PARAHORIC FIXED SPACES IN UNRAMIFIED PRINCIPAL SERIES REPRESENTATIONS

Joshua M. Lansky

Let \(k \) be a non-archimedean locally compact field and let \(G \) be the set of \(k \)-points of a connected reductive group defined over \(k \). Let \(W \) be the relative Weyl group of \(G \), and let \(\mathcal{H}(G, B) \) be the Hecke algebra of \(G \) with respect to an Iwahori subgroup \(B \) of \(G \). We compute the effects of \(\mathcal{H}(G, B) \) and \(W \) on the \(B \)-fixed vectors of an unramified principal series representation \(I \) of \(G \). We use this computation to determine the dimension of the space of \(K \)-fixed vectors in \(I \), where \(K \) is a parahoric subgroup of \(G \).

1. Introduction.

Let \(G \) be a reductive group defined over a non-archimedean locally compact field \(k \) and let \(G = G(k) \). Let \(P \) be a minimal parabolic subgroup of \(G \) with Levi decomposition \(P = MN \), and let \(P^- = MN^- \) be the corresponding decomposition of the opposite parabolic \(P^- \). Let \(B \) be an Iwahori subgroup of \(G \) with an Iwahori decomposition with respect to \(P \) and \(M \), i.e.,

\[
B = (B \cap P)(B \cap M)(B \cap P^-).
\]

Denote by \(W \) the relative Weyl group of \(G \). Let \(\chi \) be an unramified character of \(M \) (i.e., \(\chi \) is trivial on \(M_0 \)). Since \(M \cong P/N \), \(\chi \) extends to a character of \(P \) which we will also denote by \(\chi \). Let \(\delta \) be the modulus character of \(P \). Define \(I(\chi) \) to be the unramified principal series representation of \(G \) induced by \(\chi \), i.e., the space of all locally constant functions \(G \rightarrow \mathbb{C} \) such that

\[
f(pg) = \chi^{\delta 1/2}(p)f(g) \text{ for all } p \text{ in } P, \ g \text{ in } G
\]
on which \(G \) acts by right translation. It is well-known that the space \(I(\chi)^B \) of \(B \)-fixed vectors in \(I(\chi) \) has dimension \(\dim I(\chi)^B = |W| \) [3, Prop. 2.1]. In this paper, we generalize this result to the fixed space \(I(\chi)^K \) where \(K \) is a parahoric subgroup of \(G \) containing \(B \).

Let \(A \) be a maximal split torus in \(M \) and let \(N \) be its normalizer in \(G \). If \(M_0 \) is the maximal compact subgroup of \(M \) and \(\tilde{W} = N/M_0 \), then we have a surjection \(\nu : \tilde{W} \rightarrow W = N/M \). Let \(K \) be a parahoric subgroup of \(G \) containing \(B \) and let \(W_K \) be the finite Coxeter subgroup of \(\tilde{W} \) such that \(K = BW_KB \) (see [4, §1]). We will prove the following:
Theorem 1.1. The dimension of $I(\chi)^K$ is $|W/\nu(W_K)|$.

As a Coxeter group, W_K is generated by a canonical finite set S of reflections. Thus

$$I(\chi)^K = \bigcap_{s \in S} I(\chi)^{(B,s)}.$$

In Section 3, we explicitly determine the effects of reflections $s \in S$ on $I(\chi)^B$ (Theorem 3.1) and as a corollary the actions of the generators of the Iwahori-Hecke algebra $\mathcal{H}(G, B)$ on $I(\chi)^B$ (Corollary 3.2). We then compute the subspaces $I(\chi)^{(B,s)}$ in terms of the usual basis of $I(\chi)$ as given in [3, Prop. 2.1]. Then in Section 4, we complete the proof of Theorem 1.1 by showing that the dimension of the intersection of the $I(\chi)^{(B,s)}$ is $|W/\nu(W_K)|$.

Let $\mathcal{H}(G, K)$ be the Hecke algebra of compactly supported functions $G \to \mathbb{C}$, bi-invariant by K. Let E be a simple $\mathcal{H}(G, K)$-module. It is known that there is an irreducible admissible representation V of G such that E is isomorphic as a $\mathcal{H}(G, K)$-module to the space V^K of K-fixed vectors [1, 2.10]. Since $V^B \supset V^K = E \neq 0$, it follows from a well-known result that V embeds inside some unramified principal series representation I of G so that $\dim E = \dim V^K \leq \dim I^K$. Thus Theorem 1.1 has the following corollary:

Corollary 1.2. If K is a parahoric subgroup of G and E is a simple module over $\mathcal{H}(G, K)$, then

$$\dim E \leq |W/\nu(W_K)|.$$

Moreover, this bound is sharp.

The sharpness of this bound is a result of the fact that there exist irreducible unramified principal series representations (see e.g., [2, Theorem 3.3]) and that for such a representation I, the $\mathcal{H}(G, K)$-module I^K is simple [1, 2.10] and, by Theorem 1.1, of dimension $|W/\nu(W_K)|$.

