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In this paper we study compact manifolds with 2-nonnega-
tive Ricci operator, assuming that their Weyl operator sat-
isfies certain conditions which generalize conformal flatness.
As a consequence, we obtain that such manifolds are either
locally symmetric or their Betti numbers between 2 and n−2
vanish. We also study the topology of compact hypersurfaces
with 2-nonnegative Ricci operator.

1. Introduction.

One of the most powerful methods for studying the Betti numbers of com-
pact manifolds is the Bochner technique. This technique is used in the
context of manifolds with some type of curvature condition which will imply
that harmonic forms are parallel. For 2-forms, this fact is implied by the
nonnegativity of the Weitzenböck operator. In dimension four the nonneg-
ativity of the Weitzenböck operator is equivalent (see for instance [14]) to
the nonnegativity of the isotropic curvature, a notion introduced by Micallef-
Moore ([11]) to study stability of harmonic 2-spheres. In that paper, the
authors also point out that conformally flat manifolds with nonnegative
scalar curvature have nonnegative isotropic curvature. Actually, denoting
the Weitzenböck operator by Q2, they show that a necessary and sufficient
condition for the nonnegativity of Q2 is −W+S/6 ≥ 0, where S is the scalar
curvature and W is the operator induced by the Weyl tensor on the space
of 2-forms Λ2(TxM). The condition above follows from the fact that, in
dimension 4, the isotropic curvature (and hence the Weitzenböck operator)
does not depend on the traceless Ricci tensor.

In dimensions greater than 4, conformal flatness and the nonnegativity of
the scalar curvature do not imply nonnegative isotropic curvature, as can be
seen through the conformally flat hypersurfaces constructed in [10] which
have S ≥ 0 but some isotropic curvatures are negative. The same examples
of conformally flat manifolds show that for n > 4, S ≥ 0 does not imply
Q2 ≥ 0.

The role of the Ricci tensor in the study of the isotropic curvature and the
Weitzenböck operator for dimensions n > 4 is not yet clear. It turns out (see
below) that the condition −W + S/6 ≥ 0 used for 4-manifolds generalizes
to −W + S/[(n − 2)(n − 1)] ≥ 0 and this paper searches for hypotheses on
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the Ricci tensor that together with −W + S/[(n− 2)(n− 1)] ≥ 0 imply that
Q2 ≥ 0. Our first result in this paper is the following:

Theorem 1. Let Mn, n > 4, be a compact, locally irreducible manifold with
nonnegative Ricci curvature. If −W + S/[(n − 2)(n − 1)] ≥ 0 then one of
the following occurs:

(a) M is covered by a compact symmetric space.
(b) The Betti numbers βp(M) = 0, for 1 ≤ p ≤ n− 1.

The key point of the proof of this result is to conclude that if n > 4 then
the restricted holonomy group of metrics with Q2 ≥ 0 and −W + S/[(n −
2)(n− 1)] ≥ 0 is essentially SO(n).

In the next result we assume a weaker condition for the Ricci curvature,
namely, that the manifold M has 2-nonnegative Ricci operator, that is to say
the sum of the smallest 2 eigenvalues of the Ricci operator is nonnegative.
We will consider such a condition on manifolds whose Weyl operator W
commutes with Ric ∧ I, where Ric and I denote the Ricci and the identity
operators respectively. For such manifolds we have the following result:

Theorem 2. Let Mn, n > 4, be a compact, locally irreducible manifold
with 2-nonnegative Ricci operator. Let us suppose that [Ric ∧ I,W] = 0 and
−W + S/[(n− 2)(n− 1)] ≥ 0. Then one of following occurs:

(a) M is covered by a compact symmetric space.
(b) The Betti numbers βp(M) = 0, for 2 ≤ p ≤ n− 2.

Observe that the Weyl operator of three important classes of manifolds
commutes with Ric ∧ I: Conformally flat, Einstein and manifolds with pure
curvature tensor (see definition on page 439 of [4]). We also show that two
other types of metrics satisfy the condition [Ric ∧ I,W] = 0. They are G-
manifolds of cohomogeneity one and Riemannian manifolds with harmonic
curvature, non-parallel Ricci tensor and such that the operator Ric has less
than three distinct eigenvalues. The last class of manifolds was studied
by Derdzisnki in [7] and [8]. Such manifolds were the first examples of
compact manifolds with harmonic curvature and non-parallel Ricci tensor
and hence not Einstein. Among them we find, for n > 4, examples that are
not conformally flat either.

We also prove that locally reducible conformally flat manifolds with 2-
nonnegative Ricci operator in fact have nonnegative Ricci curvature. Using
this fact, Theorem 1 above implies the corollary below, which generalizes
Theorem 1 of [13].

