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A Hilbert bimodule is a right Hilbert module X over a
C∗-algebra A together with a left action of A as adjointable
operators on X. We consider families X = {Xs : s ∈ P} of
Hilbert bimodules, indexed by a semigroup P , which are en-
dowed with a multiplication which implements isomorphisms
Xs ⊗A Xt → Xst; such a family is a called a product system.
We define a generalized Cuntz-Pimsner algebra OX , and we
show that every twisted crossed product of A by P can be re-
alized as OX for a suitable product system X. Assuming P is
quasi-lattice ordered in the sense of Nica, we analyze a certain
Toeplitz extension Tcv(X) of OX by embedding it in a crossed
product BP oτ,XP which has been “twisted” by X; our main
Theorem is a characterization of the faithful representations
of BP oτ,XP .

Introduction.

Suppose X is a right Hilbert module over a C∗-algebra A. If X also car-
ries a left action of A as adjointable operators on XA, we call X a Hilbert
bimodule over A. In [22], Pimsner associated with every such bimodule X
a C∗-algebra OX , which we shall call the Cuntz-Pimsner algebra of X, and
showed that every crossed product by Z and every Cuntz-Krieger algebra
can be realized as OX for suitable X. He also commented that the algebras
OX include the crossed products by N; that is, for each endomorphism α of
a C∗-algebra A there is a bimodule X = X(α) such that OX is canonically
isomorphic to the semigroup crossed product Aoα N of [6, 24].

The work in this paper is motivated by the following observation, which
also serves as our primary example. Suppose β is an action of a discrete
semigroup P as endomorphisms of a C∗-algebra A. For each s ∈ P let
Xs := X(βs) be the bimodule canonically associated with the endomor-
phism βs. Then the family X = {Xs : s ∈ P} admits an associative
multiplication (x, y) ∈ Xs × Xt 7→ xy ∈ Xts which implements isomor-
phisms Xs ⊗A Xt → Xts; we call a family with this structure a product
system of Hilbert bimodules. (In this example X is a product system over
the opposite semigroup P o.) Such families generalize the product systems
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of [7, 8, 12, 10], where the fibers Xs are complex Hilbert spaces (bimodules
over C).

To each product system X we associate a generalized Cuntz-Pimsner
algebra OX . When X is the product system associated with the semi-
group dynamical system (A,P, β), OX is canonically isomorphic to the semi-
group crossed product A oβ P . Moreover, if we “twist” X by a multiplier
ω : P × P → T, then the corresponding Cuntz-Pimsner algebra is isomor-
phic to the twisted semigroup crossed product Aoβ,ω P . Our construction
applies even when A is nonunital provided each endomorphism βs extends
to the multiplier algebra M(A).

The aim of this paper is to take a first step towards analyzing the Cuntz-
Pimsner algebra of a product system X. Following Pimsner [22], we begin
by studying the structure of its Toeplitz extension TX . This algebra is
universal for Toeplitz representations of X; these are multiplicative maps
whose restriction to each fiber Xs is a Toeplitz representation in the sense
of [13]. Our results generalize those of [12] for product systems of Hilbert
spaces; indeed, much of the paper is devoted to adapting the methods of [12]
to the bimodule setting. Thus our basic assumptions about the underlying
semigroup P are as in [12]: To allow our analysis to extend beyond the
totally-ordered case, we assume that P is the positive cone of a group G
such that (G,P ) is quasi-lattice ordered in the sense of Nica [20]. The class
of such (G,P ) includes all direct sums and free products of totally ordered
groups. We also impose a covariance condition, called Nica covariance, on
Toeplitz representations of X. This means that the universal C∗-algebra
Tcov(X) which we analyze is in general a quotient of TX . However, if (G,P )
is totally-ordered, then Nica-covariance is automatic, and hence Tcov(X) is
the same as TX .

Our main goal is to characterize the faithful representations of Tcov(X).
We accomplish this by embedding Tcov(X) in a certain twisted semigroup
crossed product BPoτ,XP (Theorem 6.3), and then characterizing its faith-
ful representations (Theorem 7.2). When P = N, Tcov(X) is precisely the
Toeplitz algebra of the Hilbert bimodule X1 (the fiber over 1 ∈ N), and our
Theorem 7.2 reduces to [13, Theorem 2.1]. In fact, the analysis in [13] was
motivated by our preliminary work on this paper. We would like to point
out in particular how the stronger result [13, Theorem 3.1] arose from our
investigations into product systems, for it serves as a good illustration of
the usefulness of Nica covariance. Suppose Z is an orthogonal direct sum⊕

λ∈Λ Z
λ of Hilbert bimodules. Let G be the free group on Λ, let P be the

subsemigroup of G generated by Λ, and let X be the unique product system
over P whose fiber over λ is Zλ. Then Tcov(X) is canonically isomorphic to
the Toeplitz algebra of the bimodule Z, and [13, Theorem 3.1] follows from
our Theorem 7.2.
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The main application of [13, Theorem 3.1] was to establish the simplic-
ity of the graph algebras associated with certain infinite directed graphs
[13, Corollary 4.3]. Although here we confine our applications to twisted
semigroup crossed products, we anticipate that our results will also give
interesting information about OX when each of the fibers of X arise from
infinite directed graphs.

We begin in Section 1 by giving a brief review of Hilbert bimodules, their
representations, and their C∗-algebras. In Section 2 we introduce product
systems of Hilbert bimodules, discuss their representations, and define the
algebras TX and OX . In Section 3 we associate with each twisted semigroup
dynamical system (A,P, β, ω) a product system X = X(A,P, β, ω) whose
Cuntz-Pimsner algebra OX is the twisted semigroup crossed product Aoβ,ω

P . We show that the Toeplitz algebra of X(A,P, β, ω) also has a crossed
product structure, and this motivates the definition of a “Toeplitz” crossed
product T (Aoβ,ω P ) in which the endomorphisms are implemented not by
isometries, but rather by partial isometries.

In Section 4 we generalize the notion of twisted crossed product by re-
placing the multiplier ω by a product system X of Hilbert bimodules. This
extends the philosophy developed in [12] that one should regard product
systems as noncommutative cocycles. Hence given an action β of P as en-
domorphisms of a C∗-algebra C, we consider (C,P, β,X) as a twisted semi-
group dynamical system, and we define a twisted crossed product Coβ,X P .

In Section 5 we assume that (G,P ) is quasi-lattice ordered, and we discuss
the notion of Nica covariance for a Toeplitz representation. As illustrated in
[10, Example 1.3] using product systems of Hilbert spaces, when (G,P ) is
not a total order it is possible that the C∗-algebra Tcov(X) which is “univer-
sal” for such representations may admit representations which are not the
integrated form of a Nica-covariant Toeplitz representation. To avoid this
pathology we adapt the methods of [10] to our setting: We define the notion
of a product system being compactly aligned , and show that Tcov(X) is truly
universal when X is compactly aligned (Proposition 5.9). We show that X is
compactly aligned if the left action of A on each fiber Xs is by compact op-
erators (Proposition 5.8); it follows that the product systems X(A,P, β, ω)
associated with twisted semigroup dynamical systems are compactly aligned.

In Section 6 we consider a certain C∗-subalgebra BP of `∞(P ) which
is invariant under left translation τ : P → End(`∞(P )). As in [17, 12],
covariant representations of the twisted system (BP , P, τ,X) are in one-one
correspondence with Toeplitz representations of X which are Nica-covariant
(Proposition 6.1), and hence Tcov(X) embeds naturally as a subalgebra of
BPoτ,XP (Theorem 6.3). When the left action of A on each fiber Xs is by
compact operators, Tcov(X) is all of BPoτ,XP .

In Section 7 we prove our main result, Theorem 7.2, which character-
izes the faithful representations of BP oτ,X P under the assumption that
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X is compactly aligned and (BP , P, τ,X) satisfies a certain amenability
hypothesis. In Section 8 we give conditions on (G,P ) which ensure that
(BP , P, τ,X) is amenable. In particular, (BP , P, τ,X) is amenable if X is
compactly aligned and (G,P ) is a free product ∗(Gλ, P λ) with each Gλ

amenable (Corollary 8.2).
Finally, in Section 9 we apply our Theorem 7.2 to the product system

X(A,P, β, ω) of Section 3. When (G,P ) is a total order, BPoτ,XP is iso-
morphic to the Toeplitz crossed product T (Aoβ,ωP ); in general BPoτ,XP is
a certain quotient Tcov(Aoβ,ωP ) which also has a crossed product structure,
and Theorem 9.3 characterizes its faithful representations. Applying this to
the twisted system (BP , P, τ, ω), we show that Tcov(BP oτ,ω P ) is universal
for partial isometric representations of P which are bicovariant (Proposi-
tion 9.6), and we obtain a characterization of its faithful representations
(Theorem 9.7) which is particularly nice when P is the free semigroup on
infinitely many generators (Theorem 9.9).

The author thanks Iain Raeburn for the many helpful discussions while
this research was being conducted.

1. Preliminaries.

Let A be a separable C∗-algebra. A Hilbert bimodule over A is a right Hilbert
A-module X together with a ∗-homomorphism φ : A→ L(X) which is used
to define a left action of A on X via a · x := φ(a)x for a ∈ A and x ∈ X. A
Toeplitz representation of X in a C∗-algebra B is a pair (ψ, π) consisting of
a linear map ψ : X → B and a homomorphism π : A→ B such that

ψ(x · a) = ψ(x)π(a),

ψ(x)∗ψ(y) = π(〈x, y〉A), and

ψ(a · x) = π(a)ψ(x)

for x, y ∈ X and a ∈ A. Given such a representation, there is homomorphism
π(1) : K(X) → B which satisfies

π(1)(Θx,y) = ψ(x)ψ(y)∗ for all x, y ∈ X,(1.1)

where Θx,y(z) := x · 〈y, z〉A for z ∈ X; see [22, p. 202], [16, Lemma 2.2], and
[13, Remark 1.7] for details. We say that (ψ, π) is Cuntz-Pimsner covariant
if

π(1)(φ(a)) = π(a) for all a ∈ φ−1(K(X)).

The Toeplitz algebra ofX is the C∗-algebra TX which is universal for Toeplitz
representations of X [22, 13], and the Cuntz-Pimsner algebra of X is the
C∗-algebra OX which is universal for Toeplitz representations which are
Cuntz-Pimsner covariant [22, 9, 16, 18, 19, 11].
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Every right Hilbert A-module X is essential, in the sense that X is the
closed linear span of elements x · a. We say that a Hilbert bimodule X is
essential if it is also essential as a left A-module; that is, if

X = span{φ(a)x : a ∈ A, x ∈ X}.
When X is essential, two applications of the Hewitt-Cohen Factorization
Theorem allow us to write any x ∈ X as φ(a)y · b for some y ∈ X and
a, b ∈ A. Hence if (ai) is an approximate identity for A, then

‖x− x · ai‖ → 0 and ‖x− φ(ai)x‖ → 0 for all x ∈ X.(1.2)

2. Product systems of Hilbert bimodules.

For each n ≥ 1 the n-fold internal tensor product X⊗n := X ⊗A · · · ⊗A X
has a natural structure as a Hilbert bimodule over A; see [19, Section 2.2]
for details. The following definition, based on Arveson’s continuous tensor
product systems over (0,∞) [3], generalizes the collection {X⊗n : n ∈ N} to
semigroups other than N.

Definition 2.1. Suppose P is a countable semigroup with identity e and
p : X → P is a family of Hilbert bimodules over A. Write Xs for the fibre
p−1(s) over s ∈ P , and write φs : A→ L(Xs) for the homomorphism which
defines the left action of A on Xs. We say that X is a (discrete) product
system over P if X is a semigroup, p is a semigroup homomorphism, and
for each s, t ∈ P \ {e} the map (x, y) ∈ Xs ×Xt 7→ xy ∈ Xst extends to an
isomorphism of the Hilbert bimodules Xs ⊗A Xt and Xst. We also require
that Xe = A (with its usual right Hilbert module structure and φe(a)b = ab
for a, b ∈ A), and that the multiplications Xe×Xs → Xs and Xs×Xe → Xs

satisfy

ax = φs(a)x, xa = x · a for a ∈ Xe and x ∈ Xs.(2.1)

Remark 2.2. Multiplication Xe×Xs → Xs will not induce an isomorphism
Xe ⊗A Xs → Xs unless Xs is essential as a left A-module.

Remark 2.3. The associativity of multiplication inX implies that φst(a) =
φs(a)⊗A 1t for all a ∈ A; that is, φst(a)(xy) = (φs(a)x)y for all x ∈ Xs and
y ∈ Xt.

Remark 2.4. It is possible that some of the Xs may be zero.

Definition 2.5. Suppose B is a C∗-algebra and ψ : X → B; write ψs for
the restriction of ψ to Xs. We call ψ a Toeplitz representation of X if:

(1) For each s ∈ P , (ψs, ψe) is a Toeplitz representation of Xs; and
(2) ψ(xy) = ψ(x)ψ(y) for x, y ∈ X.

If in addition each (ψs, ψe) is Cuntz-Pimsner covariant, we say that ψ is
Cuntz-Pimsner covariant .
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Remark 2.6. By [13, Remark 1.1], every Toeplitz representation ψ is con-
tractive; moreover, if the homomorphism ψe : A → B is isometric, then so
is ψ. Also, since we are assuming (2.1), a map ψ : X → B is a Toeplitz
representation if it satisfies both (2) and

(1′) ψs(x)∗ψs(y) = ψe(〈x, y〉A) whenever s ∈ P and x, y ∈ Xs.

Notation 2.7. We write ψ(s) for the homomorphism of K(Xs) into B which
corresponds to the pair (ψs, ψe), as in (1.1); that is,

ψ(s)(Θx,y) = ψs(x)ψs(y)∗ for all x, y ∈ Xs.

