the set of matrices M in MP(n,Z) such that
det(Mii) = 1 for 1 ≤ i ≤ N .

Abbreviations 2.4. MP(Z), M◦
P,+(Z) and SLP(Z) denote the sets

MP(n,Z), M◦
P,+(n,Z) and SLP(n,Z) for which n = (n1, . . . , nN ) with every

ni =∞. Whenever any such matrix family appears with no subscript P, it
means that P = {1} (the block structure is trivial).

We say two matrices B,B′ in MP(n,Z) are SLP(n,Z)-equivalent in
MP(n,Z) if there are matrices U, V in SLP(n,Z) such that UBV = B′,
and we write this as (U, V ) : B → B′. We say a matrix is a basic elementary
matrix if it equals the identity matrix except in at most one offdiagonal
entry. It is not difficult to check that SLP(n,Z) is a group under multipli-
cation which is generated by basic elementary matrices [BH]. Given n ≤ r,
we have natural truncation and embedding maps between n-blocked and
r-blocked matrices,

trun : MP(r,Z)→MP(n,Z),

ιr : MP(n,Z)→MP(r,Z).

The truncation map replaces an ij block with its ni × nj upper left corner.
The embedding map embeds an ij block as the upper left corner of an ij
block. If i 6= j, then the image ij block is zero outside this embedded left
corner; if i = j, it is the identity outside this left corner. We will use A∞ to
abbreviate ιn(A) in the case that every ni = ∞. We will also use trun, ιr
and A∞ for matrix families other than MP . The only potentially ambiguous
point, which should be clear from context, is whether the embedded block
corners should be extended as above with MP to match the identity matrix,
or should be extended to match the zero matrix (e.g., when the range is
M◦
P,+).

2.2. Positive equivalence. Suppose for some (i, j) that E is a basic el-
ementary matrix with offdiagonal entry E(i, j) = 1, A ∈ M◦

P,+(n,Z), and
A(i, j) > 0. Then we say that each of the equivalences

(E, I) : (I −A)→ E(I −A), (E−1, I) : E(I −A)→ (I −A),

(I, E) : (I −A)→ (I −A)E, (I, E−1) : (I −A)E → (I −A)
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is a basic positive equivalence in I −M◦
P,+(n,Z). Note, E ∈ SLP(n,Z). We

say that an SLP(n,Z) equivalence is a positive equivalence in I−M◦
P,+(n,Z)

if it is a composition of basic positive equivalences in I −M◦
P,+(n,Z).

To understand the meaning of a basic positive equivalence, suppose A ∈
M◦
P,+(n,Z) with A(i, j) > 0 and E is basic elementary matrix with offdiag-

onal entry E(i, j) = 1. We first discuss the case (E, I) : (I−A)→ E(I−A).
Define A′ by the requirement E(I − A) = (I − A′). Then A and A′ agree
except perhaps in row i, where

A′(i, k) = A(i, k) +A(j, k) if j 6= k, and

A′(i, j) = A(i, j) +A(j, j)− 1.

View A as the adjacency matrix of a directed graph GA with edge set EA
and vertex set given by the n1 + · · · + nN indices for the rows/columns of
A. (There can be edges joining only finitely many of those vertices.) We
can describe a directed graph GA′ which has A′ as its adjacency matrix as
follows. GA′ has the same vertex set as GA. Now pick an edge e which runs
from vertex i to vertex j in GA (e exists because by assumption A(i, j) > 0).
The edge set EA′ will be derived from EA as follows: Remove e from EA; and
then for every vertex k, for every edge f in EA from j to k add in a new
edge (named [ef ]) from i to k. It is easy to verify that with this edge set
EA′ , the directed graph GA′ has adjacency matrix A′.

With this notation, now define a map γ : EA′ → (EA)∗ by γ : f 7→ f and
γ : [ef ] 7→ ef . Then γ induces an injective map (also called γ), from the set
ΣA′ of biinfinite paths through GA′ to the set ΣA of biinfinite paths through
GA, sending x′ to x by the rule

γ : . . . x′−2x
′
−1|x′0x′1 . . . 7→ . . . γ(x′−2)γ(x

′
−1)|γ(x′0)γ(x′1) . . .

(in which the placement of the vertical bar indicates the indexing for x, e.g.,
x0x1 · · · = γ(x′0)γ(x

′
1) . . . ). Briefly: We get x from x′ by replacing each A′

edge [ef ] with ef .
The injective map γ : ΣA′ → ΣA is not surjective precisely because the

image will not contain points x for which x−1 = e (the image will contain the
shifted point σ−1x which is defined by (σ−1x)i = xi−1). However, although
γ is generally not a bijection, it does induce a bijection of orbits (under the
shift) in ΣA and ΣA′ . Also, γ induces a bijection of finite orbits: That is, γ
induces a bijection (also called γ) of cycles in GA and GA′ (which need not
respect the cycle length). If 1 ≤ t ≤ N and c is a cycle for the block Att,
then γ(c) is a cycle for A′tt, because if i and j are not indices for the same
component then γ is the identity on cycles. Also, if x in ΣA is backwardly
asymptotic (under the shift) to a cycle c and forwardly asymptotic to a cycle
c̃, then γ(x) is backwardly asymptotic to γ(c) and forwardly asymptotic to
γ(c̃). It follows that the matrix A′ satisfies the conditions of Definition 2.2
and lies in M◦

P,+(n,Z).
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The discussion of the case (I, E) : (I −A)→ (I −A)E = (I −A′) is much
the same. Let f be an A-edge from i to j. To form the A′ graph from the
A graph in this case, delete f , and add a new edge [ef ] for each edge e with
terminal vertex i. Then define γ as before.

The following lemma, fundamental to the sequel, is implicit in Franks’
paper [F].

Lemma 2.5. Suppose A ∈ M◦
P,+(n,Z), E is a basic elementary matrix in

SLP(n,Z) whose nonzero offdiagonal entry is E(i, j) = 1, and there is a
positive integer k such that Ak(i, j) > 0.

(1) If (E(I −A))(i, j) ≤ 0, then (E, I) : (I −A)→ E(I −A) is a positive
equivalence in I −M◦

P,+(n,Z).
(2) If ((I −A)E)(i, j) ≤ 0, then (I, E) : (I −A)→ (I −A)E is a positive

equivalence in I −M◦
P,+(n,Z).

Proof. We will consider the claim for the first equivalence (E, I); the other
case is similar. By assumption, there is a list i = i0, i1, . . . , ik = j (which we
take to be of minimal length, so the indices i0, i1, . . . , ik are distinct) such
that for 0 ≤ t < k we have A(it, it+1) > 0. If k = 1, then the equivalence is
a basic positive equivalence (and we know a basic positive equivalence takes
a matrix in I −M◦

P,+(n,Z) to a matrix in I −M◦
P,+(n,Z)). So suppose

k > 1. Let Ft be the elementary matrix whose which acts to add row it to
row i. Let F = Fk−1 . . . F1. Then we have basic positive equivalences

(I −A) → F1(I −A) → F2F1(I −A) → · · · → (Fk−1 · · ·F2F1)(I −A)

= F (I −A) → EF (I −A) → (Fk−1)−1EF (I −A)

→ · · · → (F1)−1 · · · (Fk−2)−1(Fk−1)−1EF (I −A)

= F−1EF (I −A) = E(I −A).

�

2.3. Cycle components. The technical discussion of this subsection is
only required for the case when the matrix A in M◦

P,+(n,Z) has a diag-
onal block whose maximal irreducible submatrix is a permutation matrix.

Lemma 2.6. Suppose A is an S ×S nonnegative integral matrix which has
as its unique irreducible submatrix a cyclic permutation matrix. Then the
cokernel group cok(I−A) = ZS/(I−A)ZS is isomorphic to Z. Let I denote
the set of indices involved in the cyclic permutation. Then the canonical
basis vectors satisfy the following conditions:

(1) [ei] is a generator of cok(I −A) if i ∈ I.
(2) [ei] = [ej ] if i and j are in I.
(3) [ei] = 0 if i /∈ I.
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Proof. (3) If i /∈ I, then for large n, Anei = 0, and ei = (I − An)ei =
(I −A)(I +A+ · · ·+An−1)ei. Then [ei] = 0 in cok(I −A).

(2) Let π denote the given permutation and suppose i and j are in I.
Then there exists n > 0 such that Anei = ej , so in cok(I − A) we have
[ei]− [ej ] = [ei − ej ] = [(I −An)ei] = 0.

(1) Clearly now, if i ∈ I, then [ei] generates cok(I − A). Also, because
det(I−A) = 0, Z is a subgroup of cok(I−A). Therefore cok(I−A) ∼= Z. �

For a matrix A satisfying the hypotheses of the lemma, we make cok(I−A)
an ordered group by declaring its positive set to be the collection of those
[w] such that (in the notation of the statement of the lemma)

∑
i∈I wi ≥ 0.

(This sum does not depend on the representative w of [w].) We say an
isomorphism between two such cokernel groups is positive if it takes the
positive set in the domain to the positive set in the range.

If A ∈ M◦
P,+(n,Z), then for 1 ≤ i ≤ N the diagonal block Aii contains

a unique maximal irreducible principal submatrix. If this matrix is a per-
mutation matrix, then we say that i is a cycle component of A. We let CA
denote the set of cycle components of A. For each i in CA, we make the
cokernel group

cok(I −A)ii = Zni/(I −A)iiZni ∼= Z
an ordered group as described above. For A and A′ in M◦

P,+(n,Z), if (U, V )
is an SLP(Z) equivalence from A to A′, then for 1 ≤ i ≤ N the equiv-
alence (U, V ) induces an SL(Z) equivalence (Uii, Vii) from Aii to A′ii, and
this induces an isomorphism from cok(I − A)ii to cok(I − A′)ii by the rule
[x] 7→ [Uiix]. We say that the SLP(Z) equivalence (U, V ) is positive on cy-
cle components if this induced isomorphism of the ith component cokernel
groups is positive whenever i is a cycle component for both A and A′. For
example, if

Aii = A′ii =
(

0 1
1 0

)
and Uii = Vii =

(
−1 0
0 −1

)
,

then (U, V ) is not positive on cycle components.

Proposition 2.7. Suppose (U, V ) is a positive SLP(n,Z) equivalence from
(I −A) to (I −A′) in I −M◦

P,+(n,Z). Then:
(1) A and A′ have the same cycle components, and
(2) (U, V ) is positive on cycle components.

Proof. It suffices to consider the case (U, V ) = (E, I) where E is a basic
elementary matrix with offdiagonal entry E(i1, j1) = 1 such that i1 and j1
index rows through Aii and i is a cycle component of A.

(1) It is clear from the earlier discussion on positive equivalence that the
ith component of A has a unique cycle iff the ith component of A′ has a
unique cycle.
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(2) For any canonical basis vector es, the vector Ees is nonnegative be-
cause E is nonnegative. It follows that (E, I) must be positive on compo-
nents. �

3. Statement of results.

In this section we state the main results (Theorem 3.1 and Theorem 3.3)
which do not involve the mapping class group. We also give Theorems 3.4
and 3.5, which clarify computational issues. The definition of flow equiv-
alence is given in Section 6, and all discussion of the mapping class group
results is deferred to Section 7.

We need a little more notation. Given P, we will use the same index set
IP , a disjoint union of countably infinite sets IPp , p ∈ P, for all matrices
with P × P blocking into infinite subblocks. Given finite posets P,P ′, let
Iso[P,P ′] be the set of poset isomorphisms from P to P ′. For each ν in
Iso[P,P ′], fix an infinite permutation matrix P = Pν such that

P (i, j) = 1 and j ∈ IPp ⇒ i ∈ IP ′

ν(p).

Informally, a block P{p, q} is zero if q 6= ν(p) and is the (infinite) identity
matrix if q = ν(p).

Theorem 3.1 (Classification Theorem). Suppose A is in M◦
P,+(Z) and A′

is in M◦
P ′,+(Z). The following are equivalent:

(1) The SFTs σA and σA′ are flow equivalent.
(2) For some ν ∈ Iso[P,P ′], with P = Pν : there exists a positive SLP(Z)

equivalence from (I −A) to (I − P−1A′P ) in I −M◦
P,+(Z).

(3) For some ν ∈ Iso[P,P ′], with P = Pν : A and P−1A′P have the same
cycle components, and there exists an SLP(Z) equivalence from (I−A)
to (I − P−1A′P ) which is positive on cycle components.

Remarks 3.2.
(1) There are only finitely many automorphisms ν : P → P ′, and they are

easily computed. So, we can decide (3) in Theorem 3.1 if we can decide
it in the case where P = I and P = P ′.

(2) The content of Theorem 3.1 is contained in [H4, H5]. We will prove
the equivalence (1) ⇐⇒ (2) in Section 6. The implication (2) =⇒
(3) is trivial. The implication (3) =⇒ (2) follows from the main
contribution of this paper, which is the next theorem.

Theorem 3.3 (Factorization Theorem). Suppose A and A′ are in M◦
P,+(Z),

and (U, V ) : (I−A)→ (I−A′) is an SLP(Z) equivalence. The following are
equivalent:

(1) (U, V ) : (I − A) → (I − A′) is a positive SLP(Z) equivalence in I −
M◦
P,+(Z).
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(2) A and A′ have the same cycle components, and (U, V ) is positive on
cycle components.

Below, given a matrix A in any M◦
P,+(n,Z), we let A∞ denote its embed-

ding in M◦
P,+(Z).

Theorem 3.4. Suppose A and A′ are in M◦
P,+(n,Z), where n = (n1, . . . ,

nN ) and the following hold for 1 ≤ i ≤ N:

• ni = 1 ⇔ i is a cycle component of A ⇔ i is a cycle component of A′,
• ni = 1 or ni =∞.

Then the following are equivalent:

(1) There exists a positive SLP(Z) equivalence from (I−A∞) to (I−A′∞)
in I −M◦

P,+(Z).
(2) (I −A) and (I −A′) are SLP(n,Z) equivalent.

Proof of Theorem 3.4. (2) =⇒ (1) Suppose (U, V ) is the SLP(n,Z) equiv-
alence. If ni = 1, then Uii = Vii = 1 because {U, V } ⊂ SLP(n,Z).
So, the embeddings of U and V in SLP(Z) give an SLP(Z) equivalence
(I − A∞) → (I − A′∞) in I −M◦

P,+(Z) which is positive on cycle compo-
nents.

(1) =⇒ (2) This follows from Lemmas A.3 and A.7. �

The point of Theorem 3.4 is to give a flow equivalence criterion in terms
of just SLP(n,Z) equivalence (which is characterized in [BH]), without a
“positive on cycle components” condition. Given matrices A1 and A′1 in
M◦
P,+(n,Z), Lemmas A.1 and A.2 give us positive equivalences, from I−A1

to I −A and from I −A′1 to I −A′, such that A∞ and A′∞ are of the form
described in Theorem 3.4.

Theorem 3.5 ([BH]). Suppose B and B′ are matrices in MP(n,Z) such
that for each diagonal block in B or B′, the greatest common divisor of the
entries of the block is 1. Suppose n ≤ r, and let ι be the embedding of
MP(n,Z) into MP(r,Z).

Then B is SLP(n,Z) equivalent to B′ if and only if ιB is SLP(r,Z) equiv-
alent to ιB′.

Theorem 3.5, taken from the Stabilization result in [BH], reduces the
problem of SLP(Z) equivalence of the matrices (I − A) and (I − A′) in
Theorem 3.4 to an equivalence problem for finite matrices.

4. Factorization: The proof.

To begin, we describe a matrix class in which our positivity considerations
will be simplified.



FLOW EQUIVALENCE 283

Definition 4.1. Given a subset C of {1, . . . , N}, and a vector n with pos-
itive integer entries such that ni = 1 if i ∈ C, define M++

P (C,n,Z) to be the
set of n-blocked integral matrices M whose blocks Mij satisfy the following
conditions:
• Mii = 0 if i ∈ C,
• Mij = 0 if i 6= j and i 6≺ j,
• Mij > 0 otherwise.

(So, each block of M has all entries zero or all entries greater than zero,
Mii = 0 when i ∈ C, and otherwise Mij > 0 if and only if i � j. If
−M = I −A, then C is the set of cycle components of A.)

Definition 4.2. An elementary positive equivalence in M++
P (C,n,Z) is

an SLP(n,Z) equivalence (U, V ) : B → B′ = UBV such that {B,B′} ⊂
M++
P (C,n,Z); one of U, V equals Id; and the other is a basic elementary

matrix. A positive equivalence in M++
P (C,n,Z) is a composition of elemen-

tary positive equivalences in M++
P (C,n,Z). For such an equivalence (U, V ),

we use notations such as

(U, V ) : B −−−→
+

B′ or B
(U,V )−−−→

+
B′ or B −−−→

+
B′.

Observation 4.3. Suppose B = (A− I), B′ = (A′ − I) and

(U, V ) : B −−−→
+

B′.

Then (U, V ) : (I −A)→ (I −A′) is a positive equivalence in M◦
P,+(n,Z).

Outline of the proof. Now we can give an outline of the proof of the Factor-
ization Theorem (3.3), which we break into four steps.

Step 1 of the proof (“block positive reduction”) is to reduce it to proving
the following theorem:

Theorem 4.4. Suppose B = A− I and B′ = A′ − I, satisfying
• B and B′ are in M++

P (C,n,Z)
• (U, V ) : B → B′ is an SL(n,Z) equivalence
• if i /∈ C, then dim(ker(Aii)) ≥ 2.

Then
(U, V ) : B −−−→

+
B′.

Step 2 (“the positive case”) is to prove Theorem 4.4 in the case B and
B′ are positive (i.e., P = {1} and C = ∅). This step is the heart of the
proof and it is carried out in Section 5. This is the only step which uses the
condition dim(ker(Aii)) ≥ 2.

Step 3 (“the unipotent case”) is to prove Theorem 4.4 in the case that
U and V lie in UP(n,Z), where UP(n,Z) denotes the set of matrices M in
SLP(n,Z) such that Mii = I for all i in P.
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Step 4 (“the general case”) is to finish the proof of Theorem 4.4.

Step 1: Block positive reduction. We will accomplish this step by proving
the following proposition. Let CA = C denote the set of cycle components
of A. For each cycle component i, let Csec

i denote the set of indices for
rows/columns through Aii such that i does not lie on a cycle, and let Cprim

i
denote the set of indices i for rows/columns through Aii which lie on the
unique cycle in Aii. Let Cprim = ∪Cprim

i and Csec = ∪Csec
i .

Proposition 4.5. Suppose {A,A′} ⊂ M◦
P,+(n,Z); CA = CA′ = C; (U, V ) :

(I − A) → (I − A′) is an SLP(n,Z) equivalence which is positive on cycle
components; and n = (n1, . . . nN ) has positive integer entries. Then there is
a commuting diagram of SLP(n,Z) equivalences

(I −A) −−−→ (I −A)

(U,V )

y y(U,V )

(I −A′) −−−→ (I −A′)

such that:

(1) The horizontal arrows are positive SLP(n,Z) equivalences in
M◦
P,+(n,Z).

(2) For both A and A′, the principal submatrix indexed by the complement
of Csec is strictly positive wherever the P ordering permits a nonzero
entry, and in addition the diagonal blocks (A− I)tt and (A′ − I)tt are
strictly positive whenever t /∈ C.

(3) For both A and A
′, Cprim is the set of indices ` such that for some

i ∈ C, (`, `) indexes the upper left corner of the ii block.
(4) A(i, j) = A′(i, j) = 0 whenever {i, j} ∩ Csec 6= ∅.
(5) U(i, j) = V (i, j) = δij whenever {i, j} ∩ Csec 6= ∅.

For matrices A,A′ in M◦
P,+(n,Z), we say an SLP(n,Z) equivalence (U,V ) :

(I −A)→ (I −A′) is nondegenerate if it satisfies Conditions (2), (3), (4)
and (5) of Proposition 4.5. Note Condition (3) implies that A(`, `) = 1 if
` ∈ Cprim.

Let us see that Proposition 4.5 reduces the proof of (2) =⇒ (1) in the
Factorization Theorem 3.3 to the proof of Theorem 4.4. Given (I − A),
(I − A′) and (U, V ) satisfying (2) in the statement of Theorem 3.3, pick a
vector n with positive integer entries large enough that:

• For all i, j in P, the ij blocks of U, V, I −A and I −A′ agree with δijI
outside the upper left ni × nj corner, and
• if i /∈ C, then the upper left ni×ni corners of Aii and A′ii have kernels

of dimension at least two.
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Replace A,A′, U and V with their trunctations to n-blocked matrices. Then
it suffices to prove that (U, V ) : (I − A) → (I − A′) is a positive SL(n,Z)
equivalence in M◦

P,+(n,Z). To do this, first apply Proposition 4.5 to the
matrices U, V,A,A′. Then truncate the resulting U, V ,A,A′ by removing all
rows and columns indexed by Csec, and call the resulting matrices U, V,A,A′.
To finish the proof of the Factorization Theorem 3.3, it suffices to show
(U, V ) : (I − A) → (I − A′) is a positive equivalence, and this now follows
by an application of Theorem 4.4 and Observation 4.3.

We want Proposition 4.5 in order to have a completely general result about
factoring equivalences into positive equivalences, and in order to see the main
arguments more clearly in the less technical setting of M++

P (C,n,Z). Be-
cause the proof of Proposition 4.5 is tedious (almost entirely on account of
technicalities involving cycle components), we relegate the proof of Propo-
sition 4.5 to Appendix A.

Below, we use UP to denote UP(n,Z) and we use M++
P to denote M++

P (C,
n,Z). For i, j in P and B a matrix with a P-indexed block structure, we let
B{i, j} denote the ij block of B.

Step 2: The positive case. This is carried out in Section 5.

Step 3: The unipotent case.

Lemma 4.6. Suppose U and V are matrices in UP , B and B′ are in M++
P ,

and UBV = B′. Then

B
(U,V )−−−→

+
B′.

Proof. Write U as a product of matrices in UP , U = Un · · ·U1, where for
each Ut there is an associated pair (it, jt), such that the following hold:

• Ut = I, except in the block Ut{it, jt}, and
• if s 6= t, then (is, js) 6= (it, jt).

Note, whenever is is an immediate predecessor of js in P and B{is, is} = 0,
these conditions imply

(UsB){is, js} = B′{is, js}.(4.7)

We claim there are nonnegative matrices Q1, . . . , Qn in UP such that (with
Q = Q1 · · ·Qn)

B
(U1,Q1)−−−−−→

+
· (U2,Q2)−−−−−→

+
· · · (Un,Qn)−−−−−→

+
Un · · ·U1BQ1 · · ·Qn = UBQ.(4.8)

To show (4.8), first we will produce Q1 such that

B
(U1,Q1)−−−−−→

+
U1BQ1.
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Denote (i1, j1) as (i, j). Factor U1 as U1 = U−1 U
+
1 , where U−1 and U+

1 equal
I outside the {i, j} block, U+

1 {i, j} is the nonnegative part of U1{i, j}, and
U−1 {i, j} is the nonpositive part of U1{i, j}. Clearly

(U+
1 , I) : B −→

+
U+

1 B.

For U−1 there are two cases.

Case I: B{i, i} > 0. We have U−1 (U+
1 B) = U+

1 B outside blocks {i, k} such
that i ≺ j � k. Because (U+

1 B){i, i} = B{i, i} > 0, we can pick Q1 in
UP , with sufficiently large nonnegative entries in such blocks {i, k}, to put
U−1 (U+

1 B)Q1 into M++
P . Then

U+
1 B

(I,Q1)−−−−→
+

U+
1 BQ1

(U−
1 ,I)−−−−→
+

U−1 U
+
1 BQ1 = U1BQ1.

Case II: B{i, i} = 0. Again, U−1 (U+
1 B) = U+

1 B outside blocks {i, k} such
that i ≺ j � k. Because B{i, j} > 0, we can choose Q1 nonnegative in UP
such that for all k satisfying i ≺ j ≺ k, we have U−1 (U+

1 B)Q1{i, k} > 0. (A
positive entry in the block Q{j, k} acts here to add a multiple of a column
through the {i, j} block to a column in the {i, k} block.) If there is some
h such that i ≺ h ≺ j, then suitable positive entries in Q1{h, k} will also
achieve U−1 (U+

1 B)Q1{i, j} > 0. If there is no such h, then i is an immediate
predecessor of j in P, and by appeal to (4.7) we have(

U−1 (U+
1 B)Q1

)
{i, j} = (U1B){i, j}

= B′{i, j} > 0.

Therefore

U+
1 B

(I,Q1)−−−−→
+

U+
1 BQ1

(U−
1 ,I)−−−−→
+

U1BQ1

as required.
Thus in either case we have

B
(U1,Q1)−−−−−→

+
U1BQ1 ∈M++

P .

An easy induction on the argument gives (4.8), with

B
(U,Q)−−−→

+
UBQ ∈M++

P ,

with Q a product of nonnegative elementary matrices in UP . The transposed
argument gives a matrix P in UP such that P is a product of nonnegative
elementary matrices such that

B′
(P,V −1)−−−−−→

+
PB′V −1 ∈M++

P .
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Then

B
(U,Q)−−−→

+
UBQ

(P,I)−−−→
+

PUBQ = PB′V −1Q
(I,Q)←−−−

+
PB′V −1 (P,V −1)←−−−−−

+
B′

so

(P−1PU,QQ−1V ) = (U, V ) : B −→
+
B′

as required. �

Step 4: The general case.

Lemma 4.9. Suppose i /∈ C, E is a basic elementary matrix in SLP(n,Z),
E{j, k} = (Id){j, k} when (j, k) 6= (i, i), {B,B′} ⊂M++

P (C,n,Z) and

(E{i, i}, Id) : B{i, i} −→
+
B′{i, i}.

Then there exists V in UP such that

(E, V ) : B −→
+
B′.

Similarly, if

(Id, E{i, i}) : B{i, i} −→
+
B′{i, i}

then there exists U in UP such that

(U,E) : B −→
+
B′.

Proof. We will consider the equivalence (E, I), the other case is similar. Let
E(s, t) be the nonzero offdiagonal entry of E. If E(s, t) = 1, then set V = Id.
Now suppose E(s, t) = −1, so E acts from the the left to subtract row t
from row s. Then possibly there are nonpositive entries in blocks (EB){i, j}
where i ≺ j. To correct for this, pick r an index for a column through the
ii block; note that B(s, r) > B(t, r) because (EB){i, i} > 0 by assumption;
consider a positive integer M ; and let V be the matrix in UP which acts
from the right to add column r to column q, M times, for every q indexing
a column through an ij block for which i ≺ j. For these q,

(EBV )(s, q) = M(B(s, r)−B(t, r)) +B(s, q)−B(t, q).

So, if M is large enough, then this gives

B
(I,V )−−−→

+
BV

(E,I)−−−→
+

EBV

as required. �
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Proof of the general case. Now let (U, V ) : B → B′ be the SLP(n,Z) equiv-
alence, with {B,B′} ⊂ M++

P (C,n,Z). By Step 2 (Theorem 5.1), for each
i ∈ P \ C, we have

(U{i, i}, V {i, i}) : B{i, i} −→
+
B′{i, i}.

So, we may find a string of elementary equivalences, say (E1, F1), . . . (Et, Ft),
with every Et{i, j} = Ft{i, j} = (Id){i, j} unless i = j /∈ C, which accom-
plishes the elementary positive equivalence decomposition inside the diago-
nal blocks. By Lemma 4.9, we may find (U1, V1), . . . , (Ut, Vt) with each Us
and Vs in UP , such that

B
(U1,F1)−−−−→

+
· (E1,V1)−−−−→

+
· · · (Ut,Ft)−−−−→

+
· (Et,Vt)−−−−→

+
B′′.

Let X = EtUt · · ·E2U2E1U1. Let Y = F1V1F2V2 · · ·FtVt. Then for all i in
P, X{i, i} = U{i, i} and Y {i, i} = V {i, i}, so UX−1 ∈ UP and Y −1V ∈ UP .
It follows from Step 3 (Lemma 4.6) that

B′′
(UX−1,Y −1V )−−−−−−−−−→

+
B′.

Thus (U, V ) : B → B′ is the composition

B
(X,Y )−−−→

+
B′′

(UX−1,Y −1V )−−−−−−−−−→
+

B′

and this finishes the proof. �

5. Factorization: The positive case.

In this section, all matrices are K ×K, where K is a positive integer and
K > 1. We let M+ denote the set of K ×K matrices with strictly positive
integer entries.

We say an equivalence (U, V ) : B → B′ is a positive equivalence through
M+ if it can be given as a chain of positive elementary equivalences

B = B0 → B1 → B2 → · · · → Bn = B′

in which every Bi is in M+.
The purpose of this section is to prove the following theorem.

Theorem 5.1. Suppose U and V are in SL(K,Z), and B and UBV are
in M+. Suppose also that B is SL(K,Z) equivalent to a diagonal matrix in
which at least two entries equal 1.

Then (U, V ) : B → UBV is a positive equivalence through M+.

Remark 5.2. The “two entries” technical assumption may be excessive,
but is harmless for our applications. Except for the final argument which
addresses the possibility that UB is nonpositive, we only use the weaker
assumption that B has rank greater than one.
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The proof of Theorem 5.1 rests on three lemmas. We begin the prepara-
tions.

By a signed transposition matrix, we mean a matrix which is the matrix
of a transposition, but with one of the off-diagonal 1’s replaced by -1. By
a signed permutation matrix we mean a product of signed transposition
matrices. Since K > 1, any K ×K permutation matrix with determinant 1
is a signed permutation matrix. A K ×K matrix S is a signed permutation
matrix if and only if detS = 1 and the matrix |S| is a permutation matrix
(where |S|(i, j) := |S(i, j)|).

Lemma 5.3. Suppose B ∈M+, E is a basic elementary matrix with non-
zero offdiagonal entry E(i, j), and the ith row of EB is not the zero row.

Then in SL(K,Z) there are a nonnegative matrix Q and a signed permu-
tation matrix S such that (SE,Q) : B → SEBQ is a positive equivalence
through M+.

Proof. If E(i, j) = 1, then let Q = I = S. Now suppose E(i, j) = −1, so E
acts from the left by subtracting row j from row i, and the rows i and j of
B are not equal.

Case I: For some k, B(i, k) > B(j, k).
Here we may repeatedly add column k of B to other columns, until we

have a matrix B′ with B′(i,m) > B′(j,m) for all m. This B′ is BQ for
some Q which is a product of nonnegative basic elementary matrices. Now
(E,Q) : B → EBQ is the composition of positive equivalences, (I,Q) : B →
BQ followed by (E, I) : BQ→ EBQ. Let S = I.

Case II: For every k, B(i, k) ≤ B(j, k).
Because the rows i and j of B are not equal, after multiplying from the

right by a suitable Q we can assume in this Case that 0 < B(i, k) < B(j, k)
for all k. Now (I,Q) : B → BQ in M+, so for notational simplicity from
here we may assume Q = I.

For concreteness of notation, let (i, j) = (1, 2). For the rest of this Case,
for simplicity we will restrict what we write to these two rows, e.g.,

E =
(

1 −1
0 1

)
and B =

(
B1

B2

)
,

where B1 and B2 denote the first and second rows of B, and we have B1 <

B2. Let S =
(

0 1
−1 0

)
. Then

(SE)B =
(

0 1
−1 1

)(
B1

B2

)
=
(

B2

B2 −B1

)
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and the latter matrix is positive. Let E′ =
(

1 1
0 1

)
and let E′′ =

(
1 0
−1 1

)
,

then

SE =
(

0 1
−1 1

)
= E′E′′.

Now (E′′, I) : B → E′′B is a positive equivalence in M+, since row 2 of B
is positive and greater than row 1; and (E′, I) : E′′B → E′E′′B is also a
positive equivalence in M+. �

Lemma 5.4. Suppose B is a K ×K integral matrix of rank at least 2, and
U is in SL(K,Z), and no row of B or UB is the zero row. Then U is the
product of basic elementary matrices, U = Ek · · ·E1, such that for 1 ≤ j ≤ k
the matrix EjEj−1 · · ·E1B has no zero row.

Proof. Without loss of generality, assume K ≥ 3 and U is not the identity.
Let E(i) denote the set of integral matrices which equal I both on the diag-
onal and outside of row i. Let U be the set of factorizations U = Un · · ·U1

such that for 1 ≤ h ≤ n, the matrix Uh is not the identity and there is an
index ih such that Uh ∈ E(ih). Given such a factorization U = Un · · ·U1, let

z = #{h : 1 ≤ h ≤ n and row ih of Uh · · ·U1B is the zero row}.

Step 1. We will produce an element of U for which z = 0.
By induction, it suffices to begin with a factorization U = Un · · ·U1 from

U for which z > 0, and produce another factorization from U with reduced
z. Pick s minimal such that row is of Us · · ·U1B is zero, and let t be minimal
such that t > s and it = is. (This t exists because row is of UB is nonzero.)
We will change the factorization by replacing the subword Ut · · ·Us with a
suitable word U ′T · · ·U ′s, to be defined recursively.

First pick js 6= is such that row js of Us−1 · · ·U1B is nonzero (Us−1 · · ·U1B
just denotes B in the case that s = 1). Choose Fs an elementary matrix
which acts to add a multiple of row js to row is, such that (for notational
simplicity) F−1

s Us 6= I. Define U ′s = F−1
s Us ∈ E(is). Now Ut · · ·Us =

Ut · · ·Us+1FsU
′
s and row is of U ′sUs−1 · · ·U1B is not zero.

Now we give the recursive step. Suppose s < m ≤ t and we have produced
Ut · · ·Fm−1U

′
r · · ·U ′s = Ut · · ·Us such that there is a nonzero integer cm−1

and an index jm−1 6= is such that Fm−1(is, jm−1) = cm−1 and otherwise
Fm−1 = I. We will replace UmFm−1 with new terms. There are three cases.

Case 1: m < t and jm−1 6= im. Set Fm = Fm−1 and U ′r+1 = F−1
m UmFm.

For example, if K = 3 and (is, im, jm−1) = (1, 2, 3), then we would have for
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some a, b, c that

U ′r+1 = F−1
m UmFm =

 1 0 0
0 1 0
−c 0 1

1 0 0
a 1 b
0 0 1

1 0 0
0 1 0
c 0 1


=

 1 0 0
0 1 0
−c 0 1

 1 0 0
a+ bc 1 b
c 0 1

 =

 1 0 0
a+ bc 1 b

0 0 1

 .

Now U ′r+1 ∈ E(im) and FmU ′r+1 = UmFm−1 and row im of U ′r+1U
′
r · · ·U ′sUs−1

· · ·U1B equals row im of Um · · ·U1B.

Case 2: m < t and jm−1 = im. Choose an index jm such that jm /∈ {im, is}
and row jm of U ′r · · ·U ′sUs−1 · · ·U1B is not zero. This is possible because
rows is and jm−1 of U ′r · · ·U ′sUs−1 · · ·U1B are linearly dependent (since row
is of FmU ′r · · ·U ′sUs−1 · · ·U1B equals row is of Um · · ·U1B which is the zero
row) and rank(B) ≥ 2. Pick Fm with Fm(is, jm) = 1 and otherwise Fm = I.
Set U ′r+1 = F−1

m Fm−1 and U ′r+2 = F−1
m UmFm. Now

• FmU ′r+2U
′
r+1 = Fm(F−1

m UmFm)(F−1
m Fm−1) = UmFm−1,

• U ′r+1 ∈ E(is) and row is of U ′r+1 · · ·U ′sUs−1 · · ·U1B is not zero,
• U ′r+2 ∈ E(im) and row im of U ′r+2 · · ·U ′sUs−1 · · ·U1B equals row im of
Um · · ·U1B.

Case 3: m = t. If UtFt−1 6= I, then set U ′T = U ′r+1 = UtFt−1 ∈ E(is):
Row is is the same in the matrices Um · · ·U1B and U ′T · · ·U ′sUs−1 · · ·U1B.
If UtFt−1 = I, then simply delete UtFt−1, so U ′T = U ′r.

The new factorization has z reduced. This concludes Step 1.

Step 2. Suppose we have the factorization from U with z = 0, U = Un · · ·U1,
with Uh ∈ E(ih). For 1 ≤ h ≤ n, we will replace Uh with a suitable product
of elementary matrices in E(ih). The argument will be clear from the case
h = 1. For notational simplicity, suppose i1 = 1. Write U1 as a product
U1 = Ek · · ·E1 of basic elementary matrices which agree with I outside row
1. Now, choose a row m > 1 of B which is not a rational multiple of row 1 of
U1B (such a row m exists because rank(B) > 1). Let E0 be the elementary
matrix which adds row m to row 1: If s > 0, then (E0)sB has row 1 nonzero.
Choose a nonnegative integer M large enough that for 1 ≤ j ≤ k, row 1 of
[Ej · · ·E1(E0)M ]B is nonzero. Then for 0 ≤ s ≤M ,

[E−s0 ][Ek · · ·E1(E0)M ]B = [EM−s
0 ][Ek · · ·E1]B

= [EM−s
0 ]U1B

and therefore row 1 of [E−s0 ][Ek · · ·E1(E0)M ]B cannot be zero. Thus the
factorization U1 = (E0)−MEk · · ·E1(E0)M has the required properties. �
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Lemma 5.5 (Key Lemma). Suppose B and B′ are in M+, U and W are in
SL(K,Z), the matrix UB has at least one strictly positive entry, and UB =
B′W . Then the equivalence (U,W−1) : B → B′ is a positive equivalence
through M+.

Proof. Step 1: Reduction to the case UB > 0.
Consider an entry (UB)(i, j) > 0. We can repeatedly add column j to

other columns until row i of UB has all entries strictly positive. This corre-
sponds to multiplying from the left by a nonnegative matrix Q in SL(K,Z),
giving UBQ = B′WQ. Then we can repeatedly add row i of UBQ to other
rows until all entries of UBQ are positive. This corresponds to multiplying
from the left by a matrix P in SL(K,Z), giving

(PU)(BQ) = (PB′)(WQ) > 0

with positive equivalences in M+ given by

(I,Q) : B → BQ, (P, I) : B′ → PB′.

Therefore, after replacing (U,B,B′,W ) with (PU,BQ,PB′,WQ), we may
assume without loss of generality that UB > 0.

Step 2: Reducing the length of an elementary factorization.
By Lemma 5.4, we can write U has a product of basic elementary matrices,

U = Ek · · ·E1, such that for 1 ≤ j ≤ k, the matrix Bj = Ej · · ·E1B has no
zero row. By Lemma 5.3, given the pair (E1, B), there is a nonnegative Q1

in SL(K,Z) and a signed permutation matrix S1 such that

(S1E1, Q1) : B → S1E1BQ1

is a positive equivalence in M+. We observe that

UBQ1 = S−1
1 [S1EkS

−1
1 ] · · · [S1E2S

−1
1 ][S1E1]BQ1.

Now, for 2 ≤ j ≤ k, the matrix S1EjS
−1
1 is again a basic elementary matrix

E′j , and the matrix E′j · · ·E′2(S1E1BQ1) has no zero rows.
Again using Lemma 5.3, for the pair ([S1E2S

−1
1 ], [S1E1BQ1]) choose a

signed permutation matrix S2 and nonnegative Q2 producing a positive
equivalence in M+

(S2[S1E2S
−1
1 ], Q2) : S1E1BQ1 → S2[S1E2S

−1
1 ]S1E1BQ1Q2

so that we get a positive equivalence in M+

([S2S1E2S
−1
1 ][S1E1], Q1Q2) : B → [S2S1E2E1BQ1Q2]

and we observe that

UBQ1Q2 = S−1
1 S−1

2 [S2S1EkS
−1
1 S−1

2 ] · · ·
[S2S1E3S

−1
1 S−1

2 ][S2S1E2S
−1
1 ][S1E1]BQ1Q2.
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Continue this, to obtain a signed permuation matrix S = Sk · · ·S1 and
nonnegative Q = Q1 · · ·Qk such that

UBQ = S−1[Sk · · ·S1EkS
−1
1 · · ·S

−1
k−1] · · · [S2S1E2S

−1
1 ][S1E1]BQ

= S−1(SUBQ)

and (SU,Q) : B → SUBQ is a positive equivalence in M+.

Step 3: Realizing the permutation.
We continue from Step 2. It remains to show that

(S, I) : UBQ→ SUBQ

is a positive equivalence in M+. Since S is a product of signed transposition
matrices, it may be described as a permutation matrix in which some rows
have been multiplied by −1. Since UBQ and SUBQ are strictly positive,
it must be that S is a permutation matrix. Also, det(S) = 1, so if S 6= I
then S is the matrix of a permutation which is a product of 3-cycles. So it
is enough to realize the positive equivalence in M+ in the case that S is the
matrix of a 3-cycle. For this we write the matrix

C =

0 1 0
0 0 1
1 0 0


as the following product C0C1 · · ·C5:1 0 0

0 1 0
0 −1 1

 1 0 0
−1 1 0
0 0 1

1 0 −1
0 1 0
0 0 1


·

1 1 0
0 1 0
0 0 1

1 0 0
0 1 0
1 0 1

1 0 0
0 1 1
0 0 1

 .

For 0 ≤ i ≤ 5, the matrix CiCi+1 · · ·C5 is nonnegative. Therefore the
equivalence (C, I) : B → CB is a positive equivalence through M+ whenever
B ∈M+. �

We can now complete the proof of Theorem 5.1. It only remains to address
the technical point that in the equivalence (U, V ) : B → B′, all the entries
of UB might be nonpositive. (For example, with K even we could have
(U, V ) = (−I,−I).)

Proof of Theorem 5.1. By assumption there are X,Y in SL(K,Z) such that

XBY = D, whereD is diagonal and has the block formD =
(
I 0
0 F

)
, where

I is 2 × 2. For any H in SL(2,Z), the K ×K matrix G = GH =
(
H 0
0 I

)
yields a self equivalence (X−1GX, Y G−1Y −1) : B → B.
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For a matrix Q, we let Q{12; ∗} denote the submatrix consisting of the
first two rows. The matrix (XBY ){12; ∗} = D{12; ∗} has rank two, so
the matrix (XB){12; ∗} has rank two, and we may choose H ′ ∈ SL(2,Z)
such that the first row r of H ′[(XB){12; ∗}] has both a positive entry and

a negative entry. For M ∈ N, let HM =
(
M −1
1 0

)
, H = HMH

′, and

G = GH . Let c denote the first column of X−1. Since c is not the zero
vector, the K ×K matrix cr has a positive entry and a negative entry.

If M is sufficiently large, then the entries of the two matrices X−1GXB
and Mcr will have the same sign wherever the entries of Mcr are nonzero,
and X−1GXB will have a positive entry. Then the Key Lemma 5.5 shows
that (X−1GX,Y G−1Y −1) gives a positive equivalence in M+ from B to B.

Similarly, for large enough M the entries of UX−1GXB will agree in
sign with the entries of UMcr wherever the entries of the latter matrix are
nonzero. Because U is nonsingular, the matrix Ucr is nonzero, and then
contains positive and negative entries because r does.

So, using M sufficiently large, we obtain (U, V ) : B → B′ as a posi-
tive equivalence in M+, the inverse of (X−1GX,Y G−1Y −1) followed by
(UX−1GX,Y G−1Y −1V ). �

6. Flow equivalence.

The purpose of this section is to prove the claims of Theorem 3.1 involving
flow equivalence. As sketched in [B1] (see also [Ba1]), the positive K-theory
framework is most natural for this. Because a complete development of this
connection has not yet appeared, for brevity we will make no direct use of
it below.

We begin with some background. For S a selfhomeomorphism of a com-
pact metric space X, the mapping torus YS of S is the quotient space
(X × R)/ ∼ where (x, n + t) ∼ (Snx, t) if n ∈ Z. YS admits a natural
flow,

YS × R→ YS

([(x, t)], s) 7→ [(x, s+ t)].

This flow has the copyX0 = {[(x, 0)] : x ∈ X} ofX as a cross section, and the
return map to X0 under the flow (given by [(x, 0)] 7→ [(Sx, 0)]) is obviously
topologically conjugate to S. Let T be another selfhomeomorphism of a
compact metric space. Then S and T are flow equivalent if and only if there
is a homeomorphism YS → YT which takes flow lines onto flow lines and
respects the direction of the associated flows. (Equivalently: S and T are
conjugate to return maps of cross sections of a common flow.)

For example, consider S = σA, T = σA′ and the map γ arising from a
basic positive equivalence in Subsection 2.2. It is not difficult to see that γ
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is the restriction of a homeomorphism YS → YT which takes flow lines onto
flow lines and respects the direction of the associated flows, and therefore
σA and σA′ are flow equivalent.

Now fix A in M◦
P,+(Z) and A′ in M◦

P ′,+(Z). Let F and F ′ be finite
matrices such that F∞ = A and F ′∞ = A′. Let σA = σF and σA′ = σF ′

be the associated SFTs. (So, for example σA is the left shift on the path
space ΣA, which is given the natural zero dimensional metrizable topology.)
Parry and Sullivan [PS] showed that σF and σF ′ are flow equivalent if and
only if σF is topologically conjugate to some SFT which after a time change
is topologically conjugate to σF ′ . It follows ([PS]) that σF and σF ′ are flow
equivalent if and only if F ′ can be obtained from F by a finite sequence
of basic flow moves, which are state splittings and stretchings and their
inverses. The inverse of a splitting is called an amalgamation. We will
describe the splitting and stretching moves now.

Let B and B′ be finite square matrices. B′ is obtained from B by an
elementary row amalgamation if there exist indices i1, i2 and i such that the
columns i1 and i2 of A′ are equal, and A is obtained from A′ as follows:
Add row i1 to row i2, then remove the row and column indexed by i1. The
reverse move is that B is obtained from B′ by a row splitting. Analogously
there are column splittings and amalgamations. By state splittings we mean
row splittings and column splittings.

We say B′ is obtained from B by a state stretching if for some indices i, j
the following hold: B′(i, j) = 1, the other entries of row i and column j are
zero, and B is the matrix obtained from B′ by adding column i to column
j and then removing row i and column i.

We are now ready for the proof. Suppose A is in M◦
P,+(Z) and A′ is in

M◦
P ′,+(Z). We will show the following are equivalent:

(1) σA and σA′ are flow equivalent.
(2) There exists ν ∈ Iso [P,P ′] such that for P = Pν , there exists a positive

SLP(Z) equivalence from (I −A) to (I − P−1A′P ) in I −M◦
P,+(Z).

Proof. Given (2), it follows from Lemma 2.5 that there is a chain of basic
positive SLP(Z) equivalences from (I − A) to (I − P−1A′P ). Each basic
positive equivalence gives rise to a flow equivalence as discussed above. It
follows that (2) implies (1).

Now we assume (1) and will deduce (2). Let F and F ′ be finite matrices
such that F∞ = A and F ′∞ = A′. After using Lemmas A.1 and A.2 to pass
to flow equivalent SFTs, we may assume that for each i ∈ P, the diagonal
blocks Fii and F ′ii are strictly positive.

From [PS] we are given a sequence of basic moves through finite matrices,
F = F0 → F1 → · · · → Fm = F ′. We may regard P and P ′ as the posets of
irreducible components of F and F ′ respectively, where e.g., i � j in P when
there exists a transition from i to j (by which we mean that there exists a
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point in the SFT ΣA forwardly asymptotic to a cycle from component j and
backwardly asymptotic to a cycle from component i). Each move Fi → Fi+1

induces a bijection of irreducible components, respecting transitions, and
thus the composition induces a poset isomorphism ν : P(A)→ P(A′). After
replacing A′ with P−1A′P , where P = Pν , we may assume P = P ′ and
ν = Id.

Next, for 1 ≤ i ≤ n, we will associate to Fi a matrix Ai in M◦
P,+(Z) such

that (modulo permutations of indices) tru(Ai) = Fi. We must take a little
care with the indices, to be able to lift each of the moves Fi → Fi+1 to a
(positive) SLP(Z) equivalence (I − Ai) → (I − Ai+1). Let Ind(B) denote
the set indexing the rows and columns of a square matrix B. For each Fj ,
we will define an injection τj : Ind(Fj)→ IP , and then define Aj = ι(Fj) by
setting

Aj(s, t) = F (s′, t′) if (s, t) = (τj(s′), τj(t′))
= 0 otherwise.

The maps τj will be defined recursively. For j = 0, we set A0 = A and
take τj to be compatible with the embedding of F as a principal submatrix
of A. Now suppose 0 ≤ j < n and τj and Aj are given. The transition
Fj → Fj+1 is given by a basic flow move, and under such a move, every
element of Ind(Fj+1) is naturally related to one or two elements of Ind(Fj).
(An element i of Ind(Fj+1) is related to two elements i1, i2 of Ind(Fj) when
the move Fj+1 → Fj is a splitting or stretching of the state i into the states
i1, i2.) In any case, for each i in Ind(Fj+1), fix a related vertex rel(i) in
Ind(Fj). Then choose any map τj+1 : Ind(Fj+1) → IP such that τj(rel(i))
and τj+1(i) lie in IPp for the same element p of P. (When i is related to
two indices, this p may depend on the choice for rel(i).) This defines the
matrices A = A0, A1, . . . , Am.

Next we will show that each elementary flow move Fj → Fj+1 gives rise
to a positive SLP(Z) equivalence (I − Aj) → (I − Aj+1). Each of the
equivalences we give will be accomplished by elementary matrices which
must lie in SLP(Z) on account of our choices of indices.

First we show how an elementary row splitting gives rise to a positive
SLP(Z) equivalence. The general construction can be understood from the
example

B =

 a b 0
c1 + c2 d1 + d2 0

0 0 0

 →

 a b b
c1 d1 d1

c2 d2 d2

 = B′.
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Here the positive equivalence (I−B)→ (I−B′) is accomplished as follows:

(I −B) =

 1− a −b 0
−(c1 + c2) 1− (d1 + d2) 0

0 0 1


→

 1− a −b 0
−(c1 + c2) 1− (d1 + d2) 0

0 0 1

 1 0 0
0 1 0
−c2 −d2 1


=

 1− a −b 0
−(c1 + c2) 1− (d1 + d2) 0
−c2 −d2 1


→

1 0 0
0 1 −1
0 0 1

 1− a −b 0
−(c1 + c2) 1− (d1 + d2) 0
−c2 −d2 1


=

1− a −b 0
−c1 1− d1 −1
−c2 −d2 1


→

1− a −b 0
−c1 1− d1 −1
−c2 −d2 1

1 0 0
0 1 1
0 0 1


=

1− a −b −b
−c1 1− d1 −d1

−c2 −d2 1− d2

 .

The positive equivalence for a column splitting is constructed similarly.
Next we show that a state stretching gives rise to a positive equivalence.

The general construction can be understood from the example

B =

0 0 0
0 a b
0 c d

→
0 1 0
a 0 b
c 0 d

 = B′.

Here the positive equivalence (I−B)→ (I−B′) is accomplished as follows.

(I −B) =

1 0 0
0 1− a −b
0 −c 1− d


→

 1 0 0
−a 1 0
−c 0 1

1 0 0
0 1− a −b
0 −c 1− d

 =

 1 0 0
−a 1− a −b
−c −c 1− d


→

 1 0 0
−a 1− a −b
−c −c 1− d

1 −1 0
0 1 0
0 0 1

 =

 1 −1 0
−a 1 −b
−c 0 1− d

 .
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At this point we have a positive SLP(Z) equivalence (I −A)→ (I −A′n),
where there is a permutation matrix Q such that Q−1A′nQ = A′. Because
A′ = F ′∞ and F ′ has all diagonal blocks positive, if A′(i, j) > 0 then i lies
on an A′ cycle and j lies on an A′ cycle. Therefore the permutation given
by Q can be chosen compatible with the poset isomorphism ν = Id, and
the matrix Q is a block diagonal matrix in SLP(Z). It remains to check
that I −A′n → Q−1A′nQ is accomplished by a positive SLP(Z) equivalence.
BecauseQ is block diagonal and we can use compositions, it is enough to give
the equivalence in the case that Q is the transposition matrix for indices i, j
which lie in some IPp . Choose indices α, β in IPp such that A′n is identically
zero in the rows and columns indexed by α and β. Let P be the permutation
matrix for the product of transpositions (i, j)(α, β). Then P is in SLP(Z)
and PA′nP = Q−1A′nQ. This finishes the proof. �

7. The mapping class group.

In this section the symbols S, T denote subshifts (e.g., T is the restriction
of some full shift σ[n] to a closed shift-invariant subset, which we also call
T ). As in Section 6, let YS denote the mapping torus of S. We regard YS
as an oriented space, in the sense that the associated flow gives an orienta-
tion to each of its orbits (i.e., to each connected component of YS). A flow
equivalence from a subshift S to a subshift T is an orientation preserving
homeomorphism ϕ : YS → YT (where “orientation preserving”means orien-
tation preserving on each orbit). Two such homeomorphisms ϕ0, ϕ1 are
isotopic (ϕ0 ∼ ϕ1) if there is a continuous map t 7→ ϕt, 0 ≤ t ≤ 1, which
connects them in the metrizable space of homeomorphisms from YS to YT .
Let Is(S, T ) denote the set of isotopy classes of flow equivalences from S
to T . We let Is(S, S) = Is(S) and call this the mapping class group of the
oriented space YS .

The isotopy futures group of YS.
Given S, x ∈ S and n ∈ Z, define

r(x, n) = {[(w, 0)] ∈ YS : w ∈ S,wi = xi for i ≤ n}.

We call such a set a ray in YS . We say two sets E,E′ in YS are isotopic
(E ∼ E′) if there is a homeomorphism ϕ : YS → YS such that ϕ(E) = E′

and ϕ is isotopic to the identity. An isotopy ray is a set isotopic to a ray.
A beam is a disjoint union of finitely many rays. An isotopy beam is a set
isotopic to a beam. Let B = B(S) denote the set of isotopy beams of YS .

We define F(S), the isotopy futures group of S, to be ZB/K, where ZB
is the free abelian group with generating set B = B(S), and K = K(S) is
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the subgroup of ZB generated by all elements of the following forms:

b− b′, if {b, b′} ⊂ B and b ∼ b′,(7.1)

b−
k∑
j=1

bj , if {b, b1, . . . , bk} ⊂ B, k ∈ N, and b = ∪̇jbj .(7.2)

For S a subshift, let Pn(S) denote the partition of S into clopen sets of the
form C(x, n) = {w ∈ S : wi = xi if |i| ≤ n}.

Lemma 7.3. Suppose S, T are subshifts and ϕ : YS → YT is an orientation
preserving homeomorphism and b ∈ B(S). Then ϕ(b) ∈ B(T ).

Proof. Exploiting the zero dimensionality of S as in [PS], after postcompos-
ing ϕ with a suitable map isotopic to the identity we may assume that there
is a positive integer M such that for any C in PM (S) there is a constant
h = hC and a homeomorphism f = fC from C to a clopen subset D of T
such that ϕ([(x, 0)]) = [(f(x), h)], for all x in C.

Because ϕ respects disjoint union and pushes Is(S) forward to Is(T ) (by
the rule [h] 7→ [ϕhϕ−1]), it suffices to consider the case that b is a ray r(x, n)
with n ≥ M . Let C ′ = {w ∈ S : wi = xi if i ≤ n} ⊂ C ∈ PM (S), with
h = hC and f = fC . Choose k ∈ N such that for all x in C, the sequence
x(−∞, n] determines (fx)(−∞, n − k] and the sequence (fx)(−∞, n + k]
determines x(−∞, n]. So, if w ∈ f(C ′), then {z ∈ T : zi = wi if i ≤ n+k} ⊂
f(C ′). LetW be the (finite) set of words {w[n−k, n+k] : w ∈ f(C ′)}. Then
ϕ(b) = ϕ(r(x, n)) = ∪W∈W{[(z, h)] : z(−∞, n − k − 1] = (fx)(−∞, n − k −
1] and z[n− k, n+ k] = W}, so ϕ(b) is an isotopy beam. �

The following proposition follows easily from the lemma.

Proposition 7.4. Suppose S and T are subshifts and ϕ : YS → YT is an
orientation preserving homeomorphism. Then the mapping of isotopy beams
b 7→ ϕ(b) induces an isomorphism ϕ∗ : F(S)→ F(T ).

Let Iso(F(S),F(T )) denote the set of group isomorphisms from F(S) to
F(T ). Let Aut(F(S)) = Iso(F(S),F(S)). The next proposition is now
obvious.

Proposition 7.5. The rule ϕ 7→ ϕ∗ induces a group homomorphism ρ :
Is(S) → Aut(F(S)).

Remark 7.6. The construction of FS is one of several variations on the
dimension group construction introduced by Krieger [Kr1, Kr2]; our con-
struction was influenced also by [LM] and [BFF]. The construction of FS is
a flow equivalence analogue of Krieger’s construction of a dimension group
from a subshift S. The map ρ : Is(YS) → Aut(FS) is the analogue for flow
equivalence of the dimension representation of the automorphism group of
a subshift.
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The isomorphism β : F(σA)→ cok(I −A).
Suppose A is a matrix in M◦

P,+(Z). Let I denote the index set of the rows
and columns of A. Let ZI be the group of (infinite) row vectors indexed by
I, with all but finitely many entries zero. For a symbol/edge xn of σA, let
τ(xn) denote the terminal vertex of the edge xn (so, τ(xn) ∈ I).

The group cok(I − A) is the cokernel of the map ZI → ZI given by
v 7→ v(I −A) (i.e., cok(I −A) = ZI/image(I −A)). Given a ray r = r(x, n)
with i = τ(xn), let ei be the ith canonical basis vector in ZI , and define
β(r) = [ei] ∈ cok(I −A).

First note, given k ∈ Z and a ray r = r(x, n), if we set r′ equal to
{[(w, k)] : [(w, 0)] ∈ r(x, n)}, then r′ is again a ray,

r′ = r(σkx, n− k) and β(r′) = β(r).(7.7)

Here the equality of sets follow from the manipulations

{[(w, k)] : [(w, 0)] ∈ r(x, n)} = {[(σkw, 0)] : w(−∞, n] = x(−∞, n]}
= {[(z, 0)] : z(−∞, n− k] = x(−∞, n]}

= {[(z, 0)] : z(−∞, n− k] = (σkx)(−∞, n− k]}

and then β(r) = β(r′) because the edges xn and (σkx)n−k are equal.
Next, given x ∈ σA, n ∈ Z and k ∈ N, for each σA-word W = W1 · · ·Wk

which can follow xn, choose a point y = yW such that y(−∞, n] = x(−∞, n]
and y[n+ 1, n+ k] = W . Then the equality

β(r(x, n]) =
∑
W

β(r(yW , n+ k)) ∈ cok(I −A)(7.8)

follows for k = 1 by direct computation and for k > 1 by induction.
Given a beam b which is a disjoint union of finitely many rays r(x(i), n(i)),

we now define
β(b) =

∑
i

β(r(x(i), n(i))).

(We will use the symbol β for various maps derived from the map β on
rays.) To see that this definition is independent of the particular choice
of rays, suppose b is also the union of rays r(w(j),m(j)). Choose M ≥
maxi,j{n(i),m(j)}. Then b is the disjoint union of rays r(z(k),M), each of
the r(x(i), n(i)) and r(w(j),m(j)) is a union of some of the rays r(z(k),M),
and by (7.8) we have∑

i

β(r(x(i), n(i))) =
∑
k

β(r(z(k),M)) =
∑
j

β(r(w(j),m(j))).

Therefore β(b) is well-defined.
We will write YA for the mapping torus of σA.

Lemma 7.9. If b and b′ are beams in YA such that b ∼ b′, then β(b) = β(b′).
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Proof. Without loss of generality, chooseM ∈ N and a finite set E of YA such
that b is the disjoint union of rays r(x,M), x ∈ E. Let {ϕt} be an isotopy
such that ϕ0 = id and ϕ1(b) = b′. Because ϕ1 ∼ id, there is a continuous
function k(x) such that for all [(x, 0)] in b, ϕ1 : [(x, 0)] 7→ [(x, k(x))]. Because
ϕ(b) is a beam, the function k is integer valued. Possibly after increasing
our choice of M , we may assume that k is constant on each ray r(x,M). By
(7.7), ϕ1 takes each ray r = r(x,M) onto a ray r′ such that β(r) = β(r′), b′

is the disjoint union of these rays r′, and

β(b) =
∑
r

β(r) =
∑
r′

β(r′) = β(b′).

�

An isotopy beam b is isotopic to some beam b′. Define β(b) = β(b′).
It follows from the lemma that β(b) does not depend on the choice of b′.
Likewise we have a well-defined homomorphism of groups

β : ZB → cok(I −A),(7.10) ∑
nibi 7→

∑
niβ(bi).

Proposition 7.11. The kernel of the map β in (7.10) is the subgroup K
with generators (7.1, 7.2). So, there is an induced isomorphism of groups

βA : F(σA)→ cok(I −A).

Proof. First we show K ⊂ Kerβ by showing that β vanishes on the gener-
ators of K. For (7.1), suppose b ∼ b′; then β(b − b′) = 0 by Lemma 7.9.
For (7.2), suppose b is an isotopy beam and b is the disjoint union of finitely
many isotopy beams bi. Without loss of generality, suppose b is a beam.
The bi are a finite collection of disjoint compact sets, so for sufficiently large
m, for any C in Pm(S) such that b∩C 6= ∅, the set (b∩C) will be contained
in one of the bi. If m is large enough, then b ∩ C if nonempty will be a ray.
Thus, taking sums over C in Pm, and for notational convenience defining β
to be zero on the empty set, we get

β(b) =
∑
C

β(C ∩ b)

=
∑
j

∑
C

β(C ∩ bj) =
∑
j

β(bj).

Now we show kerβ ⊂ K. Suppose g =
∑
njbj ∈ kerβ. There ex-

ists M ≥ 0 such that for each j, there are rays r(x(jk),M) such that
bj −

∑
k r(x

(jk),M) ∈ K. so g =
∑

jk njr(x
(jk),M) (mod K). For any

x, β(r(σMx, 0)) = β(r(x,M)); also, r(x, 0)− r(x′, 0) ∈ K if x0 and x′0 have
the same terminal vertex i. So, we may choose for each i an element x(i)
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such that (x(i))0 has terminal vertex i, for each x(jk) replace x(jk) with the
appropriate x(i), and after reindexing obtain integers mi such that

g =
∑
i

mir(x(i), 0) (mod K).

Because β(g) = 0 and K ⊂ kerβ, there is an integral row vector w such that∑
imiei = w(I −A), and therefore

g =
∑
i

wi

[r (x(i), 0
)]
−
∑
j

Aij

[
r
(
x(j), 0

)] (mod K).

For each i, we have r(σAx(i),−1)− r(x(i), 0) ∈ K, and also

r(σAx(i),−1)−
∑
j

Aijr(x(j), 0) ∈ K.

It follows that g = 0 (mod K). �

In our definition of F(S) and cok(I − A) we used sets r(x, n) and row
vectors. (So, cok(I −A) = rowcok(I −A).) In the same way, using sets

r+(x, n) := {[(w, 0)] ∈ YS : w ∈ S and wi = xi for i ≥ n}
we may define the pasts group P(S); and using column vectors, we obtain an
isomorphism P(σA) → colcok(I − A). For a flow equivalence ϕ : YA → YB,
the isomorphism ϕ∗ : F(σA)→ F(σB) given by Proposition 7.4 induces the
isomorphism

ϕrow
∗ := (βB)ϕ∗(βA)−1 : rowcok(I −A)→ rowcok(I −B).

Likewise, the action of ϕ on P(σA) induces an isomorphism

ϕcol
∗ : colcok(I −A)→ colcok(I −B).

The action of Is(σA) on cok(I −A).
For a flow equivalence ϕ : YA → YA, we have group homomorphisms

Is(σA)→ Aut(rowcok(I −A)) and Is(σA)→ Aut(colcok(I −A))

ϕ 7→ ϕrow
∗ ϕ 7→ ϕcol

∗ .

As described in Subsection 2.2, if (U, V ) is a basic positive SLP(n,Z) equiv-
alence from (I −A) to (I −B) = U(I −A)V , and B plays the role of A′ in
Subsection 2.2, then there is an associated map γ from σA to σB, and it is
easy to see that this map is the restriction (to the cross section σA) of an
orientation preserving homeomorphism YA → YB. More generally, if (U, V )
is the composition of basic positive SLP(n,Z) equivalences (Ui, Vi), and ϕ
is the corresponding composition of the flow equivalences associated to the
(Ui, Vi), then we will write ϕ = ϕ(U,V ). This is an abuse of notation in that
we are not claiming that (U, V ) determines ϕ (the map ϕ may depend on
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the particular factorization of (U, V )); we are only indicating that ϕ arises
via some factorization of (U, V ).

Proposition 7.12. Suppose A ∈ M◦
P,+(Z). Suppose (U, V ) : (I − A) →

(I−B) is a positive SLP equivalence, and ϕ(U,V ) is an associated flow equiv-
alence.

Then the induced map ϕrow
∗ : rowcok(I −A)→ rowcok(I −B) is given by

the rule [w] 7→ [wV ], and the induced map ϕcol
∗ : colcok(I −A)→ colcok(I −

B) is given by the rule [w] 7→ [Uw].

Proof. We will check the proposition in the case that (U, V ) = (E, I) and
E is a basic elementary matrix with unique offdiagonal entry E(i, j) =
1. The argument for (I, E) is similar and then the proposition follows by
composition. For concreteness, suppose E(1, 2) = 1 (in other entries E =
I). Let ϕ = ϕ(E,I) be defined via the map γ and edge e described in
Subsection 2.2.

Suppose x ∈ σA and x−1 has terminal vertex i. Then the edge (γx)−1

has terminal vertex i and ϕ maps r(x,−1) onto r(γx,−1). It follows that
the diagram

F(σA)
ϕ∗−−−→ F(σB)

βA

y βB

y
rowcok(I −A) Id−−−→ rowcok(I −B)

commutes; that is, ϕrow
∗ = Id.

If x ∈ σB and x0 has initial vertex not equal to 2, then ϕ maps r+(x, 0)
onto r+(γx, 0). Thus the map (ϕcol

∗ )−1 sends [ei] in colcok(I − A) to [ei] in
colcok(I−B) whenever i 6= 2. If the initial vertex of x0 is 2, then ϕ−1 sends
r+(x, 0) to the set of all points (w, 0) in r+(γ−1x, 0) such that w−1 6= e.
Consequently, if y is a point in σA such that yi = (γx)i if i ≥ 0 and y−1 = e,
then

ϕ−1
(
r+(x, 0)

)
= r+(γ−1x, 0) \ r+(y,−1).

We also have

βcol
B : r+(x, 0) 7→ [e2] ∈ colcok(I −B),

βcol
A : r+(γ−1x, 0) 7→ [e2] ∈ colcok(I −A),

βcol
A : r+(y,−1) 7→ [e1] ∈ colcok(I −A).