Remark 1.3. While Theorem 1.1 is needed to prove the sharpness in Corollary 1.2, the inequality itself can be proved by a simpler argument. Indeed, it is easily demonstrated that $\dim I(\chi)^K \leq |W/\nu(W_K)|$ by noting that

$$\dim I(\chi)^K \leq |P \backslash G/K|,$$

and

$$|P \backslash G/K| = |W/\nu(W_K)|.$$

I would like to express my gratitude to both Benedict Gross and David Pollack for their many helpful suggestions for this paper.

2. Preliminaries.

See [6] or [3, §1] as a reference for much of the material in this section. In the following, we let k be a non-archimedean locally compact field. We denote by G a connected reductive algebraic group defined over k with group of
k-points G. Similarly, throughout this section, if H is any algebraic group defined over k, we will denote its k-points by the corresponding non-bold letter H.

Let P be a fixed minimal parabolic subgroup of G containing a maximal split torus A of G. Denote by N the unipotent radical of P, and by M the centralizer of A. Then P has Levi decomposition MN. Let Φ' denote the set of roots of G relative to A and Φ'_{nd} the subset of non-divisible roots. Also, let W be the relative Weyl group.

Denote by $B = B(G, k)$ the Bruhat-Tits building of G over k and by A the apartment of B stabilized by A. The normalizer N of A in G is then the stabilizer of A and the maximal compact subgroup M_0 of M is the kernel of the map $N \to \text{Aut}(A)$. Let $\tilde{W} = N/M_0$. Denote by Φ_{aff} the canonical affine root system on A and by W_{aff} the corresponding affine Weyl group. Then W_{aff} may be identified with a normal subgroup of \tilde{W}.

Fix a special point x_0 in B and let Φ be the set of affine roots vanishing at x_0. Then Φ is a reduced root system, and we have a bijection between Φ and Φ'_{nd} corresponding to the choice of x_0. We let Φ^+ be the subset of positive affine roots corresponding to P and Δ the subset of simple roots.

Let C be the unique chamber in A containing x_0 with the property that every α in Φ^+ takes positive values on C. Denote by K_0 the special maximal compact subgroup fixing x_0. Then $W = N/M_0$, which is the stabilizer of x_0 in \tilde{W}. We will identify these groups throughout. We denote by ν the surjection $\tilde{W} \to W$. The kernel of ν is the group of translations in \tilde{W}.

For each α in Φ^+, denote by $N(\alpha)$ the pointwise stabilizer of the half-apartment $\{x \in A \mid \alpha(x) \geq 0\}$. We note that

$$B = M_0 \cdot \prod_{\alpha \in \Phi^+} N(\alpha) \cdot \prod_{\alpha \in \Phi^-} N(\alpha + 1).$$

Let $P_0 \subset P$ be the compact subgroup

$$P \cap K_0 = M_0 \cdot \prod_{\alpha \in \Phi^+} N(\alpha).$$

Let $\Phi = \bigcup \Phi_i$ be the decomposition of Φ into irreducible root systems. Denote by Δ the set containing the highest root $\tilde{\alpha}_i$ of Φ_i for each i. Let

$$\Delta_{aff} = \{\alpha \in \Phi_{aff} \mid \alpha \in \Delta \text{ or } \alpha = \tilde{\alpha} - 1 \text{ for some } \tilde{\alpha} \in \tilde{\Delta}\}.$$

For α in Δ_{aff}, let w_α be the reflection in $\text{Aut}(A)$ through the vanishing hyperplane of α. Then $S_{aff} = \{w_\alpha \mid \alpha \in \Delta_{aff}\}$ is a set of involutive generators for the Coxeter group W_{aff}.

For α in Φ, let a_α be the translation $w_\alpha w_{\alpha - 1}$ on A. We note that

$$a_{-\alpha} = a_{\alpha}^{-1} \text{ for any } \alpha \text{ in } \Phi.$$
We let \(K \) be a fixed parahoric subgroup of \(G \) containing \(B \). Since the triple \((G, B, \mathcal{N})\) is a generalized Tits system (see [4, §1]), there exists a special subgroup \(W_K \) of \(\text{W}_{\text{aff}} \) such that \(K = BW_K B \); \(W_K \) is finite as \(K \) is compact. We denote by \(S \) the subset of \(S_{\text{aff}} \) generating \(W_K \).