The Fock representation. Let F (X) be the right Hilbert A-module

F (X) :=
⊕
s∈P

Xs.

By this we mean the following: As a set, F (X) is the subset of
∏
s∈P Xs

consisting of all elements (xs) for which
∑

s∈P 〈xs, xs〉A is summable in A;
that is, for which

∑
s∈F 〈xs, xs〉A converges in norm as F increases over the

finite subsets of P . We write ⊕xs for (xs) to indicate that the above series
is summable. The right action of A is given by (⊕xs) · a := ⊕(xs · a), and
the inner product by 〈⊕xs,⊕ys〉A :=

∑
s∈P 〈xs, ys〉A. The algebraic direct

sum
⊙

s∈P Xs is dense in F (X).
Suppose P is left-cancellative. Then for any x ∈ X and ⊕xt ∈ F (X) we

have p(xxs) = p(xxt) if and only if s = t, so there is an element (ys) ∈
∏
Xs

such that

ys =

{
xxt if s = p(x)t
0 if s /∈ p(x)P ;

we write (xxt) for (ys). Since 〈xxs, xxs〉A ≤ ‖x‖2〈xs, xs〉A for each s ∈ P ,
the series

∑
〈xxs, xxs〉A is summable. It is routine to check that

l(x)(⊕xs) := ⊕xxs for ⊕xs ∈ F (X)

determines an adjointable operator l(x) on F (X); indeed, the adjoint l(x)∗ is
zero on any summand Xs for which s /∈ p(x)P , and onXp(x)t = spanXp(x)Xt

it is determined by the formula l(x)∗(yz) = 〈x, y〉A · z for y ∈ Xp(x) and
z ∈ Xt. It follows that l : X → L(F (X)) is a Toeplitz representation, called
the Fock representation of X. The homomorphism le : A → L(F (X)) is
simply the diagonal left action of A; that is, le(a) = ⊕φs(a). Since φe is
just left multiplication on Xe = A, it is isometric, and hence so is le; by
Remark 2.6, l is isometric.

Proposition 2.8. Let X be a product system over P of Hilbert A–A bimod-
ules. Then there is a C∗-algebra TX , called the Toeplitz algebra of X, and
a Toeplitz representation iX : X → TX , such that
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(a) for every Toeplitz representation ψ of X, there is a homomorphism ψ∗
of TX such that ψ∗ ◦ iX = ψ; and

(b) TX is generated as a C∗-algebra by iX(X).
The pair (TX , iX) is unique up to canonical isomorphism, and iX is isomet-
ric.

Proof. It is straightforward to translate the proof of [13, Proposition 1.3] to
this setting. �

Proposition 2.9. Let X be a product system over P of Hilbert A–A bimod-
ules. Then there is a C∗-algebra OX , called the Cuntz-Pimsner algebra of
X, and a Toeplitz representation jX : X → OX which is Cuntz-Pimsner
covariant, such that

(a) for every Cuntz-Pimsner covariant Toeplitz representation ψ of X,
there is a homomorphism ψ∗ of OX such that ψ∗ ◦ jX = ψ; and

(b) OX is generated as a C∗-algebra by jX(X).
The pair (OX , jX) is unique up to canonical isomorphism.

Remark 2.10. Although the universal map iX : X → TX is always iso-
metric, it is quite possible that X might not admit any nontrivial Toeplitz
representations which are Cuntz-Pimsner covariant, in which case OX is
trivial.

Proof of Proposition 2.9. With (TX , iX) as in Proposition 2.8, let I be the
ideal in TX generated by

{iX(a)− i
(s)
X (φs(a)) : s ∈ P, a ∈ φ−1

s (K(X))}.
Define OX := TX/I and jX := q ◦ iX , where q : TX → OX is the canonical
projection. Obviously jX is a Toeplitz representation which generates OX ,
and it is Cuntz-Pimsner covariant because j(s)X = q ◦ i(s)X . If ψ is another
Cuntz-Pimsner covariant Toeplitz representation, then the homomorphism
ψ∗ of TX satisfies

ψ∗(iX(a)− i
(s)
X (φs(a))) = ψ(a)− ψ(s)(φs(a)) = 0

whenever φs(a) ∈ K(Xs), and hence ψ∗ descends to the required homomor-
phism of OX (also denoted ψ∗). �

Proposition 2.11. Let X be a product system over N of Hilbert A–A bi-
modules. Then TX is canonically isomorphic to the Toeplitz algebra TX1 of
the Hilbert bimodule X1. If the left action on each fiber is isometric, or if
the left action on each fiber is by compact operators, then OX is canonically
isomorphic to OX1.

Proof. Let iX : X → TX be universal for Toeplitz representations of X, and
define µ := (iX)1 : X1 → TX and π := (iX)0 : A = X0 → TX . Since (µ, π) is
a Toeplitz representation of X1, we get a homomorphism µ×π : TX1 → TX .
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To construct the inverse of µ × π, let (iX1 , iA) be the universal Toeplitz
representation of X1 in TX1 , and fix n ≥ 1. By [13, Proposition 1.8(1)],
there is a linear map ψn : Xn → TX1 which satisfies

ψn(x1 · · ·xn) := iX1(x1) · · · iX1(xn) for all x1, . . . , xn ∈ X1,

and then (ψn, iA) is a Toeplitz representation of Xn. Defining ψ0 := iA thus
gives a Toeplitz representation ψ : X → TX1 , and it is routine to check that
ψ∗ : TX → TX1 is the inverse of µ× π.

Now let iX : X → OX be universal for Cuntz-Pimsner covariant Toeplitz
representations of X. As above, we get a homomorphism µ×π : OX1 → OX .
To construct the inverse, we let (iX1 , iA) : (X1, A) → OX1 be universal
and define a Toeplitz representation ψ : X → OX1 as before; we need to
check that ψ is Cuntz-Pimsner covariant under each of the hypotheses on
the left action. By definition (ψ1, ψ0) is Cuntz-Pimsner covariant, so we use
induction. Assume that (ψn, ψ0) is Cuntz-Pimsner covariant for some n ≥ 1,
and suppose a ∈ A acts compactly on the left of Xn+1; that is, φ(a)⊗A 1n ∈
K(Xn+1). Since the left action is isometric on each fiber, by [11, Lemma 4.2]
we have φ(a)⊗A 1n−1 ∈ K(Xn); hence ψ(n)(φ(a)⊗A 1n−1) = ψ0(a). But [11,
Lemma 4.5] gives ψ(n+1)(φ(a)⊗A 1n) = ψ(n)(φ(a)⊗A 1n−1), so (ψn+1, ψ0) is
Cuntz-Pimsner covariant.

Now suppose that A acts by compact operators on each fiber. By rep-
resenting OX1 faithfully on a Hilbert space H we can assume that ψ is
a Toeplitz representation of X on H. Assuming again that (ψn, ψ0) is
Cuntz-Pimsner covariant for some n ≥ 1, [11, Lemma 1.9] gives ψ0(A)H ⊆
span(ψn(Xn)H). Let x ∈ Xn, and express x = y · a with y ∈ Xn and a ∈ A.
Since (ψ1, ψ0) is Cuntz-Pimsner covariant and φ(a) ∈ K(X1), we have

ψn(x) = ψn(y)ψ0(a) = ψn(y)ψ(1)(φ(a)).

Now φ(a) can be approximated by a finite sum
∑

Θxi,yi , hence ψn(x) can be
approximated by a finite sum ψn(y)ψ(xi)ψ(yi)∗ = ψn+1(yxi)ψ(yi)∗. Thus

ψ0(A)H ⊆ span(ψn(Xn)H) ⊆ span(ψn+1(Xn+1)H),

and (ψn+1, ψ0) is Cuntz-Pimsner covariant by [11, Lemma 1.9]. �

Definition 2.12. Let X be a product system over P of Hilbert A–A bimod-
ules. A Toeplitz representation ψ : X → B is nondegenerate if the induced
homomorphism ψ∗ : TX → B is nondegenerate.

Lemma 2.13. Suppose each fiber Xs is essential as a left A-module. Then
a Toeplitz representation ψ : X → B is nondegenerate if and only if the
homomorphism ψe : A→ B is nondegenerate.

Proof. Let (ai) be an approximate identity for A = Xe. By (1.2), iX(ai) is
an approximate identity for TX , and the result follows. �
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3. Crossed products twisted by multipliers.

Our main examples of product systems come from C∗-dynamical systems.
Suppose β is an action of P as endomorphisms of A such that βe is the
identity endomorphism. We will assume that each βs is extendible; that is,
that each βs extends to a strictly continuous endomorphism βs of M(A).
For P the positive cone of a totally ordered abelian group, Adji has shown
that extendibility is necessary to define a reasonable crossed product AoβP
[1].

In this section we will consider crossed products which are twisted by a
multiplier ω of P ; that is, by a function ω : P × P → T which satisfies
ω(e, e) = 1 and

ω(r, s)ω(rs, t) = ω(r, st)ω(s, t) for all r, s, t ∈ P .

We call (A,P, β, ω) a twisted semigroup dynamical system.

Definition 3.1. Let B be a C∗-algebra. A function V : P → B is called an
ω-representation of P if

VsVt = ω(s, t)Vst for all s, t ∈ P .(3.1)

If in addition each Vs is an isometry (resp. partial isometry), V is called iso-
metric (resp. partial isometric) ω-representation. A covariant representation
of (A,P, β, ω) on a Hilbert space H is a pair (π, V ) consisting of a nonde-
generate representation π : A → B(H) and an isometric ω-representation
V : P → B(H) such that

π(βs(a)) = Vsπ(a)V ∗
s for all s ∈ P and a ∈ A.(3.2)

A crossed product for (A,P, β, ω) is a triple (B, iA, iP ) consisting of a C∗-al-
gebra B, a nondegenerate homomorphism iA : A→ B, and a map iP : P →
M(B) such that

(a) if σ is a nondegenerate representation of B, then (σ ◦ iA, σ ◦ iP ) is a
covariant representation of (A,P, β, ω);

(b) for every covariant representation (π, V ), there is a representation π×V
such that (π × V ) ◦ iA = π and π × V ◦ iP = V ; and

(c) B is generated as a C∗-algebra by {iA(a)iP (s) : a ∈ A, s ∈ P}.

After establishing the existence of a crossed product, it is easily seen to be
unique up to canonical isomorphism; we denote the crossed product algebra
Aoβ,ω P .

We will construct a product system X = X(A,P, β, ω) over the opposite
semigroup P o, and show that its Cuntz-Pimsner algebra OX is a crossed
product for (A,P, β, ω). Moreover, we will show that the Toeplitz algebra of
this product system also has a crossed product structure: It will be universal
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for pairs (π, V ) satisfying (3.2) in which π is a nondegenerate representation
of A and V is a partial isometric ω-representation such that

V ∗
s Vsπ(a) = π(a)V ∗

s Vs for all s ∈ P and a ∈ A.(3.3)

We call such a pair (π, V ) a Toeplitz covariant representation of (A,P, β, ω),
and write T (A oβ,ω P ) for the corresponding universal C∗-algebra, called
the Toeplitz crossed product of (A,P, β, ω).

For each s ∈ P let

Xs := {s} × βs(1)A,

and give Xs the structure of a Hilbert bimodule over A via

(s, x) · a := (s, xa), 〈(s, x), (s, y)〉A := x∗y,

and

φs(a)(s, x) := (s, βs(a)x).

Let X =
⊔
s∈P Xs, let p(s, x) := s, and define multiplication in X by

(s, x)(t, y) := (ts, ω(t, s)βt(x)y) for x ∈ βs(1)A and y ∈ βt(1)A.

Lemma 3.2. X = X(A,P, β, ω) is a product system over the opposite semi-
group P o. For each s ∈ P , the fiber Xs is essential as a left A-module, and
the left action of A on Xs is by compact operators.

Proof. Let (s, x) ∈ Xs and (t, y) ∈ Xt. If x = βs(1)a and y = βt(1)b, then

βt(x)y = βt(βs(1)a)βt(1)b = βt(βs(1))βt(a)b = βts(1)βt(a)b,

and hence the product (s, x)(t, y) belongs to Xts. Letting a vary over an
approximate identity for A, this product converges in norm to βts(1)b, so
the set of products (s, x)(t, y) has dense linear span in Xts. Hence to see
that multiplication induces an isomorphism Xs ⊗A Xt → Xts, it suffices to
check that it preserves the inner product of any pair of elementary tensors:

〈(s, x)⊗A (t, y),(s, x′)⊗A (t, y′)〉A
= 〈(t, y), φt(〈(s, x), (s, x′)〉A)(t, y′)〉A
= 〈(t, y), φt(x∗x′)(t, y′)〉A
= 〈(t, y), (t, βt(x∗x′)y′)〉A
= y∗βt(x∗x′)y′

= 〈(ts, ω(t, s)βt(x)y), (ts, ω(t, s)βt(x′)y′)〉A
= 〈(s, x)(t, y), (s, x′)(t, y′)〉A.
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Multiplication is associative since

((s, x)(t, y))(r, z) = (ts, ω(t, s)βt(x)y)(r, z)

= (rts, ω(r, ts)βr(ω(t, s)βt(x)y)z)

= (rts, ω(rt, s)βrt(x)ω(r, t)βr(y)z)

= (s, x)(rt, ω(r, t)βr(y)z)

= (s, x)((t, y)(r, z)).

If (ai) is an approximate identity for A, then for each a ∈ A and s ∈ P
we have limφ(ai)(s, βs(1)a) = lim(s, βs(ai)a) = (s, βs(1)a), so each Xs is
essential. If a ∈ A, then by writing a = bc∗ with b, c ∈ A, we see that
φs(a) = Θ(s,βs(b)),(s,βs(c)) ∈ K(Xs) is compact. �

Lemma 3.3. Let iX : X → TX be universal for Toeplitz representations of
X, and let (ai) be an approximate identity for A. Then for each s ∈ P ,
iX(s, βs(ai)) converges strictly in MTX .