Therefore (ϕcol
∗ )−1 : [e2] 7→ [e2] − [e1], hence for all integral column vectors

v we have (ϕcol
∗ )−1 : [v] 7→ [E−1v] as required. �

Theorem 7.13. Suppose A ∈ M◦
+(Z) and the mapping torus of σA is not

a circle. Then the induced map Is(YA)→ Aut(cok(I −A)) is surjective.
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Remark 7.14. Of course, the theorem is true for colcok as well as for
rowcok. In the case that the mapping torus of σA is a circle (i.e., A has
a unique irreducible component, and this component is a permutation ma-
trix), any orientation preserving homeomorphism from YA to YA is isotopic
to the identity, but cok(I − A) ∼= Z and Aut(cok(I − A)) ∼= Z/2, so the
map Is(YA) → Aut(cok(I − A)) is not surjective. Theorem 7.13 says that
apart from this case, every automorphism of the isotopy futures group of an
irreducible shift of finite type is induced by a flow equivalence.

Proof of Theorem 7.13. It is proved in [BH] that any automorphism of
rowcok(I −A) or colcok(I −A) is induced by an SL(Z) equivalence (by the
rules described in the statement of Proposition 7.12). By the Factorization
Theorem 3.3, such an equivalence is a positive equivalence. By Proposi-
tion 7.12, a flow equivalence associated to this positive equivalence has the
desired action on the cokernel group. �

From the view of symbolic dynamics, Theorem 7.13 stands in contrast to
the Kim-Roush-Wagoner result [KRW1] that the dimension representation
of a mixing shift of finite type is not in general surjective. (The contrast
is meaningful because the invariants are related by “setting t equal to 1”
[B1].)

When A ∈M◦
+(Z) (i.e., A is essentially irreducible) and σA is not a circle,

the flow equivalence class of σA is given by the SL(Z) equivalence class of
I −A, for which det(I −A) and cok(I −A) give complete invariants. When
P is nontrivial and A ∈ M◦

P,+(Z) (i.e., the SFT σA is reducible), the flow
equivalence class of A (modulo a permutation of P) is given by its positive
SLP(Z) equivalence class, and the complete algebraic invariants (introduced
by Huang) are more subtle, involving the “K-web” of the matrix I − A,
denoted K(I − A). The K-web is a diagram of exact sequences of certain
kernel and cokernel groups of submatrices of I−A. TheK-web invariants are
completely analyzed in [BH], which also characterizes the automorphisms
of K(A) which can be induced by an SLP(Z) equivalence. We believe that
the type of analysis carried out to describe the action of Is(σA) on cok(I−A)
in the irreducible case can be extended to describe the possible actions of
Is(σA) on the more complicated algebraic structure of the K-web which
classifies in the reducible case. Specifically, we expect that the following
program can be carried out. Together with [BH], this program would give
a complete description of the possible actions of Is(σA) on the K-web.

Program 7.15. For A,B in MP(Z+), we conjecture the following.
(1) The K-web data for I −A can be described in terms of isotopy beams

of subsystems of YA, and the map on isotopy beams by an orienta-
tion preserving homeomorphism ϕ : YA → YB induces an isomorphism
K(A)→ K(B).
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(2) For a positive SLP(Z) equivalence (U, V ) from A toB, the isomorphism
K(A)→ K(B) induced by ϕ(U,V ) is the natural isomorphism induced
by (U, V ) as described in [BH].

(3) If ϕ is an orientation preserving homeomorphism from YA to YB, then
there is a positive SLP(Z) equivalence (U, V ) such that ϕ is isotopic
to ϕ(U,V ).

The most fundamental of the three steps above is the last one, and a
version of this has already been carried out in the irreducible case (i.e.,
P = {1}) by Badoian [Ba1], as we discuss below.

The work of Badoian.
We’ll describe some of the work [Ba1] of Leslie Badoian, which gives

alternate proofs of some of our results. The work [Ba1] is too extensive for
a full summary here; roughly speaking, Badoian carries out for irreducible
shifts of finite type a flow equivalence version of the strong shift equivalence
theory Wagoner [W1] built on the foundation laid by Williams [Wi].

Badoian builds an infinite oriented CW complex, denoted FK. A zero-cell
for FK is an equivalence class of infinite, essentially irreducible, finitely sup-
ported zero-one matrices, where two matrices are equivalent iff their unique
maximal irreducible principal submatrices are equal. A one-cell [A] → [B]
corresponds to an elementary equivalence (I − B) = U(I − A)V satisfying
certain conditions. Two-cells are also defined, by certain matrix relations.
The two main results of [Ba1] are the following:
• Classification Theorem. σA and σB are flow equivalent if and only if
A and B lie in the same connected component of FK.
• Flow Equivalence Theorem. π1(FKA) ∼= Is(σA). (I.e., a path along

one-cells gives rise to a flow equivalence, and two paths give rise to
isotopic flow equivalences if and only if the paths are homotopic in
FK.)

The elementary equivalences of [Ba1] are not the same as our elementary
positive equivalences, but Badoian has found short arguments [Ba2] which
show directly that that her elementary equivalences and ours generate the
same set of flow equivalences up to isotopy. With this fact and some tech-
nical remarks, the results of Section 6 for irreducible shifts of finite type
follow directly from Badoian’s Classification Theorem (which in turn rests
on Parry-Sullivan [PS] and Williams [Wi], as does our Section 6).

The Flow Equivalence Theorem gives an alternate route in the irreducible
case to the representation Is(σA, σB) → Iso(cok(I − A), cok(I − B)): We
could take the natural definition along an edge (given by the associated flow
equivalence), compose along paths of edges, and consult the definition of
two-cells in FK to verify that the definition only depends on the homotopy
class of the path of edges. All of this is parallel to the development of the
dimension representation in Wagoner’s strong shift equivalence theory [W1].
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We have not relied in proofs on citation of [Ba1], for a few reasons. Al-
though there should be no fundamental problem with extending Badoian’s
approach to reducible shifts of finite type, the results in [Ba1] are only
for irreducible shifts of finite type. We also wanted self-contained and rea-
sonably brief arguments. (The long work [Ba1] deals with a fundamental
difficult problem which we avoid: We do not try to understand when two
paths give rise to the same flow equivalence up to isotopy.) Finally, al-
though the CW complex approach has rather spectacularly proved its worth
[KR2, KRW1, W1], the Krieger-style construction remains important, and
its more earthy definition (by actions on sets) makes sense directly for gen-
eral subshifts. Matsumoto [Ma] has a far reaching extension of Williams’
theory to general subshifts, and this offers hope for some analogue of Wag-
oner’s strong shift equivalence theory for general subshifts; but there is no
such theory yet.

Appendix A. Reduction to nondegenerate form.

This appendix is devoted to the proof of Proposition 4.5.
We will prove Proposition 4.5 by composition in a larger commuting dia-

gram (to be assembled in three stages):

(I −A) −−−→ (I −A1) −−−→ (I −A2) −−−→ (I −A)

(U,V )

y (U1,V1)

y (U2,V2)

y y(U,V )

(I −A′) −−−→ (I −A′1) −−−→ (I −A′2) −−−→ (I −A′) .

The horizontal arrows will be positive equivalences and the vertical equiva-
lences to the right of (U, V ) will be defined from them by composition (then
the diagram will commute). Stage I will produce the left square with A1 and
A′1 satisfying Conditions (2), (3) and (4) of Proposition 4.5. Stage II will
produce the middle square, with (U2)ii = (V2)ii = Id for i ∈ C, and with A2

and A′2 still satisfying Conditions (2), (3) and (4) of Proposition 4.5. Stage
III will produce the right square to finish the proof. The individual stages
will follow from several lemmas.

Lemma A.1. Suppose A ∈M◦
P,+(n,Z). Then there is a positive SLP(n,Z)

equivalence in I −M◦
P,+(n,Z) from I − A to a matrix I − C such that for

all i ∈ CA the following hold:

(1) The block Cii has its upper left corner entry equal to 1, and Cii has no
other nonzero entry.

(2) Let (`, `) be the entry of C which is the upper left corner of Cii. Then
for j 6= i, every row of a block Cij other than row ` is zero, and every
column of a block Cji other than column ` is equal to zero.
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Proof. Suppose i ∈ CA. Let i1, . . . , ik be nonrepeated indices such that
Aii(it, it+1) = 1, 1 ≤ t < k, and Aii(ik, i1) = 1.

Cycle-shortening construction. Suppose k > 1. Let A = A(0). For 1 ≤
j < k, define A(j) by the equation I − A(j) = Ej(I − A(j−1)), where Ej
denotes the basic elementary matrix which acts to add row ik−j+1 to row
ik−j . Each A(j) is nonnegative. Then add the columns i2, . . . , ik of A(k) to
column i1 of A(k). By Lemma 2.5, each step in this process gives a positive
equivalence in I −M◦

P,+(n,Z), and in the last matrix A′, the block A′ii has
as its unique cycle the 1-cycle (i1). Below is an example of the process, with
(i1, i2, i3, i4) = (1, 2, 3, 4), viewed in the principal submatrices on indices
1, 2, 3, 4:

1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1

→


1 −1 0 0
0 1 −1 0
−1 0 1 0
−1 0 0 1

→


1 −1 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

→


0 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

→


0 0 0 0
0 1 0 0
−1 0 1 0
−1 0 0 1

→


0 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 1

→


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.
Now without loss of generality, we suppose k = 1 with A(i1, i1) = 1.

Because (i1) is the unique Aii cycle, if Aii is nonzero at any entry other
than (i1, i1), then it is nonzero at some entry (j, l) such that row l of A is
zero or column j of A is zero. In the former case, let E be the elementary
matrix which acts from the left to add row l to row j, then (E, I) : (I−A)→
E(I −A) = (I −A′′) is a positive equivalence in which A′′ = A except that
A′(j, l) = 0. The latter case is treated similarly, by adding column j to
column l. Iterating, we produce a positive equivalence in I −M◦

P,+(n,Z)
from I −A to a matrix I −A′ such that A′(i1, i1) is the only nonzero entry
of A′ii.

Next, given i in CA′ with A′(i1, i1) = 1, we may for each j ≺ i add rows
of I − A′ through the ii block to rows through the ji block (never adding
row i1) until every column of the block (I − A′)ji except column i1 is zero.
We do this for all the cycle components i, for i in decreasing order, so that
no block zeroed out for some i is made nonzero by subsequent operations.
Then similarly, taking i in CA in increasing order, we add columns through
the ii block to columns through the ji blocks with i ≺ j, to end with a
matrix C ′ which satisfies the statement of the lemma (with C ′ in place of
C), except that the distinguished indices i1 might not be the corner indices
`.

So, suppose i is a cycle component for which ` 6= i1. We apply four
basic positive equivalences to give (I − C ′) → (I − C ′′), as viewed below
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in principal submatrices on indices {i1, `, k} (where k is any index not in
{i1, `}). (In the very special case that C ′ is 2×2, there can be no third index
k and these principal submatrices should be restricted to indices {i1, `}.) For
concreteness we use (`, i1, k) = (1, 2, 3):1 0 0

0 0 x
0 y z

 →

 1 0 0
−1 1 0
0 0 1

1 0 0
0 0 x
0 y z

 =

 1 0 0
−1 0 x
0 y z


→

 1 0 0
−1 0 x
0 y z

1 −1 0
0 1 0
0 0 1

 =

 1 −1 0
−1 1 x
0 y z


→

 1 −1 0
−1 1 x
0 y z

1 0 0
1 1 0
0 0 1

 =

0 −1 0
0 1 x
y y z


→

1 1 0
0 1 0
0 0 1

0 −1 0
0 1 x
y y z

 =

0 0 x
0 1 x
y y z

 .

If above for any k we have x 6= 0, then x < 0 and the (i1, k) entry lies in an
ij block with i ≺ j; then y = 0 and it is a positive equivalence to add column
i1 of C ′′ |x| times to column k. Doing this as needed, and dealing similarly
with nonzero entries y using rows in place of columns, we produce another
version of C ′′ which enjoys the additional property that i1 = ` for the cycle
component i. Then we repeat until i1 = ` for every cycle component i. The
resulting matrix C satisfies the statement of the lemma. �

Lemma A.2. Suppose A ∈ M◦
P,+(n,Z), and n = (n1, . . . , nN ) is a vector

with positive integer entries. Then there is a positive SLP(n,Z) equivalence
in I −M◦

P,+(Z) from (I −A) to a matrix with Properties (2), (3) and (4) of
Proposition 4.5.

Proof of Lemma A.2. We will describe a sequence of row and column oper-
ations (corresponding, by repeated tacit appeal to Lemma 2.5, to positive
SLP(n,Z) equivalences in I −M◦

P,+(Z)) which put the matrix I − A into
the required form. To simplify notation, rather than renaming I − A after
an equivalence, we will discuss changing properties of I −A. We begin with
a matrix A with the properties stated (for C) in Lemma A.1, i.e., A satisfies
Properties (3) and (4) of Proposition 4.5.

Our first goal will be, given t ∈ P which is not a cycle component, to
arrange that the block (I − A)tt be strictly negative. Recall It denotes the
index set for rows/columns of Att. Let S denote the index set for the unique
maximal irreducible submatrix of Att, let S ′ denote the complement of S in
It, and e.g., let A{S} denote the principal submatrix of A on index set S. We
will arrange (in order) the following properties (after each stage keeping the
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properties achieved at earlier stages, and not changing entries in any block
Ass with s 6= t, and not losing Properties (3) and (4) of Proposition 4.5).

(1) ∃i ∈ S such that (I −A)(i, i) ≤ 0.
(2) {i, j} ∩ S ′ 6= ∅ =⇒ (I −A)(i, j) = δij .
(3) If S ′ 6= ∅, then |S| > 1.
(4) S ′ = ∅.
(5) The block (I −A)tt is strictly negative.

(1) If necessary achieve this with the initial row operations of the cycle-
shortening construction of the Lemma A.1.

(2) First suppose this condition does not hold for some {i, j} ⊂ It. Then
pick some i ∈ S ′ and j ∈ It such that j 6= i and one of the following hold:
• (I −A)(i, j) 6= 0 and column i of Att is zero, or
• (I −A)(j, i) 6= 0 and row i of Att is zero.

In the former case, add column i of (I − A) to other columns j where
(I − A)(i, j) < 0, until (I − A)(i, j) = δij for all j ∈ It. In the latter case,
similarly use row additions to achieve (I −A)(j, i) = δij for all j ∈ It. This
procedure reduces the cardinality of the set of entries in (I −A)tt at which
Condition (2) fails, and it may be repeated until Condition (2) holds for
{i, j} ⊂ It. We then add rows and columns indexed by S ′ to others as
needed until (2) holds in general.

(3) Suppose (for concreteness) that S = {1} and 2 ∈ S ′. Then we must
have A(1, 1) = k > 1 (since t is not a cycle component). Now, subtract
row 2 of (I − A) from row 1; then subtract column 2 from column 1. The
effect of these moves is to enlarge S = {1} to S = {1, 2}. The moves are
summarized below in principal submatrices on indices {1, 2, 3}, where 3 is
an arbitrary additional index:1− k 0 w

0 1 0
x 0 z

→
1− k −1 w

0 1 0
x 0 z

→
−(k − 2) −1 w

−1 1 0
x 0 z

 .

(4) Suppose S ′ 6= ∅. By (1) and (3), we may pick i1, j1 in S such that
i1 6= j1, (I −A)(i1, i1) ≤ 0, and (I −A)(i1, j1) ≤ −1. Add row i1 of (I −A)
to row j1, (|S ′|+ 1) times, producing (I − A)(j1, j1) ≤ −|S ′|. For each j in
S ′, subtract row j of (I − A) from row j1. Then subtract each S ′ column
from column j1. This produces A with S ′ = ∅.

(5) With i1, j1 as in (4): Add row i1 to row j1 (now (I − A)(j1, j1) < 0);
for each i in S with i 6= j1, add column j1 to column i (now row j1 of (I−A)
is negative); and for each i in S with i 6= j1, add row j1 to row i. We now
have (I −A)tt strictly negative as required.

After applying a positive equivalence, then, we may assume that (I −
A)ii < 0 for every noncycle component i. Consequently, if i ≺ j, and i or j is
not a cycle component, then for large n the block (An)ij is strictly positive.
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We can then get a positive equivalence to (I − A) whose block (I − A)ij
is strictly negative, by adding columns through i to columns through j (if
i 6∈ CA) or by adding rows through j to rows through i (if j 6∈ CA). Similarly,
for every noncycle component j and cycle component i, with Cprim

i = {`},
add a j-row to row ` if i ≺ j, and add a j-column to column ` if j ≺ i.

Note, if i ≺ j and {i, j} ⊂ C, with say Cprim
i = {`i} and Cprim

j = {`j},
then A(`i, `j) > 0, because the block Aij is not the zero block (because A ∈
Mo
P,+(C,n,Z)) and the only possible nonzero entry is A(`i, `j) > 0. Finally,

whenever (I−A)ij < 0 with {i, j} ⊂ CA and i ≺ k ≺ j for some k in P, pick
k such that i ≺ k ≺ j, and add columns of I − A through component k to
columns through component j. The resulting matrix satisfies the statement
of the lemma. �

Lemmas A.1 and A.2 finish the proof for Stage I. We now shift our focus
to the form of the equivalence (U, V ). The next lemma gives the proof for
Stage II.

Lemma A.3. Suppose (U, V ) : (I − A) → (I − A′) is an SLP(n,Z) equiv-
alence which is positive on cycle components, and A,A′ satisfy Conditions
(2), (3) and (4) of Proposition 4.5. Then there is a commuting diagram

(I −A) −−−→ (I − Ã)

(U,V )

y y(eU,eV )

(I −A′) −−−→ (I − Ã′)

in which the horizontal arrows are positive equivalences; Ã and Ã′ still satisfy
Conditions (2), (3) and (4); and for each i ∈ C, Ũii = Ṽii = Id.

Proof. Suppose i is a cycle component for which ni > 1 (otherwise there is

nothing to prove). Then (I − A)ii = (I − A′)ii = Q, where Q =
(

0 0
0 I

)
,

in which I is (ni − 1) × (ni − 1). Considering blocks of UiiQ = QV −1
ii ,

we see Uii and Vii have the corresponding block forms Uii =
(
a 0
x Z

)
and

Vii =
(
b y
0 Z−1

)
. The positive on cycle components assumption implies

a = 1. Then det(U) = 1 implies det(Z) = 1. Then det(Z−1) = 1 = detV
implies b = 1. So we have

Uii =
(

1 0
x Z

)
and Vii =

(
1 y
0 Z−1

)
(A.4)

for some Z in SL(ni − 1,Z).
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Now suppose E is a basic elementary matrix with offdiagonal entry E(j, k)
= 1, where j, k index rows of the ii block other than the first row. Then

(I −A)
(I,E−1)−−−−−→ · (E,I)−−−→ (I −A)(A.5)

gives a factorization of (E,E−1) : (I − A) → (I − A) into basic positive
equivalences. For example, if rows 1,2,3 run through Q and Q(1, 1) = 0, then

in the principal submatrix on indices 1,2,3 we could have E =

1 0 0
0 1 1
0 0 1

,

and (A.5) would become0 0 0
0 1 0
0 0 1

 (I,E−1)−−−−−→

0 0 0
0 1 −1
0 0 1

 (E,I)−−−→

0 0 0
0 1 0
0 0 1

 .

Now we can factor (U, V ) as

(I −A)
(I,E−1)−−−−−→ · (E,I)−−−→ (I −A)

(UE−1,EV )−−−−−−−→ (I −A′).(A.6)

Because Z is a composition of elementary matrices, and Conditions (2), (3)
and (4) are not disturbed by this move, we can repeat this move to obtain
a positive equivalence (G,G−1) : (I − A) → (I − A) such that the (U, V )
equals (G,G−1) followed by (UG−1, GV ) where (UG−1)ii and (GV )ii have
the forms (A.4) with Z = I. After doing this as needed for every cycle
component i, we can assume for each i ∈ C with ni > 1 that we have the

forms Uii =
(

1 0
x(i) I

)
and Vii =

(
1 y(i)

0 I

)
.

Let D and D′ be the block diagonal matrices equal to Id except in cycle
component diagonal blocks, where Dii = Uii and D′

ii = V −1
ii . We will

produce matrices P,Q in UP(n,Z) such that (D,Q) : (I −A)→ D(I −A)Q
and (P,D′) : (I − A′) → P (I − A′)D′ are positive equivalences, and the
matrices D(I − A)Q and P (I − A′)D′ satisfy Conditions (2), (3) and (4).
Then the lemma will follow by defining (Ũ , Ṽ ) by requiring the following
diagram to commute:

(I −A)
(D,Q)−−−→ D(I −A)Q

(U,V )

y y(eU,eV )

(I −A′) −−−−→
(P,D′)

P (I −A′)D′

.

We will prove the first claim, for (D,Q); the proof of the second claim is
similar. Let i1 < i2 < · · · < ik be the elements of C. (Recall, i ≺ j =⇒
i < j.) To begin, let i = ik and let 1, 2, . . .m index the rows through Uii.
For 2 ≤ j ≤ m, let Rj be the elementary matrix which acts from the right
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to subtract column j from column 1. Let R = R2 · · ·Rm and let 1 denote a
vector with every entry equal to 1, then

((I −A)R)ii =
(

0 0
−1 I

)
, and

((I −A)R)rs = (I −A)rs if rs 6= ii,

and we get a positive equivalence

(I −A)
(I,R2)−−−−→ · · · (I,Rm)−−−−→ (I −A)R.

Next, let Dk be a product of elementary matrices, E = En · · ·E1, where
Et acts from the left to add εt (εt = 1 or εt = −1) times row 1 to row jt,
and 2 ≤ jt ≤ m. Consider the equivalence (E1, I) : (I−A)R→ E1(I−A)R.
Notice (E1(I−A)R)ii = ((I−A)R)ii. So, this equivalence (E1, I) is positive
unless (E1(I−A)R)(j, k) > 0 for some columns p to the right of the ii block.
Let F1 be the product of basic elementary matrices F1,t, 1 ≤ t ≤ T say, which
act from the right to subtract column j1 from such columns p enough times
to guarantee (with F1 = F1,1 · · ·F1,T ) that (E1(I−A)RF1)(j1, p) < 0. Then

(I −A)R
(I,F1,1)
−−−−→ · · ·

(I,F1,T )
−−−−−→ · (E1,I)−−−−→ E1(I −A)RF1

gives a positive equivalence (E1, F1) : (I−A)R→ E1(I−A)RF1. Recursively,
for 1 ≤ t < m, apply this procedure, to produce Ft+1 giving a positive
equivalence

Et · · ·E1(I −A)RF1 · · ·Ft
(I,Ft+1)−−−−−→ · (Et+1,I)−−−−−→ Et+1 · · ·

E1(I −A)RF1 · · ·Ft+1.

Let Qk = F1 · · ·Fm: then we have a positive equivalence

(I −A)
(Dk,RQk)−−−−−−→ Dk(I −A)RQk

(I,R−1)−−−−−→ Dk(I −A)RQkR−1.

Because RQk = QkR, altogether we get

(I −A)
(Dk,Qk)−−−−−→ Dk(I −A)RQk.

Notice, Qk ∈ UP(n,Z). Moreover, if j ∈ P and j < ik, then for any t the tj
blocks of (I −A) and (Dk(I −A)kQk) are equal.

Next, for the cycle components ik−1, . . . , i1 (in that order) we repeat
the procedure used above for (Dk, Qk) to produce pairs (Dk−1, Qk−1), . . . ,
(D1, Q1) with D = DkDk−1 · · ·D1 and Q(−) := QkQk−1 · · ·Q1 giving a pos-
itive equivalence

(I −A)
(Dk,Qk)−−−−−→ · (Dk−1,Qk−1)−−−−−−−−→ · · · (D1,Q1)−−−−−→ D(I −A)Q(−).

To see that the (Di, Qi) define positive equivalences, note that for is 6= ik,
the column-subtracting moves we use to prepare the entries in a block isj
to the right of the isis block do not change the sign of entries outside the
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isj block (because we are subtracting columns through the isis block with
diagonal entry 1, and these columns have no other nonzero entry at this
stage, because the earlier subtractions of columns through block irir with
r ≥ s do not affect the is block column).

For every cycle component i, the ii block of the matrix D(I − A)Q(−)

equals Id. Suppose there exists (r, s) such that r ∈ Csec and (D(I −
A)Q(−))(r, s) < 0; then choose such an (r, s) with r minimal, and add column
r to column s. Because the (r, s) entry cannot lie in a diagonal block, this
elementary positive equivalence is implemented by multiplication from the
right by a matrix in UP(n,Z). Repeat this move until a matrix is produced in
which the (r, s) entry is zero whenever r ∈ Csec. Let the corresponding posi-
tive equivalence be denoted (I,Q(+)) : D(I −A)Q(−) → D(I −A)Q(−)Q(+).
The proof is finished by setting Q = Q(−)Q(+). �

The next lemma gives the last ingredient, Stage III, for the proof of
Proposition 4.5.

Lemma A.7. Suppose U, V,A,A′ satisfy the assumptions of Lemma A.3
and in addition assume that Uii = Vii = Id for every i ∈ C. Then there is a
commuting diagram of SLP(n,Z) equivalences

(I −A) −−−→ (I −A)

(U,V )

y y(U,V )

(I −A′) −−−→ (I −A′)
satisfying the conclusion of Proposition 4.5. (Moreover, A = A and A′ =
A′.)

Proof. We will build a suitable commuting diagram

(I −A)
(E−1,H)−−−−−→ (I −A)

(H,E
−1

)−−−−−→ (I −A)

(U,V )

y (U3,V3)

y y(U,V )

(I −A′) −−−→
(I,I)

(I −A′) −−−→
(I,I)

(I −A′)

and then use (HE−1,HE
−1) and (I, I) for the upper and lower horizontal

arrows in the diagram required for the lemma. First we work on the left
half of the diagram. We will choose E,H,U3 satisfying:

(i) U3(i, j) = δij , ∀i ∈ Csec,
(ii) (E−1,H) : (I −A)→ (I −A) is a positive equivalence, and
(iii) H−1(i, j) = δij , ∀i /∈ Csec.

Recall, Is denotes the set of indices for rows/columns through Ass. To
choose E, let the entries (i, j) for which i ∈ Csec and U(i, j) 6= δij be listed
as (i1, j1), . . . , (in, jn), where ik ∈ Is(k) and s(1) � s(2) � · · · � s(n).
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(So, jk ∈ It(k) with s(k) ≺ t(k) since by assumption Us(k)s(k) = Id.) Let
µk = U(ik, jk). Define matrices Ek, 1 ≤ k ≤ n, by Ek(ik, jk) = −µk and
otherwise Ek(i, j) = δij . Then (UEk)(ik, jk) = 0. Define E = E1E2 · · ·En.
Then by our ordering s(1) � s(2) � · · · � s(n), we have (UE)(i, j) = δij
for i ∈ Csec. Let U3 = UE, now (i) holds, and U = (UE)E−1 = U3E

−1

as required for the diagram to commute. Also E(i, j) = δij if i /∈ Csec, so
E−1(i, j) = δij if i /∈ Csec.

Next for 1 ≤ k ≤ n, we will define Hk such that (E−1
k ,Hk) : (I−A)→ (I−

A) is a positive equivalence andHk(i, j) = δij when i /∈ Csec. Then we will set
(E−1,H) = (E−1

n · · ·E−1
1 ,H1 · · ·Hn), so that (E−1,H) : (I−A)→ (I−A) is

the composition of positive equivalences and satisfies (ii). To prepare for the
definition of Hk, given k pick M a positive integer greater than the absolute
value of any entry in row ik of E−1

k (I−A), and define a matrix Fk as follows:
Fk(ik, j) = −M if ik 6= j and (E−1

k (I − A))(ik, j) 6= 0, and Fk(i, j) = δij
otherwise. Define a matrix Gk by setting Gk(ik, j) = −(E−1

k (I−A)Fk)(ik, j)
and Gk(i, j) = δij otherwise. Then we have the positive equivalence

(I −A)
(I,Fk)−−−→ ·

(E−1
k ,I)

−−−−−→ · (I,Gk)−−−−→ (I −A).

Let Hk = FkGk. Note Hk(i, j) = δij if i /∈ Csec, so H(i, j) = δij if i /∈
Csec, and therefore also H−1(i, j) = δij if i /∈ Csec. We now have E,H,U3

satisfying (i)-(iii).
To get the right half of the commuting diagram, we apply to the equiva-

lence (U3, V3) the transpose of the procedure above to get matrices E,H, V ,
U satisfying:

(i) V (i, j) = δij , ∀j ∈ Csec,
(ii) (H,E−1) : (I −A)→ (I −A) is a positive equivalence, and
(iii) H−1(i, j) = δij , ∀j /∈ Csec,

where U and V are defined by U = U3H
−1 and V = EV3. Using (i) and the

forms of (I −A) and (I −A′), we get for every j ∈ Csec and every i that

U(i, j) = (U(I−A))(i, j) = (U(I−A)V )(i, j) = (I−A′)(i, j) = δij = V (i, j).

Now suppose i ∈ Csec. We claim that U(i, j) = δij . Suppose not. Pick
j 6= i such that U(i, j) 6= 0. Because U = U3H

−1, it follows from (i) that
U(i, j) = H

−1(i, j), and then from (iii) that j ∈ Csec. This is a contradiction.
Finally, for i ∈ Csec we obtain

V (i, j) = ((I −A)V )(i, j) = (U(I −A)V )(i, j) = (I −A′)(i, j) = δij .

This finishes the proof. �
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MANIFOLDS WITH 2-NONNEGATIVE RICCI OPERATOR

Martha P. Dussan and Maria Helena Noronha

In this paper we study compact manifolds with 2-nonnega-
tive Ricci operator, assuming that their Weyl operator sat-
isfies certain conditions which generalize conformal flatness.
As a consequence, we obtain that such manifolds are either
locally symmetric or their Betti numbers between 2 and n−2
vanish. We also study the topology of compact hypersurfaces
with 2-nonnegative Ricci operator.

1. Introduction.

One of the most powerful methods for studying the Betti numbers of com-
pact manifolds is the Bochner technique. This technique is used in the
context of manifolds with some type of curvature condition which will imply
that harmonic forms are parallel. For 2-forms, this fact is implied by the
nonnegativity of the Weitzenböck operator. In dimension four the nonneg-
ativity of the Weitzenböck operator is equivalent (see for instance [14]) to
the nonnegativity of the isotropic curvature, a notion introduced by Micallef-
Moore ([11]) to study stability of harmonic 2-spheres. In that paper, the
authors also point out that conformally flat manifolds with nonnegative
scalar curvature have nonnegative isotropic curvature. Actually, denoting
the Weitzenböck operator by Q2, they show that a necessary and sufficient
condition for the nonnegativity of Q2 is −W+S/6 ≥ 0, where S is the scalar
curvature and W is the operator induced by the Weyl tensor on the space
of 2-forms Λ2(TxM). The condition above follows from the fact that, in
dimension 4, the isotropic curvature (and hence the Weitzenböck operator)
does not depend on the traceless Ricci tensor.

In dimensions greater than 4, conformal flatness and the nonnegativity of
the scalar curvature do not imply nonnegative isotropic curvature, as can be
seen through the conformally flat hypersurfaces constructed in [10] which
have S ≥ 0 but some isotropic curvatures are negative. The same examples
of conformally flat manifolds show that for n > 4, S ≥ 0 does not imply
Q2 ≥ 0.

The role of the Ricci tensor in the study of the isotropic curvature and the
Weitzenböck operator for dimensions n > 4 is not yet clear. It turns out (see
below) that the condition −W + S/6 ≥ 0 used for 4-manifolds generalizes
to −W + S/[(n − 2)(n − 1)] ≥ 0 and this paper searches for hypotheses on

319
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the Ricci tensor that together with −W +S/[(n− 2)(n− 1)] ≥ 0 imply that
Q2 ≥ 0. Our first result in this paper is the following:

Theorem 1. Let Mn, n > 4, be a compact, locally irreducible manifold with
nonnegative Ricci curvature. If −W + S/[(n − 2)(n − 1)] ≥ 0 then one of
the following occurs:

(a) M is covered by a compact symmetric space.
(b) The Betti numbers βp(M) = 0, for 1 ≤ p ≤ n− 1.

The key point of the proof of this result is to conclude that if n > 4 then
the restricted holonomy group of metrics with Q2 ≥ 0 and −W + S/[(n −
2)(n− 1)] ≥ 0 is essentially SO(n).

In the next result we assume a weaker condition for the Ricci curvature,
namely, that the manifoldM has 2-nonnegative Ricci operator, that is to say
the sum of the smallest 2 eigenvalues of the Ricci operator is nonnegative.
We will consider such a condition on manifolds whose Weyl operator W
commutes with Ric ∧ I, where Ric and I denote the Ricci and the identity
operators respectively. For such manifolds we have the following result:

Theorem 2. Let Mn, n > 4, be a compact, locally irreducible manifold
with 2-nonnegative Ricci operator. Let us suppose that [Ric ∧ I,W] = 0 and
−W + S/[(n− 2)(n− 1)] ≥ 0. Then one of following occurs:

(a) M is covered by a compact symmetric space.
(b) The Betti numbers βp(M) = 0, for 2 ≤ p ≤ n− 2.

Observe that the Weyl operator of three important classes of manifolds
commutes with Ric ∧ I: Conformally flat, Einstein and manifolds with pure
curvature tensor (see definition on page 439 of [4]). We also show that two
other types of metrics satisfy the condition [Ric ∧ I,W] = 0. They are G-
manifolds of cohomogeneity one and Riemannian manifolds with harmonic
curvature, non-parallel Ricci tensor and such that the operator Ric has less
than three distinct eigenvalues. The last class of manifolds was studied
by Derdzisnki in [7] and [8]. Such manifolds were the first examples of
compact manifolds with harmonic curvature and non-parallel Ricci tensor
and hence not Einstein. Among them we find, for n > 4, examples that are
not conformally flat either.

We also prove that locally reducible conformally flat manifolds with 2-
nonnegative Ricci operator in fact have nonnegative Ricci curvature. Using
this fact, Theorem 1 above implies the corollary below, which generalizes
Theorem 1 of [13].

Corollary 1. Let Mn, n ≥ 4, be a compact conformally flat manifold with
2-nonnegative Ricci operator. Then either M is flat or βp(M) = 0 for
2 ≤ p ≤ n − 2. Moreover if β1(M) 6= 0 then M is a quotient of Sn−1 ×R
or Rn by a group of fixed point free isometries in the standard metrics.
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We point out that for locally irreducible conformally flat manifolds, The-
orem 2 above and Theorem 2 of [10] have the same conclusion, namely, that
βp(M) = 0, for 2 ≤ p ≤ n− 2. This gives rise to a corollary with the same
proof as Corollary 1 in [10]:

Corollary 2. Let f : Mn → Rn+p, 2 ≤ p ≤ n/2−1, be an isometric immer-
sion of a compact, orientable, locally irreducible conformally flat manifold
M with 2-nonnegative Ricci operator. Then Hi(M ;Z) = 0 for p ≤ i ≤ n−p.

Another similarity between the topology of manifolds of 2-nonnegative
Ricci operator and nonnegative isotropic curvature appears in the context
of hypersurfaces of Euclidean spaces. For these, we prove the result below
(compare with Theorem 1 of [10]):

Theorem 3. Let f : Mn → Rn+1, n ≥ 4, be an isometric immersion of a
compact manifold M with 2-nonnegative Ricci operator. Then the homology
groups

Hi(M ;Z) = 0 for 2 ≤ i ≤ n− 2
and the fundamental group π1(M) is a free group on β1 elements.

2. Manifolds with nonnegative Weitzenböck operator.

Let M be a Riemannian manifold and Ric : TxM → TxM denote the Ricci
operator given by

〈Ric (X), Y 〉 = Ric (X,Y ).
In this paper we will use the same notation for a tangent vector X and
its dual form. With this in mind, we define the Weitzenböck operator Q2 :
Λ2(TxM)→ Λ2(TxM) as

Q2(X ∧ Y ) = (Ric ∧ I)(X ∧ Y ) − 2R (X ∧ Y )

= Ric (X) ∧ Y +X ∧ Ric (Y )− 2R (X ∧ Y ),

where R is the curvature operator and Λ2(TxM) denotes the space of 2-
forms. This operator satisfies the well-known Weitzenböck formula, e.g.,
∆ω = −div∇ω+Q2(ω), where ∆ is the Laplace-Beltrami operator and ∇ω
the covariant derivative of ω.

It is easy to see that Q2 is a self-adjoint operator, and therefore it makes
sense to study it when it is nonnegative. The nonnegativity of the Weitzen-
böck operator has been used to study the second Betti number of compact
manifolds. In this section we collect some results along this line.

Lemma 2.1. Let M be a Riemannian manifold with nonnegative Weitzen-
böck operator. Then:

(a) If e1, e2 are orthonormal vectors, we have Ric (e1, e1) + Ric (e2, e2) −
2K12 ≥ 0, where K12 is the sectional curvature of the plane spanned
by e1 and e2.
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(b) The scalar curvature S is nonnegative.
(c) If S ≡ 0 and n > 4 then M is flat.
(d) If S ≡ 0 and n = 4 then M is conformally flat.

Proof. Since Q2 ≥ 0, (a) comes straightforward from the definition of Q2.
Now we have that Ric (e1, e1)+Ric (ej , ej)− 2K1j ≥ 0 for all unit vectors

ej that are orthogonal to e1. We obtain

(n− 1)Ric (e1, e1) +
∑
j 6=1

[Ric (ej , ej)− 2K1j ] = (n− 4)Ric (e1, e1) + S ≥ 0.

(2.2)

Therefore, if n = 4 we have S ≥ 0. If n > 4 and the Ricci curvature is
nonnegative then S ≥ 0. If Ric (e1, e1) < 0 then S > 0.

To prove (c), observe that Equation (2.2) also implies that if S ≡ 0 and
n > 4 then the Ricci curvature is nonnegative. If S ≡ 0, we conclude that
M is Ricci flat. This substituted in (a) implies that the sectional curvature
K ≤ 0 which gives K = 0, again because S ≡ 0. The result in (d) is
well-known (see for instance [12], Proposition 2.5 or [15], Proposition 2.5).

Proposition 2.3. Let Mn, n ≥ 4, be a locally irreducible compact manifold
with nonnegative Weitzenböck operator. Then:

(a) If M is even dimensional and β2(M) 6= 0 then β2(M) = 1 and M
is a simply connected Kähler manifold with positive first Chern class.
Further, if n = 4, then M is biholomorphic to the complex projective
space CP2.

(b) If M is odd dimensional and β2(M) 6= 0 then M is covered by sym-
metric space of [compact type] and rank > 1.

Proof. Since M is compact, it follows from the nonnegativity of Q2 and the
Weitzenböck formula that a harmonic 2-form ω is parallel.

If M is even dimensional, the proof of Theorem 2.1(b) of [12] applies
here, since it depends only on the fact that harmonic 2-forms are parallel
and S ≥ 0 but not zero. Since S = 0 implies that M is flat and this
contradicts the irreducibility of M we conclude the first assertion of (a).
The second part follows from Theorem 1 of [14].

If M is odd dimensional, since we are supposing that M is locally ir-
reducible, then so is the restricted holonomy group G. Recall that in [2],
Berger proved that if for some x ∈ M , G acts irreducibly on TxM , then
either M is locally symmetric or G is one of the standard subgroups of
SO(n):

SO(n), U(m)(n = 2m), Sp(m)× Sp(1)(n = 4m > 4),Spin (9)(n = 16)

SU(m)(n = 2m > 2), Sp(m)(n = 4m > 4), G2(n = 7),Spin (7)(n = 8).

In the case that M is locally symmetric, the universal cover M̃ is an ir-
reducible symmetric space. Since M̃ is Einstein, if S = 0, M would be
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Ricci flat and then flat by Lemma 2.1. Therefore S > 0 and M̃ is compact.
If rank(M̃) = 1, being odd-dimensional, it would be isometric to a sphere
contradicting that β2(M) 6= 0. Berger also proved that if G is one of the
possibilities listed on the second line above, M is Ricci flat, which in this
case implies that M is flat. Note that in the other possibilities for G, M
is even dimensional, except if G = SO(n). In this case, the existence of a
parallel 2-form ω would give rise to a parallel and hence harmonic 2-form
on Sn by the holonomy principle, and this is a contradiction.

3. A special condition on the Weyl tensor.

We start this section proving a result for manifolds with nonnegative
Weitzenböck operator and Weyl tensor satisfying a condition which gener-
alizes conformal flatness. Before we state the result, we recall that the Weyl
tensor induces an operator

W : Λ2(TxM)→ Λ2(TxM)

given by
W(X ∧ Y ) = R(X ∧ Y )− Γ(X) ∧ Y −X ∧ Γ(Y )

where Γ : TxM → TxM is defined by

Γ(X) =
1

n− 2

(
Ric (X)− S

2(n− 1)
X

)
.

It is well-known that conformal flatness for manifolds of dimension n ≥ 4 is
equivalent to W ≡ 0.

Lemma 3.1. Let Q2,R,W denote the Weitzenböck, curvature and Weyl
operator respectively. We have:

(a)

Q2 − (n− 4)R =
S

n− 1
− (n− 2)W.

(b) If −W + S/[(n − 2)(n − 1)] ≥ 0 and Q2 is a nonnegative operator
(Q2 ≥ 0) then

Q2 − 2(p− 2)R ≥ 0 whenever p ≤ [n/2].

Proof. Using the definition of W we obtain (a).
For (b), observe first that the assumptions imply that Q2 − (n − 4)R

is a nonnegative operator. Now let µ be an eigenvalue of Q2 − 2(p − 2)R
with corresponding eigenvector φ. If 〈R(φ), φ〉 ≤ 0, then 〈(Q2 − 2(p −
2)R)(φ), φ〉 ≥ 0, since we are supposing that Q2 ≥ 0. If 〈R(φ), φ〉 ≥ 0, we
have for p ≤ [n/2]

〈(Q2 − 2(p− 2)R)(φ), φ〉 ≥ 〈(Q2 − (n− 4)R)(φ), φ〉 ≥ 0.
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Theorem 3.2. Let Mn, n ≥ 4 be a locally irreducible compact manifold with
nonnegative Weitzenböck operator and such that −W+S/[(n−2)(n−1)] ≥ 0.
Then one of the following occurs:

(a) M is locally symmetric and covered by a compact symmetric space.
(b) The Betti numbers βp(M) = 0 for 2 ≤ p ≤ n− 2.
(c) M is 4-dimensional manifold biholomorphic to the complex projective

space CP2.

Proof. Without loss of generality, we asume that M is orientable. Let ω be
a harmonic p-form. We use the Weitzenböck formula for p-forms (see [9])

(∆ω, ω) = (∇ω,∇ω) +
∫
M
F (ω)dV

where ( , ) denotes the L2-product with respect to the Riemannian volume
density dV and

F (ω) =
1

(p− 1)!

[
A− p− 1

2
B

]
,

with

A =
∑

i3,... ,ip

∑
r,s,u,t

ω(Xs, Xr, Xi3 , . . . , Xip)

· ω(Xt, Xr, Xi3 , . . . , Xip)〈R(Xs, Xu)Xu, Xt〉

B =
∑

i3,... ,ip

∑
r,s,u,t

ω(Xr, Xs, Xi3 , . . . , Xip)

· ω(Xt, Xu, Xi3 , . . . , Xip)〈R(Xr, Xs)Xu, Xt〉.
Notice that F (ω) can be written as

F (ω) =
1

(p− 1)!

∑
i3,... ,ip

〈(Q2 − 2(p− 2)R)(φi3,... ,ip), φi3,... ,ip〉

where φi3,... ,ip is a 2-form obtained by fixing Xi3 , . . . , Xip and defining

φi3,... ,ip(u, v) = ω(u, v,Xi3 , . . . , Xip).

Therefore, Q2 − 2(p− 2)R ≥ 0 implies F (ω) ≥ 0.
Proceeding as the proof of Lemma 3.1(b), we conclude that (Q2 − 2(p−

2)R) ≥ 0 for 2 ≤ p ≤ [n/2] and hence for p in this range, a harmonic p-form
is parallel. Again, we study each possibility for the restricted holonomy
group G and use the holonomy principle.

If M is locally symmetric, being locally irreducible, M̃ is an irreducible
symmetric space and therefore an Einstein space. Since it cannot be Ricci
flat, it has positive Ricci curvature and hence compact.

The fact that M cannot be Ricci flat leaves us with the following possi-
bilities:

SO(n), U(m)(n = 2m), Sp(m)× Sp(1)(n = 4m > 4),Spin (9)(n = 16).
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In the last case, a result in [5] implies that M is locally symmetric, and we
repeat the previous argument.

Recall that if β2(M) 6= 0, and M is even dimensional then M is a Kähler
manifold and then there exists a parallel form ω for which Q2(ω) = 0.
Moreover we can find orthonomal vectors e1, . . . , em, n = 2m, such that

ω = J(e1) ∧ e1 + · · ·+ J(em) ∧ em,

where J denotes the complex structure onM . Using the fact thatQ2(ω) = 0,
from the definition of Q2 we get

0 = Ric (e1, e1) + Ric (J(e1), J(e1)) + · · ·+ Ric (em, em)

+ Ric (J(em), J(em))− 2〈R(ω), ω〉,

which gives

〈R(ω), ω〉 =
S

2
yielding

〈W(ω), ω〉 =
(n− 2)S
2(n− 1)

.

On the other hand, let {φi} denote an orthonormal basis which diagonalizes
W with corresponding eigenvalues νi. We then write ω =

∑
i aiφi, and then

〈W(ω), ω〉 =
(n− 2)S
2(n− 1)

=
∑
i

a2
i νi.

Let us suppose that the eigenvalues νi’s are increasing and let i0 denote the
index such that νi ≥ 0, for i ≥ i0. Therefore, from our assumption on the
eigenvalues of the Weyl operator, we get

(n− 2)S
2(n− 1)

≤
∑
i≥i0

a2
i

S

(n− 1)(n− 2)
≤ S

(n− 1)(n− 2)
n

2
.

But the above implies either (n − 2)2 ≤ n, which is clearly a contradiction
for n > 4, or S = 0. But S = 0 contradicts the irreducibility of M , since
it implies that M is flat. Therefore, if n > 4, β2(M) = 0 and hence the
holonomy G cannot be U(m). If n = 4, we obtain that (c) follows from
Proposition 2.3.

If G = Sp(m)×Sp(1), M is Einstein (see [3]) and hence has positive Ricci
curvature. Furthermore, M is a quaternionic Kähler manifold which implies
the existence of a parallel 4-form (V.Y. Kraines, see [4] p. 419), which we
denote by ω, and then F (ω) = 0. From the equation

F (ω) =
1

(3)!

∑
i3,i4

〈(Q2 − 4R)(φi3,i4), φi3,i4〉,
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and the fact that (Q2 − 4R) is a nonnegative operator, we obtain

〈(Q2 − 4R)(φi3,i4), (φi3,i4)〉 = 0,(3.3)

for all 2-forms of type φi3,i4 . On the other hand, we have 〈(Q2 − (n −
4)R)(φi3,i4), (φi3,i4)〉 ≥ 0, and using (3.3) we obtain

(8− n)〈R(φi3,i4), φi3,i4〉 ≥ 0.

If n > 8, the above implies that 〈Q2(φi3,i4), φi3,i4〉 = 4〈R(φi3,i4), φi3,i4〉 ≤ 0.
Since Q2 ≥ 0, we then have that

〈Q2(φi3,i4), φi3,i4〉 = 〈R(φi3,i4), φi3,i4〉 = 0.

But M is Einstein and hence Q2 = 2(S/n) − 2R. Therefore, the equation
above gives

2S||φi3,i4 ||2

n
= 0,

implying S = 0, which is the desired contradiction.
If n = 8, (3.3) substituted in Lemma 3.1(a) immediately implies

〈W(φi3,i4), φi3,i4〉 =
S||φi3,i4 ||2

42
,

and we claim that φi3,i4 is an eigenvector of W. In fact, if not, we consider
again an orthonormal basis {φi} which diagonalizes W, and let i0 denote
the index such that νi ≥ 0, for i ≥ i0. We would have

〈W(φi3,i4), φi3,i4〉 <
∑
i≥i0

a2
i

S

42
<
S||φi3,i4 ||2

42
.

Since M is Einstein, an eigenvector of W is also an eigenvector R, and then
we obtain that

R(φi3,i4) =
S

24
φi3,i4 .

We will show now that one can obtain a basis of Λ2(TxM) whose elements
are 2-forms of type φi3,i4 . This impliesR = (S/24)I, that is, M is a manifold
of constant curvature contradicting that its restricted holonomy group G is
Sp(2)×Sp(1). For that, let I, J,K denote the almost complex structures of
M which satisfy the relations IJ = −JI, and K = IJ . Let {e1, . . . , e8} be
an orthonormal basis with the property

e2 = I(e1), e3 = J(e1), e4 = K(e1)

e6 = I(e5), e7 = J(e5), e8 = K(e5).
The form ω is given by

ω = α ∧ α+ β ∧ β + γ ∧ γ,
where

α(X,Y ) = 〈I(X), Y 〉 β(X,Y ) = 〈J(X), Y 〉 γ(X,Y ) = 〈K(X), Y 〉.
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Therefore α, β and γ are written as

α = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 + e7 ∧ e8

β = e1 ∧ e3 − e2 ∧ e4 + e5 ∧ e7 − e6 ∧ e8

γ = e1 ∧ e4 + e2 ∧ e3 + e5 ∧ e8 + e6 ∧ e7,
and then

ω = 6 e1 ∧ e2 ∧ e3 ∧ e4 + 2 e1 ∧ e2 ∧ e5 ∧ e6
+ 2 e1 ∧ e2 ∧ e7 ∧ e8 + 2 e1 ∧ e3 ∧ e5 ∧ e7 − 2 e1 ∧ e3 ∧ e6 ∧ e8
+ 2 e1 ∧ e4 ∧ e5 ∧ e8 + 2 e1 ∧ e4 ∧ e6 ∧ e7 + 2 e2 ∧ e3 ∧ e5 ∧ e8
+ 2 e2 ∧ e3 ∧ e6 ∧ e7 − 2 e2 ∧ e4 ∧ e5 ∧ e7 + 2 e2 ∧ e4 ∧ e6 ∧ e8
+ 2 e3 ∧ e4 ∧ e5 ∧ e6 + 2 e3 ∧ e4 ∧ e7 ∧ e8 + 6 e5 ∧ e6 ∧ e7 ∧ e8.

As before, let us consider the 2-form φi,j(u, v) = ω(u, v, ei, ej). From the
expression of ω it is straightforward to conclude that {φi,j , i < j} is a basis
of ∧2(TxM). Since G 6= U(m), Sp(m)× Sp(1), if n > 4 then the only possi-
bility for G is SO(n). The holonomy principle implies that βp(M) = 0 for
2 ≤ p ≤ [n/2] and we conclude βp(M) = 0 for 2 ≤ p ≤ n− 2 by duality.

Now we use Theorem 3.2 to prove Theorem 1 stated in the introduction.

Proof of Theorem 1. We show that the hypotheses imply Q2 ≥ 0. In fact, let
ω be a unit eigenvector of Q2. There exist an orthonormal set {e1, . . . , e2m}
of TxM and numbers a1, . . . , am such that

ω = a1 e1 ∧ e2 + · · ·+ am e2m−1 ∧ e2m.

From the definition of Q2 we obtain

〈Q2(ω), ω〉 =
m∑
i=1

a2
i

(
Ric (e2i−1, e2i−1) + Ric (e2i, e2i))− 2〈R(ω), ω〉

=
n− 4
n− 2

m∑
i=1

a2
i

(
Ric (e2i−1, e2i−1) + Ric (e2i, e2i))

− 2
[
〈W(ω), ω〉 − S

(n− 2)(n− 1)

]
≥ 0.

Now, Theorem 3.2 implies (a) or βp(M) = 0 for 2 ≤ p ≤ n − 2. Since we
are also assuming that all Ricci curvatures are nonnegative, we apply the
well-known generalization of Bochner’s theorem, namely, that either M is
covered by a compact symmetric space or it is Ricci flat or β1(M) = 0. Since
our hypotheses imply Q2 ≥ 0, M cannot be Ricci flat and this finishes the
proof of the theorem.
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Next we want to examine another condition on the Weyl operator that
also generalizes W = 0. Such a condition is

[Ric ∧ I,W] = 0.

This condition is satisfied by several important classes of Riemannian mani-
folds. Among them, we easily find the Einstein manifolds. In this section we
show other classes of manifolds whose Weyl operator commutes with Ric ∧I.

Recall that the curvature operator R is said to be pure if there exists
an orthonormal basis {e1, . . . , en} of the tangent space such that the basis
of 2-forms {ei ∧ ej}i<j diagonalizes R. We call the basis {e1, . . . , en} an
R-basis.

Notice that the Weyl tensor of a manifold with pure curvature operator
satisfies [Ric ∧ I,W] = 0. This class of manifolds also includes hyper-
surfaces of Euclidean spaces, and more generally, manifolds which admit
isometric immersions into a space of constant curvature with flat normal
bundle. To see this, just use the Ricci equation which implies that there is
an orthonormal basis that diagonalizes simultaneously all the Weingarten
operators; then from the Gauss equation one obtains the R-basis. The tech-
nical condition of the next lemma will appear naturally in two other classes
of manifolds.

Lemma 3.4. Let M be a Riemannian manifold such that for every point
x ∈ M , the Ricci operator Ric x has an eigenvalue λ(x) of constant multi-
picity n − 1. Suppose that the eigenspaces Eλ corresponding to λ form an
integrable distribution. If their leaves are totally umbilic submanifolds and
have constant mean curvature then [Ric ∧ I,W] = 0.

Proof. Let {e1, . . . , en} be an orthonormal basis such that Ric (e1) = µe1
and Ric (ei) = λei, for i ≥ 2. We show first that

〈R(e1 ∧ ek), ei ∧ ej〉 = 0, i, j, k ≥ 2.

For that, let Σ denote a maximal leaf of Eλ. Let A denote the shape operator
of the inclusion i : Σ → M with only an eigenvalue of multiplicity n − 1
denoted by a. Since a is constant, it is straightforward to verify that A
satifies the Codazzi equation

〈
(
∇eiA

)
(ej), ek〉 = 〈

(
∇ejA

)
(ei), ek〉, ∀ i, j, k ≥ 2,

where ∇ is the induced connection on Σ. This fact implies 〈R(ei ∧ ej), e1 ∧
ek〉 = 0. Then, we have that

W(e1 ∧ ek) = R(e1 ∧ ek)−
µ

n− 1
e1 ∧ ek

lies in the space V = span{e1 ∧ ek, k ≥ 2}. Since Ric ∧ I restricted to V is
a multiple of the identity, we have that W and Ric ∧ I commute on V . We
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also have, for i, j ≥ 2,

W(ei ∧ ej) = R(ei ∧ ej)−
(n− 1)λ− µ

(n− 1) (n− 2)
ei ∧ ej ,

and then W(ei ∧ ej) ∈ U = span{ei ∧ ej , i, j ≥ 2, i < j} implying that
[Ric ∧ I,W] = 0 on U .

Definition 3.5. A Riemannian G-manifold is said to be of cohomogeneity
one if the group G acts effectively and isometrically with principal orbits of
codimension one.

Proposition 3.6. Let M be a cohomogeneity one G-manifold such that
its principal orbits are isotropy-irreducible homogeneous spaces (see [4, p.
187]). Then the set of regular points Mreg of M satisfies the conditions of
Lemma 3.4. It follows that [Ric ∧ I,W] = 0 for all points of M .

Proof. Since Σ is an isotropy-irreducible homogeneous space, the immersion
i : Σ → M is totally umbilic. Further, a G invariant metric defined on an
isotropy-irreducible homogeneous space is Einstein. From this and the fact
that the immersion of the orbit Σ into M is totally umbilic, we obtain that
the operator Ric x is almost umbilic for all x ∈Mreg. Note that such an im-
mersion has constant mean curvature, by the homogeneity of Σ . Therefore,
from the Lemma above we get that [Ric ∧ I,W] = 0 on 2-forms defined on
Λ2(TxM) for x ∈Mreg. Since Mreg is dense in M , we have the result.

Proposition 3.7. Let M be a Riemannian manifold with harmonic cur-
vature and non-parallel Ricci tensor. If Ric has less than three distinct
eigenvalues at any point of M then M satisfies the conditions of Lemma 3.4
and hence [Ric ∧ I,W] = 0 for all points of M .

Proof. The proof that M satisfies the conditions of Lemma 3.4 is Lemma 3
of [7].

Lemma 3.8. Let M be Riemannian manifold with the property that [Ric ∧
I,W] = 0. Let {e1, . . . , en} be an orthonormal basis of eigenvectors of Ric
with corresponding eigenvalues µi. Then:

(a) R(ei∧ej) and F (ei∧ej) are eigenvectors of Ric ∧I with corresponding
eigenvalue µi + µj.

(b) Let Eµi denote the eigenspace of µi. If {e1, . . . , ek} is a basis of Eµi

and {ek+1, . . . , em} a basis of Eµj then the space span{er ∧ es, r =
1, . . . , k, s = k + 1, . . . ,m} is invariant by R and Q2.

Proof. Since the condition [Ric ∧ I,W] = 0 implies that Ric ∧ I commutes
with R and Q2 and µi + µj is an eigenvalue of Ric ∧ I with corresponding
eigenvector ei ∧ ej , we have Part (a), which immediately implies (b).
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4. Manifolds with 2-nonnegative Ricci operator.

It has been shown by H. Chen ([6]) that, from the topological point of view,
compact manifolds with 2-nonnegative curvature operator are the same as
the ones with nonnegative curvature operator. In this section we want to
investigate to what extent the topology of manifolds with nonnegative Ricci
curvature and 2-nonnegative Ricci operator can be compared.

Definition 4.1. The Ric operator is said to be 2-nonnegative (respectively,
positive) if the sum of the first 2 eigenvalues is nonnegative (respectively,
positive).

Proposition 4.2. Let Mn be a locally reducible Riemannian manifold with
2-nonnegative Ricci operator. If M does not have nonnegative Ricci curva-
ture then the universal cover M̃ is isometric N1×· · ·×Nm where each Ni is
irreducible and non-flat and one the Ni’s is at least 3-dimensional and has
2-nonnegative Ricci operator and all other factors have nonnegative Ricci
curvature.

Proof. The universal covering M̃ is isometric to Rk ×N1× · · · ×Nm by the
decomposition theorem of de Rham. If k ≥ 1 then Ric (X) = 0 for all X that
is tangent to Rk and then M has nonnegative Ricci curvature. If k = 0,
and one of the Ni’s is 2-dimensional, its curvature must be nonnegative,
otherwise Ric would have 2 negative eigenvalues. Therefore, if Ric has a
negative eigenvalue, one of theNi’s has dimension at least 3. The remanining
statements now are obvious.

Corollary 4.3. Let Mn be a locally reducible conformally flat manifold with
2-nonnegative Ricci operator. Then M has nonnegative Ricci curvature.

Proof. It follows from Proposition 4.2 that the only case to be studied
here is M̃ = N1 × · · · × Nm where a factor Ni0 has dimension k ≥ 3, 2-
nonnegative Ricci operator, and all other factors are at least 2-dimensional.
Let {e1, . . . , ek} be a basis of vectors tangent to Ni0 and er, es orthonormal
vectors tangent to Nj , j 6= i0. Since M is conformally flat we have that

K12 +K34 = K13 +K24,

whenever e1, e2, e3, e4 are orthonormal vectors. Using this relation we get

Kij +Krs = Kir +Kjs = 0, ∀ i, j = 1, . . . k, i 6= j.

This implies that Ni0 has constant curvature and hence positive Ricci cur-
vature.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Again we show that the hypotheses of the theorem
imply that the Weitzenböck operator Q2 is nonnegative and the result will
follow from Theorem 3.2.
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Let ω be a unit eigenvector of Q2. From Part (b) of Lemma 3.8 (and with
same notation) we get that ω ∈ span{er∧es, r = 1, . . . , k, s = k+1, . . . ,m},
for some i, j. Since we have

R(ω) =W(ω) +
(µi + µj
n− 2

)
ω − S

(n− 1)(n− 2)
ω

Q2(ω) = (µi + µj) ω − 2R(ω),

we obtain

〈Q2(ω), ω〉 =
(n− 4)(µi + µj)

n− 2
− 2

[
〈W(ω), ω〉 − S

(n− 1)(n− 2)

]
≥ 0.

Combining the results of Corollary 4.3, Theorem 2 and Theorem of [13]
we obtain Corollary 1 stated in the introduction.

Now we use Theorem 2 to conclude the following results for the manifolds
studied in the last section.

Theorem 4.4. Let Mn, n ≥ 5, be a compact, locally irreducible cohomo-
geneity one G-manifold such that its principal orbits are isotropy-irreducible
homogeneous spaces. If M has 2-nonnegative Ricci operator and −W +
S/
(
(n− 1)(n− 2)

)
≥ 0 then βi(M) = 0, for 2 ≤ i ≤ n− 2.

Proof. Observe first that combining Proposition 3.6 and Theorem 2 we get
either βi(M) = 0, for 2 ≤ i ≤ n − 2 or M̃ is a compact symmetric space,
and in particular a homogeneous space. A theorem of Podestà states (see
[16]) that a compact homogeneous space that is also a cohomogeneity one
manifold with isotropy-irreducible principal orbits is isometric to the sphere
or to the real projective space which implies again that βi(M) = 0, for
2 ≤ i ≤ n− 2.

Theorem 4.4 above generalizes in some sense a result of Podestà in [17],
which states that a compact G-cohomogeneity one manifold of positive Ricci
curvature and isotropy-irreducible principal orbits is covered by a manifold
conformally difeomorphic to a sphere.

For manifolds with harmonic curvature we obtain the following result.

Theorem 4.5. Let Mn, n ≥ 5, be a compact locally irreducible Riemannian
manifold with harmonic curvature and non-parallel Ricci tensor. Let us
suppose that Ric has less than three distinct eigenvalues at any point of M
and the eigenvalues of the Weyl operator satisfy −W+S/

(
(n−1)(n−2)

)
≥ 0.

If M has 2-nonnegative Ricci operator then βi(M) = 0, for 2 ≤ i ≤ n− 2.

Proof. It is immediate from Proposition 3.7 and Theorem 2, since we are
assuming that the Ricci tensor is non-parallel and hence M cannot be locally
symmetric.
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5. Hypersurfaces of 2-nonnegative Ricci operator.

It is well-known that on hypersurfaces of Euclidean spaces, nonnegative
Ricci curvature implies the nonnegativity of the sectional curvatures. The
next result shows that compact hypersurfaces with 2-nonnegative Ricci op-
erator and compact hypersurfaces with nonnegative isotropic curvatures are
topologically the same. This is the content of Theorem 3 stated in the
introduction that we now prove.

Proof of Theorem 3. Let ξ be a unit vector such that ±ξ are regular values
of the Gauss map Φ : Mn → Sn ⊆ Rn+1. Then the height function hξ :
M → R given by hξ(x) = 〈f(x), ξ〉 is a Morse fuction with critical points
Φ−1(±ξ). At such points the Hessian of hξ is given, up to a sign, by the
Weingarten operator Aξ. Let {e1, . . . , en} be an orthonormal basis of TxM
that diagonalizes Aξ, say, Aξei = λiei. By the Gauss equation Kij = λiλj
and since the critical points are nondegenerate, we have that λi 6= 0 for
i = 1, . . . , n. As before, we denote the eigenvalues of the Ricci operator
by µi. If all eigenvalues of the Ricci operator are nonnegative, then the
sectional curvatures Kij ≥ 0 and all eigenvalues of Aξ have the same sign.

Suppose µ1 < 0. We claim that in this case n− 1 eigenvalues of Aξ have
the same sign.

If λ1 < 0, we reorder the λi’s for i ≥ 2, such that λ2 ≤ · · · ≤ λn. Thus

µ1 = λ1 (λ2 + λ3 + · · ·+ λn) < 0 ⇒ λ2 + λ3 + · · ·+ λn > 0.

Therefore λn > 0. Now we suppose that λ2 < 0 and this will give a contra-
diction. Indeed, since our hypothesis implies µ2 ≥ 0 we have

µ2 = λ2 (λ1 + λ3 + · · ·+ λn) > 0 ⇒ λ1 + λ3 + · · ·+ λn < 0,

which in turn implies

λ3 + · · ·+ λn < −λ1.(5.1)

Since µn ≥ 0 and λn > 0 we also have

µn = λ2λn + λn (λ1 + λ3 + · · ·+ λn−1) > 0 ⇒ λ1 + λ3 + · · ·+ λn−1 > 0,

yielding

λ3 + · · ·+ λn−1 > −λ1.(5.2)

From (5.1) and (5.2) we get −λ1 + λn < −λ1 implying that λn < 0 and this
is a contradiction.

If λ1 > 0 we then have that λ2+λ3+· · ·+λn < 0. Since µ1 < 0 not all λi’s
have the same sign, otherwise all sectional curvatures would be positive. Let
us the suppose that λ2 < 0, after we have reordered such that λ2 ≤ · · · ≤ λn.
If λi < 0 for i ≥ 3 we have the claim. If not, then λn > 0. Again we obtain
(5.1) and (5.2) which gives the desired contradiction.
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Therefore we conclude that for each regular point, all but at most one of
the λ′is have the same sign and hence the index of a critical point of hξ has to
be 0, 1, n−1 or n. By the standard Morse Theory, M has the homotopy type
of a CW -complex, with no cells of dimension i for 2 ≤ i ≤ n− 2. Therefore
the homology group Hi(M ;Z) = 0 for 2 ≤ i ≤ n− 2. Moreover, since there
are no 2-cells (n ≥ 4), we conclude by the cellular aproximation theorem
that the inclusion of the 1-skeleton M (1) ↪→ M induces an isomorphism
between the fundamental groups. Therefore the fundamental group π1(M)
is a free group on β1 elements and H1(M ;Z) is a free abelian group with
the same number of generators.
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DISCRETE PRODUCT SYSTEMS OF HILBERT
BIMODULES

Neal J. Fowler

A Hilbert bimodule is a right Hilbert module X over a
C∗-algebra A together with a left action of A as adjointable
operators on X. We consider families X = {Xs : s ∈ P} of
Hilbert bimodules, indexed by a semigroup P , which are en-
dowed with a multiplication which implements isomorphisms
Xs ⊗A Xt → Xst; such a family is a called a product system.
We define a generalized Cuntz-Pimsner algebra OX , and we
show that every twisted crossed product of A by P can be re-
alized as OX for a suitable product system X. Assuming P is
quasi-lattice ordered in the sense of Nica, we analyze a certain
Toeplitz extension Tcv(X) of OX by embedding it in a crossed
product BP oτ,XP which has been “twisted” by X; our main
Theorem is a characterization of the faithful representations
of BP oτ,XP .