Corollary 1. Let Mn, n ≥ 4, be a compact conformally flat manifold with
2-nonnegative Ricci operator. Then either M is flat or βp(M) = 0 for
2 ≤ p ≤ n − 2. Moreover if β1(M) 6= 0 then M is a quotient of Sn−1 ×R
or Rn by a group of fixed point free isometries in the standard metrics.
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We point out that for locally irreducible conformally flat manifolds, The-
orem 2 above and Theorem 2 of [10] have the same conclusion, namely, that
βp(M) = 0, for 2 ≤ p ≤ n− 2. This gives rise to a corollary with the same
proof as Corollary 1 in [10]:

Corollary 2. Let f : Mn → Rn+p, 2 ≤ p ≤ n/2−1, be an isometric immer-
sion of a compact, orientable, locally irreducible conformally flat manifold
M with 2-nonnegative Ricci operator. Then Hi(M ;Z) = 0 for p ≤ i ≤ n−p.

Another similarity between the topology of manifolds of 2-nonnegative
Ricci operator and nonnegative isotropic curvature appears in the context
of hypersurfaces of Euclidean spaces. For these, we prove the result below
(compare with Theorem 1 of [10]):

Theorem 3. Let f : Mn → Rn+1, n ≥ 4, be an isometric immersion of a
compact manifold M with 2-nonnegative Ricci operator. Then the homology
groups

Hi(M ;Z) = 0 for 2 ≤ i ≤ n− 2
and the fundamental group π1(M) is a free group on β1 elements.

2. Manifolds with nonnegative Weitzenböck operator.

Let M be a Riemannian manifold and Ric : TxM → TxM denote the Ricci
operator given by

〈Ric (X), Y 〉 = Ric (X, Y ).
In this paper we will use the same notation for a tangent vector X and
its dual form. With this in mind, we define the Weitzenböck operator Q2 :
Λ2(TxM) → Λ2(TxM) as

Q2(X ∧ Y ) = (Ric ∧ I)(X ∧ Y ) − 2R (X ∧ Y )

= Ric (X) ∧ Y + X ∧ Ric (Y )− 2R (X ∧ Y ),

where R is the curvature operator and Λ2(TxM) denotes the space of 2-
forms. This operator satisfies the well-known Weitzenböck formula, e.g.,
∆ω = −div∇ω +Q2(ω), where ∆ is the Laplace-Beltrami operator and ∇ω
the covariant derivative of ω.

It is easy to see that Q2 is a self-adjoint operator, and therefore it makes
sense to study it when it is nonnegative. The nonnegativity of the Weitzen-
böck operator has been used to study the second Betti number of compact
manifolds. In this section we collect some results along this line.

Lemma 2.1. Let M be a Riemannian manifold with nonnegative Weitzen-
böck operator. Then:

(a) If e1, e2 are orthonormal vectors, we have Ric (e1, e1) + Ric (e2, e2) −
2K12 ≥ 0, where K12 is the sectional curvature of the plane spanned
by e1 and e2.
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(b) The scalar curvature S is nonnegative.
(c) If S ≡ 0 and n > 4 then M is flat.
(d) If S ≡ 0 and n = 4 then M is conformally flat.

Proof. Since Q2 ≥ 0, (a) comes straightforward from the definition of Q2.
Now we have that Ric (e1, e1)+Ric (ej , ej)− 2K1j ≥ 0 for all unit vectors

ej that are orthogonal to e1. We obtain

(n− 1)Ric (e1, e1) +
∑
j 6=1

[Ric (ej , ej)− 2K1j ] = (n− 4)Ric (e1, e1) + S ≥ 0.

(2.2)

Therefore, if n = 4 we have S ≥ 0. If n > 4 and the Ricci curvature is
nonnegative then S ≥ 0. If Ric (e1, e1) < 0 then S > 0.

To prove (c), observe that Equation (2.2) also implies that if S ≡ 0 and
n > 4 then the Ricci curvature is nonnegative. If S ≡ 0, we conclude that
M is Ricci flat. This substituted in (a) implies that the sectional curvature
K ≤ 0 which gives K = 0, again because S ≡ 0. The result in (d) is
well-known (see for instance [12], Proposition 2.5 or [15], Proposition 2.5).

Proposition 2.3. Let Mn, n ≥ 4, be a locally irreducible compact manifold
with nonnegative Weitzenböck operator. Then:

(a) If M is even dimensional and β2(M) 6= 0 then β2(M) = 1 and M
is a simply connected Kähler manifold with positive first Chern class.
Further, if n = 4, then M is biholomorphic to the complex projective
space CP2.

(b) If M is odd dimensional and β2(M) 6= 0 then M is covered by sym-
metric space of [compact type] and rank > 1.

Proof. Since M is compact, it follows from the nonnegativity of Q2 and the
Weitzenböck formula that a harmonic 2-form ω is parallel.