Proof. Since each fiber Xt is essential, any vector ξ ∈ Xt can be written
in the form ξ = φt(a)η · b with a, b ∈ A and η ∈ Xt. But then iX(ξ) =
iX(e, a)iX(η)iX(e, b), and since elements of the form iX(ξ) generate TX as
a C∗-algebra, the result follows from the calculations

iX(s, βs(ai))iX(e, a) = iX(s, βs(ai)a) → iX(s, βs(1)a)(3.4)

and

iX(e, a)iX(s, βs(ai)) = iX(s, βs(aai)) → iX(s, βs(a)).(3.5)

�

Define iA : A → TX by iA(a) := iX(e, a), and define iP : P → MTX by
iP (s) := lim iX(s, βs(ai))∗.

Proposition 3.4. TX and OX are canonically isomorphic to Aoβ,ω P and
T (Aoβ,ω P ), respectively. More precisely, (TX , iA, iP ) is a Toeplitz crossed
product for (A,P, β, ω), and, with q : TX → OX the canonical projection,
(OX , q ◦ iA, q ◦ iP ) is a crossed product for (A,P, β, ω).

Proof. Taking s = e in (3.4) and (3.5), shows that iA(ai) converges strictly
to the identity in M(TX); that is, iA is nondegenerate. For Condition (a)
of a Toeplitz crossed product, suppose σ is a nondegenerate representation
of TX ; we must show that (π, V ) := (σ ◦ iA, σ ◦ iP ) is a Toeplitz covariant
representation of (A,P, β, ω). First note that π is nondegenerate since σ
and iA are. Equation (3.5) gives

iA(a)iP (s)∗ = iX(s, βs(a)) for all a ∈ A and s ∈ P ,(3.6)
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so

iP (s)iA(a)iP (s)∗ = lim iX(s, βs(ai))∗iX(s, βs(a))

= lim iX(e, βs(a∗i a)) = iX(e, βs(a)) = iA(βs(a)),

and applying σ gives Vsπ(a)V ∗
s = π(βs(a)). In particular

iP (s)iP (s)∗ = lim iP (s)iA(ai)iP (s)∗ = lim iA(βs(ai)) = iA(βs(1))

is a projection, so iP (s), and hence Vs, is a partial isometry.
To establish (3.3), take any a ∈ A, write a = bc∗ with b, c ∈ A, and

compute:

iA(bc∗)iP (s)∗iP (s) = lim iX(s, βs(bc∗))iX(s, βs(ai))∗ (by (3.6))(3.7)

= lim iX(s, βs(b))iX(e, βs(c∗))iX(s, βs(ai))∗

= lim iX(s, βs(b))
(
iX(s, βs(ai))iX(e, βs(c))

)∗
= lim iX(s, βs(b))iX(s, βs(aic))∗

= iX(s, βs(b))iX(s, βs(c))∗.

Taking adjoints, interchanging b and c, and applying σ gives V ∗
s Vsπ(a) =

π(a)V ∗
s Vs.

For every s, t ∈ P we have

iP (t)∗iP (s)∗ = (lim
i
jX(t, βt(ai)))(lim

j
jX(s, βs(aj)))

= lim
i

lim
j
jX(st, ω(s, t)βs(βt(ai))βs(aj))

= lim
i
jX(st, ω(s, t)βst(ai))

= ω(s, t)iP (st)∗;

taking adjoints and applying σ gives VsVt = ω(s, t)Vst. This completes the
proof of Condition (a).

For Condition (b), suppose (π, V ) is a Toeplitz covariant representation
of (A,P, β, ω) on a Hilbert space H. Define ψ : X → B(H) by

ψ(s, x) := V ∗
s π(x).

Since π is nondegenerate and π(a) = π(βe(a)) = Veπ(a)V ∗
e for all a ∈ A, Ve

is a coisometry. Since V 2
e = ω(e, e)Ve = Ve, we deduce that Ve = 1. Thus

ψ(s, x)∗ψ(s, y) = π(x)∗VsV ∗
s π(y) = π(x∗βs(1)y)

= V ∗
e π(x∗y) (since y ∈ βs(1)A and Ve = 1)

= ψ(e, x∗y) = ψ(e, 〈(s, x), (s, y)〉A),
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and since we also have

ψ(s, x)ψ(t, y) = V ∗
s π(x)V ∗

t π(y)

= V ∗
s π(x)V ∗

t VtV
∗
t π(y) (Vt is a partial isometry)

= V ∗
s V

∗
t Vtπ(x)V ∗

t π(y) (by (3.3))

= (VtVs)∗π(βt(x))π(y)

= ω(t, s)V ∗
tsπ(βt(x)y)

= ω(t, s)ψ(ts, βt(x)y)

= ψ((s, x)(t, y)),

ψ is a Toeplitz representation of X. Let π × V be the representation ψ∗ :
TX → B(H). Then

(π × V ) ◦ iA(a) = ψ∗ ◦ iX(e, a) = ψ(e, a) = V ∗
e π(a) = π(a),

and

π × V ◦ iP (s)π(a) = ψ∗(iP (s)iA(a))

= ψ∗(iX(s, βs(a∗))∗) (by (3.6))

= ψ(s, βs(a∗))∗ = π(βs(a))Vs
= Vsπ(a)V ∗

s Vs = VsV
∗
s Vsπ(a) = Vsπ(a);

since π is nondegenerate, this implies that π × V ◦ iP = V , as required. For
Condition (c), simply note that iA(a)iP (s) = iX(s, βs(1)a∗)∗, and elements
of this form generate TX .

We now show that (OX , q ◦ iA, q ◦ iP ) is a crossed product for (A,P, β, ω).
Since iA and q are nondegenerate, so is q ◦ iA. If ρ is a nondegenerate
representation of OX , then σ := ρ ◦ q is a nondegenerate representation of
TX . Hence (π, V ) := (ρ ◦ q ◦ iA, ρ ◦ q ◦ iP ) = (σ ◦ iA, σ ◦ iP ) is a Toeplitz
covariant representation of (A,P, β, ω). To see that each Vs is an isometry,
let b, c ∈ A. Since q ◦ iX is Cuntz-Pimsner covariant, (3.7) gives

q ◦ iA(bc∗)q ◦ iP (s)∗q ◦ iP (s) = q ◦ iX(s, βs(b))q ◦ iX(s, βs(c))∗

= (q ◦ iX)(s)(Θ(s,βs(b)),(s,βs(c)))

= (q ◦ iX)(s)(φs(bc∗))

= q ◦ iX(e, bc∗) = q ◦ iA(bc∗).

Since q ◦ iA is nondegenerate, this implies that q ◦ iP (s), and hence Vs, is
an isometry. This gives Condition (a) for a crossed product. Condition (c)
is obvious, so it remains only to verify (b). Suppose (π, V ) is a covariant
representation of (A,P, β, ω) on a Hilbert space H, and define ψ(s, x) :=
V ∗
s π(x) as before. We have already seen that ψ is a Toeplitz representation
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of X, and it is Cuntz-Pimsner covariant since, for any b, c ∈ A,

ψ(s)(φs(bc∗)) = ψ(s)(Θ(s,βs(b)),(s,βs(c))) = ψ(s, βs(b))ψ(s, βs(c))∗

= V ∗
s π(βs(b))π(βs(c∗))Vs = V ∗

s Vsπ(bc∗)V ∗
s Vs = ψ(e, bc∗).

Defining π × V := ψ∗ : OX → B(H) gives Condition (c). �

4. Crossed products twisted by product systems.

Multipliers of P correspond to product systems over P of one-dimensional
Hilbert spaces: Given a multiplier ω, one defines multiplication on P ×C by
(s, z)(t, w) := (st, ω(s, t)zw). In this section we consider twisted semigroup
dynamical systems in which the multiplier ω is replaced by a product sys-
tem X of Hilbert bimodules, and we construct a crossed product which is
“twisted by X”. For this, we first need to see how semigroups of endomor-
phism arise from Toeplitz representations of product systems.

Proposition 4.1. (1) Let X be a Hilbert bimodule over A, and suppose
(ψ, π) is a Toeplitz representation of X on a Hilbert space H. Then
there is a unique endomorphism α = αψ,π of π(A)′ such that

α(S)ψ(x) = ψ(x)S for all S ∈ π(A)′ and x ∈ X,(4.1)

and such that α(1) vanishes on (ψ(X)H)⊥.
(2) Let X be a product system over P of Hilbert A–A bimodules in which

each fiber Xs is essential as a left A-module. Let ψ be a nondegen-
erate Toeplitz representation of X on a Hilbert space H, and let αψs
be the endomorphism αψs,ψe above. Then αψ : P → End(ψe(A)′) is a
semigroup homomorphism, and αψe is the identity endomorphism.

Proof. (1) The uniqueness of α is obvious. By [23, Proposition 2.69], there is
a unital homomorphism S ∈ π(A)′ 7→ 1⊗A S ∈ Indπ(L(X))′ ⊆ B(X ⊗AH)
determined by

1⊗A S(x⊗A h) = x⊗A Sh for x ∈ X and h ∈ H.

Let U : X ⊗A H → H be the isometry which satisfies U(x ⊗A h) = ψ(x)h
(see the proof of [13, Proposition 1.6(1)]), and define

α(S) := U(1⊗A S)U∗ for all S ∈ π(A)′.

Then α is a homomorphism, and α(1) = UU∗ vanishes on (ψ(X)H)⊥. If
S ∈ π(A)′ and x ∈ X, then for any h ∈ H we have

α(S)ψ(x)h = U(1⊗A S)(x⊗A h) = U(x⊗A Sh) = ψ(x)Sh,

giving (4.1).
Since π(a)ψ(x)h = ψ(φ(a)x)h, the space span{ψ(x)h : x ∈ X,h ∈ H}

reduces π; hence for any S ∈ π(A)′ and a ∈ A, both α(S)π(a) and π(a)α(S)
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vanish on (ψ(X)H)⊥. This and

α(S)π(a)ψ(x)h = α(S)ψ(φ(a)x)h = ψ(φ(a)x)Sh

= π(a)ψ(x)Sh = π(a)α(S)ψ(x)h

show that α(π(A)′) ⊆ π(A)′.
(2) Let s, t ∈ P , and suppose x ∈ Xs and y ∈ Xt. Vectors of the form

xy have dense linear span in Xst; since Xt is essential, this holds even when
s = e (see Remark 2.2). Since

αψs (αψt (S))ψst(xy) = αψs (αψt (S))ψs(x)ψt(y)

= ψs(x)α
ψ
t (S)ψt(y) = ψs(x)ψt(y)S = ψst(xy)S,

we deduce that

αψs ◦ α
ψ
t (S)ψst(z) = ψst(z)S for all S ∈ ψe(A)′ and z ∈ Xst.(4.2)

Once we show that αψs ◦ αψt (1) = αψst(1), it follows from the uniqueness of
αψst that αψs ◦ αψt = αψst.

From (4.2) we see that αψs ◦αψt (1) ≥ αψst(1). Suppose that αψs ◦αψt (1)f = f ;
we will show that αψst(1)f = f , which will complete the proof. Since f is
in the range of αψs (1), it can be approximated by a finite sum

∑
i ψs(xi)gi.

Then

f
.= αψs ◦ α

ψ
t (1)

∑
i

ψs(xi)gi =
∑
i

ψs(xi)α
ψ
t (1)gi.

Now each αψt (1)gi can be approximated by a finite sum
∑

j ψt(yij)hij , and
then

f
.=
∑
i,j

ψs(xi)ψt(yij)hij =
∑
i,j

ψst(xiyij)hij .

Thus f can be approximated arbitrarily closely by a vector in the range of
αψst(1), and hence αψst(1)f = f .

Since each Xt is essential, the assumption that ψ is nondegenerate im-
plies that ψe is a nondegenerate representation of A. Since αψe (S)ψe(a)h =
ψe(a)Sh = Sψe(a)h for all a ∈ A and h ∈ H, we have αψe (S) = S for all
S ∈ ψe(A)′. �

Consider a twisted semigroup dynamical system (C,P, β,X) in which C
is a separable C∗-algebra, β : P → EndC is an action of the semigroup P
as extendible endomorphisms of C, and X is a product system over P of
Hilbert A–A bimodules. We assume that βe is the identity endomorphism,
and that each fiber Xs is essential as a left A-module.

Definition 4.2. A covariant representation of (C,P, β,X) on a Hilbert
space H is a pair (L,ψ) consisting of a nondegenerate representation L :
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C → B(H) and a nondegenerate Toeplitz representation ψ : X → B(H)
such that

(i) L(C) ⊆ ψe(A)′, and
(ii) L ◦ βs = αψs ◦ L for s ∈ P .

Definition 4.3. A crossed product for (C,P, β,X) is a triple (B, iC , iX)
consisting of a C∗-algebra B, a nondegenerate homomorphism iC : C →
M(B), and a nondegenerate Toeplitz representation iX : X → M(B) such
that

(a) there is a faithful nondegenerate representation σ of B such that (σ ◦
iC , σ ◦ iX) is a covariant representation of (C,P, β,X);

(b) for every covariant representation (L,ψ) of (C,P, β,X), there is a rep-
resentation L×ψ of B such that (L× ψ)◦iC = L and (L× ψ)◦iX = ψ;
and

(c) the C∗-algebra B is generated by {iC(c)iX(x) : c ∈ C, x ∈ X}.