For any \(w \) in \(W \), we denote by \(q(w) \) the index \([BW_B : B]\). Also for \(\alpha \) in \(\Phi_{\text{aff}} \), we let \(q_\alpha \) be the index \([N(\alpha - 1) : N(\alpha)]\). We note that \(q_{\alpha + 2} = q_\alpha \). Since (cf. [5, Cor. 2.7])

\[
Bw_\alpha B = N(\alpha)w_\alpha B \quad \text{for} \quad \alpha \in \Delta,
\]

\[
Bw_{\bar{\alpha} - 1} B = N(-\bar{\alpha} + 1)w_{\bar{\alpha} - 1} B \quad \text{for} \quad \bar{\alpha} \in \bar{\Delta},
\]

it follows that

\[q(w_\alpha) = q_{\alpha + 1} \quad \text{for} \quad \alpha \in \Delta, \quad q(w_{\bar{\alpha} - 1}) = q_{\bar{\alpha} + 2} = q_\bar{\alpha} \quad \text{for} \quad \bar{\alpha} \in \bar{\Delta}. \]

If \(\alpha \in \Delta \), we denote by \(B_\alpha \) the group \(B \cap w_\alpha Bw_\alpha \), and if \(\bar{\alpha} \in \bar{\Delta} \), \(B_{\bar{\alpha} - 1} \) denotes the group \(B \cap w_{\bar{\alpha} - 1} Bw_{\bar{\alpha} - 1} \).

Let \(dx \) be the Haar measure on \(G \) for which \(B \) has volume 1. We denote by \(\mathcal{H}(G, B) \) the Iwahori-Hecke algebra of compactly supported functions \(G \to \mathbb{C} \) bi-invariant by \(B \). The product on \(\mathcal{H}(G, B) \) is given by convolution with respect to \(dx \). Fix an unramified character \(\chi \) of \(M \) and let \(\delta \) be the modulus character of \(P \). Denote by \(\text{Ind}_{B}^{G}(\chi \delta^{1/2}) \), i.e., the unramified principal series representation induced by \(\chi \) as described in Section 1. If \(x \) is an element of \(G \), we will denote the action of \(x \) on \(u \in \text{Ind}_{B}^{G}(\chi \delta^{1/2}) \) by \(u \mapsto x \cdot u \). Note that if \(w \in \bar{W} \) then the expression \(w \cdot u \) is well-defined for \(u \in \text{Ind}_{B}^{G}(\chi \delta^{1/2}) \) as \(w \) is determined modulo \(M_0 \subset B \). A function \(h \in \mathcal{H}(G, B) \) acts on \(\text{Ind}_{B}^{G}(\chi \delta^{1/2}) \) by the formula

\[h \cdot u = \int_{G} (x \cdot u) h(x) \, dx, \]

where \(v \in \text{Ind}_{B}^{G}(\chi \delta^{1/2}) \).

Let \(C_{c}^{\infty}(G) \) be the space of locally constant, compactly supported functions \(G \to \mathbb{C} \). The map \(\mathcal{P}_{\chi} : C_{c}^{\infty}(G) \to \text{Ind}_{B}^{G}(\chi \delta^{1/2}) \) defined by

\[\mathcal{P}_{\chi}(f)(g) = \int_{P} \chi^{-1} \delta^{1/2}(p) f(pg) \, dp \]

(where \(dp \) is the left Haar measure on \(P \) giving \(P_0 \) measure 1) is a \(G \)-equivariant surjection. The functions \(\phi_{w, \chi} = \mathcal{P}_{\chi}(\text{ch}_{BW_B}) \) \((w \in W)\) form a basis of the subspace of \(B \)-fixed vectors \(\text{Ind}_{B}^{G}(\chi \delta^{1/2}) \) [3, Prop. 2.1]. Concretely, for \(p \in P, w' \in W \) and \(b \in B, \phi_{w, \chi}(pw'b) \) equals \(\chi \delta^{1/2}(p) \) if \(w' = w \) and is zero otherwise.
The goal of this section is to compute the effect of $s \in S_{\text{aff}}$ on $I(\chi)^B$. This will be important for the proof in the following section since we will need to determine the space $I(\chi)^{B,s}$ of vectors in $I(\chi)^B$ fixed by s.

Theorem 3.1. Suppose that $w \in W$, $\alpha \in \Delta$ and $\tilde{\alpha} \in \tilde{\Delta}$. Then

$$w_\alpha \cdot \phi_{w,\chi} = \begin{cases} \chi \delta^{1/2}(a_w \tilde{\alpha}) \phi_{p w w_\alpha B, \chi} & \text{if } w_\alpha \in \Phi^+ \\ \phi_{w w_\alpha, \chi} + \chi \delta^{1/2}(a_w \tilde{\alpha}) \phi_{w w_\alpha, \chi} & \text{if } w_\alpha \in \Phi^- \\ \phi_{w w_\alpha, \chi} + \chi \delta^{1/2}(a_w \tilde{\alpha}) \phi_{w w_\alpha, \chi} & \text{if } w \tilde{\alpha} \in \Phi^+ \\ \phi_{w w_\alpha, \chi} + \chi \delta^{1/2}(a_w \tilde{\alpha}) \phi_{w w_\alpha, \chi} & \text{if } w \tilde{\alpha} \in \Phi^- \\ \end{cases}$$