If M is even dimensional, the proof of Theorem 2.1(b) of [12] applies
here, since it depends only on the fact that harmonic 2-forms are parallel
and S ≥ 0 but not zero. Since S = 0 implies that M is flat and this
contradicts the irreducibility of M we conclude the first assertion of (a).
The second part follows from Theorem 1 of [14].

If M is odd dimensional, since we are supposing that M is locally ir-
reducible, then so is the restricted holonomy group G. Recall that in [2],
Berger proved that if for some x ∈ M , G acts irreducibly on TxM , then
either M is locally symmetric or G is one of the standard subgroups of
SO(n):

SO(n), U(m)(n = 2m), Sp(m)× Sp(1)(n = 4m > 4),Spin (9)(n = 16)

SU(m)(n = 2m > 2), Sp(m)(n = 4m > 4), G2(n = 7),Spin (7)(n = 8).

In the case that M is locally symmetric, the universal cover M̃ is an ir-
reducible symmetric space. Since M̃ is Einstein, if S = 0, M would be
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Ricci flat and then flat by Lemma 2.1. Therefore S > 0 and M̃ is compact.
If rank(M̃) = 1, being odd-dimensional, it would be isometric to a sphere
contradicting that β2(M) 6= 0. Berger also proved that if G is one of the
possibilities listed on the second line above, M is Ricci flat, which in this
case implies that M is flat. Note that in the other possibilities for G, M
is even dimensional, except if G = SO(n). In this case, the existence of a
parallel 2-form ω would give rise to a parallel and hence harmonic 2-form
on Sn by the holonomy principle, and this is a contradiction.

3. A special condition on the Weyl tensor.

We start this section proving a result for manifolds with nonnegative
Weitzenböck operator and Weyl tensor satisfying a condition which gener-
alizes conformal flatness. Before we state the result, we recall that the Weyl
tensor induces an operator

W : Λ2(TxM) → Λ2(TxM)

given by
W(X ∧ Y ) = R(X ∧ Y )− Γ(X) ∧ Y −X ∧ Γ(Y )

where Γ : TxM → TxM is defined by

Γ(X) =
1

n− 2

(
Ric (X)− S

2(n− 1)
X

)
.

It is well-known that conformal flatness for manifolds of dimension n ≥ 4 is
equivalent to W ≡ 0.

Lemma 3.1. Let Q2,R,W denote the Weitzenböck, curvature and Weyl
operator respectively. We have:

(a)

Q2 − (n− 4)R =
S

n− 1
− (n− 2)W.

(b) If −W + S/[(n − 2)(n − 1)] ≥ 0 and Q2 is a nonnegative operator
(Q2 ≥ 0) then

Q2 − 2(p− 2)R ≥ 0 whenever p ≤ [n/2].

Proof. Using the definition of W we obtain (a).
For (b), observe first that the assumptions imply that Q2 − (n − 4)R

is a nonnegative operator. Now let µ be an eigenvalue of Q2 − 2(p − 2)R
with corresponding eigenvector φ. If 〈R(φ), φ〉 ≤ 0, then 〈(Q2 − 2(p −
2)R)(φ), φ〉 ≥ 0, since we are supposing that Q2 ≥ 0. If 〈R(φ), φ〉 ≥ 0, we
have for p ≤ [n/2]

〈(Q2 − 2(p− 2)R)(φ), φ〉 ≥ 〈(Q2 − (n− 4)R)(φ), φ〉 ≥ 0.
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Theorem 3.2. Let Mn, n ≥ 4 be a locally irreducible compact manifold with
nonnegative Weitzenböck operator and such that −W+S/[(n−2)(n−1)] ≥ 0.
Then one of the following occurs:

(a) M is locally symmetric and covered by a compact symmetric space.
(b) The Betti numbers βp(M) = 0 for 2 ≤ p ≤ n− 2.
(c) M is 4-dimensional manifold biholomorphic to the complex projective

space CP2.

Proof. Without loss of generality, we asume that M is orientable. Let ω be
a harmonic p-form. We use the Weitzenböck formula for p-forms (see [9])

(∆ω, ω) = (∇ω,∇ω) +
∫

M
F (ω)dV

where ( , ) denotes the L2-product with respect to the Riemannian volume
density dV and

F (ω) =
1

(p− 1)!

[
A− p− 1

2
B

]
,

with

A =
∑

i3,... ,ip

∑
r,s,u,t

ω(Xs, Xr, Xi3 , . . . , Xip)

· ω(Xt, Xr, Xi3 , . . . , Xip)〈R(Xs, Xu)Xu, Xt〉

B =
∑

i3,... ,ip

∑
r,s,u,t

ω(Xr, Xs, Xi3 , . . . , Xip)

· ω(Xt, Xu, Xi3 , . . . , Xip)〈R(Xr, Xs)Xu, Xt〉.
Notice that F (ω) can be written as

F (ω) =
1

(p− 1)!