Remark 4.4. If each fiber Xs has a finite basis {us,1, . . . , us,n(s)} (in the
sense that x =

∑
k us,k · 〈us,k, x〉A for every x ∈ Xs), it is not hard to show

that (a) is equivalent to asking that iC(c)iX(a) = iX(a)iC(c) for all c ∈ C
and a ∈ A = Xe, and that

iC(βs(c)) =
∑
k

iX(us,k)iC(c)iX(us,k)∗ for all s ∈ P and c ∈ C.

In this case, (σ ◦ iC , σ ◦ iX) will be a covariant representation of (C,P, β,X)
for every nondegenerate representation σ of B; however, as demonstrated
in [12, Example 2.5] for product systems of Hilbert spaces, in general one
cannot expect this to be the case.

Proposition 4.5. If (C,P, β,X) has a covariant representation, then it has
a crossed product (Coβ,XP, iC , iX) which is unique in the following sense:
If (B, i′C , i

′
X) is another crossed product for (C,P, β,X), then there is an

isomorphism θ : Coβ,XP → B such that θ ◦ iC = i′C and θ ◦ iX = i′X .

Remark 4.6. When X is the product system P × C with multiplication
given by a multiplier ω, it is not hard to see that Coβ,XP is precisely the
crossed product C oβ,ω P defined in the previous section. If C is unital and
A = C, then Coβ,XP is the crossed product defined in [12, Section 2].

Proof of Proposition 4.5. If S is a set of pairs (L,ψ) consisting of maps
L : C → B(HL,ψ) and ψ : X → B(HL,ψ), then (⊕L,⊕ψ) is a covariant
representation of (C,P, β,X) if and only if each (L,ψ) is. The main point
here is that the value of α⊕ψs on an element of (⊕ψ)e(A)′ of the form ⊕L(c)
is ⊕αψs (L(c)).
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Suppose (L,ψ) is a nondegenerate covariant representation on a separable
Hilbert space H; that is, the C∗-algebra

U := C∗({L(c)ψ(x) : c ∈ C, x ∈ X})
acts nondegenerately on H. We will identify the multiplier algebra of U with
the concrete C∗-algebra

M(U) = {S ∈ B(H) : ST, TS ∈ U for every T ∈ U}.
We claim that L(C) ∪ ψ(X) ⊆ M(U). For this, it suffices to check that
multiplying a generator L(c)ψ(x) of U on either the left or the right by
an operator of the form L(d), ψ(y), or ψ(y)∗ yields another element of U .
Certainly L(d)L(c)ψ(x) = L(dc)ψ(x) ∈ U and L(c)ψ(x)ψ(y) = L(c)ψ(xy) ∈
U , and since

ψ(y)L(c) = αψp(y)(L(c))ψ(y) = L(βp(y)(c))ψ(y),(4.3)

we also have ψ(y)L(c)ψ(x) = L(βp(y)(c))ψ(yx) ∈ U and L(c)ψ(x)L(d) =
L(cβp(x)(d))ψ(x) ∈ U . Writing c = c∗1c2 with c1, c2 ∈ C gives

ψ(y)∗L(c)ψ(x) = (L(c1)ψ(y))∗L(c2)ψ(x) ∈ U .
Finally, to see that L(c)ψ(x)ψ(y)∗ ∈ U , we use a trick from [1]. Let (ci) be
an approximate identity for C; we claim that

L(c)ψ(x)L(ci)
‖ ‖−→ L(c)ψ(x).(4.4)

Since L is nondegenerate, L(c)ψ(x)L(ci) converges strongly to L(c)ψ(x). On
the other hand, using (4.3) we see that L(c)ψ(x)L(ci) = L(cβp(x)(ci))ψ(x)
converges in norm (to L(cβp(x)(1))ψ(x)), and (4.4) follows. Hence

L(c)ψ(x)L(ci)ψ(y)∗
‖ ‖−→ L(c)ψ(x)ψ(y)∗,

and since

L(c)ψ(x)L(ci)ψ(y)∗ = L(c)ψ(x)ψ(y)∗L(βp(y)(ci)) ∈ U ,

we deduce that L(c)ψ(x)ψ(y)∗ ∈ U .
Since M(U) ⊆ U ′′, we have shown in particular that the ranges of L

and ψ are contained in U ′′. Consequently, any decomposition 1 =
∑
Qλ

of the identity as a sum of mutually orthogonal projections Qλ ∈ U ′ gives
corresponding decompositions L = ⊕QλL and ψ = ⊕Qλψ, and by the first
paragraph each pair (QλL,Qλψ) is a covariant representation of (C,P, β,X).
By the usual Zorn’s Lemma argument we can choose these projections such
that U acts cyclically on QλH; since C∗({QλL(c)Qλψ(x) : c ∈ C, x ∈ X}) =
QλU acts cyclically on QλH, this shows that every covariant representation
of (C,P, β,X) decomposes as a direct sum of cyclic representations.

Let S be a set of cyclic covariant representations with the property that
every cyclic covariant representation of (C,P, β,X) is unitarily equivalent
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to an element in S. It can be shown that such a set S exists by fixing a
Hilbert space H of sufficiently large cardinality (depending on the cardinal-
ities of C and X) and considering only representations on H. Note that S
is nonempty because the system has a covariant representation, which has
a cyclic summand.

Define iC :=
⊕

(L,ψ)∈S L and iX :=
⊕

(L,ψ)∈S ψ, and let Coβ,XP be
the C∗-algebra generated by {iC(c)iX(x) : c ∈ C, x ∈ X}. By the first
paragraph, (iC , iX) is a covariant representation of (C,P, β,X), and it is
nondegenerate since each (L,ψ) is. We deduce that both iC and iX map
into M(Coβ,XP ), and that Condition (a) for a crossed product is satis-
fied by taking σ to be the identity representation. Condition (c) is triv-
ial, and (b) holds because every covariant representation decomposes as
a direct sum of cyclic representations. We need to show that iC : C →
M(Coβ,XP ) and iX : X → M(Coβ,XP ) are nondegenerate. For this,
let c ∈ C and x ∈ X. If (ai) is an approximate identity for A = Xe,
then by (1.2) we have iC(c)iX(x)iX(ai) = iC(c)iX(x · ai) → iC(c)iX(x) and
iX(ai)iC(c)iX(x) = iC(c)iX(ai)iX(x) = iC(c)iX(φ(ai)x) → iC(c)iX(x), so
iX is nondegenerate (Lemma 2.13). If (ci) is an approximate identity for C,
then iC(ci)iC(c)iX(x) = iC(cic)iX(x) → iC(c)iX(x), and since iC is nonde-
generate as a representation on Hilbert space, (4.4) gives iC(c)iX(x)iC(ci) →
iC(c)iX(x). Thus iC is nondegenerate.

For the uniqueness assertion, suppose (B, i′C , i
′
X) is another crossed prod-

uct. Condition (a) allows us to assume that (iC , iX) and (i′C , i
′
X) are covari-

ant representations of (C,P, β,X) on Hilbert spaces H and H′. Condition
(b) then gives a representation i′C × i′X : Coβ,XP → B(H′) whose image
is contained in B since i′C × i′X(iC(c)iX(x)) = i′C(c)i′X(x). Similarly one
obtains a map iC × iX : B → Coβ,XP which is obviously an inverse for
i′C × i′X : Coβ,XP → B. �

If P is a subsemigroup of a group G, then there is a dual coaction of G
on Coβ,XP :

Proposition 4.7. Suppose (C,P, β,X) is a twisted system which has a co-
variant representation. If P is a subsemigroup of a group G, then there is
an injective coaction

δ : Coβ,XP → (Coβ,XP )⊗min C
∗(G)

such that

δ(iC(c)iX(x)) = iC(c)iX(x)⊗ iG(p(x)).

If G is abelian, there is a strongly continuous action β̂ of Ĝ on Coβ,XP
such that

β̂γ(iC(c)iX(x)) = γ(p(x))iC(c)iX(x).
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Proof. We follow [12, Proposition 2.7]. Let σ be a faithful nondegenerate
representation σ of Coβ,XP such that (L,ψ) := (σ◦iC , σ◦iX) is a covariant
representation of (C,P, β,X), and let U be a unitary representation of G
whose integrated form πU is faithful on C∗(G). We claim that (L ⊗ 1, ψ ⊗
(U ◦p)) is a covariant representation of (C,P, β,X). Most of the verifications
are routine, so we check only that

L(βs(c))⊗ 1 = αψ⊗(U◦p)
s (L(c)⊗ 1) for all s ∈ P and c ∈ C.(4.5)

For this, we show that L(βs(c))⊗1 satisfies the properties which characterize
α
ψ⊗(U◦p)
s (L(c)⊗ 1) (Proposition 4.1). First, let x ∈ Xs; we show that (4.5)

holds on any vector in the range of (ψ ⊗ (U ◦ p))(x) = ψs(x)⊗ Us:

(L(βs(c))⊗ 1)(ψs(x)⊗ Us) = αψs (L(c))ψs(x)⊗ Us = ψs(x)L(c)⊗ Us

= (ψs(x)⊗ Us)(L(c)⊗ 1) = αψ⊗(U◦p)
s (L(c)⊗ 1)(ψs(x)⊗ Us).

Next, note that αψ⊗(U◦p)
s (1) is the projection onto

span{(ψ ⊗ (U ◦ p))(x)ξ : x ∈ Xs, ξ ∈ Hσ ⊗HU}
= span{ψs(x)h⊗ Usk : x ∈ Xs, h ∈ Hσ, k ∈ HU}
= span{ψs(x)h : x ∈ Xs, h ∈ Hσ} ⊗HU ,

which is precisely the range of αψs (1)⊗ 1. Since L(βs(c))⊗ 1 = αψs (L(c))⊗ 1
vanishes on the range of 1 − αψs (1) ⊗ 1, (4.5) follows from the uniqueness
assertion of Proposition 4.1.

Since (L⊗1, ψ⊗(U◦p)) is covariant, there is a representation ρ of Coβ,XP
such that

ρ(iC(c)iX(x)) = (L(c)⊗ 1)(ψ(x)⊗ Up(x))

= (σ ⊗ πU )(iC(c)iX(x)⊗ iG(p(x))).

Since σ and πU are faithful, σ ⊗ πU is faithful on (Coβ,XP ) ⊗min C
∗(G),

and we can define δ := (σ ⊗ πU )−1 ◦ ρ.
By checking on generators it is easy to see that δ satisfies the coaction

identity (id⊗δG)◦δ = (δ⊗ id)◦δ, and δ is injective since σ = (σ⊗ε)◦δ, with
ε the augmentation representation of C∗(G) (i.e., ε(iG(s)) = 1 for all s ∈ G).
When G is abelian, β̂ is the action canonically associated with δ. �

5. Nica covariance.

Now suppose P is a subsemigroup of a group G such that P ∩ P−1 = {e}.
Then s ≤ t iff s−1t ∈ P defines a partial order on G which is left-invariant:
For any r, s, t ∈ P we have s ≤ t iff rs ≤ rt. Following Nica [20], we say
that (G,P ) is a quasi-lattice ordered group if every finite subset of G which
has an upper bound in P has a least upper bound in P . When s, t ∈ P have
a common upper bound, we denote their least upper bound by s∨ t; when s
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and t have no common upper bound we write s∨ t = ∞. For a finite subset
C = {t1, . . . , tn} of P , we write σC for t1 ∨ · · · ∨ tn.

Definition 5.1. Suppose (G,P ) is a quasi-lattice ordered group and X is
a product system over P of essential Hilbert A–A bimodules. We call a
Toeplitz representation ψ : X → B(H) Nica covariant if

αψs (1)αψt (1) =

{
αψs∨t(1) if s ∨ t <∞
0 otherwise.

Remark 5.2. If (G,P ) is totally ordered, then every Toeplitz representa-
tion of X is Nica covariant.

Lemma 5.3. Let l : X → L(F (X)) be the Fock representation, and suppose
π is a representation of A on a Hilbert space H. Then

Ψ := F (X) -IndL(F (X))
A π ◦ l

is a Nica-covariant Toeplitz representation of X. If π is faithful, then Ψ is
isometric.

Proof. Since l is a Toeplitz representation, so is Ψ. Let s ∈ P . The range of
αΨ
s (1) is

span{Ψ(x)ξ : x ∈ Xs, ξ ∈ F (X)⊗A H}

= span{l(x)y ⊗A h : x ∈ Xs, y ∈ F (X), h ∈ H} =
⊕
s≤r

Xr ⊗A H.

Hence for any s, t ∈ P , the range of αΨ
s (1)αΨ

t (1) is⊕
s≤r

Xr ⊗A H

 ∩

⊕
t≤r

Xr ⊗A H

 ,

which is
⊕

s∨t≤rXr ⊗A H = ranαΨ
s∨t(1) if s ∨ t <∞, and is zero otherwise.

If π is faithful then so is F (X) -IndL(F (X))
A π; since l is isometric, this implies

that Ψ is isometric. �

Proposition 5.4. Let (G,P ) be a quasi-lattice ordered group such that ev-
ery s, t ∈ P have a common upper bound. Let X be a product system
over P of essential Hilbert A–A bimodules such that the left action of A on
each fiber Xs is by compact operators. Then every Toeplitz representation
ψ : X → B(H) which is Cuntz-Pimsner covariant is also Nica covariant.

Proof. Fix s ∈ P . Since (ψs, ψe) is Cuntz-Pimsner covariant and φs(A) ⊆
K(Xs), [11, Lemma 1.9] gives ψe(A)H ⊆ spanψs(Xs)H. But Xs is essential,
so the reverse inclusion holds as well, and since spanψs(Xs)H is precisely
the range of αψs (1), we deduce that αψs (1) is constant in s. Since s ∨ t <∞
for all s, t ∈ P , this implies that ψ is Nica covariant. �
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There are product systems for which Nica covariance is not a C∗-algebraic
condition; that is, if ψ : X → B(H) is Nica covariant and σ : C∗(ψ(X)) →
B(K) is a homomorphism, the composition σ ◦ψ need not be Nica covariant
[10, Example 1.3]. We pause a moment to show how to adapt the methods
of [10] to avoid this pathology. The following Lemma collects some results
we shall need for both this and the sequel.

