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Let k be a non-archimedean locally compact field and let
G be the set of k-points of a connected reductive group de-
fined over k. Let W be the relative Weyl group of G, and let
‘H(G, B) be the Hecke algebra of G with respect to an Iwahori
subgroup B of G. We compute the effects of H(G, B) and W
on the B-fixed vectors of an unramified principal series repre-
sentation I of G. We use this computation to determine the
dimension of the space of K-fixed vectors in I, where K is a
parahoric subgroup of G.

1. Introduction.

Let G be a reductive group defined over a non-archimedean locally compact
field k and let G = G(k). Let P be a minimal parabolic subgroup of G with
Levi decomposition P = M N, and let P~ = M N~ be the corresponding
decomposition of the opposite parabolic P~. Let B be an Iwahori subgroup
of G with an Iwahori decomposition with respect to P and M, i.e.,

B=(BNnP)(BNM)BnNP).
Denote by W the relative Weyl group of G. Let x be an unramified character
of M (i.e., x is trivial on Mj). Since M = P/N, x extends to a character
of P which we will also denote by x. Let § be the modulus character of P.

Define I(x) to be the unramified principal series representation of G induced
by x, i.e., the space of all locally constant functions G — C such that

f(pg) = x8"(p) f(g) for all p in P, g in G
on which G acts by right translation. It is well-known that the space I(x)?
of B-fixed vectors in I(x) has dimension dim I(x)? = |W| [3, Prop. 2.1]. In
this paper, we generalize this result to the fixed space [ (X)K where K is a
parahoric subgroup of G containing B.

Let A be a maximal split torus in M and let N be its normalizer in G.
If My is the maximal compact subgroup of M and W = N/Mj, then we
have a surjection v : W= W= N /M. Let K be a parahoric subgroup of
G containing B and let Wi be the finite Coxeter subgroup of W such that
K = BWgkB (see [4, §1]). We will prove the following:
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Theorem 1.1. The dimension of 1(x)X is |W/v(Wg)|.

As a Coxeter group, Wy is generated by a canonical finite set .S of reflec-

tions. Thus
100" = (100
s€S

In Section 3, we explicitly determine the effects of reflections s € S on
I(x)B (Theorem 3.1) and as a corollary the actions of the generators of the
Iwahori-Hecke algebra H (G, B) on I(x)? (Corollary 3.2). We then compute
the subspaces I(x)®* in terms of the usual basis of I(x) as given in [3,
Prop. 2.1]. Then in Section 4, we complete the proof of Theorem 1.1 by
showing that the dimension of the intersection of the I'(x)®*) is |W/v(W)|.

Let H(G, K) be the Hecke algebra of compactly supported functions G —
C, bi-invariant by K. Let E be a simple H(G, K)-module. It is known
that there is an irreducible admissible representation V' of G such that E
is isomorphic as a H (G, K)-module to the space V& of K-fixed vectors |1,
2.10]. Since VB o VK = E #£ 0, it follows from a well-known result that V'
embeds inside some unramified principal series representation I of G so that
dim E = dim V¥ < dim I*. Thus Theorem 1.1 has the following corollary:

Corollary 1.2. If K is a parahoric subgroup of G and E is a simple module
over H(G, K), then

dim E < |W/v(Wk)|.
Moreover, this bound is sharp.

The sharpness of this bound is a result of the fact that there exist ir-
reducible unramified principal series representations (see e.g., [2, Theorem
3.3]) and that for such a representation I, the H(G, K)-module I is sim-
ple [1, 2.10] and, by Theorem 1.1, of dimension |W/v(Wk)|.

Remark 1.3. While Theorem 1.1 is needed to prove the sharpness in Corol-
lary 1.2, the inequality itself can be proved by a simpler argument. Indeed,
it is easily demonstrated that dim I'(x)® < |W/v(Wk)| by noting that

dim I(x)* < |P\G/K|
and

[P\G/K| = [W/v(Wk)|.

I would like to express my gratitude to both Benedict Gross and David
Pollack for their many helpful suggestions for this paper.