∑
i3,... ,ip

〈(Q2 − 2(p− 2)R)(φi3,... ,ip), φi3,... ,ip〉

where φi3,... ,ip is a 2-form obtained by fixing Xi3 , . . . , Xip and defining

φi3,... ,ip(u, v) = ω(u, v,Xi3 , . . . , Xip).

Therefore, Q2 − 2(p− 2)R ≥ 0 implies F (ω) ≥ 0.
Proceeding as the proof of Lemma 3.1(b), we conclude that (Q2 − 2(p−

2)R) ≥ 0 for 2 ≤ p ≤ [n/2] and hence for p in this range, a harmonic p-form
is parallel. Again, we study each possibility for the restricted holonomy
group G and use the holonomy principle.

If M is locally symmetric, being locally irreducible, M̃ is an irreducible
symmetric space and therefore an Einstein space. Since it cannot be Ricci
flat, it has positive Ricci curvature and hence compact.

The fact that M cannot be Ricci flat leaves us with the following possi-
bilities:

SO(n), U(m)(n = 2m), Sp(m)× Sp(1)(n = 4m > 4),Spin (9)(n = 16).
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In the last case, a result in [5] implies that M is locally symmetric, and we
repeat the previous argument.

Recall that if β2(M) 6= 0, and M is even dimensional then M is a Kähler
manifold and then there exists a parallel form ω for which Q2(ω) = 0.
Moreover we can find orthonomal vectors e1, . . . , em, n = 2m, such that

ω = J(e1) ∧ e1 + · · ·+ J(em) ∧ em,

where J denotes the complex structure on M . Using the fact thatQ2(ω) = 0,
from the definition of Q2 we get

0 = Ric (e1, e1) + Ric (J(e1), J(e1)) + · · ·+ Ric (em, em)

+ Ric (J(em), J(em))− 2〈R(ω), ω〉,

which gives

〈R(ω), ω〉 =
S

2
yielding

〈W(ω), ω〉 =
(n− 2)S
2(n− 1)

.

On the other hand, let {φi} denote an orthonormal basis which diagonalizes
W with corresponding eigenvalues νi. We then write ω =

∑
i aiφi, and then

〈W(ω), ω〉 =
(n− 2)S
2(n− 1)

=
∑

i

a2
i νi.

Let us suppose that the eigenvalues νi’s are increasing and let i0 denote the
index such that νi ≥ 0, for i ≥ i0. Therefore, from our assumption on the
eigenvalues of the Weyl operator, we get

(n− 2)S
2(n− 1)

≤
∑
i≥i0

a2
i

S

(n− 1)(n− 2)
≤ S

(n− 1)(n− 2)
n

2
.

But the above implies either (n − 2)2 ≤ n, which is clearly a contradiction
for n > 4, or S = 0. But S = 0 contradicts the irreducibility of M , since
it implies that M is flat. Therefore, if n > 4, β2(M) = 0 and hence the
holonomy G cannot be U(m). If n = 4, we obtain that (c) follows from
Proposition 2.3.

If G = Sp(m)×Sp(1), M is Einstein (see [3]) and hence has positive Ricci
curvature. Furthermore, M is a quaternionic Kähler manifold which implies
the existence of a parallel 4-form (V.Y. Kraines, see [4] p. 419), which we
denote by ω, and then F (ω) = 0. From the equation

F (ω) =
1

(3)!

∑
i3,i4

〈(Q2 − 4R)(φi3,i4), φi3,i4〉,
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and the fact that (Q2 − 4R) is a nonnegative operator, we obtain

〈(Q2 − 4R)(φi3,i4), (φi3,i4)〉 = 0,(3.3)

for all 2-forms of type φi3,i4 . On the other hand, we have 〈(Q2 − (n −
4)R)(φi3,i4), (φi3,i4)〉 ≥ 0, and using (3.3) we obtain

(8− n)〈R(φi3,i4), φi3,i4〉 ≥ 0.

If n > 8, the above implies that 〈Q2(φi3,i4), φi3,i4〉 = 4〈R(φi3,i4), φi3,i4〉 ≤ 0.
Since Q2 ≥ 0, we then have that

〈Q2(φi3,i4), φi3,i4〉 = 〈R(φi3,i4), φi3,i4〉 = 0.