Introduction.

Suppose X is a right Hilbert module over a C∗-algebra A. If X also car-
ries a left action of A as adjointable operators on XA, we call X a Hilbert
bimodule over A. In [22], Pimsner associated with every such bimodule X
a C∗-algebra OX , which we shall call the Cuntz-Pimsner algebra of X, and
showed that every crossed product by Z and every Cuntz-Krieger algebra
can be realized as OX for suitable X. He also commented that the algebras
OX include the crossed products by N; that is, for each endomorphism α of
a C∗-algebra A there is a bimodule X = X(α) such that OX is canonically
isomorphic to the semigroup crossed product Aoα N of [6, 24].

The work in this paper is motivated by the following observation, which
also serves as our primary example. Suppose β is an action of a discrete
semigroup P as endomorphisms of a C∗-algebra A. For each s ∈ P let
Xs := X(βs) be the bimodule canonically associated with the endomor-
phism βs. Then the family X = {Xs : s ∈ P} admits an associative
multiplication (x, y) ∈ Xs × Xt 7→ xy ∈ Xts which implements isomor-
phisms Xs ⊗A Xt → Xts; we call a family with this structure a product
system of Hilbert bimodules. (In this example X is a product system over
the opposite semigroup P o.) Such families generalize the product systems
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of [7, 8, 12, 10], where the fibers Xs are complex Hilbert spaces (bimodules
over C).

To each product system X we associate a generalized Cuntz-Pimsner
algebra OX . When X is the product system associated with the semi-
group dynamical system (A,P, β), OX is canonically isomorphic to the semi-
group crossed product A oβ P . Moreover, if we “twist” X by a multiplier
ω : P × P → T, then the corresponding Cuntz-Pimsner algebra is isomor-
phic to the twisted semigroup crossed product Aoβ,ω P . Our construction
applies even when A is nonunital provided each endomorphism βs extends
to the multiplier algebra M(A).

The aim of this paper is to take a first step towards analyzing the Cuntz-
Pimsner algebra of a product system X. Following Pimsner [22], we begin
by studying the structure of its Toeplitz extension TX . This algebra is
universal for Toeplitz representations of X; these are multiplicative maps
whose restriction to each fiber Xs is a Toeplitz representation in the sense
of [13]. Our results generalize those of [12] for product systems of Hilbert
spaces; indeed, much of the paper is devoted to adapting the methods of [12]
to the bimodule setting. Thus our basic assumptions about the underlying
semigroup P are as in [12]: To allow our analysis to extend beyond the
totally-ordered case, we assume that P is the positive cone of a group G
such that (G,P ) is quasi-lattice ordered in the sense of Nica [20]. The class
of such (G,P ) includes all direct sums and free products of totally ordered
groups. We also impose a covariance condition, called Nica covariance, on
Toeplitz representations of X. This means that the universal C∗-algebra
Tcov(X) which we analyze is in general a quotient of TX . However, if (G,P )
is totally-ordered, then Nica-covariance is automatic, and hence Tcov(X) is
the same as TX .

Our main goal is to characterize the faithful representations of Tcov(X).
We accomplish this by embedding Tcov(X) in a certain twisted semigroup
crossed product BPoτ,XP (Theorem 6.3), and then characterizing its faith-
ful representations (Theorem 7.2). When P = N, Tcov(X) is precisely the
Toeplitz algebra of the Hilbert bimodule X1 (the fiber over 1 ∈ N), and our
Theorem 7.2 reduces to [13, Theorem 2.1]. In fact, the analysis in [13] was
motivated by our preliminary work on this paper. We would like to point
out in particular how the stronger result [13, Theorem 3.1] arose from our
investigations into product systems, for it serves as a good illustration of
the usefulness of Nica covariance. Suppose Z is an orthogonal direct sum⊕

λ∈Λ Z
λ of Hilbert bimodules. Let G be the free group on Λ, let P be the

subsemigroup of G generated by Λ, and let X be the unique product system
over P whose fiber over λ is Zλ. Then Tcov(X) is canonically isomorphic to
the Toeplitz algebra of the bimodule Z, and [13, Theorem 3.1] follows from
our Theorem 7.2.
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The main application of [13, Theorem 3.1] was to establish the simplic-
ity of the graph algebras associated with certain infinite directed graphs
[13, Corollary 4.3]. Although here we confine our applications to twisted
semigroup crossed products, we anticipate that our results will also give
interesting information about OX when each of the fibers of X arise from
infinite directed graphs.

We begin in Section 1 by giving a brief review of Hilbert bimodules, their
representations, and their C∗-algebras. In Section 2 we introduce product
systems of Hilbert bimodules, discuss their representations, and define the
algebras TX and OX . In Section 3 we associate with each twisted semigroup
dynamical system (A,P, β, ω) a product system X = X(A,P, β, ω) whose
Cuntz-Pimsner algebra OX is the twisted semigroup crossed product Aoβ,ω

P . We show that the Toeplitz algebra of X(A,P, β, ω) also has a crossed
product structure, and this motivates the definition of a “Toeplitz” crossed
product T (Aoβ,ω P ) in which the endomorphisms are implemented not by
isometries, but rather by partial isometries.

In Section 4 we generalize the notion of twisted crossed product by re-
placing the multiplier ω by a product system X of Hilbert bimodules. This
extends the philosophy developed in [12] that one should regard product
systems as noncommutative cocycles. Hence given an action β of P as en-
domorphisms of a C∗-algebra C, we consider (C,P, β,X) as a twisted semi-
group dynamical system, and we define a twisted crossed product Coβ,X P .

In Section 5 we assume that (G,P ) is quasi-lattice ordered, and we discuss
the notion of Nica covariance for a Toeplitz representation. As illustrated in
[10, Example 1.3] using product systems of Hilbert spaces, when (G,P ) is
not a total order it is possible that the C∗-algebra Tcov(X) which is “univer-
sal” for such representations may admit representations which are not the
integrated form of a Nica-covariant Toeplitz representation. To avoid this
pathology we adapt the methods of [10] to our setting: We define the notion
of a product system being compactly aligned , and show that Tcov(X) is truly
universal when X is compactly aligned (Proposition 5.9). We show that X is
compactly aligned if the left action of A on each fiber Xs is by compact op-
erators (Proposition 5.8); it follows that the product systems X(A,P, β, ω)
associated with twisted semigroup dynamical systems are compactly aligned.

In Section 6 we consider a certain C∗-subalgebra BP of `∞(P ) which
is invariant under left translation τ : P → End(`∞(P )). As in [17, 12],
covariant representations of the twisted system (BP , P, τ,X) are in one-one
correspondence with Toeplitz representations of X which are Nica-covariant
(Proposition 6.1), and hence Tcov(X) embeds naturally as a subalgebra of
BPoτ,XP (Theorem 6.3). When the left action of A on each fiber Xs is by
compact operators, Tcov(X) is all of BPoτ,XP .

In Section 7 we prove our main result, Theorem 7.2, which character-
izes the faithful representations of BP oτ,X P under the assumption that
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X is compactly aligned and (BP , P, τ,X) satisfies a certain amenability
hypothesis. In Section 8 we give conditions on (G,P ) which ensure that
(BP , P, τ,X) is amenable. In particular, (BP , P, τ,X) is amenable if X is
compactly aligned and (G,P ) is a free product ∗(Gλ, P λ) with each Gλ

amenable (Corollary 8.2).
Finally, in Section 9 we apply our Theorem 7.2 to the product system

X(A,P, β, ω) of Section 3. When (G,P ) is a total order, BPoτ,XP is iso-
morphic to the Toeplitz crossed product T (Aoβ,ωP ); in general BPoτ,XP is
a certain quotient Tcov(Aoβ,ωP ) which also has a crossed product structure,
and Theorem 9.3 characterizes its faithful representations. Applying this to
the twisted system (BP , P, τ, ω), we show that Tcov(BP oτ,ω P ) is universal
for partial isometric representations of P which are bicovariant (Proposi-
tion 9.6), and we obtain a characterization of its faithful representations
(Theorem 9.7) which is particularly nice when P is the free semigroup on
infinitely many generators (Theorem 9.9).

The author thanks Iain Raeburn for the many helpful discussions while
this research was being conducted.

1. Preliminaries.

Let A be a separable C∗-algebra. A Hilbert bimodule over A is a right Hilbert
A-module X together with a ∗-homomorphism φ : A→ L(X) which is used
to define a left action of A on X via a · x := φ(a)x for a ∈ A and x ∈ X. A
Toeplitz representation of X in a C∗-algebra B is a pair (ψ, π) consisting of
a linear map ψ : X → B and a homomorphism π : A→ B such that

ψ(x · a) = ψ(x)π(a),

ψ(x)∗ψ(y) = π(〈x, y〉A), and

ψ(a · x) = π(a)ψ(x)

for x, y ∈ X and a ∈ A. Given such a representation, there is homomorphism
π(1) : K(X)→ B which satisfies

π(1)(Θx,y) = ψ(x)ψ(y)∗ for all x, y ∈ X,(1.1)

where Θx,y(z) := x · 〈y, z〉A for z ∈ X; see [22, p. 202], [16, Lemma 2.2], and
[13, Remark 1.7] for details. We say that (ψ, π) is Cuntz-Pimsner covariant
if

π(1)(φ(a)) = π(a) for all a ∈ φ−1(K(X)).

The Toeplitz algebra ofX is the C∗-algebra TX which is universal for Toeplitz
representations of X [22, 13], and the Cuntz-Pimsner algebra of X is the
C∗-algebra OX which is universal for Toeplitz representations which are
Cuntz-Pimsner covariant [22, 9, 16, 18, 19, 11].
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Every right Hilbert A-module X is essential, in the sense that X is the
closed linear span of elements x · a. We say that a Hilbert bimodule X is
essential if it is also essential as a left A-module; that is, if

X = span{φ(a)x : a ∈ A, x ∈ X}.
When X is essential, two applications of the Hewitt-Cohen Factorization
Theorem allow us to write any x ∈ X as φ(a)y · b for some y ∈ X and
a, b ∈ A. Hence if (ai) is an approximate identity for A, then

‖x− x · ai‖ → 0 and ‖x− φ(ai)x‖ → 0 for all x ∈ X.(1.2)

2. Product systems of Hilbert bimodules.

For each n ≥ 1 the n-fold internal tensor product X⊗n := X ⊗A · · · ⊗A X
has a natural structure as a Hilbert bimodule over A; see [19, Section 2.2]
for details. The following definition, based on Arveson’s continuous tensor
product systems over (0,∞) [3], generalizes the collection {X⊗n : n ∈ N} to
semigroups other than N.

Definition 2.1. Suppose P is a countable semigroup with identity e and
p : X → P is a family of Hilbert bimodules over A. Write Xs for the fibre
p−1(s) over s ∈ P , and write φs : A→ L(Xs) for the homomorphism which
defines the left action of A on Xs. We say that X is a (discrete) product
system over P if X is a semigroup, p is a semigroup homomorphism, and
for each s, t ∈ P \ {e} the map (x, y) ∈ Xs ×Xt 7→ xy ∈ Xst extends to an
isomorphism of the Hilbert bimodules Xs ⊗A Xt and Xst. We also require
that Xe = A (with its usual right Hilbert module structure and φe(a)b = ab
for a, b ∈ A), and that the multiplications Xe×Xs → Xs and Xs×Xe → Xs

satisfy

ax = φs(a)x, xa = x · a for a ∈ Xe and x ∈ Xs.(2.1)

Remark 2.2. Multiplication Xe×Xs → Xs will not induce an isomorphism
Xe ⊗A Xs → Xs unless Xs is essential as a left A-module.

Remark 2.3. The associativity of multiplication inX implies that φst(a) =
φs(a)⊗A 1t for all a ∈ A; that is, φst(a)(xy) = (φs(a)x)y for all x ∈ Xs and
y ∈ Xt.

Remark 2.4. It is possible that some of the Xs may be zero.

Definition 2.5. Suppose B is a C∗-algebra and ψ : X → B; write ψs for
the restriction of ψ to Xs. We call ψ a Toeplitz representation of X if:

(1) For each s ∈ P , (ψs, ψe) is a Toeplitz representation of Xs; and
(2) ψ(xy) = ψ(x)ψ(y) for x, y ∈ X.

If in addition each (ψs, ψe) is Cuntz-Pimsner covariant, we say that ψ is
Cuntz-Pimsner covariant .
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Remark 2.6. By [13, Remark 1.1], every Toeplitz representation ψ is con-
tractive; moreover, if the homomorphism ψe : A → B is isometric, then so
is ψ. Also, since we are assuming (2.1), a map ψ : X → B is a Toeplitz
representation if it satisfies both (2) and

(1′) ψs(x)∗ψs(y) = ψe(〈x, y〉A) whenever s ∈ P and x, y ∈ Xs.

Notation 2.7. We write ψ(s) for the homomorphism of K(Xs) into B which
corresponds to the pair (ψs, ψe), as in (1.1); that is,

ψ(s)(Θx,y) = ψs(x)ψs(y)∗ for all x, y ∈ Xs.

The Fock representation. Let F (X) be the right Hilbert A-module

F (X) :=
⊕
s∈P

Xs.

By this we mean the following: As a set, F (X) is the subset of
∏
s∈P Xs

consisting of all elements (xs) for which
∑

s∈P 〈xs, xs〉A is summable in A;
that is, for which

∑
s∈F 〈xs, xs〉A converges in norm as F increases over the

finite subsets of P . We write ⊕xs for (xs) to indicate that the above series
is summable. The right action of A is given by (⊕xs) · a := ⊕(xs · a), and
the inner product by 〈⊕xs,⊕ys〉A :=

∑
s∈P 〈xs, ys〉A. The algebraic direct

sum
⊙

s∈P Xs is dense in F (X).
Suppose P is left-cancellative. Then for any x ∈ X and ⊕xt ∈ F (X) we

have p(xxs) = p(xxt) if and only if s = t, so there is an element (ys) ∈
∏
Xs

such that

ys =

{
xxt if s = p(x)t
0 if s /∈ p(x)P ;

we write (xxt) for (ys). Since 〈xxs, xxs〉A ≤ ‖x‖2〈xs, xs〉A for each s ∈ P ,
the series

∑
〈xxs, xxs〉A is summable. It is routine to check that

l(x)(⊕xs) := ⊕xxs for ⊕xs ∈ F (X)

determines an adjointable operator l(x) on F (X); indeed, the adjoint l(x)∗ is
zero on any summand Xs for which s /∈ p(x)P , and onXp(x)t = spanXp(x)Xt

it is determined by the formula l(x)∗(yz) = 〈x, y〉A · z for y ∈ Xp(x) and
z ∈ Xt. It follows that l : X → L(F (X)) is a Toeplitz representation, called
the Fock representation of X. The homomorphism le : A → L(F (X)) is
simply the diagonal left action of A; that is, le(a) = ⊕φs(a). Since φe is
just left multiplication on Xe = A, it is isometric, and hence so is le; by
Remark 2.6, l is isometric.

Proposition 2.8. Let X be a product system over P of Hilbert A–A bimod-
ules. Then there is a C∗-algebra TX , called the Toeplitz algebra of X, and
a Toeplitz representation iX : X → TX , such that



PRODUCT SYSTEMS OF HILBERT BIMODULES 341

(a) for every Toeplitz representation ψ of X, there is a homomorphism ψ∗
of TX such that ψ∗ ◦ iX = ψ; and

(b) TX is generated as a C∗-algebra by iX(X).
The pair (TX , iX) is unique up to canonical isomorphism, and iX is isomet-
ric.

Proof. It is straightforward to translate the proof of [13, Proposition 1.3] to
this setting. �

Proposition 2.9. Let X be a product system over P of Hilbert A–A bimod-
ules. Then there is a C∗-algebra OX , called the Cuntz-Pimsner algebra of
X, and a Toeplitz representation jX : X → OX which is Cuntz-Pimsner
covariant, such that

(a) for every Cuntz-Pimsner covariant Toeplitz representation ψ of X,
there is a homomorphism ψ∗ of OX such that ψ∗ ◦ jX = ψ; and

(b) OX is generated as a C∗-algebra by jX(X).
The pair (OX , jX) is unique up to canonical isomorphism.

Remark 2.10. Although the universal map iX : X → TX is always iso-
metric, it is quite possible that X might not admit any nontrivial Toeplitz
representations which are Cuntz-Pimsner covariant, in which case OX is
trivial.

Proof of Proposition 2.9. With (TX , iX) as in Proposition 2.8, let I be the
ideal in TX generated by

{iX(a)− i(s)X (φs(a)) : s ∈ P, a ∈ φ−1
s (K(X))}.

Define OX := TX/I and jX := q ◦ iX , where q : TX → OX is the canonical
projection. Obviously jX is a Toeplitz representation which generates OX ,
and it is Cuntz-Pimsner covariant because j(s)X = q ◦ i(s)X . If ψ is another
Cuntz-Pimsner covariant Toeplitz representation, then the homomorphism
ψ∗ of TX satisfies

ψ∗(iX(a)− i(s)X (φs(a))) = ψ(a)− ψ(s)(φs(a)) = 0

whenever φs(a) ∈ K(Xs), and hence ψ∗ descends to the required homomor-
phism of OX (also denoted ψ∗). �

Proposition 2.11. Let X be a product system over N of Hilbert A–A bi-
modules. Then TX is canonically isomorphic to the Toeplitz algebra TX1 of
the Hilbert bimodule X1. If the left action on each fiber is isometric, or if
the left action on each fiber is by compact operators, then OX is canonically
isomorphic to OX1.

Proof. Let iX : X → TX be universal for Toeplitz representations of X, and
define µ := (iX)1 : X1 → TX and π := (iX)0 : A = X0 → TX . Since (µ, π) is
a Toeplitz representation of X1, we get a homomorphism µ×π : TX1 → TX .
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To construct the inverse of µ × π, let (iX1 , iA) be the universal Toeplitz
representation of X1 in TX1 , and fix n ≥ 1. By [13, Proposition 1.8(1)],
there is a linear map ψn : Xn → TX1 which satisfies

ψn(x1 · · ·xn) := iX1(x1) · · · iX1(xn) for all x1, . . . , xn ∈ X1,

and then (ψn, iA) is a Toeplitz representation of Xn. Defining ψ0 := iA thus
gives a Toeplitz representation ψ : X → TX1 , and it is routine to check that
ψ∗ : TX → TX1 is the inverse of µ× π.

Now let iX : X → OX be universal for Cuntz-Pimsner covariant Toeplitz
representations of X. As above, we get a homomorphism µ×π : OX1 → OX .
To construct the inverse, we let (iX1 , iA) : (X1, A) → OX1 be universal
and define a Toeplitz representation ψ : X → OX1 as before; we need to
check that ψ is Cuntz-Pimsner covariant under each of the hypotheses on
the left action. By definition (ψ1, ψ0) is Cuntz-Pimsner covariant, so we use
induction. Assume that (ψn, ψ0) is Cuntz-Pimsner covariant for some n ≥ 1,
and suppose a ∈ A acts compactly on the left of Xn+1; that is, φ(a)⊗A 1n ∈
K(Xn+1). Since the left action is isometric on each fiber, by [11, Lemma 4.2]
we have φ(a)⊗A 1n−1 ∈ K(Xn); hence ψ(n)(φ(a)⊗A 1n−1) = ψ0(a). But [11,
Lemma 4.5] gives ψ(n+1)(φ(a)⊗A 1n) = ψ(n)(φ(a)⊗A 1n−1), so (ψn+1, ψ0) is
Cuntz-Pimsner covariant.

Now suppose that A acts by compact operators on each fiber. By rep-
resenting OX1 faithfully on a Hilbert space H we can assume that ψ is
a Toeplitz representation of X on H. Assuming again that (ψn, ψ0) is
Cuntz-Pimsner covariant for some n ≥ 1, [11, Lemma 1.9] gives ψ0(A)H ⊆
span(ψn(Xn)H). Let x ∈ Xn, and express x = y · a with y ∈ Xn and a ∈ A.
Since (ψ1, ψ0) is Cuntz-Pimsner covariant and φ(a) ∈ K(X1), we have

ψn(x) = ψn(y)ψ0(a) = ψn(y)ψ(1)(φ(a)).

Now φ(a) can be approximated by a finite sum
∑

Θxi,yi , hence ψn(x) can be
approximated by a finite sum ψn(y)ψ(xi)ψ(yi)∗ = ψn+1(yxi)ψ(yi)∗. Thus

ψ0(A)H ⊆ span(ψn(Xn)H) ⊆ span(ψn+1(Xn+1)H),

and (ψn+1, ψ0) is Cuntz-Pimsner covariant by [11, Lemma 1.9]. �

Definition 2.12. Let X be a product system over P of Hilbert A–A bimod-
ules. A Toeplitz representation ψ : X → B is nondegenerate if the induced
homomorphism ψ∗ : TX → B is nondegenerate.

Lemma 2.13. Suppose each fiber Xs is essential as a left A-module. Then
a Toeplitz representation ψ : X → B is nondegenerate if and only if the
homomorphism ψe : A→ B is nondegenerate.

Proof. Let (ai) be an approximate identity for A = Xe. By (1.2), iX(ai) is
an approximate identity for TX , and the result follows. �
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3. Crossed products twisted by multipliers.

Our main examples of product systems come from C∗-dynamical systems.
Suppose β is an action of P as endomorphisms of A such that βe is the
identity endomorphism. We will assume that each βs is extendible; that is,
that each βs extends to a strictly continuous endomorphism βs of M(A).
For P the positive cone of a totally ordered abelian group, Adji has shown
that extendibility is necessary to define a reasonable crossed product AoβP
[1].

In this section we will consider crossed products which are twisted by a
multiplier ω of P ; that is, by a function ω : P × P → T which satisfies
ω(e, e) = 1 and

ω(r, s)ω(rs, t) = ω(r, st)ω(s, t) for all r, s, t ∈ P .

We call (A,P, β, ω) a twisted semigroup dynamical system.

Definition 3.1. Let B be a C∗-algebra. A function V : P → B is called an
ω-representation of P if

VsVt = ω(s, t)Vst for all s, t ∈ P .(3.1)

If in addition each Vs is an isometry (resp. partial isometry), V is called iso-
metric (resp. partial isometric) ω-representation. A covariant representation
of (A,P, β, ω) on a Hilbert space H is a pair (π, V ) consisting of a nonde-
generate representation π : A → B(H) and an isometric ω-representation
V : P → B(H) such that

π(βs(a)) = Vsπ(a)V ∗
s for all s ∈ P and a ∈ A.(3.2)

A crossed product for (A,P, β, ω) is a triple (B, iA, iP ) consisting of a C∗-al-
gebra B, a nondegenerate homomorphism iA : A→ B, and a map iP : P →
M(B) such that

(a) if σ is a nondegenerate representation of B, then (σ ◦ iA, σ ◦ iP ) is a
covariant representation of (A,P, β, ω);

(b) for every covariant representation (π, V ), there is a representation π×V
such that (π × V ) ◦ iA = π and π × V ◦ iP = V ; and

(c) B is generated as a C∗-algebra by {iA(a)iP (s) : a ∈ A, s ∈ P}.

After establishing the existence of a crossed product, it is easily seen to be
unique up to canonical isomorphism; we denote the crossed product algebra
Aoβ,ω P .

We will construct a product system X = X(A,P, β, ω) over the opposite
semigroup P o, and show that its Cuntz-Pimsner algebra OX is a crossed
product for (A,P, β, ω). Moreover, we will show that the Toeplitz algebra of
this product system also has a crossed product structure: It will be universal
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for pairs (π, V ) satisfying (3.2) in which π is a nondegenerate representation
of A and V is a partial isometric ω-representation such that

V ∗
s Vsπ(a) = π(a)V ∗

s Vs for all s ∈ P and a ∈ A.(3.3)

We call such a pair (π, V ) a Toeplitz covariant representation of (A,P, β, ω),
and write T (A oβ,ω P ) for the corresponding universal C∗-algebra, called
the Toeplitz crossed product of (A,P, β, ω).

For each s ∈ P let

Xs := {s} × βs(1)A,

and give Xs the structure of a Hilbert bimodule over A via

(s, x) · a := (s, xa), 〈(s, x), (s, y)〉A := x∗y,

and

φs(a)(s, x) := (s, βs(a)x).

Let X =
⊔
s∈P Xs, let p(s, x) := s, and define multiplication in X by

(s, x)(t, y) := (ts, ω(t, s)βt(x)y) for x ∈ βs(1)A and y ∈ βt(1)A.

Lemma 3.2. X = X(A,P, β, ω) is a product system over the opposite semi-
group P o. For each s ∈ P , the fiber Xs is essential as a left A-module, and
the left action of A on Xs is by compact operators.

Proof. Let (s, x) ∈ Xs and (t, y) ∈ Xt. If x = βs(1)a and y = βt(1)b, then

βt(x)y = βt(βs(1)a)βt(1)b = βt(βs(1))βt(a)b = βts(1)βt(a)b,

and hence the product (s, x)(t, y) belongs to Xts. Letting a vary over an
approximate identity for A, this product converges in norm to βts(1)b, so
the set of products (s, x)(t, y) has dense linear span in Xts. Hence to see
that multiplication induces an isomorphism Xs ⊗A Xt → Xts, it suffices to
check that it preserves the inner product of any pair of elementary tensors:

〈(s, x)⊗A (t, y),(s, x′)⊗A (t, y′)〉A
= 〈(t, y), φt(〈(s, x), (s, x′)〉A)(t, y′)〉A
= 〈(t, y), φt(x∗x′)(t, y′)〉A
= 〈(t, y), (t, βt(x∗x′)y′)〉A
= y∗βt(x∗x′)y′

= 〈(ts, ω(t, s)βt(x)y), (ts, ω(t, s)βt(x′)y′)〉A
= 〈(s, x)(t, y), (s, x′)(t, y′)〉A.
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Multiplication is associative since

((s, x)(t, y))(r, z) = (ts, ω(t, s)βt(x)y)(r, z)

= (rts, ω(r, ts)βr(ω(t, s)βt(x)y)z)

= (rts, ω(rt, s)βrt(x)ω(r, t)βr(y)z)

= (s, x)(rt, ω(r, t)βr(y)z)

= (s, x)((t, y)(r, z)).

If (ai) is an approximate identity for A, then for each a ∈ A and s ∈ P
we have limφ(ai)(s, βs(1)a) = lim(s, βs(ai)a) = (s, βs(1)a), so each Xs is
essential. If a ∈ A, then by writing a = bc∗ with b, c ∈ A, we see that
φs(a) = Θ(s,βs(b)),(s,βs(c)) ∈ K(Xs) is compact. �

Lemma 3.3. Let iX : X → TX be universal for Toeplitz representations of
X, and let (ai) be an approximate identity for A. Then for each s ∈ P ,
iX(s, βs(ai)) converges strictly in MTX .

Proof. Since each fiber Xt is essential, any vector ξ ∈ Xt can be written
in the form ξ = φt(a)η · b with a, b ∈ A and η ∈ Xt. But then iX(ξ) =
iX(e, a)iX(η)iX(e, b), and since elements of the form iX(ξ) generate TX as
a C∗-algebra, the result follows from the calculations

iX(s, βs(ai))iX(e, a) = iX(s, βs(ai)a)→ iX(s, βs(1)a)(3.4)

and

iX(e, a)iX(s, βs(ai)) = iX(s, βs(aai))→ iX(s, βs(a)).(3.5)

�

Define iA : A → TX by iA(a) := iX(e, a), and define iP : P → MTX by
iP (s) := lim iX(s, βs(ai))∗.

Proposition 3.4. TX and OX are canonically isomorphic to Aoβ,ω P and
T (Aoβ,ω P ), respectively. More precisely, (TX , iA, iP ) is a Toeplitz crossed
product for (A,P, β, ω), and, with q : TX → OX the canonical projection,
(OX , q ◦ iA, q ◦ iP ) is a crossed product for (A,P, β, ω).

Proof. Taking s = e in (3.4) and (3.5), shows that iA(ai) converges strictly
to the identity in M(TX); that is, iA is nondegenerate. For Condition (a)
of a Toeplitz crossed product, suppose σ is a nondegenerate representation
of TX ; we must show that (π, V ) := (σ ◦ iA, σ ◦ iP ) is a Toeplitz covariant
representation of (A,P, β, ω). First note that π is nondegenerate since σ
and iA are. Equation (3.5) gives

iA(a)iP (s)∗ = iX(s, βs(a)) for all a ∈ A and s ∈ P ,(3.6)
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so

iP (s)iA(a)iP (s)∗ = lim iX(s, βs(ai))∗iX(s, βs(a))

= lim iX(e, βs(a∗i a)) = iX(e, βs(a)) = iA(βs(a)),

and applying σ gives Vsπ(a)V ∗
s = π(βs(a)). In particular

iP (s)iP (s)∗ = lim iP (s)iA(ai)iP (s)∗ = lim iA(βs(ai)) = iA(βs(1))

is a projection, so iP (s), and hence Vs, is a partial isometry.
To establish (3.3), take any a ∈ A, write a = bc∗ with b, c ∈ A, and

compute:

iA(bc∗)iP (s)∗iP (s) = lim iX(s, βs(bc∗))iX(s, βs(ai))∗ (by (3.6))(3.7)

= lim iX(s, βs(b))iX(e, βs(c∗))iX(s, βs(ai))∗

= lim iX(s, βs(b))
(
iX(s, βs(ai))iX(e, βs(c))

)∗
= lim iX(s, βs(b))iX(s, βs(aic))∗

= iX(s, βs(b))iX(s, βs(c))∗.

Taking adjoints, interchanging b and c, and applying σ gives V ∗
s Vsπ(a) =

π(a)V ∗
s Vs.

For every s, t ∈ P we have

iP (t)∗iP (s)∗ = (lim
i
jX(t, βt(ai)))(lim

j
jX(s, βs(aj)))

= lim
i

lim
j
jX(st, ω(s, t)βs(βt(ai))βs(aj))

= lim
i
jX(st, ω(s, t)βst(ai))

= ω(s, t)iP (st)∗;

taking adjoints and applying σ gives VsVt = ω(s, t)Vst. This completes the
proof of Condition (a).

For Condition (b), suppose (π, V ) is a Toeplitz covariant representation
of (A,P, β, ω) on a Hilbert space H. Define ψ : X → B(H) by

ψ(s, x) := V ∗
s π(x).

Since π is nondegenerate and π(a) = π(βe(a)) = Veπ(a)V ∗
e for all a ∈ A, Ve

is a coisometry. Since V 2
e = ω(e, e)Ve = Ve, we deduce that Ve = 1. Thus

ψ(s, x)∗ψ(s, y) = π(x)∗VsV ∗
s π(y) = π(x∗βs(1)y)

= V ∗
e π(x∗y) (since y ∈ βs(1)A and Ve = 1)

= ψ(e, x∗y) = ψ(e, 〈(s, x), (s, y)〉A),
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and since we also have

ψ(s, x)ψ(t, y) = V ∗
s π(x)V ∗

t π(y)

= V ∗
s π(x)V ∗

t VtV
∗
t π(y) (Vt is a partial isometry)

= V ∗
s V

∗
t Vtπ(x)V ∗

t π(y) (by (3.3))

= (VtVs)∗π(βt(x))π(y)

= ω(t, s)V ∗
tsπ(βt(x)y)

= ω(t, s)ψ(ts, βt(x)y)

= ψ((s, x)(t, y)),

ψ is a Toeplitz representation of X. Let π × V be the representation ψ∗ :
TX → B(H). Then

(π × V ) ◦ iA(a) = ψ∗ ◦ iX(e, a) = ψ(e, a) = V ∗
e π(a) = π(a),

and

π × V ◦ iP (s)π(a) = ψ∗(iP (s)iA(a))

= ψ∗(iX(s, βs(a∗))∗) (by (3.6))

= ψ(s, βs(a∗))∗ = π(βs(a))Vs
= Vsπ(a)V ∗

s Vs = VsV
∗
s Vsπ(a) = Vsπ(a);

since π is nondegenerate, this implies that π × V ◦ iP = V , as required. For
Condition (c), simply note that iA(a)iP (s) = iX(s, βs(1)a∗)∗, and elements
of this form generate TX .

We now show that (OX , q ◦ iA, q ◦ iP ) is a crossed product for (A,P, β, ω).
Since iA and q are nondegenerate, so is q ◦ iA. If ρ is a nondegenerate
representation of OX , then σ := ρ ◦ q is a nondegenerate representation of
TX . Hence (π, V ) := (ρ ◦ q ◦ iA, ρ ◦ q ◦ iP ) = (σ ◦ iA, σ ◦ iP ) is a Toeplitz
covariant representation of (A,P, β, ω). To see that each Vs is an isometry,
let b, c ∈ A. Since q ◦ iX is Cuntz-Pimsner covariant, (3.7) gives

q ◦ iA(bc∗)q ◦ iP (s)∗q ◦ iP (s) = q ◦ iX(s, βs(b))q ◦ iX(s, βs(c))∗

= (q ◦ iX)(s)(Θ(s,βs(b)),(s,βs(c)))

= (q ◦ iX)(s)(φs(bc∗))

= q ◦ iX(e, bc∗) = q ◦ iA(bc∗).

Since q ◦ iA is nondegenerate, this implies that q ◦ iP (s), and hence Vs, is
an isometry. This gives Condition (a) for a crossed product. Condition (c)
is obvious, so it remains only to verify (b). Suppose (π, V ) is a covariant
representation of (A,P, β, ω) on a Hilbert space H, and define ψ(s, x) :=
V ∗
s π(x) as before. We have already seen that ψ is a Toeplitz representation
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of X, and it is Cuntz-Pimsner covariant since, for any b, c ∈ A,

ψ(s)(φs(bc∗)) = ψ(s)(Θ(s,βs(b)),(s,βs(c))) = ψ(s, βs(b))ψ(s, βs(c))∗

= V ∗
s π(βs(b))π(βs(c∗))Vs = V ∗

s Vsπ(bc∗)V ∗
s Vs = ψ(e, bc∗).

Defining π × V := ψ∗ : OX → B(H) gives Condition (c). �

4. Crossed products twisted by product systems.

Multipliers of P correspond to product systems over P of one-dimensional
Hilbert spaces: Given a multiplier ω, one defines multiplication on P ×C by
(s, z)(t, w) := (st, ω(s, t)zw). In this section we consider twisted semigroup
dynamical systems in which the multiplier ω is replaced by a product sys-
tem X of Hilbert bimodules, and we construct a crossed product which is
“twisted by X”. For this, we first need to see how semigroups of endomor-
phism arise from Toeplitz representations of product systems.

Proposition 4.1. (1) Let X be a Hilbert bimodule over A, and suppose
(ψ, π) is a Toeplitz representation of X on a Hilbert space H. Then
there is a unique endomorphism α = αψ,π of π(A)′ such that

α(S)ψ(x) = ψ(x)S for all S ∈ π(A)′ and x ∈ X,(4.1)

and such that α(1) vanishes on (ψ(X)H)⊥.
(2) Let X be a product system over P of Hilbert A–A bimodules in which

each fiber Xs is essential as a left A-module. Let ψ be a nondegen-
erate Toeplitz representation of X on a Hilbert space H, and let αψs
be the endomorphism αψs,ψe above. Then αψ : P → End(ψe(A)′) is a
semigroup homomorphism, and αψe is the identity endomorphism.

Proof. (1) The uniqueness of α is obvious. By [23, Proposition 2.69], there is
a unital homomorphism S ∈ π(A)′ 7→ 1⊗A S ∈ Indπ(L(X))′ ⊆ B(X ⊗AH)
determined by

1⊗A S(x⊗A h) = x⊗A Sh for x ∈ X and h ∈ H.

Let U : X ⊗A H → H be the isometry which satisfies U(x ⊗A h) = ψ(x)h
(see the proof of [13, Proposition 1.6(1)]), and define

α(S) := U(1⊗A S)U∗ for all S ∈ π(A)′.

Then α is a homomorphism, and α(1) = UU∗ vanishes on (ψ(X)H)⊥. If
S ∈ π(A)′ and x ∈ X, then for any h ∈ H we have

α(S)ψ(x)h = U(1⊗A S)(x⊗A h) = U(x⊗A Sh) = ψ(x)Sh,

giving (4.1).
Since π(a)ψ(x)h = ψ(φ(a)x)h, the space span{ψ(x)h : x ∈ X,h ∈ H}

reduces π; hence for any S ∈ π(A)′ and a ∈ A, both α(S)π(a) and π(a)α(S)
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vanish on (ψ(X)H)⊥. This and

α(S)π(a)ψ(x)h = α(S)ψ(φ(a)x)h = ψ(φ(a)x)Sh

= π(a)ψ(x)Sh = π(a)α(S)ψ(x)h

show that α(π(A)′) ⊆ π(A)′.
(2) Let s, t ∈ P , and suppose x ∈ Xs and y ∈ Xt. Vectors of the form

xy have dense linear span in Xst; since Xt is essential, this holds even when
s = e (see Remark 2.2). Since

αψs (αψt (S))ψst(xy) = αψs (αψt (S))ψs(x)ψt(y)

= ψs(x)α
ψ
t (S)ψt(y) = ψs(x)ψt(y)S = ψst(xy)S,

we deduce that

αψs ◦ α
ψ
t (S)ψst(z) = ψst(z)S for all S ∈ ψe(A)′ and z ∈ Xst.(4.2)

Once we show that αψs ◦ αψt (1) = αψst(1), it follows from the uniqueness of
αψst that αψs ◦ αψt = αψst.

From (4.2) we see that αψs ◦αψt (1) ≥ αψst(1). Suppose that αψs ◦αψt (1)f = f ;
we will show that αψst(1)f = f , which will complete the proof. Since f is
in the range of αψs (1), it can be approximated by a finite sum

∑
i ψs(xi)gi.

Then

f
.= αψs ◦ α

ψ
t (1)

∑
i

ψs(xi)gi =
∑
i

ψs(xi)α
ψ
t (1)gi.

Now each αψt (1)gi can be approximated by a finite sum
∑

j ψt(yij)hij , and
then

f
.=
∑
i,j

ψs(xi)ψt(yij)hij =
∑
i,j

ψst(xiyij)hij .

Thus f can be approximated arbitrarily closely by a vector in the range of
αψst(1), and hence αψst(1)f = f .

Since each Xt is essential, the assumption that ψ is nondegenerate im-
plies that ψe is a nondegenerate representation of A. Since αψe (S)ψe(a)h =
ψe(a)Sh = Sψe(a)h for all a ∈ A and h ∈ H, we have αψe (S) = S for all
S ∈ ψe(A)′. �

Consider a twisted semigroup dynamical system (C,P, β,X) in which C
is a separable C∗-algebra, β : P → EndC is an action of the semigroup P
as extendible endomorphisms of C, and X is a product system over P of
Hilbert A–A bimodules. We assume that βe is the identity endomorphism,
and that each fiber Xs is essential as a left A-module.

Definition 4.2. A covariant representation of (C,P, β,X) on a Hilbert
space H is a pair (L,ψ) consisting of a nondegenerate representation L :
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C → B(H) and a nondegenerate Toeplitz representation ψ : X → B(H)
such that

(i) L(C) ⊆ ψe(A)′, and
(ii) L ◦ βs = αψs ◦ L for s ∈ P .

Definition 4.3. A crossed product for (C,P, β,X) is a triple (B, iC , iX)
consisting of a C∗-algebra B, a nondegenerate homomorphism iC : C →
M(B), and a nondegenerate Toeplitz representation iX : X → M(B) such
that

(a) there is a faithful nondegenerate representation σ of B such that (σ ◦
iC , σ ◦ iX) is a covariant representation of (C,P, β,X);

(b) for every covariant representation (L,ψ) of (C,P, β,X), there is a rep-
resentation L×ψ of B such that (L× ψ)◦iC = L and (L× ψ)◦iX = ψ;
and

(c) the C∗-algebra B is generated by {iC(c)iX(x) : c ∈ C, x ∈ X}.

Remark 4.4. If each fiber Xs has a finite basis {us,1, . . . , us,n(s)} (in the
sense that x =

∑
k us,k · 〈us,k, x〉A for every x ∈ Xs), it is not hard to show

that (a) is equivalent to asking that iC(c)iX(a) = iX(a)iC(c) for all c ∈ C
and a ∈ A = Xe, and that

iC(βs(c)) =
∑
k

iX(us,k)iC(c)iX(us,k)∗ for all s ∈ P and c ∈ C.

In this case, (σ ◦ iC , σ ◦ iX) will be a covariant representation of (C,P, β,X)
for every nondegenerate representation σ of B; however, as demonstrated
in [12, Example 2.5] for product systems of Hilbert spaces, in general one
cannot expect this to be the case.

Proposition 4.5. If (C,P, β,X) has a covariant representation, then it has
a crossed product (Coβ,XP, iC , iX) which is unique in the following sense:
If (B, i′C , i

′
X) is another crossed product for (C,P, β,X), then there is an

isomorphism θ : Coβ,XP → B such that θ ◦ iC = i′C and θ ◦ iX = i′X .

Remark 4.6. When X is the product system P × C with multiplication
given by a multiplier ω, it is not hard to see that Coβ,XP is precisely the
crossed product C oβ,ω P defined in the previous section. If C is unital and
A = C, then Coβ,XP is the crossed product defined in [12, Section 2].

Proof of Proposition 4.5. If S is a set of pairs (L,ψ) consisting of maps
L : C → B(HL,ψ) and ψ : X → B(HL,ψ), then (⊕L,⊕ψ) is a covariant
representation of (C,P, β,X) if and only if each (L,ψ) is. The main point
here is that the value of α⊕ψs on an element of (⊕ψ)e(A)′ of the form ⊕L(c)
is ⊕αψs (L(c)).
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Suppose (L,ψ) is a nondegenerate covariant representation on a separable
Hilbert space H; that is, the C∗-algebra

U := C∗({L(c)ψ(x) : c ∈ C, x ∈ X})
acts nondegenerately on H. We will identify the multiplier algebra of U with
the concrete C∗-algebra

M(U) = {S ∈ B(H) : ST, TS ∈ U for every T ∈ U}.
We claim that L(C) ∪ ψ(X) ⊆ M(U). For this, it suffices to check that
multiplying a generator L(c)ψ(x) of U on either the left or the right by
an operator of the form L(d), ψ(y), or ψ(y)∗ yields another element of U .
Certainly L(d)L(c)ψ(x) = L(dc)ψ(x) ∈ U and L(c)ψ(x)ψ(y) = L(c)ψ(xy) ∈
U , and since

ψ(y)L(c) = αψp(y)(L(c))ψ(y) = L(βp(y)(c))ψ(y),(4.3)

we also have ψ(y)L(c)ψ(x) = L(βp(y)(c))ψ(yx) ∈ U and L(c)ψ(x)L(d) =
L(cβp(x)(d))ψ(x) ∈ U . Writing c = c∗1c2 with c1, c2 ∈ C gives

ψ(y)∗L(c)ψ(x) = (L(c1)ψ(y))∗L(c2)ψ(x) ∈ U .
Finally, to see that L(c)ψ(x)ψ(y)∗ ∈ U , we use a trick from [1]. Let (ci) be
an approximate identity for C; we claim that

L(c)ψ(x)L(ci)
‖ ‖−→ L(c)ψ(x).(4.4)

Since L is nondegenerate, L(c)ψ(x)L(ci) converges strongly to L(c)ψ(x). On
the other hand, using (4.3) we see that L(c)ψ(x)L(ci) = L(cβp(x)(ci))ψ(x)
converges in norm (to L(cβp(x)(1))ψ(x)), and (4.4) follows. Hence

L(c)ψ(x)L(ci)ψ(y)∗
‖ ‖−→ L(c)ψ(x)ψ(y)∗,

and since

L(c)ψ(x)L(ci)ψ(y)∗ = L(c)ψ(x)ψ(y)∗L(βp(y)(ci)) ∈ U ,

we deduce that L(c)ψ(x)ψ(y)∗ ∈ U .
Since M(U) ⊆ U ′′, we have shown in particular that the ranges of L

and ψ are contained in U ′′. Consequently, any decomposition 1 =
∑
Qλ

of the identity as a sum of mutually orthogonal projections Qλ ∈ U ′ gives
corresponding decompositions L = ⊕QλL and ψ = ⊕Qλψ, and by the first
paragraph each pair (QλL,Qλψ) is a covariant representation of (C,P, β,X).
By the usual Zorn’s Lemma argument we can choose these projections such
that U acts cyclically on QλH; since C∗({QλL(c)Qλψ(x) : c ∈ C, x ∈ X}) =
QλU acts cyclically on QλH, this shows that every covariant representation
of (C,P, β,X) decomposes as a direct sum of cyclic representations.

Let S be a set of cyclic covariant representations with the property that
every cyclic covariant representation of (C,P, β,X) is unitarily equivalent
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to an element in S. It can be shown that such a set S exists by fixing a
Hilbert space H of sufficiently large cardinality (depending on the cardinal-
ities of C and X) and considering only representations on H. Note that S
is nonempty because the system has a covariant representation, which has
a cyclic summand.

Define iC :=
⊕

(L,ψ)∈S L and iX :=
⊕

(L,ψ)∈S ψ, and let Coβ,XP be
the C∗-algebra generated by {iC(c)iX(x) : c ∈ C, x ∈ X}. By the first
paragraph, (iC , iX) is a covariant representation of (C,P, β,X), and it is
nondegenerate since each (L,ψ) is. We deduce that both iC and iX map
into M(Coβ,XP ), and that Condition (a) for a crossed product is satis-
fied by taking σ to be the identity representation. Condition (c) is triv-
ial, and (b) holds because every covariant representation decomposes as
a direct sum of cyclic representations. We need to show that iC : C →
M(Coβ,XP ) and iX : X → M(Coβ,XP ) are nondegenerate. For this,
let c ∈ C and x ∈ X. If (ai) is an approximate identity for A = Xe,
then by (1.2) we have iC(c)iX(x)iX(ai) = iC(c)iX(x · ai)→ iC(c)iX(x) and
iX(ai)iC(c)iX(x) = iC(c)iX(ai)iX(x) = iC(c)iX(φ(ai)x) → iC(c)iX(x), so
iX is nondegenerate (Lemma 2.13). If (ci) is an approximate identity for C,
then iC(ci)iC(c)iX(x) = iC(cic)iX(x) → iC(c)iX(x), and since iC is nonde-
generate as a representation on Hilbert space, (4.4) gives iC(c)iX(x)iC(ci)→
iC(c)iX(x). Thus iC is nondegenerate.

For the uniqueness assertion, suppose (B, i′C , i
′
X) is another crossed prod-

uct. Condition (a) allows us to assume that (iC , iX) and (i′C , i
′
X) are covari-

ant representations of (C,P, β,X) on Hilbert spaces H and H′. Condition
(b) then gives a representation i′C × i′X : Coβ,XP → B(H′) whose image
is contained in B since i′C × i′X(iC(c)iX(x)) = i′C(c)i′X(x). Similarly one
obtains a map iC × iX : B → Coβ,XP which is obviously an inverse for
i′C × i′X : Coβ,XP → B. �

If P is a subsemigroup of a group G, then there is a dual coaction of G
on Coβ,XP :

Proposition 4.7. Suppose (C,P, β,X) is a twisted system which has a co-
variant representation. If P is a subsemigroup of a group G, then there is
an injective coaction

δ : Coβ,XP → (Coβ,XP )⊗min C
∗(G)

such that

δ(iC(c)iX(x)) = iC(c)iX(x)⊗ iG(p(x)).

If G is abelian, there is a strongly continuous action β̂ of Ĝ on Coβ,XP
such that

β̂γ(iC(c)iX(x)) = γ(p(x))iC(c)iX(x).
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Proof. We follow [12, Proposition 2.7]. Let σ be a faithful nondegenerate
representation σ of Coβ,XP such that (L,ψ) := (σ◦iC , σ◦iX) is a covariant
representation of (C,P, β,X), and let U be a unitary representation of G
whose integrated form πU is faithful on C∗(G). We claim that (L ⊗ 1, ψ ⊗
(U ◦p)) is a covariant representation of (C,P, β,X). Most of the verifications
are routine, so we check only that

L(βs(c))⊗ 1 = αψ⊗(U◦p)
s (L(c)⊗ 1) for all s ∈ P and c ∈ C.(4.5)

For this, we show that L(βs(c))⊗1 satisfies the properties which characterize
α
ψ⊗(U◦p)
s (L(c)⊗ 1) (Proposition 4.1). First, let x ∈ Xs; we show that (4.5)

holds on any vector in the range of (ψ ⊗ (U ◦ p))(x) = ψs(x)⊗ Us:

(L(βs(c))⊗ 1)(ψs(x)⊗ Us) = αψs (L(c))ψs(x)⊗ Us = ψs(x)L(c)⊗ Us
= (ψs(x)⊗ Us)(L(c)⊗ 1) = αψ⊗(U◦p)

s (L(c)⊗ 1)(ψs(x)⊗ Us).

Next, note that αψ⊗(U◦p)
s (1) is the projection onto

span{(ψ ⊗ (U ◦ p))(x)ξ : x ∈ Xs, ξ ∈ Hσ ⊗HU}
= span{ψs(x)h⊗ Usk : x ∈ Xs, h ∈ Hσ, k ∈ HU}
= span{ψs(x)h : x ∈ Xs, h ∈ Hσ} ⊗HU ,

which is precisely the range of αψs (1)⊗ 1. Since L(βs(c))⊗ 1 = αψs (L(c))⊗ 1
vanishes on the range of 1 − αψs (1) ⊗ 1, (4.5) follows from the uniqueness
assertion of Proposition 4.1.

Since (L⊗1, ψ⊗(U◦p)) is covariant, there is a representation ρ of Coβ,XP
such that

ρ(iC(c)iX(x)) = (L(c)⊗ 1)(ψ(x)⊗ Up(x))
= (σ ⊗ πU )(iC(c)iX(x)⊗ iG(p(x))).

Since σ and πU are faithful, σ ⊗ πU is faithful on (Coβ,XP ) ⊗min C
∗(G),

and we can define δ := (σ ⊗ πU )−1 ◦ ρ.
By checking on generators it is easy to see that δ satisfies the coaction

identity (id⊗δG)◦δ = (δ⊗ id)◦δ, and δ is injective since σ = (σ⊗ε)◦δ, with
ε the augmentation representation of C∗(G) (i.e., ε(iG(s)) = 1 for all s ∈ G).
When G is abelian, β̂ is the action canonically associated with δ. �

5. Nica covariance.

Now suppose P is a subsemigroup of a group G such that P ∩ P−1 = {e}.
Then s ≤ t iff s−1t ∈ P defines a partial order on G which is left-invariant:
For any r, s, t ∈ P we have s ≤ t iff rs ≤ rt. Following Nica [20], we say
that (G,P ) is a quasi-lattice ordered group if every finite subset of G which
has an upper bound in P has a least upper bound in P . When s, t ∈ P have
a common upper bound, we denote their least upper bound by s∨ t; when s
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and t have no common upper bound we write s∨ t =∞. For a finite subset
C = {t1, . . . , tn} of P , we write σC for t1 ∨ · · · ∨ tn.

Definition 5.1. Suppose (G,P ) is a quasi-lattice ordered group and X is
a product system over P of essential Hilbert A–A bimodules. We call a
Toeplitz representation ψ : X → B(H) Nica covariant if

αψs (1)αψt (1) =

{
αψs∨t(1) if s ∨ t <∞
0 otherwise.

Remark 5.2. If (G,P ) is totally ordered, then every Toeplitz representa-
tion of X is Nica covariant.

Lemma 5.3. Let l : X → L(F (X)) be the Fock representation, and suppose
π is a representation of A on a Hilbert space H. Then

Ψ := F (X) -IndL(F (X))
A π ◦ l

is a Nica-covariant Toeplitz representation of X. If π is faithful, then Ψ is
isometric.

Proof. Since l is a Toeplitz representation, so is Ψ. Let s ∈ P . The range of
αΨ
s (1) is

span{Ψ(x)ξ : x ∈ Xs, ξ ∈ F (X)⊗A H}

= span{l(x)y ⊗A h : x ∈ Xs, y ∈ F (X), h ∈ H} =
⊕
s≤r

Xr ⊗A H.

Hence for any s, t ∈ P , the range of αΨ
s (1)αΨ

t (1) is⊕
s≤r

Xr ⊗A H

 ∩
⊕
t≤r

Xr ⊗A H

 ,

which is
⊕

s∨t≤rXr ⊗A H = ranαΨ
s∨t(1) if s ∨ t <∞, and is zero otherwise.

If π is faithful then so is F (X) -IndL(F (X))
A π; since l is isometric, this implies

that Ψ is isometric. �

Proposition 5.4. Let (G,P ) be a quasi-lattice ordered group such that ev-
ery s, t ∈ P have a common upper bound. Let X be a product system
over P of essential Hilbert A–A bimodules such that the left action of A on
each fiber Xs is by compact operators. Then every Toeplitz representation
ψ : X → B(H) which is Cuntz-Pimsner covariant is also Nica covariant.

Proof. Fix s ∈ P . Since (ψs, ψe) is Cuntz-Pimsner covariant and φs(A) ⊆
K(Xs), [11, Lemma 1.9] gives ψe(A)H ⊆ spanψs(Xs)H. But Xs is essential,
so the reverse inclusion holds as well, and since spanψs(Xs)H is precisely
the range of αψs (1), we deduce that αψs (1) is constant in s. Since s ∨ t <∞
for all s, t ∈ P , this implies that ψ is Nica covariant. �
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There are product systems for which Nica covariance is not a C∗-algebraic
condition; that is, if ψ : X → B(H) is Nica covariant and σ : C∗(ψ(X)) →
B(K) is a homomorphism, the composition σ ◦ψ need not be Nica covariant
[10, Example 1.3]. We pause a moment to show how to adapt the methods
of [10] to avoid this pathology. The following Lemma collects some results
we shall need for both this and the sequel.

Lemma 5.5. Suppose X is a product system over P of essential Hilbert
A–A bimodules, ψ : X → B(H) is a Toeplitz representation, and s ∈ P .

(1) There is a strict–strong continuous representation ρψs : L(Xs)→ B(H)
such that

ρψs (S)ψs(x)h = ψs(Sx)h for all S ∈ L(Xs), x ∈ Xs, and h ∈ H,

and such that ρψs (S) vanishes on (ψs(Xs)H)⊥. Moreover, ρψs (S) =
ψ(s)(S) for every S ∈ K(Xs).

(2) ρψs (1) = αψs (1).
(3) If a ∈ A satisfies φs(a) ∈ K(Xs), then

ψe(a)ρψs (1) = ψ(s)(φs(a)) = ρψs (1)ψe(a).(5.1)

(4) If Q ∈ ψe(A)′, then αψs (Q) ∈ ρψs (L(Xs))′. Further, if Q is a projection
such that ψe acts faithfully on QH, then ρψs acts faithfully on αψs (Q)H.

(5) For all S ∈ L(Xs) and t ∈ P we have

ρψst(S ⊗A 1) = ρψs (S)ρψst(1) = ρψst(1)ρψs (S),

where S ⊗A 1(xy) := (Sx)y for all x ∈ Xs and y ∈ Xt.
(6) If t ∈ P and z, w ∈ Xs, then ρψst(Θz,w ⊗A 1) = ψ(z)αψt (1)ψ(w)∗.

Proof. (1) See [13, Proposition 1.6(1)]. For the continuity assertion, suppose
Sλ → S strictly in L(Xs) = MK(Xs), x ∈ Xs, and h ∈ H. There exists
K ∈ K(Xs) and y ∈ Xs such that x = Ky, and then

ρψs (Sλ)ψs(x)h = ρψs (SλK)ψs(y)h→ ρψs (SK)ψs(y)h = ρψs (S)ψs(x)h.

(2) Both ρψs (1) and αψs (1) are the projection onto span{ψs(Xs)H}.
(3) If x ∈ Xs and h ∈ H, then

ψe(a)ρψs (1)ψs(z)h = ψe(a)ψs(z)h = ψs(φs(a)z)h = ψ(s)(φs(a))ψs(z)h;

since both sides of (5.1) are supported on spanψs(Xs)H, this implies that
ψe(a)ρ

ψ
s (1) = ψ(s)(φs(a)). By (2), ρψs (1) commutes with ψe(a), giving the

other half of (5.1).
(4) When Q is a projection, αψs (Q) is the projection onto spanψs(Xs)QH,

and the result follows from [13, Proposition 1.6(2)].
(5) See [13, Proposition 1.8(2)].
(6) ρψst(Θz,w ⊗A 1)=ρψst(1)ρψs (Θz,w)=αψst(1)ψ(z)ψ(w)∗=ψ(z)αψt (1)ψ(w)∗.

�
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Proposition 5.6. Suppose (G,P ) is a quasi-lattice ordered group and X
is a product system over P of essential Hilbert A–A bimodules. A Toeplitz
representation ψ : X → B(H) is Nica covariant if and only if

ρψs (S)ρψt (T ) =

{
ρψs∨t((S ⊗A 1)(T ⊗A 1)) if s ∨ t <∞
0 otherwise

(5.2)

holds whenever S ∈ K(Xs) and T ∈ K(Xt).

Proof [10, Proposition 1.4]. If ψ is Nica covariant, then

ρψs (S)ρψt (T ) = ρψs (S)ρψs (1)ρψt (1)ρψt (T )

= ρψs (S)ρψs∨t(1)ρψt (T ) = ρψs∨t((S ⊗A 1)(T ⊗A 1)),

where the last equality uses Lemma 5.5(5). Conversely, suppose (5.2) holds
for all compact S and T . If S → 1 strictly, then

ρψs∨t((S ⊗A 1)) = ρψs (S)ρψs∨t(1)→ ρψs (1)ρψs∨t(1) = ρψs∨t(1),

where the convergence is in the strong operator topology. Hence

ρψs (1)ρψt (T ) =

{
ρψs∨t(T ⊗A 1) if s ∨ t <∞
0 otherwise

for every T ∈ K(Xt). Letting T → 1 strictly shows that ψ is Nica covariant.
�

When each product (S⊗A1)(T⊗A1) is compact, the previous Proposition
allows us to give a C∗-algebraic characterization of Nica covariance:

Definition 5.7. Suppose (G,P ) is a quasi-lattice ordered group and X is a
product system over P of essential Hilbert A–A bimodules. We say that X
is compactly aligned if whenever s, t ∈ P have a common upper bound and S
and T are compact operators on Xs and Xt, respectively, (S⊗A1)(T ⊗A1) is
a compact operator on Xs∨t. If X is compactly aligned and ψ is a Toeplitz
representation of X in a C∗-algebra B, we say that ψ is Nica covariant if

ψ(s)(S)ψ(t)(T ) =

{
ψ(s∨t)((S ⊗A 1)(T ⊗A 1)) if s ∨ t <∞
0 otherwise

whenever s, t ∈ P , S ∈ K(Xs) and T ∈ K(Xt).

Proposition 5.8. If (G,P ) is a total order, or if the left action of A on
each fiber Xs is by compact operators, then X is compactly aligned.

Proof. Suppose s, t ∈ P , s∨t <∞, S ∈ K(Xs), and T ∈ K(Xt). If (G,P ) is a
total order then either S⊗A1 = S or T⊗A1 = T ; either way (S⊗A1)(T⊗A1)
is compact. If the left action of A on each fiber Xs is by compact operators,
then by [22, Corollary 3.7], both S ⊗A 1 and T ⊗A 1 are compact. �
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Proposition 5.9. Suppose X is compactly aligned. Let B and C be C∗-al-
gebras, let ψ : X → B be a Nica-covariant Toeplitz representation, and let
σ : B → C be a homomorphism. Then σ ◦ ψ is Nica covariant.

Proof. By checking on an operator Θx,y ∈ K(Xs), one verifies that (σ ◦
ψ)(s) = σ ◦ ψ(s), and the result follows easily from this. �

Proposition 5.10. Suppose X is a compactly-aligned product system, ψ is
a Nica-covariant Toeplitz representation of X, s, t ∈ P , y ∈ Xs, and z ∈ Xt.
If s ∨ t =∞, then ψ(y)∗ψ(z) = 0; otherwise

ψ(y)∗ψ(z) ∈ span{ψ(f)ψ(g)∗ : f ∈ Xs−1(s∨t), g ∈ Xt−1(s∨t)}.

Proof. Express y = Sy′ with S ∈ K(Xs) and y′ ∈ Xs; similarly, express
z = Tz′ with T ∈ K(Xt) and z′ ∈ Xt. Since ψ is Nica covariant,

ψ(y)∗ψ(z) = ψ(y′)∗ρψs (S∗)ρψt (T )ψ(z′)

is zero if s ∨ t =∞, and otherwise

ψ(y)∗ψ(z) = ψ(y′)∗ρψs∨t(K)ψ(z′),

where K = (S∗ ⊗A 1)(T ⊗A 1) ∈ K(Xs∨t). Since K is compact it can be
approximated in norm by a finite sum of operators Θu,v with u, v ∈ Xs∨t, and
hence ρψs∨t(K) can be approximated by finite sums of the form ψ(u)ψ(v)∗.
But any such u can be approximated by finite sums of products u1f

′ with
u1 ∈ Xs and f ′ ∈ Xs−1(s∨t); similarly, any such v can be approximated
by finite sums of products v1g′ with v1 ∈ Xt and g′ ∈ Xt−1(s∨t). Hence
ψ(y′)∗ρψs∨t(K)ψ(z′) can be approximated in norm by finite sums of operators
of the form

ψ(y′)∗ψ(u1)ψ(f ′)ψ(g′)∗ψ(v1)∗ψ(z′) = ψ(〈y′, u1〉Af ′)ψ(〈z′, v1〉Ag′)∗.

�

The following Lemma is useful when working with Nica-covariant Toeplitz
representations.

Lemma 5.11. Suppose (G,P ) is a quasi-lattice ordered group, X is a prod-
uct system over P of essential Hilbert A–A bimodules, ψ is a Toeplitz rep-
resentation of X on H, x ∈ X, and s ∈ P .

(1) If p(x) ≤ s, then αψs (S)ψ(x) = ψ(x)αψ
p(x)−1s

(S) for all S ∈ ψe(A)′.
(2) If ψ is Nica covariant, then

αψs (1)ψ(x) =

{
ψ(x)αψ

p(x)−1(p(x)∨s)(1) if p(x) ∨ s <∞,

0 otherwise.

Proof. The proof is formally identical to that of [12, Lemma 3.6]. �
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6. The system (BP , P, τ,X).

For each t ∈ P , let 1t ∈ `∞(P ) be the characteristic function of tP . Since the
product 1s1t is either 1s∨t or 0, BP := span{1t : t ∈ P} is a C∗-subalgebra
of `∞(P ). Left translation on `∞(P ) restricts to an action τ of P on BP ,
determined by τs(1t) = 1st for s, t ∈ P .

Proposition 6.1. Suppose (G,P ) is a quasi-lattice ordered group and X is
a product system over P of essential Hilbert A–A bimodules.

(1) If (L,ψ) is a covariant representation of (BP , P, τ,X), then ψ is a non-
degenerate Nica-covariant Toeplitz representation of X and L(1s) =
αψs (1).

(2) If ψ is a nondegenerate Nica-covariant Toeplitz representation of X
on a Hilbert space H, then there is a representation Lψ : BP → B(H)
such that Lψ(1s) = αψs (1); moreover, (Lψ, ψ) is then a covariant rep-
resentation of (BP , P, τ,X).

Proof. The proof is formally identical to that of [12, Proposition 4.1], except
that in (2) one must also note that Lψ(BP ) ⊆ ψe(A)′ since Lψ(1s) = αψs (1) ∈
ψe(A)′ and {1s : s ∈ P} generates BP . �

Corollary 6.2. The system (BP , P, τ,X) has a covariant representation.

Proof. Let π be a nondegenerate representation of A on a Hilbert space H,
and let l : X → L(F (X)) be the Fock representation of X. By Lemma 5.3,
Ψ := F (X) -IndL(F (X))

A π◦ l is a Nica-covariant Toeplitz representation of X.
Since π is nondegenerate, so is F (X) -IndL(F (X))

A π; since l is nondegenerate,
Ψ is as well. The previous Proposition thus gives a covariant representation
(LΨ,Ψ) of (BP , P, τ,X). �

Let iX and iBP
be the canonical maps of X and BP into M(BPoτ,XP ).

Since BP is unital, iX(x) = iBP
(1)iX(x) ∈ BPoτ,XP for each x ∈ X. We

write Tcov(X) for the C∗-subalgebra of BPoτ,XP generated by iX(X); the
following Theorem justifies this notation.

Theorem 6.3. (Tcov(X), iX) is universal for Nica-covariant Toeplitz repre-
sentations of X, in the sense that:

(a) There is a faithful representation θ of Tcov(X) on Hilbert space such
that θ ◦ iX is a Nica-covariant Toeplitz representation of X; and

(b) for every Nica-covariant Toeplitz representation ψ of X, there is a
representation ψ∗ of Tcov(X) such that ψ = ψ∗ ◦ iX .

Up to canonical isomorphism, (Tcov(X), iX) is the unique pair with this prop-
erty. If X is compactly aligned, then iX is Nica covariant,

Tcov(X) = span{iX(x)iX(y)∗ : x, y ∈ X},(6.1)
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and

BPoτ,XP = span{iX(x)iBP
(1s)iX(y)∗ : x, y ∈ X, s ∈ P}.(6.2)

If the left action of A on each fiber Xs is by compact operators, then Tcov(X)
is all of BPoτ,XP ; if in addition every s, t ∈ P have a common upper bound,
then the Cuntz-Pimsner algebra OX is a quotient of Tcov(X).

Proof of Theorem 6.3. Let σ be a faithful representation of BPoτ,XP on
a Hilbert space H such that (σ ◦ iBP

, σ ◦ iX) is a covariant representa-
tion of (BP , P, τ,X). By Proposition 6.1(1), σ ◦ iX is a Nica-covariant
Toeplitz representation of X, so we can take θ to be the restriction of σ
to Tcov(X). Suppose ψ is a (nondegenerate) Nica-covariant Toeplitz rep-
resentation of X. Proposition 6.1(2) gives us a covariant representation
(Lψ, ψ) of (BP , P, τ,X), and hence a representation Lψ × ψ of BPoτ,XP

such that (Lψ × ψ) ◦ iX = ψ. Restricting Lψ × ψ to Tcov(X) gives the re-
quired representation ψ∗. Uniqueness of (Tcov(X), iX) follows by the usual
argument.