$$w_{\tilde{\alpha}^{-1}} \cdot \phi_{w,\chi} = \begin{cases} \chi \delta^{1/2}(a_w \tilde{\alpha}) \phi_{p w w_\alpha B, \chi} & \text{if } w \tilde{\alpha} \in \Phi^+ \\ \phi_{w w_\alpha, \chi} + \chi \delta^{1/2}(a_w \tilde{\alpha}) \phi_{w w_\alpha, \chi} & \text{if } w \tilde{\alpha} \in \Phi^- \\ \phi_{w w_\alpha, \chi} + \chi \delta^{1/2}(a_w \tilde{\alpha}) \phi_{w w_\alpha, \chi} & \text{if } w \tilde{\alpha} \in \Phi^+ \\ \phi_{w w_\alpha, \chi} + \chi \delta^{1/2}(a_w \tilde{\alpha}) \phi_{w w_\alpha, \chi} & \text{if } w \tilde{\alpha} \in \Phi^- \\ \end{cases}$$

Proof. For any s in S_{aff}, $g \in G$,

$$(s \cdot \phi_{w,\chi})(g) = \phi_{w,\chi}(gs).$$

The Iwasawa decomposition enables us to write $g = p' w' b'$ for some p' in P, w' in W, and b' in B. We will evaluate $\phi_{w,\chi}(gs) = \phi_{w,\chi}(p' w' b' s)$ by determining the double coset in which $p' w' b'$ lies.

We first consider $s = w_\alpha$ for $\alpha \in \Delta$. Now if $w' \alpha \in \Phi^+$ then by (1)

$$p' w' b' w_\alpha \subset p' w' B w_\alpha$$

$$= p' w' N(\alpha) w_\alpha B$$

$$= p' N(w' \alpha) w' w_\alpha B$$

$$\subset (p' N) w' w_\alpha B.$$

Since $\chi \delta^{1/2}$ is trivial on N, it follows that $\phi_{w,\chi}(p' w' b' w_\alpha)$ equals $\chi \delta^{1/2}(p')$ if $w = w' w_\alpha$ and 0 otherwise.

If, on the other hand, $w' \alpha \in \Phi^-$ then suppose first that $b' \in B_\alpha$. Then

$$p' w' b' w_\alpha \subset p' w' b' w_\alpha B = p' w' w_\alpha B$$

since $w_\alpha B_\alpha w_\alpha \subset B$. Thus $\phi_{w,\chi}(p' w' b' w_\alpha)$ equals $\chi \delta^{1/2}(p')$ if $w = w' w_\alpha$ and 0 otherwise.

Lastly, suppose that $w' \alpha \in \Phi^-$ and $b' \in B - B_\alpha$. It is easily deduced from $w' \alpha \in \Phi^-$ that

$$P w' B w_\alpha B = P w' w_\alpha B \cup P w' B.$$

Moreover, one can show that $p' w' b' w_\alpha \in P w' B$ if and only if b' is an element of $B - B_\alpha$. Thus $p' w' b' w_\alpha = p w' b$ for some $p \in P$, $b \in B$. Since

$$p^{-1} p' = w' b w_\alpha b'^{-1} w'^{-1} \in P \cap K_0 = P_0$$

and since $\chi \delta^{1/2}$ is trivial on P_0, we have that $\chi \delta^{1/2}(p) = \chi \delta^{1/2}(p')$. Therefore, $\phi_{w,\chi}(p' w' b' w_\alpha)$ equals $\chi \delta^{1/2}(p')$ if $w = w'$ and 0 otherwise.
Note that \(w'\alpha \in \Phi^\pm \) if and only if \(w'w_\alpha \alpha = -w'\alpha \in \Phi^\mp \). Using this, we assemble the preceding cases to obtain that

\[
(w_\alpha \cdot \phi_{w,\chi})(p'u'b') = \begin{cases}
\chi^{\delta/2}(p') & \text{if } w_\alpha \in \Phi^+, w' = ww_\alpha, b' \in B_\alpha \\
\chi^{\delta/2}(p') & \text{if } w_\alpha \in \Phi^-, w' = ww_\alpha \\
\chi^{\delta/2}(p') & \text{if } w_\alpha \in \Phi^-, w' = w, b' \in B - B_\alpha \\
0 & \text{otherwise.}
\end{cases}
\]

This immediately implies the first result of the theorem.

We now prove the second formula by calculating \(w_{\tilde{\alpha}-1} \cdot \phi_{w,\chi} \) for \(\tilde{\alpha} \in \tilde{\Delta} \). Assume first that \(w'\tilde{\alpha} \in \Phi^- \). Then by (2)

\[
p'w'b'w_{\tilde{\alpha}-1} \in p'w'Bw_{\tilde{\alpha}-1}B = p'w'N(-\tilde{\alpha} + 1)w_{\tilde{\alpha}-1}B = p'N(-w'\tilde{\alpha} + 1)w'\tilde{\alpha}a_{\tilde{\alpha}}B \subseteq (p'a_{w'\tilde{\alpha}}N)w'w_{\tilde{\alpha}}B.
\]

Since \(\chi \) is trivial on \(N \), it follows that \(\phi_{w,\chi}(p'w'b'w_{\tilde{\alpha}-1}) \) equals \(\chi^{\delta/2}(p'a_{-w'\tilde{\alpha}}) \) if \(w = w'w_{\tilde{\alpha}} \) and 0 otherwise.