But M is Einstein and hence Q2 = 2(S/n) − 2R. Therefore, the equation
above gives

2S||φi3,i4 ||2

n
= 0,

implying S = 0, which is the desired contradiction.
If n = 8, (3.3) substituted in Lemma 3.1(a) immediately implies

〈W(φi3,i4), φi3,i4〉 =
S||φi3,i4 ||2

42
,

and we claim that φi3,i4 is an eigenvector of W. In fact, if not, we consider
again an orthonormal basis {φi} which diagonalizes W, and let i0 denote
the index such that νi ≥ 0, for i ≥ i0. We would have

〈W(φi3,i4), φi3,i4〉 <
∑
i≥i0

a2
i

S

42
<

S||φi3,i4 ||2

42
.

Since M is Einstein, an eigenvector of W is also an eigenvector R, and then
we obtain that

R(φi3,i4) =
S

24
φi3,i4 .

We will show now that one can obtain a basis of Λ2(TxM) whose elements
are 2-forms of type φi3,i4 . This impliesR = (S/24)I, that is, M is a manifold
of constant curvature contradicting that its restricted holonomy group G is
Sp(2)×Sp(1). For that, let I, J, K denote the almost complex structures of
M which satisfy the relations IJ = −JI, and K = IJ . Let {e1, . . . , e8} be
an orthonormal basis with the property

e2 = I(e1), e3 = J(e1), e4 = K(e1)

e6 = I(e5), e7 = J(e5), e8 = K(e5).
The form ω is given by

ω = α ∧ α + β ∧ β + γ ∧ γ,

where

α(X, Y ) = 〈I(X), Y 〉 β(X, Y ) = 〈J(X), Y 〉 γ(X, Y ) = 〈K(X), Y 〉.
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Therefore α, β and γ are written as

α = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 + e7 ∧ e8

β = e1 ∧ e3 − e2 ∧ e4 + e5 ∧ e7 − e6 ∧ e8

γ = e1 ∧ e4 + e2 ∧ e3 + e5 ∧ e8 + e6 ∧ e7,

and then

ω = 6 e1 ∧ e2 ∧ e3 ∧ e4 + 2 e1 ∧ e2 ∧ e5 ∧ e6

+ 2 e1 ∧ e2 ∧ e7 ∧ e8 + 2 e1 ∧ e3 ∧ e5 ∧ e7 − 2 e1 ∧ e3 ∧ e6 ∧ e8

+ 2 e1 ∧ e4 ∧ e5 ∧ e8 + 2 e1 ∧ e4 ∧ e6 ∧ e7 + 2 e2 ∧ e3 ∧ e5 ∧ e8

+ 2 e2 ∧ e3 ∧ e6 ∧ e7 − 2 e2 ∧ e4 ∧ e5 ∧ e7 + 2 e2 ∧ e4 ∧ e6 ∧ e8

+ 2 e3 ∧ e4 ∧ e5 ∧ e6 + 2 e3 ∧ e4 ∧ e7 ∧ e8 + 6 e5 ∧ e6 ∧ e7 ∧ e8.

As before, let us consider the 2-form φi,j(u, v) = ω(u, v, ei, ej). From the
expression of ω it is straightforward to conclude that {φi,j , i < j} is a basis
of ∧2(TxM). Since G 6= U(m), Sp(m)× Sp(1), if n > 4 then the only possi-
bility for G is SO(n). The holonomy principle implies that βp(M) = 0 for
2 ≤ p ≤ [n/2] and we conclude βp(M) = 0 for 2 ≤ p ≤ n− 2 by duality.

Now we use Theorem 3.2 to prove Theorem 1 stated in the introduction.

Proof of Theorem 1. We show that the hypotheses imply Q2 ≥ 0. In fact, let
ω be a unit eigenvector of Q2. There exist an orthonormal set {e1, . . . , e2m}
of TxM and numbers a1, . . . , am such that

ω = a1 e1 ∧ e2 + · · ·+ am e2m−1 ∧ e2m.

From the definition of Q2 we obtain

〈Q2(ω), ω〉 =
m∑

i=1

a2
i

(
Ric (e2i−1, e2i−1) + Ric (e2i, e2i))− 2〈R(ω), ω〉

=
n− 4
n− 2

m∑
i=1

a2
i

(
Ric (e2i−1, e2i−1) + Ric (e2i, e2i))

− 2
[
〈W(ω), ω〉 − S

(n− 2)(n− 1)

]
≥ 0.

Now, Theorem 3.2 implies (a) or βp(M) = 0 for 2 ≤ p ≤ n − 2. Since we
are also assuming that all Ricci curvatures are nonnegative, we apply the
well-known generalization of Bochner’s theorem, namely, that either M is
covered by a compact symmetric space or it is Ricci flat or β1(M) = 0. Since
our hypotheses imply Q2 ≥ 0, M cannot be Ricci flat and this finishes the
proof of the theorem.



328 M.P. DUSSAN AND M.H. NORONHA

Next we want to examine another condition on the Weyl operator that
also generalizes W = 0. Such a condition is

[Ric ∧ I,W] = 0.