Suppose X is compactly aligned. Since iX is the composition of the Nica-
covariant Toeplitz representation σ ◦ iX and the homomorphism σ−1 (re-
stricted to σ(Tcov(X))), iX is Nica covariant by Proposition 5.9. Let w ∈ X,
and express w = z·a for some z ∈ X and a ∈ A. Then iX(w) = iX(z)iX(a∗)∗,
so A := span{iX(x)iX(y)∗ : x, y ∈ X} contains iX(X). Obviously A is a
closed self-adjoint subspace of Tcov(X), and since X is compactly aligned,
Proposition 5.10 shows that A is closed under multiplication. This gives
(6.1).

Now let B := span{iX(x)iBP
(1s)iX(y)∗ : x, y ∈ X, s ∈ P}. Using

Lemma 5.11 with ψ := σ ◦ iX , and then applying σ−1, gives

iX(x)iBP
(1s) = iBP

(1p(x)s)iX(x)(6.3)

and

iBP
(1s)iX(x) =

{
iX(x)iBP

(1p(x)−1(p(x)∨s)) if p(x) ∨ s <∞
0 otherwise.

(6.4)

Equation (6.3) shows that

iX(x)iBP
(1s)iX(y)∗ = iBP

(1p(x)s)iX(x)(iBP
(1p(y)s)iX(y))∗ ∈ BPoτ,XP,

so B ⊆ BPoτ,XP . Since BP is generated by {1s : s ∈ P}, elements of the
form iBP

(1s)iX(w) generate BPoτ,XP as a C∗-algebra; with w = z · a as



360 NEAL J. FOWLER

above, (6.4) shows that

iBP
(1s)iX(w) = iBP

(1s)iX(z)iX(a∗)∗

=

{
iX(z)iBP

(1p(z)−1(p(z)∨s))iX(a∗)∗ if p(z) ∨ s <∞
0 otherwise

∈ B.

Hence to establish (6.2), it remains only to show that B is closed under
multiplication. But Proposition 5.10 shows that the product

iX(x)iBP
(1s)iX(y)∗iX(z)iBP

(1t)iX(w)∗

of two typical generators of B is contained in the closed linear span of ele-
ments of the form

iX(x)iBP
(1s)iX(f)iX(g)∗iBP

(1t)iX(w)∗,

which by (6.4) simplifies to

iX(xf)iBP
(1p(f)−1(p(f)∨s)∨p(g)−1(p(g)∨t))iX(wg)∗ ∈ B.

Suppose the left action of A on each Xs is by compact operators; that
is, φs(A) ⊆ K(Xs) for all s ∈ P . Let x ∈ X and s ∈ P . Since Xp(x) is
essential, we can express x = φp(x)(a)z for some a ∈ A and z ∈ Xp(x). With
ψ := σ ◦ iX , we then have

σ(iBP
(1s)iX(x)) = Lψ(1s)ψ(x) = ρψs (1)ψe(a)ψ(z)

= ψ(s)(φs(a))ψ(z) (Lemma 5.5(3))

= σ(i(s)X (φs(a))iX(z)),

so iBP
(1s)iX(x) = i

(s)
X (φs(a))iX(z) ∈ Tcov(X). Since elements of the form

iBP
(1s)iX(x) generate BPoτ,XP , this gives BPoτ,XP = Tcov(X).

If in addition every s, t ∈ P have a common upper bound, then by Propo-
sition 5.4 the universal map jX : X → OX is Nica covariant; the integrated
form (jX)∗ : Tcov(X)→ OX is surjective since it maps generators to gener-
ators. �

7. Faithful representations.

Our strategy for characterizing faithful representations of BPoτ,XP follows
[12, Section 5]. First we use the dual coaction δ of G on BPoτ,XP and the
canonical trace ρ on C∗(G) to define a positive linear map Eδ := (id⊗ρ) ◦ δ
of norm one of BPoτ,XP onto the fixed-point algebra (BPoτ,XP )δ. When
X is compactly aligned, (BP , P, τ,X) satisfies the spanning condition (6.2),
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and Eδ is determined by

Eδ(iX(x)iBP
(1s)iX(y)∗) =

{
iX(x)iBP

(1s)iX(y)∗ if p(x) = p(y)
0 otherwise.

(7.1)

Definition 7.1. The system (BP , P, τ,X) is amenable if Eδ is faithful on
positive elements.

The argument of [17, Lemma 6.5] shows that if G is an amenable group,
then the system (BP , P, τ,X) is amenable. In Corollary 8.2 we will show
that (BP , P, τ,X) is also amenable when X is compactly aligned and G is a
free product ∗(Gλ, P λ) with each Gλ an amenable group.

Theorem 7.2. Suppose (G,P ) is a quasi-lattice ordered group and X is a
compactly-aligned product system over P of essential Hilbert A–A bimodules
such that the system (BP , P, τ,X) is amenable. Let ψ be a Nica-covariant
Toeplitz representation of X on a Hilbert space H. Then Lψ×ψ is a faithful
representation of BPoτ,XP if and only if

(7.2) for every n ≥ 1 and s1, . . . , sn ∈ P \ {e}, the subrepresentation

a ∈ A 7→ ψe(a)
n∏
k=1

(
1− Lψ(1sk

)
)

of ψe is faithful.

Proof of necessity of (7.2). Let π : A → B(H) be a faithful nondegenerate
representation of A on a Hilbert space H, let l : X → L(F (X)) be the Fock
representation of X, and let Ψ := F (X) -IndL(F (X))

A π ◦ l; by Lemma 5.3, Ψ
is a Nica-covariant Toeplitz representation of X on F (X) ⊗A H. We claim
that

a ∈ A 7→ Ψe(a)
n∏
k=1

(
1− LΨ(1sk

)
)

is faithful. Since LΨ(1sk
) = αΨ

sk
(1) is the orthogonal projection of F (X)⊗A

H onto
⊕

t∈skP
Xt ⊗A H (see the proof of Lemma 5.3), each projection

1 − LΨ(1sk
) dominates the projection Qe onto the Ψe-invariant subspace

Xe ⊗A H. To establish the claim it thus suffices to show that the subrep-
resentation QeΨe of Ψe is faithful. But Ψe = F (X) -IndAA π decomposes
as
⊕

t∈P Xt -IndAA π, so QeΨe = A -IndAA π is unitarily equivalent to π, and
hence faithful.

Now suppose that Lψ × ψ is faithful and a ∈ A. Let

T := iBP

(
n∏
k=1

(1− 1sk
)

)
iX(a) ∈ BPoτ,XP.
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Then

‖a‖ =

∥∥∥∥∥Ψe(a)
n∏
k=1

(
1− LΨ(1sk

)
)∥∥∥∥∥ =

∥∥LΨ ×Ψ(T )
∥∥ ≤ ‖T‖

=
∥∥∥Lψ × ψ(T )

∥∥∥ =

∥∥∥∥∥ψe(a)
n∏
k=1

(
1− Lψ(1sk

)
)∥∥∥∥∥ ≤ ‖a‖ ,

giving (7.2). �

Our proof that (7.2) implies faithfulness of Lψ × ψ is based on the ar-
gument of [12, Section 6]: In Proposition 7.5(1) we prove that Lψ × ψ is
faithful on (BPoτ,XP )δ, and in Proposition 7.5(2) we construct a spatial
version Eψ of Eδ such that (Lψ × ψ) ◦ Eδ = Eψ ◦ (Lψ × ψ). Faithfulness of
Lψ × ψ then follows easily: If Lψ × ψ(b) = 0, then

0 = Eψ ◦ (Lψ × ψ)(b∗b) = (Lψ × ψ) ◦ Eδ(b∗b),
so by Proposition 7.5(1), Eδ(b∗b) = 0. The amenability hypothesis then
forces b∗b = 0, and hence b = 0.

We begin by reviewing some notation and results from [17, Remark 1.5]
and [12, Remark 5.2]. Let F be a finite subset of P . A subset C of F is an
initial segment of F if c := σC is finite and C = {t ∈ F : t ≤ c}. (Recall
that σC is the least upper bound of C; we use the convention that σ∅ = e.)
For each such C there is a nonzero projection QC in BP defined by

QC := 1c
∏

{t∈F :c<t∨c<∞}

(1− 1t),

and as C ranges over the initial segements of F , these projections form a
decomposition of the identity in BP .

Lemma 7.3. Suppose (G,P ) is a quasi-lattice ordered group, X is a product
system over P of essential Hilbert A–A bimodules, ψ is a Nica-covariant
Toeplitz representation of X on H, F is a finite subset of P , C is an initial
segment of F , x, y ∈ X and s ∈ P . Let c = σC, so that C = {t ∈ F : t ≤ c}.

(1) If p(x) = p(y), then the operator ψ(x)Lψ(1s)ψ(y)∗ is in the commutant
of Lψ(BP ). In particular, it commutes with Lψ(QC).

(2) If p(x)s, p(y)s ∈ F , then

Lψ(QC)ψ(x)Lψ(1s)ψ(y)∗Lψ(QC)

=

 Lψ(QC)ψ(x)Lψ(1p(x)−1c)Lψ(1p(y)−1c)ψ(y)∗Lψ(QC)
if p(x)s ≤ c and p(y)s ≤ c

0 otherwise.

Proof. The proof, based on Lemma 5.11, is identical in form to the proof of
[12, Lemma 5.3]. �



PRODUCT SYSTEMS OF HILBERT BIMODULES 363

Lemma 7.4. Suppose (G,P ) is a quasi-lattice ordered group, X is a product
system over P of essential Hilbert A–A bimodules, and ψ is a Nica-covariant
Toeplitz representation of X which satisfies (7.2). Suppose further that F is
a finite subset of P and Z is a finite sum

∑
ψ(xk)Lψ(1sk

)ψ(yk)∗ such that
p(xk)sk = p(yk)sk ∈ F for each k. Then

‖Z‖ = max{‖TC‖ : C is an initial segment of F},(7.3)

where TC is the adjointable operator on XσC defined by

TC :=
∑

p(xk)sk≤σC

Θxk,yk
⊗A 1p(xk)−1σC .(7.4)

Proof. Since {QC : C is an initial segment of F} is a decomposition of the
identity in BP , and since Lψ is a unital representation of BP , the projections
Lψ(QC) decompose the identity operator. By Lemma 7.3(1), Z commutes
with each Lψ(QC), and thus

‖Z‖ = max
{∥∥∥Lψ(QC)Z

∥∥∥ : C is an initial segment of F
}
.

Fix an initial segment C, and let c := σC. By Lemma 7.3(2) and Lem-
ma 5.5(6),

Lψ(QC)Z = Lψ(QC)
∑

ψ(xk)Lψ(1sk
)ψ(yk)∗

= Lψ(QC)
∑

p(xk)sk≤c

ψ(xk)Lψ(1p(xk)−1c)ψ(yk)∗

= Lψ(QC)
∑

p(xk)sk≤c

ρψc (Θxk,yk
⊗A 1)

= Lψ(QC)ρψc (TC),

so it suffices to show that∥∥∥Lψ(QC)ρψc (TC)
∥∥∥ = ‖TC‖ .(7.5)

Let

RC :=
∏

{t∈F :c<t∨c<∞}

(1− 1c−1(t∨c)) ∈ BP .(7.6)

Since ψ satisfies (7.2),

a 7→ ψe(a)
∏

{t∈F :c<t∨c<∞}

(1− Lψ(1c−1(t∨c))) = ψe(a)Lψ(RC)

is a faithful representation of A. By Lemma 5.5(4), the representation
T ∈ L(Xc) 7→ αψc (Lψ(RC))ρψc (T ) is thus also faithful. But αψc (Lψ(RC)) =
Lψ(τc(RC)) = Lψ(QC), and hence (7.5) is satisfied. �
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Proposition 7.5. Suppose (G,P ) is a quasi-lattice ordered group, X is a
compactly-aligned product system over P of essential Hilbert A–A bimodules,
and ψ is a Nica-covariant Toeplitz representation of X which satisfies (7.2).

(1) Lψ × ψ is isometric on (BPoτ,XP )δ.
(2) There is a linear map Eψ of norm one of Lψ × ψ(BPoτ,XP ) onto

Lψ × ψ
(
(BPoτ,XP )δ

)
such that Eψ ◦ (Lψ × ψ) = (Lψ × ψ) ◦ Eδ.

Proof. (1) Since X is compactly aligned, the spanning condition (6.2) holds.
Since Eδ is continuous and maps onto (BPoτ,XP )δ, we deduce that finite
sums

z :=
∑

iX(xk)iBP
(1sk

)iX(yk)∗

in which p(xk) = p(yk) for all k are dense in (BPoτ,XP )δ. It therefore
suffices to fix such a z and show that

∥∥Lψ × ψ(z)
∥∥ = ‖z‖.

Let σ be a faithful nondegenerate representation of BPoτ,XP such that
(σ ◦ iBP

, σ ◦ iX) is a covariant representation of (BP , P, τ,X). By Proposi-
tion 6.1, i := σ ◦ iX is a covariant representation of X and σ ◦ iBP

= Li.
Since Li × i = σ is faithful, i satisfies (7.2). Hence with F := {p(xk)sk},
Lemma 7.4 gives∥∥∥Lψ × ψ(z)

∥∥∥ =
∥∥∥∑ψ(xk)Lψ(1sk

)ψ(yk)∗
∥∥∥

= max{‖TC‖ : C is an initial segment of F}

=
∥∥∥∑ i(xk)Li(1sk

)i(yk)∗
∥∥∥ =

∥∥Li × i(z)∥∥ = ‖z‖ .

(2) Since X is compactly aligned, finite sums of the form

w :=
∑

iX(xk)iBP
(1sk

)iX(yk)∗

are dense in BPoτ,XP . We will show that
∥∥Lψ×ψ(Eδ(w))

∥∥ ≤ ∥∥Lψ×ψ(w)
∥∥;

it follows that Eψ is well-defined on operators of the form Lψ × ψ(w) and
extends to the desired linear contraction.

Let F := {p(xk)sk} ∪ {p(yk)sk}, and let Z := Lψ × ψ(Eδ(w)); by (7.1),

Z =
∑

p(xk)=p(yk)

ψ(xk)Lψ(1sk
)ψ(yk)∗.

By Lemma 7.4, there is an initial segment C of F such that ‖Z‖ = ‖TC‖.
Let c := σC. We will construct a projection R ∈ BP such that a ∈ A 7→
ψe(a)Lψ(R) is faithful, then define Q := Lψ(τc(R)) = αψc (Lψ(R)), and show
that Q(Lψ × ψ(w))Q = Qρψc (TC). This will complete the proof, since by
Lemma 5.5(4) we then have

‖Z‖ = ‖TC‖ =
∥∥∥Qρψc (TC)

∥∥∥ =
∥∥∥Q(Lψ × ψ(w))Q

∥∥∥ ≤ ∥∥∥Lψ × ψ(w)
∥∥∥ .
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For each s, t ∈ C such that s 6= t and s−1c ∨ t−1c <∞, define ds,t ∈ P as
in [17, Lemma 3.2]:

ds,t =

{
(s−1c)−1(s−1c ∨ t−1c) if s−1c < s−1c ∨ t−1c

(t−1c)−1(s−1c ∨ t−1c) otherwise,

noting in particular that ds,t is never the identity in P . Let RC be as in
(7.6), and define

R := RC
∏

s 6=t∈C
s−1c∨t−1c<∞

(1− 1ds,t).

By condition (7.2), a ∈ A 7→ Lψ(R)ψe(a) is faithful. The proof that Q(Lψ×
ψ(w))Q = Qρψc (TC) is exactly as in [12, Proposition 5.5], so we omit it. �

Proposition 7.6. Suppose (G,P ) is a quasi-lattice ordered group and X is
a compactly-aligned product system over P of essential Hilbert A–A bimod-
ules. Let π be a nondegenerate representation of A on a Hilbert space H, and
let Ψ be the representation F (X) -IndL(F (X))

A π ◦ l, where l : X → L(F (X))
is the Fock representation of X. There is a projection EΨ of norm one of
LΨ ×Ψ(BPoτ,XP ) onto LΨ ×Ψ((BPoτ,XP )δ) such that

EΨ ◦ (LΨ ×Ψ) = (LΨ ×Ψ) ◦ Eδ;(7.7)

moreover, EΨ is faithful on positive operators.

Proof. Denote by Qt the orthogonal projection of F (X)⊗AH onto Xt⊗AH.
Since the Qt’s are mutually orthogonal, the formula

EΨ(T ) :=
∑
t∈P

QtTQt for T ∈ LΨ ×Ψ(BPoτ,XP )

defines a completely positive projection of norm one which is faithful on
positive operators. We claim that

EΨ(Ψ(x)LΨ(1s)Ψ(y)∗) =

{
Ψ(x)LΨ(1s)Ψ(y)∗ if p(x) = p(y)
0 otherwise.

(7.8)

Since X is compactly aligned the spanning condition (6.2) holds, and hence
(7.7) follows from (7.8) and (7.1).

Suppose x, y ∈ X and s ∈ P . For each t ∈ P , Ψ(x)LΨ(1s)Ψ(y)∗ is zero on
Xt⊗AH unless p(y)s ≤ t, in which case Ψ(x)LΨ(1s)Ψ(y)∗ mapsXt⊗AH into
Xp(x)p(y)−1t⊗AH. Thus if p(x) 6= p(y), QtΨ(x)LΨ(1s)Ψ(y)∗Qt = 0 for every
t ∈ P , and EΨ(Ψ(x)LΨ(1s)Ψ(y)∗) = 0. If on the other hand p(x) = p(y),
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then QtΨ(x)LΨ(1s)Ψ(y)∗Qt = Ψ(x)LΨ(1s)Ψ(y)∗Qt for each t ∈ P , and thus

EΨ(Ψ(x)LΨ(1s)Ψ(y)∗) =
∑
t∈P

QtΨ(x)LΨ(1s)Ψ(y)∗Qt

= Ψ(x)LΨ(1s)Ψ(y)∗
∑
t∈P

Qt = Ψ(x)LΨ(1s)Ψ(y)∗.

�

Corollary 7.7. Suppose π is faithful. Then the system (BP , P, τ,X) is
amenable if and only if the representation LΨ × Ψ of BPoτ,XP is faith-
ful.

Proof. Suppose LΨ × Ψ is faithful. By Proposition 7.6, (LΨ × Ψ) ◦ Eδ =
EΨ ◦ (LΨ × Ψ) is faithful on positive elements, hence so is Eδ; that is,
(BP , P, τ,X) is amenable. Since Ψ satisfies (7.2) (see the proof of necessity
of (7.2)), the converse follows from Theorem 7.2. �

8. Amenability.

Theorem 8.1. Suppose θ : (G,P ) → (G,P) is a homomorphism of quasi-
lattice ordered groups such that, whenever s ∨ t <∞,

θ(s ∨ t) = θ(s) ∨ θ(t) and θ(s) = θ(t) =⇒ s = t,(8.1)

and suppose that G is amenable. If X is a compactly-aligned product system
over P of essential Hilbert A–A bimodules, then the system (BP , P, τ,X) is
amenable.

Proof. Our proof is essentially that of [12, Theorem 6.1], suitably modified
to handle Hilbert bimodules. The homomorphism θ : G→ G induces a coac-
tion δθ = (id⊗θ) ◦ δ of G on BPoτ,XP , and hence a conditional expectation
Eδθ of BPoτ,XP onto the fixed-point algebra (BPoτ,XP )δθ , such that

Eδθ(iX(x)iBP
(1s)iX(y)∗) =

{
iX(x)iBP

(1s)iX(y)∗ if θ(p(x)) = θ(p(y))
0 otherwise.

Since G is amenable, Eδθ is faithful on positive elements.
Let l : X → L(F (X)) be the Fock representation of X, let π be a

faithful nondegenerate representation of A on a Hilbert space H, and let
Ψ := F (X) -IndL(F (X))

A π ◦ l. By Proposition 7.6, for every b ∈ BPoτ,XP we
have

(LΨ ×Ψ) ◦ Eδ(b) = EΨ(LΨ ×Ψ(Eδθ(b))).

Since Eδθ andEΨ are faithful on positive elements, to show that (BP , P, τ,X)
is amenable it suffices to show that LΨ ×Ψ is faithful on (BPoτ,XP )δθ .

Let σ be a faithful representation of BPoτ,XP such that (σ◦iBP
, σ◦iX) is

a covariant representation of (BP , P, τ,X). By Proposition 6.1, i = σ ◦ iX is
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a covariant representation of X and σ◦iBP
= Li. Observe that i is isometric

since, by Lemma 5.3,

‖x‖ = ‖Ψ(x)‖ =
∥∥(LΨ ×Ψ) ◦ iX(x)

∥∥
≤ ‖iX(x)‖ = ‖σ ◦ iX(x)‖ = ‖i(x)‖ ≤ ‖x‖ .

Let F be the set of all finite subsets F of P which are closed under ∨ in
the sense that s∨ t ∈ F whenever s, t ∈ F and s∨ t <∞. Exactly as in the
proof of [12, Theorem 6.1], one can use Proposition 5.10 to show that, for
each F ∈ F ,

UF := span{iX(x)iBP
(1s)iX(y)∗ : θ(p(x)s) = θ(p(y)s) ∈ F}

is a C∗-subalgebra of BPoτ,XP . Applying Φδθ to both sides of (6.2) gives

(BPoτ,XP )δθ = span{iX(x)iBP
(1s)iX(y)∗ : θ(p(x)) = θ(p(y))};

since F is directed under set inclusion (see the proof of [17, Lemma 4.1]),
we deduce that

(BPoτ,XP )δθ =
⋃
F∈F UF .

By [2, Lemma 1.3], to prove that LΨ × Ψ is faithful on (BPoτ,XP )δθ it
is enough to prove it is faithful on each of the subalgebras UF . We shall
accomplish this by inducting on |F |.

First suppose F = {r} for some r ∈ P. Let Wr be the Hilbert A–A
bimodule

⊕
t∈θ−1(r)Xt. We claim that, for each Nica-covariant Toeplitz

representation ψ of X on a Hilbert space K, there is a linear map ψr :
Wr → B(K) which satisfies ψr(⊕xt) =

∑
ψt(xt), and that (ψr, ψe) is then a

Toeplitz representation of Wr. First observe that if x, y ∈ X satisfy p(x) 6=
p(y) and θ(p(x)) = θ(p(y)) = r, then by (8.1) we have p(x)∨ p(y) =∞, and
hence ψ(x)∗ψ(y) = 0. Now suppose ⊕xt belongs to the algebraic direct sum⊙

t∈θ−1(r)Xt; such vectors are dense in Wr. Then∥∥∥∥∥∑
t

ψt(xt)

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
t,t′

ψt(xt)∗ψt′(xt′)

∥∥∥∥∥∥ =

∥∥∥∥∥∑
t

ψt(xt)∗ψt(xt)

∥∥∥∥∥
=

∥∥∥∥∥∑
t

ψe(〈xt, xt〉A)

∥∥∥∥∥ ≤
∥∥∥∥∥∑

t

〈xt, xt〉A

∥∥∥∥∥
= ‖〈⊕xt,⊕xt〉A‖ = ‖⊕xt‖2 ,

ensuring the existence of ψr. It is routine to check that (ψr, ψe) is a Toeplitz
representation of Wr. Write αψr for the endomorphism of ψe(A)′ which
corresponds to (ψr, ψe) (Proposition 4.1), and write ρψr for the associated
representation of L(Wr) (Lemma 5.5).

Suppose Z is a finite sum
∑
iX(xk)iBP

(1sk
)iX(yk)∗ such that θ(p(xk)sk)=

θ(p(yk)sk) = r for every k; to prove LΨ × Ψ faithful on U{r} we will show
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that
∥∥LΨ ×Ψ(Z)

∥∥ = ‖Z‖. For each k, let Θxk,yk
⊗A 1sk denote the operator

in L(Wr) which is the image of

Θxk,yk
∈ K

(
Xp(yk), Xp(xk)

)
7→

Θxk,yk
⊗A 1sk ∈ L

(
Xp(yk)sk

, Xp(xk)sk

)
⊂ L(Wr).

Define T :=
∑

Θxk,yk
⊗A 1sk ∈ L(Wr). It is routine to check that

ρΨ
r (T ) =

∑
Ψ(xk)LΨ(1sk

)Ψ(yk)∗ = LΨ ×Ψ(Z),

and similarly ρir(T ) = Li × i(Z) = σ(Z). Since Ψe and ie are faithful
representations of A, the representations ρΨ

r and ρir are isometric, and thus∥∥LΨ ×Ψ(Z)
∥∥ =

∥∥ρΨ
r (T )

∥∥ = ‖T‖ =
∥∥ρir(T )

∥∥ = ‖σ(Z)‖ = ‖Z‖ .

For the inductive step, suppose F ∈ F and LΨ × Ψ is faithful on UF ′
whenever F ′ ∈ F and |F ′| < |F |; we aim to prove that LΨ × Ψ is faithful
on UF . Since F is finite it has a minimal element; that is, there exists
r0 ∈ F such that r0 < r0 ∨ r for each r ∈ F \ {r0}. As in the proof of [12,
Theorem 6.1] we have LΨ×Ψ(U{r})Pr0 = {0} for each r ∈ F \{r0}, where Pr0
denotes the orthogonal projection of F (X)⊗A H onto

⊕
t∈θ−1(r0)Xt ⊗A H.

On the other hand, we have already demonstrated that LΨ × Ψ maps
Ur0 isometrically into the range of ρΨ

r0 , and an easy calculation shows that
Pr0 = αΨ

r0(Qe), where Qe is the orthogonal projection onto Xe ⊗A H. Since
a 7→ Ψe(a)Qe is faithful, by Lemma 5.5(4) the representation S ∈ L(Wr0) 7→
Pr0ρ

Ψ
r0(S) is also faithful. Hence the map Y ∈ Ur0 7→ LΨ × Ψ(Y )Pr0 is

faithful.
Now suppose Y ∈ UF and LΨ×Ψ(Y ) = 0. We will show that Y ∈ UF\{r0},

from which the inductive hypothesis implies that Y = 0. Let (Yn) be a
sequence in

span{iX(x)iBP
(1s)iX(y)∗ : θ(p(x)s) = θ(p(y)s) ∈ F}

which converges in norm to Y , and express each Yn as a sum
∑

r∈F Yn,r,
where Yn,r ∈ U{r}. For each n,∥∥LΨ ×Ψ(Yn)Pr0

∥∥ =
∥∥LΨ ×Ψ(Yn,r0)Pr0

∥∥ = ‖Yn,r0‖ ,
and consequently Yn,r0 → 0. Thus Yn − Yn,r0 → Y , which shows that
Y ∈ UF\{r0}, as claimed. �

Corollary 8.2. Suppose (Gλ, P λ) is a quasi-lattice ordered group with Gλ

amenable for each λ belonging to some index set Λ. If X is a compactly-
aligned product system over P := ∗P λ, then the system (BP , P, τ,X) is
amenable.

Proof. The group
⊕
Gλ is amenable, and by [17, Proposition 4.3] the canon-

ical map θ : ∗Gλ →
⊕
Gλ satisfies (8.1). �
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9. Applications.

In Section 3, we associated with each twisted semigroup dynamical system
(A,P, β, ω) a product system X = X(A,P, β, ω) of essential Hilbert A–
A bimodules over the opposite semigroup P o (Lemma 3.2), and we showed
that the Cuntz-Pimsner algebra OX is canonically isomorphic to the crossed
product A oβ,ω P ; we also showed that TX has the structure of a certain
“Toeplitz” crossed product T (Aoβ,ωP ) (Proposition 3.4). Suppose now that
(Go, P o) is quasi-lattice ordered; this is equivalent to (G,P ) being quasi-
latticed ordered in its right-invariant partial order (s ≤ t ⇔ ts−1 ∈ P ).
Since the left action of A on each fiber Xs is by compact operators, X is
compactly aligned (Lemma 5.8) and Tcov(X) = BPoτ,XP (Theorem 6.3).
Hence we can apply Theorem 7.2 to characterize the faithful representations
of Tcov(X). This is particularly helpful when (Go, P o) is a total order since
Tcov(X) = TX ; more generally, when every s, t ∈ P o have a common upper
bound in P o (i.e., Ps ∩ Pt 6= ∅), the crossed product A oβ,ω P = OX is a
quotient of Tcov(X) (Theorem 6.3).

We begin by showing that Tcov(X), too, has a crossed product structure:

Definition 9.1. Suppose P is a subsemigroup of a group G and (Go, P o) is
quasi-lattice ordered. A Nica-Toeplitz covariant representation of (A,P, β, ω)
is a Toeplitz covariant representation (π, V ) such that

V ∗
s VsV

∗
t Vt =

{
V ∗
s∨tVs∨t if s ∨ t <∞

0 otherwise,
(9.1)

where s ∨ t denotes the least upper bound of s and t in the right-invariant
partial order on (G,P ).

The following Proposition establishes the existence of a C∗-algebra which
is universal for such pairs (π, V ), as in Definition 3.1. We call this algebra the
Nica-Toeplitz crossed product of (A,P, β, ω), and denote it Tcov(A oβ,ω P ).
Let iX : X → Tcov(X) be universal for Nica-covariant Toeplitz represen-
tations of X. Lemma 3.3 is easily adapted to this setting, and allows us
to define iP : P → MTcov(X) by iP (s) = lim iX(s, βs(ai))∗; here (ai) is an
approximate identity for A, and the convergence is strict. We also define
iA : A→ Tcov(X) by iA(a) := iX(e, a).

Proposition 9.2. (Tcov(X), iA, iP ) is a Nica-Toeplitz crossed product for
(A,P, β, ω).

Proof. As in the proof of Proposition 3.4, iA is nondegenerate. We verify
the obvious analogues of Conditions (a), (b), and (c) in Definition 3.1. For
(a), let σ be a nondegenerate representation of Tcov(X) on a Hilbert space
H, let π := σ ◦ iA, and let V := σ ◦ iP ; we must show that (π, V ) is a Nica-
Toeplitz covariant representation of (A,P, β, ω). Exactly as in the proof of
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Proposition 3.4, (π, V ) is a Toeplitz covariant representation of (A,P, β, ω),
so we need to establish (9.1). Fix s ∈ P . For any a ∈ A and h ∈ H we have

V ∗
s π(a)h = σ(iP (s)∗iA(a))h = σ(lim iX(s, βs(ai))iX(e, a))h

= σ(lim iX(s, βs(ai)a))h = σ ◦ iX(s, βs(1)a)h,

and since π is nondegenerate this shows that

V ∗
s VsH = span{σ ◦ iX(ξ)h : ξ ∈ Xs, h ∈ H} = ασ◦iXs (1).

Since X is compactly aligned, σ ◦ iX is Nica covariant (Theorem 6.3 and
Proposition 5.9), and (9.1) follows.

For Condition (b), let (π, V ) be any Nica-Toeplitz covariant representa-
tion on H. As in the proof of Proposition 3.4, ψ(s, x) := V ∗

s π(x) defines
a nondegenerate Toeplitz covariant representation ψ : X → B(H). To see
that it is Nica-covariant, let s ∈ P , and note that for any a ∈ A we have

ψ(s, βs(1)a) = limψ(s, βs(ai)a) = limV ∗
s π(βs(ai)a)

= limV ∗
s Vsπ(ai)V ∗

s π(a) = V ∗
s π(a).

Since π is nondegenerate, this implies that αψs (1) = V ∗
s Vs, and hence ψ is

Nica covariant by (9.1). Defining π × V := ψ∗ : Tcov(X) → B(H) gives
the desired representation satisfying (π × V ) ◦ iA = π and π × V ◦ iP = V .
Condition (c) is satisfied since iA(a)iP (s) = iX(s, βs(1)a∗)∗, and elements of
this form generate Tcov(X). �

Let (Gi, Pi) be a collection of abelian lattice-ordered groups. Since (Gi, Pi)
is quasi-lattice ordered in both its left and its right-invariant partial order,
so is the free product ∗(Gi, Pi).

Theorem 9.3. Suppose (G,P ) = ∗(Gi, Pi) is a free product of abelian latti-
ce-ordered groups and (π, V ) is a Nica-Toeplitz covariant representation of
the twisted semigroup dynamical system (A,P, β, ω) on a Hilbert space H.
Then the integrated form π×V is a faithful representation of Tcov(Aoβ,ωP )
if and only if

for every n ≥ 1 and s1, . . . , sn ∈ P \ {e},

π acts faithfully on the range of
n∏
k=1

(
1− V ∗

sk
Vsk

).

Proof. Let θ be the canonical homomorphism of ∗(Gi, Pi) onto
⊕

(Gi, Pi).
By [17, Proposition 4.3], θ satisfies the hypotheses of Theorem 8.1; since
X = X(A,P, β, ω) is compactly aligned, the system (BP , P, τ,X) is there-
fore amenable. Identifying Tcov(A oβ,ω P ) with Tcov(X) as in the previous
Proposition and defining ψ(s, x) := V ∗

s π(x), the initial projection V ∗
s Vs is

precisely αψs (1), and the result follows from Theorem 7.2. �
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Nica covariance is automatic when (G,P ) is totally ordered:

Corollary 9.4. Suppose (G,P ) is a totally ordered abelian group and (π, V )
is a Toeplitz covariant representation of (A,P, β, ω) on a Hilbert space H.
Then the integrated form π × V is a faithful representation of T (Aoβ,ω P )
if and only if π acts faithfully on (V ∗

s H)⊥ for every s ∈ P \ {e}.
Corollary 9.5. Suppose β is an extendible endomorphism of A. If (π, V ) is
a Toeplitz representation of (A,N, β), then π×V is a faithful representation
of T (Aoβ N) if and only if π acts faithfully on (V ∗H)⊥.
Bicovariance. Suppose (G,P ) is a quasi-lattice ordered group. Follow-
ing [17], in [12] it was shown that BP oτ,ω P is universal for isometric
ω-representations of P which are Nica covariant; that is, which satisfy

VsV
∗
s VtV

∗
t =

{
Vs∨tV

∗
s∨t if s ∨ t <∞

0 otherwise.
(9.2)

Assuming that (Go, P o) is also quasi-lattice ordered, we now show that the
Nica-Toeplitz crossed product Tcov(BP oτ,ω P ) is universal for partial iso-
metric ω-representations of P which are bicovariant in that they satisfy both
(9.2) and (9.1). Note that bicovariance is automatic when (G,P ) is a totally
ordered abelian group.

Proposition 9.6. iP : P → Tcov(BP oτ,ω P ) is a bicovariant partial iso-
metric ω-representation of P whose range generates Tcov(BP oτ,ω P ) as a
C∗-algebra. Moreover, for every bicovariant partial isometric ω-representa-
tion V , there is a representation V∗ of Tcov(BP oτ,ωP ) such that V∗◦iP = V .

Proof. Let σ be a faithful nondegenerate representation of Tcov(BP oτ,ω P ).
Then V := σ ◦ iP is a partial isometric ω-representation of P which satisfies
(9.1), and applying σ−1 we see that iP is as well. Since iP (s)iP (s)∗ = iBP

(1s)
for every s ∈ P , iP also satisfies (9.2), and is hence bicovariant. Since
{1s : s ∈ P} generates BP linearly and {iBP

(a)iP (t) : a ∈ BP , t ∈ P} gener-
ates Tcov(BP oτ,ω P ) as a C∗-algebra, elements of the form iBP

(1s)iP (t) =
iP (s)iP (s)∗iP (t) are also generating. If V is any bicovariant partial isomet-
ric ω-representation of P , then by [17, Proposition 1.3] there is a repre-
sentation πV of BP such that πV (1s) = VsV

∗
s for every s ∈ P . For any

s, t ∈ P the product VtVs = ω(t, s)Vts is a partial isometry; hence by [14,
Lemma 2] the projections VsV ∗

s and V ∗
t Vt commute, and we deduce that

πV (a)V ∗
t Vt = V ∗

t VtπV (a) for every a ∈ BP and t ∈ P . Further,

πV (τs(1t)) = πV (1st) = VstV
∗
st

= (ω(s, t)VsVt)(ω(s, t)VsVt)∗ = VsVtV
∗
t V

∗
s = VsπV (1t)V ∗

s ,

so πV (τs(a)) = VsπV (a)V ∗
s for every s ∈ P and a ∈ BP . Thus (πV , V ) is a

Nica-Toeplitz covariant representation of (BP , P, τ, ω). The representation
V∗ := πV × V satisfies V∗ ◦ iP = V . �
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We say that a bicovariant partial isometric ω-representation V is universal
if, for every bicovariant partial isometric ω-representation W , there is a
homomorphism of C∗{Vs : s ∈ P} which maps Vs to Ws for each s ∈ P .

Theorem 9.7. Suppose (G,P ) = ∗(Gi, Pi) is a free product of abelian latti-
ce-ordered groups and V is a bicovariant partial isometric ω-representation
of P . Then V is universal if and only if

m∏
l=1

(VrV ∗
r − VrtlV

∗
rtl

)
n∏
k=1

(1− V ∗
sk
Vsk

) 6= 0

whenever r ∈ P , m,n ≥ 1, and s1, . . . , sn, t1, . . . , tm ∈ P \ {e}.

Proof. V is universal if and only if the representation V∗ = πV × V of
Tcov(BP oτ,ω P ) is faithful. By Theorem 9.3, this occurs if and only if πV
acts faithfully on the range of

∏n
k=1(1−V ∗

sk
Vsk

) whenever s1, . . . , sn ∈ P\{e},
and the result follows from [17, Proposition 1.3]. �

Let F∞ be the free group on infinitely many generators z1, z2, . . . , and
let F+

∞ be the subsemigroup (with identity) generated by the zi; the pair
(F∞,F+

∞) is quasi-lattice ordered. In [17], Laca and Raeburn realized the
Cuntz algebra O∞ as the universal C∗-algebra for covariant isometric rep-
resentations of F+

∞, and used their characterization of the faithful repre-
sentations of BP oτ P to derive Cuntz’s simplicity result. We finish by
showing that the universal C∗-algebra for bicovariant partial isometric rep-
resentations of F+

∞ is reminiscent of O∞, and we derive a Cuntz-Krieger-type
uniqueness theorem.

First some notation. For a multi-index µ = (µ1, . . . , µn) we write zµ :=
zµ1 · · · zµn , and we identify F+

∞ with the set of multi-indices under concate-
nation via zµ ↔ µ.

Proposition 9.8. Suppose S is a partial isometric representation of F+
∞ in

a C∗-algebra B; that is, S is a semigroup homomorphism and each Sµ is a
partial isometry. Then C∗{Sµ : µ ∈ F+

∞} is generated by {Sn : n ∈ N}, and
S is bicovariant if and only if

(a) the range projections sks∗k for k ∈ N are pairwise orthogonal, and
(b) the initial projections s∗ksk for k ∈ N are pairwise orthogonal.

Proof. The first statement is obvious. In the left-invariant partial order on
F∞, two elements µ, ν ∈ F+

∞ have a common upper bound if and only if one
is an initial word of the other, and then the least upper bound is the longer
of the two words. We will show that (a) holds if and only if

SµS
∗
µSνS

∗
ν =


SµS

∗
µ if ν−1µ ∈ F+

∞,
SνS

∗
ν if µ−1ν ∈ F+

∞,
0 otherwise;

(9.3)
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of course a similar statement holds for (b) using the right-invariant partial
order, and together these prove the Proposition.

To begin with, (9.3) implies (a) since distict generators of F+
∞ are not

comparable. For the converse, first suppose ν−1µ ∈ F+
∞; since Sν is a partial

isometry, we then have

SµS
∗
µSνS

∗
ν = SµS

∗
ν−1µS

∗
νSνS

∗
ν = SµS

∗
ν−1µS

∗
ν = SµS

∗
µ.

The case µ−1ν ∈ F+
∞ is similar. Finally, suppose µ and ν are not comparable.

Then there exists σ, µ′, ν ′ ∈ F+
∞ such that µ = σµ′, ν = σν ′, and µ′1 6= ν ′1.

Condition (a) implies that S∗µ′Sν′ = 0, and by [14, Lemma 2] the range
projection of Sν′ commutes with the initial projection of Sσ, so

S∗µSν = S∗µ′S
∗
σSσSν′ = S∗µ′S

∗
σSσSν′S

∗
ν′Sν′ = S∗µ′Sν′S

∗
ν′S

∗
σSσSν′ = 0.

�

Theorem 9.9. A bicovariant partial isometric representation S of F+
∞ is

universal if and only if each Sµ is nonzero.

Proof. Suppose each Sµ is nonzero. To see that S is universal, we apply
Theorem 9.7. If ν ∈ F+

∞, m,n ≥ 1, and σ1, . . . , σm, τ1, . . . , τn ∈ F+
∞ \ {e},

then we can choose i, j ∈ N such that none of the multi-indices σl begins
with i, and none of the multi-indices τk ends with j. Then

m∏
l=1

(SνS∗ν − Sνσl
S∗νσl

)
n∏
k=1

(1− S∗τkSτk) ≥ SνSiS∗i S∗νS∗jSj = S∗jSjνiS
∗
jνiSj

is nonzero since Sj(S∗jSjνiS
∗
jνiSj)S

∗
j = SjνiS

∗
jνi 6= 0. Hence S is universal.

Now define T : F+
∞ → B(`2(F+

∞)⊗ `2(F+
∞)) by

Tµ(δσ ⊗ δν) =

{
δσ ⊗ δµν if σ ends in µν
0 otherwise.

Then T is a bicovariant partial isometric representation of F+
∞ in which each

Tµ is nonzero. If S is universal, then Sµ 7→ Tµ extends to a homomorphism
of C∗{Sµ}, and hence each Sµ must be nonzero. �
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THE PRODUCT FORMULA FOR THE SPHERICAL
FUNCTIONS ON SYMMETRIC SPACES IN THE

COMPLEX CASE

P. Graczyk and P. Sawyer

In this paper, we prove the existence of the product formula
for the spherical functions in the complex case and we study
properties of the integral kernel of this formula.

1. Introduction.

Let G be a semisimple noncompact Lie group with finite center and K a
maximal compact subgroup ofG andX = G/K the corresponding Riemann-
ian symmetric space of noncompact type. We have a Cartan decomposition
g = k + p and we choose a maximal abelian subalgebra a of p. In what fol-
lows, Σ corresponds to the root system of g and Σ+ to the positive roots. We
have the root space decomposition g = g0 +

∑
α∈Σ gα. Let n =

∑
α∈Σ+ gα.

Denote the groups corresponding to the Lie algebras a and n by A and N
respectively. We have the Cartan decomposition G = KAK and the Iwa-
sawa decomposition G = KAN . Let a+ = {H ∈ A : α(H) > 0 ∀ α ∈ Σ+}
and A+ = exp(a+).

If λ is a complex-valued functional on a, the corresponding spherical func-
tion is

φλ(eH) =
∫
K
e(i λ−ρ)(H(eH k)) dk

where g = k eH(g) n ∈ KAN . A spherical function, like any K-biinvariant
function, can also be considered as aK-invariant function on the Riemannian
symmetric space of noncompact type X = G/K. Naturally, such a function
is completely determined by its values on A (or on A+). The books [6, 7]
constitute a standard reference on these topics.

Let us assume throughout the paper that X, Y ∈ a+ and that the sym-
metric space G/K is irreducible.

In [7, (32), page 480], Helgason shows that if X 6= 0, Y 6= 0 and Y 6∈
W · {−X} (or equivalently that X 6∈ W · {−Y }) then there exists a Weyl-
invariant measure µX,Y on the Lie algebra a such that

φλ(eX)φλ(eY ) =
∫

a
φλ(eH) dµX,Y (H)

377
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(unlike us, Helgason states his results at the group level). In fact, this is
true for all X and Y .

The support of the measure µX,Y is shown to be included in C(X)+C(Y )
where C(H) is the convex hull of the orbit of H under the action of the Weyl
group W .

The measures δeX and δeY are not K-invariant on G, except in the ex-
cluded cases X, Y = 0. If δK denotes the Haar measure on K, then define
the K-biinvariant probability measures δ]

eX and δ]
eY by convolving the Dirac

masses with δK on both sides. Comparing the spherical Fourier transforms
we see that

µX,Y = δ]
eX ∗ δ]eY .

It is known [7] that

φλ(eX)φλ(eY ) =
∫
K
φλ(eX k eY ) dk.

The measure µX,Y is then to satisfy∫
K
f(eX k eY ) dk =

∫
a
f(eH) dµX,Y (H)

for all functions f which are biinvariant under the action of K.
The natural question is whether the measure µX,Y is absolutely contin-

uous with respect to the Lebesgue measure on a, i.e., whether we have a
“product formula”

φλ(eX)φλ(eY ) =
∫

a
φλ(eH) k(H,X, Y ) dH(1)

where k(H,X, Y ) is Weyl invariant in each of the variables. Helgason also
discusses this measure and some partial results in [8].

The question of existence of the density of the measure µX,Y is related to
the question of absolute continuity of the measure νX on a defined by∫

K
f(H(eXk))dk =

∫
a
f(H)dνX(H), f ∈ Cc(a),

answered positively by Flensted-Jensen and Ragozin ([3]) when G/K is ir-
reducible and X 6= 0.

Following the general idea of their proof one can prove the absolute con-
tinuity of µX,Y when X,Y ∈ a+ and in some boundary cases X, Y ∈ ∂a+

([5]). This requires however considerable care due to the non-analyticity of
the Cartan decomposition. Moreover, this general approach does not allow
us to obtain the density explicitly or even to study its basic properties.

Koornwinder gave explicit formulae for the function k(H,X, Y ) for the
rank one case in [11]. In fact, he gives a product formula for a larger class of
special functions, namely the Jacobi functions. The formulae given can be
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derived using an addition formula which is not currently available in higher
rank situations. The reader may also wish to consult [1, 2, 9, 10, 11, 12, 13].

In this paper, we show directly the product formula (1) for symmetric
spaces in the complex case, which is easy, as opposed to the general case.
We also give a lot of information on the kernel k and its support.

Our formula has applications in special functions theory and multivariate
statistics because it may be equivalently expressed in terms of the Schur or
zonal polynomials on Hermitian positive definite matrices.

There are also important relations between product formulae for spherical
functions and arithmetic of probability measures. Ostrovskii ([14]) and
Trukhina ([15]) showed that the only measures without indecomposable
factors (in the sense of convolution product), respectively in the set of radial
measures on Rn and in the set of K-invariant measures on real hyperbolic
spaces, are the Gaussian measures. Also Voit ([16]) studied this question on
some hypergroups. The main tool of all this research is a product formula
(1) with some information on its kernel. We think that our formula will give
similar characterization of Gaussian measures on symmetric spaces with G
complex.

Two more intrinsic applications of (1) are given in the end of Section 2.
We thank Tom Koornwinder for helpful remarks and Amos Nevo for point-

ing out to us the application of the product formula given in the Corol-
lary 2.6. We thank the referee for helpful comments.

2. The product formula on complex Lie groups.

We consider the spherical functions on complex groups.
We require some preliminaries.
We first note that there exists a functionK(X,H) which is Weyl-invariant

in both of its arguments such that

φλ(eX) =
∫
C(X)

e〈i λ,H〉K(X,H) dH(2)

(K is defined for X 6= 0).
The existence of the kernel K(X,H) in (2) is shown in [7, p. 479]. It is

simply the kernel of the Abel transform. This is valid for every symmetric
space of noncompact type.

If we use the Cartan decomposition, the integration on G can be written
in polar coordinates. With suitable normalization, we have∫

G
f(g) dg =

∫
K

∫
K

∫
a+

f(k1 e
H k2) δ(H) dH dk1 dk2

where δ(H) =
∏
α∈Σ+ sinhmα α(H) and mα denotes the multiplicity of the

root α.
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In the complex case mα = 2 for each α and we have

δ1/2(X) =
∑
w∈W

ε(w) e〈wρ,X〉.(3)

It is worthwhile to mention that as it is written in (3), the function δ1/2

is skew Weyl-invariant i.e., δ1/2(w ·H) = ε(w) δ1/2(H).
Still in the complex case, we have

φλ(eX) =
π(ρ)
π(iλ)

∑
w∈W ε(w) e〈iw·λ,X〉

δ1/2(X)
.

Theorem 2.1. Suppose G is a complex Lie group. Then we have the fol-
lowing product formula

φλ(eX)φλ(eY ) =
∫

a
φλ(eH) k(H,X, Y ) δ(H) dH

where

k(H,X, Y ) =
1

δ1/2(H) δ1/2(Y )
1
|W |

∑
w∈W

ε(w)K(X,w ·H − Y ).(4)

Proof. We observe first that∫
C(X)

φλ(eH+Y )
K(X,H) δ1/2(H + Y )

δ1/2(Y )
dH

=
π(ρ)
π(iλ)

∑
w∈W

ε(w)
∫
C(X)

e〈iw·λ,H+Y 〉 K(X,H) δ1/2(H + Y )
δ1/2(H + Y ) δ1/2(Y )

dH

=
π(ρ)
π(iλ)

∑
w∈W

ε(w)
e〈iw·λ,Y 〉

δ1/2(Y )

∫
C(X)

e〈iw·λ,H〉K(X,H) dH

=
π(ρ)
π(iλ)

∑
w∈W

ε(w)
e〈iw·λ,Y 〉

δ1/2(Y )
φw·λ(eX)

= φλ(eY )φλ(eX)

(we note first that φw·λ = φλ and then we add over w).
Hence,∫
C(X)+Y

φλ(eH)
K(X,H − Y )
δ1/2(H) δ1/2(Y )

δ(H) dH

=
∫
C(X)

φλ(eH+Y )
K(X,H) δ1/2(H + Y )

δ1/2(Y )
dH = φλ(eY )φλ(eX).

We finish by ensuring that the kernel is Weyl-invariant in every argument.
�

Corollary 2.2. Suppose G is a complex group.
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1) The support of the measure µX,Y is contained in

(∪w∈W w · (C(X) + Y )) ∩ (∪w∈W w · (C(Y ) +X)) ⊂ C(X) + C(Y ).

2) 0 6∈ support (µX,Y ) if and only if Y 6∈W · {−X}.

Proof. 1) We note that K(X,H) is strictly positive for H ∈ C(X)◦ and 0
on the complement of C(X) and we use the symmetry of the product
formula in X and Y .

2) Suppose that 0 ∈ support(µX,Y ). Then 0 ∈ C(Y )+X and 0 ∈ C(X)+
Y which means that −X ∈ C(Y ) and X ∈ −C(Y ) = C(−Y ). In the
same way, Y ∈ C(−X). This is only possible when Y belongs to the
W -orbit of −X. The converse is clear.

�

Corollary 2.3. X + Y ∈ support (µX,Y ).

Proof. Without loss of generality we suppose that X, Y ∈ a+.
Naturally, X + Y ∈ C(X) + Y . Suppose that X + Y ∈ C(X) + w · Y for

w ∈ W . This means that X − v = w · Y − Y for a vector v ∈ C(X). Let
+a = {H ∈ a : H =

∑n
i=1 ci αi, ci > 0} where α1, . . . , αn are the simple

roots. Recall that if H ∈ a+ and w ∈ W then H − wH ∈ +a ([7, Chapter
IV]). It follows that X − v ∈ +a and w · Y − Y ∈ −+a ∩ +a = {0}, so
w · Y = Y . As Y ∈ a+, we deduce that w = id.

The sets C(X) + w · Y being closed and bounded, it follows that a
nonempty neighbourhood U of X + Y is disjoint with all C(X) + w · Y
except for w = id.

By Theorem 2.1, for any H ∈ U ∩ (C(Y ) +X)◦ the function

k(H,X, Y ) =
1

δ1/2(H) δ1/2(Y )
1
|W |

K(X,H − Y ) > 0.

Hence X + Y ∈ support(k(·, X, Y )). �

Remark 2.4. If we convolve two uniform distributions on centered spheres
of radii 0 < r < s in Rn, we obtain an absolutely continuous measure
supported by the annulus of radii s − r and s + r. Our results show that
a similar property holds on symmetric spaces with G complex; however the
description of the support of δ]

eX ∗ δ]eY , the symmetric space analogue of the
annulus, is more complicated.

Let us give two simple applications of our product formula.

Corollary 2.5. Let G be a complex semisimple Lie group and let µ, ν be
two K-biinvariant finite measures on G such that µ(eK) = ν(eK) = 0 and
µ(K ∂A+K) = 0 or ν(K ∂A+K) = 0. Then the measure µ ∗ ν is absolutely
continuous.
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Proof. We identify K-biinvariant measures on G with W -invariant measures
on a. Observe that the spherical Fourier transform of µ ∗ ν is equal to∫

a

∫
a
φλ(eX)φλ(eY )dµ(X)dν(Y ) = γ̂(λ)

where γ is a K-biinvariant measure with density

dγ(H) =
∫

a

∫
a
k(H,X, Y ) dµ(X) dν(Y ).

The use of the Fubini theorem is justified by∫
a
k(H,X, Y ) δ(H) dH = 1

which is the product formula for λ = −i ρ and by the boundedness of φλ. �

Corollary 2.6. Let G be a simple complex Lie group and let g ∈ KA+K.
Then the orbit K gK generates G.

Proof. Let g = k1 e
X k2 with X ∈ a. The existence of a continuous density of

δ]X ∗ δ
]
X = µX,X implies that K gK gK contains a nonempty K-biinvariant

open set. �

3. An explicit product formula for the complex groups.

The result [4, Proposition 2] give us a method to construct the Abel kernel
K in (2) and therefore the product formula kernel k in (1).

Suppose α1, . . . , αq are the positive roots and α1, . . . , αn are the simple
positive roots. We have integers akj ≥ 0 such that

αk =
n∑
j=1

akj αj

for k = n+ 1, . . . , q. For y1 ≥ 0, . . . , yn ≥ 0, define

∆(y1, . . . , yn) ={
(yn+1, . . . , yq) : yn+1, . . . , yq ≥ 0 and

n∑
k=1

akj yk ≤ yj , j = 1, . . . , n

}
.

We then define

Ψ(y1, . . . , yn) =
∫

∆(y1,...,yn)
dyn+1 . . . dyq and

T (y1 α1 + · · ·+ yn αn) = Ψ(y1, . . . , yn).

The support of T is +a = {H ∈ a : H = y1 α1 + · · · + yn αn, yi ≥ 0, i =
1, . . . , n}. If the rank is 1, then T jumps from 1 (inside its support) to 0
(outside its support). When the rank is greater than 1, T is continuous.
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It is not difficult to see that Ψ will be locally a polynomial of degree q−n
in y1, . . . , yn.

Note that T is the distribution on a which satisfies

(T, f) =
∫
Rq

+

f

∑
α∈Σ+

xk αk

 dx1 . . . dxq.

We have ∂(π)T = δ0 and, in particular, L(T )(λ) = 1
π(λ) .

Then

K(X,H) =
π(ρ)

δ1/2(X)

∑
w∈W

ε(w)T (wX −H).(5)

One of the drawbacks of the formula (4) is that it is not immediately
clear that k(H,X, Y ) = k(H,Y,X) for every X and Y ∈ a (it is clear from
(1) that this should be the case). The following result makes this symmetry
explicit.

Proposition 3.1. Suppose G is a complex Lie group. Then the kernel
k(H,X, Y ) of Theorem 2.1 can be written as

k(H,X, Y )

=
π(ρ)
|W |

1
δ1/2(H) δ1/2(X) δ1/2(Y )

∑
v,w∈W

ε(v) ε(w)T (v X + wY −H).

Proof. We have

k(H,X, Y )

=
1

δ1/2(H) δ1/2(Y )
1
|W |

∑
w∈W

ε(w)K(X,w ·H − Y )

=
1

δ1/2(H) δ1/2(Y )
1
|W |

∑
w∈W

ε(w)K(X,H − w−1 · Y )

=
1

δ1/2(H) δ1/2(Y )
1
|W |

∑
w∈W

ε(w)
π(ρ)

δ1/2(X)

·
∑
v∈W

ε(v)T (v X − (H − w−1 · Y ))

=
π(ρ)
|W |

1
δ1/2(H) δ1/2(X) δ1/2(Y )

∑
v,w∈W

ε(v) ε(w)T (v X + wY −H).

�

Definition 3.2. We will say that the function F is piecewise polynomial if
there is a finite partition of support(F ) into domains P satisfying P ◦ = P
on which F is given by a fixed polynomial.
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We will say that the function F is piecewise continuous if there is a finite
partition of support(F ) into domains P satisfying P ◦ = P on which F is
given by a continuous function.

Corollary 3.3. The function (H,X, Y ) → δ1/2(H) δ1/2(X) δ1/2(Y ) k(H,
X, Y ) is a piecewise polynomial continuous function on its support.

Remark 3.4. It is interesting to note that k(−H,X,−Y ) = k(Y,X,H)
(refer to (4)) and, in particular, that k is symmetric in H, X and Y if
−id ∈ W which is the case when G = SL(2,C). It is not difficult to find
examples that show that this symmetry is not true when G = SL(3,C).

Proposition 3.5. Suppose G is a complex Lie group of rank greater than 1.
1) When X ∈ a+, the function H → K(X,H) is continuous.

When X ∈ ∂a+\{0},the function H → K(X,H) is piecewise contin-
uous. Moreover, if ∆X denotes the set of all positive roots annihilating
X then

K(X,H) =
π(ρ)

∏
α∈∆X

Dα U(X,H)∏
α∈∆X

‖α‖2
∏
β∈∆+\∆X

sinh〈β,X〉
(6)

where U(X,H) =
∑

w∈W ε(w)T (wX −H) and Dα denotes the deriv-
ative in the direction of α.

2) When X, Y ∈ a+, the function H → k(H,X, Y ) is continuous on a+

and piecewise continuous on ∂a+ \ {0}.
When X ∈ ∂a+ \ {0} and Y ∈ a+ (or vice-versa), the function

H → k(H,X, Y ) is piecewise continuous. Moreover, in the first case,
when H ∈ a+

k(H,X, Y ) =
π(ρ)
|W |

·
∏
α∈∆X

DX
α V (H,X, Y )

δ1/2(H)
∏
α∈∆X

‖α‖2
∏
β∈∆+\∆X

sinh〈β,X〉
∏
β∈∆+ sinh〈β, Y 〉

where V (H,X, Y ) =
∑

v,w∈W ε(v) ε(w)T (v X + wY −H).

Proof. 1) The only case to be considered is X ∈ ∂a+\{0}, i.e., X belongs
to a wall of a+. In the formula we have for K:

K(X,H) =
π(ρ)

δ1/2(X)
U(X,H),

there is a singularity when δ1/2(X) = 0.
As written in [4, (8)], the (ordinary) Fourier transform of H →

U(X,H) is equal, up to a constant 1
π(iλ) , to the numerator∑

w∈W
ε(w) e〈iw·λ,X〉
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of the formula for the spherical function φλ which is equal to
1

π(ρ) δ
1/2(X)φλ(eX).

The injectivity of Fourier transform and the properties of spherical
functions imply that U(X,H) = 0 for all H if and only if α(X) = 0
for a positive root α.

We know that T is continuous and piecewise polynomial, and there-
fore, so is U(X,H). From this, one may deduce that in a neighbour-
hood of X, the function U(·,H) is a product of

∏
α∈∆X

〈α, ·〉 and a
piecewise polynomial function. The formula (6) then follows.

2) The proof is similar, using Proposition 3.1 and Remark 3.4.
�

The following examples are instructive.

1) Let G = SL(3,C). For X = Aα1 + Bα2 = [A,B − A,−B] and
H = uα1 + v α2 = [u, v − u,−v] in a+, we have

K(X,H) =
min +{2A−B,A− u,B − v, 2B −A}

sinh(2A−B) sinh(2B −A) sinh(A+B)
.

Note also that if H ∈ C(X)◦, we have u < A and v < B (see
Lemma 4.1).

Now, take any X 6= 0 in {α1 = 0} ∩ a+. We then have X =
xα1 + 2xα2 with x > 0. If we fix H ∈ a+ with u < x and v < 2x,
Proposition 3.5 tells us that

K(X,H) =
1

sinh2(3x)
.

That shows that H → K(X,H) is not continuous on ∂C(X) since
K(X,H) = 0 for H outside C(X).

2) When X, Y ∈ a+, H → k(H,X, Y ) may not be continuous on a+ (con-
sider for example X = [4, 3,−7], Y = [6,−2,−4] and H = [2, 2,−4] on
SL(3,C)/SU(3)).

Let us now consider an example where K and k are easy to compute. If
G = SL(2,C), we have T (X) = 1 if X ∈ a+ and 0 otherwise. This means
that for X and H ∈ a+, we have

K(X,H) =
π(ρ)

δ1/2(X)
(T (X −H)− T (−X −H)),

=
π(ρ)

δ1/2(X)
if X2 ≤ H1 < X1 and 0 otherwise
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and therefore if X, Y and H ∈ a+,

k(H,X, Y ) =
π(ρ)

δ1/2(H) δ1/2(X) δ1/2(Y )
if |X1 − Y1| < |H1| ≤ X1 + Y1 and 0 otherwise.

This formula is given in [8, p. 369].
However, even for SL(n,C), the computations become quickly onerous

when n > 3. We will discuss the case SL(3,C) in the next section.

4. The support in the case of SL(3,C).

In this section, we will assume throughout that G = SL(3,C). In this case,
we have T (X) = min + {X1,−X3} (n = 2 and q = 3) which brings

K(X,H) =
π(ρ)

δ1/2(X)
min +

{
X1 −X2, X2 −X3,

X1 −H2, X1 −H2, X1 −H3,H1 −X3,H2 −X3, X3 − Y3

}
.

Pictures of the support of the measure µX,Y are shown in Figure 1 (two
cases are shown).
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Figure 1. The support of µX,Y .

The following result will be used repeatedly in what follows to determine
under which conditions an element H belongs to a set of the form C(X)+Y
with X ∈ a+.

Lemma 4.1. Suppose X ∈ a+. Then C(X) = {H ∈ a : X3 ≤ Hi ≤ X1, i =
1, 2, 3} and C(X)◦ = {H ∈ a : X3 < Hi < X1, i = 1, 2, 3}.
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Proof. The sides of C(X) ∩ a+ which do not lie on the axes of symmetry
belonging to W are given by H3 = X3 and H1 = X1. Since the coordinates
of the origin satisfy 0 > X3 and 0 < X1, we have a+ ∩ C(X) = {H ∈
a+ : H3 ≥ X3,H1 ≤ X1}. The result follows by invariance under W ; the
elements of W act on H = (H1,H2,H3) by permuting the indices. �

Lemma 4.2. Suppose X and Y ∈ a+. Then

(∪w∈W w · (C(X) + Y )) ∩ (∪w∈W w · (C(Y ) +X)) ∩ a+

= (C(X) + Y ) ∩ (C(Y ) +X) ∩ a+.

Proof. Clearly, the set on the right hand side is included in the set on the
left hand side.

Let H ∈ ((∪w∈W w · (C(X) + Y )) ∩ (∪w∈W w · (C(Y ) + X))) ∩ a+. We
have

X3 ≤ Hi − Yw(i) ≤ X1,

Y3 ≤ Hi −Xv(i) ≤ Y1

where i = 1, . . . , 3 and w and v ∈ W = S3. Recall that H1 > H2 > H3,
X1 > X2 > X3 and Y1 > Y2 > Y3. We have:

1) H1 − Y1 ≤ H1 − Yv(1) ≤ X1.
2) H2 − Y2 ≤ H2 − Yv(2) ≤ X1 if v(2) = 2 or 3. If v(2) = 1 then v(1) = 2

or 3. We then have H2 − Y2 ≤ H1 − Yv(1) ≤ X1.
3) Let i be such that v(i) = 3. Then H3 − Y3 ≤ Hi − Yv(i) ≤ X1.
Using a similar approach, we show that Hi − Yi ≥ X3 for each i and

therefore, H ∈ C(X) + Y . In the same manner, H ∈ C(Y ) +X. �

Note that

((C(X) + Y ) ∩ (C(Y ) +X) ∩ a+)◦ = (C(X)◦ + Y ) ∩ (C(Y )◦ +X) ∩ a+.

Lemma 4.3. Let X, Y ∈ a+. Suppose H ∈ (C(X)◦+Y )∩(C(Y )◦+X)∩a+.
Then one of the following is true.

1) H belongs to no other C(X)◦ + w · Y .
2) H belongs to no other C(Y )◦ + v ·X.
3) H belongs to exactly one other C(X)◦ + w · Y , w ∈W .
4) H belongs to exactly one other C(Y )◦ + v ·X, v ∈W .

Proof. Suppose the result is not true. This means that we can find H ∈
(C(X)◦+Y )∩(C(X)◦+w1 ·Y )∩(C(X)◦+w2 ·Y )∩(C(Y )◦+X)∩(C(Y )◦+
v1 ·X) ∩ (C(Y )◦ + v2 ·X) ∩ a+ with w1 6= e, w2 6= e, w1 6= w2 and v1 6= e,
v2 6= e, v1 6= v2.

In that case, we can find i < 3 such that w1(i) = 3 or w2(i) = 3 (aside
from the identity, there is only one element of W = S3 that fixes any given
index). In the same way, we can find j > 1 such that v1(j) = 1 or v2(j) = 1.
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To simplify the notation, assume that w1(i) = 3 and v1(j) = 1. This means
that i ≤ j.

We have Hi − Y3 = Hi − Yw1(i) < X1 since H ∈ C(X)◦ + w1 · Y and
Hj − X1 = Hj − Xv1(j) > Y3 since H ∈ C(Y )◦ + v1 · X. This means that
X1 < Hj − Y3. Therefore X1 < Hj − Y3 ≤ Hi − Y3 < X1 (recall that i ≤ j)
which is absurd. �

Proposition 4.4. Suppose X, Y ∈ a+. Let

S = (C(X)0 + Y ) ∩ (C(Y )◦ +X) ∩ a+.

Let H ∈ a+. Then k(H,X, Y ) is nonzero (and therefore strictly positive)
if and only if

H ∈ S ∩ {H3 < X2 + Y2} ∩ {H1 > X2 + Y2}.
Note that if X and Y are both above ρ (i.e., X2 ≥ 0 and Y2 ≥ 0) then the

condition H3 < X2 + Y2 is automatically satisfied for H ∈ a+. In the same
manner, if X and Y are both below ρ (i.e., X2 ≤ 0 and Y2 ≤ 0) then the
condition H1 > X2 + Y2 is automatically satisfied for H ∈ a+.

Proof. If we refer to Corollary 2.2 and to Lemma 4.2, we can assume that
H ∈ (C(X) + Y ) ∩ (C(Y ) +X) ∩ a+ since otherwise k(H,X, Y ) = 0.