Now suppose that \(w'\tilde{\alpha} \in \Phi^+ \) and that \(b' \in B_{\tilde{\alpha}-1} \). Then

\[
p'w'b'w_{\tilde{\alpha}-1} \in p'w'b'w_{\tilde{\alpha}-1}B = p'w'w_{\tilde{\alpha}-1}B = (p'a_{-w'\tilde{\alpha}})w'w_{\tilde{\alpha}}B
\]

since \(w_{\tilde{\alpha}-1}B_{\tilde{\alpha}-1}w_{\tilde{\alpha}-1} \subseteq B \). It follows that \(\phi_{w,\chi}(p'w'b'w_{\tilde{\alpha}-1}) \) is equal to \(\chi^{\delta/2}(p'a_{-w'\tilde{\alpha}}) \) if \(w = w'w_{\tilde{\alpha}} \) and 0 otherwise.

Finally, suppose that \(b' \in B - B_{\tilde{\alpha}-1} \). As before, it can be shown that

\[
Pw'Bw_{\tilde{\alpha}-1}B = Pw'w_{\tilde{\alpha}}B \cup Pw'B,
\]

and furthermore that \(p'w'b'w_{\tilde{\alpha}-1} \in Pw'B \) if and only if \(b' \) is an element of \(B - B_{\tilde{\alpha}-1} \). Hence \(p'w'b'w_{\tilde{\alpha}-1} = pw'b \) for some \(p \in P, b \in B \). It is easily shown that this forces \(p^{-1}p' \in NP_0 \) so that \(\chi^{\delta/2}(p') = \chi^{\delta/2}(p) \). Thus \(\phi_{w,\chi}(p'w'b'w_{\tilde{\alpha}-1}) \) equals \(\chi^{\delta/2}(p') \) if \(w = w' \) and 0 otherwise.

Noting that \(w'\tilde{\alpha} \in \Phi^\pm \) if and only if \(w'w_{\tilde{\alpha}} = -w'\tilde{\alpha} \in \Phi^\mp \), we obtain

\[
(w_\alpha \cdot \phi_{w,\chi})(p'u'b') = \begin{cases}
\chi^{\delta/2}(a_{w_{\tilde{\alpha}}})\chi^{\delta/2}(p') & \text{if } w_{\tilde{\alpha}} \in \Phi^-, w' = ww_{\tilde{\alpha}}, b' \in B_{\tilde{\alpha}-1} \\
\chi^{\delta/2}(a_{w_{\tilde{\alpha}}})\chi^{\delta/2}(p') & \text{if } w_{\tilde{\alpha}} \in \Phi^+, w' = ww_{\tilde{\alpha}} \\
\chi^{\delta/2}(p') & \text{if } w_{\tilde{\alpha}} \in \Phi^+, w' = w, b' \in B - B_{\tilde{\alpha}-1} \\
0 & \text{otherwise.}
\end{cases}
\]

The second result follows.

Theorem 3.1 has the following corollary giving the action of \(\text{ch}_{B_b} \) for \(s \) in \(S_{\text{aff}} \).
Corollary 3.2. Suppose that $w \in W$, $\alpha \in \Delta$ and $\tilde{\alpha} \in \tilde{\Delta}$. Then
\[
\text{ch}_{Bw_{\alpha}}B \cdot \phi_{w, \chi} = \begin{cases}
\phi_{ww_{\alpha}, \chi} & \text{if } w\alpha \in \Phi^+ \\
q_{\alpha+1}\phi_{ww_{\alpha}, \chi} + (q_{\alpha+1} - 1)\phi_{w, \chi} & \text{if } w\alpha \in \Phi^-,
\end{cases}
\]

\[
\text{ch}_{Bw_{\tilde{\alpha}-1}}B \cdot \phi_{w, \chi} = \begin{cases}
\chi^1/2(a_{\tilde{\alpha}})\phi_{ww_{\tilde{\alpha}}, \chi} & \text{if } w\tilde{\alpha} \in \Phi^- \\
\chi^1/2(a_{\tilde{\alpha}})q_{\tilde{\alpha}}\phi_{ww_{\tilde{\alpha}}, \chi} + (q_{\tilde{\alpha}} - 1)\phi_{w, \chi} & \text{if } w\tilde{\alpha} \in \Phi^+.
\end{cases}
\]

Proof. We prove the first formula in the case $w\alpha \in \Phi^-$. The other cases are handled similarly. For $g \in G$ we have
\[
(ch_{Bw_{\alpha}}B \cdot \phi_{w, \chi})(g) = \int_{G} \phi_{w, \chi}(gx) \text{ch}_{Bw_{\alpha}}B(x) dx = \int_{Bw_{\alpha}}B \phi_{w, \chi}(gx) dx = \sum_n \phi_{w, \chi}(gnw_{\alpha}) = \sum_n (w_{\alpha} \cdot \phi_{w, \chi})(gn),
\]
where n ranges over a set of representatives in $N(\alpha)$ for $N(\alpha)/N(\alpha + 1)$.