This condition is satisfied by several important classes of Riemannian mani-
folds. Among them, we easily find the Einstein manifolds. In this section we
show other classes of manifolds whose Weyl operator commutes with Ric ∧I.

Recall that the curvature operator R is said to be pure if there exists
an orthonormal basis {e1, . . . , en} of the tangent space such that the basis
of 2-forms {ei ∧ ej}i<j diagonalizes R. We call the basis {e1, . . . , en} an
R-basis.

Notice that the Weyl tensor of a manifold with pure curvature operator
satisfies [Ric ∧ I,W] = 0. This class of manifolds also includes hyper-
surfaces of Euclidean spaces, and more generally, manifolds which admit
isometric immersions into a space of constant curvature with flat normal
bundle. To see this, just use the Ricci equation which implies that there is
an orthonormal basis that diagonalizes simultaneously all the Weingarten
operators; then from the Gauss equation one obtains the R-basis. The tech-
nical condition of the next lemma will appear naturally in two other classes
of manifolds.

Lemma 3.4. Let M be a Riemannian manifold such that for every point
x ∈ M , the Ricci operator Ric x has an eigenvalue λ(x) of constant multi-
picity n − 1. Suppose that the eigenspaces Eλ corresponding to λ form an
integrable distribution. If their leaves are totally umbilic submanifolds and
have constant mean curvature then [Ric ∧ I,W] = 0.

Proof. Let {e1, . . . , en} be an orthonormal basis such that Ric (e1) = µe1

and Ric (ei) = λei, for i ≥ 2. We show first that

〈R(e1 ∧ ek), ei ∧ ej〉 = 0, i, j, k ≥ 2.

For that, let Σ denote a maximal leaf of Eλ. Let A denote the shape operator
of the inclusion i : Σ → M with only an eigenvalue of multiplicity n − 1
denoted by a. Since a is constant, it is straightforward to verify that A
satifies the Codazzi equation

〈
(
∇eiA

)
(ej), ek〉 = 〈

(
∇ejA

)
(ei), ek〉, ∀ i, j, k ≥ 2,

where ∇ is the induced connection on Σ. This fact implies 〈R(ei ∧ ej), e1 ∧
ek〉 = 0. Then, we have that

W(e1 ∧ ek) = R(e1 ∧ ek)−
µ

n− 1
e1 ∧ ek

lies in the space V = span{e1 ∧ ek, k ≥ 2}. Since Ric ∧ I restricted to V is
a multiple of the identity, we have that W and Ric ∧ I commute on V . We
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also have, for i, j ≥ 2,

W(ei ∧ ej) = R(ei ∧ ej)−
(n− 1)λ− µ

(n− 1) (n− 2)
ei ∧ ej ,

and then W(ei ∧ ej) ∈ U = span{ei ∧ ej , i, j ≥ 2, i < j} implying that
[Ric ∧ I,W] = 0 on U .

Definition 3.5. A Riemannian G-manifold is said to be of cohomogeneity
one if the group G acts effectively and isometrically with principal orbits of
codimension one.

Proposition 3.6. Let M be a cohomogeneity one G-manifold such that
its principal orbits are isotropy-irreducible homogeneous spaces (see [4, p.
187]). Then the set of regular points Mreg of M satisfies the conditions of
Lemma 3.4. It follows that [Ric ∧ I,W] = 0 for all points of M .

Proof. Since Σ is an isotropy-irreducible homogeneous space, the immersion
i : Σ → M is totally umbilic. Further, a G invariant metric defined on an
isotropy-irreducible homogeneous space is Einstein. From this and the fact
that the immersion of the orbit Σ into M is totally umbilic, we obtain that
the operator Ric x is almost umbilic for all x ∈ Mreg. Note that such an im-
mersion has constant mean curvature, by the homogeneity of Σ . Therefore,
from the Lemma above we get that [Ric ∧ I,W] = 0 on 2-forms defined on
Λ2(TxM) for x ∈ Mreg. Since Mreg is dense in M , we have the result.

Proposition 3.7. Let M be a Riemannian manifold with harmonic cur-
vature and non-parallel Ricci tensor. If Ric has less than three distinct
eigenvalues at any point of M then M satisfies the conditions of Lemma 3.4
and hence [Ric ∧ I,W] = 0 for all points of M .

Proof. The proof that M satisfies the conditions of Lemma 3.4 is Lemma 3
of [7].

Lemma 3.8. Let M be Riemannian manifold with the property that [Ric ∧
I,W] = 0. Let {e1, . . . , en} be an orthonormal basis of eigenvectors of Ric
with corresponding eigenvalues µi. Then:

(a) R(ei∧ej) and F (ei∧ej) are eigenvectors of Ric ∧I with corresponding
eigenvalue µi + µj.