Lemma 5.5. Suppose X is a product system over P of essential Hilbert
A–A bimodules, ψ : X → B(H) is a Toeplitz representation, and s ∈ P .

(1) There is a strict–strong continuous representation ρψs : L(Xs) → B(H)
such that

ρψs (S)ψs(x)h = ψs(Sx)h for all S ∈ L(Xs), x ∈ Xs, and h ∈ H,

and such that ρψs (S) vanishes on (ψs(Xs)H)⊥. Moreover, ρψs (S) =
ψ(s)(S) for every S ∈ K(Xs).

(2) ρψs (1) = αψs (1).
(3) If a ∈ A satisfies φs(a) ∈ K(Xs), then

ψe(a)ρψs (1) = ψ(s)(φs(a)) = ρψs (1)ψe(a).(5.1)

(4) If Q ∈ ψe(A)′, then αψs (Q) ∈ ρψs (L(Xs))′. Further, if Q is a projection
such that ψe acts faithfully on QH, then ρψs acts faithfully on αψs (Q)H.

(5) For all S ∈ L(Xs) and t ∈ P we have

ρψst(S ⊗A 1) = ρψs (S)ρψst(1) = ρψst(1)ρψs (S),

where S ⊗A 1(xy) := (Sx)y for all x ∈ Xs and y ∈ Xt.
(6) If t ∈ P and z, w ∈ Xs, then ρψst(Θz,w ⊗A 1) = ψ(z)αψt (1)ψ(w)∗.

Proof. (1) See [13, Proposition 1.6(1)]. For the continuity assertion, suppose
Sλ → S strictly in L(Xs) = MK(Xs), x ∈ Xs, and h ∈ H. There exists
K ∈ K(Xs) and y ∈ Xs such that x = Ky, and then

ρψs (Sλ)ψs(x)h = ρψs (SλK)ψs(y)h→ ρψs (SK)ψs(y)h = ρψs (S)ψs(x)h.

(2) Both ρψs (1) and αψs (1) are the projection onto span{ψs(Xs)H}.
(3) If x ∈ Xs and h ∈ H, then

ψe(a)ρψs (1)ψs(z)h = ψe(a)ψs(z)h = ψs(φs(a)z)h = ψ(s)(φs(a))ψs(z)h;

since both sides of (5.1) are supported on spanψs(Xs)H, this implies that
ψe(a)ρ

ψ
s (1) = ψ(s)(φs(a)). By (2), ρψs (1) commutes with ψe(a), giving the

other half of (5.1).
(4) When Q is a projection, αψs (Q) is the projection onto spanψs(Xs)QH,

and the result follows from [13, Proposition 1.6(2)].
(5) See [13, Proposition 1.8(2)].
(6) ρψst(Θz,w ⊗A 1)=ρψst(1)ρψs (Θz,w)=αψst(1)ψ(z)ψ(w)∗=ψ(z)αψt (1)ψ(w)∗.

�
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Proposition 5.6. Suppose (G,P ) is a quasi-lattice ordered group and X
is a product system over P of essential Hilbert A–A bimodules. A Toeplitz
representation ψ : X → B(H) is Nica covariant if and only if

ρψs (S)ρψt (T ) =

{
ρψs∨t((S ⊗A 1)(T ⊗A 1)) if s ∨ t <∞
0 otherwise

(5.2)

holds whenever S ∈ K(Xs) and T ∈ K(Xt).

Proof [10, Proposition 1.4]. If ψ is Nica covariant, then

ρψs (S)ρψt (T ) = ρψs (S)ρψs (1)ρψt (1)ρψt (T )

= ρψs (S)ρψs∨t(1)ρψt (T ) = ρψs∨t((S ⊗A 1)(T ⊗A 1)),

where the last equality uses Lemma 5.5(5). Conversely, suppose (5.2) holds
for all compact S and T . If S → 1 strictly, then

ρψs∨t((S ⊗A 1)) = ρψs (S)ρψs∨t(1) → ρψs (1)ρψs∨t(1) = ρψs∨t(1),

where the convergence is in the strong operator topology. Hence

ρψs (1)ρψt (T ) =

{
ρψs∨t(T ⊗A 1) if s ∨ t <∞
0 otherwise

for every T ∈ K(Xt). Letting T → 1 strictly shows that ψ is Nica covariant.
�

When each product (S⊗A1)(T⊗A1) is compact, the previous Proposition
allows us to give a C∗-algebraic characterization of Nica covariance:

Definition 5.7. Suppose (G,P ) is a quasi-lattice ordered group and X is a
product system over P of essential Hilbert A–A bimodules. We say that X
is compactly aligned if whenever s, t ∈ P have a common upper bound and S
and T are compact operators on Xs and Xt, respectively, (S⊗A1)(T ⊗A1) is
a compact operator on Xs∨t. If X is compactly aligned and ψ is a Toeplitz
representation of X in a C∗-algebra B, we say that ψ is Nica covariant if

ψ(s)(S)ψ(t)(T ) =

{
ψ(s∨t)((S ⊗A 1)(T ⊗A 1)) if s ∨ t <∞
0 otherwise

whenever s, t ∈ P , S ∈ K(Xs) and T ∈ K(Xt).

Proposition 5.8. If (G,P ) is a total order, or if the left action of A on
each fiber Xs is by compact operators, then X is compactly aligned.

Proof. Suppose s, t ∈ P , s∨t <∞, S ∈ K(Xs), and T ∈ K(Xt). If (G,P ) is a
total order then either S⊗A1 = S or T⊗A1 = T ; either way (S⊗A1)(T⊗A1)
is compact. If the left action of A on each fiber Xs is by compact operators,
then by [22, Corollary 3.7], both S ⊗A 1 and T ⊗A 1 are compact. �
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Proposition 5.9. Suppose X is compactly aligned. Let B and C be C∗-al-
gebras, let ψ : X → B be a Nica-covariant Toeplitz representation, and let
σ : B → C be a homomorphism. Then σ ◦ ψ is Nica covariant.

Proof. By checking on an operator Θx,y ∈ K(Xs), one verifies that (σ ◦
ψ)(s) = σ ◦ ψ(s), and the result follows easily from this. �

Proposition 5.10. Suppose X is a compactly-aligned product system, ψ is
a Nica-covariant Toeplitz representation of X, s, t ∈ P , y ∈ Xs, and z ∈ Xt.
If s ∨ t = ∞, then ψ(y)∗ψ(z) = 0; otherwise

ψ(y)∗ψ(z) ∈ span{ψ(f)ψ(g)∗ : f ∈ Xs−1(s∨t), g ∈ Xt−1(s∨t)}.

Proof. Express y = Sy′ with S ∈ K(Xs) and y′ ∈ Xs; similarly, express
z = Tz′ with T ∈ K(Xt) and z′ ∈ Xt. Since ψ is Nica covariant,

ψ(y)∗ψ(z) = ψ(y′)∗ρψs (S∗)ρψt (T )ψ(z′)

is zero if s ∨ t = ∞, and otherwise

ψ(y)∗ψ(z) = ψ(y′)∗ρψs∨t(K)ψ(z′),

where K = (S∗ ⊗A 1)(T ⊗A 1) ∈ K(Xs∨t). Since K is compact it can be
approximated in norm by a finite sum of operators Θu,v with u, v ∈ Xs∨t, and
hence ρψs∨t(K) can be approximated by finite sums of the form ψ(u)ψ(v)∗.
But any such u can be approximated by finite sums of products u1f

′ with
u1 ∈ Xs and f ′ ∈ Xs−1(s∨t); similarly, any such v can be approximated
by finite sums of products v1g′ with v1 ∈ Xt and g′ ∈ Xt−1(s∨t). Hence
ψ(y′)∗ρψs∨t(K)ψ(z′) can be approximated in norm by finite sums of operators
of the form

ψ(y′)∗ψ(u1)ψ(f ′)ψ(g′)∗ψ(v1)∗ψ(z′) = ψ(〈y′, u1〉Af ′)ψ(〈z′, v1〉Ag′)∗.

�

The following Lemma is useful when working with Nica-covariant Toeplitz
representations.

Lemma 5.11. Suppose (G,P ) is a quasi-lattice ordered group, X is a prod-
uct system over P of essential Hilbert A–A bimodules, ψ is a Toeplitz rep-
resentation of X on H, x ∈ X, and s ∈ P .

(1) If p(x) ≤ s, then αψs (S)ψ(x) = ψ(x)αψ
p(x)−1s

(S) for all S ∈ ψe(A)′.
(2) If ψ is Nica covariant, then

αψs (1)ψ(x) =

{
ψ(x)αψ

p(x)−1(p(x)∨s)(1) if p(x) ∨ s <∞,

0 otherwise.

Proof. The proof is formally identical to that of [12, Lemma 3.6]. �
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6. The system (BP , P, τ,X).

For each t ∈ P , let 1t ∈ `∞(P ) be the characteristic function of tP . Since the
product 1s1t is either 1s∨t or 0, BP := span{1t : t ∈ P} is a C∗-subalgebra
of `∞(P ). Left translation on `∞(P ) restricts to an action τ of P on BP ,
determined by τs(1t) = 1st for s, t ∈ P .

Proposition 6.1. Suppose (G,P ) is a quasi-lattice ordered group and X is
a product system over P of essential Hilbert A–A bimodules.

(1) If (L,ψ) is a covariant representation of (BP , P, τ,X), then ψ is a non-
degenerate Nica-covariant Toeplitz representation of X and L(1s) =
αψs (1).

(2) If ψ is a nondegenerate Nica-covariant Toeplitz representation of X
on a Hilbert space H, then there is a representation Lψ : BP → B(H)
such that Lψ(1s) = αψs (1); moreover, (Lψ, ψ) is then a covariant rep-
resentation of (BP , P, τ,X).

Proof. The proof is formally identical to that of [12, Proposition 4.1], except
that in (2) one must also note that Lψ(BP ) ⊆ ψe(A)′ since Lψ(1s) = αψs (1) ∈
ψe(A)′ and {1s : s ∈ P} generates BP . �

Corollary 6.2. The system (BP , P, τ,X) has a covariant representation.

Proof. Let π be a nondegenerate representation of A on a Hilbert space H,
and let l : X → L(F (X)) be the Fock representation of X. By Lemma 5.3,
Ψ := F (X) -IndL(F (X))

A π◦ l is a Nica-covariant Toeplitz representation of X.
Since π is nondegenerate, so is F (X) -IndL(F (X))

A π; since l is nondegenerate,
Ψ is as well. The previous Proposition thus gives a covariant representation
(LΨ,Ψ) of (BP , P, τ,X). �

Let iX and iBP
be the canonical maps of X and BP into M(BPoτ,XP ).

Since BP is unital, iX(x) = iBP
(1)iX(x) ∈ BPoτ,XP for each x ∈ X. We

write Tcov(X) for the C∗-subalgebra of BPoτ,XP generated by iX(X); the
following Theorem justifies this notation.

Theorem 6.3. (Tcov(X), iX) is universal for Nica-covariant Toeplitz repre-
sentations of X, in the sense that:

(a) There is a faithful representation θ of Tcov(X) on Hilbert space such
that θ ◦ iX is a Nica-covariant Toeplitz representation of X; and

(b) for every Nica-covariant Toeplitz representation ψ of X, there is a
representation ψ∗ of Tcov(X) such that ψ = ψ∗ ◦ iX .

Up to canonical isomorphism, (Tcov(X), iX) is the unique pair with this prop-
erty. If X is compactly aligned, then iX is Nica covariant,

Tcov(X) = span{iX(x)iX(y)∗ : x, y ∈ X},(6.1)
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and

BPoτ,XP = span{iX(x)iBP
(1s)iX(y)∗ : x, y ∈ X, s ∈ P}.(6.2)

If the left action of A on each fiber Xs is by compact operators, then Tcov(X)
is all of BPoτ,XP ; if in addition every s, t ∈ P have a common upper bound,
then the Cuntz-Pimsner algebra OX is a quotient of Tcov(X).

Proof of Theorem 6.3. Let σ be a faithful representation of BPoτ,XP on
a Hilbert space H such that (σ ◦ iBP

, σ ◦ iX) is a covariant representa-
tion of (BP , P, τ,X). By Proposition 6.1(1), σ ◦ iX is a Nica-covariant
Toeplitz representation of X, so we can take θ to be the restriction of σ
to Tcov(X). Suppose ψ is a (nondegenerate) Nica-covariant Toeplitz rep-
resentation of X. Proposition 6.1(2) gives us a covariant representation
(Lψ, ψ) of (BP , P, τ,X), and hence a representation Lψ × ψ of BPoτ,XP

such that (Lψ × ψ) ◦ iX = ψ. Restricting Lψ × ψ to Tcov(X) gives the re-
quired representation ψ∗. Uniqueness of (Tcov(X), iX) follows by the usual
argument.

Suppose X is compactly aligned. Since iX is the composition of the Nica-
covariant Toeplitz representation σ ◦ iX and the homomorphism σ−1 (re-
stricted to σ(Tcov(X))), iX is Nica covariant by Proposition 5.9. Let w ∈ X,
and express w = z·a for some z ∈ X and a ∈ A. Then iX(w) = iX(z)iX(a∗)∗,
so A := span{iX(x)iX(y)∗ : x, y ∈ X} contains iX(X). Obviously A is a
closed self-adjoint subspace of Tcov(X), and since X is compactly aligned,
Proposition 5.10 shows that A is closed under multiplication. This gives
(6.1).