If $g \in Pww_{\alpha}B$ then so is gn for each of the $q_{w_{\alpha}} = q_{\alpha+1}$ representatives n. On the other hand, if $g \in PwB$, then $gn \in Pw(B - B_{\alpha})$ for precisely $q_{\alpha+1} - 1$ of the representatives n. Thus
\[
(ch_{Bw_{\alpha}}B \cdot \phi_{w, \chi})(g) = \sum_n (w_{\alpha} \cdot \phi_{w, \chi})(gn) = \sum_n \left[\phi_{ww_{\alpha}, \chi}(gn) + \text{ch}_{Pw(B - B_{\alpha})}(gn)\phi_{w, \chi}(gn) \right] = q_{\alpha+1}\phi_{ww_{\alpha}, \chi}(g) + (q_{\alpha+1} - 1)\phi_{w, \chi}(g).
\]

The following corollary of Theorem 3.1 gives a basis for $I(\chi)^{(B,s)}$, $s \in S_{aff}$.

Corollary 3.3. Suppose $\alpha \in \Delta$ and $\tilde{\alpha} \in \tilde{\Delta}$. Then
(i) $\{ \phi_{w, \chi} + \phi_{ww_{\alpha}, \chi} \mid w \in W, w\alpha \in \Phi^+ \}$ is a basis for the fixed space $I(\chi)^{(B, w_{\alpha})}$.
(ii) $\{ \phi_{w, \chi} + \chi^1/2(a_{\tilde{\alpha}})\phi_{ww_{\tilde{\alpha}}, \chi} \mid w \in W, w\tilde{\alpha} \in \Phi^+ \}$ is a basis for the fixed space $I(\chi)^{(B, w_{\tilde{\alpha}-1})}$.

Proof. Let $s \in S_{aff}$. Note that
\[
s \cdot I(\chi)^{B} \cap I(\chi)^{B} = I(\chi)^{Bs} \cap I(\chi)^{B} = I(\chi)^{(sBs,B)} = I(\chi)^{(B,s)}.\]
Thus $I(\chi)^{(B,s)}$ is precisely the set of vectors in $I(\chi)^B$ sent to $I(\chi)^B$ by s. It is clear from Theorem 3.1 that if $s = w_\alpha$ this set is spanned by
\[\{ \phi_{w,\chi} + \phi_{ww_\alpha,\chi} \mid w \in W, w\alpha \in \Phi^+ \}, \]
and if $s = w_{\tilde{\alpha}-1}$ this set is spanned by
\[\{ \phi_{w,\chi} + \chi^{1/2}(a_{w\tilde{\alpha}})\phi_{ww_{\tilde{\alpha}},\chi} \mid w \in W, w\tilde{\alpha} \in \Phi^+ \}. \]

4. Proof of Theorem 1.1.

We now prove that the dimension of
\[I(\chi)^K = I(\chi)^{BW_K} = \bigcap_{s \in S} I(\chi)^{(B,s)} \]
is equal to $\vert W/\nu(W_K) \vert$.

Suppose that $f = \sum_{w \in W} c(w)\phi_{w,\chi}$ is a vector in $I(\chi)^B$ with the $c(w) \in \mathbb{C}$. Then it is easily deduced from Corollary 3.3 that $f \in \bigcap_{s \in S} I(\chi)^{(B,s)}$ if and only if for all $w \in W$, \begin{align*}
(3) & \quad c(ww_\alpha) = c(w) \text{ for all } \alpha \in \Delta \text{ with } w_\alpha \in S \\
(4) & \quad c(ww_\alpha) = \chi^{1/2}(a_{w\tilde{\alpha}})c(w) \text{ for all } \tilde{\alpha} \in \tilde{\Delta} \text{ with } w_{\tilde{\alpha}-1} \in S.
\end{align*}

Let V be the space of functions $c : W \to \mathbb{C}$ satisfying (3) and (4). Then $\dim I(\chi)^K = \dim V$. Since $\nu(w_{\beta-1}) = \nu(w_{\beta}) = w_{\beta}$ for all $\beta \in \Phi$, it follows that $c(w)$ determines $c(ww')$ for all $w' \in \langle \nu(s) \mid s \in S \rangle = \nu(W_K)$ so \[\dim V \leq \vert W/\nu(W_K) \vert. \]

We will prove that $\dim V = \vert W/\nu(W_K) \vert$.