Let S0 be the set consisting of H ∈ (C(X)◦+Y )∩ (C(Y )◦+X)∩a+ such
that H belongs to no other C(X)◦ + w · Y or to no other C(Y )◦ + v · X,
v, w ∈ W . For i = 1 and 2, let Si be the set consisting of H 6∈ S0 and
H ∈ (C(X)+Y )◦ ∩ (C(Y )+X)◦ ∩ (C(X)◦+wi ·Y )∩ (C(Y )◦+wi ·X)∩ a+

where w1 = (1→ 1, 2→ 3, 3→ 2) and w2 = (1→ 2, 2→ 1, 3→ 3) ∈W .
We will show that for H ∈ a+, k(H,X, Y ) > 0 if and only if

H ∈ S0 ∪ (S1 ∩ {H3 < X2 + Y2}) ∪ (S2 ∩ {H1 > X2 + Y2}).
This will prove the result once we observe the following two facts:
1) If H ∈ (C(X) + Y ) ∩ (C(Y ) + X) ∩ a+ does not belong to S1 then

H3 < X2 + Y2.
It is sufficient to prove that H ∈ (C(X)+Y )∩ (C(Y )+X)∩a+ and

H3 ≥ X2 + Y2 imply that H ∈ C(Y )◦ +w1 ·X. Then, by symmetry of
the above expressions in X and Y , we will also have H ∈ C(X)+w1 ·Y
and therefore H ∈ S1.

We note that H ∈ C(Y )◦ + w1 ·X is equivalent to the inequalities:
Y3 < H1 −X1 < Y1, Y3 < H2 −X3 < Y1 and Y3 < H3 −X2 < Y1.

The first inequality is obvious since H ∈ C(Y ) +X◦, Y3 < H2−X3

is true since H2 > H3 ≥ X2 + Y2 > X3 + Y3. Suppose H2 −X3 < Y1

is false. Then −H1 −H3 = H2 ≥ X3 + Y1 and H3 ≤ −X3 − Y1 −H1

which combined with H3 ≥ X2 + Y2 yields X2 + Y2 ≤ −X3 − Y1 −H1

or X2 +X3 +Y1 +Y2 ≤ −H1, i.e., −X1−Y3 ≤ −H1 which contradicts
H1 − X1 > Y3 since H ∈ C(Y ) + X. Finally, H3 − X2 < Y1 holds
because H3 −X2 < H2 −X2 < Y1.
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2) If H ∈ (C(X) + Y ) ∩ (C(Y ) + X) ∩ a+ does not belong to S2 then
H1 > X2 + Y2.

The proof is similar.
Consider now Lemma 4.3. If Cases 1) or 2) are verified, then H ∈ S0. In

that case, we either have k(H,X, Y ) = 1
δ1/2(H) δ1/2(Y )

1
|W | K(X,H − Y ) > 0

or k(H,X, Y ) = 1
δ1/2(H) δ1/2(Y )

1
|W | K(Y,H −X) > 0.

If H 6∈ S0 then H satisfies Cases 3) and 4) of Lemma 4.3 and we have
H ∈ (C(X) + Y )◦ ∩ (C(Y ) +X)◦ ∩ (C(X)◦ +w · Y )∩ (C(Y )◦ + v ·X)∩ a+.
Note that we cannot have w(1) = 3 or w(3) = 1 (and similarly for v).
Indeed, if w(1) = 3 then H1 − Y3 < X1 which means that H1 − X1 < Y3

which is absurd while if w(3) = 1 then H3 − X1 > Y3 which means that
H3 − Y3 > X1 which is absurd. Therefore, the only possibilities for w and
v are w1 and w2. We also have v = w. Indeed, if we had v 6= w, it is not
difficult to see by inspection (say by taking w = w1 and v = w2) that we
would reach a contradiction by using a similar argument. We then have
k(H,X, Y ) = 1

δ1/2(H) δ1/2(Y )
1
|W | (K(X,H−Y )−K(X,H−wi ·Y )) > 0 since

ε(w1) = ε(w2) = −1.
It remains to show that for H ∈ S1, k(H,X, Y ) > 0 if and only if H3 <

X2 + Y2 and that for H ∈ S2, k(H,X, Y ) > 0 if and only if H1 > X2 + Y2.
Since the reasoning in the two cases are very similar, we will show only the
first case.

Suppose H ∈ S1. We deduce easily that X1 + Y3 −H2 is strictly smaller
than X1−X2, X1+Y2−H2, X1+Y3−H3 and X1+Y2−H3 while H3−Y2−X3

is strictly smaller than X1 + Y1 − H1, H2 − Y2 − X3, H3 − Y3 − X3 and
H2 − Y3 −X3. This implies that K(X,H − Y ) −K(X,H − w1 · Y ) > 0 is
equivalent to

min{X2 −X3,H1 − Y1 −X3} > min{X1 + Y3 −H2,H3 − Y2 −X3}.(7)

Note that X2−X3 > H3−Y2−X3 and H1−Y1−X3 > X1 +Y3−H2 are
both equivalent to H3 < X2+Y2. The latter inequality is therefore sufficient
for (7) to be true. It remains to show that it is necessary.

Now, we get down to several cases:
1) Suppose X1 −X2 ≤ X2 −X3 and Y1 − Y2 ≤ Y2 − Y3 (i.e., X2 ≥ 0 and

Y2 ≥ 0). Since H ∈ a+, the condition H3 < X2 + Y2 is satisfied and
there is nothing to prove.

2) Suppose X1 −X2 ≤ X2 −X3 and Y1 − Y2 > Y2 − Y3 (i.e., X2 ≥ 0 and
Y2 < 0).

Suppose H1 − Y1 − X3 > min{X1 + Y3 − H2,H3 − Y2 − X3} and
H3 ≥ X2 + Y2. That is only possible if H1 − Y1 > H3 − Y2.

We have H1 − Y1 > H3 − Y2 ≥ X2 + Y2 − Y2 = X2 ≥ 0. Now,
H3 ≥ X2 +Y2 if and only if −Y2 ≥ −H3 +X2 which implies Y1 +Y3 =
−Y2 > −H3 = H1+H2 which is equivalent to Y1 > H1+(H2−Y3) > H1
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since H2 − Y3 > X2 ≥ 0 (H2 −X2 > Y3 since H ∈ C(Y )◦ +X). This
contradicts H1 − Y1 > 0.

3) By symmetry, we do not have to consider the case Y1 − Y2 ≤ Y2 − Y3

and X1 −X2 > X2 −X3.
4) Suppose X1 −X2 > X2 −X3 and Y1 − Y2 > Y2 − Y3 (i.e., X2 < 0 and

Y2 < 0).
Suppose that (7) is true and that H3 ≥ X2 + Y2. This means that

X2 −X3 ≤ H3 − Y2 −X3 and H1 − Y1 −X3 ≤ X1 + Y3 −H2.
We consider two cases:

a) H1 − Y1 −X3 ≥ X2 −X3 > X1 + Y3 −H2:
We haveH1−Y1−X3 ≥ X2−X3 if and only ifH1−Y1 ≥ X2. On the
other hand, H3 ≥ X2 +Y2 if and only if −X2 +Y1 +Y3 ≥ H1 +H2.
To this last inequality, we apply X2 − X3 > X1 + Y3 − H2 if and
only if H2 > X1 + Y3 − X2 + X3. We obtain −X2 + Y1 + Y3 >
H1 +X1 +Y3−X2 +X3 if and only if Y1 > H1 +X1 +X3 = H1−X2

if and only if X2 > H1 − Y1. This contradicts H1 − Y1 ≥ X2.
b) X2 −X3 > H1 − Y1 −X3 > H3 − Y2 −X3:

We have X2 − X3 > H1 − Y1 − X3 if and only if X2 > H1 − Y1.
On the other hand, H1 − Y1 − X3 > H3 − Y2 − X3 if and only if
−H3 > −H1 + Y1 − Y2. We have H3 ≥ X2 + Y2 if and only if
−X2 > −H3 + Y2 > −H1 + Y1 − Y2 + Y2 = −H1 + Y1 which is
equivalent to X2 < H1 − Y1. This contradicts X2 > H1 − Y1.

�

Remark 4.5. Let H, X and Y ∈ a+. We note that computing k(H,X, Y )
requires one evaluation of K when H ∈ S0 while it requires taking the
difference of two values of K when H ∈ S1 ∩ {H3 < X2 + Y2} or H ∈
S2 ∩ {H1 > X2 + Y2}.

Remark 4.6. When we refer to Figure 1, we can describe the support in a
more informal and more concrete manner:

support(µX,Y ) = C \ (D1 ∪D2)

where C = (∪w∈W w · (C(X)+Y ))∩ (∪w∈W w · (C(Y )+X)) and D1, D2 are
either empty or equilateral triangles in the plane a such that 0 is their centre
and such that a side is, respectively, on the line −vH = H3 = X2 + Y2 < 0
(uH = H1 = X2 + Y2 > 0).

Naturally, D1 = W · ({H3 > X2 + Y2} ∩ a+) and D2 = W · ({H1 <
X2 + Y2} ∩ a+).

5. The function T in the case of SL(n,C).

By Proposition 3.1, in order to know the kernel k(H,X, Y ) of the product
formula, it is sufficient to know explicitly the function T defined in Section 3.
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We give here some more information available about the function T in the
case G = SL(n,C).

Note that when writing λ ∈ a∗ in terms of the simple positive roots, i.e.,
λ =

∑n−1
i=1 ai αi, we find that

π(λ) =
∏
α>0

〈λ, α〉 =
n−1∏
i=1

[ai (ai + ai+1) . . . (ai + · · ·+ an−1)] .(8)

Using Maple, it is possible to compute the function T for SL(4,C) since
it is simply a matter of computing the Laplace inverse transform of 1

π(λ) .
Recall that T (y1 α1 + y2 α2 + y3 α3) = 0 unless all yi’s are positive. Let

x+ = max {0, x}. We find

T (y1 α1 + y2 α2 + y3 α3)

=



y3
2 0 ≤ y2 ≤ min{y1, y3}
−2 y3

1 + 3 y2
1 y2 0 ≤ y1 ≤ y2 ≤ y3

−2 y3
3 + 3 y2

3 y2 0 ≤ y3 ≤ y2 ≤ y1

−y3
1 + 3 y2

1 y3 − (y1 + y2 − y3)3+ 0 ≤ y1 ≤ y3 ≤ y2

−y3
3 + 3 y2

3 y1 − (y1 + y2 − y3)3+ 0 ≤ y3 ≤ y1 ≤ y2.

Here is a more general result for the function T :

Proposition 5.1. The function T for SL(n,C) is given by

T (y1 α1 + · · ·+ yn−1 αn−1)

= 1{0≤y1} δ0(dy2, . . . , dyn−1) ∗ 1{y1≤y2} δ0(dy3, . . . , dyn−1)

∗ 1{y1≤y2≤y3} δ0(dy4, . . . , dyn−1)

∗ · · · ∗ 1{y1≤y2≤···≤yn−2} δ0(dyn−1) ∗ 1{y1≤y2≤···≤yn−1}.

Proof. If we consider (8), we can write 1
π(λ) as

1
π(λ)

=
n−1∏
k=1

(
1

ak (ak−1 + ak) (ak−2 + ak−1 + ak) . . . (a1 + a2 + · · ·+ ak−1 + ak)

)
and then compute the inverse Laplace transform of each factor. �

Lemma 5.2. If X ∈ a+ then C(X) = {H :
∑r

i=1Hki
≤
∑r

i=1Xi, (ki) ∈
Sn, r ≤ n− 1}.

Proof. Similar to the proof of Lemma 4.1. �

Corollary 5.3. On SL(n,C), the convex envelope of the support of µX,Y
is C(X + Y ) = C(X) + C(Y ).
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Proof. One observes easily that C(X + Y ) = C(X) +C(Y ) using the above
lemma. We then use Corollary 2.2, Corollary 2.3 and the fact that the
support is Weyl invariant. �
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Université d’Angers, January 2001.

[6] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic
Press, New York, 1978, MR 80k:53081, Zbl 0451.53038.

[7] , Groups and Geometric Analysis, Academic Press, New York, 1984,
MR 86c:22017, Zbl 0543.58001.

[8] , Geometric analysis on symmetric spaces, Mathematical surveys and mono-
graphs, 39, American Mathematical Society, 1994, MR 96h:43009, Zbl 0809.53057.

[9] T. Koornwinder, The addition formula for Jacobi polynomials, I. Summary of results,
Indag. Math., 34 (1972), 188-191, MR 46 #7590, Zbl 0247.33017.

[10] , The addition formula for Jacobi polynomials and spherical harmonics, SIAM
J. Appl. Math., 25(2) (1973), 236-246, MR 49 #10938, Zbl 0276.33023.

[11] , Jacobi polynomials, II. An analytic proof of the product formula, SIAM J.
Math. Anal., 5(1) (1974), 125-137, MR 52 #6063, Zbl 0269.33015.

[12] , A new proof of a Paley-Wiener type theorem for the Jacobi transform, Archiv
für Mathematik, 13 (1975), 145-159, MR 51 #11028, Zbl 0303.42022.

[13] , Jacobi functions and analysis on noncompact semisimple Lie groups. Special
functions: Group theoretical aspects and application, R.A. Askey & al. (eds), Reidel,
1984, MR 86m:33018, Zbl 0584.43010.

[14] I.V. Ostrovskii, Description of the class I0 in a special semigroup of probability mea-
sures, Selected Transl. in Math. Statist. and Prob., 15 (1981), 1-8, MR 47 #9680,
Zbl 0292.60033.

[15] I.P. Trukhina, Arithmetic of spherically symmetric measures on Lobatchevsky space
(in Russian), Teor. Fun’kcii, Funkc. Anal. Pril., 34 (1980), 136-146, MR 81h:60017,
Zbl 0444.28011.



THE PRODUCT FORMULA FOR SPHERICAL FUNCTIONS 393

[16] M. Voit, Factorization of probability measures on symmetric hypergroups, J. Austral.
Math. Soc., A50 (1991), 417-467, MR 92i:60015, Zbl 0731.60008.

Received October 12, 2000 and revised June 15, 2001. The first author is supported by
the European Commission (TMR 1998-2001 Network Harmonic Analysis). The second
author is supported by a grant from NSERC.
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DISCRETE BISPECTRAL DARBOUX
TRANSFORMATIONS FROM JACOBI OPERATORS

F. Alberto Grünbaum and Milen Yakimov

We construct families of bispectral difference operators of
the form a(n)T + b(n) + c(n)T −1 where T is the shift opera-
tor. They are obtained as discrete Darboux transformations
from appropriate extensions of Jacobi operators. We con-
jecture that along with operators previously constructed by
Grünbaum, Haine, Horozov and Iliev they exhaust all bispec-
tral regular (i.e., a(n) 6= 0, c(n) 6= 0, ∀n ∈ Z) operators of the
form above.

1. Introduction.

Back in 1929 S. Bochner [6] posed and solved the problem of isolating all
families of orthogonal polynomials that are also eigenfunctions of a fixed,
but arbitrary, second order differential operator. He found that they were
given by what are nowadays called “the classical orthogonal polynomials”,
i.e., those of Jacobi, Hermite, Laguerre and (the less known) Bessel. Many
developments in the last few years which establish rich links between classical
function theory at one end and differential algebra at the other, can be seen
as the result of looking for answers to questions that are variants of that
of Bochner. Some of these developments are alluded to in the rest of the
introduction. Before going into details it is probably worth noticing that
while the original paper of Bochner poses and solves the problem in a few
pages, the extensions that have been considered in the last 15 years or so are
still awaiting complete resolution. This paper takes a step in that direction.

The bispectral problem, as originally formulated by Duistermaat and
Grünbaum [7], asks for a description of all situations where a pair of dif-
ferential operators in the variables x and z have a common eigenfunction
Ψ(x, z)

L(x, ∂x)Ψ(x, z) = λ(z)Ψ(x, z),(1.1)

B(z, ∂z)Ψ(x, z) = θ(x)Ψ(x, z).(1.2)

For simplicity we say that L, or B, or Ψ, are bispectral when the situation
above holds.

The results in [7] already revealed a number of interesting connections
with a variety of topics ranging from the Korteweg–deVries equation to

395
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the problem of isomonodromic deformations for differential operators with
rational coefficients. Later even more unexpected connections with different
areas of pure mathematics were found. These include automorphisms and
ideal structure of the Weyl algebra in one variable [5, 3], representations of
the W1+∞ algebra [2], Calogero–Moser system [25], Huygens’ principle [4],
traces of intertwiners for representations of (quantized) simple Lie algebras
[8, 9] (the last two in the multivariable case).

In [7] all bispectral differential operators L(x, ∂x) of second order were
classified. Notice that if one insists that B(z, ∂z) should also be of order two
then one is necessarily dealing with the Bessel or Airy cases. In that paper
very explicit use was made of the Darboux transformation mapping a given
second order differential operator into another one. When starting from
an appropriate bispectral L(x, ∂x) this was shown to produce another such,
with a different B(z, ∂z). Wilson [24] approached the problem from the
viewpoint of commutative algebras of differential operators. He classified all
maximal bispectral algebras of rank one (which by definition is the greatest
common divisor of the orders of all operators in the algebra). In [1, 18]
the idea of applying Darboux transformations to commutative algebras of
differential operators was developed. This allowed for a unification of the
apparently unrelated methods in [7, 24] and an extension of them to the
higher rank case. Further interesting results in this direction were obtained
in [17].

Grünbaum and Haine considered [10] a discrete–differential version of
the above problem when the variable x runs over the integer lattice Z and
accordingly one replaces the differential operator L(x, ∂x) by a difference
operator

L(n, T ) =
q∑
i=p

bi(n)T i, bp(n), bq(n) 6≡ 0

acting on a function f(n) : Z→ C by

(Lf)(n) =
q∑
i=p

bi(n)f(n+ i).

Following [23, 22], we define the support of L(n, T ) to be the ordered pair
[p, q]. Such a difference operator will be called regular if the first and the last
coefficients bq(n) and bp(n) are nowhere vanishing functions on Z.

As indicated above, this problem is a generalization of the problem of
classifying orthogonal polynomials which are eigenfunctions of differential
operators. The point is that the standard three term recursion relation
gives rise to a very special type of difference operator, represented by a
semiinfinite tridiagonal matrix. In [10], Grünbaum and Haine showed that
all instances of difference operators with support [−1, 1] and second order
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differential operators satisfying (1.1)-(1.2) result by replacing the variable n
in the classical cases of the Hermite, Laguerre, Jacobi, and Bessel polynomi-
als (discovered by Bochner, see [6]) by a variable n+ ε with n running over
the integer lattice and ε arbitrary (see Section 2.2 for precise definitions).
The differential operator in z is the celebrated hypergeometric second order
differential operator of Gauss. It is worth noting that the corresponding
eigenfunctions Ψ(n, z) are no longer polynomials. For a recent survey of
this area, see [14].

Recently Haine and Iliev considered the classification problem for max-
imal bispectral difference algebras of rank one [15]. Their treatment is a
beautiful extension of Wilson’s work [24] where the Grassmannians asso-
ciated to Darboux transformations on differential operators are substituted
with flag varieties coming from such transformations on difference operators.
Among these some algebras that contain an operator with support [−1, 1]
were isolated in [16], where they were conjectured to be all of this type.

The aim of this paper is to make progress in obtaining a discrete–conti-
nuous analog of the result of [7], namely a classification of all discrete bispec-
tral operators of the form a(n)T+b(n)+c(n)T−1 (referred to as the extended
Bochner–Krall problem in [14]). In [12] the Darboux process was applied
to a biinfinite extension of the Laguerre difference operators considered in
[10]. A large class of bispectral difference operators of the form above was
thus constructed and many properties of the resulting objects were analyzed
in detail. It is fair to say that the results in [12] provide a general treat-
ment of the Laguerre case. The case of Jacobi difference operators has so
far not been amenable to a similar treatment and only some special cases of
Darboux maps were proved to preserve the bispectral property. The goal of
the present paper is to provide such a general treatment in the Jacobi case
and to state a conjecture for the classification problem above.

The rest of the introduction describes our results.
We take as a starting point the following natural extensions of the Jacobi

polynomials, constructed in [10]:

pα,βε (n, z) =
(ε+ α+ 1)n

(ε+ 1)n
F (−(n+ ε), n+ ε+ α+ β + 1, α+ 1, (1− z)/2).

Here and later we use F for Gauss’ 2F1 hypergeometric function. For neg-
ative integer values of α, see (2.17). They are no longer polynomials but
are still eigenfunctions of a biinfinite difference operator Lα,β;ε(n, T ) of the
form a0(n)T + b0(n) + c0(n)T−1 and a differential operator Bα,β(z, ∂z):

Lα,β;ε(n, T )pα,βε (n, z) = zpα,βε (n, z),

Bα,β(z, ∂z)pα,βε (n, z) = λε(n)pα,βε (n, z).

The operator Lα,β;ε(n, T ) is obtained by the formal change of variables n 7→
n+ε from the standard (difference) Jacobi operator and is explicitly defined
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in (2.9). The operator Bα,β(z, ∂z) and the spectral function λε(n) are given
in Equations (2.5) and (2.12).

The sets of difference operators that we consider are obtained by the fol-
lowing version of the Darboux map starting from the operators Lα,β;ε(n, T ).
Let P (n, T ) be a regular difference operator whose kernel is preserved by
Lα,β;ε(n, T ). Then there exists a (unique) difference operator L(n, T ) such
that

L(n, T )P (n, T ) = P (n, T )Lα,β;ε(n, T )(1.3)

which we refer to as a Darboux transformation from Lα,β;ε(n, T ). The ad-
vantage of this version is that this L(n, T ) is necessarily of the same form
as Lα,β;ε(n, T ), i.e., L(n, T ) = a(n)T + b(n) + c(n)T−1 for some functions
a(n), b(n), c(n), n ∈ Z.

If q(x) denotes the characteristic polynomial of the endomorphism L(n, T )
acting on the finite dimensional space KerP (n, T ), then

KerP (n, T )⊂Kerq(Lα,β;ε(n, T )).

In view of this it is natural to parametrize the sets of operators L(n, T ) by
the Grassmannians of special subspaces of Kerq(Lα,β;ε(n, T )) that can occur
as KerP (n, T ). Denote the set of difference operators L(n, T ) corresponding
to characteristic polynomial q(x) = (x− 1)k(x+ 1)l by

D(k,l)
α,β;ε.

The operators in D(k,l)
α,β;ε are the main objects of study in this paper. Their

explicit form is given in Section 3.3. Restricting to q(x) with roots at ±1
guarantees that L(n, T ) will have rational coefficients. This is an important
feature of bispectral operators. See [7] in the differential case.

It is an easy consequence of (1.3) that the function

Ψ(n, z) = P (n, T )pα,βε (n, z)(1.4)

is an eigenfunction of the operator L(n, T ), namely we have

L(n, T )Ψ(n, z) = zΨ(n, z).

Our main result is:

Theorem 1.1. The difference operators L(n, T ) from the sets D(k,l)
α,β;ε are

bispectral (or more precisely the functions Ψ(n, z) (1.4) are eigenfunctions
of differential operators in the variable z) in the following cases:

1) α ∈ Z and k ≤ |α|, l = 0,
2) β ∈ Z and l ≤ |β|, k = 0,
3) α, β ∈ Z and k ≤ |α|, l ≤ |β|.
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When ε = 0, and k = 1 and (or) l = 1 these results were established in
[19, 27]. All this work starts with the classical paper of H.L. Krall, [20].

The proof of Theorem 1.1 is based on a general result of Bakalov, Horozov
and Yakimov [3] which guarantees that a Darboux transformation preserves
the bispectral property under some conditions on the operator P (n, T ). We
will soon see that its application to the present situation is highly nontriv-
ial and requires, in particular, an intrinsic characterization of a space of
difference operators.

We will need some notation from [3], see Section 4.1 for more details.
Denote by Bα,β;ε the algebra of difference operators S(n, T ) with rational
coefficients for which there exists a differential operator G(z, ∂z) (also having
rational coefficients) satisfying

S(n, T )pα,βε (n, z) = G(z, ∂z)pα,βε (n, z).(1.5)

All such operators S(z, ∂z) form a “dual” algebra B′α,β;ε. The map

b : Bα,β;ε → B′α,β;ε, b(R(n, T )) = S(z, ∂z)

is an antiisomorphism of associative algebras. Let Kα,β;ε and K′α,β;ε be the
subalgebras of Bα,β;ε and B′α,β;ε consisting of rational functions. Bispec-

trality of pα,βε (n, z) is equivalent to Kα,β;ε and K′α,β;ε being both nontrivial.
Finally we arrive at the most important object for our consideration, namely
the space

Rα,β;ε = {(µ(n))−1P0(n, T ) | µ(n) ∈ Kα,β;ε, P0(n, T ) ∈ Bα,β;ε,

and the operator (µ(n))−1P0(n, T ) does not have poles atn ∈ Z}.

According to Theorem 1.2 of [3], Ψ(n, z) is an eigenfunction of a differential
operator in the variable z, if

P (n, T ) ∈ Rα,β;ε.

Thus to prove Theorem 1.1 we need a good description of the space Kα,β;ε

which can be used to check whether the operators P (n, T ) from (1.3) be-
long to Rα,β;ε. This is the hardest step in our paper. Let ∆ denote the
algebra of abstract difference operators with rational coefficients of the form∑q

i=p bi(n)T i with rational functions bi(n) (possibly having poles in Z). The
key point of our approach is to consider the involution I of ∆ acting on
rational functions h(n) by

(Ih)(n) := h(−(n+ 2ε+ α+ β + 1))

and on the shift operator T by I(T ) := T−1. In Section 4.2 we prove that
Rα,β;ε consists of those difference operators from ∆ that do not have poles
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in Z and after conjugation with the function

φ(n) =
(ε+ α+ 1)n

(ε+ 1)n

become I-invariant.
The final step of the proof of Theorem 1.1 is to show that the hypoth-

esis guarantees that the kernel of the operator P (n, T ) (defining L(n, T ))
has a basis of functions f(n) for which the ratio f(n)/φ(n) is an (almost)
I-invariant rational function in n. This is done in Section 5.1. Finally Sec-
tion 5.2 recapitulates the strategy of the proof of Theorem 1.1 for the special
case of the set D(2,0)

α,β,ε. The reader may find it useful to consult this section
while reading the paper.

Let us also note that in the case of Laguerre polynomials the situation
simplifies a lot due to a presense of a relation of the type (1.5) with a
difference operator S(n, T ) of the form s1(n)T + s0(n) and a first order
differential operator G(z, ∂z) (see expressions (2.3) and (2.8) in [12]). It is
not hard to show that as a consequence of this the analog of Rα,β;ε in that
case is simply the space of difference operators with rational coefficients.

Comparing with the differential case [7], it is natural to conjecture that
all second order regular bispectral difference operators (i.e., having support
[−1, 1]) are exhausted by the families of operators constructed in [10, 12,
16] and in this article. The operators in [16] are obtained as Darboux
transformations from the operators Lα,β;ε(n, T ) for half integer values of the
parameters α, β and are the analogs of “KdV family” in the differential case
[7].

For later use we introduce some convenient notation. If f(n) : Z→ C is a
nowhere vanishing function and D1(n, T ), D2(n, T ) are difference operators
we denote

Adf(n)D1(n, T ) := f(n)D1(n, T )f(n)−1,

adD2(n,T )D1(n, T ) := D2(n, T )D1(n, T )−D1(n, T )D2(n, T ).

2. Biinfinite Jacobi operators.

In the first part of this section we review some properties of the classi-
cal Jacobi polynomials pα,βn (z). The second one discusses certain functions
pα,βε (n, z) which are eigenfunctions of biinfinite analogs Lα,β;ε(n, T ) of the
Jacobi difference operators. The third part describes Darboux maps between
the operators Lα,β;ε(n, T ) with shifted indices α, β.

2.1. Jacobi polynomials. The Jacobi polynomials are the orthogonal
polynomials for the measure (1 − z)α(1 + z)βdz on the interval [−1, 1],
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(α, β > −1), normalized by

pα,βn (1) = 2−n
(
n+ α

n

)
, n ∈ Z≥0.

They are given by

pα,βn (z) =
(
n+ α

n

)
F (−n, n+ α+ β + 1;α+ 1; (1− z)/2)(2.1)

where F (a, b; c;x) denotes the Gauss’ hypergeometric function. The reader
can consult [21, pp. 209–217] for other explicit formulas and a list of major
relations for pα,βn (z). Let

pα,β(n, z) =

{
pα,βn (z), for n ∈ Z≥0

0, for n ∈ Z<0.
(2.2)

Now pα,β(n, z) are functions of a discrete parameter n and a continuous
parameter z. They satisfy a three term recursion relation

Lα,β(n, T )pα,β(n, z) = zpα,β(n, z)(2.3)

where Lα,β(n, T ) are the difference operators

Lα,β(n, T ) =
2(n+ 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
T(2.4)

+
β2 − α2

(2n+ α+ β)(2n+ α+ β + 2)

+
2(n+ α)(n+ β)

(2n+ α+ β)(2n+ α+ β + 1)
T−1

called Jacobi operators. In addition pα,β(n, z) are eigenfunctions of the dif-
ferential operators Bα,β(z, ∂z) given by

Bα,β(z, ∂z) = (z2 − 1)∂2
z + (α− β + (α+ β + 2)z)∂z,(2.5)

i.e.,

Bα,β(z, ∂z)pα,β(n, z) = λ(n)pα,β(n, z)(2.6)

for

λ(n) = n(n+ α+ β + 1).(2.7)

In view of (2.3) and (2.6), pα,β(n, z) are discrete–continuous bispectral func-
tions and Lα,β(n, T ), B(z, ∂z) bispectral difference (differential) operators.
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2.2. The functions pα,βε (n, z). In a study of the relation between the so
called “associated Jacobi polynomials” and the discrete–continuous bispec-
tral problem Grünbaum and Haine, see [10, 11, 13], introduced the func-
tions

pα,βε (n, z) =
(ε+ α+ 1)n

(ε+ 1)n
F (−(n+ ε), n+ ε+ α+ β + 1;α+ 1; (1− z)/2)

(2.8)

(n ∈ Z, z ∈ C, |z| < 1) defined for those ε, α, β ∈ C such that α /∈ Z<0, and
ε /∈ Z<0, ε+α /∈ Z≥0. We will see later that the first restriction can be lifted.

The functions pα,βε (n, z) are no longer polynomials but satisfy relations,
similar to the ones for pα,β(n, z). In particular they are eigenfunctions of the
following difference operators with support [−1, 1]

Lα,β;ε(n, T ) =
2(n+ ε+ 1)(n+ ε+ α+ β + 1)

(2n+ 2ε+ α+ β + 1)(2n+ 2ε+ α+ β + 2)
T(2.9)

+
β2 − α2

(2n+ 2ε+ α+ β)(2n+ 2ε+ α+ β + 2)
+

+
2(n+ ε+ α)(n+ ε+ β)

(2n+ 2ε+ α+ β)(2n+ 2ε+ α+ β + 1)
T−1

and of the differential operators Bα,β(z, ∂z), Equation (2.5). The corre-
sponding relations are

Lα,β;ε(n, T )pα,βε (n, z) = zpα,βε (n, z),(2.10)

Bα,β(z, ∂z)pα,βε (n, z) = λε(n)pα,βε (n, z),(2.11)

where

λε(n) = (n+ ε)(n+ ε+ α+ β + 1).(2.12)

The difference operators Lα,β;ε(n, T ) will still be called Jacobi operators.
Further we will only deal with the case when they are regular, i.e., when
their coefficients of T and T−1 do not vanish for n ∈ Z. This amounts to the
conditions

ε, ε+ α, ε+ β, ε+ α+ β, 2ε+ α+ β /∈ Z.(2.13)

It may be useful to stress here that these will eventually be the only restric-
tions on our parameters α, β, ε.

The operators Lα,β;ε(n, T ) do satisfy certain “transformation properties”.
For instance the following relations hold

L−α,−β,ε+α+β(n, T ) = Lα,β;ε(n, T ),(2.14)

Ad(−1)nLβ,α,ε(n, T ) = Ad(−1)nL−β,−α,ε+α+β(n, T ) = −Lα,β;ε(n, T ).(2.15)
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It is tempting to use (2.14) to limit attention to the case α ≥ 0. However,
this would eventually bring an undesirable degree of asymmetry in the treat-
ment of the parameters α and β. For this reason we prefer to introduce the
appropriate functions pα,βε (n, z) for α ∈ Z<0 (and ε, ε+β, ε+α, ε+α+β /∈ Z)
by using (2.8) and recalling, see [21, p. 38] that for m ∈ Z≥0

lim
c→−m

1
Γ(c)

F (a, b; c; z)(2.16)

=
(a)m+1(b)m+1

(m+ 1)!
zm+1F (a+m+ 1, b+m+ 1;m+ 2; z).

We see below that this leads to the following expression for pα,βε (n, z) with
α ∈ Z<0 (as long as (2.13) is satisfied)

(2.17) C (ε+ β + 1)n
(ε+ α+ β + 1)n

· (1− z)
−α

2−α
F (−(n+ ε+ α), n+ ε+ β + 1;−α+ 1; (1− z)/2)

where the constant C = C(α, β, ε) is explicitly given by

C = C(α, β, ε) =
(−1)α

(−α− 1)!
· (−ε)−α(ε+ α+ β + 1)−α

(−α)!
.

It is easy to check that the assumptions (2.13) imply that C(α, β, ε) is well-
defined and does not vanish.

The expression above can be derived by a continuity argument using (2.8)
and (2.16) when α approaches a value in Z<0. To see this it is important to
notice that for α ∈ Z<0 the identities

(ε+ α+ 1)n
(ε+ 1)n

=
(−ε)−α

(−(n+ ε))−α
and

(ε+ β + 1)n
(ε+ α+ β + 1)n

=
(n+ ε+ α+ β + 1)−α

(ε+ α+ β + 1)−α

allow one to rewrite the factor
(ε+ α+ 1)n

(ε+ 1)n
· (−(n+ ε))−α(n+ ε+ α+ β + 1)−α

(−α)!
as

(−α− 1)!
(−1)α

· C(α, β, ε) · (ε+ β + 1)n
(ε+ α+ β + 1)n

(2.18)

which except for the first constant is the factor in front of (2.17).
Then conditions (2.13) guarantee that pα,βε (n, z) is well-defined (see (2.8)

and (2.17)) and satisfies (2.10) and (2.11). It was proved in [10] that the
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space of common solutions of (2.10) and (2.11) in a domain Ω⊂C, not con-
taining ±1, is two dimensional. Notice also that (2.13) excludes, in partic-
ular, the original operators Lα,β(n, z) (ε = 0) since their leading coefficient
vanishes for n = −1.

Finally we explain how (2.10) follows from (2.3). Conjugate the operator
Lα,β(n, T ) with

(
n+a
n

)
= (α+1)n

n! . The resulting difference operator has ratio-
nal coefficients and the eigenfunction F (−n, n+α+ β+ 1;α+ 1; (1− z)/2),
cf. (2.1). The operator obtained from it by the formal change n 7→ n + ε
has the eigenfunction F (−n − ε, n + ε + α + β + 1;α + 1; (1 − z)/2) and
all we need to do is conjugate it with (ε + 1)n/(ε + α + 1)n. The result is
the operator Lα,β;ε(n, T ) which proves (2.10) in the case α /∈ Z<0. The case
α ∈ Z<0 follows from the definition (2.8) using the limit (2.16).

2.3. Darboux maps between Jacobi operators. There are four differ-
ence relations connecting the values of the Jacobi polynomials pα,β(n, z)
with shifted indices:

pα−1,β(n, z) =
(
n+ α+ β

2n+ α+ β
− n+ β

2n+ α+ β
T−1

)
pα,β(n, z),

pα,β(n, z) =
1

z − 1

(
2(n+ 1)

2n+ α+ β + 1
T − 2(n+ α)

2n+ α+ β + 1

)
pα−1,β(n, z),

and

pα,β−1(n, z) =
(
n+ α+ β

2n+ α+ β
+

n+ α

2n+ α+ β
T−1

)
pα,β(n, z),

pα,β(n, z) =
1

z + 1

(
2(n+ 1)

2n+ α+ β + 1
T +

2(n+ β)
2n+ α+ β + 1

)
pα,β−1(n, z),

(see for instance, [21, Eqs. pp. 209–219]). Similarly to the proof of (2.10) at
the end of the previous subsection, one shows the following analogs of these
identities for pα,βε (n, z)

pα−1,β
ε (n, z) = Dα

−(n, T )pα,βε (n, z), pα+1,β
ε (n, z) =

1
z − 1

Dα
+(n, T )pα,βε (n, z),

(2.19)

pα,β−1
ε (n, z) = Dβ

−(n, T )pα,βε (n, z), pα,β+1
ε (n, z) =

1
z + 1

Dβ
+(n, T )pα,βε (n, z),

(2.20)
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where the operators Dα
±(n, T ) and Dβ

±(n, T ) are given by

Dα
−(n, T ) =

(
ε+ α

α

)(
n+ ε+ α+ β

2n+ 2ε+ α+ β
− n+ ε+ β

2n+ 2ε+ α+ β
T−1

)
,

Dα
+(n, T ) =

(
α+ 1

ε+ α+ 1

)(
2(n+ ε+ 1)

2n+ 2ε+ α+ β + 2
T− 2(n+ ε+ α+ 1)

2n+ 2ε+ α+ β + 2

)
,

Dβ
−(n, T ) =

(
n+ ε+ α+ β

2n+ 2ε+ α+ β
+

n+ ε+ α

2n+ 2ε+ α+ β
T−1

)
,

Dβ
+(n, T ) =

(
2(n+ ε+ 1)

2n+ 2ε+ α+ β + 2
T +

2(n+ ε+ β + 1)
2n+ 2ε+ α+ β + 2

)
.

The constant in (2.17) was chosen to make the relations (2.19)-(2.20) hold
for all α ∈ C. We show only the dependence on the index α of the opera-
tors Dα

±(n, T ) because the index β is unchanged in both sides of Equation
(2.19), similarly for the operators Dβ

±(n, T ). Equations (2.19)-(2.20) and
(2.10) imply the following factorizations

Lα,β;ε(n, T )− 1 = Dα−1
+ (n, T )Dα

−(n, T ) = Dα+1
− (n, T )Dα

+(n, T ),(2.21)

Lα,β;ε(n, T ) + 1 = Dβ−1
+ (n, T )Dβ

−(n, T ) = Dβ+1
− (n, T )Dβ

+(n, T ).(2.22)

Hence the operators Lα±1,β;ε(n, T ), Lα,β±1;ε(n, T ) are Darboux transforma-
tions from Lα,β;ε(n, T ) and Equations (2.19) and (2.20) represent the Dar-
boux maps pα,βε (n, z) 7→ pα∓1,β

ε (n, z) and pα,βε (n, z) 7→ pα,β∓1
ε (n, z).

3. Darboux transformations from Jacobi operators.

The first part of this section contains some general facts about discrete
Darboux transformations in the form in which they will be used later (see,
for instance, [26] for the differential case). The goal of the second part is an
explicit description of the kernels of the operators (Lα,β;ε − 1)k(Lα,β;ε + 1)l.
Based on it, in the third part we construct Darboux transformations from
Lα,β;ε(n, T ) which are the main objects of study in the rest of the paper.
The conditions (2.13) are assumed throughout Sections 3.2-3.3.

3.1. General remarks on Darboux transformations. One says that
the difference operator L(n, T ) is obtained by a Darboux transformation
from the difference operator L0(n, T ) if there exists an operator P (n, T )
such that

L(n, T )P (n, T ) = P (n, T )L0(n, T ).(3.1)

Assume that L0(n, T ) has an eigenfunction Ψ0(n, z), i.e.,

L0(n, T )Ψ0(n, T ) = g0(z)Ψ0(n)(3.2)
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for some function g0(z). Then

Ψ(n, z) := P (n, T )Ψ0(n, z)

is an eigenfunction of L(n, T ):

L(n, T )Ψ(n, T ) = g0(z)Ψ(n).(3.3)

The map Ψ0(n, T ) 7→ Ψ(n, T ) is also called a Darboux transformation.
An important feature of the transformation (3.1) for a regular differ-

ence operator P (n, T ) is that the operator L(n, T ) has the same support
as L0(n, T ). Besides this L(n, T ) is regular if and only if L0(n, T ) is regular.

Given a difference operator L0(n, T ), all transformations of the type (3.1)
with a regular difference operator P (n, T ) can be described in terms of the
kernel of P (n, T ).

Proposition 3.1.
(i) For a regular difference operator P (n, T ) there exists an operator

L(n, T ) for which (3.1) holds if and only if

L0(n, T )(KerP (n, T ))⊂KerP (n, T ).(3.4)

The operator L(n, T ) satisfying (3.1) is unique.
(ii) Let P (n, T ) be a regular difference operator satisfying (3.4) and q(x)

be the characteristic polynomial of the linear map L0(n, T ) acting in
the space KerP (n, T ). Then KerP (n, T )⊂q(L0(n, T )) and there exists
an operator Q(n, T ) such that

q(L0(n, T )) = Q(n, T )P (n, T ),(3.5)

q(L(n, T )) = P (n, T )Q(n, T ).(3.6)

Note that the kernel of a regular difference operator P (n, T ) is finite
dimensional. More precisely, if P (n, T ) has support [m1,m2] for some mi ∈
Z, then dim KerP (n, T ) = m2 −m1. For any j ∈ Z the map

f 7→ (f(j + 1), . . . , f(j +m2 −m1)), for f : Z→ C(3.7)

provides an isomorphism between KerP (n, T ) and Cm2−m1 .
The transformation Q(n, T )P (n, T ) 7→ P (n, T )Q(n, T ) is a more tradi-

tional version of the Darboux map. Although it is a special case of the
transformation L0(n, T ) 7→ L(n, T ) from Equation (3.1) and Proposition 3.1
shows that there always exists a polynomial q(x) for which q(L0(n, T )) 7→
q(L(n, T )) is a Darboux map in this sense.

Proof of Proposition 3.1. (i) If P (n, T ), L(n, T ) satisfy (3.1) and f(n) ∈
KerP (n, T ) then

P (n, T )(L0(n, T )f(n)) = L(n, T )P (n, T )f(n) = 0

which proves (3.4).
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In the opposite direction, let us notice that a comparison of the coefficients
of the two sides of Equation (3.1) for a fixed value of n gives a finite system
for the corresponding coefficients of the unknown operator L(n, T ) having
the same support as L0(n, T ). One shows that it has a solution using the
standard linear algebra fact that for a finite matrix A the system Au = b
has a solution if and only if vtb = 0, ∀v ∈ KerAt. In the particular case
which we consider the last condition is fulfilled because of (3.4).

The regularity of the difference operator P (n, T ) implies the uniqueness of
the operator L(n, T ) satisfying (3.1). Indeed if there are two such operators
L(n, T ) and L′(n, T ) one can subtract the resulting equalities (3.1). This
gives (L(n, T )− L′(n, T ))P (n, T ) = 0 which is a contradiction.

(ii) The relation KerP (n, T )⊂q(L0(n, T )) follows from the definition of
q(x). Similarly to Part (i), this implies the existence of an operator Q(n, T )
satisfying (3.5). Equations (3.1) and (3.5) imply

q(L(n, T ))P (n, T ) = P (n, T )q(L0(n, T )) = (P (n, T )Q(n, T ))P (n, T )

and as a consequence of this (3.6). �

A regular difference operator is reconstructed from its kernel by the fol-
lowing lemma.

Lemma 3.2. Assume that P (n, T ) is a regular difference operator with sup-
port [m1,m2] and leading coefficient 1. Let KerP (n, T ) = Span{f (i)(n)}mi=1
where m = m2 −m2. Then the function

det(n) := det(f (i)(n− j))m,m2−1
i,j=1,m1

does not vanish for n ∈ Z and

P (n, T ) =
1

det(n)

∣∣∣∣∣∣
f (1)(n+m1) · · · f (m)(n+m1) Tm1

· · · · · · · · · · · ·
f (1)(n+m2) · · · f (m)(n+m2) Tm2

∣∣∣∣∣∣(3.8)

where the determinant is expanded from left to right (the shift operator T
does not commute with function multiplication).

Proof. The fact that the map (3.7) is an isomorphism between KerP (n, T )
and Cm implies that det(n) does not vanish for n ∈ Z. Clearly the functions
f (i)(n) belong to the kernel of the operator in the r.h.s. of (3.8). It has
leading term 1 and the nonvanishing of det(n) implies (3.8). �

Remark 3.3. The composition of two Darboux transformations L0(n, T )
7→ L1(n, T ) and L1(n, T ) 7→ L2(n, T ) of the type (3.1) is Darboux transfor-
mation L0(n, T ) 7→ L2(n, T ) of the same type. Indeed if

Li(n, T )Pi(n, T ) = Pi(n, T )Li−1(n, T ), i = 1, 2,

then

L2(n, T )P2(n, T )P1(n, T ) = P2(n, T )P1(n, T )L0(n, T ).
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3.2. Description of Ker(Lα,β;ε− 1)k(Lα,β;ε+1)l. The main idea is to first
find some functions ϕ(n, z) (depending on α, β, and ε) such that

Lα,β;ε(n, T )ϕ(n, z) = zϕ(n, z)(3.9)

and then to consider the derivatives

ϕ
(i)
± (n) =

1
i!
∂izϕ(n, z)

∣∣∣
z=±1

, i ∈ Z≥0.

They satisfy

(Lα,β;ε(n, T )∓ 1)ϕ(i)
± (n) = ϕ

(i−1)
± (n), ∀ i ∈ Z≥0(3.10)

with ϕ(−1)
± (n) = 0. As a consequence of this

(Lα,β;ε(n, T )∓ 1)iϕ(j)
± (n) = 0, ∀ i ∈ Z>0, j = 0, . . . , i− 1.

Before stating the results from this subsection we recall a relation for the
hypergeometric function that is a consequence of Gauss’ relations between
contiguous hypergeometric functions. Denote F = F (a, b; c; (1−z)/2), TF =
F (a− 1, b+ 1; c; (1− z)/2), and T−1F = F (a+ 1, b− 1; c; (1− z)/2). Then
for c /∈ Z≤0

(3.11)
2(c− a)b

(b− a)(b− a+ 1)
TF +

2(a+ b− 1)(−2c+ a+ b+ 1)
(b− a− 1)(b− a+ 1)

F

+
2a(c− b)

(b− a)(b− a− 1)
T−1F = zF.

This can also be checked directly using the standard expansion of F (a, b; c, x)
for |x| < 1, c /∈ Z≤0

F (a, b; c;x) =
∞∑
j=0

(a)j(b)j
j!(c)j

xj .(3.12)

Lemma 3.4. The four functions

ϕ+(n, z) =
(ε+ α+ 1)n

(ε+ 1)n
(3.13)

· F (−(n+ ε), n+ ε+ α+ β + 1;α+ 1; (1− z)/2),

ψ+(n, z) =
(ε+ β + 1)n

(ε+ α+ β + 1)n
(3.14)

· F (−(n+ ε+ α+ β), n+ ε+ 1;−α+ 1; (1− z)/2),
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ϕ−(n, z) =
(−1)n(ε+ β + 1)n

(ε+ 1)n
(3.15)

· F (−(n+ ε), n+ ε+ α+ β + 1;β + 1; (1 + z)/2),

ψ−(n, z) =
(−1)n(ε+ α+ 1)n
(ε+ α+ β + 1)n

(3.16)

· F (−(n+ ε+ α+ β), n+ ε+ 1;−β + 1; (1 + z)/2)

satisfy

(Lα,β;ε(n, T )− z)ϕ±(n, z) = (Lα,β;ε(n, T )− z)ψ±(n, z) = 0,(3.17)

provided that α /∈ Z<0 (Z>0) for ϕ+(n, z) (ψ+(n, z)) and β /∈ Z<0 (Z>0) for
ϕ−(n, z) (ψ−(n, z)).

Note that the assumptions (2.13) guarantee that the denominators of the
first factors of ϕ±(n, z) and ψ±(n, z) do not vanish.

Proof. The relation (3.17) for ϕ+(n, z) holds because ϕ+(n, z) = pα,βε (n, z).
To check the one for ψ+(n, z), we conjugate Lα,β;ε(n, T ) by (ε+β+1)n/(ε+
α+ β + 1)n (the factor in front of the r.h.s. of (3.14)).

The result is

Ad(ε+β+1)n/(ε+α+β+1)n
Lα,β;ε(n, T )

=
2(n+ ε+ 1)(n+ ε+ β + 1)

(2n+ 2ε+ α+ β + 1)(2n+ 2ε+ α+ β + 2)
T

+
β2 − α2

(2n+ 2ε+ α+ β)(2n+ 2ε+ α+ β + 2)

+
2(n+ ε+ α)(n+ ε+ α+ β)

(2n+ 2ε+ α+ β)(2n+ 2ε+ α+ β + 1)
T−1.

This is the difference operator from the l.h.s. of (3.11) with a = −(n +
ε + α + β), b = n + ε + 1, and c = −α + 1 which gives the proof of (3.17)
for ψ+(n, z). The cases of ϕ−(n, z) and ψ−(n, z) are handled in a similar
fashion. �

Next we consider the derivatives of ϕ+(n, z), ψ+(n, z) at z = 1 and of
ϕ−(n, z), ψ−(n, z) at z = −1:

ϕ
(i)
± (n) :=

1
i!
∂izϕ±(n, z)

∣∣∣
z=±1

,

ψ
(i)
± (n) :=

1
i!
∂izψ±(n, z)

∣∣∣
z=±1

,

i ∈ Z≥0 (with the restrictions on α and β made at the end of Lemma 3.4).
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Using the expansion (3.12) of the hypergeometric function, we obtain the
following explicit formulas for ϕ(i)

± (n) and ψ(i)
± (n)

ϕ
(i)
+ (n) =

(ε+ α+ 1)n
(ε+ 1)n

· (−(n+ ε))i(n+ ε+ α+ β + 1)i
(−2)ii!(α+ 1)i

(3.18)

ψ
(i)
+ (n) =

(ε+ β + 1)n
(ε+ α+ β + 1)n

· (−(n+ ε+ α+ β))i(n+ ε+ 1)i
(−2)ii!(−α+ 1)i

(3.19)

ϕ
(i)
− (n) =

(−1)n(ε+ β + 1)n
(ε+ 1)n

· (−(n+ ε))i(n+ ε+ α+ β + 1)i
2ii!(β + 1)i

(3.20)

ψ
(i)
− (n) =

(−1)n(ε+ α+ 1)n
(ε+ α+ β + 1)n

· (−(n+ ε+ α+ β))i(n+ ε+ 1)i
2ii!(−β + 1)i

·(3.21)

We define ϕ(i)
+ (n) (ψ(i)

+ (n)) for α ∈ Z<0 (α ∈ Z>0), i < |α| by (3.18), (3.19)
and ϕ(i)

− (n) (ψ(i)
− (n)) for β ∈ Z<0 (β ∈ Z>0), i < |β| by (3.20), (3.21). (Note

that these cases were excluded in Lemma 3.4.)

Theorem 3.5. Assuming (2.13) the following relations

(Lα,β;ε(n, T )− 1)ϕ(i)
+ (n) = ϕ

(i−1)
+ (n),(3.22)

(Lα,β;ε(n, T )− 1)ψ(i)
+ (n) = ψ

(i−1)
+ (n),(3.23)

hold for all i ∈ Z≥0 if α /∈ Z and for i = 0, . . . , |α| − 1 if α ∈ Z. Similarly
one has

(Lα,β;ε(n, T ) + 1)ϕ(i)
− (n) = ϕ

(i−1)
− (n),(3.24)

(Lα,β;ε(n, T ) + 1)ψ(i)
− (n) = ψ

(i−1)
− (n),(3.25)

for all i ∈ Z≥0 if β /∈ Z and for i = 0, . . . , |β| − 1 if β ∈ Z. (We set
ϕ

(−1)
± (n) = ψ

(−1)
± (n) = 0.)

The kernels of (Lα,β;ε(n, T )− 1)k and (Lα,β;ε(n, T ) + 1)l are given by

Ker(Lα,β;ε(n, T )− 1)k = Span{ϕ(i)
+ (n), ψ(i)

+ (n)}k−1
i=0 ,(3.26)

Ker(Lα,β;ε(n, T ) + 1)l = Span{ϕ(i)
− (n), ψ(i)

− (n)}l−1
i=0,(3.27)

for k ≤ |α| if α ∈ Z, for l ≤ |β| if β ∈ Z, and for all k, l ≥ 0 if α, β /∈ Z.

Proof. In the case α /∈ Z, the functions ϕ+(n, z) and ψ+(n, z) are well-
defined. From the remark in the beginning of this subsection it follows that
(3.17) and the definitions of ϕ(j)

+ (n), ψ(j)
+ (n) imply (3.22), (3.23). The case

α ∈ Z, i < |α| follows by continuity on α.
The inclusion ⊃ in (3.26), (3.27) clearly follows from (3.22)-(3.25). Be-

cause (Lα,β;ε(n, T )−1)k is a regular difference operator with support [−k, k],
to prove (3.26) it suffices to show that the functions ϕ(i)

+ (n), ψ(i)
+ (n), i =

0, . . . , k − 1 are linearly independent.



DISCRETE BISPECTRAL DARBOUX TRANSFORMATIONS 411

Assume that
k0∑
i=0

(
aiϕ

(i)
+ (n) + biψ

(i)
+ (n)

)
= 0, ∀n ∈ Z

for some complex numbers a0, . . . , ak0 , b0, . . . , bk0 , such that ak0 6= 0 or
bk0 6= 0 (k0 ≤ k − 1). Applying (Lα,β;ε(n, T ))k0−1 to this equality and using
(3.22), (3.23), we get

ak0ϕ
(0)
+ (n) + bk0ψ

(0)
+ (n) = 0, ∀n ∈ Z,

i.e.,

ak0
(ε+ α+ 1)n

(ε+ 1)n
= −bk0

(ε+ β + 1)n
(ε+ α+ β + 1)n

, ∀n ∈ Z.(3.28)

For n = 0 this gives ak0 = −bk0 (6= 0). Dividing the two sides of Equation
(3.28) for two consecutive values of n, we get

(ε+ α+ n)(ε+ α+ β + n) = (ε+ n)(ε+ β + n), ∀n ∈ Z.

This gives α = 0 which is a contradiction. Equation (3.27) is proved analo-
gously. �

Remark 3.6. It is clear that

Ker(Lα,β;ε − 1)k ∩Ker(Lα,β;ε + 1)l = ∅.
Therefore

Ker(Lα,β;ε − 1)k(Lα,β;ε + 1)l = Ker(Lα,β;ε − 1)k ⊕Ker(Lα,β;ε + 1)l

and Theorem 3.5 describes the kernel of the operator (Lα,β;ε−1)k(Lα,β;ε+1)l

in the cases specified there.

3.3. The sets D(k,l)
α,β;ε of Darboux transformations from Lα,β;ε(n, z).

Let us fix two nonnegative integers k and l and choose 2(k + l) complex
numbers

Ai, Bi, i = 0, . . . , k − 1,
Cj , Dj , j = 0, . . . , l − 1.

If k > 0 (l > 0) we will assume α 6= −k+1, . . . , k−1 (β 6= −l+1, . . . , l−1).
Set

f (i)(n)

=


∑i

r=0

(
Arϕ

(i−r)
+ (n) +Brψ

(i−r)
+ (n)

)
, for i = 0, . . . , k − 1∑i−k

r=0

(
Crϕ

(i−k−r)
− (n) +Drψ

(i−k−r)
− (n)

)
, for i = k, . . . , k + l − 1

.
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The values of the parameters A,B,C,D ∈ C for which

det(n) = det(f (i)(n+ j))k+l−1,−1
i,j=0,−k−l 6= 0, ∀n ∈ Z,(3.29)

will be called admissible. For such values we define the operator

P (n, T ) =
1

det(n)

∣∣∣∣∣∣
f (0)(n− k − l) · · · f (k+l−1)(n− k − l) T−(k+l)

· · · · · · · · · · · ·
f (0)(n) · · · f (k+l−1)(n) 1

∣∣∣∣∣∣ .
(3.30)

By expanding (3.30) along the last column one sees that the term of T−(k+l)

is given by
det(n+ 1)

det(n)
6= 0

hence P (n, T ) is a regular difference operator. As a consequence of proper-
ties (3.22)–(3.25) we obtain

(Lα,β;ε(n, T )− 1)f (0)(n) = 0, (Lα,β;ε(n, T )− 1)f (i) = f (i−1)(n)(3.31)

for i = 1, . . . , k − 1 and

(Lα,β;ε(n, T ) + 1)f (k)(n) = 0, (Lα,β;ε(n, T ) + 1)f (j) = f (j−1)(n)(3.32)

for j = k + 1, . . . , k + l − 1. Thus KerP (n, T ) = Span{f (i)(n)}k+l−1
i=0 is

preserved by Lα,β;ε(n, T ) and according to Proposition 3.1 there exists a
difference operator L(n, T ) with support [−1, 1] such that

L(n, T )P (n, T ) = P (n, T )Lα,β;ε(n, T ).(3.33)

The set of all difference operators L(n, T ) for admissible values of the pa-
rameters A,B,C,D will be denoted by

D(k,l)
α,β;ε.

All operators L(n, T )∈D(k,l)
α,β;ε are Darboux transformations from Lα,β;ε(n, T )

and k, l refer to the multiplicity of the eigenvalues 1 and −1 of Lα,β;ε(n, T )
in KerP (n, T ), see Equations (3.31) and (3.32). (Recall from part (i) of
Proposition 3.1 that Lα,β;ε(n, T ) preserves KerP (n, T ).) Every L(n, T ) ∈
D(k,l)
α,β;ε is a regular difference operator with eigenfunction

Ψ(n, z) = P (n, T )pα,βε (n, z),(3.34)

more precisely:

L(n, T )Ψ(n, z) = zΨ(n, z).(3.35)

The admissibility condition (3.29) holds for almost all values of A,B,C,D
∈ Z. The complement of the corresponding set in C2(k+l) consists of the
zeros of countably many polynomials, obtained from det(n) for fixed n ∈
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Z (recall (3.29)). The latter do not vanish identically due to the linear
independence of the set of functions {ϕ(i)

± (n)}k−1
i=0 ∪ {ψ

(j)
± (n)}l−1

j=0 (see the
proof of Theorem 3.5) and the regularity of Lα,β;ε(n, T ).

There are in fact k + l free parameters in the definition of an element
L(n, T ) ∈ D(k,l)

α,β;ε since the operator P (n, T ) (see (3.30)) only depends on the
choice of the space Span{f (i)(n)}k+l−1

i=0 (= KerP (n, T )), and not on the choice
of the individual functions f (i)(n). Using again the linear independence of
{ϕ(i)

± (n)}k−1
i=0 ∪ {ψ

(j)
± (n)}l−1

j=0, the choice of span is equivalent to a choice of
flags

V0⊂V1⊂ . . .⊂Vk−1 and W0⊂W1⊂ . . .⊂Wl−1

where Vi = Span{f (r)(n)}ir=0 and Wj = Span{f (r)(n)}k+jr=k, cf. [12].
The relations (2.14) and (2.15) for Lα,β;ε(n, T ) imply similar relations for

the sets D(k,l)
α,β;ε:

D(k,l)
−α,−β,ε+α+β = D(k,l)

α,β;ε,(3.36)

Ad(−1)nD(l,k)
β,α,ε = Ad(−1)nD(l,k)

−β,−α,ε+α+β = −D(k,l)
α,β;ε.(3.37)

Here, in addition to (2.14) and (2.15), we use that the change of parameters
α→ −α, β → −β, ε→ ε+α+β exchanges ϕ(i)

+ (n) with ψ(i)
+ (n) and ϕ(i)

− (n)
with ψ

(i)
− (n). Analogously the change of parameters α → β, β → α, ε → ε

exchanges ϕ(i)
+ (n) with (−1)nϕ(i)

− (n) and ψ(i)
+ (n) with (−1)nψ(i)

− (n).
The Darboux maps between Jacobi functions (operators) represented by

the first identities in (2.19), (2.20) and Remark 3.3 imply the following
inclusion relations

Ad 2n+2ε+α+β
n+ε+α+β

D(k−1,l)
α−1,β;ε⊂D

(k,l)
α,β;ε,(3.38)

Ad 2n+2ε+α+β
n+ε+α+β

D(k,l−1)
α,β−1;ε⊂D

(k,l)
α,β;ε.(3.39)

The function (n+ ε+ α+ β)/(2n+ 2ε+ α+ β) is the leading coefficient of
the the operators Dα

−(n, T ) and Dβ
−(n, T ), see Section 2.3. Recall that the

operator P (n, T ) is normalized to have leading coefficient 1.

Remark 3.7. Note that (3.31), (3.32) imply that for the operator P (n, T )
(3.30) defining an element L(n, T ) in D(k,l)

α,β;ε the endomorphism Lα,β;ε(n, T )
on KerP (n, T ) has two Jordan blocks with eigenvalues 1 and −1 and lengths
k and l, respectively. Insisting on multiple blocks with equal eigenvalues does
not produce larger sets of transformations since the operator Lα,β;ε(n, T )
has a two dimensional kernel. Allowing k > |α| or l > β in the cases α ∈ Z
or β ∈ Z causes the operators P (n, T ) and L(n, T ) to have nonrational
coefficients which does lead to bispectrality of L(n, T ) as was noted in the
introduction.
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At the end of this subsection we compute explicitly the coefficients of the
operators L(n, T ) in D(k,l)

α,β;ε. Set

L(n, T ) = a(n)T + b(n) + c(n)T−1(3.40)

for some functions a(n), b(n), and c(n) (the dependence on A,B,C,D will
not be shown). For convenience we denote the coefficients of the operator
Lα,β;ε(n, T ) by a0(n), b0(n), and c0(n) :

Lα,β;ε(n, T ) = a0(n)T + b0(n) + c0(n)T−1(3.41)

(cf. Equation (2.9) for their values). Set also

det−r(n) := det(f (i)(n+ j))i=0,... ,k+l−1
j=−k−l,... ,−r̂,... ,0

for r = 0, . . . , k + l.(3.42)

Note that

det0(n) = det(n) and detk+l(n) = det0(n+ 1) = det(n+ 1).(3.43)

Expanding the determinant (3.30) defining P (n, T ) along the last column
gives

P (n, T ) =
k+l∑
r=0

(−1)r
det−r(n)
det(n)

T−r.(3.44)

Proposition 3.8. The coefficients a(n), b(n), and c(n) of an operator
L(n, T ) ∈ D(k,l)

α,β;ε are expressed in terms of the coefficients a0(n), b0(n), and
c0(n) of Lα,β;ε(n, T ) and the functions f (i)(n) (see (3.42)) by the following
formulas

a(n) = a0(n),(3.45)

b(n) = b0(n) + a0(n)
det−1(n+ 1)
det(n+ 1)

− a0(n− 1)
det−1(n)
det(n)

,(3.46)

c(n) = c0(n− k − l)
det(n− 1)det(n+ 1)

(det(n))2
.(3.47)

Proof. We compare the coefficients of T and 1 in (3.33) and use the expres-
sion (3.44) for the operator P (n, T ). This gives the formulas

a(n) = a0(n),

b(n)− a(n)
det−1(n+ 1)
det(n+ 1)

= b0(n)− a0(n− 1)
det−1(n)
det(n)

,

which are equivalent to (3.45) and (3.46).
Similarly comparing the coefficients of T−k−l−1 in (3.33) gives

c(n)
det−(k+l)(n− 1)

det(n− 1)
= c0(n− k − l)

det−(k+l)(n)
det(n)

which implies (3.47), taking into account (3.43). �



DISCRETE BISPECTRAL DARBOUX TRANSFORMATIONS 415

4. Bispectral Darboux transformation and an involution.

This section is a preparation for the next one where we show that the differ-
ence operators from D(k,l)

α,β;ε are bispectral under some natural conditions on
α and β. Our proof is based on a result of [3] on Darboux transformations
that preserve the bispectral property. Its application to the situation un-
der consideration is nontrivial and requires an intrinsic characterization of a
certain space of difference operators. This is done in terms of an involution
of the algebra of difference operators with rational coefficients.

4.1. A theorem on bispectral Darboux transformations. For a fixed
choice of the parameters α, β, ε we define Bα,β;ε as the algebra of difference
operators S(n, T ) with rational coefficients for which there exists a differen-
tial operator G(z, ∂z) (also with rational coefficients) such that

S(n, T )pα,βε (n, z) = G(z, ∂z)pα,βε (n, z).(4.1)

The set of all such operators G(z, ∂z) is an algebra which will be denoted
by B′α,β;ε. It is clear that

b (S(n, T )) := G(z, ∂z)(4.2)

correctly defines a map

b : Bα,β;ε → B′α,β;ε(4.3)

which is an antiisomorphism of algebras. In this setting Equations (2.10)
and (2.11) mean that λε(n), Lα,β;ε(n, T ) ∈ Bα,β;ε, z, Bα,β(z, ∂z) ∈ B′α,β;ε, and

b(λε(n)) = Bα,β(z, ∂z),(4.4)

b(Lα,β;ε(n, T )) = z.(4.5)

The triple (Bα,β;ε,B′α,β;ε, b) is an example of a bispectral triple in the sense
of [3]. Denote

Kα,β;ε = Bα,β;ε ∩ C(n),(4.6)

K′α,β;ε = B′α,β;ε ∩ C(z),(4.7)

where C(n) and C(z) stand for the algebras of rational functions in the
variables n and z, respectively. Let

Aα,β;ε = b−1
(
K′α,β;ε

)
,(4.8)

A′α,β;ε = b (Kα,β;ε) .(4.9)

It is obvious that

K′α,β;ε = C[z],(4.10)

A′α,β;ε = C[Bα,β(z, ∂z)],(4.11)
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and

Kα,β;ε⊃C[λ(n)],(4.12)

Aα,β;ε⊃C[Lα,β;ε(n, T )].(4.13)

Later in Remark 4.3 we will show that the inclusions in (4.12) and (4.13)
can be strengthen to give two equalities.

As was noted in Section 3.1, if a difference operator q(Lα,β;ε(n, T )) ∈
Aα,β;ε (q(x) ∈ C[x]) is factorized as a product of two operators Q(n, T ) and
P (n, T )

q(Lα,β;ε(n, T )) = Q(n, T )P (n, T ),

then the function

Ψ(n, z) = P (n, T )pα,βε (n, z)

is an eigenfunction of the difference operator P (n, T )Q(n, T ):

P (n, T )Q(n, T )Ψ(n, z) = q(z)Ψ(n, z).

We will give a version of Theorem 1.2 from [3] which provides general suffi-
cient conditions on the operators P (n, T ) and Q(n, T ) under which Ψ(n, z)
is also an eigenfunction of a differential operator in the variable z. (The
original result of [3] deals with “bispectral” Darboux transformations in an
arbitrary associative algebra but in the form to be used, needs an additional
refinement.)