Now let B := span{iX(x)iBP
(1s)iX(y)∗ : x, y ∈ X, s ∈ P}. Using

Lemma 5.11 with ψ := σ ◦ iX , and then applying σ−1, gives

iX(x)iBP
(1s) = iBP

(1p(x)s)iX(x)(6.3)

and

iBP
(1s)iX(x) =

{
iX(x)iBP

(1p(x)−1(p(x)∨s)) if p(x) ∨ s <∞
0 otherwise.

(6.4)

Equation (6.3) shows that

iX(x)iBP
(1s)iX(y)∗ = iBP

(1p(x)s)iX(x)(iBP
(1p(y)s)iX(y))∗ ∈ BPoτ,XP,

so B ⊆ BPoτ,XP . Since BP is generated by {1s : s ∈ P}, elements of the
form iBP

(1s)iX(w) generate BPoτ,XP as a C∗-algebra; with w = z · a as
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above, (6.4) shows that

iBP
(1s)iX(w) = iBP

(1s)iX(z)iX(a∗)∗

=

{
iX(z)iBP

(1p(z)−1(p(z)∨s))iX(a∗)∗ if p(z) ∨ s <∞
0 otherwise

∈ B.

Hence to establish (6.2), it remains only to show that B is closed under
multiplication. But Proposition 5.10 shows that the product

iX(x)iBP
(1s)iX(y)∗iX(z)iBP

(1t)iX(w)∗

of two typical generators of B is contained in the closed linear span of ele-
ments of the form

iX(x)iBP
(1s)iX(f)iX(g)∗iBP

(1t)iX(w)∗,

which by (6.4) simplifies to

iX(xf)iBP
(1p(f)−1(p(f)∨s)∨p(g)−1(p(g)∨t))iX(wg)∗ ∈ B.

Suppose the left action of A on each Xs is by compact operators; that
is, φs(A) ⊆ K(Xs) for all s ∈ P . Let x ∈ X and s ∈ P . Since Xp(x) is
essential, we can express x = φp(x)(a)z for some a ∈ A and z ∈ Xp(x). With
ψ := σ ◦ iX , we then have

σ(iBP
(1s)iX(x)) = Lψ(1s)ψ(x) = ρψs (1)ψe(a)ψ(z)

= ψ(s)(φs(a))ψ(z) (Lemma 5.5(3))

= σ(i(s)X (φs(a))iX(z)),

so iBP
(1s)iX(x) = i

(s)
X (φs(a))iX(z) ∈ Tcov(X). Since elements of the form

iBP
(1s)iX(x) generate BPoτ,XP , this gives BPoτ,XP = Tcov(X).

If in addition every s, t ∈ P have a common upper bound, then by Propo-
sition 5.4 the universal map jX : X → OX is Nica covariant; the integrated
form (jX)∗ : Tcov(X) → OX is surjective since it maps generators to gener-
ators. �

7. Faithful representations.

Our strategy for characterizing faithful representations of BPoτ,XP follows
[12, Section 5]. First we use the dual coaction δ of G on BPoτ,XP and the
canonical trace ρ on C∗(G) to define a positive linear map Eδ := (id⊗ρ) ◦ δ
of norm one of BPoτ,XP onto the fixed-point algebra (BPoτ,XP )δ. When
X is compactly aligned, (BP , P, τ,X) satisfies the spanning condition (6.2),
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and Eδ is determined by

Eδ(iX(x)iBP
(1s)iX(y)∗) =

{
iX(x)iBP

(1s)iX(y)∗ if p(x) = p(y)
0 otherwise.

(7.1)

Definition 7.1. The system (BP , P, τ,X) is amenable if Eδ is faithful on
positive elements.

The argument of [17, Lemma 6.5] shows that if G is an amenable group,
then the system (BP , P, τ,X) is amenable. In Corollary 8.2 we will show
that (BP , P, τ,X) is also amenable when X is compactly aligned and G is a
free product ∗(Gλ, P λ) with each Gλ an amenable group.

Theorem 7.2. Suppose (G,P ) is a quasi-lattice ordered group and X is a
compactly-aligned product system over P of essential Hilbert A–A bimodules
such that the system (BP , P, τ,X) is amenable. Let ψ be a Nica-covariant
Toeplitz representation of X on a Hilbert space H. Then Lψ×ψ is a faithful
representation of BPoτ,XP if and only if

(7.2) for every n ≥ 1 and s1, . . . , sn ∈ P \ {e}, the subrepresentation

a ∈ A 7→ ψe(a)
n∏
k=1

(
1− Lψ(1sk

)
)

of ψe is faithful.

Proof of necessity of (7.2). Let π : A → B(H) be a faithful nondegenerate
representation of A on a Hilbert space H, let l : X → L(F (X)) be the Fock
representation of X, and let Ψ := F (X) -IndL(F (X))

A π ◦ l; by Lemma 5.3, Ψ
is a Nica-covariant Toeplitz representation of X on F (X) ⊗A H. We claim
that

a ∈ A 7→ Ψe(a)
n∏
k=1

(
1− LΨ(1sk

)
)

is faithful. Since LΨ(1sk
) = αΨ

sk
(1) is the orthogonal projection of F (X)⊗A

H onto
⊕

t∈skP
Xt ⊗A H (see the proof of Lemma 5.3), each projection

1 − LΨ(1sk
) dominates the projection Qe onto the Ψe-invariant subspace

Xe ⊗A H. To establish the claim it thus suffices to show that the subrep-
resentation QeΨe of Ψe is faithful. But Ψe = F (X) -IndAA π decomposes
as
⊕

t∈P Xt -IndAA π, so QeΨe = A -IndAA π is unitarily equivalent to π, and
hence faithful.

Now suppose that Lψ × ψ is faithful and a ∈ A. Let

T := iBP

(
n∏
k=1

(1− 1sk
)

)
iX(a) ∈ BPoτ,XP.
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Then

‖a‖ =

∥∥∥∥∥Ψe(a)
n∏
k=1

(
1− LΨ(1sk

)
)∥∥∥∥∥ =

∥∥LΨ ×Ψ(T )
∥∥ ≤ ‖T‖

=
∥∥∥Lψ × ψ(T )

∥∥∥ =

∥∥∥∥∥ψe(a)
n∏
k=1

(
1− Lψ(1sk

)
)∥∥∥∥∥ ≤ ‖a‖ ,

giving (7.2). �

Our proof that (7.2) implies faithfulness of Lψ × ψ is based on the ar-
gument of [12, Section 6]: In Proposition 7.5(1) we prove that Lψ × ψ is
faithful on (BPoτ,XP )δ, and in Proposition 7.5(2) we construct a spatial
version Eψ of Eδ such that (Lψ × ψ) ◦ Eδ = Eψ ◦ (Lψ × ψ). Faithfulness of
Lψ × ψ then follows easily: If Lψ × ψ(b) = 0, then

0 = Eψ ◦ (Lψ × ψ)(b∗b) = (Lψ × ψ) ◦ Eδ(b∗b),
so by Proposition 7.5(1), Eδ(b∗b) = 0. The amenability hypothesis then
forces b∗b = 0, and hence b = 0.

We begin by reviewing some notation and results from [17, Remark 1.5]
and [12, Remark 5.2]. Let F be a finite subset of P . A subset C of F is an
initial segment of F if c := σC is finite and C = {t ∈ F : t ≤ c}. (Recall
that σC is the least upper bound of C; we use the convention that σ∅ = e.)
For each such C there is a nonzero projection QC in BP defined by

QC := 1c
∏

{t∈F :c<t∨c<∞}

(1− 1t),

and as C ranges over the initial segements of F , these projections form a
decomposition of the identity in BP .

Lemma 7.3. Suppose (G,P ) is a quasi-lattice ordered group, X is a product
system over P of essential Hilbert A–A bimodules, ψ is a Nica-covariant
Toeplitz representation of X on H, F is a finite subset of P , C is an initial
segment of F , x, y ∈ X and s ∈ P . Let c = σC, so that C = {t ∈ F : t ≤ c}.

(1) If p(x) = p(y), then the operator ψ(x)Lψ(1s)ψ(y)∗ is in the commutant
of Lψ(BP ). In particular, it commutes with Lψ(QC).

(2) If p(x)s, p(y)s ∈ F , then

Lψ(QC)ψ(x)Lψ(1s)ψ(y)∗Lψ(QC)

=

 Lψ(QC)ψ(x)Lψ(1p(x)−1c)Lψ(1p(y)−1c)ψ(y)∗Lψ(QC)
if p(x)s ≤ c and p(y)s ≤ c

0 otherwise.

Proof. The proof, based on Lemma 5.11, is identical in form to the proof of
[12, Lemma 5.3]. �
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Lemma 7.4. Suppose (G,P ) is a quasi-lattice ordered group, X is a product
system over P of essential Hilbert A–A bimodules, and ψ is a Nica-covariant
Toeplitz representation of X which satisfies (7.2). Suppose further that F is
a finite subset of P and Z is a finite sum

∑
ψ(xk)Lψ(1sk

)ψ(yk)∗ such that
p(xk)sk = p(yk)sk ∈ F for each k. Then

‖Z‖ = max{‖TC‖ : C is an initial segment of F},(7.3)

where TC is the adjointable operator on XσC defined by

TC :=
∑

p(xk)sk≤σC

Θxk,yk
⊗A 1p(xk)−1σC .(7.4)

Proof. Since {QC : C is an initial segment of F} is a decomposition of the
identity in BP , and since Lψ is a unital representation of BP , the projections
Lψ(QC) decompose the identity operator. By Lemma 7.3(1), Z commutes
with each Lψ(QC), and thus

‖Z‖ = max
{∥∥∥Lψ(QC)Z

∥∥∥ : C is an initial segment of F
}
.

Fix an initial segment C, and let c := σC. By Lemma 7.3(2) and Lem-
ma 5.5(6),

Lψ(QC)Z = Lψ(QC)
∑

ψ(xk)Lψ(1sk
)ψ(yk)∗

= Lψ(QC)
∑

p(xk)sk≤c

ψ(xk)Lψ(1p(xk)−1c)ψ(yk)∗

= Lψ(QC)
∑

p(xk)sk≤c

ρψc (Θxk,yk
⊗A 1)

= Lψ(QC)ρψc (TC),

so it suffices to show that∥∥∥Lψ(QC)ρψc (TC)
∥∥∥ = ‖TC‖ .(7.5)

Let

RC :=
∏

{t∈F :c<t∨c<∞}

(1− 1c−1(t∨c)) ∈ BP .(7.6)

Since ψ satisfies (7.2),

a 7→ ψe(a)
∏

{t∈F :c<t∨c<∞}

(1− Lψ(1c−1(t∨c))) = ψe(a)Lψ(RC)

is a faithful representation of A. By Lemma 5.5(4), the representation
T ∈ L(Xc) 7→ αψc (Lψ(RC))ρψc (T ) is thus also faithful. But αψc (Lψ(RC)) =
Lψ(τc(RC)) = Lψ(QC), and hence (7.5) is satisfied. �
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Proposition 7.5. Suppose (G,P ) is a quasi-lattice ordered group, X is a
compactly-aligned product system over P of essential Hilbert A–A bimodules,
and ψ is a Nica-covariant Toeplitz representation of X which satisfies (7.2).

(1) Lψ × ψ is isometric on (BPoτ,XP )δ.
(2) There is a linear map Eψ of norm one of Lψ × ψ(BPoτ,XP ) onto

Lψ × ψ
(
(BPoτ,XP )δ

)
such that Eψ ◦ (Lψ × ψ) = (Lψ × ψ) ◦ Eδ.

Proof. (1) Since X is compactly aligned, the spanning condition (6.2) holds.
Since Eδ is continuous and maps onto (BPoτ,XP )δ, we deduce that finite
sums

z :=
∑

iX(xk)iBP
(1sk

)iX(yk)∗

in which p(xk) = p(yk) for all k are dense in (BPoτ,XP )δ. It therefore
suffices to fix such a z and show that

∥∥Lψ × ψ(z)
∥∥ = ‖z‖.

Let σ be a faithful nondegenerate representation of BPoτ,XP such that
(σ ◦ iBP

, σ ◦ iX) is a covariant representation of (BP , P, τ,X). By Proposi-
tion 6.1, i := σ ◦ iX is a covariant representation of X and σ ◦ iBP

= Li.
Since Li × i = σ is faithful, i satisfies (7.2). Hence with F := {p(xk)sk},
Lemma 7.4 gives∥∥∥Lψ × ψ(z)

∥∥∥ =
∥∥∥∑ψ(xk)Lψ(1sk

)ψ(yk)∗
∥∥∥

= max{‖TC‖ : C is an initial segment of F}

=
∥∥∥∑ i(xk)Li(1sk

)i(yk)∗
∥∥∥ =

∥∥Li × i(z)
∥∥ = ‖z‖ .

(2) Since X is compactly aligned, finite sums of the form

w :=
∑

iX(xk)iBP
(1sk

)iX(yk)∗

are dense in BPoτ,XP . We will show that
∥∥Lψ×ψ(Eδ(w))

∥∥ ≤ ∥∥Lψ×ψ(w)
∥∥;

it follows that Eψ is well-defined on operators of the form Lψ × ψ(w) and
extends to the desired linear contraction.

Let F := {p(xk)sk} ∪ {p(yk)sk}, and let Z := Lψ × ψ(Eδ(w)); by (7.1),

Z =
∑

p(xk)=p(yk)

ψ(xk)Lψ(1sk
)ψ(yk)∗.