Remark 4.1. We note that if $W_K \subset W$ (i.e., if $K \subset K_0$) then it is clear that $\dim V = \dim I(\chi)^K = \vert W/\nu(W_K) \vert$ since in this case only the relations in (3) appear.

Since W_K is finite, it contains no non-trivial translations so ν is injective on W_K. Thus $\nu(W_K) \cong W_K$, and $\nu(W_K)$ is generated as a Coxeter group by $\nu(S)$. We will denote the element of W_K corresponding to $t \in \nu(S)$ by $\nu^{-1}(t)$. Define recursively a function $[\]$ from the set of finite sequences of elements of $\nu(S)$ to aff. Let $t_1, \ldots, t_n \in \nu(S)$. For the empty sequence \emptyset, let $[\emptyset] = e$. Define
\[[t_1] = \begin{cases} e & \text{if } \nu^{-1}(t_1) = w_\alpha, \alpha \in \Delta \\
a_{\tilde{\alpha}} & \text{if } \nu^{-1}(t_1) = w_{\tilde{\alpha}-1}, \tilde{\alpha} \in \tilde{\Delta}, \end{cases} \]
and then set
\[[t_1, \ldots, t_n] = \begin{cases} [t_1, \ldots, t_{n-1}] & \text{if } \nu^{-1}(t_n) = w_\alpha, \alpha \in \Delta \\
[t_1, \ldots, t_{n-1}]a_{t_1 \cdots t_{n-1}\tilde{\alpha}} & \text{if } \nu^{-1}(t_n) = w_{\tilde{\alpha}-1}, \tilde{\alpha} \in \tilde{\Delta}. \end{cases} \]
It follows easily from the definition of \([\] \) that
\[
[t_1, \ldots, t_k](t_1 \cdots t_k)[t_{k+1}, \ldots, t_n](t_1 \cdots t_k)^{-1} = [t_1, \ldots, t_n].
\] (5)

We claim that the element \([t_1, \ldots, t_n] \) of \(W_{\text{aff}}\) depends only on the product \(t_1 \cdots t_n\) and not on the particular sequence \(t_1, \ldots, t_n\).

Lemma 4.2. Let \(t_1, \ldots, t_n, u_1, \ldots, u_m\) be elements of \(\nu(S)\) such that
\[
[t_1, \ldots, t_n] = [u_1, \ldots, u_m].
\]
Then \([t_1, \ldots, t_n] = [u_1, \ldots, u_m]\).

Proof. Since \((\nu(W_K), \nu(S))\) is a Coxeter group, the word \(t_1 \cdots t_n\) obtainable from \(u_1 \cdots u_m\) via the basic Coxeter group relations among the elements of \(\nu(S)\), i.e., those of the form \((tu)^{m(t,u)} = e\), where \(t, u \in \nu(S)\) and \(m(t,u)\) is some number in \(\{1, 2, 3, 4, 6\}\) (see e.g. [5, 1.6]). Therefore, it suffices to show that \([\] \) remains unchanged when a subsequence of consecutive terms in a sequence \(t_1, \ldots, t_n\) is deleted according to such a relation. In fact, due to (5) one need only show that
\[
[t, u, t, u, \ldots, t, u] = [\emptyset] = e
\]
for each basic relation \((tu)^{m(t,u)} = e\) among the elements of \(\nu(S)\).

It is clear that (6) holds if \(\nu^{-1}(t), \nu^{-1}(u) \in W\). Therefore we shall consider only those relations which involve some reflection \(t \in \nu(S)\) such that \(\nu^{-1}(t) \notin W\). Such a \(t\) is necessarily of the form \(w_{\tilde{\alpha}} = \nu(w_{\tilde{\alpha}-1})\) for some \(\tilde{\alpha} \in \tilde{\Delta}\). The basic relations involving \(w_{\tilde{\alpha}}\) are of the form
\[
(w_{\tilde{\alpha}}u)^m = e
\]
where \(u \in \nu(S)\) and \(m \in \{1, 2, 3, 4\}\). (It is never the case that \(m = 6\).)

First consider the case \(m = 1\). Here \(u\) must equal \(w_{\tilde{\alpha}}\) so (6) holds as
\[
[w_{\tilde{\alpha}}, w_{\tilde{\alpha}}] = a_{\tilde{\alpha}}a_{w_{\tilde{\alpha}}} = a_{\tilde{\alpha}}a_{\tilde{\alpha}} = e.
\]