(b) Let Eµi denote the eigenspace of µi. If {e1, . . . , ek} is a basis of Eµi

and {ek+1, . . . , em} a basis of Eµj then the space span{er ∧ es, r =
1, . . . , k, s = k + 1, . . . ,m} is invariant by R and Q2.

Proof. Since the condition [Ric ∧ I,W] = 0 implies that Ric ∧ I commutes
with R and Q2 and µi + µj is an eigenvalue of Ric ∧ I with corresponding
eigenvector ei ∧ ej , we have Part (a), which immediately implies (b).
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4. Manifolds with 2-nonnegative Ricci operator.

It has been shown by H. Chen ([6]) that, from the topological point of view,
compact manifolds with 2-nonnegative curvature operator are the same as
the ones with nonnegative curvature operator. In this section we want to
investigate to what extent the topology of manifolds with nonnegative Ricci
curvature and 2-nonnegative Ricci operator can be compared.

Definition 4.1. The Ric operator is said to be 2-nonnegative (respectively,
positive) if the sum of the first 2 eigenvalues is nonnegative (respectively,
positive).

Proposition 4.2. Let Mn be a locally reducible Riemannian manifold with
2-nonnegative Ricci operator. If M does not have nonnegative Ricci curva-
ture then the universal cover M̃ is isometric N1×· · ·×Nm where each Ni is
irreducible and non-flat and one the Ni’s is at least 3-dimensional and has
2-nonnegative Ricci operator and all other factors have nonnegative Ricci
curvature.

Proof. The universal covering M̃ is isometric to Rk ×N1× · · · ×Nm by the
decomposition theorem of de Rham. If k ≥ 1 then Ric (X) = 0 for all X that
is tangent to Rk and then M has nonnegative Ricci curvature. If k = 0,
and one of the Ni’s is 2-dimensional, its curvature must be nonnegative,
otherwise Ric would have 2 negative eigenvalues. Therefore, if Ric has a
negative eigenvalue, one of the Ni’s has dimension at least 3. The remanining
statements now are obvious.

Corollary 4.3. Let Mn be a locally reducible conformally flat manifold with
2-nonnegative Ricci operator. Then M has nonnegative Ricci curvature.

Proof. It follows from Proposition 4.2 that the only case to be studied
here is M̃ = N1 × · · · × Nm where a factor Ni0 has dimension k ≥ 3, 2-
nonnegative Ricci operator, and all other factors are at least 2-dimensional.
Let {e1, . . . , ek} be a basis of vectors tangent to Ni0 and er, es orthonormal
vectors tangent to Nj , j 6= i0. Since M is conformally flat we have that

K12 + K34 = K13 + K24,

whenever e1, e2, e3, e4 are orthonormal vectors. Using this relation we get

Kij + Krs = Kir + Kjs = 0, ∀ i, j = 1, . . . k, i 6= j.

This implies that Ni0 has constant curvature and hence positive Ricci cur-
vature.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Again we show that the hypotheses of the theorem
imply that the Weitzenböck operator Q2 is nonnegative and the result will
follow from Theorem 3.2.
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Let ω be a unit eigenvector of Q2. From Part (b) of Lemma 3.8 (and with
same notation) we get that ω ∈ span{er∧es, r = 1, . . . , k, s = k+1, . . . ,m},
for some i, j. Since we have

R(ω) = W(ω) +
(µi + µj

n− 2

)
ω − S

(n− 1)(n− 2)
ω

Q2(ω) = (µi + µj) ω − 2R(ω),

we obtain

〈Q2(ω), ω〉 =
(n− 4)(µi + µj)

n− 2
− 2

[
〈W(ω), ω〉 − S

(n− 1)(n− 2)

]
≥ 0.

Combining the results of Corollary 4.3, Theorem 2 and Theorem of [13]
we obtain Corollary 1 stated in the introduction.

Now we use Theorem 2 to conclude the following results for the manifolds
studied in the last section.

Theorem 4.4. Let Mn, n ≥ 5, be a compact, locally irreducible cohomo-
geneity one G-manifold such that its principal orbits are isotropy-irreducible
homogeneous spaces. If M has 2-nonnegative Ricci operator and −W +
S/

(
(n− 1)(n− 2)

)
≥ 0 then βi(M) = 0, for 2 ≤ i ≤ n− 2.

Proof. Observe first that combining Proposition 3.6 and Theorem 2 we get
either βi(M) = 0, for 2 ≤ i ≤ n − 2 or M̃ is a compact symmetric space,
and in particular a homogeneous space. A theorem of Podestà states (see
[16]) that a compact homogeneous space that is also a cohomogeneity one
manifold with isotropy-irreducible principal orbits is isometric to the sphere
or to the real projective space which implies again that βi(M) = 0, for
2 ≤ i ≤ n− 2.