By Lemma 7.4, there is an initial segment C of F such that ‖Z‖ = ‖TC‖.
Let c := σC. We will construct a projection R ∈ BP such that a ∈ A 7→
ψe(a)Lψ(R) is faithful, then define Q := Lψ(τc(R)) = αψc (Lψ(R)), and show
that Q(Lψ × ψ(w))Q = Qρψc (TC). This will complete the proof, since by
Lemma 5.5(4) we then have

‖Z‖ = ‖TC‖ =
∥∥∥Qρψc (TC)

∥∥∥ =
∥∥∥Q(Lψ × ψ(w))Q

∥∥∥ ≤ ∥∥∥Lψ × ψ(w)
∥∥∥ .
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For each s, t ∈ C such that s 6= t and s−1c ∨ t−1c <∞, define ds,t ∈ P as
in [17, Lemma 3.2]:

ds,t =

{
(s−1c)−1(s−1c ∨ t−1c) if s−1c < s−1c ∨ t−1c

(t−1c)−1(s−1c ∨ t−1c) otherwise,

noting in particular that ds,t is never the identity in P . Let RC be as in
(7.6), and define

R := RC
∏

s 6=t∈C
s−1c∨t−1c<∞

(1− 1ds,t).

By condition (7.2), a ∈ A 7→ Lψ(R)ψe(a) is faithful. The proof that Q(Lψ×
ψ(w))Q = Qρψc (TC) is exactly as in [12, Proposition 5.5], so we omit it. �

Proposition 7.6. Suppose (G,P ) is a quasi-lattice ordered group and X is
a compactly-aligned product system over P of essential Hilbert A–A bimod-
ules. Let π be a nondegenerate representation of A on a Hilbert space H, and
let Ψ be the representation F (X) -IndL(F (X))

A π ◦ l, where l : X → L(F (X))
is the Fock representation of X. There is a projection EΨ of norm one of
LΨ ×Ψ(BPoτ,XP ) onto LΨ ×Ψ((BPoτ,XP )δ) such that

EΨ ◦ (LΨ ×Ψ) = (LΨ ×Ψ) ◦ Eδ;(7.7)

moreover, EΨ is faithful on positive operators.

Proof. Denote by Qt the orthogonal projection of F (X)⊗AH onto Xt⊗AH.
Since the Qt’s are mutually orthogonal, the formula

EΨ(T ) :=
∑
t∈P

QtTQt for T ∈ LΨ ×Ψ(BPoτ,XP )

defines a completely positive projection of norm one which is faithful on
positive operators. We claim that

EΨ(Ψ(x)LΨ(1s)Ψ(y)∗) =

{
Ψ(x)LΨ(1s)Ψ(y)∗ if p(x) = p(y)
0 otherwise.

(7.8)

Since X is compactly aligned the spanning condition (6.2) holds, and hence
(7.7) follows from (7.8) and (7.1).

Suppose x, y ∈ X and s ∈ P . For each t ∈ P , Ψ(x)LΨ(1s)Ψ(y)∗ is zero on
Xt⊗AH unless p(y)s ≤ t, in which case Ψ(x)LΨ(1s)Ψ(y)∗ mapsXt⊗AH into
Xp(x)p(y)−1t⊗AH. Thus if p(x) 6= p(y), QtΨ(x)LΨ(1s)Ψ(y)∗Qt = 0 for every
t ∈ P , and EΨ(Ψ(x)LΨ(1s)Ψ(y)∗) = 0. If on the other hand p(x) = p(y),
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then QtΨ(x)LΨ(1s)Ψ(y)∗Qt = Ψ(x)LΨ(1s)Ψ(y)∗Qt for each t ∈ P , and thus

EΨ(Ψ(x)LΨ(1s)Ψ(y)∗) =
∑
t∈P

QtΨ(x)LΨ(1s)Ψ(y)∗Qt

= Ψ(x)LΨ(1s)Ψ(y)∗
∑
t∈P

Qt = Ψ(x)LΨ(1s)Ψ(y)∗.

�

Corollary 7.7. Suppose π is faithful. Then the system (BP , P, τ,X) is
amenable if and only if the representation LΨ × Ψ of BPoτ,XP is faith-
ful.

Proof. Suppose LΨ × Ψ is faithful. By Proposition 7.6, (LΨ × Ψ) ◦ Eδ =
EΨ ◦ (LΨ × Ψ) is faithful on positive elements, hence so is Eδ; that is,
(BP , P, τ,X) is amenable. Since Ψ satisfies (7.2) (see the proof of necessity
of (7.2)), the converse follows from Theorem 7.2. �

8. Amenability.

Theorem 8.1. Suppose θ : (G,P ) → (G,P) is a homomorphism of quasi-
lattice ordered groups such that, whenever s ∨ t <∞,

θ(s ∨ t) = θ(s) ∨ θ(t) and θ(s) = θ(t) =⇒ s = t,(8.1)

and suppose that G is amenable. If X is a compactly-aligned product system
over P of essential Hilbert A–A bimodules, then the system (BP , P, τ,X) is
amenable.

Proof. Our proof is essentially that of [12, Theorem 6.1], suitably modified
to handle Hilbert bimodules. The homomorphism θ : G→ G induces a coac-
tion δθ = (id⊗θ) ◦ δ of G on BPoτ,XP , and hence a conditional expectation
Eδθ of BPoτ,XP onto the fixed-point algebra (BPoτ,XP )δθ , such that

Eδθ(iX(x)iBP
(1s)iX(y)∗) =

{
iX(x)iBP

(1s)iX(y)∗ if θ(p(x)) = θ(p(y))
0 otherwise.

Since G is amenable, Eδθ is faithful on positive elements.
Let l : X → L(F (X)) be the Fock representation of X, let π be a

faithful nondegenerate representation of A on a Hilbert space H, and let
Ψ := F (X) -IndL(F (X))

A π ◦ l. By Proposition 7.6, for every b ∈ BPoτ,XP we
have

(LΨ ×Ψ) ◦ Eδ(b) = EΨ(LΨ ×Ψ(Eδθ(b))).

Since Eδθ andEΨ are faithful on positive elements, to show that (BP , P, τ,X)
is amenable it suffices to show that LΨ ×Ψ is faithful on (BPoτ,XP )δθ .

Let σ be a faithful representation of BPoτ,XP such that (σ◦iBP
, σ◦iX) is

a covariant representation of (BP , P, τ,X). By Proposition 6.1, i = σ ◦ iX is
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a covariant representation of X and σ◦iBP
= Li. Observe that i is isometric

since, by Lemma 5.3,

‖x‖ = ‖Ψ(x)‖ =
∥∥(LΨ ×Ψ) ◦ iX(x)

∥∥
≤ ‖iX(x)‖ = ‖σ ◦ iX(x)‖ = ‖i(x)‖ ≤ ‖x‖ .

Let F be the set of all finite subsets F of P which are closed under ∨ in
the sense that s∨ t ∈ F whenever s, t ∈ F and s∨ t <∞. Exactly as in the
proof of [12, Theorem 6.1], one can use Proposition 5.10 to show that, for
each F ∈ F ,

UF := span{iX(x)iBP
(1s)iX(y)∗ : θ(p(x)s) = θ(p(y)s) ∈ F}

is a C∗-subalgebra of BPoτ,XP . Applying Φδθ to both sides of (6.2) gives

(BPoτ,XP )δθ = span{iX(x)iBP
(1s)iX(y)∗ : θ(p(x)) = θ(p(y))};

since F is directed under set inclusion (see the proof of [17, Lemma 4.1]),
we deduce that

(BPoτ,XP )δθ =
⋃
F∈F UF .

By [2, Lemma 1.3], to prove that LΨ × Ψ is faithful on (BPoτ,XP )δθ it
is enough to prove it is faithful on each of the subalgebras UF . We shall
accomplish this by inducting on |F |.

First suppose F = {r} for some r ∈ P. Let Wr be the Hilbert A–A
bimodule

⊕
t∈θ−1(r)Xt. We claim that, for each Nica-covariant Toeplitz

representation ψ of X on a Hilbert space K, there is a linear map ψr :
Wr → B(K) which satisfies ψr(⊕xt) =

∑
ψt(xt), and that (ψr, ψe) is then a

Toeplitz representation of Wr. First observe that if x, y ∈ X satisfy p(x) 6=
p(y) and θ(p(x)) = θ(p(y)) = r, then by (8.1) we have p(x)∨ p(y) = ∞, and
hence ψ(x)∗ψ(y) = 0. Now suppose ⊕xt belongs to the algebraic direct sum⊙

t∈θ−1(r)Xt; such vectors are dense in Wr. Then∥∥∥∥∥∑
t

ψt(xt)

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
t,t′

ψt(xt)∗ψt′(xt′)

∥∥∥∥∥∥ =

∥∥∥∥∥∑
t

ψt(xt)∗ψt(xt)

∥∥∥∥∥
=

∥∥∥∥∥∑
t

ψe(〈xt, xt〉A)

∥∥∥∥∥ ≤
∥∥∥∥∥∑

t

〈xt, xt〉A

∥∥∥∥∥
= ‖〈⊕xt,⊕xt〉A‖ = ‖⊕xt‖2 ,

ensuring the existence of ψr. It is routine to check that (ψr, ψe) is a Toeplitz
representation of Wr. Write αψr for the endomorphism of ψe(A)′ which
corresponds to (ψr, ψe) (Proposition 4.1), and write ρψr for the associated
representation of L(Wr) (Lemma 5.5).

Suppose Z is a finite sum
∑
iX(xk)iBP

(1sk
)iX(yk)∗ such that θ(p(xk)sk)=

θ(p(yk)sk) = r for every k; to prove LΨ × Ψ faithful on U{r} we will show
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that
∥∥LΨ ×Ψ(Z)

∥∥ = ‖Z‖. For each k, let Θxk,yk
⊗A 1sk denote the operator

in L(Wr) which is the image of

Θxk,yk
∈ K

(
Xp(yk), Xp(xk)

)
7→

Θxk,yk
⊗A 1sk ∈ L

(
Xp(yk)sk

, Xp(xk)sk

)
⊂ L(Wr).

Define T :=
∑

Θxk,yk
⊗A 1sk ∈ L(Wr). It is routine to check that

ρΨ
r (T ) =

∑
Ψ(xk)LΨ(1sk

)Ψ(yk)∗ = LΨ ×Ψ(Z),

and similarly ρir(T ) = Li × i(Z) = σ(Z). Since Ψe and ie are faithful
representations of A, the representations ρΨ

r and ρir are isometric, and thus∥∥LΨ ×Ψ(Z)
∥∥ =

∥∥ρΨ
r (T )

∥∥ = ‖T‖ =
∥∥ρir(T )

∥∥ = ‖σ(Z)‖ = ‖Z‖ .

For the inductive step, suppose F ∈ F and LΨ × Ψ is faithful on UF ′
whenever F ′ ∈ F and |F ′| < |F |; we aim to prove that LΨ × Ψ is faithful
on UF . Since F is finite it has a minimal element; that is, there exists
r0 ∈ F such that r0 < r0 ∨ r for each r ∈ F \ {r0}. As in the proof of [12,
Theorem 6.1] we have LΨ×Ψ(U{r})Pr0 = {0} for each r ∈ F \{r0}, where Pr0
denotes the orthogonal projection of F (X)⊗A H onto

⊕
t∈θ−1(r0)Xt ⊗A H.

On the other hand, we have already demonstrated that LΨ × Ψ maps
Ur0 isometrically into the range of ρΨ

r0 , and an easy calculation shows that
Pr0 = αΨ

r0(Qe), where Qe is the orthogonal projection onto Xe ⊗A H. Since
a 7→ Ψe(a)Qe is faithful, by Lemma 5.5(4) the representation S ∈ L(Wr0) 7→
Pr0ρ

Ψ
r0(S) is also faithful. Hence the map Y ∈ Ur0 7→ LΨ × Ψ(Y )Pr0 is

faithful.
Now suppose Y ∈ UF and LΨ×Ψ(Y ) = 0. We will show that Y ∈ UF\{r0},

from which the inductive hypothesis implies that Y = 0. Let (Yn) be a
sequence in

span{iX(x)iBP
(1s)iX(y)∗ : θ(p(x)s) = θ(p(y)s) ∈ F}

which converges in norm to Y , and express each Yn as a sum
∑

r∈F Yn,r,
where Yn,r ∈ U{r}. For each n,∥∥LΨ ×Ψ(Yn)Pr0

∥∥ =
∥∥LΨ ×Ψ(Yn,r0)Pr0

∥∥ = ‖Yn,r0‖ ,
and consequently Yn,r0 → 0. Thus Yn − Yn,r0 → Y , which shows that
Y ∈ UF\{r0}, as claimed. �

Corollary 8.2. Suppose (Gλ, P λ) is a quasi-lattice ordered group with Gλ

amenable for each λ belonging to some index set Λ. If X is a compactly-
aligned product system over P := ∗P λ, then the system (BP , P, τ,X) is
amenable.

Proof. The group
⊕
Gλ is amenable, and by [17, Proposition 4.3] the canon-

ical map θ : ∗Gλ →
⊕
Gλ satisfies (8.1). �
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9. Applications.

In Section 3, we associated with each twisted semigroup dynamical system
(A,P, β, ω) a product system X = X(A,P, β, ω) of essential Hilbert A–
A bimodules over the opposite semigroup P o (Lemma 3.2), and we showed
that the Cuntz-Pimsner algebra OX is canonically isomorphic to the crossed
product A oβ,ω P ; we also showed that TX has the structure of a certain
“Toeplitz” crossed product T (Aoβ,ωP ) (Proposition 3.4). Suppose now that
(Go, P o) is quasi-lattice ordered; this is equivalent to (G,P ) being quasi-
latticed ordered in its right-invariant partial order (s ≤ t ⇔ ts−1 ∈ P ).
Since the left action of A on each fiber Xs is by compact operators, X is
compactly aligned (Lemma 5.8) and Tcov(X) = BPoτ,XP (Theorem 6.3).
Hence we can apply Theorem 7.2 to characterize the faithful representations
of Tcov(X). This is particularly helpful when (Go, P o) is a total order since
Tcov(X) = TX ; more generally, when every s, t ∈ P o have a common upper
bound in P o (i.e., Ps ∩ Pt 6= ∅), the crossed product A oβ,ω P = OX is a
quotient of Tcov(X) (Theorem 6.3).