Theorem 4.1. Assume that the operator q(Lα,β;ε(n, T )) ∈ Aα,β;ε is factor-
ized as

q(Lα,β;ε(n, T )) = (Q0(n, T )ν(n)−1)(µ(n)−1P0(n, T ))(4.14)

for some difference operators P0(n, T ), Q0(n, T ) ∈ Bα,β;ε and rational
functions µ(n), ν(n) ∈ Kα,β;ε, such that the coefficients of the operators
µ(n)−1P0(n, T ), Q0(n, T )ν(n)−1 are correctly defined for n ∈ Z. Then the
function

Ψ(n, z) = (µ−1(n)P0(n, T ))pα,βε (n, z)(4.15)

satisfies the relations

(µ(n)−1P0(n, T ))(Q0(n, T )ν(n)−1)Ψ(n, z) = q(z)Ψ(n, z),(4.16)

b(P0)(z, ∂z)b(Q0)(z, ∂z)q(z)−1Ψ(n, z) = µ(n)ν(n)Ψ(n, z),(4.17)

i.e., it is bispectral.

Note that in Theorem 4.1 we do not assume that the rational functions
µ(n)−1 and ν(n)−1 are well-defined for n ∈ Z, but only that the “ratios”
µ(n)−1P0(n, T ) and Q0(n, T )ν(n)−1 are. Because of this a small modifica-
tion of the original proof from [3] is necessary.
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First of all since the algebra B′α,β;ε has no zero divisors, Equation (4.14)
implies (see [3])

(bν)(z, ∂z) (bµ)(z, ∂z) = (bP0)(z, ∂z)q(z)−1(bQ0)(z, ∂z).(4.18)

For all values of n for which µ(n) does not vanish we have

Ψ(n, z) = µ(n)−1(bP0)(z, ∂z)pα,βε (n, z)

and (4.17) holds, as a consequence of (4.18). The validity of (4.17) for
all n ∈ Z follows from the definition (4.15) of Ψ(n, z) and the fact that
pα,βε (n, z) has an expansion in z around z = 1 with coefficients that are
rational functions in n (recall (3.12)).

Returning to the sets D(k,l)
α,β;ε of Darboux transformations from the op-

erators Lα,β;ε(n, T ), we need to find which of the operators P (n, T ) from
Equation (3.30) can be expressed in the form µ(n)−1P0(n, T ) with µ(n) and
P0(n, T ) as above. According to Theorem 4.1 the corresponding operators
L(n, T ) ∈ D(k,l)

α,β;ε will be bispectral with bispectral eigenfunction (3.34) (see
also (4.15)). For this we need an invariant description of the linear space of
difference operators

(4.19) Rα,β;ε = Span
{
µ(n)−1S(n, T ) | S(n, T ) ∈ Bα,β;ε, µ(n) ∈ Kα,β;ε,

such that µ(n)−1S(n, T ) is well-defined for n ∈ Z
}
.

This will be obtained in the next subsection. Here we would like to note
that the dual object – the linear space of differential operators

R′α,β;ε = Span{g(z)−1G(z, ∂z) | G(z, ∂z) ∈ B′α,β;ε, g(z) ∈ K′α,β;ε}(4.20)

is much easier to describe. It is just the space of differential operators with
rational coefficients. This is a consequence of the fact that the commutator

[Bα,β(z, ∂z), z] = 2(z2 − 1)∂z + ((α− β) + (α+ β + 2)z)

is a first order differential operator that belongs to B′α,β;ε and z ∈ K′α,β;ε (see
Equation (4.10)). Unfortunately for our proof of the fact that the operators
from D(k,l)

α,β;ε are bispectral we need the spaceRα,β;ε, and not the spaceR′α,β;ε.

4.2. Description of Rα,β;ε. Denote by ∆ the abstract algebra of difference
operators M(n, T ) with rational coefficients; that is the algebra over C,
generated by rational functions in n, the shift operator T, and its inverse
T−1, subject to the relation

Th(n) = h(n+ 1)T, for all rational functions h(n).

Here we do not require that the coefficients of an operator M(n, T ) in ∆
be well-defined for n ∈ Z. More explicitly these coefficients could have poles
at some n ∈ Z. The subspace of ∆ consisting of operators having this extra
regularity property will be denoted by ∆reg. We will identify the space of
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difference operators with rational coefficients acting on functions f : Z→ C
with ∆reg. In particular, B̃α,β;ε⊂R̃α,β;ε⊂∆reg.

Define an involution I in the algebra ∆ acting on rational functions h(n)
by

(Ih)(n) = h(−(n+ 2ε+ α+ β + 1))(4.21)

and on the shift operator T by

I(T ) = T−1.

The involution I is correctly defined since

I(T ) (Ih)(n) = (Ih)(n+ 1) I(T ).

Denote the fixed points of I in ∆ by ∆I :

∆I = {M(n, T ) ∈ ∆ | I(M(n, T )) = M(n, T )}.(4.22)

Let

φ(n) =
(ε+ α+ 1)n

(ε+ 1)n
(4.23)

(cf. the definition (2.8) of pα,βε (n, z) for α /∈ Z<0).

Theorem 4.2. The space of difference operators Rα,β;ε defined in (4.19) is
characterized by

Rα,β;ε = Adφ(n)

(
∆I ∩∆reg

)
,(4.24)

i.e., after conjugation by φ(n)−1 all operators from R̃α,β;ε are I-invariant.

Proof. Consider first the case α /∈ Z<0. Let

p̃α,βε (n, z) = φ(n)−1pα,βε (n, z).(4.25)

The expression (2.8) implies

p̃α,βε (n, z) = F (−(−n+ ε), n+ ε+ α+ β + 1;α+ 1; (1− z)/2).(4.26)

Let B̃α,β;ε, B̃′α,β;ε, K̃α,β;ε, K̃′α,β;ε, R̃α,β;ε, and R̃′α,β;ε, denote the B, K and R
objects associated with the functions p̃α,βε (n, z) (see the beginning of Sec-
tion 4.1 and Equations (4.6), (4.7), (4.19) and (4.20) for the appropriate
definitions). Obviously

R̃α,β;ε = Adφ(n)Rα,β;ε, B̃α,β;ε = Adφ(n)Bα,β;ε,

and K̃α,β;ε = Kα,β;ε, R̃′α,β;ε = R′α,β;ε, K̃′α,β;ε = K′α,β;ε, B̃′α,β;ε = B′α,β;ε. In this
notation, the statement of the theorem is equivalent to

R̃α,β;ε = ∆I ∩∆reg.(4.27)

To prove that the l.h.s. of (4.27) is contained in the r.h.s., let us fix
an operator R̃(n, T ) ∈ R̃α,β;ε. There exists a difference operator S̃(n, T ) ∈
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B̃α,β;ε and a function µ̃(n) ∈ K̃α,β;ε such that R̃(n, T ) = µ̃(n)−1S̃(n, T ). We
will prove that all operators from B̃α,β;ε are I-invariant. This in particular
shows that all functions from K̃α,β;ε⊂B̃α,β;ε are I-invariant and so are all
operators from R̃α,β;ε.

If S̃(n, T ) ∈ B̃α,β;ε, then there exists a differential operator G(z, ∂z) for
which

S̃(n, T )p̃α,βε (n, z) = G(z, ∂z)p̃α,βε (n, z).(4.28)

The fact that the hypergeometric function F (a, b; c;x) is symmetric with
respect to a and b, and formula (4.26) for p̃α,βε (n, z) imply

I
(
S̃(n, T )

)
p̃α,βε (n, z) = G(z, ∂z)p̃α,βε (n, z).(4.29)

Combining (4.28) and (4.29), we conclude that(
S̃(n, T )− I

(
S̃(n, T )

))
p̃α,βε (n, z) = 0.

This is only possible if

I
(
S̃(n, T )

)
= S̃(n, T ).

The harder part of the proof of (4.27) is to show that any I-invariant
difference operator from ∆reg belongs to R̃α,β;ε. It is sufficient to prove that
for any R̃(n, T ) ∈ ∆I there exists S̃(n, T ) ∈ B̃α,β;ε and µ̃(n) ∈ K̃α,β;ε such
that

R̃(n, T ) = µ̃(n)−1S̃(n, T ).

First let us write formulas (2.10) and (2.11) in terms of p̃α,βε (n, z). Equation
(2.11) remains unchanged:

λε(n)p̃α,βε (n, z) = Bα,β(z, ∂z)p̃α,βε (n, z),(4.30)

while Equation (2.10) becomes

L̃α,β;ε(n, T )p̃α,βε (n, z) = zp̃α,βε (n, z)(4.31)

with

L̃α,β;ε(n, T ) = φ(n)−1Lα,β;ε(n, T )φ(n)(4.32)

=
2(n+ ε+ α+ 1)(n+ ε+ α+ β + 1)

(2n+ 2ε+ α+ β + 1)(2n+ 2ε+ α+ β + 2)
T

+
α2 − β2

(2n+ 2ε+ α+ β)(2n+ 2ε+ α+ β + 2)

+
2(n+ ε)(n+ ε+ β)

(2n+ 2ε+ α+ β)(2n+ 2ε+ α+ β + 1)
T−1.
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The algebra ∆ has a natural Z≥0 filtration where ∆d consists of all operators
from ∆ with support [−d, d]. Denote ∆I

d = ∆I ∩∆d.

We will prove that any difference operator RId(n, T ) ∈ ∆I
d, can be decom-

posed as a sum

RId(n, T ) = µ̃(n)−1S̃(n, T ) +RId−1(n, T )(4.33)

where

S̃(n, T ) ∈ B̃α,β;ε, µ̃(n) ∈ K̃α,β;ε,(4.34)

RId−1(n, T ) ∈ ∆I
d−1.(4.35)

Since ∆I
0 = C(λe(n)) (any I-invariant rational function in n is a rational

function in λe(n)), by induction on d Equation (4.33) implies that

RId(n, T ) ∈ R̃α,β;ε.

A straightforward computation yields

adλε(n)T
d = (λε(n)− λε(n+ d))T d(4.36)

= −d(2n+ 2ε+ α+ β + d+ 1)T d,

and thus

adλε(n)(adλε(n) + 1)L̃α,β;ε

= 2(Id + I)((n+ ε+ α+ 1)(n+ ε+ α+ β + 1)T ).

So (
adλε(n)(adλε(n) + 1)L̃α,β;ε

)d
(4.37)

= 2d(Id + I)

(
d∏
i=1

(n+ ε+ α+ i)(n+ ε+ α+ β + i)T d
)

+ Ud−1

for some Ud−1 ∈ ∆I
d−1. (Here we use the I-invariance of Lα,β;ε(n, T ).) Denote

for simplicity

cd(n) = 2d
d∏
i=1

((n+ ε+ α+ i)(n+ ε+ α+ β + i))

and let

RId(n, T ) =
d∑

i=−d

ai(n)
bi(n)

T i, ai(n), bi(n) ∈ C[n].
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Using (4.36) and (4.37) we obtain

ad

(
− 1

2d
adλε(n) −

α+ β + d+ 1
2

− ε
)(4.38)

· bd
(

1
2d

adλε(n) −
α+ β − d+ 1

2
− ε
)

· cd
(

1
2d

adλε(n) −
α+ β − d+ 1

2
− ε
)(

adλε(n)(adλε(n) + 1)L̃α,β;ε

)d
= (Id + I)

(
bd(n) (Ibd)(n) cd(n) (Icd)(n)

ad(n)
bd(n)

T d
)

+ Ud−1

for some other Ud−1 ∈ ∆I
d−1. There exists a polynomial qd(n) for which

bd(n) (Ibd)(n) cd(n) (Icd)(n) = qd(λε(n))

because the polynomial in the l.h.s. is clearly I-invariant. Denote by S̃(n, T )
the difference operator in (4.38). The l.h.s. of (4.38) implies that S̃(n, T )
belongs to B̃α,β;ε and the r.h.s. implies

RId(n, T )− (q(λε(n)))−1S̃(n, T ) ∈ ∆I
d−1

which completes the proof of Theorem 4.2. �

Remark 4.3. Any fuction µ̃(n) ∈ K̃α,β;ε is I-invariant and therefore is a
rational function in λε(n). In fact µ̃(n) should be a polynomial in λε(n).
Indeed if µ̃(n) = p(λε(n))/q(λε(n)) for two polynomials p(x), q(x) ∈ C[x]
such that q(x) 6 | p(x), then there exists a differential operator G(z, ∂z) with
rational coefficients such that

G(z, ∂z)p̃α,βε (n, z) =
p(λε(n))
q(λε(n))

p̃α,βε (n, z)

which implies

p(Bα,β(z, ∂z)) = G(z, ∂z)q(Bα,β(z, ∂z)).(4.39)

This is impossible; if z0 is a root of q(x) and p(x) of multiplicities d1 > d2,
then there exist a holomorphic function g(z) in a domain Ω⊂C such that

(Bα,β(z, ∂z)− z0)d1g(z) = 0 and q(Bα,β(z, ∂z)− z0)g(z) 6= 0

which contradicts with (4.39). Since Kα,β;ε = K̃α,β;ε we finally obtain

Kα,β;ε = C[λe(n)],

A′α,β;ε = C[Bα,β(z, ∂z)],

as promised following (4.12) and (4.13).
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Remark 4.4. The second order bispectral differential operators of the even
case of Duistermaat–Grünbaum’s classification [7] are obtained as Darboux
transformations from the Bessel operators

Lk(x, ∂x) = ∂2
x −

k(k − 1)
x2

, k ∈ Z +
1
2

in the sense of (3.1). More precisely for each operator L(x, ∂x) of this family
there exists a differential operator with rational coefficients P (x, ∂x) such
that

L(x, ∂x)P (x, ∂x) = P (x, ∂x)Lk(x, ∂x).

In addition, the operator P (x, ∂x) satisfies

P (x, ∂x) = P (−x,−∂x).(4.40)

Let I denote the involution of the algebra of differential operators with
rational coefficients induced by the diffeomorphism x 7→ −x of C (i.e.,
(IS)(x, ∂x) = S(−x,−∂x)). Then (4.40) means that P (x, ∂x) is invariant
under I. This gives the relation of the approach of this paper via the invo-
lution I and the space Rα,β;ε to the construction of [7].

5. Bispectrality of D(k,l)
α,β;ε.

In this section we prove our main result: When the parameters α and β are
subject to certain natural integrality conditions, the difference operators
from D(k,l)

α,β;ε are bispectral. As an example, for each L(n, T ) ∈ D(2,0)
2,0;ε we find

a dual differential operator of order 10.
The conditions (2.13) on α, β, ε are assumed throughout this section.

5.1. Proof of the main result. The conjugation by the function φ(n)
(see (4.23)), used in Theorem 4.2, leads us to consider the functions Φ(i)

± :=
ϕ

(i)
± (n)/φ(n), Ψ(i)

± := ψ
(i)
± (n)/φ(n). Because of Equations (3.18)–(3.21) they

are explicitly given by the formulas

Φ(i)
+ (n) =

(−(n+ ε))i(n+ ε+ α+ β + 1)i
(α+ 1)i(−2)i

,

(5.1)

Ψ(i)
+ (n) =

(ε+ β + 1)n(ε+ 1)n
(ε+ α+ 1)n(ε+ α+ β + 1)n

(−(n+ ε+ α+ β))i(n+ ε+ 1)i
(−α+ 1)i(−2)i

,

(5.2)

Φ(i)
− (n) =

(ε+ β + 1)n
(−1)n(ε+ α+ 1)n

(−(n+ ε))i(n+ ε+ α+ β + 1)i
(β + 1)i2i

,

(5.3)
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Ψ(i)
− (n) =

(ε+ 1)n
(−1)n(ε+ α+ β + 1)n

(−(n+ ε+ α+ β))i(n+ ε+ 1)i
(−β + 1)i2i

.

(5.4)

Lemma 5.1. If α ∈ Z, then for i ≤ |α| − 1, Φ(i)
+ (n) and Ψ(i)

+ (n) are I-
invariant rational functions of n.

If α ∈ Z and β ∈ Z then for i ≤ |α| − 1, j ≤ |β| − 1, Φ(i)
+ (n), Ψ(i)

+ (n),
(−1)nΦ(j)

− (n), and (−1)nΨ(j)
− (n) are rational functions of n, Φ(i)

+ (n), Ψ(i)
+ (n)

are I-invariant, and

I
(
(−1)nΦ(j)

− (n)
)

= (−1)α+β
(
(−1)nΦ(j)

− (n)
)
,(5.5)

I
(
(−1)nΨ(j)

− (n)
)

= (−1)α+β
(
(−1)nΨ(j)

− (n)
)
.(5.6)

Proof. First note that

(−(n+ ε))i(n+ ε+ α+ β + 1)i

=
i−1∏
r=0

(−(n+ ε) + r)(n+ ε+ α+ β + 1 + r)

= (−1)k
i−1∏
r=0

(λ(n)− r(α+ β + 1 + r))

and similarly

(−(n+ ε+ α+ β))i(n+ ε+ 1)i = (−1)i
i−1∏
r=0

(λ(n)− (α+ β − r)(r + 1))

are I-invariant polynomials in n.
To prove the first statement of the lemma we use a similar computation.

Restricting to the case α ∈ Z>0:
(ε+ β + 1)n(ε+ 1)n

(ε+ α+ 1)n(ε+ α+ β + 1)n

=
(ε+ 1)α(ε+ β + 1)α

(n+ ε+ 1)α(n+ ε+ β + 1)α

=
(ε+ 1)α(ε+ β + 1)α∏α

r=1(n+ ε+ r)(n+ ε+ β + α+ 1− r)

=
(ε+ 1)α(ε+ β + 1)α∏α

r=1(λ(n) + r(α+ β + 1− r))
.

The proof of the second statement is analogous. Assuming α, β ∈ Z>0

and β ≥ α we obtain
(ε+ β + 1)n
(ε+ α+ 1)n

=
(ε+ α+ n+ 1)β−α

(ε+ α+ 1)β−α
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=
q(n)

∏[β−α
2 ]

r=1 (n+ ε+ α+ r)(n+ ε+ β + 1− r)
(ε+ α+ 1)β−α

=
q(n)

∏[β−α
2 ]

r=1 (λ(n) + (α+ r)(β + 1− r))
(ε+ α+ 1)β−α

with

q(n) =

{
1, if β + α is even
n+ ε+ (α+ β + 1)/2, if β + α is odd

.

(Since α ∈ Z, the first condition is equivalent to 2|(β − α) and the second
one to 2 6 |(β − α).) To finish the proof of (5.5) we just observe that

I(n+ ε+ (α+ β + 1)/2) = −(n+ ε+ (α+ β + 1)/2).(5.7)

The remaining cases for α, β ∈ Z are treated analogously.
The identity (5.6) follows from the analogous formula

(ε+ 1)n
(ε+ α+ β + 1)n

=
(ε+ 1)α+β

q(n)
∏[β+α

2 ]
r=1 (λ(n) + r(α+ β + 1− r))

and Equation (5.7).
Throughout this proof, for a real number x by [x] we denote its integer

part. �

Theorem 5.2. Assuming (2.13), the following sets consist of bispectral dif-
ference operators:

1) D(k,0)
α,β;ε if α ∈ Z and k ≤ |α|,

2) D(0,l)
α,β;ε if β ∈ Z and l ≤ |β|,

3) D(k,l)
α,β;ε if α, β ∈ Z and k ≤ |α|, l ≤ |β|.

When the conditions (2.13) are not met but the operator Lα,β;ε(n, T ) is
still well-defined the arguments below can be adapted properly. We do not
pursue that here.

Proof. Because of the relation (3.37) the second case follows from the first
one.

Let us restrict to instances 1) and 3) of the theorem above. In each
of them we can assume that k + l is even using (3.38). Fix an operator
L(n, z) ∈ D(k,l)

α,β;ε, determined by a choice of the functions {f (i)(n)}k+l−1
i=0 ,

i.e., a choice of admissible values of the complex parameters A,B,C,D (see
Section 3.3). It has the eigenfunction Ψ(n, z) defined in (3.34)

L(n, T )Ψ(n, z) = zΨ(n, z),
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cf. (3.35). We need to show that there exists a differential operator B(z, ∂z)
having Ψ(n, z) as an eigenfunction, that is

B(z, ∂z)Ψ(n, z) = θ(n)Ψ(n, z)

for some function θ(n).
Define the functions

F (i)(n) = f (i)(n)/φ(n), i = 0, . . . , k + l − 1.

Let us put s := (k + l)/2 and consider the operator

P̃ (n, T ) = (−1)nl

∣∣∣∣∣∣
F (0)(n− s) . . . F (k+l−1)(n− s) T−s

. . . . . . . . . . . .

F (0)(n+ s) . . . F (k+l−1)(n+ s) T s

∣∣∣∣∣∣ .(5.8)

It is a regular difference operator with kernel given by Span{F (i)(n)}k+l−1
i=0 .

Hence it is related to the operator P (n, T ) (recall Equation (3.30)) by

P (n, T ) = d(n)−1φ(n)−1T−sP̃ (n, T )φ(n)(5.9)

where

d(n) = (−1)nldet(F (i)(n+ j))k+l−1,−1
i,j=0,−k−l

is the leading coefficient of T−sP̃ (n, T ). Lemma 5.1 implies that F (0)(n), . . . ,
F (k−1)(n), and (−1)nF (k)(n), . . . , (−1)nF (k+l−1)(n) are rational functions
in n. This implies that for i = k, . . . , k+l−1 and for all j ∈ Z, (−1)nF (i)(n+
j) are also rational functions in n and thus P̃ (n, T ) has rational coefficients.
In addition Lemma 5.1 gives

I
(
F (i)(n+ j)

)
= F (i)(n− j), i = 0, . . . , k − 1, j ∈ Z

and

I
(
(−1)nF (i)(n+ j)

)
= (−1)(α+β)/2

(
(−1)nF (i)(n− j)

)
,

i = k, . . . , k + l − 1, j ∈ Z.

Taking into account that I(T ) = T−1 we obtain

I
(
P̃ (n, T )

)
= (−1)s(−1)(α+β)lP̃ (n, T )(5.10)

where the factor (−1)s comes from exchanging the pairs of rows (1, k+l+1),
. . . , (s, s+ 2). Set

q(n) =

{
1, if s+ (α+ β)l is even
(n+ ε+ (α+ β + 1)/2), if s+ (α+ β)l is odd

and consider the operator

P (n, T ) = q(n)P̃ (n, T ).(5.11)
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Because of the conditions (2.13), q(n) does not vanish for n ∈ Z. Taking
into account (5.9) one sees that P (n, T ) is related to P (n, T ) by

P (n, T ) =
d(n)φ(n− s)
q(n− s)φ(n)

T−sφ(n)−1P (n, T )φ(n).(5.12)

Since P (n, T ) is a regular difference operator and φ(n) does not vanish
for n ∈ Z (recall (2.13)), there exists a difference operator with rational
coefficients Q(n, T ) such that

(Lα,β;ε(n, T )− 1)k(Lα,β;ε(n, T ) + 1)l

=
(
φ(n)−1Q(n, T )φ(n)

) (
φ(n)−1P (n, T )φ(n)

)
.

From Equations (5.10) and (5.11) it follows that P (n, T ) is I-invariant.
Finally combining this with the I-invariance of φ(n)−1Lα,β;ε(n, T )φ(n) =
L̃α,β;ε(n, T ) (see (4.32)) implies the I-invariance of the operator Q(n, T ).
Theorem 4.2 now gives

φ(n)−1P (n, T )φ(n), φ(n)−1Q(n, T )φ(n) ∈ Rα,β;ε.

Applying Theorem 4.1 we obtain that the function

Ψ(n, z) = φ(n)P (n, T )φ(n)−1pα,βε (n, z)(5.13)

is an eigenfunction of a differential operator B(z, ∂z)

B(z, ∂z)Ψ(n, z) = h(λε(n))Ψ(n, z),(5.14)

for some polynomial h(x). Because of (5.12) our original function Ψ(n, z) ∈
D(k,l)
α,β;ε is related to Ψ(n, z) by

Ψ(n, z) = P (n, T )pα,βε (n, z) =
d(n)φ(n− s)
q(n− s)φ(n)

T−(k+l)/2Ψ(n, z).(5.15)

Equation (5.14) implies that Ψ(n, z) is an eigenfunction of the same operator
B(z, ∂z) with eigenvalue T−(k+l)/2h(λε(n)):

B(z, ∂z)Ψ(n, z) = h(λε(n− (k + l)/2))Ψ(n, z).(5.16)

�

5.2. An example: The set D(2,0)
2,0,ε . In this final subsection we consider

in detail the case α = 2, β = 0, k = 2, l = 0 and use this example for
two different purposes. First we give the reader a guided tour through the
results in this paper: We start with the function p2,0

ε (n, z) from (2.8), give
the ingredients needed to build the difference operator P (n, T ) (3.30) and
the corresponding eigenfunction Ψ(n, z) (3.34), and end with a description
of the strategy used in the construction of a differential operator in the
variable z giving a bispectral situation. The algebra of possible differential
operators in z contains some whose order is lower than the one resulting from
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this construction. We close this subsection with an explicit expression for
the (essentially unique) bispectral operator of minimal order and material
related to this operator.

The functions ϕ(i)
+ (n) and ψ

(i)
+ (n) (i = 0, 1) from (3.18)-(3.19) are given

by

ϕ
(0)
+ (n) =

(n+ ε+ 1)2
κ

, ϕ
(1)
+ (n) =

(n+ ε)4
6κ

,(5.17)

ψ
(0)
+ (n) =

κ

(n+ ε+ 1)2
, ψ

(1)
+ (n) = −κ

2
,(5.18)

where

κ = (ε+ 1)(ε+ 2).(5.19)

The conditions (2.13) reduce to ε /∈ Z.
An element L(n, T ) ∈ D(2,0)

2,0,ε is determined by a choice of the functions

f (0)(n) = A0ϕ
(0)
+ (n) +B0ψ

(0)
+ (n),

f (1)(n) = A1ϕ
(0)
+ (n) +B1ψ

(0)
+ (n) +A0ϕ

(1)
+ (n) +B0ψ

(1)
+ (n),

cf. Section 3.3. We will restrict to the generic case when A0 6= 0. In this case
we can assume that A0 = 1 and A1 = 0 by dividing f (0)(n) by A0 and then
subtracting from f (1)(n) the term A1f

(0)(n). Recall that L(n, T ) depends
only on Span{f (0)(n), f (1)(n)}. Once this space has been specified by the
choice of B0, B1 we can build the difference operator P (n, T ) as in (3.30)
and we get the eigenfunction Ψ(n, z) of L(n, T ) from (3.34).

The theory developed in Sections 4 and 5 makes it convenient to introduce
the difference operators P̃ (n, T ), see (5.8), and P (n, T ), see (5.11), related
to P (n, T ) by (5.9) and (5.12).

The main point in the proof of Theorem 5.2 is that the operator P (n, T )
defined in (5.11) (see also (5.8)) is I-invariant and thus φ(n)P (n, T )φ(n)−1 ∈
R2,0;ε. This implies that the function

Ψ(n, z) = φ(n)P (n, T )φ(n)−1pα,βε (n, z)

(see (5.13)) can be expressed as

Ψ(n, z) = µ(n)−1G(z, ∂z)pα,βε (n, z)(5.20)

for some differential operator with rational coefficients G(z, ∂z) and some
polynomial µ(n) (recall the definition (4.19) of R2,0;ε). Now any opera-
tor B(z, ∂z) that is a Darboux transformation from h(B2,0(z, ∂z)) for some
h(x) ∈ C[x] via the operator G(z, ∂z), i.e.,

B(z, ∂z)G(z, ∂z) = G(z, ∂z)h(B2,0(z, ∂z))(5.21)

will satisfy

B(z, ∂z)Ψ(n, z) = h(λε(n))Ψ(n, z)
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(a differential analog of (3.3)). The function Ψ(n, z) is related to Ψ(n, z) by
(5.15) and is also an eigenfunction of B(z, ∂z) but with eigenvalue h(λ(n−1))

B(z, ∂z)Ψ(n, z) = h(λε(n− 1))Ψ(n, z),

see (5.16). Combined with (3.35)

L(n, T )Ψ(n, z) = zΨ(n, z)

this gives the desired bispectral pair (L(n, T ), B(z, ∂z)).
The I-invariance of the operator P (n, T ) in this special case can

be observed directly. Because of (5.17), (5.18) the functions F (i)(n) =
f (i)(n)/φ(n), i = 0, 1, see (4.23), are given in terms of

λε(n) = (n+ ε)(n+ ε+ 3)

by

F (0)(n) = 1 +
B0λε(n)

6κ
,

F (1)(n) =
B1λε(n)

6κ
+

κ

(λε(n) + 1)

(
κ

(λε(n) + 1)
− B0

2

)
.

The operator P (n, T ) is given by

P (n, T ) = (n+ ε+ 3/2)

∣∣∣∣∣∣
F (0)(n− 1) F (1)(n− 1) T−1

F (0)(n) F (1)(n) 1
F (0)(n+ 1) F (1)(n+ 1) T

∣∣∣∣∣∣
and it is I-invariant because of the I-invariance of λε(n) and the skew in-
variance of the factor in front compensating the effect of the exchange of
first and third row. An operator G(z, ∂z) satisfying (5.20) is generated from
the proof of Theorem 4.2. It is of high order and the one of minimal order
10 has the following form

G(z, ∂z) = (z − 1)6(z + 1)5∂10
z + (z − 1)5(z + 1)4(57z + 7)∂9

z

+ 4(z − 1)4(z + 1)3(311z2 + 68z − 43)∂8
z

+
(
3B0κ

2(z − 1)2(z + 1)2

+ 2(18793z4 + 5796z3 − 15734z2 − 3636z + 1501)
)
∂7
z + · · · .

Theorem 4.1 guarantees that (5.21) is satisfied for some polynomial h(x). It
also generates such a polynomial but it is again of high order. The one of
minimal order 5 is given by

h(x− 2) = x5 − 5x4 + (10B0κ
2 + 8)x3

− (30B1κ
2 + 20B0κ

2 + 4)x2 − 15B2
0κ

4x.
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Given G(z, ∂z) Equation (5.21) determines the dual bispectral operator
B(z, ∂z) of L(n, T ) of minimal order uniquely. It is given by

B(z, ∂z)

= (z − 1)5(z + 1)5∂10
z + 50(z − 1)4z(z + 1)4∂9

z

+ 5(z − 1)3(z + 1)3(11z − 5)(17z + 7)∂8
z

+ 160(z − 1)2(z + 1)2(52z3 − 7z2 − 28z + 1)∂7
z

+ (30B2
0κ

4z + 120B1κ
2(z − 1) + 120B0κ

2)∂6
z

+ (180B0κ
2(z − 1)2z(z + 1)2

+ 240(z − 1)2(337z3 + 504z2 + 141z − 30))∂5
z

+ (−30B1κ
2(z − 1)2(z + 1)2 + +120B0κ

2(z − 1)(z + 1)(8z2 − z − 3)

+ 120(z − 1)2(641z2 + 758z + 161))∂4
z

+ (−240B1κ
2(z − 1)z(z + 1) + 240B0κ

2(7z3 − 3z2 − 7z + 1)

+ 960(z − 1)2(26z + 19))∂3
z

+ (−60B1κ
2(z − 1)(7z + 5) + 120B0κ

2(2z + 1)(3z − 5) + 1440(z−1)2)∂2
z

− (30B2
0κ

4z + 120B1κ
2(z − 1) + 120B0κ

2)∂z.

In the cases k = 1, l = 0, 1 and ε = 0 the dual bispectral operator of
minimal order was determined in [19, 27].
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PARAHORIC FIXED SPACES IN UNRAMIFIED
PRINCIPAL SERIES REPRESENTATIONS

Joshua M. Lansky

Let k be a non-archimedean locally compact field and let
G be the set of k-points of a connected reductive group de-
fined over k. Let W be the relative Weyl group of G, and let
H(G, B) be the Hecke algebra of G with respect to an Iwahori
subgroup B of G. We compute the effects of H(G, B) and W
on the B-fixed vectors of an unramified principal series repre-
sentation I of G. We use this computation to determine the
dimension of the space of K-fixed vectors in I, where K is a
parahoric subgroup of G.

1. Introduction.

Let G be a reductive group defined over a non-archimedean locally compact
field k and let G = G(k). Let P be a minimal parabolic subgroup of G with
Levi decomposition P = MN , and let P− = MN− be the corresponding
decomposition of the opposite parabolic P−. Let B be an Iwahori subgroup
of G with an Iwahori decomposition with respect to P and M , i.e.,

B = (B ∩ P )(B ∩M)(B ∩ P−).

Denote byW the relative Weyl group of G. Let χ be an unramified character
of M (i.e., χ is trivial on M0). Since M ∼= P/N , χ extends to a character
of P which we will also denote by χ. Let δ be the modulus character of P .
Define I(χ) to be the unramified principal series representation of G induced
by χ, i.e., the space of all locally constant functions G→ C such that

f(pg) = χδ1/2(p)f(g) for all p in P , g in G

on which G acts by right translation. It is well-known that the space I(χ)B

of B-fixed vectors in I(χ) has dimension dim I(χ)B = |W | [3, Prop. 2.1]. In
this paper, we generalize this result to the fixed space I(χ)K where K is a
parahoric subgroup of G containing B.

Let A be a maximal split torus in M and let N be its normalizer in G.
If M0 is the maximal compact subgroup of M and W̃ = N/M0, then we
have a surjection ν : W̃ → W = N/M . Let K be a parahoric subgroup of
G containing B and let WK be the finite Coxeter subgroup of W̃ such that
K = BWKB (see [4, §1]). We will prove the following:

433
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Theorem 1.1. The dimension of I(χ)K is |W/ν(WK)|.

As a Coxeter group, WK is generated by a canonical finite set S of reflec-
tions. Thus

I(χ)K =
⋂
s∈S

I(χ)〈B,s〉.

In Section 3, we explicitly determine the effects of reflections s ∈ S on
I(χ)B (Theorem 3.1) and as a corollary the actions of the generators of the
Iwahori-Hecke algebra H(G,B) on I(χ)B (Corollary 3.2). We then compute
the subspaces I(χ)〈B,s〉 in terms of the usual basis of I(χ) as given in [3,
Prop. 2.1]. Then in Section 4, we complete the proof of Theorem 1.1 by
showing that the dimension of the intersection of the I(χ)〈B,s〉 is |W/ν(WK)|.

Let H(G,K) be the Hecke algebra of compactly supported functions G→
C, bi-invariant by K. Let E be a simple H(G,K)-module. It is known
that there is an irreducible admissible representation V of G such that E
is isomorphic as a H(G,K)-module to the space V K of K-fixed vectors [1,
2.10]. Since V B ⊃ V K = E 6= 0, it follows from a well-known result that V
embeds inside some unramified principal series representation I of G so that
dimE = dimV K ≤ dim IK . Thus Theorem 1.1 has the following corollary:

Corollary 1.2. If K is a parahoric subgroup of G and E is a simple module
over H(G,K), then

dimE ≤ |W/ν(WK)|.
Moreover, this bound is sharp.

The sharpness of this bound is a result of the fact that there exist ir-
reducible unramified principal series representations (see e.g., [2, Theorem
3.3]) and that for such a representation I, the H(G,K)-module IK is sim-
ple [1, 2.10] and, by Theorem 1.1, of dimension |W/ν(WK)|.

Remark 1.3. While Theorem 1.1 is needed to prove the sharpness in Corol-
lary 1.2, the inequality itself can be proved by a simpler argument. Indeed,
it is easily demonstrated that dim I(χ)K ≤ |W/ν(WK)| by noting that

dim I(χ)K ≤ |P\G/K|
and

|P\G/K| = |W/ν(WK)|.

I would like to express my gratitude to both Benedict Gross and David
Pollack for their many helpful suggestions for this paper.

2. Preliminaries.

See [6] or [3, §1] as a reference for much of the material in this section. In the
following, we let k be a non-archimedean locally compact field. We denote
by G a connected reductive algebraic group defined over k with group of
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k-points G. Similarly, throughout this section, if H is any algebraic group
defined over k, we will denote its k-points by the corresponding non-bold
letter H.

Let P be a fixed minimal parabolic subgroup of G containing a maximal
split torus A of G. Denote by N the unipotent radical of P, and by M the
centralizer of A. Then P has Levi decomposition MN. Let Φ′ denote the
set of roots of G relative to A and Φ′nd the subset of non-divisible roots.
Also, let W be the relative Weyl group.

Denote by B = B(G, k) the Bruhat-Tits building of G over k and by A
the apartment of B stabilized by A. The normalizer N of A in G is then the
stabilizer of A and the maximal compact subgroup M0 of M is the kernel
of the map N → Aut(A). Let W̃ = N/M0. Denote by Φaff the canonical
affine root system on A and by Waff the corresponding affine Weyl group.
Then Waff may be identified with a normal subgroup of W̃ .

Fix a special point x0 in B and let Φ be the set of affine roots vanishing
at x0. Then Φ is a reduced root system, and we have a bijection between
Φ and Φ′nd corresponding to the choice of x0 . We let Φ+ be the subset of
positive affine roots corresponding to P and ∆ the subset of simple roots.

Let C be the unique chamber in A containing x0 with the property that
every α in Φ+ takes positive values on C. Denote by B the Iwahori subgroup
of G fixing C pointwise and by K0 the special maximal compact subgroup
fixing x0. Then W = N/M ∼= (N ∩K0)/M0, which is the stabilizer of x0 in
W̃ . We will identify these groups throughout. We denote by ν the surjection
W̃ →W . The kernel of ν is the group of translations in W̃ .

For each α in Φaff, denote by N(α) the pointwise stabilizer of the half-
apartment {x ∈ A | α(x) ≥ 0}. We note that

B = M0 ·
∏
α∈Φ+

N(α) ·
∏
α∈Φ−

N(α+ 1).

Let P0 ⊂ P be the compact subgroup

P ∩K0 = M0 ·
∏
α∈Φ+

N(α).

Let Φ =
⋃

Φi be the decomposition of Φ into irreducible root systems.
Denote by ∆̃ the set containing the highest root α̃i of Φi for each i. Let

∆aff = {α ∈ Φaff | α ∈ ∆ or α = α̃− 1 for some α̃ ∈ ∆̃}.

For α in ∆aff, let wα be the reflection in Aut(A) through the vanishing
hyperplane of α. Then Saff = {wα | α ∈ ∆aff} is a set of involutive generators
for the Coxeter group Waff.

For α in Φ, let aα be the translation wαwα−1 on A. We note that

a−α = a−1
α for any α in Φ.
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We let K be a fixed parahoric subgroup of G containing B. Since the
triple (G,B,N ) is a generalized Tits system (see [4, §1]), there exists a
special subgroup WK of Waff such that K = BWKB; WK is finite as K is
compact. We denote by S the subset of Saff generating WK .

For any w in W̃ , we denote by q(w) the index [BwB : B]. Also for α in
Φaff, we let qα be the index [N(α − 1) : N(α)]. We note that qα+2 = qα.
Since (cf. [5, Cor. 2.7])

BwαB = N(α)wαB for α in ∆,(1)

Bweα−1B = N(−α̃+ 1)weα−1B for α̃ in ∆̃,(2)

it follows that

q(wα) = qα+1 for α in ∆, q(weα−1) = qeα+2 = qeα for α̃ in ∆̃.

If α ∈ ∆, we denote by Bα the group B ∩ wαBwα, and if α̃ ∈ ∆̃, Beα−1

denotes the group B ∩ weα−1Bweα−1.
Let dx be the Haar measure on G for which B has volume 1. We denote by

H(G,B) the Iwahori-Hecke algebra of compactly supported functionsG→ C
bi-invariant by B. The product on H(G,B) is given by convolution with
respect to dx. Fix an unramified character χ of M and let δ be the modulus
character of P . Denote by I(χ) the induced representation IndGP (χδ1/2), i.e.,
the unramified principal series representation induced by χ as described in
Section 1. If x is an element of G, we will denote the action of x on u ∈ I(χ)
by u 7→ x · u. Note that if w ∈ W̃ then the expression w · u is well-defined
for u ∈ I(χ)B as w is determined modulo M0 ⊂ B. A function h ∈ H(G,B)
acts on I(χ)B by the formula

h · u =
∫
G
(x · u)h(x) dx,

where v ∈ I(χ)B.
Let C∞c (G) be the space of locally constant, compactly supported func-

tions G→ C. The map Pχ : C∞c (G)→ I(χ) defined by

Pχ(f)(g) =
∫
P
χ−1δ1/2(p) f(pg) dp

(where dp is the left Haar measure on P giving P0 measure 1) is a G-
equivariant surjection. The functions φw,χ = Pχ(chBwB) (w in W ) form a
basis of the subspace of B-fixed vectors I(χ)B [3, Prop. 2.1]. Concretely, for
p ∈ P ,w′ ∈ W and b ∈ B, φw,χ(pw′b) equals χδ1/2(p) if w′ = w and is zero
otherwise.
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3. The effect of Waff on I(χ)B.

The goal of this section is to compute the effect of s ∈ Saff on I(χ)B. This
will be important for the proof in the following section since we will need to
determine the space I(χ)〈B,s〉 of vectors in I(χ)B fixed by s.

Theorem 3.1. Suppose that w ∈W , α ∈ ∆ and α̃ ∈ ∆̃. Then

wα · φw,χ =
{

chPwwαBαφwwα,χ if wα ∈ Φ+

φwwα,χ + chPw(B−Bα)φw,χ if wα ∈ Φ−,

weα−1 · φw,χ =
{
χδ1/2(aweα)chPwweαBeα−1

φwweα,χ if wα̃ ∈ Φ−

χδ1/2(aweα)φwweα,χ + chPw(B−Beα−1)φw,χ if wα̃ ∈ Φ+.

Proof. For any s in Saff, g ∈ G,

(s · φw,χ)(g) = φw,χ(gs).

The Iwasawa decomposition enables us to write g = p′w′b′ for some p′ in
P , w′ in W , and b′ in B. We will evaluate φw,χ(gs) = φw,χ(p′w′b′s) by
determining the double coset in which p′w′b′s lies.

We first consider s = wα for α ∈ ∆. Now if w′α ∈ Φ+ then by (1)

p′w′b′wα ∈ p′w′BwαB

= p′w′N(α)wαB
= p′N(w′α)w′wαB
⊂ (p′N)w′wαB.

Since χδ1/2 is trivial on N , it follows that φw,χ(p′w′b′wα) equals χδ1/2(p′) if
w = w′wα and 0 otherwise.

If, on the other hand, w′α ∈ Φ− then suppose first that b′ ∈ Bα. Then

p′w′b′wα ∈ p′w′b′wαB = p′w′wαB

since wαBαwα ⊂ B. Thus φw,χ(p′w′b′wα) equals χδ1/2(p′) if w = w′wα and
0 otherwise.

Lastly, suppose that w′α ∈ Φ− and b′ ∈ B−Bα. It is easily deduced from
w′α ∈ Φ− that

Pw′BwαB = Pw′wαB ∪ Pw′B.
Moreover, one can show that p′w′b′wα ∈ Pw′B if and only if b′ is an element
of B −Bα. Thus p′w′b′wα = pw′b for some p ∈ P , b ∈ B. Since

p−1p′ = w′bwαb
′−1
w′
−1 ∈ P ∩K0 = P0

and since χδ1/2 is trivial on P0, we have that χδ1/2(p) = χδ1/2(p′). There-
fore, φw,χ(p′w′b′wα) equals χδ1/2(p′) if w = w′ and 0 otherwise.
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Note that w′α ∈ Φ± if and only if w′wαα = −w′α ∈ Φ∓. Using this, we
assemble the preceding cases to obtain that

(wα · φw,χ)(p′w′b′) =


χδ1/2(p′) if wα ∈ Φ+, w′ = wwα, b′ ∈ Bα
χδ1/2(p′) if wα ∈ Φ−, w′ = wwα
χδ1/2(p′) if wα ∈ Φ−, w′ = w, b′ ∈ B −Bα
0 otherwise.

This immediately implies the first result of the theorem.
We now prove the second formula by calculating weα−1 · φw,χ for α̃ ∈ ∆̃.

Assume first that w′α̃ ∈ Φ−. Then by (2)

p′w′b′weα−1 ∈ p′w′Bweα−1B

= p′w′N(−α̃+ 1)weα−1B

= p′N(−w′α̃+ 1)w′weαaeαB
⊂ (p′a−w′eαN)w′weαB.

Since χ is trivial onN , it follows that φw,χ(p′w′b′weα−1) equals χδ1/2(p′a−w′eα)
if w = w′weα and 0 otherwise.

Now suppose that w′α̃ ∈ Φ+ and that b′ ∈ Beα−1. Then

p′w′b′weα−1 ∈ p′w′b′weα−1B = p′w′weα−1B = (p′a−w′eα)w′weαB
since weα−1Beα−1weα−1 ⊂ B. It follows that φw,χ(p′w′b′weα−1) is equal to
χδ1/2(p′a−w′eα) if w = w′weα and 0 otherwise.

Finally, suppose that b′ ∈ B −Beα−1. As before, it can be shown that

Pw′Bweα−1B = Pw′weαB ∪ Pw′B,
and furthermore that p′w′b′weα−1 ∈ Pw′B if and only if b′ is an element of
B − Beα−1. Hence p′w′b′weα−1 = pw′b for some p ∈ P , b ∈ B. It is easily
shown that this forces p−1p′ ∈ NP0 so that χδ1/2(p) = χδ1/2(p′). Thus
φw,χ(p′w′b′weα−1) equals χδ1/2(p′) if w = w′ and 0 otherwise.

Noting that w′α̃ ∈ Φ± if and only if w′weαα̃ = −w′α̃ ∈ Φ∓, we obtain

(wα · φw,χ)(p′w′b′)

=


χδ1/2(aweα)χδ1/2(p′) if wα̃ ∈ Φ−, w′ = wweα, b′ ∈ Beα−1

χδ1/2(aweα)χδ1/2(p′) if wα̃ ∈ Φ+, w′ = wweα
χδ1/2(p′) if wα̃ ∈ Φ+, w′ = w, b′ ∈ B −Beα−1

0 otherwise.

The second result follows. �

Theorem 3.1 has the following corollary giving the action of chBsB for s
in Saff.
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Corollary 3.2. Suppose that w ∈W , α ∈ ∆ and α̃ ∈ ∆̃. Then

chBwαB · φw,χ =
{
φwwα,χ if wα ∈ Φ+

qα+1φwwα,χ + (qα+1 − 1)φw,χ if wα ∈ Φ−,

chBweα−1B · φw,χ =
{
χδ1/2(aweα)φwweα,χ if wα̃ ∈ Φ−

χδ1/2(aweα)qeαφwweα,χ + (qeα − 1)φw,χ if wα̃ ∈ Φ+.

Proof. We prove the first formula in the case wα ∈ Φ−. The other cases are
handled similarly. For g ∈ G we have

(chBwαB · φw,χ)(g) =
∫
G
φw,χ(gx)chBwαB(x)dx

=
∫
BwαB

φw,χ(gx)dx

=
∑
n

φw,χ(gnwα)

=
∑
n

(wα · φw,χ)(gn),

where n ranges over a set of representatives in N(α) for N(α)/N(α+ 1).
If g ∈ PwwαB then so is gn for each of the qwα = qα+1 representatives

n. On the other hand, if g ∈ PwB, then gn ∈ Pw(B − Bα) for precisely
qα+1 − 1 of the representatives n. Thus

(chBwαB · φw,χ)(g) =
∑
n

(wα · φw,χ)(gn)

=
∑
n

[
φwwα,χ(gn) + chPw(B−Bα)(gn)φw,χ(gn)

]
= qα+1φwwα,χ(g) + (qα+1 − 1)φw,χ(g).

�

The following corollary of Theorem 3.1 gives a basis for I(χ)〈B,s〉, s ∈ Saff.

Corollary 3.3. Suppose α ∈ ∆ and α̃ ∈ ∆̃. Then

(i) {φw,χ + φwwα,χ | w ∈ W,wα ∈ Φ+} is a basis for the fixed space
I(χ)〈B,wα〉.

(ii) {φw,χ + χδ1/2(aweα)φwweα,χ | w ∈ W,wα̃ ∈ Φ+} is a basis for the fixed
space I(χ)〈B,weα−1〉.

Proof. Let s ∈ Saff. Note that

s · I(χ)B ∩ I(χ)B = I(χ)sBs ∩ I(χ)B = I(χ)〈sBs,B〉 = I(χ)〈B,s〉.
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Thus I(χ)〈B,s〉 is precisely the set of vectors in I(χ)B sent to I(χ)B by s. It
is clear from Theorem 3.1 that if s = wα this set is spanned by

{φw,χ + φwwα,χ | w ∈W,wα ∈ Φ+},
and if s = weα−1 this set is spanned by

{φw,χ + χδ1/2(aweα)φwweα,χ | w ∈W,wα̃ ∈ Φ+}.
�

4. Proof of Theorem 1.1.

We now prove that the dimension of

I(χ)K = I(χ)BWKB =
⋂
s∈S

I(χ)〈B,s〉

is equal to |W/ν(WK)|.
Suppose that f =

∑
w∈W c(w)φw,χ is a vector in I(χ)B with the c(w) ∈ C.

Then it is easily deduced from Corollary 3.3 that f ∈
⋂
s∈S I(χ)〈B,s〉 if and

only if for all w ∈W ,

c(wwα) = c(w) for all α ∈ ∆ with wα ∈ S(3)

c(wweα) = χδ1/2(aweα)c(w) for all α̃ ∈ ∆̃ with weα−1 ∈ S.(4)

Let V be the space of functions c : W → C satisfying (3) and (4). Then
dim I(χ)K = dimV . Since ν(wβ−1) = ν(wβ) = wβ for all β ∈ Φ, it follows
that c(w) determines c(ww′) for all w′ ∈ 〈ν(s) | s ∈ S〉 = ν(WK) so

dimV ≤ |W/ν(WK)|.
We will prove that dimV = |W/ν(WK)|.

Remark 4.1. We note that if WK ⊂ W (i.e., if K ⊂ K0) then it is clear
that dimV = dim I(χ)K = |W/ν(WK)| since in this case only the relations
in (3) appear.

Since WK is finite, it contains no non-trivial translations so ν is injective
on WK . Thus ν(WK) ∼= WK , and ν(WK) is generated as a Coxeter group
by ν(S). We will denote the element of WK corresponding to t ∈ ν(S) by
ν−1(t). Define recursively a function [ ] from the set of finite sequences of
elements of ν(S) to Waff. Let t1, . . . , tn ∈ ν(S). For the empty sequence ∅,
let [∅] = e. Define

[t1] =
{
e if ν−1(t1) = wα, α ∈ ∆
aeα if ν−1(t1) = weα−1, α̃ ∈ ∆̃,

and then set

[t1, . . . , tn] =
{

[t1, . . . , tn−1] if ν−1(tn) = wα, α ∈ ∆
[t1, . . . , tn−1] at1···tn−1eα if ν−1(tn) = weα−1, α̃ ∈ ∆̃.
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It follows easily from the definition of [ ] that

[t1, . . . , tk](t1 · · · tk)[tk+1, . . . , tn](t1 · · · tk)−1 = [t1, . . . , tn].(5)

We claim that the element [t1, . . . , tn] of Waff depends only on the product
t1 · · · tn and not on the particular sequence t1, . . . , tn.

Lemma 4.2. Let t1, . . . , tn, u1, . . . , um be elements of ν(S) such that

t1 · · · tn = u1 · · ·um.
Then [t1, . . . , tn] = [u1, . . . , um].

Proof. Since (ν(WK), ν(S)) is a Coxeter group, the word t1 · · · tn is obtain-
able from u1 · · ·um via the basic Coxeter group relations among the elements
of ν(S), i.e., those of the form (tu)m(t,u) = e, where t, u ∈ ν(S) and m(t, u)
is some number in {1, 2, 3, 4, 6} (see e.g. [5, 1.6]). Therefore, it suffices to
show that [ ] remains unchanged when a subsequence of consecutive terms
in a sequence t1, . . . , tn is deleted according to such a relation. In fact, due
to (5) one need only show that

[t, u, t, u, . . . , t, u︸ ︷︷ ︸
m(t,u)

] = [∅] = e(6)

for each basic relation (tu)m(t,u) = e among the elements of ν(S).
It is clear that (6) holds if ν−1(t), ν−1(u) ∈W . Therefore we shall consider

only those relations which involve some reflection t ∈ ν(S) such that ν−1(t) /∈
W . Such a t is necessarily of the form weα = ν(weα−1) for some α̃ ∈ ∆̃. The
basic relations involving weα are of the form

(weαu)m = e(7)

where u ∈ ν(S) and m ∈ {1, 2, 3, 4}. (It is never the case that m = 6.)
First consider the case m = 1. Here u must equal weα so (6) holds as

[weα, weα] = aeαaweα eα = aeαa−eα = e.

Now suppose that m > 1 and ν−1(u) ∈W in (7). Then

[weα, u, . . . , weα, u]︸ ︷︷ ︸
m

= aeα . . . a(weαu)m−1eα.
Since weαu is a rotation of order m, α̃+ · · ·+(weαu)m−1α̃ = 0 so (6) holds as

aeα . . . a(weαu)m−1eα = e.

Finally, suppose m > 1 and ν−1(u) /∈ W in (7). In this case, it follows
that m = 2 and u = weβ for some β̃ ∈ ∆̃. Then weβ(α̃) = α̃ and weα(β̃) = β̃.
It follows that (6) holds again as

[weα, weβ , weα, weβ, ] = aeαaweα eβaweαweβ eαaweαweβweα eβ = aeαaeβa−eαa−eβ = e.

�
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Let t1, . . . , tn ∈ ν(S). Since [t1, . . . , tn] depends only on the product
t1 · · · tn, [ ] gives a function ν(WK) → Waff, which we will also denote by
[ ]. Explicitly, for w ∈ ν(WK), [w] = [t1, . . . , tn] for any t1, . . . , tn ∈ ν(S)
with w = t1 · · · tn. Note that [ ] is a 1-cocycle from ν(WK) to the group of
translations in Waff.

Proposition 4.3. The space V of functions W → C satisfying (3) and (4)
has dimension |W/ν(WK)|.

Proof. Let R be a set of representatives for the left cosets of ν(WK) in W .
For each σ ∈ R, define the function cσ : W → C by setting

cσ(w) =
{
χδ1/2([w′]) if w = σw′ ∈ σν(WK)
0 if w /∈ σν(WK).

The cσ are clearly linearly independent and are |W/ν(WK)| in number. It
suffices then to show that the cσ are in V .

Fix σ ∈ R. Let α be an element of ∆ such that wα ∈ S. If w /∈ σν(WK)
then wwα /∈ σν(WK) so

cσ(w) = 0 = cσ(wwα).

If w = σw′ ∈ σν(WK) then

cσ(wwα) = cσ(σw′wα) = χδ1/2([w′wα]) = χδ1/2([w′]) = cσ(w).

Thus (3) holds for cσ.
Now let α̃ be an element of ∆̃ such that weα−1 ∈ S. As before, if w /∈

σν(WK) then

cσ(w) = 0 = χδ1/2(aweα)cσ(wweα).

And if w = σw′ ∈ σν(WK) then

cσ(wweα) = cσ(σw′weα)

= χδ1/2([w′weα])

= χδ1/2([w′]aw′eα)

= χδ1/2([w′])χδ1/2(aw′eα)

= χδ1/2(aw′eα)cσ(w).

Thus cσ satisfies (4) and lies in V . �

It follows that dim I(χ)K = dimV = |W/ν(WK)|.
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A SPLITTING THEOREM FOR ALEXANDROV SPACES

Yukihiro Mashiko

We use a notion of differentiability for functions on Alexan-
drov spaces and prove a splitting theorem for Alexandrov
spaces admitting affine functions with such differentiability.

0. Introduction.

A classical result of Toponogov [12] states that if a complete Riemannian
manifold M with nonnegative sectional curvature contains a straight line,
thenM is isometric to the metric product of a nonnegatively curved manifold
and a line. We then know that the Busemann function associated with the
straight line is an affine function, namely, a function which is affine on each
unit speed geodesic in the one variable sense. After the theorem, many
generalizations were proved. Cheeger-Gromoll’s theorem [2] is the most
excellent one among them.

An Alexandrov space with curvature bounded below by κ ∈ R is a lo-
cally compact, complete and path connected inner metric space on which
the triangle comparison theorem holds (see [1]). For simplicity, we denote
by curv ≥ κ the lower curvature bound. The direct generalization of the
Toponogov theorem for Alexandrov spaces with curv ≥ 0 was proved early
in 1967 by A. Milka [8]. We see that this is essentially implied by the rigid-
ity of geodesic triangles and hinges in the Global Comparison Theorem (see
Fact 1.0).

The author has shown in [7] that if a 2-dimensional Alexandrov space X
with curv ≥ −κ2 without boundary admits a nontrivial affine function, then
X is isometric to flat R2 or flat S1×R. In the present paper, we extend this
to higher dimensional Alexandrov spaces, possibly with nonempty boundary,
admitting affine functions with a new notion of differentiability. Innami [6]
showed that every complete Riemannian manifold admitting a nontrivial
affine function splits isometrically into the metric product of a line and a
Riemannian manifold. Affine functions on complete Riemannian manifolds
naturally possess the differentiability introduced in this paper.

We shall define some notion needed to state our main theorem. Let X
be an n-dimensional Alexandrov space with curv ≥ −κ2 and n ≥ 2, κ > 0.
We denote by pq a minimal geodesic from p to q and by |p, q| the distance

445
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between p and q. We put

Σ̃pX := {pq|q ∈ X − {p}}/ ∼,
where the equivalence relation ∼ is defined such that pq ∼ pr iff pq ⊂ pr
or pq ⊃ pr. Then the space of directions ΣpX at p in X is defined to be
the metric completion of Σ̃pX. For u ∈ ΣpX we denote by γu the geodesic
tangent to u with γu(0) = p if it exists. For a function f : X −→ R, we
define the directional derivative d̃pf : Σ̃pX −→ R at p by d̃pf(u) := (f ◦
γu)′+(0) if the right-hand derivative exists. We denote by dpf : ΣpX −→ R

the continuous extension of d̃pf if it exists. Remarking that ΣpX is an
Alexandrov space with curv ≥ 1, we consider the composition d̃u1 ◦ dp of
the two operators d̃u1 and dp for p ∈ X and u1 ∈ ΣpX. We put d̃fp,u1 :=
d̃u1 ◦ dpf and denote by dfp,u1 : Σu1ΣpX −→ R the cotinuous extension
of d̃fp,u1 : Σ̃u1ΣpX −→ R. Repeating the procedure, we define for k with
1 ≤ k < n = dimX,

ΣkX := {(p, u1, u2, . . . , uk)| p ∈ X,u1 ∈ ΣpX,

ui ∈ Σui−1Σui−2 · · ·Σu1ΣpX (i = 2, . . . , k)},

d̃fp,u1,u2,...,uk
:= d̃uk

◦ · · · ◦ du2 ◦ du1 ◦ dpf : Σ̃uk
Σuk−1

· · ·Σu1ΣpX −→ R

for a function f : X −→ R and for (p, u1, u2, . . . , uk) ∈ ΣkX.

Definition 0.1. A function f : X −→ R belongs to the class Dr (1 ≤ r ≤
n = dimX), or simply, f is of Dr class iff d̃fp,u1,u2,...,uk−1

is defined and has
the continuous extension

dfp,u1,u2,...,uk−1
: Σuk−1

Σuk−2
· · ·Σu1ΣpX −→ R

for all (p, u1, u2, . . . , uk−1) ∈ Σk−1X and for all k with 1 ≤ k ≤ r. We
agree that a function f : X −→ R is of D1 class if and only if d̃fp has the
continuous extension dfp.

To control the behavior of the directional derivatives, we introduce a
quantity associated with f : X −→ R as follows:

∆1f(p) :=
1

Hn−1(ΣpX)

∫
ΣpX3u

dfp(u) dHn−1(u), for p ∈ X,

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure on ΣpX.
This means the total flow of the gradient of f at the point p. If f is a
diffenrentiable function on a Riemannian manifold, then f is of Dn class and
∆1f(p) = 0 at every point p. On the other hand, there exists an Alexandrov
space on which ∆1f(p) 6= 0 at some singular point p for an affine function f
of D3 class and the whole space does not split (see Example 1.4). To avoid
this case, we need the following definition.
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Definition 0.2. A function f : X −→ R is of Dr,s class, s ≤ r, iff f is of
Dr class and

∆1dfp,u1,u2,...,uk−2
(uk−1) = 0

for all (p, u1, u2, . . . , uk−1) ∈ Σk−1X and for all k with 1 ≤ k ≤ s.

With these definitions, we now state our main theorem of this paper:

Theorem A. Let X be an n-dimensional Alexandrov space with curv ≥
−κ2. Then, X admits a nontrivial affine function ϕ : X −→ R of D2,2 class
if and only if X is isometric to the metric product X̃ × R, where X̃ is an
(n− 1)-dimensional Alexandrov space with curv ≥ −κ2.

Since every constant function on X is an affine function of D2,2 class, the
dimension of the space of all affine functions on X of D2,2 class is at least
one. Thus we obtain the following corollary:

Corollary B. The linear space of all affine functions on X of D2,2 class is
of dimension k + 1 if and only if X is isometric to X̃ × Rk, where X̃ does
not admit any nontrivial affine function of D2,2 class.

For the proof of Theorem A, it suffices to show that, for each minimal
geodesic γ in X, there exists a totally geodesic and flat strip including γ.
Under the assumption that X admits an affine function of D2,2 class, we
will show in Proposition 4.3 that the strip is spanned by the gradient curves
of ϕ. Recently, G. Perelman and A. Petrunin [10] considered the existence
of gradient curves in more general situation. The arguments in this paper
is more elementary than theirs, and the author believes that his arguments
will be shortend by their existence theorem.

1. Preliminaries and examples.

Throughout this paper, let X be an Alexandrov space with curv ≥ −κ2 for
κ > 0.

1.0. Global Comparison Theorem. The most basic tool in Alexandrov
geometry is the following theorem.

Fact 1.0 (Global Comparison Theorem). (See [1, §3], [5, Theorem 1.1] and
[4, Appendix].) If Z is an n-dimensional Alexandrov space, n ≥ 2, with
curv ≥ k, then the following holds:

(i) For any triple (p0, p1, p2) in Z there is a unique (up to isometry) triple
(p0, p1, p2) in M2(k) with |pi, pj | = |pi, pj |. Moreover, for any segment
p1p2 and 0 ≤ t ≤ |p1, p2|

(a) |p0, p1p2(t)| ≥ |p0, p1p2(t)|.

(If k > 0 we must also assume that |p0, p1|+|p1, p2|+|p2, p0| < 2π/
√
k.)
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(ii) If equality holds in (a) for some 0 < t0 < |p1, p2| and ct0 is a segment
from p0 to p1p2(t0), then ct0(s), 0 < s < |p0, p1p2(t0)|, is joined their
limit segments from p0 to p1 and p2, form a surface which has totally
geodesic interior and which is isometric to the triangular surface in
M2(k) with vertices p0, p1, p2.

(iii) For any hinge (p0p1, p0p2) in Z with 0 < ∠(p0p1, p0p2) < π we have

(b) |p1, p2| ≤ |p1, p2|,

where (p0p1, p0p2) is the corresponing hinge in M2(k).
(iv) If equality holds in (b), then (p0p1, p0p2) spans a surface which has

totally geodesic interior and which is isometric to the triangular sur-
face in M2(k) spanned by (p0p1, p0p2). In fact, any such surface is
determined uniquely by a segment in Z between interior points of p0p1

and p0p2.

1.1. Drectional derivative Df and the tangent cone. We denote by
K( · ) the Euclidean cone over a metric space (see [1, §4] for the definition
of the Euclidean cone). The following fact is well-known:

Fact 1.1. The pointed Hausdorff limit limε→0(ε−1X, p) of the (ε−1)-scaling
of the metric around p is isometric to the Euclidean cone K(ΣpX) for every
p ∈ X.

We set KpX := K(ΣpX) and call it the tangent cone at p in X. Let p∗

denote the vertex of KpX and αu, for α ≥ 0 and u ∈ ΣpX, the point in KpX
such that |αu, p∗| = α and pr(αu) = u, where pr : KpX\{p∗} −→ ΣpX is
the projection.

Let f : X −→ R be a function of Dr class and 1 ≤ k ≤ r. Then we obtain
the extension

Dfp,u1,u2,...,uk−1
: Kuk−1

Kuk−2
· · ·Ku1KpX −→ R

of dfp,u1,u2,...,uk−1
: Σuk−1

Σuk−2
· · ·Σu1ΣpX −→ R with the condition de-

scribed as follows. We see that Kuk−1
Kuk−2

· · ·Ku1KpX splits isometrically
into the product

K(Σuk−1
Σuk−2

· · ·Σu1ΣpX)× 〈u1, u2, . . . , uk−1〉

for every (p, u1, u2, . . . , uk−1) ∈ Σk−1X, where 〈·〉 denotes the linear span.
Under this identification, we have for u = (αkuk, αk−1uk−1 + αk−2uk−2 +
· · ·+ α1u1) ∈ K(Σuk−1

Σuk−2
· · ·Σu1ΣpX)× 〈u1, u2, . . . , uk−1〉

(†) Dfp,u1,u2,...,uk−1
(u) =

√
α2
kdfp,u1,u2,...,uk−1

(uk)2 + α2
k−1 + · · ·+ α2

1.

In particular for k = 1 in (†), we agree that Dfp(α1u1) = α1dfp(u1) for all
α1u1 ∈ KpX and u1 ∈ ΣpX.
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1.2. Generalized gradient and gradient curves. Let f : X −→ R be
a function of D1 class. Then by the compactness of ΣpX, dfp : ΣpX −→
R attains the maximum and minimum values on ΣpX for each p ∈ X.
We denote by M(dfp) the maximum level set of dfp and by m(dfp) the
minimum level set of dfp. If M(dfp) consists of only one element, we express
it by ∇̂f(p) and put ∇f(p) := |∇f |(p) · ∇̂f(p) ∈ KpX, where |∇f |(p) :=
maxu∈ΣpX dfp(u). We call ∇f(p) the generalized gradient of f at p. In this
notation, if m(dfp) consists of only one element, ∇̂(−f)(p) coincides with
the element of m(dfp).

A curve c : [a, b] −→ X by definition has the right (left) tangent direction
v ∈ Σc(t) at t ∈ [a, b) (resp. t ∈ (a, b]) if any initial direction of any minimal
segment from c(t + h) to c(t) converges to v as h ↓ 0 (resp. h ↑ 0). The
gradient curve c : [a, b] −→ X of a function g on X is defined such that c
has the right tangent ∇̂g(c(t)) for every t ∈ [a, b).

Example 1.3. Let X̃ be an Alexandrov space with curv ≥ −κ2. Then the
metric product X := X̃×R is an Alexandrov space with curv ≥ −κ2. Define
η : X −→ R by η((p̃, t)) := t. Then η is a nontrivial affine function of D2,2

class (see Proposition 3.2). Then ΣpX is the spherical suspension of ΣpX̃

with its suspension points ∇η(p) (= ∇̂η(p)) and ∇(−η)(p) (= ∇̂(−η)(p)) for
every p ∈ X. If X̃ has singular points, then so does X = X̃ ×R.