Theorem 4.4 above generalizes in some sense a result of Podestà in [17],
which states that a compact G-cohomogeneity one manifold of positive Ricci
curvature and isotropy-irreducible principal orbits is covered by a manifold
conformally difeomorphic to a sphere.

For manifolds with harmonic curvature we obtain the following result.

Theorem 4.5. Let Mn, n ≥ 5, be a compact locally irreducible Riemannian
manifold with harmonic curvature and non-parallel Ricci tensor. Let us
suppose that Ric has less than three distinct eigenvalues at any point of M
and the eigenvalues of the Weyl operator satisfy −W+S/

(
(n−1)(n−2)

)
≥ 0.

If M has 2-nonnegative Ricci operator then βi(M) = 0, for 2 ≤ i ≤ n− 2.

Proof. It is immediate from Proposition 3.7 and Theorem 2, since we are
assuming that the Ricci tensor is non-parallel and hence M cannot be locally
symmetric.
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5. Hypersurfaces of 2-nonnegative Ricci operator.

It is well-known that on hypersurfaces of Euclidean spaces, nonnegative
Ricci curvature implies the nonnegativity of the sectional curvatures. The
next result shows that compact hypersurfaces with 2-nonnegative Ricci op-
erator and compact hypersurfaces with nonnegative isotropic curvatures are
topologically the same. This is the content of Theorem 3 stated in the
introduction that we now prove.

Proof of Theorem 3. Let ξ be a unit vector such that ±ξ are regular values
of the Gauss map Φ : Mn → Sn ⊆ Rn+1. Then the height function hξ :
M → R given by hξ(x) = 〈f(x), ξ〉 is a Morse fuction with critical points
Φ−1(±ξ). At such points the Hessian of hξ is given, up to a sign, by the
Weingarten operator Aξ. Let {e1, . . . , en} be an orthonormal basis of TxM
that diagonalizes Aξ, say, Aξei = λiei. By the Gauss equation Kij = λiλj

and since the critical points are nondegenerate, we have that λi 6= 0 for
i = 1, . . . , n. As before, we denote the eigenvalues of the Ricci operator
by µi. If all eigenvalues of the Ricci operator are nonnegative, then the
sectional curvatures Kij ≥ 0 and all eigenvalues of Aξ have the same sign.

Suppose µ1 < 0. We claim that in this case n− 1 eigenvalues of Aξ have
the same sign.

If λ1 < 0, we reorder the λi’s for i ≥ 2, such that λ2 ≤ · · · ≤ λn. Thus

µ1 = λ1 (λ2 + λ3 + · · ·+ λn) < 0 ⇒ λ2 + λ3 + · · ·+ λn > 0.

Therefore λn > 0. Now we suppose that λ2 < 0 and this will give a contra-
diction. Indeed, since our hypothesis implies µ2 ≥ 0 we have

µ2 = λ2 (λ1 + λ3 + · · ·+ λn) > 0 ⇒ λ1 + λ3 + · · ·+ λn < 0,

which in turn implies

λ3 + · · ·+ λn < −λ1.(5.1)

Since µn ≥ 0 and λn > 0 we also have

µn = λ2λn + λn (λ1 + λ3 + · · ·+ λn−1) > 0 ⇒ λ1 + λ3 + · · ·+ λn−1 > 0,

yielding

λ3 + · · ·+ λn−1 > −λ1.(5.2)

From (5.1) and (5.2) we get −λ1 + λn < −λ1 implying that λn < 0 and this
is a contradiction.

If λ1 > 0 we then have that λ2+λ3+· · ·+λn < 0. Since µ1 < 0 not all λi’s
have the same sign, otherwise all sectional curvatures would be positive. Let
us the suppose that λ2 < 0, after we have reordered such that λ2 ≤ · · · ≤ λn.
If λi < 0 for i ≥ 3 we have the claim. If not, then λn > 0. Again we obtain
(5.1) and (5.2) which gives the desired contradiction.
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Therefore we conclude that for each regular point, all but at most one of
the λ′is have the same sign and hence the index of a critical point of hξ has to
be 0, 1, n−1 or n. By the standard Morse Theory, M has the homotopy type
of a CW -complex, with no cells of dimension i for 2 ≤ i ≤ n− 2. Therefore
the homology group Hi(M ;Z) = 0 for 2 ≤ i ≤ n− 2. Moreover, since there
are no 2-cells (n ≥ 4), we conclude by the cellular aproximation theorem
that the inclusion of the 1-skeleton M (1) ↪→ M induces an isomorphism
between the fundamental groups. Therefore the fundamental group π1(M)
is a free group on β1 elements and H1(M ;Z) is a free abelian group with
the same number of generators.
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[9] S. Gallot and D. Meyer, Opérateur de courbure et Laplacien des formes différentelles
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