We begin by showing that Tcov(X), too, has a crossed product structure:

Definition 9.1. Suppose P is a subsemigroup of a group G and (Go, P o) is
quasi-lattice ordered. A Nica-Toeplitz covariant representation of (A,P, β, ω)
is a Toeplitz covariant representation (π, V ) such that

V ∗
s VsV

∗
t Vt =

{
V ∗
s∨tVs∨t if s ∨ t <∞

0 otherwise,
(9.1)

where s ∨ t denotes the least upper bound of s and t in the right-invariant
partial order on (G,P ).

The following Proposition establishes the existence of a C∗-algebra which
is universal for such pairs (π, V ), as in Definition 3.1. We call this algebra the
Nica-Toeplitz crossed product of (A,P, β, ω), and denote it Tcov(A oβ,ω P ).
Let iX : X → Tcov(X) be universal for Nica-covariant Toeplitz represen-
tations of X. Lemma 3.3 is easily adapted to this setting, and allows us
to define iP : P → MTcov(X) by iP (s) = lim iX(s, βs(ai))∗; here (ai) is an
approximate identity for A, and the convergence is strict. We also define
iA : A→ Tcov(X) by iA(a) := iX(e, a).

Proposition 9.2. (Tcov(X), iA, iP ) is a Nica-Toeplitz crossed product for
(A,P, β, ω).

Proof. As in the proof of Proposition 3.4, iA is nondegenerate. We verify
the obvious analogues of Conditions (a), (b), and (c) in Definition 3.1. For
(a), let σ be a nondegenerate representation of Tcov(X) on a Hilbert space
H, let π := σ ◦ iA, and let V := σ ◦ iP ; we must show that (π, V ) is a Nica-
Toeplitz covariant representation of (A,P, β, ω). Exactly as in the proof of
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Proposition 3.4, (π, V ) is a Toeplitz covariant representation of (A,P, β, ω),
so we need to establish (9.1). Fix s ∈ P . For any a ∈ A and h ∈ H we have

V ∗
s π(a)h = σ(iP (s)∗iA(a))h = σ(lim iX(s, βs(ai))iX(e, a))h

= σ(lim iX(s, βs(ai)a))h = σ ◦ iX(s, βs(1)a)h,

and since π is nondegenerate this shows that

V ∗
s VsH = span{σ ◦ iX(ξ)h : ξ ∈ Xs, h ∈ H} = ασ◦iXs (1).

Since X is compactly aligned, σ ◦ iX is Nica covariant (Theorem 6.3 and
Proposition 5.9), and (9.1) follows.

For Condition (b), let (π, V ) be any Nica-Toeplitz covariant representa-
tion on H. As in the proof of Proposition 3.4, ψ(s, x) := V ∗

s π(x) defines
a nondegenerate Toeplitz covariant representation ψ : X → B(H). To see
that it is Nica-covariant, let s ∈ P , and note that for any a ∈ A we have

ψ(s, βs(1)a) = limψ(s, βs(ai)a) = limV ∗
s π(βs(ai)a)

= limV ∗
s Vsπ(ai)V ∗

s π(a) = V ∗
s π(a).

Since π is nondegenerate, this implies that αψs (1) = V ∗
s Vs, and hence ψ is

Nica covariant by (9.1). Defining π × V := ψ∗ : Tcov(X) → B(H) gives
the desired representation satisfying (π × V ) ◦ iA = π and π × V ◦ iP = V .
Condition (c) is satisfied since iA(a)iP (s) = iX(s, βs(1)a∗)∗, and elements of
this form generate Tcov(X). �

Let (Gi, Pi) be a collection of abelian lattice-ordered groups. Since (Gi, Pi)
is quasi-lattice ordered in both its left and its right-invariant partial order,
so is the free product ∗(Gi, Pi).

Theorem 9.3. Suppose (G,P ) = ∗(Gi, Pi) is a free product of abelian latti-
ce-ordered groups and (π, V ) is a Nica-Toeplitz covariant representation of
the twisted semigroup dynamical system (A,P, β, ω) on a Hilbert space H.
Then the integrated form π×V is a faithful representation of Tcov(Aoβ,ωP )
if and only if

for every n ≥ 1 and s1, . . . , sn ∈ P \ {e},

π acts faithfully on the range of
n∏
k=1

(
1− V ∗

sk
Vsk

).

Proof. Let θ be the canonical homomorphism of ∗(Gi, Pi) onto
⊕

(Gi, Pi).
By [17, Proposition 4.3], θ satisfies the hypotheses of Theorem 8.1; since
X = X(A,P, β, ω) is compactly aligned, the system (BP , P, τ,X) is there-
fore amenable. Identifying Tcov(A oβ,ω P ) with Tcov(X) as in the previous
Proposition and defining ψ(s, x) := V ∗

s π(x), the initial projection V ∗
s Vs is

precisely αψs (1), and the result follows from Theorem 7.2. �
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Nica covariance is automatic when (G,P ) is totally ordered:

Corollary 9.4. Suppose (G,P ) is a totally ordered abelian group and (π, V )
is a Toeplitz covariant representation of (A,P, β, ω) on a Hilbert space H.
Then the integrated form π × V is a faithful representation of T (Aoβ,ω P )
if and only if π acts faithfully on (V ∗

s H)⊥ for every s ∈ P \ {e}.
Corollary 9.5. Suppose β is an extendible endomorphism of A. If (π, V ) is
a Toeplitz representation of (A,N, β), then π×V is a faithful representation
of T (Aoβ N) if and only if π acts faithfully on (V ∗H)⊥.
Bicovariance. Suppose (G,P ) is a quasi-lattice ordered group. Follow-
ing [17], in [12] it was shown that BP oτ,ω P is universal for isometric
ω-representations of P which are Nica covariant; that is, which satisfy

VsV
∗
s VtV

∗
t =

{
Vs∨tV

∗
s∨t if s ∨ t <∞

0 otherwise.
(9.2)

Assuming that (Go, P o) is also quasi-lattice ordered, we now show that the
Nica-Toeplitz crossed product Tcov(BP oτ,ω P ) is universal for partial iso-
metric ω-representations of P which are bicovariant in that they satisfy both
(9.2) and (9.1). Note that bicovariance is automatic when (G,P ) is a totally
ordered abelian group.

Proposition 9.6. iP : P → Tcov(BP oτ,ω P ) is a bicovariant partial iso-
metric ω-representation of P whose range generates Tcov(BP oτ,ω P ) as a
C∗-algebra. Moreover, for every bicovariant partial isometric ω-representa-
tion V , there is a representation V∗ of Tcov(BP oτ,ωP ) such that V∗◦iP = V .

Proof. Let σ be a faithful nondegenerate representation of Tcov(BP oτ,ω P ).
Then V := σ ◦ iP is a partial isometric ω-representation of P which satisfies
(9.1), and applying σ−1 we see that iP is as well. Since iP (s)iP (s)∗ = iBP

(1s)
for every s ∈ P , iP also satisfies (9.2), and is hence bicovariant. Since
{1s : s ∈ P} generates BP linearly and {iBP

(a)iP (t) : a ∈ BP , t ∈ P} gener-
ates Tcov(BP oτ,ω P ) as a C∗-algebra, elements of the form iBP

(1s)iP (t) =
iP (s)iP (s)∗iP (t) are also generating. If V is any bicovariant partial isomet-
ric ω-representation of P , then by [17, Proposition 1.3] there is a repre-
sentation πV of BP such that πV (1s) = VsV

∗
s for every s ∈ P . For any

s, t ∈ P the product VtVs = ω(t, s)Vts is a partial isometry; hence by [14,
Lemma 2] the projections VsV ∗

s and V ∗
t Vt commute, and we deduce that

πV (a)V ∗
t Vt = V ∗

t VtπV (a) for every a ∈ BP and t ∈ P . Further,

πV (τs(1t)) = πV (1st) = VstV
∗
st

= (ω(s, t)VsVt)(ω(s, t)VsVt)∗ = VsVtV
∗
t V

∗
s = VsπV (1t)V ∗

s ,

so πV (τs(a)) = VsπV (a)V ∗
s for every s ∈ P and a ∈ BP . Thus (πV , V ) is a

Nica-Toeplitz covariant representation of (BP , P, τ, ω). The representation
V∗ := πV × V satisfies V∗ ◦ iP = V . �
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We say that a bicovariant partial isometric ω-representation V is universal
if, for every bicovariant partial isometric ω-representation W , there is a
homomorphism of C∗{Vs : s ∈ P} which maps Vs to Ws for each s ∈ P .

Theorem 9.7. Suppose (G,P ) = ∗(Gi, Pi) is a free product of abelian latti-
ce-ordered groups and V is a bicovariant partial isometric ω-representation
of P . Then V is universal if and only if

m∏
l=1

(VrV ∗
r − VrtlV

∗
rtl

)
n∏
k=1

(1− V ∗
sk
Vsk

) 6= 0

whenever r ∈ P , m,n ≥ 1, and s1, . . . , sn, t1, . . . , tm ∈ P \ {e}.

Proof. V is universal if and only if the representation V∗ = πV × V of
Tcov(BP oτ,ω P ) is faithful. By Theorem 9.3, this occurs if and only if πV
acts faithfully on the range of

∏n
k=1(1−V ∗

sk
Vsk

) whenever s1, . . . , sn ∈ P\{e},
and the result follows from [17, Proposition 1.3]. �

Let F∞ be the free group on infinitely many generators z1, z2, . . . , and
let F+

∞ be the subsemigroup (with identity) generated by the zi; the pair
(F∞,F+

∞) is quasi-lattice ordered. In [17], Laca and Raeburn realized the
Cuntz algebra O∞ as the universal C∗-algebra for covariant isometric rep-
resentations of F+

∞, and used their characterization of the faithful repre-
sentations of BP oτ P to derive Cuntz’s simplicity result. We finish by
showing that the universal C∗-algebra for bicovariant partial isometric rep-
resentations of F+

∞ is reminiscent of O∞, and we derive a Cuntz-Krieger-type
uniqueness theorem.

First some notation. For a multi-index µ = (µ1, . . . , µn) we write zµ :=
zµ1 · · · zµn , and we identify F+

∞ with the set of multi-indices under concate-
nation via zµ ↔ µ.

Proposition 9.8. Suppose S is a partial isometric representation of F+
∞ in

a C∗-algebra B; that is, S is a semigroup homomorphism and each Sµ is a
partial isometry. Then C∗{Sµ : µ ∈ F+

∞} is generated by {Sn : n ∈ N}, and
S is bicovariant if and only if

(a) the range projections sks∗k for k ∈ N are pairwise orthogonal, and
(b) the initial projections s∗ksk for k ∈ N are pairwise orthogonal.

Proof. The first statement is obvious. In the left-invariant partial order on
F∞, two elements µ, ν ∈ F+

∞ have a common upper bound if and only if one
is an initial word of the other, and then the least upper bound is the longer
of the two words. We will show that (a) holds if and only if

SµS
∗
µSνS

∗
ν =


SµS

∗
µ if ν−1µ ∈ F+

∞,
SνS

∗
ν if µ−1ν ∈ F+

∞,
0 otherwise;

(9.3)
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of course a similar statement holds for (b) using the right-invariant partial
order, and together these prove the Proposition.

To begin with, (9.3) implies (a) since distict generators of F+
∞ are not

comparable. For the converse, first suppose ν−1µ ∈ F+
∞; since Sν is a partial

isometry, we then have

SµS
∗
µSνS

∗
ν = SµS

∗
ν−1µS

∗
νSνS

∗
ν = SµS

∗
ν−1µS

∗
ν = SµS

∗
µ.

The case µ−1ν ∈ F+
∞ is similar. Finally, suppose µ and ν are not comparable.

Then there exists σ, µ′, ν ′ ∈ F+
∞ such that µ = σµ′, ν = σν ′, and µ′1 6= ν ′1.

Condition (a) implies that S∗µ′Sν′ = 0, and by [14, Lemma 2] the range
projection of Sν′ commutes with the initial projection of Sσ, so

S∗µSν = S∗µ′S
∗
σSσSν′ = S∗µ′S

∗
σSσSν′S

∗
ν′Sν′ = S∗µ′Sν′S

∗
ν′S

∗
σSσSν′ = 0.

�

Theorem 9.9. A bicovariant partial isometric representation S of F+
∞ is

universal if and only if each Sµ is nonzero.

Proof. Suppose each Sµ is nonzero. To see that S is universal, we apply
Theorem 9.7. If ν ∈ F+

∞, m,n ≥ 1, and σ1, . . . , σm, τ1, . . . , τn ∈ F+
∞ \ {e},

then we can choose i, j ∈ N such that none of the multi-indices σl begins
with i, and none of the multi-indices τk ends with j. Then

m∏
l=1

(SνS∗ν − Sνσl
S∗νσl

)
n∏
k=1

(1− S∗τkSτk) ≥ SνSiS
∗
i S

∗
νS

∗
jSj = S∗jSjνiS

∗
jνiSj

is nonzero since Sj(S∗jSjνiS
∗
jνiSj)S

∗
j = SjνiS

∗
jνi 6= 0. Hence S is universal.

Now define T : F+
∞ → B(`2(F+

∞)⊗ `2(F+
∞)) by

Tµ(δσ ⊗ δν) =

{
δσ ⊗ δµν if σ ends in µν
0 otherwise.

Then T is a bicovariant partial isometric representation of F+
∞ in which each

Tµ is nonzero. If S is universal, then Sµ 7→ Tµ extends to a homomorphism
of C∗{Sµ}, and hence each Sµ must be nonzero. �
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