Example 1.4. Let C be an unbounded convex body in Rn with nonempty
interior and with boundary. Then C is a noncompact n-dimensional Alexan-
drov space with curv ≥ 0 (with boundary). We take an arbitrary unit vector
z ∈ Rn and denote by hz : C −→ R the height function in the direction z,
i.e., hz(p) := 〈z, p〉, where 〈 , 〉 is the cannonical inner product in Rn. Then
hz is affine. If there is a point on the boundary of C such that the diameter
of Σp is less than π, then C does not split into the product of a line and a
space, and then hz is of Dn class but not of Dn,1 class.

2. Affine functions of D1 class.

Throughout this section we assume that ϕ : X −→ R is an affine function
of D1 class. We first prove the following lemma, which will frequently be
used in this paper.

Lemma 2.1. Fix an arbitrary point p ∈ X. Then Dϕp : KpX −→ R
becomes an affine function again. In other words, we have

(∗) (sin |u, v|) dϕp(σ(t)) = sin(|u, v| − t) dϕp(u) + sin t dϕp(v)

for all u, v ∈ ΣpX, for every minimal geodesic σ : [0, |u, v|] −→ ΣpX from u
to v and for every t ∈ [0, |u, v|].

Differentiating (∗) in t at t = 0 yields the following:
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Corollary 2.2. We have the directional derivative of second order at (p, u)
∈ ΣX,

(∗∗) (sin |u, v|) d̃ϕp,u(σ̇(0)) = dϕp(v)− dϕp(u) cos |u, v|,

where σ̇(0) is the initial direction of σ.

Proof of Lemma 2.1. From the continuity of dϕp, it suffices to show (∗)
for all u, v ∈ Σ̃pX with 0 < |u, v| < π and for t ∈ (0, |u, v|). Identifying
u, v with two unit vectors in R2 which makes angle |u, v|ΣpX , we define a
number λ = λ(t) ∈ (0, 1) such that ∠(u, (1 − λ)u + λv) = t. Let γu and
γv be the geodesics tangent to u and v respectively and {si} a sequence
of numbers such that si ↘ 0 as i → ∞. We can choose an appropriate
subsequence {sj} ⊂ {si} so that a sequence {τj : [0, 1] −→ (1/sj)X} of
minimal geodesics in (1/sj)X from γu(sj) to γv(sj) tends to a segment τ on
KpX as j →∞. Here each τj is parameterized proportionally to arclength,
and the segment τ is projected to a minimal geodesic σ : [0, |u, v|] −→ ΣpX
from u to v.

Let αj : [0, |p, τj(λ)|] −→ X be a minimal geodesic from p to τj(λ). By the
continuity of dϕp and Fact 1.1, we have dϕp(α̇j(0))→ dϕp(σ(t)) as j →∞.
Using Fact 1.1 and the definition of affine functions, we obtain

dϕp(σ(t)) = lim
j→∞

dϕp(α̇j(0)) = [(1− λ)dϕp(u) + λdϕp(v)]
sin t

λ sin |u, v|
.

In elementary Euclidean geometry, we have (1− λ)/λ = sin(|u, v| − t)/sin t.
Thus we obtain (∗).

For the first assertion, we need to prove that dϕp(u) = −dϕp(v) for u, v ∈
ΣpX with |u, v| = π. This is obvious from the continuity of dϕp and (∗).
Hence this completes the proof. �

Lemma 2.3. If maxu∈ΣpX dϕp(u) > 0 (minu∈ΣpX dϕp(u) < 0) at some
point p ∈ X, then the maximum level set M(dϕp) of dϕp (resp. the min-
imum level set m(dϕp) of dϕp) consists of only one element. In particular,
the generalized gradient ∇ϕ(p) (resp. ∇(−ϕ)(p)) is defined for all p ∈ X
with ϕ(p) < supX ϕ (resp. ϕ(p) > infX ϕ).

Proof. We prove this lemma only in the case maxu∈ΣpX dϕp(u) > 0. Sup-
pose that M(dϕp) contains two elements u1 and u2 under the assump-
tion max dϕp > 0. If |u1, u2| = π, then we have dϕp(u1) = −dϕp(u2)
by Lemma 2.1. Hence dϕp(u1) = max dϕp = 0, a contradiction to the
assumption. Otherwise, if |u1, u2| 6= π, we have, for t = |u1, u2|/2 in
(∗) along some minimal geodesic σ : [0, |u1, u2|] −→ ΣpX from u1 to u2,
dϕp(u1) = max dϕp < dϕp(σ(|u1, u2|/2)). This contradicts the choice of
u1. �
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We discuss the zero level set (dϕp)−1(0) of dϕp. For simplicity, we put

O(dϕp) := (dϕp)−1(0).

If o1, o2 ∈ O(dϕp) satisfy 0 < |o1, o2| < π, then Lemma 2.1 implies that
all minimal geodesics from o1 to o2 are contained entirely in O(dϕp). Thus
we obtain the following lemma:

Lemma 2.4. O(dϕp) is locally convex.

We deal with a point p ∈ X such that ϕ(p) < supX ϕ, or equivalently,
max dϕp > 0. Then by Lemma 2.3, the generalized gradient ∇ϕ(p) is de-
fined. For such point p, we investigate ∇̂ϕ(p) and O(dϕp) in the following
proposition:

Proposition 2.5. Let p be a point of X with ϕ(p) < supX ϕ. Then the
following (i) and (ii) hold:

(i) For every o ∈ O(dϕp), we have |∇̂ϕ(p), o| ≤ π/2.
(ii) If there are elements o1 and o2 of O(dϕp) such that 0 < |o1, o2| < π

and |∇̂ϕ(p), o1| = |∇̂ϕ(p), o2| = π/2, then the triple (∇̂ϕ(p), o1, o2)
spans a totally geodesic triangular surface of constant curvature 1.

Remark 2.6. Since −ϕ is also affine, the same assertions as above hold for
p ∈ X with ϕ(p) > infX ϕ and for ∇̂(−ϕ)(p) instead of ∇̂ϕ(p).

Proof of Proposition 2.5. (i) We want to use (∗∗) in Corollary 2.2 for
u = ∇̂ϕ(p) and v = o ∈ O(dϕp). If |∇̂ϕ(p), o| = π, then it follows from
Lemma 2.1 that maxu∈ΣpX dϕp(u) = dϕp(∇̂ϕ(p)) = −dϕp(o) = 0, a contra-
diction. Thus |∇̂ϕ(p), o| 6= π. Applying (∗∗) to ∇̂ϕ(p) and o along some
minimal geodesic from ∇̂ϕ(p) to o and using d̃ϕ

p,b∇ϕ(p)
≤ 0, we have

dϕp(o)− |∇ϕ|(p) cos |∇̂ϕ(p), o| ≤ 0.

Hence |∇̂ϕ(p), o| ≤ π/2.
(ii) Draw a comparison triangle 4(∇̂ϕ(p), o1, o2) in the unit sphere S2(1)

corresponding to a geodesic triangle 4(∇̂ϕ(p), o1, o2) in ΣpX. Take a point
o3 in the interior of the edge o1o2 and a point o3 in the edge o1o2 correspond-
ing to o3. Then the Global Comparison Theorem implies that |∇̂ϕ(p), o3| ≥
|∇̂ϕ(p), o3| = π/2 (see Fact 1.0). Since o3 ∈ O(dϕp) by Lemma 2.4, it follows

from (i) that |∇̂ϕ(p), o3| ≤ π/2. Hence |∇̂ϕ(p), o3| = |∇̂ϕ(p), o3|. Therefore
(ii) follows from the rigidity of geodesic triangle in the Global Comparison
Theorem. �
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3. Affine functions of D2,2 class.

Proposition 3.1. If ϕ : X −→ R is a nontrivial affine function of D2,2

class, then the following (i)-(v) hold:
(i) ΣpX is the spherical suspension of O(dϕp) with its suspension points
∇̂ϕ(p) and ∇̂(−ϕ)(p) for every p ∈ X.

(ii) We have

dϕp(u) = |∇ϕ|(p) cos |∇̂ϕ(p), u|ΣpX

for every p ∈ X and for every u ∈ ΣpX, or equivalentlly,

Dϕp(u) = |∇ϕ|(p)|u| cos ∠p∗(∇ϕ(p), u)

for every u ∈ KpX. Here ∠p∗ denotes the angle distance at the vertex
p∗.

(iii) Fix two arbitrary numbers a, b ∈ ϕ(X) with a < b. Then for every
q ∈ ϕ−1(a) and for every minimal geodesic σq : [0, l(q)] −→ X from q
to ϕ−1(b), we have

σ̇q(0) = ∇̂ϕ(q) and ˙(σ−1
q )(0) = ∇̂(−ϕ)(σ−1

q (0)),

where σ−1
q : [0, l(q)] −→ X is defined by σ−1

q (t) := σq(l(q) − t), t ∈
[0, l(q)].

(iv) There is a unique complete gradient curve φ : R −→ X of ϕ passing
through p parameterized by ϕ◦φ(t) = ϕ(p)+ t, t ∈ R, for every p ∈ X.
Moreover, it satisfies

|ϕ(φ(t1))− ϕ(φ(t2))|
|φ(t1), φ(t2)|

= |∇ϕ|(φ(t)) = |∇ϕ|(p)

for all t, t1, t2 ∈ R, and in partucular φ is a straight line.
(v) |∇ϕ|(p) is constant for all p ∈ X.

Proof. (i) Fix a point p ∈ X arbitrarily. Since ϕ is nontrivial, either
max dϕp > 0 or min dϕp < 0 holds. If max dϕp > 0, then min dϕp < 0
since ϕ is particularly of D2,1 class. Similarly, we have max dϕp > 0 if
min dϕp < 0. Thus ∇̂ϕ(p) and ∇̂(−ϕ)(p) at p are defined.

By Proposition 2.5 (ii), it suffices to show the following:

Assertion. |∇̂ϕ(p), o|ΣpX = |∇̂(−ϕ)(p), o|ΣpX = π/2 for all o ∈ O(dϕp).

Suppose that there is o ∈ O(dϕp) such that |∇̂ϕ(p), o| 6= π/2. Then by
Proposition 2.5 (i), |∇̂ϕ(p), o| < π/2. Apply (∗∗) to ∇̂ϕ(p) and o along
a minimal geodesic σ : [0, |∇̂ϕ(p), o|] −→ ΣpX from ∇̂ϕ(p) to o. Then
we have dϕ

p,b∇ϕ(p)
(σ̇(0)) < 0. Since ϕ is particularly of D2 class, there is a

neighborhood W of σ̇(0) in Σb∇ϕ(p)
ΣpX such that dϕ

p,b∇ϕ(p)
(w) < 0 for every
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w ∈ W . Since dϕ
p,b∇ϕ(p)

≤ 0 and W is of positive measure with respect to
(n− 2)-dimensional Hausdorff measure, we obtain∫

Σ b∇ϕ(p)
ΣpX3w

dϕ
p,b∇ϕ(p)

(w) dHn−2(w) < 0.

This contradicts the assumption that ϕ is of D2,2 class.
(ii) It suffices to show the equation for u ∈ ΣpX\{∇̂ϕ(p), ∇̂(−ϕ)(p)}. By

(i), any such u is contained in a minimal geodesic τ : [0, π] −→ ΣpX joining
two suspension points. Applying (∗∗) to ∇̂ϕ(p) and τ(π/2) along τ , we have
dϕ

p,b∇ϕ(p)
(τ̇(0)) = 0. Using again (∗∗) for ∇̂ϕ(p) and u along τ , we obtain

dϕp(u) = |∇ϕ|(p) cos |∇̂ϕ(p), u|.
(iii) Suppose that σ̇q(0) 6= ∇ϕ(q) for some minimal geodesic σq : [0, l(q)]

−→ X from q to ϕ−1(b). Then we can find a broken geodesic

ξ =
⋃
i

γi : [0, l(ξ)] −→ X

such that (ϕ ◦ ξ)′+(s) > dϕq(σ̇q(0)) for every s ∈ [0, l(ξ)) and ξ(0) = q,
ξ(l(ξ)) ∈ ϕ−1(b). The construction of ξ is achieved in the same way as in
2-dimensional Alexandrov space (see [7, Lemma 2(2)]). Since ϕ◦ξ is almost
everywhere differentiable, we conclude that l(q) > l(ξ). This contradicts the
minimizing property of σq.

(iv) Choose a double-ended sequence {aj}j∈Z such that a0 = ϕ(p), aj ↗
supX ϕ as j →∞ and aj ↘ infX ϕ as j → −∞. We start from p ∈ ϕ−1(a0)
and repeat the same construction by minimal projections as in (iii). That
is, let p0 := p and pj+1 denote the foot of the (unique) minimal geodesic
from pj to ϕ−1(aj+1) for j ≥ 0. For j ≤ 0, let pj−1 denote the foot of the
(unique) minimal geodesic from pj to ϕ−1(aj−1). Then we obtain the curve

φ :=
⋃
j∈Z

pjpj+1 :
(

inf
X
ϕ− ϕ(p), sup

X
ϕ− ϕ(p)

)
−→ X

parameterized by ϕ◦φ(t) = ϕ(p)+ t. By the construction, we see that every
subarc from φ(t1) to φ(t2) of φ is a minimal geodesic and

|ϕ(φ(t1))− ϕ(φ(t2))|
|φ(t1), φ(t2)|

= |∇ϕ|(φ(t)) = |∇ϕ|(p)

for all t, t1, t2 ∈ (infX ϕ− ϕ(p), supX ϕ− ϕ(p)).
Once supX ϕ = ∞ and infX ϕ = −∞ are established, the proof of (iv)

is completed. Suppose that supX ϕ < ∞. Then the sequence {pj}j=0,1,...

accumulates to some point p∞. (i) implies that max dϕp∞ > 0 also at p∞.
This is a contradiction to ϕ(p∞) = supX ϕ. Therefore supX ϕ =∞. On the
other hand, infX ϕ = −∞ follows from which −ϕ is also affine.
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(v) Choose two points p0 and p1 arbitrarily. Let φ0, φ1 : R −→ X be two
gradient curves passing through p0, p1 respectively obtained by (iv). We
may assume from (iv) that ϕ(p0) = ϕ(p1) and φ0 6= φ1. It is easily seen
from (i) and (iv) that ∠p1(p1p0, p1φ1(t)) = π/2, |p1, φ1(t)| = t/|∇ϕ|(p1) and
|∇ϕ|(p0) ≥ (ϕ(φ1(t))− ϕ(p0))/|p0, φ1(t)| = t/|p0, φ1(t)| for all t ∈ [0,∞).

For every t ∈ [0,∞), draw a comparison hinge (p1p0, p1φ1(t)) of a hinge
(p1p0, p1φ1(t)) in hyperbolic surface H2(−κ2) of constant curvature −κ2.
Then the Global Comparison Theorem and the cosine formula in H2(−κ2)
implies that

|p0, φ1(t)| ≤ |p0, φ1(t)| =
1
κ

cosh−1
[
cosh(κ|p0, p1|) cosh(κ|p1, φ1(t)|)

]
.

Therefore we have

|∇ϕ|(p0) ≥
κ · t

cosh−1
[
cosh(κ|p0, p1|) cosh(κ · t/|∇ϕ|(p1))

] .
Taking t → ∞ and applying L’Hospital’s formula, we obtain |∇ϕ|(p0) ≥
|∇ϕ|(p1). The symmetric property of the above discussion implies the re-
verse inequality. This completes the proof. �

We now assume that ϕ : X −→ R is a nontrivial affine function of D1

class satisfying the condition of the assertion (i) of Proposition 3.1. Then
all other assertions (ii)-(v) follow. More precisely, the following holds:

Proposition 3.2. Let ϕ : X −→ R be a nontrivial affine function of D1

class. If ϕ satisfies the condition that ΣpX forms the spherical suspension
with its suspension points ∇̂ϕ(p) and ∇̂(−ϕ)(p) for every p ∈ X, then ϕ is
of Dn,n class, n = dimX.

Remark 3.3. It is easily seen that η in Example 1.3 is of D1 class and
satisfies the assumption of Proposition 3.2. Hence η is of D2,2 class.

Proof of Proposition 3.2. We first prove that ϕ is of D1,1 class. Fix a
point p ∈ X arbitrarily. Since ΣpX is a spherical suspension with its sus-
pension points ∇̂ϕ(p) and ∇̂(−ϕ)(p), there is a unique point u ∈ ΣpX for
every u ∈ ΣpX such that |∇̂ϕ(p), u| = |u, ∇̂(−ϕ)(p)| and that u, u are lying
on a common minimal geodesic joining suspension points. The correspon-
dence u 7→ u is a isometry between dϕ+

p := {v ∈ ΣpX|dϕp(v) ≥ 0} and
dϕ−p := {v ∈ ΣpX|dϕp(v) ≤ 0}. Note that Proposition 3.1 (ii) is valid under
the assumption of Proposition 3.2. Hence by Proposition 3.1 (ii), we have
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dϕp(u) = −dϕp(u) for every u ∈ ΣpX. A direct computation implies that∫
ΣpX3u

dϕp(u) dHn−1(u)

=
∫
dϕ+

p 3u
dϕp(u) dHn−1(u) +

∫
dϕ−p 3u

dϕp(u) dHn−1(u) = 0.

That is, ϕ is of D1,1 class.
We next show that ϕ is of D2,2 class. For every w ∈ Σb∇ϕ(p)

ΣpX, there

is a minimal geodesic σw : [0, π] −→ ΣpX from ∇̂ϕ(p) to ∇̂(−ϕ)(p) tan-
gent to w. Apply (∗∗) to ∇̂ϕ(p) and σw(π/2) along σw. Then we have
dϕ

p,b∇ϕ(p)
(w) = 0 for all w ∈ Σb∇ϕ(p)

ΣpX. Therefore we conclude that ϕ is

of D2,2 class at (p, ∇̂ϕ(p)) ∈ ΣX for all p ∈ X. Similarly, ϕ is of D2,2 class
at (p, ∇̂(−ϕ)(p)) ∈ ΣX for all p ∈ X.

Therefore it suffices to show the D2,2 condition for all u ∈ ΣpX\{∇̂ϕ(p),
∇̂(−ϕ)(p)}. Such u is contained in a minimal geodesic from ∇̂ϕ(p) to
∇̂(−ϕ)(p). Letting db∇ϕ : ΣpX −→ R denote the distance function from

∇̂ϕ(p), we see that ΣuΣpX is also a spherical suspension with its suspen-
sion points ∇(−db∇ϕ)(u) and ∇db∇ϕ(u). For every w ∈ Σ̃uΣpX let σw :
[0, l(w)]−→ΣpX be a geodesic tangent to w and put θw :=∠(∇(−db∇ϕ(u), w).
Then by a direct computation, we have

d̃ϕp,u(w) =
d

dt
(dϕp(σw(t)))

∣∣
t=0

= |∇ϕ|(p) sin |∇̂ϕ(p), u| cos θw.

This means that d̃ϕp,u has the continuous extension dϕp,u : ΣuΣpX −→ R.
Therefore ϕ is of D2,1 class. Moreover, the D2,2 condition at (p, u) ∈ ΣX is
implied by the same computation as in the proof of the D1,1 condition of ϕ.

Repeating the above computation, we see that ϕ is of Dn,n class. �

4. Totally geodesic flat strip spanned by gradient curves.

In this section we prove Theorem A. Throughout this section let ϕ : X −→
R be a nontrivial affine function of D2,2 class.

Let p0 and p1 be two arbitrary points with ϕ(p0) = ϕ(p1) =: a and
γ : [0, 1] −→ X a minimal geodesic from p0 to p1 parameterized to be
proportional to arclength. By Proposition 3.1 (iv), there is a unique gradient
curve φλ : R −→ X passing through γ(λ) for every λ ∈ [0, 1].

We will prove in Proposition 4.3 that

S :=
⋃

λ∈[0,1]

φλ(R)

is totally geodesic and flat. Once this is established, Theorem A easily
follows.
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We first prove the following lemma:

Lemma 4.1. Fix λ1, λ2 ∈ [0, 1] and s0 ∈ R arbitrarily. Setting l(s, t) :=
|φλ1(s), φλ2(t)| for all s, t ∈ R, we have

lim
h→0

l(s0 + h, s0 + h)− l(s0, s0)
h

= 0.

Proof. Let τst : [0, l(s, t)] −→ X be a minimal geodesic from φλ1(s) to
φλ2(t) and θi(s, t) := ∠(τst,∇ϕ(φλi

)), i = 1, 2. We note that θi(s, t),
i = 1, 2, is independent of the choice of the minimal geodesic τst. Actu-
ally, Proposition 3.1 (ii) implies that |∇ϕ| cos θ1(s, t) = dϕφλ1

(s)(τ̇st(0)) =
dϕφλ1

(s)(τ̇ ′st(0)) = |∇ϕ| cos θ′1(s, t) for every other minimal geodesic τ ′st from
φλ1(s) to φλ2(t) and for θ′1(s, t) = ∠(τ ′st,∇ϕ(φλ1)). Similarly, we have
θ′2(s, t) = θ2(s, t) for θ′2(s, t) := ∠(τ ′st,∇ϕ(φλ2)). Therefore it follows from
the first variation formula ([9, Theorem 3.5]) that for all s, t ∈ R, the par-
tial derivatives ∂l

∂s(s, t) and ∂l
∂t(s, t) exist and equal (−1/|∇ϕ|) cos θ1(s, t) and

(−1/|∇ϕ|) cos θ2(s, t) respectively. Thus we obtain for every h ∈ R,

|l(s0 + h, s0 + h)− l(s0 + h, s0)| =
1
|∇ϕ|

∣∣∣∣∣
∫ |h|

0
cos θ2(s0 + h, s0 + t)dt

∣∣∣∣∣
and

|l(s0 + h, s0)− l(s0, s0)| =
1
|∇ϕ|

∣∣∣∣∣
∫ |h|

0
cos θ1(s0 + t, s0)dt

∣∣∣∣∣ .
Proposition 3.1 implies that for every ε > 0 there is δ = δ(ε) > 0 such that
|θ1(s, t)− π/2|, |θ2(s, t)− π/2| ≤ ε for all s, t ∈ [s0 − δ, s0 + δ]. Therefore we
have for all h ∈ [−δ, δ],

|l(s0 + h, s0 + h)− l(s0, s0)| ≤
2
|∇ϕ|

|h|
∣∣∣cos

(π
2
± ε
)∣∣∣ .

Since δ(ε)→ 0 as ε→ 0, we obtain the desired equality. �

Define cs : [0, 1] −→ S by cs(λ) := φλ(s) for an arbitrarily fixed s ∈ R.
Then the following holds:

Corollary 4.2. The curve cs is minimal for every s ∈ R.

Proof. Let pra : X −→ ϕ−1(a) be the minimal projection to ϕ−1(a) and τ a
minimal geodesic from φ0(s) to φ1(s). Then Lemma 4.1 implies that

L(cs) ≥ L(τ) = L(pra ◦ τ) ≥ L(γ) = L(pra ◦ cs) = L(cs),

where L(·) means the length of a curve. This completes the proof. �

The proof of Theorem A is completed by the following:

Proposition 4.3. The strip S is totally geodesic and flat.
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Proof. Let y0, y1 be two points in S and τ : [0, 1] −→ X a minimal geodesic
from y0 to y1 parameterized proportionally to arclength. We may assume
that y0 ∈ φ0(R) and y1 ∈ φ1(R). Moreover, we may assume from Corol-
lary 4.2 that ϕ(y0) < ϕ(y1). We define a curve c : [0, 1] −→ S in S by
c(λ) := φλ((1− λ)ϕ(y0) + λϕ(y1)). Then ϕ ◦ c is an affine function. We will
calculate the length of c. We denote by prφλ

: X −→ φλ(R) the minimal
projection to φλ(R) and put y′1 := prφ1(y0). Fix λ ∈ (0, 1) arbitrarily and
let h ∈ R\{0} be a number such that |h| is sufficiently small. We consider
the triangle 4(c(λ), c(λ + h), prφλ+h

(c(λ))) whose sides are all minimal if
h > 0 (if h < 0 consider 4(c(λ), c(λ + h), prφλ

(c(λ + h)))). This is a right
triangle on X. By Lemma 4.1 and the parameterization of c, we have for
h > 0,

|c(λ), prφλ+h
(c(λ))| = L(γ)|h| and |prφλ+h

(c(λ)), c(λ+ h)| = |y1, y
′
1||h|,

and for h < 0, |c(λ), prφλ
(c(λ+h))| = L(γ)|h| and |prφλ

(c(λ+h)), c(λ+
h)| = |y1, y

′
1||h|. Note that c(λ) is a point of the straight line φλ. Fact 1.0

together with this imply that |c(λ), c(λ+ h)| =
√
L(γ)2|h|2 + |y1, y′1|2|h|2 +

o(|h|). Equivalently,

|ċ|(λ) := lim
h→0

|c(λ), c(λ+ h)|
|h|

=
√
L(γ)2 + |y1, y′1|2

for all λ ∈ (0, 1). This implies that c is a Lipschitz curve. Therefore L(c) is
calculated as

L(c) =
∫ 1

0
|ċ|(λ)dλ =

√
L(γ)2 + |y1, y′1|2.

A similar calculation shows that L(pra ◦ τ) =
√
L(τ)2 − |y1, y′1|2, where pra

is the same as in the proof of Corollary 4.2. Thus we obtain

L(c)2 ≥ L(τ)2 = L(pra ◦ τ)2 + |y1, y
′
1|2 ≥ L(γ)2 + |y1, y

′
1|2 = L(c)2.

This completes the proof. �
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THE SECOND COHOMOLOGY OF SMALL IRREDUCIBLE
MODULES FOR SIMPLE ALGEBRAIC GROUPS

George J. McNinch

Let G be a connected, simply connected, quasisimple alge-
braic group over an algebraically closed field of characteristic
p > 0, and let V be a rational G-module such that dim V ≤ p.
According to a result of Jantzen, V is completely reducible,
and H1(G, V ) = 0. In this paper we show that H2(G, V ) = 0
unless some composition factor of V is a nontrivial Frobenius
twist of the adjoint representation of G.

1. Introduction.

Let G be a quasisimple, connected, simply connected algebraic group over
the algebraically closed field k of characteristic p > 0. By a G-module V ,
we always understand a rational G-module (one given by a morphism of
algebraic groups G→ GL(V )). In this paper, we study the cohomology of a
G-module V such that dimV ≤ p. By results of Jantzen [Jan96] one knows
that V is semisimple and that H1(G,V ) = 0.

Recall that the Lie algebra g of G is a G-module via the adjoint action.
Our main result is:

Theorem A. Let V be a G-module with dimV ≤ p. Then H2(G,V ) 6= 0 if
and only if V has a composition factor isomorphic with a Frobenius twist
g[d] of g for some d ≥ 1.

Differentiating the representation of G on V gives a representation for
the Lie algebra g on V . Assume that V g = 0. Then the theorem says that
H2(G,V ) = 0. For V of this sort, the vanishing of H2 is a consequence of the
linkage principle for G together with results in Section 2 which give estimates
for the dimensions of Weyl modules whose high weights are simultaneously
in the low alcove and in the orbit Wp • 0. In fact, the same argument shows
that H i(G,V ) is 0 for all i ≥ 1; see Proposition 5.2. It was pointed out to me
that an earlier version of this manuscript contained an overly complicated
proof of this observation.

The crucial case for Theorem A is when V is simple, nontrivial and
V g = V . There is a unique d ≥ 1 such that the “Frobenius untwist”
V [−d] is a G-module on which g acts nontrivially. We have already seen that

459
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H i(G,V [−d]) = 0 for i = 1, 2, so Theorem A follows from the following two
results (see 5.4). [We denote by h the Coxeter number of the group G.]

Theorem B. Suppose that p ≥ h and that W is a G-module for which
H i(G,W ) = 0 for i = 1, 2. Then H2(G,W [d]) ' HomG(g,W ) for all d ≥ 1.

Theorem C. If p > h, dimH2(G, g[d]) = 1 for all d ≥ 1. For any p, there
is a d0 ≥ 1 so that H2(G, g[d]) 6= 0 for all d ≥ d0.

Theorem B is proved in 5.3; it immediately implies the first assertion of
Theorem C (see 5.5). We give a proof of the second assertion of Theorem C
in Section 5.6.

We end the paper by applying the results of Section 2 to calculations of
cohomology groups H i(G1, L), where G1 is the Frobenius kernel, and L is a
simple G1 module with dimL ≤ p; see Proposition 6.

We make now the following remark concerning our hypothesis on G. Sup-
pose that G is quasisimple, but not necessarily simply connected, and let
π : Gsc → G denote the isogeny from the corresponding simply connected
covering group. Then any G representation V is also a Gsc representa-
tion, and the kernel of π is a diagonalizable group scheme. It follows
that π induces an isomorphism H i(G,V ) ' H i(Gsc, V ) for each i ≥ 0; see
[CPSvdK77, Remark (2.7)]. I thank W. van der Kallen for pointing this
out to me. One may check using Lemma 4.1(A) and Proposition 5.1 that
Lie(Gsc) and Lie(G) are isomorphic simple Gsc representations whenever
dimG ≤ p. Thus the conclusion of Theorem A remains true for G.

We conclude this introduction by remarking that the result of Jantzen
[Jan96] cited above is one of several recent results studying the semisim-
plicity of low dimensional representations of groups in characteristic p. See
[Ser94], [McN98], [McN99], [Gur99] and [McN00] for related work.

The author would like to acknowledge the hospitality of Bob Guralnick
and the University of Southern California during a visit in June 1999; in
particular, questions of Guralnick encouraged the author to consider the
problems addressed in this paper, and several conversations inspired some
useful ideas.

2. Root systems.

2.1. We denote by R an indecomposable root system in its weight lattice
X with simple roots S ⊂ R+. For each α ∈ S, there is a fundamental
dominant weight $α ∈ X; the $α form a Z basis of X.

We write α0 for the dominant short root, and α̃ for the dominant long
root in R (these coincide in case there is only one root length).

The Coxeter number of R is given by

h− 1 = sup
α∈R+

{〈ρ, α∨〉} = 〈ρ, α∨0 〉.
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For m ∈ Z and α ∈ R, let sα,m denote the affine reflection of XR = X⊗ZR
in the hyperplane Hα,m = {x ∈ XR : 〈x, α∨〉 = m}.

Let l > h be an integer. The affine Weyl group Wl is the group of
affine transformations of XR generated by all sα,ln for n ∈ Z. According to
[Bou72, Ch. VI, §2.1, Prop. 1] Wl is isomorphic to the semidirect product
of W (the finite Weyl group) with lZR. The normalizer of Wl in the full
affine transformation group of XR contains all translations by lX, hence Wl

is a normal subgroup of Ŵl, the semidirect product of W and lX. Moreover,
Ŵl/Wl ' lX/lZR ' X/ZR is the fundamental group of R, which we will
denote by π.

Let ρ =
1
2
∑

α∈S α. We always consider the dot action of Ŵl (also of W

and Wl) on X: For w ∈ Ŵl and λ ∈ X, this is given by w •λ = w(λ+ρ)−ρ.
The closure of the subset Cl of XR given by

Cl = {λ ∈ XR | 0 < 〈λ+ ρ, α∨〉 < l for each α ∈ R+}

is a fundamental domain for the dot action of Wl on X; the conjugates of
Cl under Wl are known as alcoves, and Cl is the lowest alcove. Since Ŵl

normalizes Wl, [Bou72, Ch. VI, §2.1] shows that Ŵl permutes the alcoves.
Let Ω be the stabilizer in Ŵl of C. Since Wl permutes the alcoves simply

transitively, one deduces that Ŵl is the semidirect product of Ω and Wl.
Thus Ω ' Ŵl/Wl ' π.

Since l > h, the intersection Cl∩X+ is nonempty. [Note that if l ≤ h had
been allowed, we would have Cl ∩X+ = {0} in case l = h, and Cl ∩X+ = ∅
if l < h.] It is then clear that Ŵl • 0 ∩ Cl = {ω • 0 | ω ∈ Ω}.

2.2. Let I index the simple roots S = {αi}, write α∨0 =
∑

i∈I niα
∨
i , and

put J = {i ∈ I | ni = 1}. A dominant weight 0 6= $ ∈ X is minuscule if
whenever λ ≤ $ and λ is a dominant weight, then $ = λ. According to
[Bou72, Ch. VI, Exerc. 23, 24], $ is minuscule just in case $ = $i for
some i ∈ J .

For i ∈ I ∪ {0}, let Si = S \ {αi} (so S0 = S). Write Ri ⊂ R for the
root subsystem determined by Si, and Wi for the parabolic subgroup of W
associated with Ri. Let wi ∈ Wi be the unique element which makes all
positive roots in Ri negative.

For x ∈ X, let t(x) denote the affine translation by x; for i ∈ J , let γi =
t(l$i)w0wi ∈ Ŵl. Note that γi represents $i ∈ X/ZR ' lX/lZR ' Ŵl/Wl.

Applying [Bou72, Ch. VI, §2.2 Prop. 6 and Cor.] one obtains:

Proposition.

(a) Each non-0 coset of ZR in X is uniquely represented by a minuscule
weight. In particular, |π| = |J |+ 1.
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(b) The nonidentity elements of Ω are precisely the γi for i ∈ J . We have

Ŵl • 0 ∩ Cl = {0} ∪ {γi • 0 = (l − h)$i | i ∈ J}.

2.3. For a dominant weight λ, let

d(λ) =
∏
α>0

〈λ+ ρ, α∨〉
〈ρ, α∨〉

(1)

be the value of Weyl’s degree formula at λ.

Proposition. Let λ = (l − h)$i for some i ∈ J .

(a) d(λ) ≥
(
l−1
l−h
)
, with equality if and only if h− 1 = `(w0wi).

(b) If l − h ≥ 2 and h ≥ 3, then d(λ) > l.

Proof. For 1 ≤ k ≤ h − 1, let e(k) be the number of α ∈ R+ \ R+
i with

〈ρ, α∨〉 = k. The argument in the remark on p. 520-521 of [Ser94] (following
Prop. 6) shows that e(k) ≥ 1 for each 1 ≤ k ≤ h− 1. Thus, we have

d(λ) =
h−1∏
k=1

(
l − h+ k

k

)e(k)
≥

h−1∏
k=1

l − h+ k

k
=
(
l − 1
l − h

)
.

If `(w0wi) = |R+| − |R+
i | = h− 1, then e(k) = 1 for each 1 ≤ k ≤ h− 1 and

equality holds. This proves (a).
For (b), note that under the given hypothesis we have l ≥ 5. Since(

l−1
l−h
)
≥
(
l−1
2

)
> l for all such l, (b) follows immediately. �

Remark. Using the table in the proof of Proposition 2.4 below, it is straight-
forward to verify that equality holds in (a) if and only if either R = Ar and
i ∈ {1, r} or R = Cr and i = 1. (Since B2 = C2, the latter case includes B2

and i = 2.)

2.4. In the following, let me emphasize the standing assumption l > h.

Proposition. If 0 6= λ ∈ Ŵl • 0 ∩ C and d(λ) < l then d(λ) = ` − 1 and
(R, λ) is listed in the following table. If the rank of R is ≥ 2, then l = h+1.

R l λ

A1 any (l − 2)$1

Al−2 $1, $l−2

B2 l = 5 $2

C(l−1)/2 l odd $1

Proof. The rank 1 situation leads to the item listed in the table. When the
rank is at least 2, one applies Proposition 2.3 to obtain l = h + 1, whence
λ = $i for some i ∈ J ; i.e., λ is minuscule.



SECOND COHOMOLOGY 463

We handle the minuscule cases by classification. For each indecomposable
root system R for which J 6= ∅, we list in the following table the Coxeter
number, the set J , and the value d($i) for each i ∈ J . The simple roots
are indexed as in the tables in [Bou72, Planche I-X]; the data recorded
here, with the exception of the values d($i), may be verified by inspecting
those tables as well. The values d($i) are well-known (and can anyway be
computed from the formula, or by representation theoretic arguments).

Type of R h J d($i), i ∈ J
Ar r + 1 {1, 2, . . . , r}

(
r+1
i

)
Br, r ≥ 2 2r {r} 2r

Cr, r ≥ 2 2r {1} 2r
Dr, r ≥ 4 2r − 2 {1, r − 1, r} 2r, 2r−1, 2r−1 respectively
E6 12 {1, 6} 27, 27
E7 18 {7} 56

From this table, one can list all pairs (R, λ) for which R has Coxeter number
l − 1 and λ is minuscule. It is a simple matter to see that d(λ) < l only
when (R, λ) is as claimed. �

3. The algebraic groups.

3.1. Let k be an algebraically closed field of characteristic p > 0, and let G
be a connected, simply connected semisimple algebraic k-group. The non-0
weights of a maximal torus T ≤ G on g = Lie(G) form a root system R
of rank r = dimT in the character group X = X∗(T ). Since G is simply
connected, X identifies with the full weight lattice of R as in Section 2. We
fix a choice of simple roots S and positive roots R+. The dominant weights
are denoted X+. The group G is assumed to be quasisimple; i.e., the root
system R is indecomposable.

3.2. For each dominant weight λ ∈ X+, the space of global sections of
the corresponding line bundle on the flag variety affords an indecomposable
rational G-module H0(λ) with simple socle. The modules L(λ) = socH0(λ)
comprise all of the simple rational modules for G (and are pairwise non-
isomorphic).

The character of each H0(λ) is the same as in characteristic 0; hence in
particular dimkH

0(λ) is given by the Weyl degree formula, whose value at
λ we denote d(λ) as in 2.3.

3.3. Any dominant λ may be written as a finite sum
∑

i≥0 p
iλi with each

λi a restricted weight. Recall that a dominant weight µ is restricted if
〈µ, α∨〉 < p for all simple roots α. Steinberg’s tensor product theorem says:

L(λ) ' L(λ0)⊗ L(λ1)[1] ⊗ L(λ2)[2] ⊗ · · ·
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where for a G-module V , V [m] stands for the m-th Frobenius twist of V .
For d ≥ 1, let Gd be the d-th Frobenius kernel of G. Let V be a rational

G-module and m ≥ 1. If there is a rational G module W with W [m] ' V ,
we regard W as the Frobenius untwist W = V [−m] of V . Now regard V as a
module for Gd. Since Gd is a normal subgroup scheme, G acts on V Gd ; since
Gd acts trivially on this G-module, there is an untwisted rational G-module
(V Gd)[−d]. It follows that there is an untwist H i(Gd, V )[−d] for all i ≥ 0.

Consider now two G-modules V1 and V2, and form W = V1 ⊗ V [d]
2 . The

Frobenius kernel Gd acts trivially on V [d]
2 , so that

H i(Gd,W )[−d] ' H i(Gd, V1)[−d] ⊗ V2(1)

as G-modules for every i ≥ 0.

3.4. Let Wp ≤ Ŵp be as in Section 2 (for l = p), let C = Cp ∩X+ denote
the dominant weights in the lowest alcove, and let C = Cp ∩X+ (Cp is the
closure in XR).

Proposition. Let λ ∈ X+.
(a) If H i(G,L(λ)) 6= 0 for some i ≥ 0, then λ ∈Wp • 0.
(b) If H i(G1, L(λ)) 6= 0 for some i ≥ 0, then λ ∈ Ŵp • 0.
(c) H i(G,H0(λ)) = 0 for all i > 0.
(d) If λ ∈ C, then L(λ) = H0(λ); in particular, dimL(λ) = d(λ).

Proof. (a) follows from the linkage principle for G [Jan87, Cor. II.6.17], and
(b) from the linkage principle for G1 [Jan87, Lemma II.9.16]. (c) follows
from [Jan87, II.4.12]. (d) follows from [Jan87, II.6.13, II.5.10]. �

4. The Lie algebra and the cohomology of G1.

We want to describe explicitly the cohomology H∗(G1, k) in degree ≤ 2. For
this, we need some information on the Lie algebra g.

4.1. Recall that the prime p is bad [=not good] for the indecomposable root
system R if one of the following holds: p = 2 and R is not of type Ar; p = 3
and R is of type G2,F4, or Er; p = 5 and R is of type E8.

The prime p is very good if it is not bad, and in case R = Ar, if also p
does not divide r + 1. Notice that if p > h, then p is very good.

Application of the summary in [Hum95, 0.13] yields the following:

Lemma A. Assume that p is very good. Then g is a simple Lie algebra.
The adjoint G-module is simple, self-dual, and isomorphic with L(α̃) where
α̃ is the dominant long root.

Lemma B. Assume that p ≥ h. If W is any G-module, then HomG(g,W [d])
= 0 for d ≥ 1.
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Proof. When p > h this follows since by the previous lemma g is a simple
g-module with restricted highest weight. When p = h, we have R = Ap−1.
Since G is simply connected, we have g = slp. Thus g is an indecomposable
G-module with unique simple quotient L(α̃), and the lemma follows. �

4.2. Let B be a Borel subgroup of G, and let u be the nilradical of Lie(B).
Regarding u∗ as a B-module, we get a vector bundle on G/B which we also
write as u∗. According to [AJ84, 3.8], the formal character of the G-module
H0(G/B, u∗) is χ(α̃) = ch(g∗).

Let N ⊂ g be the nilpotent cone. There is by [AJ84, 3.9] an injective
homomorphism of graded algebras k[N ]→ H0(G/B, Su∗).

Lemma. For simply connected, quasisimple algebraic groups G, g∗ ' k[N ]1
' H0(G/B, u∗).

Proof. Let I(N ) / k[g] = Sg∗ be the (homogeneous) defining ideal of the
variety N . We need to show that I(N )1 = 0. If not, then N ⊂ V ⊂ g for
some proper G-submodule V . A look at the summary in [Hum95, 0.13]
shows that, since G is simply connected, the only G-submodules of g have
dimension 0 or 1. On the other hand, by [Hum95, Theorem 6.19], the
variety N has codimension rank(G) in g and so clearly can’t be contained
in a 1 dimensional linear subspace! �

Remarks.

(1) Here is a fancier result which implies the lemma if we assume that the
prime p is good for G. Since G is simply connected and p is good, the
Springer resolution

ϕ : Ñ = G×B u→ N

given by (g,X) 7→ Ad(g)(X) is a desingularization, hence in particular
a birational map; see [Hum95, Theorem 6.3 and Theorem 6.20]. Again
since G is simply connected and p is good, the variety N is normal
([Hum95, Theorem 4.24]). Standard arguments then yield an isomor-

phism of graded algebras k[N ]
ϕ∗−→
'

Γ(Ñ ,O eN ). Finally, the projection

Ñ → G/B is an affine morphism, so that Γ(Ñ ,O eN ) = H0(G/B, Su∗)
as a graded algebra.

(2) On the other hand, if G = PGLr, and p|r, one can find a linear
form on g that vanishes on N , hence there can be no isomorphism
k[N ]1 → H0(G/B, u∗) (compare formal characters). So the lemma can
fail when G is not simply connected. [Note that ϕ is not birational in
this example. One can show that there is a Gsc-isomorphism ψ : Ñsc →
Ñ (using some obvious notations). We get therefore a commuting
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diagram:

Ñ
ϕsc◦ψ−1

//

ϕ
!!B

BB
BB

BB
B Nsc

γ

��
N

The map ϕsc ◦ ψ−1 is birational. Since γ∗k(N ) ⊂ k(Nsc) is a proper
purely inseparable extension, so too is ϕ∗k(N ) ⊂ k(Ñ ).]

Proposition.
(1) If p 6= 2 or if R is not of type Cr, then H1(G1, k) = 0.
(2) Assume that p ≥ h. Then H2(G1, k)[−1] ' g∗ as G-modules.

Proof. For (1) see [Jan87, Lemma II.12.1]. For (2), first suppose that p > h.
By [AJ84, 3.7, 3.9], there is a G-equivariant isomorphism of graded rings
k[N ]′ ' H∗(G1, k)[−1] where k[N ]′ is again the graded coordinate ring of N ,
but with the linear functions on g given degree 2. The claim now follows
from the lemma.

When p = h, apply [AJ84, Cor. 6.3] to see that H2(G1, k)[−1] '
H0(G/B, u∗); the claim follows again from the lemma in this case. �

5. Low dimensional modules for G.

5.1. We recall first some facts about low dimensional modules established
in [Jan96] and [Ser94].

Proposition. Let L be a simple nontrivial restricted G module with highest
weight λ. Suppose that dimL ≤ p.

(a) λ ∈ C.
(b) λ ∈ C if and only if dimk L < p.
(c) h ≤ p. If moreover dimL < p, then h < p.
(d) If R is not of type A and dimL = p, then h < p. If p = h and

dimL = p, then R = Ap−1 and λ = $i with i ∈ {1, p− 1}.

Proof. (a) follows from [Jan96, Lemma 1.4], and (b) from [Jan96, 1.6], see
also [Ser94]. For (c), note first that (a) implies dimL = d(λ) by Proposi-
tion 3.4(d). If λ ∈ C \ C, then (a) and (b) imply that dimL = p, whence
p = h follows from Weyl’s degree formula. (c) now follows since C is empty
if p < h and C = {0} if p = h.

In [Jan96, 1.6], Jantzen made a list of all simple restricted modules for
G with dimension p. Inspecting that list yields (d). �

5.2. Vanishing results when g acts nontrivially. Let L be a simple
module for G.
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Proposition. If G1 (equivalently: g) acts nontrivially on L and dimL ≤ p,
then H i(G,L) = 0 for all i ≥ 0.

Proof. Write the highest weight of L as λ = µ1 + pµ2 with µ1 restricted.
Since Lg = 0, we have µ1 6= 0. Since p ≥ dimL ≥ dimL(µ1), Proposition 5.1
implies that µ1 ∈ C and that h ≤ p. We have in particular that L(µ1) =
H0(µ1), hence the proposition will follow from Proposition 3.4 if we show
that µ2 is 0.

If dimL = p, Steinberg’s tensor product theorem gives µ2 = 0. If dimL <
p then 5.1 shows that p < h and µ1 ∈ C. If H i(G,L) 6= 0 for some i, then
λ ∈Wp • 0 by the linkage principle, whence µ1 ∈W • 0+ pX = Ŵp • 0. Now
Proposition 2.4 applies; it shows that dimL(µ1) = p − 1 whence we have
µ2 = 0 by another application of Steinberg’s theorem. �

5.3. Second cohomology. Here we prove our main tool for describing sec-
ond cohomology; first we require the following:

Lemma. Let Ep,q2 =⇒ Hp+q be a convergent, first quadrant spectral se-
quence.

(1) If E0,1
2 = E1,1

2 = E0,2
2 = 0, then H2 ' E2,0

2 .
(2) If E1,0

2 = E1,1
2 = E2,0

2 = 0, then H2 ' E0,2
2 .

Proof. We verify (1), the argument for (2) is the same. We must show that
E2,0
∞ ' E2,0

2 ; first note that E2,0
3 is the cohomology of the sequence

E0,1
2 → E2,0

2 → E4,−1
2

from which we get E2,0
3 ' E2,0

2 . For any first quadrant spectral sequence
one has (by similar reasoning) that E2,0

a ' E2,0
a+1 for a > 2, so we get the

desired isomorphism. �

Theorem. Suppose that p ≥ h. Let V be a G-module for which H i(G,V ) =
0 for i = 1, 2, and let d ≥ 1.

(1) H1(G,V [d]) = 0, and
(2) H2(G,V [d]) ' HomG(g, V ).

Proof. The Frobenius kernel G1 is a normal subgroup of G; thus there is a
Lyndon-Hochschild-Serre spectral sequence computing H i(G,V [d]) which in
view of 3.3 (1) has the form

Es,t2 = Hs(G,Ht(G1, V
[d])[−1]) = Hs(G,Ht(G1, k)[−1] ⊗ V [d−1]).

If t = 1, Es,t2 = 0 by Proposition 4.2(1).
There is an exact sequence of the form [Jan87, I.4.1(4)]

0→ E1,0
2 → H1(G,V [d])→ E0,1

2 = 0.
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Thus H1(G,V [d]) ' E1,0
2 ' H1(G,V [d−1]). We get now (1) by induction on

d.
Proposition 4.2(2) shows now that H2(G1, k) ' g∗. Thus, the only possi-

ble non-0 E2 terms of total degree 2 are

E0,2
2 =H0(G, g∗ ⊗ V [d−1]) = HomG(g, V [d−1])

E2,0
2 =H2(G,V [d−1]).

For d > 1, we apply Lemma 4.1(B) to see that E0,2
2 = 0 whenceH2(G,V [d])

' E2,0
2 = H2(G,V [d−1]) by part (1) of the lemma; thus (2) will follow pro-

vided it holds for d = 1. In that case, we have E2,0
2 = 0 by assumption,

and the result just proved in part (1) shows that E1,0
2 = 0. Thus part (2)

of the lemma applies; it shows that H2(G,V [1]) ' E0,2
2 = HomG(g, V ) as

desired. �

5.4. The second cohomology of small modules. Let L = L(λ) be a
simple G-module, and suppose that dimL ≤ p. Proposition 5.2 showed that
the vanishing of cohomology for L is a consequence of the linkage principle
when λ 6∈ pX. However, if λ ∈ pZR, λ is linked to 0, so the linkage principle
does not yield vanishing. The following result shows that, despite the linkage
of λ and 0 in this case, the second cohomology is usually 0.

Theorem. Let L be a simple G-module with dimL ≤ p. If H2(G,L) 6= 0,
then L ' g[d] for some d ≥ 1.

Proof. Let L′ be such that L ' (L′)[d] for d ≥ 0, and such that g acts
nontrivially on L′. We have by 5.1 that p ≥ h. Also, we have by Proposi-
tion 5.2 that H i(G,L′) = 0 for i ≥ 1. If d = 0, we are done. If d > 1, then
Theorem 5.3 applies, and we get that

H2(G,L) ' HomG(g, L′).

We get by Proposition 5.1 that p > h unless R = Ap−1 and L′ = L($i)
with i ∈ {1, p−1}. If p > h, then g is a simple G-module by Lemma 4.1(A).
So if HomG(g, L′) 6= 0 then L′ ' g whence L ' g[d] as claimed.

In the remaining case, one must just note that weight considerations yield
HomG(g, L($i)) = 0 for i = 1, p− 1, whence H2(G,L) = 0. �

5.5. The second cohomology of twists of the adjoint module. The
first assertion of Theorem C of the introduction follows from the following:

Proposition. Assume that p > h. Then H1(G, g[d]) = 0 and H2(G, g[d]) '
EndG(g) has dimension 1 for d ≥ 1.

Proof. Since p > h, Lemma 4.1(A) shows that g is the simple module with
highest weight α̃. It follows that g = H0(α̃), and thus that H i(G, g) = 0 for
i ≥ 1 by Proposition 3.4. The proposition now follows from Theorem 5.3. �
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Remark. Note that dim g > h (in fact, dim g = (h + 1)r where r is the
rank of G). So we get also: If dim g ≤ p, then dimH2(G, g[d]) = 1 for d ≥ 1.

5.6. A second proof. Here we give a second proof of the non-vanishing
of H2 for twists of the adjoint module; the result proved here verifies the
remaining assertion of Theorem C of the introduction. We have included
the argument since it offers some “explanation” for the non-vanishing.

The group G arises by base change from a split reductive group scheme
G over Z. Let Zp be the complete ring of p-adic integers, and let Qp be its
field of quotients. For any finite field extension F of Qp, let o denote the
integers in F . The residue field o/m may be identified with the extension
Fq of Fp.

Let K denote the group of points G(o) regarded as a subgroup of G(F ).
Since G is smooth, the reduction homomorphism K → G(Fq) is surjective
(see [Tit79, 3.4.4]).

For n ≥ 1, let Kn ⊂ K be the kernel of the map K → G(o/mn). Note
that K/K1 = G(Fq) acts by conjugation on each quotient Kn/Kn+1.

Proposition. (a) There is for each m ≥ 1 a canonical isomorphism
Km/Km+1 ' gFq as representations for G(Fq), where gFq is the Lie
algebra of GFq .

(b) If H2(G(Fq), gFq) = 0, the exact sequence of groups

1→ K1 → K → G(Fq)→ 1

splits.
(c) There is a p-power q0, depending only on the root system R of G, such

that H2(G(Fq), gFq) 6= 0 whenever q ≥ q0.
(d) There is an integer a0 ≥ 1 such that H2(G, g[a]) 6= 0 whenever a ≥ a0.

Proof. (a) Follows from [DG70, II.§4.3]. (b) Since K1 is a pro-p group
[PR94, Lemma 3.8], this follows from [Ser67, Lemma 3].

(c) Choose a Qp vectorspace V and a nontrivial faithful Qp-rational rep-
resentation GQp → GL(V ). For each extension F of Qp with integers o,
the group K = G(o) is a subgroup of (the group of F -points of) GL(VF ).
If H2(G(Fq), gFq) = 0, the sequence in (b) is split and VF is a nontrivial
F [G(Fq)]-module.

Since F has characteristic 0, it is well-known that the minimal dimension
of a nontrivial F [G(Fq)] module is bounded below by the value f(q) of a
polynomial f ∈ Q[x], depending only on G, for which f(q)→∞ as q →∞.
We may choose q0 such that f(q) > dimQp V for each q > q0, and (c) follows
at once.

(d) now follows from (c) and [CPSvdK77, Cor. 6.9]. �
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6. Small simple modules for G1.

Combining results of [KLT99] with the results recorded in 2.4, we obtain
some explicit results on G1 cohomology of low dimensional simple modules:

Proposition. Let L be a nontrivial simple G1 module with dim ≤ p. As-
sume for some i ≥ 0 that H i(G1, L) 6= 0. Then dimL = p − 1. Moreover,
there is a quadruple (R, λ, i(0), V ) in the following table for which R is the
root system of G, λ the high weight of L, i ≥ i(0) and H i(0)(G1, L)[−1] ' V
as G-modules.

R λ i(0) H i(0)(G1, L)[−1]

A1 (p− 2)$1 1 L($1)
Ap−2 $1, $p−2 p− 2 L(λ)
C(p−1)/2 p odd $1 p− 2 L(λ)

Proof. By [Jan87, Prop. II.3.14], L = resGG1
L(λ) for some restricted domi-

nant weight 0 6= λ. Thus L(λ) is a restricted, simple G module with dimen-
sion ≤ p. It follows from Proposition 5.1 that h ≤ p, that λ ∈ C, and that
L = H0(λ) as modules for G.

Suppose that H i(G1, L) 6= 0 for some i. By the linkage principle for G1

(Proposition 3.4(b)), we must have λ ∈ Ŵp • 0, hence λ ∈ C. This implies
that h < p. Proposition 2.2 shows that λ = (p− h)$i = w0wi • 0 + p$i for
some i ∈ J , and Proposition 2.3 yields dimL = p− 1 and lists the possible
pairs (R, λ).

For h < p, Kumar, Lauritzen and Thomsen [KLT99, Theorem 8] have
extended a result of Andersen and Jantzen [AJ84, 3.7]; this result implies in
particular that the minimal degree for which H∗(G1, L) is non-0 is `(w0wi),
and that

H`(w0wi)(G1, L)[−1] ' H0($i).

It is straightforward to compute for each pair (R, λ) the length `(w0wi); one
gets in this way the result. �

Remark. The Theorem implies the fact (used by Jantzen in the proof of
[Jan96, Lemma 1.7]) that H1(G1, L) = 0 for all simple G1 modules L with
dimL ≤ p. The argument used by Jantzen there relied on the calculations
of H1 carried out in [Jan91].
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HOW LIKELY IS BUFFON’S NEEDLE TO FALL NEAR A
PLANAR CANTOR SET?

Yuval Peres and Boris Solomyak

Dedicated to the memory of Thomas H. Wolff

Let Λ be a compact planar set of positive finite one-dimen-
sional Hausdorff measure. Suppose that the intersection of Λ
with any rectifiable curve has zero length. Then a theorem
of Besicovitch (1939) states that the orthogonal projection
of Λ on almost all lines has zero length. Consequently, the
probability p(Λ, ε) that a needle dropped at random will fall
within distance ε from Λ, tends to zero with ε. However,
existing proofs do not yield any explicit upper bound tending
to zero for p(Λ, ε), even in the simplest cases, e.g., when Λ =
K2 is the Cartesian square of the middle-half Cantor set K.
In this paper we establish such a bound for a class of self-
similar sets Λ that includes K2. We also determine the order
of magnitude of p(Λ, ε) for certain stochastically self-similar
sets Λ. Determining the order of magnitude of p(K2, ε) is an
unsolved problem.

1. Introduction.

Consider K = {
∑∞

n=1 an4
−n : an ∈ {0, 3}}, the middle-half Cantor set,

and the direct product K2 = K × K ⊂ R2. It is well-known that the
one-dimensional Hausdorff measure of K2 satisfies 0 < H1(K2) < ∞ and
that K2 is totally unrectifiable. Therefore, by Besicovitch’s theorem (see
[4, Theorem 6.13]), the projection of K2 on almost every line through the
origin, has zero length. This can be expressed by saying that the Favard
length of K2 equals zero. Recall (see [2, p. 357]) that the Favard length
of a planar set E is defined by

Fav(E) =
∫ π

0
|projθE| dθ,

where projθ denotes the orthogonal projection from R2 onto the line through
the origin making angle θ with the horizontal axis, and |A| denotes the
Lebesgue measure of a measurable set A ⊂ R. The Favard length of a set E
in the unit square has a probabilistic interpretation: Up to a constant factor,
it is the probability that “Buffon’s needle,” a long line segment dropped at
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Figure 1. The Cantor set K2, third stage of the construction.

random, hits E. (More precisely, suppose the needle’s length is greater than√
8, pick the distance r from the origin to the needle uniformly in [0,

√
2],

and locate the center of the needle at a uniformly chosen point on the circle
{|z| = r}.)

Now consider the n-th stage of the Cantor set construction for K,

Kn =
{ ∞∑
k=1

ak4−k : ak ∈ {0, 3}

for 1 ≤ k ≤ n and ak ∈ {0, 1, 2, 3} for k > n

}
.

Then K2
n is a union of 4n squares of side 4−n (see Figure 1 for a picture of

K2
3 ). Clearly, Fav(K2) = 0 implies limn→∞ Fav(K2

n) = 0. We are interested
in the behavior of Fav(K2

n) as n → ∞. A lower bound Fav(K2
n) ≥ c

n for
some c > 0 follows from Mattila [14, 1.4]. Our main result is a quantitative
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upper bound. For y ≥ 1 let

log∗ y = min

n ≥ 0 : log log . . . log︸ ︷︷ ︸
n

y ≤ 1

 .(1.1)

Theorem 1.1. There exist C, a > 0 such that

Fav(K2
n) ≤ C exp[−a log∗ n] for all n ∈ N.

Remarks.
1. The convergence of the upper bound to zero is extremely slow, but it
is the best we could get. It is still much better than a purely qualitative
convergence statement. The lower bound c

n seems closer to the truth. In
Theorem 2.2, proved in Section 6, we analyze a random analog of the Cantor
set K2. We show that, with high probability, the Favard length of the n-
th stage in the construction has upper and lower bounds that are constant
multiples of n−1.

2. For ρ ≤ 4−n, the ρ-neighborhood K(ρ) = {x : dist(x,K) ≤ ρ} of K can
be covered by nine translates of Kn, so Fav(K(ρ)) ≤ 9Fav(Kn).

3. It follows from the results of Kenyon [9] and Lagarias and Wang [10]
that |projθK2| = 0 for all θ such that tan θ is irrational. However, this
information does not seem to help obtain an upper bound for Fav(K2

n).

4. The setK2 was one of the first examples of sets of positive length and zero
analytic capacity, see [3] for a survey. Recently Mateu, Tolsa and Verdera
[12] proved that the analytic capacity of K2

n is bounded above and below by
constant multiples of n−1/2. The analytic capacity of certain related sets of
non σ-finite length was determined by Mattila [16]. We consider the Favard
length of such sets in Proposition 7.2.

In the next section we state our results for a class of planar self-similar
Cantor sets. The method used for estimating the Favard length of the n-th
stage of the construction also yields some information about gauges in which
almost every projection of the Cantor set has zero Hausdorff measure. The
proof of the main theorem for homogeneous self-similar sets (such as K2) is
presented in Sections 3 and 4. The non-homogeneous case, which is more
involved, is dealt with in Section 5. Favard length of random Cantor sets is
considered in Section 6. Section 7 contains some further extensions, remarks
and unsolved problems.
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2. Statement of results.

Consider a self-similar set Λ ⊂ R2, defined as the unique nonempty compact
satisfying

Λ =
m⋃
i=1

SiΛ where Si(x) = rix + bi, with ri ∈ (0, 1) and bi ∈ R2.

(2.1)

We assume that the Strong Separation Condition (SSC) holds, i.e., that
Si(Λ)∩Sj(Λ) = ∅ for i 6= j. The similarity dimension is defined as the unique
solution s of the equation

∑m
i=1 r

s
i = 1. It is well-known that the Strong

Separation Condition, and even the weaker Open Set Condition, imply that
the Hausdorff dimension dimHΛ equals the similarity dimension s, and the
s-dimensional Hausdorff measure Hs(Λ) is positive and finite.

First suppose that s = 1. Then Λ is an irregular 1-set, and thus by
Besicovitch’s theorem (see [4, Theorem 6.13]) Fav(Λ) = 0. Let Λ(ρ) =
{x : dist(x,Λ) ≤ ρ} denote the ρ-neighborhood of the set Λ. Clearly,
limρ→0 Fav(Λ(ρ)) = 0. Mattila [14, 1.4] proved the lower bound

Fav(Λ(ρ)) ≥ c
(

log
(

1
ρ

))−1

for all ρ > 0,(2.2)

for some c > 0. (This lower bound follows from an energy estimate; it does
not use self-similarity, but only positivity of H1(Λ).) Our main result is the
following upper bound.

Theorem 2.1. Assuming that the SSC holds and s = 1, we have for some
C, a > 0

Fav(Λ(ρ)) ≤ C exp
[
−a log∗

(
1
ρ

)]
for all ρ > 0.(2.3)

Remark. The self-similar set is called homogeneous if ri = r for all
i ≤ m. The Cantor set K2 in Section 1 is homogeneous. For a homogeneous
set Λ, it is equivalent (up to uniform multiplicative constants) to consider the
Favard length Fav(Λn) of the nth stage of the construction and Fav(Λ(ρ)),
with ρ = rn.

We now consider random analogs of the sets K2
n from the introduction.

Partition the unit square into four dyadic subsquares of side 1/2, and in
each of these choose, uniformly at random, a dyadic subsquare of side 1/4.
Denote the union of four (closed) squares so obtained R1. Inductively, given
Rk which is a union of 4k dyadic squares of side 2−2k, we partition each of
them into four dyadic subsquares of side 2−2k−1, and in each of these 4k+1

squares choose, uniformly at random, a dyadic subsquare of side 2−2k−2, all
these choices being independent. Call the union of 4k+1 (closed) squares so
obtained Rk+1. An example of R3 is given in Figure 2.
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Figure 2. A random set R3.

Finally, write R =
⋂∞
k=1Rk. Clearly 0 < H1(R) <∞, and the arguments

of Mattila [14, 1.4] still imply that Fav(Rn) ≥ c
n . Denoting expectation by

E , we have:

Theorem 2.2.

E [Fav(Rn)] ≤
C

n
(2.4)

for some C <∞. Consequently, with probability 1,

lim inf
n→∞

n · Fav(Rn) <∞.(2.5)

Next, we return to consider self-similar sets Λ as in (2.1), but only assume
that their similarity dimension satisfies s ≤ 1. Let

IP (Λ) =
{
θ ∈ [0, π] : projθ|Λ is not one-to-one

}
(the letters “IP” stand for “intersection parameters”). It is easy to see
that if s = 1, then IP (Λ) = [0, π]. (Indeed, if projθ|Λ is one-to-one, then
projθ(Λ) is a self-similar set on the real line satisfying the Strong Separation
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Condition. Increasing the contraction rates ri slightly (maintaining strong
separation), we would get a subset of R with Hausdorff dimension greater
than 1, a contradiction.)

It was proved in [18, Theorem 1.2] that if the set IP (Λ) contains a
nonempty interval J , then Hs(projθΛ) = 0 for a.e. θ ∈ J . Here we exhibit an
explicit gauge function φ(t) such that limt→0

φ(t)
ts =∞ but Hφ(projθΛ) = 0

for a.e. θ ∈ J .

Theorem 2.3. If the SSC holds, s ≤ 1, and there is an interval J ⊂ IP (Λ),
then Hφ(projθΛ) = 0 for a.e. θ ∈ J , where

φ(t) = ts exp[L log∗(1/t)]

with L ∈ (0, log 2).

Sufficient conditions for the existence of an interval J ⊂ IP (Λ) were
found in [18]. For instance, Theorem 2.3 applies to the planar Cantor set
K(r) ×K(r) where K(r) = {

∑∞
n=1 anr

n : an ∈ {0, 1}}, with r ∈ (1
6 ,

1
4). It is

shown in [18, Example 6.1] that J = [arctan 1−2r
r , arctan 2

1−3r ] ⊂ IP (K(r)).

3. Proof of Theorem 2.1 (the homogeneous case).

Here we prove Theorem 2.1 in the case when ri = r; this includes Theo-
rem 1.1. Note that s = 1 implies r = m−1. Since some of the lemmas will
also be used in the proof of Theorem 2.3, up to a point we allow any value
of s ≤ 1. The more technical proofs of lemmas are postponed until the next
section.

Let m ≥ 2, A = {1, . . . ,m} and A∗ =
⋃
n≥0An. Write |u| = n for u ∈ An

and let ω|n = ω1 . . . ωn for ω ∈ A∗ ∪AN, with |ω| ≥ n. For u ∈ An we write
Su = Su1 ◦ . . . ◦ Sun and Λu = Su(Λ). In our homogeneous case we have
Su(x) = rnx + bu for some bu ∈ R2. It is convenient to identify the line
through the origin with R; formally we just let projθ(x, y) = x cos θ+y sin θ.
For θ ∈ [0, π] and u ∈ An let

Sθu(x) = rnx+ bθu , x ∈ R, where bθu = projθbu.

Observe that Λθ := projθΛ is a self-similar set on the real line satisfying
Λθ =

⋃m
i=1 S

θ
i (Λ

θ). The sets Λθu := projθΛu are called the cylinders of the
self-similar set Λθ. The map Πθ : AN → Λθ defined by

Πθ(ω) = lim
n→∞

Sθω|n(0) =
∞∑
n=1

rn−1bθωn
,

is called the natural projection map. We equip the sequence space AN

with the Bernoulli measure ( 1
m , . . . ,

1
m)N. The projection of µ, that is, νθ :=

µ ◦Π−1
θ is called the natural measure on Λθ.
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Definition 3.1. Let u, v be two words in A∗ with |u| = |v| = n and let
θ ∈ [0, π]. We say that Sθu and Sθv are ε-relatively close if

|Sθu(x)− Sθv(x)| ≤ εrn for all x ∈ Λθ.(3.1)

This definition is motivated by the work of Bandt and Graf [1]; it was
recently used in [17]. In order to develop the setting needed for the proof of
both Theorem 2.1 and Theorem 2.3, we fix a nonempty interval J ⊂ IP (Λ);
if s = 1 then we let J = IP (Λ) = [0, π].