Now suppose that \(m > 1\) and \(\nu^{-1}(u) \in W\) in (7). Then
\[
[w_{\tilde{\alpha}}, u, \ldots, w_{\tilde{\alpha}}, u] = a_{\tilde{\alpha}} \ldots a_{(w_{\tilde{\alpha}}u)^{m-1}_{\tilde{\alpha}}}
\]
Since \(w_{\tilde{\alpha}}u\) is a rotation of order \(m\), \(\tilde{\alpha} + \ldots + (w_{\tilde{\alpha}}u)^{m-1}_{\tilde{\alpha}} = 0\) so (6) holds as
\[
a_{\tilde{\alpha}} \ldots a_{(w_{\tilde{\alpha}}u)^{m-1}_{\tilde{\alpha}}} = e.
\]
Finally, suppose \(m > 1\) and \(\nu^{-1}(u) \notin W\) in (7). In this case, it follows that \(m = 2\) and \(u = w_{\tilde{\beta}}\) for some \(\tilde{\beta} \in \tilde{\Delta}\). Then \(w_{\tilde{\beta}}(\tilde{\alpha}) = \tilde{\alpha}\) and \(w_{\tilde{\alpha}}(\tilde{\beta}) = \tilde{\beta}\). It follows that (6) holds again as
\[
[w_{\tilde{\alpha}}, w_{\tilde{\beta}}, w_{\tilde{\alpha}}, w_{\tilde{\beta}}, \ldots] = a_{\tilde{\alpha}}a_{w_{\tilde{\alpha}}}a_{w_{\tilde{\beta}}}a_{w_{\tilde{\alpha}}}a_{w_{\tilde{\alpha}}} = a_{\tilde{\alpha}}a_{\tilde{\beta}}a_{\tilde{\alpha}}a_{\tilde{\beta}} = e.
\]
Let \(t_1, \ldots, t_n \in \nu(S) \). Since \([t_1, \ldots, t_n]\) depends only on the product \(t_1 \cdots t_n \), \([\cdot]\) gives a function \(\nu(W_K) \to \text{Waff} \), which we will also denote by \([\cdot]\). Explicitly, for \(w \in \nu(W_K), [w] = [t_1, \ldots, t_n] \) for any \(t_1, \ldots, t_n \in \nu(S) \) with \(w = t_1 \cdots t_n \). Note that \([\cdot]\) is a 1-cocycle from \(\nu(W_K) \) to the group of translations in \(\text{Waff} \).

Proposition 4.3. The space \(V \) of functions \(W \to \mathbb{C} \) satisfying (3) and (4) has dimension \(|W/\nu(W_K)| \).

Proof. Let \(R \) be a set of representatives for the left cosets of \(\nu(W_K) \) in \(W \). For each \(\sigma \in R \), define the function \(c_\sigma : W \to \mathbb{C} \) by setting

\[
c_\sigma(w) = \begin{cases}
\chi \delta^{1/2}([w']) & \text{if } w = \sigma w' \in \sigma \nu(W_K) \\
0 & \text{if } w \notin \sigma \nu(W_K).
\end{cases}
\]

The \(c_\sigma \) are clearly linearly independent and are \(|W/\nu(W_K)| \) in number. It suffices then to show that the \(c_\sigma \) are in \(V \).

Fix \(\sigma \in R \). Let \(\alpha \) be an element of \(\Delta \) such that \(w_\alpha \in S \). If \(w \notin \sigma \nu(W_K) \) then \(ww_\alpha \notin \sigma \nu(W_K) \) so

\[
c_\sigma(w) = 0 = c_\sigma(ww_\alpha).
\]

If \(w = \sigma w' \in \sigma \nu(W_K) \) then

\[
c_\sigma(ww_\alpha) = c_\sigma(\sigma w' w_\alpha) = \chi \delta^{1/2}([w'w_\alpha]) = \chi \delta^{1/2}([w']) = c_\sigma(w).
\]

Thus (3) holds for \(c_\sigma \).

Now let \(\alpha \) be an element of \(\bar{\Delta} \) such that \(w_{\bar{\alpha}}-1 \in S \). As before, if \(w \notin \sigma \nu(W_K) \) then

\[
c_\sigma(w) = 0 = \chi \delta^{1/2}(a_{w_{\bar{\alpha}}}c_\sigma(ww_{\bar{\alpha}})).
\]

And if \(w = \sigma w' \in \sigma \nu(W_K) \) then

\[
c_\sigma(ww_{\bar{\alpha}}) = \begin{align*}
c_\sigma(\sigma w' w_{\bar{\alpha}}) \\
= \chi \delta^{1/2}([w'w_{\bar{\alpha}}]) \\
= \chi \delta^{1/2}([w']a_{w_{\bar{\alpha}}}) \\
= \chi \delta^{1/2}([w'])\chi \delta^{1/2}(a_{w'_{\bar{\alpha}}}) \\
= \chi \delta^{1/2}(a_{w'_{\bar{\alpha}}})c_\sigma(w).
\end{align*}
\]

Thus \(c_\sigma \) satisfies (4) and lies in \(V \). \(\square \)

It follows that \(\dim I(\chi)^K = \dim V = |W/\nu(W_K)| \).
References

Received August 1, 2000 and revised January 9, 2001.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ROCHESTER
ROCHESTER, NEW YORK 14627
E-mail address: lansky@math.rochester.edu