Lemma 3.2. There exists C1 ≥ 1 such that for all ε ∈ (0, 1] and all n ∈ N,
for any interval I ⊂ J , with |I| = C1r

n, there is a subinterval I ′ ⊂ I
satisfying:

(i) |I ′| ≥ C−2
1 ε|I| and

(ii) for every θ ∈ I ′ there exist u 6= v in An such that Sθu and Sθv are
ε-relatively close.

This is a consequence of “transversality”; the proof is given in Section 4.

Notation. Let Ψ(n, k, ε) be the set of θ ∈ J such that there is no collection
of distinct words u1, . . . , uk, with |u1| = . . . = |uk| ≤ n, such that Sθuj

, j ≤ k,
are pairwise ε-relatively close.

Lemma 3.3. There exist c2 > 0 and M > 0 such that

|Ψ(n, 2, ε)| ≤Me−c2nε for all n ∈ N, ε ∈ (0, 1].(3.2)

This follows from Lemma 3.2; see Section 4 for the proof.

Lemma 3.4. If n = `0 + j0, with `0, j0 ≥ 1, and k ≥ 2, then

Ψ(n, 2k, ε) ⊂ Ψ(`0, 2, (ε/2)rj0) ∪Ψ(j0, k, (ε/2)).(3.3)

Proof. Suppose that θ is not in the right-hand side of (3.3). Then there
exist distinct u1, u2, with |ui| ≤ `0, such that Sθu1

and Sθu2
are ε

2r
j0-relatively

close, and distinct w1, . . . , wk, with |wq| ≤ j0, such that Sθw1
, . . . , Sθwk

are
pairwise ε

2 -relatively close. Let 1 ≤ p < q ≤ k. By self-similarity, Sθuiwp
and

Sθuiwq
are ε

2 -relatively close. Further, Sθu1wq
and Sθu2wq

are ε
2 -relatively close,

since rj0+|ui| ≤ r|uiwq |, for i = 1, 2. This implies that Sθu1wp
and Sθu2wq

are
ε-relatively close. Thus, we have found 2k distinct words uiwq, with i = 1, 2
and q ≤ k, of length ≤ n, such that Sθuiwq

are pairwise ε-relatively close,
hence θ 6∈ Ψ(n, 2k, ε). �

Below we denote by logi and expi the i-th iterate of log and exp respec-
tively, assuming that log0 is the identity map.

Lemma 3.5. There exists c3 > 0 such that for all i ≥ 1,

|Ψ(n, 2i, ε)| ≤M2i−1 exp[−c3e−(i−1)(logi−1 n)ε] for all n ∈ N, ε ∈ (0, 1].
(3.4)
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This is proved by induction, using Lemmas 3.3 and 3.4. See Section 4 for
details. Now let

nk = expk−1(c−1
3 kek−1),(3.5)

so that, in view of (3.4),

|Ψ(nk, 2k, 1)| ≤M2k−1e−k.(3.6)

For v, w ∈ A∗ we write v @ w if v is a subword of w, more precisely, if
w = v′vv′′ where v′ and/or v′′ may be empty. Let

N(k) := mnk · nk · k.(3.7)

For u1 ∈ A∗, with |u1| ≤ nk, we have

#{u ∈ AN(k) : u1 6@ u} ≤ (mnk − 1)N(k)/nk

= mN(k)(1−m−nk)m
nk ·k ≤ mN(k)e−k.(3.8)

Lemma 3.6. For any ξ > 0 there exists Cξ > 0 such that

log∗(r
−N(k)) ≤ Cξ + (1 + ξ)k.

This is elementary; see Section 4 for a proof.

Proof of Theorem 2.1 (homogeneous case). Recall that now s = 1, so r =
m−1. We are going to show that, for some c > 0 and γ ∈ (0, 1),

Fav(Λ(ρ)) ≤ cγk, where ρ = rN(k).(3.9)

By Lemma 3.6, this will imply (2.3).
Turning to the proof of (3.9), we note that by (3.6),∫

Ψ(nk,2k,1)
|projθΛ(ρ)| dθ ≤M2k−1e−k(diam(Λ) + 2).(3.10)

Thus, it suffices to estimate |projθΛ(ρ)| from above for θ 6∈ Ψ(nk, 2k, 1).
Fix such a θ for the rest of the proof. By definition, this means that

there exist words u1, . . . , u2k , each of length not greater than nk, such that
Sθuj

, j ≤ 2k, are pairwise 1-relatively close. We have

projθΛ(ρ) ⊂
⋃

|u|=N(k)

Λθu(ρ) =
⋃

|u|=N(k)

u1 6@u

Λθu(ρ) ∪
⋃

|u|=N(k)
u1@u

Λθu(ρ) =: F1 ∪ F2.

Since |u| = N(k) we have

diam(Λθu(ρ)) = diam(Λθu) + 2ρ ≤ (2 + diam(Λ))m−N(k),

hence, in view of (3.8),

|F1| ≤ mN(k)e−k(2 + diam(Λ))m−N(k) = (2 + diam(Λ))e−k.(3.11)

It remains to estimate |F2|. Suppose that x ∈ F2. Then x ∈ Λθu(ρ) for some
u containing u1 as a subword. We have u = vu1w for some (possibly empty)
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words v and w. Then clearly x ∈ Λθvu1
(ρ). Recall that Sθu1

, . . . , Sθu
2k

are
pairwise-1 close, hence Sθvu1

, . . . , Sθvu
2k

are pairwise-1 close as well. Let q =
|v|+ |u1|. Of course, q ≤ N(k). It follows that the ball B(x) := B(x, c4rq),
with c4 = 2 + diam(Λ), contains all Λθvuj

, for j ≤ 2k. Therefore, the natural
measure νθ of the ball satisfies

νθB(x) ≥ 2km−q = 2k−1c−1
4 |B(x)|.(3.12)

By a classical covering theorem (see [15, Theorem 2.1]), we can choose a
disjoint family {Bj} of the balls {B(x) : x ∈ F2} so that F2 ⊂

⋃
j 5Bj .

Thus,

|F2| ≤ 5
∑
j

|Bj | ≤ 5c42−(k−1)
∑
j

νθBj ≤ 5c42−(k−1),

since νθ is a probability measure. Combining this estimate with (3.10) and
(3.11) yields (3.9), with γ = 2/e, and the proof is complete. �

4. Proof of the lemmas.

Proof of Lemma 3.2. This is an easy “transversality argument”, essentially
contained in the proof of [18, Theorem 2.1(i)]. We provide a proof for the
reader’s convenience.

By increasing C1 we can assume that n is sufficiently large. Let θ0 ∈
IP (Λ). This means, by definition, that projθ0 |Λ is not one-to-one, hence
there exist i 6= j such that Λθ0i ∩Λθ0j 6= ∅. Fix ε > 0 and n ∈ N. There exist
u, v ∈ An such that u1 = i, v1 = j, and Λθ0u ∩ Λθ0v 6= ∅.

Recall that Su(x) = rnx + bu, where x, bu ∈ R2, and Sθu(x) = rnx + bθu.
Consider the function f(θ) = bθu − bθv = (bu − bv) · (cos θ, sin θ). Observe
that Sθu and Sθv are ε-relatively close if and only if |f(θ)| ≤ εrn. We have
|f(θ)|2 + |f ′(θ)|2 = |bu − bv|2. Thus,

η2 − |f(θ)|2 ≤ |f ′(θ)|2 ≤ (diam(Λ))2 for θ ∈ [0, π],(4.1)

where η = min{dist(Λp,Λq) : 1 ≤ p < q ≤ m}. Note that η > 0 by
the Strong Separation Condition. Since Λθ0u ∩ Λθ0v 6= ∅, we have |f(θ0)| ≤
diam(Λθ0u ) ≤ diam(Λ)rn, which can be assumed less than η

2 , since n is large.

Then |f ′(θ0)| ≥
√

3η
2 > η

2 and it follows from (4.1) that there exists θ1, with
|θ1−θ0| ≤ 2

ηdiam(Λ)rn, such that f(θ1) = 0. Then Sθ1u ≡ Sθ1v , and for all θ ∈
(θ1− ε

diam(Λ)r
n, θ1+ ε

diam(Λ)r
n), by (4.1), the maps Sθu and Sθv are ε-relatively

close. This implies that the interval [θ0 − 2
ηdiam(Λ)rn, θ0 + 2

ηdiam(Λ)rn]

contains a subinterval I ′ of length min{ ε
diam(Λ) ,

4diam(Λ)
η }rn which has the

property (ii) from the statement of the lemma. The claim for an arbitrary
interval I ⊂ J now follows easily. �
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Proof of Lemma 3.3. This proof is analogous to that of [19, Lemma 4.1].
Fix ` ∈ N so that r` ≤ 1

2(1 − r) and `0 such that C1r
`0 ≤ |J |. We are

going to construct inductively a family of compact sets F0 ⊃ F1 ⊃ · · · ⊃ Fn,
such that |Fn| ≤ e−cnε for some c > 0 and Fn is a union of 2n intervals,
each of length at least C1r

`0+`n. Most importantly, we will have that Fn ⊃
Ψ(`0 + `n, 2, ε). (Observe that Ψ(k, 2, ε) are nested, decreasing with k, by
the definition of these sets, so the desired estimate will follow.)

We can take F0 = J . Suppose that we already have Fn, for some n ≥ 0,
and we need to construct Fn+1. Let I be any of the 2n intervals of Fn and
find k ≤ n so that C1r

k ≤ |I| < C1r
k−1. By assumption, k ≤ `0 + `n.

Let I ′ be the subinterval of I of length C1r
k+1 with the same center. By

Lemma 3.2, there is a subinterval I ′′ ⊂ I ′ of length ≥ C−1
1 εrk+1, which

misses Ψ(k + 1, 2, ε) ⊃ Ψ(`0 + `(n + 1), 2, ε). Removing the interior of I ′′

makes two closed intervals out of I, each of length at least 1
2C1(rk−rk+1) ≥

C1r
k+` ≥ C1r

`0+`(n+1). In this way we construct Fn+1, a union of 2n+1

intervals. It remains to observe that

|I \ I ′′| ≤ |I| − C−1
1 εrk+1 ≤ |I|(1− C−2

1 ε).

Thus, |Fn+1| ≤ (1 − C−2
1 ε)|Fn| ≤ e−C

2
1ε|Fn|, and the desired statement

follows. �

Proof of Lemma 3.5. We are going to prove (3.4) by induction in i. We can
assume that c3 ≤ c2; then the case i = 1 is just (3.2). Further, we can
assume that n ≥ N0 and logi−1 n ≥ M0 for any fixed constants N0,M0,
since otherwise (3.4) holds trivially for c3 > 0 sufficiently small.

Suppose that (3.4) holds for some i ≥ 1. Then by (3.3) and (3.2),

|Ψ(n, 2i+1, ε)|(4.2)

≤ |Ψ(`0, 2, (ε/2)rj0)|+ |Ψ(j0, 2i, (ε/2))|

≤M exp[−c2`0(ε/2)rj0 ] +M2i−1 exp[−c3e−(i−1)(logi−1 j0)(ε/2)]

=: M(A1 +A2),

where n = `0 + j0. Let j0 be the smallest integer ≥ 1
2

logn
| log r| . Then we have

for n sufficiently large:

`0 = n− j0 ≥ n−
1
2

log n
| log r|

− 1 ≥ n

2
,

rj0 ≥ r
1
2

log n
| log r|−1 = r−1n−1/2,

hence

A1 ≤ exp[−c2(n/2)r−1n−1/2(ε/2)] = exp[−c2(4r)−1n1/2ε].(4.3)
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Let α := 2| log r|. Note that α > 1 since r ≤ m−1 ≤ 1
2 . Turning to A2 in

(4.2), we obtain from our choice of j0:

A2 ≤ 2i−1 exp[−c3e−(i−1) logi−1(α−1 log n) · (ε/2)].(4.4)

If i = 1, then in (4.2) we could use (3.2) for the second summand as well, in
which case

A2 ≤ 2i−1 exp[−c2α−1 log n · (ε/2)] ≤ 2i−1 exp[−c3 log n · (ε/2)],(4.5)

assuming c3 ≤ c2α−1. For i ≥ 2 we use the elementary inequality

log(x+ y) ≤ log x+ y for all x ≥ 1, y ≥ 0.(4.6)

We can assume that logi−1 n ≥ logα+1, since otherwise (3.4) holds trivially
for c3 > 0 sufficiently small. Then applying (4.6) i − 2 times to log2 n =
log(α−1 log n) + logα we obtain

logi n ≤ logi−1(α−1 log n) + logα.

Combining this with (4.4) and (4.5) yields

A2 ≤ 2i−1 exp[−c3e−(i−1)(logi n− logα)(ε/2)] for all i ≥ 1.

In view of (4.3), the induction step will be finished once we check the in-
equality

exp[−c2(4r)−1n1/2ε] + 2i−1 exp[−c3e−(i−1)(logi n− logα)(ε/2)](4.7)

≤ 2i exp[−c3e−i(logi n)ε].

This is equivalent to

1 ≥ 2−i exp[(c3e−i logi n− c2(4r)−1n1/2)ε]

+ 2−1 exp[c3εe−(i−1)(logi n · (e−1 − 2−1) + 2−1 logα)] =: B1 +B2.

We have

c3e
−i logi n− c2(4r)−1n1/2 ≤ c2 log n− c2(4r)−1n1/2 < 0

for n sufficiently large, hence B1 ≤ 2−i. Further, we can assume that

logi n > logα · (1/2− e−1)−1;

then B2 ≤ 1
2 . This implies (4.7), and the proof of the lemma is complete. �

Proof of Lemma 3.6. It follows from (4.6) and (1.1) that

log∗(x+ y) ≤ log∗ x+ log∗(1 + y) for all x ≥ 1, y ≥ 0.
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Using this inequality, (3.7), and (3.5), we obtain

log∗(r
−N(k)) ≤ 1 + log∗(log(r−1) + logN(k))

≤ const + log∗(nk logm+ log nk + log k)
≤ const + log∗ nk
= const + (k − 1) + log∗(c

−1
3 kek−1)

≤ const + k + log∗ k.

Now the desired statement is immediate. �

5. Non-homogeneous case.

Here we prove Theorem 2.1 in full generality and Theorem 2.3. The proofs
follow the same path most of the way. We use the same notation as in
Section 3, as much as possible, so the same letters often represent different
but analogous objects here and there.

We have Su(x) = rux + bu for some bu ∈ R2, where ru = ru1 · . . . · run .
The natural projection map onto Λθ is defined by Πθ(ω) = limn→∞ Sθω|n(0).
The natural measure on Λθ is νθ = µ ◦ Π−1

θ , where µ = (rs1, . . . , r
s
m)N and

s ≤ 1 is the similarity dimension of Λ. For δ > 0 consider the “cut-set”
W(δ) = {u ∈ A∗ : ru ≤ δ, ru′ > δ} where u′ is obtained from u by dropping
the last symbol. Let rmin = min{ri : i ≤ m} and rmax = max{ri : i ≤ m}.
For u, v ∈ W(δ) we have rmin ≤ ru/rv ≤ r−1

min. Throughout this section we
fix a nonempty interval J ⊂ IP (Λ) (assuming that it exists). Let XΛ =
[−dΛ, dΛ] where dΛ = max{|x| : x ∈ Λ}. Observe that Sθi (XΛ) ⊂ XΛ for all
i ≤ m and all θ ∈ [0, π].

Definition 5.1. Let θ ∈ [0, π] and u, v ∈ A∗. We say that Sθu and Sθv are
ε-relatively close at x if

|Sθu(x)− Sθv(x)| ≤ εmin{ru, rv}.

Lemma 5.2. There exists C1 ≥ 1 such that for all x ∈ XΛ, for all ε ∈ (0, 1]
and all δ > 0, for any interval I ⊂ J , with |I| = C1δ, there is a subinterval
I ′ ⊂ I such that |I ′| ≥ C−2

1 ε|I| and for every θ ∈ I ′ there exist u 6= v in
W(δ) such that Sθu and Sθv are ε-relatively close at x.

Proof. The proof is analogous to the proof of Lemma 3.2. Let g(θ) =
Sθu(x) − Sθv(x) = (ru − rv)x + f(θ) where f(θ) = bθu − bθv. If θ0 ∈ IP (K),
then |g(θ0)| ≤ 4δdΛ which can be assumed small, increasing C1 if necessary.
Since g′(θ) = f ′(θ), the rest of the proof of Lemma 3.2 transfers. �

Notation. For x ∈ XΛ, k ≥ 2, ε ∈ (0, 1] and n ≥ 1 denote by Φ(n, k, x, ε)
the set of θ ∈ J such that there is no collection of distinct words u1, . . . , uk,
with ruj ≥ rnmax, such that Sθuj

, j ≤ k, are pairwise ε-relatively close at x.
Denote by Φ′(n, k, x, ε) the analogous set where it is required, in addition,
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that rmin ≤ rui/ruj ≤ r−1
min for i, j ≤ k. By the definition, Φ′(n, k, x, ε) ⊃

Φ(n, k, x, ε). Further, let

Ψ(n, k, ε) =
⋃
x∈XΛ

Φ(n, k, x, ε) and Ψ′(n, k, ε) =
⋃
x∈XΛ

Φ′(n, k, x, ε).

Lemma 5.3. There exist c2 > 0 and M > 0 such that

|Ψ′(n, 2, ε)| ≤Mε−1e−c2nε for all n ∈ N, ε ∈ (0, 1].(5.1)

Proof. Using Lemma 5.2 and repeating the proof of Lemma 3.3, we obtain
for any fixed x ∈ XΛ that

|Φ′(n, 2, x, ε)| ≤ M̃e−ec1nε(5.2)

for some constants M̃, c̃1 > 0. Observe that if Sθu and Sθv are ε
2 -relatively

close at x and C−1 ≤ ru/rv ≤ C, then Sθu and Sθv are ε-relatively close at
x′, provided that |x′− x| ≤ ε

2C . Taking C = r−1
min and choosing an ε

2C -net N
of XΛ, we obtain

Ψ′(n, 2, ε) ⊂
⋃
x∈N

Φ′(n, 2, x, ε/2).

Since #(N ) ≤ const · ε−1, this and (5.2) yield (5.1). �

Lemma 5.4. There exists C ≥ 1 such that for n = `0 + j0, with `0, j0 ≥ 1,
and k ≥ 2, we have

Ψ(n, 2k, ε) ⊂ Ψ(j0, k, C−1ε) ∪Ψ′(`0, 2, C−1rj0maxε).(5.3)

Proof. Fix x0 ∈ XΛ. We want to show that Φ(n, 2k, x0, ε) lies in the right-
hand side of (5.3). Suppose that θ is not in the right-hand of (5.3). Then
there exist distinct words w1, . . . , wk, with rwi ≥ rj0max, such that Sθwi

are
pairwise C−1ε-relatively close at x0. Without loss of generality, suppose
that rw1 = mini≤k rwi . Further, θ 6∈ Ψ′(`0, 2, C−1rj0maxε) =

⋃
x∈X Φ′(`0, 2, x,

C−1rj0maxε), so there exist distinct u1, u2 such that rui ≥ r`0max, rmin ≤ ru1/ru2

≤ r−1
min, and Sθu1

and Sθu2
are C−1rj0maxε-relatively close at Sθw1

(x0) ∈ XΛ. Then
uiwj , for i = 1, 2 and j ≤ k, are all distinct and satisfy ruiwj ≥ r`0+j0

max = rnmax.
We claim that Sθuiwj

are pairwise ε-close at x0 if C is sufficiently large. This
will imply that θ 6∈ Φ(n, 2k, x0, ε), and since x0 is arbitrary, the lemma will
be proved.

We have for i = 1, 2 and for all j ≤ k,

|Sθuiw1
(x0)− Sθuiwj

(x0)| ≤ ruiC
−1εmin{rw1 , rwj} = C−1εruiw1 .

Further,

|Sθu1w1
(x0)−Sθu2w1

(x0)| ≤ C−1rj0maxεmin{ru1 , ru2} ≤ C−1εmin{ru1w1 , ru2w1}.
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Therefore, for 1 ≤ p < q ≤ k,
|Sθu1wp

(x0)− Sθu2wq
(x0)| ≤ C−1εrw1(ru1 + ru2 + min{ru1 , ru2})

≤ C−1εrw1(2 + r−1
min) min{ru1 , ru2}

≤ C−1ε(2 + r−1
min) min{ru1wp , ru2wq},

and the claim follows with C = 2 + r−1
min. The lemma is proved. �

Lemma 5.5. There exist a > 0 and b > 1 such that for all ε ∈ (0, 1], n ∈ N
and i ≥ 1,

|Ψ(n, 2i, ε)| ≤Mε−1bi exp[−ae−(i−1)(logi−1 n)ε].(5.4)

Proof is analogous to the proof of Lemma 3.5, based on Lemmas 5.3 and
5.4. We leave the details to the reader. �

Let

nk = expk−1((log b+ 1)a−1kek−1),(5.5)

so that, in view of (5.4),

|Ψ(nk, 2k, 1)| ≤Me−k.(5.6)

Let

N(k) = nk · dr−sminenk · k.(5.7)

Similarly to the proof of Lemma 3.6, we deduce from (5.5) and (5.7) that

log∗(r
−N(k)
min ) ≤ Cξ + (1 + ξ)k,(5.8)

for any ξ > 0. For any u1 ∈ A∗, with |u1| ≤ nk, we have∑
|u|=N(k)

u1 6@u

rsu ≤ (1− rnks
min )N(k)/nk ≤ e−k.(5.9)

Now suppose that θ 6∈ Ψ(nk, 2k, 1) and x0 ∈ Λθ. Then θ 6∈ Φ(nk, 2k, x0, 1),
so we can find distinct words u1, . . . , u2k , with rui ≥ rnk

max, such that

|Sui(x0)− Suj (x0)| ≤ min{rui , ruj} for all i, j ≤ 2k.(5.10)

Without loss of generality, assume that ru1 = min{rui : i ≤ 2k}. We have

Λθ =
⋃

|u|=N(k)

Λθu =
⋃

|u|=N(k)

u1 6@u

Λθu ∪
⋃

|u|=N(k)
u1@u

Λθu =: Yu1 ∪ Zu1 .(5.11)

We claim that for some C ≥ 1,

∀x ∈ Zu1 , ∃ t ∈ [C−1r
N(k)
min , Cru1 ] : νθB(x, t) ≥ C−12kts.(5.12)

Indeed, suppose that x ∈ Λθu for some u ∈ AN(k) such that u1 @ u. Then
u = vu1w for some (possibly empty) words v and w. Let ω ∈ AN be such
that x0 = Πθ(ω). For each uj , with 2 ≤ j ≤ 2k, there exists a unique



BUFFON’S NEEDLE AND PLANAR CANTOR SETS 487

q = qj ∈ N∪{0} such that ũj := ujω|q ∈ W(ru1). Notice that Sθuj
(x0) ∈ Λθeuj

whence Sθvuj
(x0) ∈ Λθveuj

. By (5.10), we have |Sθvuj
(x0) − Sθvu1

(x0)| ≤ rvu1 .
Finally, x ∈ Λθvu1

, which implies that the distance from x to Λveuj
is at most

diam(Λθvu1
) + rvu1 . Since rveuj

= rvreuj
≤ rvu1 , we obtain that

B(x,C ′rvu1) ⊃ Λθvu1
∪

2k⋃
j=2

Λθveuj
, where C ′ = 1 + 2diam(Λ).(5.13)

Therefore,

νθB(x,C ′rvu1) ≥ rsvu1
+

2k∑
j=2

rsveuj
≥ 2kr−sminr

s
vu1
.(5.14)

This implies (5.12) since rN(k)
min ≤ ru ≤ rvu1 ≤ ru1 .

Proof of Theorem 2.1. Recall that now s = 1. By (5.8), it suffices to show
that for some c > 0 and γ ∈ (0, 1), we have

Fav(Λ(ρ)) ≤ cγk, where ρ := r
N(k)
min .

In view of (5.6), it is sufficient to estimate |Λθ(ρ)| from above for θ 6∈
Ψ(nk, 2k, 1). Fix such a θ, x0 ∈ Λθ, and the words u1, . . . , u2k as before,
satisfying (5.10), and let u1 be the word with the minimal rui . By (5.11)
we have Λθ(ρ) = Yu1(ρ) ∪ Zu1(ρ). Clearly, diam(Λθu(ρ)) ≤ (2 + diam(Λ))ru
for any u ∈ AN(k), so (5.9), with s = 1, implies that |Yu1(ρ)| ≤ const · e−k.
Since t ≥ C−1ρ in (5.12), the balls B(x, (1 + C)t), for x ∈ Zu1 , cover the ρ-
neighborhood Zu1(ρ). Now (5.12) implies |Zu1(ρ)| ≤ const·2−k, by repeating
the argument at the end of Section 3, and the proof is finished. �

Proof of Theorem 2.3. We use the same setting as in the proof of Theo-
rem 2.1, except that now s ≤ 1 and J ⊂ IP (Λ) is a nonempty interval. In
view of (5.6), the Borel-Cantelli Lemma implies that the set

E :=
∞⋃
n=1

⋂
k≥n

(J \Ψ(nk, 2k, 1))

has full Lebesgue measure in J . Thus, it is enough to show that Hφ(Λθ) = 0
for all θ ∈ E.

Suppose that θ ∈ E; then θ ∈ J \ Ψ(nk, 2k, 1) for all k sufficiently large.
We fix x0 ∈ Λθ and find u1 = u1(k) as above (now we have to make the
dependence on k explicit). For ρk = r

N(k)
min we have the decomposition (5.11)

Λθ = Yu1(k) ∪ Zu1(k). We can write Λθ = Ω1 ∪ Ω2 where Ω1 is the set
of x which belong to infinitely many Yu1(k) and Ω2 is the set of x which
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belong to all Zu1(k) for k sufficiently large. Recall that Yu1(k) =
⋃

|u|=N(k)

u1(k) 6@u

Λθu

and diam(Λθu) ≤ diam(Λ) · ru. Thus,

Hφ(Ω1) ≤ const · lim
k→∞

∑
|u|=N(k)

u1(k) 6@u

φ(ru)

= const · lim
k→∞

∑
|u|=N(k)

u1(k) 6@u

rsu exp[L log∗(r
−1
u )]

≤ const · lim
k→∞

∑
|u|=N(k)

u1(k) 6@u

rsu exp[L log∗(ρ
−1
k )]

≤ const · lim
k→∞

e−keL(1+ξ)k = 0,

using (5.9) and (5.8), with 0 < ξ < L−1 − 1, in the last estimate. Recall
that L < log 2 < 1.

It remains to prove that Hφ(Ω2) = 0. For any x ∈ Zu1(k) we have by
(5.12), with t = tk ≥ C−1ρk,

νθB(x, tk)
φ(tk)

≥
const · 2ktsk

tsk exp[L log∗(2t
−1
k )]

(5.15)

≥ const · 2k exp[−L log∗(2Cρ
−1
k )]

≥ const · 2ke−L(1+ξ)k →∞, as k →∞.

In the last line we used (5.8) with 0 < ξ < L−1 log 2 − 1. Notice that
tk ≤ ru1(k) → 0, as k →∞ (since ru1(k) is the smallest among rui(k), i ≤ 2k,
and all ui(k) are distinct). Thus, (5.15) implies

Dφ(νθ, x) := lim sup
t→0

νθB(x, t)
φ(2t)

=∞ for all x ∈ Ω2,

and hence Hφ(Ω2) = 0 by the Rogers-Taylor Density Theorem, see [20].
The proof of Theorem 2.3 is complete. �

6. Random Cantor sets.

The proof of Theorem 2.2 is inspired by an argument of Lyons [11] involving
percolation on trees; the negative dependence in the construction of Rk
that arises from choosing exactly one of the four dyadic subsquares in the
inductive step of the construction, makes the proof here a little more delicate.

Denote by Gk the collection of 4k (closed) dyadic subsquares of the unit
square [0, 1]2 having side length 2−k. We consider all dyadic subsquares as a
rooted tree, with [0, 1]2 being the root and Gk being the set of nodes at the
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kth level. For each node there are four edges leading to nodes at the next
level, (its “children”).

Let ` be a line intersecting [0, 1]2, that does not go through any of the
vertices of the squares in G2n. Further, let

An(`) = #{B ∈ G2n : B ∩ ` 6= ∅}.
Observe that

An(`) ≤ 22n+1.(6.1)

To verify this we may assume, using symmetry, that ` forms an angle α ∈
[0, π/4] with the horizontal. Then ` intersects at most two squares in each
of the 22n columns of G2n, and (6.1) follows.

Below P(E) denotes the probability of an event E.

Lemma 6.1. Suppose that the line ` does not hit any vertices of the squares
in G2n. Then

P(Rn ∩ ` 6= ∅) ≤
C1

n
(6.2)

for some constant C1 > 0 independent of ` and n.

Proof of Theorem 2.2 assuming Lemma 6.1. Let θ ∈ [0, π] be such that the
line y cos θ = x sin θ is orthogonal to `, and let n be the unit normal vector
for `. Then by Fubini’s Theorem and Lemma 6.1,

E
[
|projθRn|

]
=
∫

R
P(Rn ∩ (`+ tn) 6= ∅) dt ≤

√
2
C1

n
,(6.3)

and (2.4) follows by integrating over θ.
Finally, (2.5) follows directly from (2.4) by Fatou’s lemma. �

Proof of Lemma 6.1. We label the four dyadic subsquares of a square as in
Figure 3.

2

1

3

0

Figure 3. Labeling subsquares.

This labeling induces a natural addressing scheme for each dyadic square
B ∈ Gk. The address has length k and the symbols are from {0, 1, 2, 3}; we
write it as ω(B) = {ωi(B)}ki=1. Recall that we arrange all dyadic squares
in a tree. The construction of the random set is such that at even levels
we take all children, but at odd levels we choose for each remaining square
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one child, uniformly at random and independently of the choices in other
squares. This yields a subtree of the full 4-ary tree, where the nodes at level
2n correspond to the random set Rn.

By symmetry, we may assume that the slope of ` is positive.
Fix a small positive constant δ, to be chosen later. We subdivide G2n into

three types as follows:
(i) Say that B ∈ G2n is Type 1 if

#{i ≤ n− 1 : ω2i+1(B) = 0} ≥ δn.
(ii) Say that B ∈ G2n is Type 2 if it is not Type 1, and

#{i ≤ n− 1 : ω2i+1(B) = 2} ≥ δn.
(iii) All remaining B ∈ G2n are said to be Type 3.

Consider the events

Zi =
{
∃B ⊂ Rn : B ∈ Type i & B ∩ ` 6= ∅

}
for i = 1, 2, 3.

We have

P(Rn ∩ ` 6= ∅) ≤
3∑
i=1

P(Zi).

First we estimate P(Z1). We have

E [#{B ⊂ Rn : B ∩ ` 6= ∅} |Z1] ≤
E [#{B ⊂ Rn : B ∩ ` 6= ∅}]

P(Z1)
.(6.4)

Writing
#{B ⊂ Rn : B ∩ ` 6= ∅} =

∑
B∈G2n

1{B⊂Rn: B∩` 6=∅}

and using that P(B ⊂ Rn) = 4−n for any B ∈ G2n, we obtain by (6.1) that

E
[
#{B ⊂ Rn : B ∩ ` 6= ∅}

]
= An(`) · 4−n ≤ 2.(6.5)

Thus, it remains to estimate the left-hand side of (6.4) from below. Let

Ψ1 := {Q ∈ G2n : Q ∈ Type 1 & Q ∩ ` 6= ∅}.
Order the squares in G2n hit by ` from left to right and from bottom to top.
This is a total order by the assumption on slope of the line `. For Q ∈ Ψ1

consider the event

YQ =
{
Q is the first square in Ψ1 hit by `

}
.

Then Z1 =
⋃
Q∈Ψ1

YQ is a disjoint union, and so, for any random variable
f ,

E [f |Z1] =
∑
Q∈Ψ1

P(YQ)
P(Z1)

E [f |YQ] ≥ min
Q∈Ψ1

E [f |YQ].(6.6)
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Fix Q ∈ Ψ1. We have

E [#{B ⊂ Rn : B ∩ ` 6= ∅} |YQ] =
∑

B∈G2n: B∩` 6=∅

P(B ⊂ Rn |YQ).(6.7)

By the definition of Type 1 squares,

#{i ≤ n− 1 : ω2i+1(Q) = 0} ≥ δn .

Fix i such that ω2i+1(Q) = 0, and denote by Q̃ the dyadic square in G2i

having the address ω(Q̃) = ω1(Q) . . . w2i(Q). The fact that Q ⊂ Rn implies
that Q̃ was chosen at the ith stage of the random construction, i.e., Q̃ ⊂ Ri.
(Note that by definition, [0, 1]2 ⊃ R1 ⊃ . . . ⊃ Rn.) Since the slope of ` is
positive, ` intersects at least 1

24n−i squares B ∈ G2n whose addresses start
with ω(Q̃)k, for k ∈ {1, 2, 3} (see Figure 3). For each of these squares we
have (using the independence of YQ from the random choices involving the
descendants of ω(Q̃)k with k ∈ {1, 2, 3}), that

P(B ⊂ Rn |YQ) = P(B ⊂ Rn | Q̃ ⊂ Ri) = 4i−n.

Therefore, the sum of P(B ⊂ Rn |YQ) over the set of squares

Bi =
{
B ∈ G2n, : B∩` 6= ∅, {ωj(B)}2i1 = {ωj(Q)}2i1 , ω2i+1(B) ∈ {1, 2, 3}

}
,

is at least 1
24n−i · 4i−n = 1

2 . Notice that the sets Bi are disjoint for distinct i
with ω2i+1(Q) = 0. Thus, the right-hand side of (6.6) is at least 1

2δn, which,
together with (6.7), (6.6), (6.5) and (6.4), implies

P(Z1) ≤
4
δn
.(6.8)

By symmetry, we obtain

P(Z2) ≤
4
δn
.(6.9)

It remains to estimate P(Z3). We have

P(Z3) ≤ E
[
#{B ⊂ Rn : B ∈ Type 3 & B ∩ ` 6= ∅}

]
(6.10)

=
∑

B∈Type 3 : B∩` 6=∅

P(B ⊂ Rn)

= 4−n#{B ∈ Type 3 : B ∩ ` 6= ∅}.

Thus, it suffices to bound the number of Type 3 squares hit by `. Consider
the subtree of all dyadic squares that are hit by `. Since we assumed that `
does not hit any vertices, it can hit at most three children of a dyadic square
that it intersects. For a Type 3 square, at least n− 2δn of the digits at odd
levels are either 1 or 3, and our assumption that the slope of ` is positive
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guarantees that it cannot intersect both of the children labeled by 1 and 3
of any dyadic square (see Figure 3). Therefore, summing over the number

j = #
{
i ≤ n− 1 : ω2i+1(B) ∈ {0, 2}

}
,

we obtain

#{B ∈ Type 3 : B ∩ ` 6= ∅} ≤
∑
j≤2δn

(
n
j

)
3n2j ≤ C2 · (1 + ε(δ))n3n+2δn,

where ε(δ)→ 0, as δ → 0. Now we can choose δ so that (1+ε(δ))·31+2δ < 3.5,
and, in view of (6.10),

P(Z3) ≤ const · (7/8)n.

Combining this with (6.8) and (6.9) yields (6.2), and the proof is complete.
�

7. Concluding remarks and problems.

7.1. More general families of self-similar sets. Theorems 2.1 and 2.3
extend to parametrized families of self-similar sets satisfying the “transver-
sality condition.” The following set-up is taken from [18].

Let J ⊂ R be a closed interval. Consider a one-parameter family of
iterated function systems {Sλ1 , . . . , Sλm}λ∈J where Sλi (x) = rix+ ai(λ), with
ri ∈ (0, 1) and ai(λ) ∈ C1(J). Let Π(λ, ·) : AN → R be the natural
projection map associated with the system and let Λλ = Π(λ,AN). Then
{Λλ}λ∈J is a family of self-similar sets on the real line. Note that the
similarity dimension s does not depend on λ. We denote fω,τ (λ) = Π(λ, ω)−
Π(λ, τ) and say that the transversality condition holds on J if for any
ω, τ ∈ AN,

if ∃λ ∈ J : fω,τ (λ) = f ′ω,τ (λ) = 0 then ω = τ.

Define

IP = {λ ∈ J : ∃ω, τ ∈ AN : fω,τ (λ) = 0 but ω 6= τ}.

Theorem 7.1. Suppose that the one-parameter family of iterated function
systems defined above satisfies the transversality condition and IP = J .

(i) Assume that s = 1. Then there exist C, a > 0 such that∫
J
|Λλ(ρ)| dλ ≤ C exp[−a log∗(ρ

−1)] for all ρ > 0.

(ii) Assume that s ≤ 1. Then Hφ(Λλ) = 0 for Lebesgue-a.e. λ ∈ J where
φ(t) = ts exp[L log∗(t−1)], with L ∈ (0, log 2).
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The proof of this theorem is very similar to the proofs of Theorems 2.1
and 2.3. The only change is in Lemma 3.2, where one needs to use the general
form of transversality rather than the special form (4.1) valid for projection
families. In [18] it is proved, under the assumptions of Theorem 7.1(ii), that
Hs(Λλ) = 0 for a.e. λ ∈ J .

Example. Let Λλ = {
∑∞

n=0 an4
−n : an ∈ {0, 1, 2, λ}} . Then all the as-

sumptions of Theorem 7.1 hold for λ ∈ [0, 3].

7.2. Cantor sets with varying contraction ratios. Let D = {b1, . . . ,
bm} ⊂ R2 be a digit set. Suppose that δn ≥ 0 and let

r(n) = m−n
n∏
i=1

(1 + δi) for n ≥ 1.

Define Π : AN → R2 by Π(ω) =
∑∞

n=1 r
(n−1)bωn and consider the set

Λ = Π(AN). If δn = 0 for all n, then Λ is self-similar, but we now assume
that δn > 0 and δn ↓ 0. Further, suppose that

min
i6=j
|bi − bj | · r(1) > max

i,j
|bi − bj | ·

∞∑
n=2

r(n).

Then it is easy to see that Π is one-to-one and so Λ is a planar Cantor
set. One can show that if the product

∏∞
i=1(1 + δi) diverges, then the one-

dimensional Hausdorff measure of Λ is not σ-finite (this follows, e.g., from
applying the results of [20] to the natural measure on Λ). It turns out that
if this product diverges sufficiently slowly, then Fav(Λ) = 0.

(Other deterministic sets of non-σ-finite H1 measure but zero Favard
length can be found in [13, 7, 8].)

Proposition 7.2. There exists c > 0 such that if
n∏
i=1

(1 + δi) ≤ exp[c log∗ n],

then Fav(Λ) = 0.

Sketch of the proof. The argument closely follows the proof of Theorem 2.3
(in the homogeneous case), so we only give a brief sketch.

Let Πθ = projθ ◦ Π and Λθu = Πθ([u]) where [u] is the cylinder set corre-
sponding to u ∈ A∗. For u, v ∈ A∗, with |u| = |v| = n, we say that Λθu and
Λθv are ε-relatively close if the Hausdorff distance between these sets is not
greater than εr(n). Define Ψ(n, k, ε) as the set of θ ∈ [0, π] such that there is
no collection of distinct words u1, . . . , uk, with |uj | ≤ n for j ≤ k, such that
Λθuj

, j ≤ k, are pairwise ε-relatively close. The four lemmas in Section 3 and
the proof of Theorem 2.3 (specialized to the homogeneous case ri = r) go
through essentially unchanged, replacing only rn, rq, etc., with r(n), r(q), etc.
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We use φ(t) = t, so that Hφ(Λθ) = 0 for a.e. θ is equivalent to Fav(Λ) = 0.
Further details are left to the reader. �

7.3. Unsolved problems.

Question 7.3. For a one-dimensional self-similar set in the plane, which
satisfies strong separation, can the bound (2.3) be strengthened to

Fav(Λ(ρ)) ≤ C
(

log
(

1
ρ

))−1

for all ρ > 0,(7.1)

for some C <∞?

Perhaps a more accessible goal is to improve our estimates for random
Cantor sets.

Question 7.4. For the random sets Rn considered in Theorem 2.2, can the
upper bound (2.5) be improved to

lim sup
n→∞

n · Fav(Rn) <∞ a.s. ?(7.2)

A more ambitious program would be to relate the decay rate of Favard
length of neighborhoods, to other quantitative measures of nonrectifiability.
The following question is motivated by Jones’ Traveling Salesman Theo-
rem [6]. Given a compact planar set Λ, and ε > 0, let

`(Λ, ε) = supH1
∞

(
Γ(ε) ∩ Λ

)
,

where Γ runs over recifiable curves of length 1, and H1
∞ denotes one-dimen-

sional Hausdorff content. We can show that the four-corner set K2 consid-
ered in the introduction satisfies `(K2, ε) = O(| log ε|−1) as ε→ 0.

Question 7.5. Is there a quantitative estimate of Fav(Λ(ε)) in terms of
`(Λ, ε)?

In particular, is Fav(Λ(ε)) = O(`(Λ, ε)) as ε→ 0?
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DETERMINING THE POTENTIAL OF A
STURM–LIOUVILLE OPERATOR FROM ITS DIRICHLET

AND NEUMANN SPECTRA

Virgil Pierce

In this paper we consider the inverse spectral problem for
the Sturm–Liouville Operator on the interval [0, 1]. We show
that given the Dirichlet and Neumann spectra of such an op-
erator we find a generically uncountable family of potentials
with these spectra.

1. Introduction.

We will consider this problem: Given the Dirichlet and Neumann spectra of
the Sturm–Liouville Operator

− d2

dx2
+ q(x)(1)

for a potential q in C3([0, 1]), determine q. Instead of finding a unique q we
get a generically uncountable family of potentials that will have the given
joint spectra. Borg [1] showed that if the gaps (see Figure 1) are all trivial
then the potential q(x) is 0. Levinson [11] showed that if given the spectra
of (1) corresponding to the two sets of boundary conditions,

y(0) cosα+ y′(0) sinα = 0, y(1) cosβ + y′(1) sinβ = 0(2)
y(0) cosα+ y′(0) sinα = 0, y(1) cos γ + y′(1) sin γ = 0(3)

with sin(γ − β) 6= 0, then q(x) is uniquely determined. Notice that this
theorem does not include the case of Dirichlet (boundary conditions y(0) =
y(1) = 0) and Neumann (boundary conditions of y′(0) = y′(1) = 0) spectra.
Borg [1], Levinson [11], Isaacson, McKean and Trubowitz [8] among others
demonstrated that the spectrum given by one boundary condition does not
determine the operator.

The dynamical behavior of solutions to Hill’s Operator (the 1-D Schröd-
inger or Sturm-Liouville Operator with periodic potential) is determined by
the properties of the associated Floquet discriminant function [12]. Its and
Matveev [10], Gelfand [5], Gelfand and Levitan [6], McKean [15], Garnett
[4], Trubowitz [17], and Buslaev and Faddeev [2] illustrate that for periodic
potentials the periodic, anti-periodic, and Dirichlet spectra determine the
potential.

497
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We address our stated problem by applying the well understood periodic
theory to a periodic extension of q. This approach to the problem was
originally suggested by H. McKean [private communication]. To state the
theorem we must first introduce some terminology. By {µn} (resp. {νn}) we
denote the Dirichlet (resp. Neumann) spectrum of the operator (1). Define
an even periodic potential Q(x) for which {4µn, 4νn} comprise the periodic
spectrum of the operator − d2

dx2 + Q(x). Let {λj} denote the joint periodic
and anti-periodic spectra of this operator. Note that the periodic spectrum
determines the anti-periodic spectrum (see Proposition (6)). The advantage
of an even potential is that its periodic and anti-periodic spectra are also its
Dirichlet and Neumann spectra.

Theorem 1 (Main Theorem). We are given the Dirichlet {µn}, and Neu-
mann {νn}, eigenvalues of (1) which satisfy the asymptotics

µn, νn = n2π2 +O
(

1
n2

)
.

The family of potentials, q(x), having the same Dirichlet and Neumann
eigenvalues is of the form q(x) = 1

4Q(1
2x) x ∈ [0, 1] (6) where Q(x) is an

even potential of the form

Q(x) = λ0 +
∑
n≥1

λ2n−1 + λ2n − 2cn(x),(4)

with cn(x) the W 1,2
per([0, 1]) (the Sobolev space of differentiable functions with

L2([0, 1]) first derivative) solution of

c2n(0) = 4µn(5)

c2n−1(0) = λ4n−3 or λ4n−2

dcn
dx

=

√√√√(cn − λ2n−1)(cn − λ2n)
∏
k 6=n

(cn − λ2k−1)(cn − λ2k)
(cn − ck)2

.

In the above theorem we utilize the Trace Formula (4) for potentials q
which are C3 on all but a finite number of points. This formula says that
such a q is determined by the periodic, anti-periodic and shifted Dirichlet
eigenvalues of the operator − d2

dx2 + q(x) [17]. The shifted Dirichlet eigenval-
ues satisfy a first order ODE (5) and so are themselves determined by the
Dirichlet eigenvalues of q.

Therefore the periodic and Dirichlet spectra of the Sturm-Liouville oper-
ator with periodic Q uniquely determine Q. It is at the step of passing from
knowing the periodic, and only the half of the Dirichlet spectrum corre-
sponding to periodic eigenvalues of the operator − d2

dx2 +Q(x) that we reach
an ambiguity when we are given a choice as to the anti-periodic half of the
Dirichlet spectrum.
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2. Even potentials.

For an arbitrary potential q(x) ∈ L2
R([0, 1]) we form an even periodic poten-

tial

Q(x) =
{

4q(2x) : x ∈ [0, 1/2]
4q(2(1− x)) : x ∈ (1/2, 1] .(6)

Notice that for q(x) ∈ C3([0, 1]), Q(x) is C3 everywhere except at the point
1
2 where it is only continuous.

Let u(x) be a Dirichlet eigenfunction of the operator − d2

dx2 + q(x) corre-
sponding to eigenvalue µj . Then

U(x) =
{

u(2x) : x ∈ [0, 1/2]
−u(2(1− x)) : x ∈ (1/2, 1](7)

is a Dirichlet eigenfunction of the operator − d2

dx2 +Q(x) with eigenvalue 4µj .
Likewise if v(x) is a Neumann eigenfunction with eigenvalue νj then

V (x) =
{

v(2x) : x ∈ [0, 1/2]
v(2(1− x)) : x ∈ (1/2, 1](8)

is a Neumann eigenfunction for the operator − d2

dx2 + Q(x) with eigenvalue
4νj .

Both U(x) and V (x) are also periodic eigenfunctions of the operator
− d2

dx2 + Q(x). We conclude that the Dirichlet and Neumann spectra of
− d2

dx2 + q(x) determine the periodic spectrum of − d2

dx2 + Q(x). Using the
Counting Lemma (2) and Proposition (4) we see that the Dirichlet and Neu-
mann eigenvalues paired with their respective U(x) or V (x) account for only
the gaps which are given by the periodic spectrum.

Therefore we reduce the inverse problem to the case of a periodic poten-
tial. We use the monodromy matrix,(

y1(1, λ) y2(1, λ)
y′1(1, λ) y′2(1, λ)

)
= M(λ),(9)

where y1 and y2 are the two linearly independent fundamental solutions
given by y1(0, λ) = y′2(0, λ) = 1 and y′1(0, λ) = y2(0, λ) = 0. This matrix
describes the behavior of the solutions to Hill’s operator on R. For example
periodic solutions to the differential equation correspond to unit eigenvalues
of this matrix. Because of the initial values of y1 and y2 a Dirichlet eigenvalue
µ corresponds to y2(1, µ) = 0 and a Neumann eigenvalue η corresponds to
y′1(1, η) = 0.

The periodic and anti-periodic eigenvalues are values of λ for which M(λ)
has respectively eigenvalues ±1. In either case Equation (1) has a solution
with period 2. ∆(λ) denotes the trace ofM(λ). Periodic (resp. anti-periodic)
eigenvalues of q(x) are roots of ∆− 2 (resp. ∆ + 2).
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Lemma 1. If Q(x) is an even potential and λj is both a Neumann and
Dirichlet eigenvalue then ∆(λj) = ±2 and ∆′(λj) = 0.

Proof. From the results above, y2(1, λj) = 0 and y′1(1, λj) = 0. Therefore
M(λj) is diagonal with determinant 1, so ∆(λj) = ±2. To prove the state-
ment about the derivative of ∆ we will use a formula from [12],

∆′(λ) =
(
y1(1, λ)− y′2(1, λ)

) ∫ 1

0
y1(x, λ)y2(x, λ)dx(10)

− y2(1, λ)
∫ 1

0
y2
1(x, λ)dx+ y′1(1, λ)

∫ 1

0
y2
2(x, λ)dx.

Now notice that if y1(x, λj) is a solution of (1) then so is

y1(1− x, λj) = y1(1, λj)y1(x, λj) + y′1(1, λj)y2(x, λj)(11)

as y1(1− x, λj) will satisfy Equation (1) with Q(1− x) = Q(x). Therefore,
since λj is a Neumann eigenvalue we see that

y1(1− x, λj) = y1(1, λj)y1(x, λj).(12)

Setting x = 1 in the above equation we get y1(1, λj) = ±1. The determinant
of the monodromy matrix is 1, and because λj is a Dirichlet eigenvalue
y2(1, λj) = 0 so

y′2(1, λj) =
1

y1(1, λj)
= ±1.(13)

We then substitute into (10)

y2(1, λj) = y′1(1, λj) = 0

and

y1(1, λj) = y′2(1, λj) = ±1

to get ∆′(λj) = 0. �

Proposition 1. λj is a periodic or anti-periodic eigenvalue of an even po-
tential Q if and only if λj is a Neumann or Dirichlet eigenvalue of Q.

Proof. Suppose λj is a periodic eigenvalue so ∆(λj) = 2. We must show
that y2(1, λj) = 0 or y′1(1, λj) = 0. Suppose λj is not a Neumann eigenvalue
for Q; that is y′1(1, λj) 6= 0.

From ∆(λj) = 2 we see that the monodromy matrix is of the form

M(λj) =
(
y1(1, λj) y2(1, λj)
y′1(1, λj) 2− y1(1, λj)

)
,(14)

as λj is a periodic eigenvalue.
If Q(x) is even then y1(1− x, λj) is also a solution of

−d
2y

dx2
+ (Q(x)− λj)y = 0.(15)
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Because y1 and y2 form a basis for the solutions to this equation we may
write y1(1− x) as

y1(1− x, λj) = y1(1, λj)y1(x, λj)− y′1(1, λj)y2(x, λj).(16)

By setting x = 1 in this equation and its derivative we get the following
two equations:

1 = y1(1, λj)2 − y′1(1, λj)y2(1, λj)(17)

0 = y1(1, λj)y′1(1, λj)− y′1(1, λj)y′2(1, λj).(18)

From (14) we have y′2(1, λj) = 2− y1(1, λj) and using this relation in (18)
we get the equation

0 = 2y′1(1, λj)(y1(1, λj)− 1).(19)

By the assumption that λj is not a Neumann eigenvalue we conclude that
y1(1, λj) = 1. Substituting this into Equation (17) we conclude that y2(1, λj)
= 0 and so λj is a Dirichlet eigenvalue.

Conversely, suppose that λj is a Dirichlet eigenvalue, y2(1, λj) = 0. We
must show that ∆(λj) = ±2. Since det M(λ) = 1 we have y′2(1, λj) =
1/y1(1, λj). Substituting this into (18) we conclude that either y′1(1, λj) = 0
in which case Lemma (1) completes the proof; otherwise, we get y1(1, λj) =
±1, which implies that ∆(λj) = ±2.

A similar argument may be made for the Neumann case with the addi-
tional feature that, when Q is an even potential, the lowest Neuman eigen-
value, ν0, is equal to the lowest periodic eigenvalue, λ0. �

We introduce the picture of gaps and bands associated to ∆(Q,λ). The
bands are the ranges of eigenvalues whose eigenfunctions are bounded (sta-
ble) on R. That is the range of λ’s for which the eigenvalues of the mon-
odromy matrix are complex valued with modulus less than 1. These bands
are clearly the intervals over which |∆(λ)| < 2. Correspondingly the inter-
vals for which |∆(λ)| > 2 are called the gaps. These are intervals for which
there exist unbounded (unstable) solutions to (1). Gap intervals may be
trivial; i.e., they may collapse to a single point.

Finally we need Theorem 2 from [17].

Theorem 2 (Trace Formula). Let q ∈ C3[0, 1] be a potential with Dirichlet
eigenvalues µn and periodic, anti-periodic eigenvalues λj. Let µn(t), n ≥ 1,
be the unique periodic solution of the system

dµn
dt

=

√√√√(µn − λ2n−1)(µn − λ2n)
∏
k 6=n

(µn − λ2k−1)(µn − λ2k)
(µn − µk)2

,(20)

on the Riemann surface given by the equation

yn =
√

(µn − λ2n−1)(µn − λ2n),
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λ 0 λ 1 λ 2 λ 3 λ 4 λ 5
λ 6

λ 7 λ 8

Figure 1. Gaps and Bands.

whose initial values µn(0) = µn the nth Dirichlet eigenvalue and for which
the initial velocities are prescribed by choosing the signature of the radical√

∆2(µn)− 4 such that√
∆(µn)2 − 4 = 2y′2(1, µn)−∆(µn).(21)

Then,

q(t) = λ0 +
∑
n≥1

λ2n−1 + λ2n − 2µn(t).(22)

The proof in [17] is given for potentials in C3
per([0, 1]). For the purposes

of this paper we wish to apply this theorem to the potential Q(x) which is C3

for every point except 0, 1
2 and 1 where Q is not continuously differentiable.

To show that the theorem still holds in this case we will demonstrate that
the trace formula is still well-defined.

We have from [16] the estimate

µn = n2π2 −
∫ 1

0
cos(2πnx)q(x)dx+O

(
1
n2

)
(23)

for q(x) ∈ W 2,2([0, 1]). In fact our q(x) is twice differentiable for all but
one point. Below we give an argument for a bound on the cos(2πnx) inner
product above. This same technique shows that the O

(
1
n2

)
term above will
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remain of the same order. Compute an estimate of the integral above∫ 1

0
cos(2πnx)q(x)dx(24)

= q(x)
sin(2πnx)

2πn

∣∣∣∣1
0

−
∫ 1

2

0
q′(x)

sin(2πnx)
2πn

dx−
∫ 1

1
2

q′(x)
sin(2πnx)

2πn
dx.

Integrating by parts a second time we get∫ 1

0
cos(2πnx)q(x)dx(25)

= q′(x)
cos(2πnx)

4π2n2

∣∣∣∣ 12
0

+ q′(x)
cos(2πnx)

4π2n2

∣∣∣∣1
1
2

−
∫ 1

2

0
q′′(x)

cos(2πnx)
4π2n2

dx−
∫ 1

1
2

q′′(x)
cos(2πnx)

4π2n2
dx.

So we see that µn = n2π2 + O(1/n2) for the Q(x) we are concerned with.
There was nothing special about the points where differentiability failed so
the shifted Dirichlet eigenvalues will have the same asymptotics as well. The
periodic and anti-periodic spectra satisfy the same asymptotics as they are
the Dirichlet and Neumann spectra of the even potential. The sum we are
concerned with is ∑

n≥1

|λ2n−1 + λ2n − 2µn(t)| .(26)

By the analysis above each term satisfies the asymptotics n2π2 + O(1/n2)
and so the sum converges absolutely.

Proposition 2. If µn(0) = λ2n−1 or λ2n for all n then the function q(x)
determined by (22) is even.

Proof. As a consequence of the trace formula it will suffice to show that
µn(x) = µn(1− x). Differentiating this function with respect to x we get

d

dx
µn(1− x)(27)

= −

√√√√(µn − λ2n−1)(µn − λ2n)
∏
k 6=n

(µn − λ2k−1)(µn − λ2k)
(µn − µk)2

.

From the periodicity of the original solutions the initial conditions which
determine µn(1− x) are the same as the ones for µn(x) specifically µn(0) =
µn(1) = λ2n−1 or λ2n. There exists a solution of Equation (27) which is
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periodic and does not pause at the endpoints of the interval [λ2n−1, λ2n].
However from the ambiguity of the choice of sign this solution must be
identical to that of the original equation which is also periodic and does not
pause at the endpoints of the interval. �

3. Eigenvalues.

The following proposition examines further the relationship between the
Dirichlet and Neumann spectra, and the gaps.

Proposition 3. Suppose q is a potential on [0, 1] and [λ2j−1, λ2j ] is a gap.
In other words |∆(λ)| ≥ 2 for all λ in [λ2j−1, λ2j ], then there is a µ and
η in [λ2j−1, λ2j ] such that µ is a Dirichlet eigenvalue and η is a Neumann
eigenvalue.

Proof. We will prove this by showing that y′1(1, λ) and y2(1, λ) switch sign
from the left of λ2j−1 to the right of λ2j .

We follow Magnus and Winkler for this proof [12].
Combining Formula (10) into one integral and shortening notation via

η1 = y1(1, λ2j−1), η′1 = y′1(1, λ2j−1) etc., we get the equation

∆′(λ2j−1) =
∫ 1

0

((
η1 − η′2

)
y1y2 − η2y

2
1 + η′1y

2
2

)
dx.(28)

We also need the formula

∆2 − 4 =
(
η1 + η′2

)2 − 4
(
η1η

′
2 − η′1η2

)
(29)

=
(
η1 − η′2

)2 + 4η′1η2.

Note that η′1 6= 0 to the left of λ2j−1 and to the right of λ2j , where
|∆(λ)| < 2. So by adding and subtracting (∆2 − 4)

∫ 1
0 y

2
1dx/4η

′
1 from (28)

we get ∫ 1

0

((
η1 − η′2

)
y1y2 − η2y

2
1 + η′1y

2
2(30)

+
(η1 − η′2)

2 y2
1

4η′1
+

4η′1η2y
2
1

4η′1
− ∆2 − 4

4η′1
y2
1

)
dx

= sign(η′1)
∫ 1

0

(√|η′1|y2 +
η1 − η′2
2
√
|η′1|

sign(η′1)y1

)2

− ∆2 − 4
4|η′1|

y2
1

 .

As |∆(λ)| < 2 in the regions being considered, the integrand is a positive
number. Yet ∆′(λ) switches sign once in [λ2j−1, λ2j ]. This implies that η′1
switches sign as needed. A similar proof will show that η2 also switches
sign. �

A corollary of Formula (30) is that if ∆′(λ) = 0 then |∆(λ)| ≥ 2.
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4. Counting Lemma.

How many Dirichlet and Neumann eigenvalues are in each gap? To answer
this question we use the Counting Lemma from Pöschel and Trubowitz [16].

Lemma 2 (Counting Lemma: Dirichlet Eigenvalues). Let q ∈ L2
R([0, 1])

and let N > 2e‖q‖ be an integer. Then y2(1, λ) has exactly N roots, counted
with multiplicities, in the open half plane

Re (λ) <
(
N +

1
2

)2

π2(31)

and for each n > N , exactly one simple root in the egg shaped region

|
√
λ− nπ| < π

2
.(32)

There are no other roots.

An analogous result is true for Neumann eigenvalues. The necessary tools
are available in [16]. For completeness we will state the lemma here:

Lemma 3 (Counting Lemma: Neumann Eigenvalues). Let q ∈ L2
R([0, 1])

and let N > 2e‖q‖ be an integer. Then y′1(1, λ) has exactly N + 1 roots,
counted with multiplicities, in the open half plane

Re (λ) <
(
N +

1
2

)2

π2(33)

and for each n > N , exactly one simple root in the egg shaped region

|
√
λ− nπ| < π

2
.(34)

There are no other roots.

The “extra” Neumann eigenvalue in the half plane corresponds to the
“ground state” of the Neumann problem. For general potentials, this eigen-
value is less than or equal to λ0, the first periodic eigenvalue; but, when q
is even it is pinned at λ0.

For the periodic and anti-periodic spectra we shift the potential until
it is an even potential, then the Dirichlet and Neumann spectra form the
periodic and anti-periodic spectra. Therefore we get the analogous result
for the periodic and anti-periodic spectra (the periodic and anti-periodic
spectra are invariant under translation of the potential q and the average
value of q is invariant under translation).

Proposition 4. For periodic q∈L2
R([0, 1]) there is one and only one Dirich-

let eigenvalue within each gap.
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Proof. Choose N satisfying the hypothesis of the Counting Lemma. By
Proposition 3 there is at least one Dirichlet eigenvalue in each gap. There
are N Dirichlet eigenvalues in the region Re(λ) < (N + 1

2)2π2. Therefore in
the same region there is one and only one Dirichlet eigenvalue within each
gap.

With n > N for the intervals |
√
λ − nπ| < π

2 there is one gap. Within
this same region there is one Dirichlet eigenvalue. In these zones there is
one and only one Dirichlet eigenvalue within each gap. �

Proposition 5. For periodic q ∈ L2
R([0, 1]) there is one and only one Neu-

mann eigenvalue within each gap. There is one and only one Neumann
eigenvalue within the interval (−∞, λ0].

The proof of this proposition follows the one above.

Proposition 6. ∆ is determined by the periodic eigenvalues of q.

Proof. The periodic eigenvalues are the roots of ∆ − 2, they are real since
they are eigenvalues of a self-adjoint operator . Therefore we have

∆− 2 = C

( ∞∏
n=1

(λ2n−1 − λ)(λ2n − λ)
n4π4

)
(λ− λ0),(35)

(see [13]) where {λi} are the periodic eigenvalues and C is a constant, pro-
vided that this product converges. C is determined by the asymptotic con-
dition on the roots of ∆2 − 4,

λ2n−1, λ2n = n2π2 +
∫ 1

0
q(x)dx+O(n−2)(36)

for q ∈ C3([0, 1]). Without loss of generality we may take
∫ 1
0 q(x)dx = 0.

We first show that the product converges uniformly. From Markushevich

([13]) we have that
∞∏
i=1

(1 − λ
λi

) converges uniformly if and only if
∞∑
i=1

λ
λi

is

uniformly convergent.
Choose N such that |λ2n−1−n2π2| < δ and |λ2n−n2π2| < δ for all n > N

and that
∞∑

i=N+1

1
i2π2

<
δ

4
.(37)

Consider

∞∑
i=1

∣∣∣∣ λλi
∣∣∣∣ = |λ| ∞∑

i=1

∣∣∣∣ 1
λi

∣∣∣∣ = |λ|
 ∞∑
j=1

∣∣∣∣ 1
λ2j−1

∣∣∣∣+ ∞∑
j=1

∣∣∣∣ 1
λ2j

∣∣∣∣
 .(38)
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We examine the tail of this series,
∞∑

i=N+1

∣∣∣∣ 1
λ2i−1

∣∣∣∣+ ∞∑
i=N+1

∣∣∣∣ 1
λ2i

∣∣∣∣ ≤ ∞∑
i=N+1

2
i2π2 − δ

≤ 4
∞∑

i=N+1

1
i2π2

.(39)

Which is the estimate we need.
Finally to combine this with our problem we have the infinite product

∞∏
i=1

λ2n−1λ2n

n4π4

(
1− λ

λ2n

)(
1− λ

λ2n−1

)
.(40)

The term we have factored out of each part of the product is a constant
in λ and therefore our conclusion is that the original product converges
uniformly. �

This proposition says that ∆ is determined by the periodic spectrum.

5. Proof of the main theorem.

If we are given the Dirichlet and Neumann spectra with appropriate asymp-
totic conditions for an C3([0, 1]) potential q on [0, 1] we begin the solution of
the inverse problem by first extending q to an even potential Q(x) on [0, 1].
Q(x) is C3([0, 1]) at all but one point. As described in Section 1 the Dirichlet
and Neumann spectra, {µn, νn} give the periodic spectrum, {4µn, 4νn, 4ν0},
of the operator with potential Q(x). The eigenvalue 4ν0 is the first pe-
riodic eigenvalue of the operator with potential Q(x). The corresponding
eigenfunctions remain Dirichlet and Neumann eigenfunctions.

For an even potential we have shown that for each pair of endpoints of a
gap one is Dirichlet and the other is Neumann. We have also shown that
these are all of the Dirichlet and Neumann spectra. The endpoints of a gap
are either a pair of periodic or of anti-periodic eigenvalues of Q. Therefore
the Dirichlet and Neumann eigenvalues of − d2

dx2 + q(x) give the periodic half
of the Dirichlet and Neumann spectra.

This periodic spectrum, {4µn, 4νn, 4ν0} determines ∆(λ) by Proposition
(6). From ∆(λ) we find the anti-periodic spectrum as the roots of ∆(λ)+2.
For each pair of anti-periodic eigenvalues one must be Dirichlet and the other
Neumann by Propositions (4) and (1). The choice we make as to which anti-
periodic eigenvalue of a given pair are to be a Dirichlet eigenvalue is where
the ambiguity in the problem arises. That is we do not get a determined
Dirichlet spectrum; potentially, one half of the spectrum is known only up
to a sequence of pairs from which it may be chosen.

The Dirichlet spectrum once chosen specifies the initial conditions for the
ODEs found previously (20). The solutions to these ODEs and the periodic
and anti-periodic spectrum are inserted into the trace formula (22) giving
an expression for Q(x). An admissible q(x) for the stated inverse problem is
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the first half of Q(x) appropriately scaled to be a function on [0, 1], explicitly
q(x) = 1

4Q(1
2x) x ∈ [0, 1].

What Dirichlet and Neumann spectra would lead to only a finite number
of possibilities for q(x) determined by the method discussed above? One
interesting method used to address this question utilizes theta functions and
other tools from algebraic geometry, constructing q(x) as a ratio of theta
functions ([10] and [7]). Hochstadt [7] showed that if the gaps (see Figure 1)
are all trivial then the potential q(x) is 0. Hochstadt went on to show that
if only one of the gaps does not vanish then q(x) is an elliptic function. He
finished with a proof that if only a finite number of the instability intervals
were nontrivial then q(x) is a C∞ function. In these cases there are only
finitely many q(x) solving the inverse problem.

This work was supported by a scholarship from the ARCS Foundation
and by an NSF VIGRE Grant #DMS9977116. I would like to thank Nick
Ercolani and Leonid Friedlander for introducing me to this problem and for
many helpful conversations. I would also like to thank Doug Pickrell for his
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