2. Preliminaries.

See [6] or [3, §1] as a reference for much of the material in this section. In the
following, we let k be a non-archimedean locally compact field. We denote
by G a connected reductive algebraic group defined over k with group of
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k-points G. Similarly, throughout this section, if H is any algebraic group
defined over k, we will denote its k-points by the corresponding non-bold
letter H.

Let P be a fixed minimal parabolic subgroup of G containing a maximal
split torus A of . Denote by N the unipotent radical of P, and by M the
centralizer of A. Then P has Levi decomposition MN. Let ® denote the
set of roots of G relative to A and ®/ ; the subset of non-divisible roots.
Also, let W be the relative Weyl group.

Denote by B = B(G, k) the Bruhat-Tits building of G over k£ and by A
the apartment of B stabilized by A. The normalizer N of A in G is then the
stabilizer of A and the maximal compact subgroup My of M is the kernel
of the map N' — Aut(A). Let W = N /My. Denote by ®,g the canonical
affine root system on A and by Wag the corresponding affine Weyl group.
Then W,g may be identified with a normal subgroup of W.

Fix a special point zg in B and let ® be the set of affine roots vanishing
at xg. Then ® is a reduced root system, and we have a bijection between
® and @/, corresponding to the choice of zo . We let ®* be the subset of
positive affine roots corresponding to P and A the subset of simple roots.

Let C be the unique chamber in 4 containing zy with the property that
every o in ®T takes positive values on C. Denote by B the Iwahori subgroup
of G fixing C pointwise and by Ky the special maximal compact subgroup
fixing zo. Then W = N/M = (N N Ko)/Mo, which is the stabilizer of zo in
W We will identify these groups throughout. We denote by v the surjection
W — W. The kernel of v is the group of translations in w.

For each « in ®,¢, denote by N(«) the pointwise stabilizer of the half-
apartment {x € A | a(x) > 0}. We note that

B=My- [[ N [] Na+1).
acdt aed—
Let Py C P be the compact subgroup
PnKo=M- [[ N
acdt
Let ® = [J®; be the decomposition of ® into irreducible root systems.
Denote by A the set containing the highest root &; of ®; for each i. Let
Agg={a € Pug|a€eAor a=a—1 for some &E&}.

For a in A,g, let w, be the reflection in Aut(A) through the vanishing
hyperplane of a. Then S,g = {w, | @ € A.g} is a set of involutive generators
for the Coxeter group W,g.

For «v in ®, let a,, be the translation w,ws_1 on A. We note that

a_q = ag" for any a in .
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We let K be a fixed parahoric subgroup of G containing B. Since the
triple (G, B,N) is a generalized Tits system (see [4, §1]), there exists a
special subgroup Wy of W,g such that K = BWgkB; W is finite as K is
compact. We denote by S the subset of S, generating Wi

For any w in W, we denote by ¢(w) the index [BwB : B]. Also for a in
O, we let g be the index [N(aw — 1) : N(a)]. We note that go42 = ¢a-
Since (cf. [5, Cor. 2.7])

(1) Bw,B = N(a)wyB for ain A,

(2) Bwg_1B = N(—a+ 1)wg_1 B for a in A,
it follows that
q(wa) = Gat1 for ain A, q(wa—1) = qa+2 = gz for & in A.

If « € A, we denote by B, the group B N w,Bw,, and if a € ﬁ, B;
denotes the group B N wg_1Bwg_1-

Let dz be the Haar measure on G for which B has volume 1. We denote by
H(G, B) the Iwahori-Hecke algebra of compactly supported functions G — C
bi-invariant by B. The product on H(G, B) is given by convolution with
respect to dr. Fix an unramified character xy of M and let § be the modulus
character of P. Denote by I(x) the induced representation Ind@(yd/?), i.e.,
the unramified principal series representation induced by x as described in
Section 1. If z is an element of G, we will denote the action of x on u € I(x)
by u — x - u. Note that if w € W then the expression w - u is well-defined
for u € I(x)? as w is determined modulo My C B. A function h € H(G, B)
acts on I(x)? by the formula

h-u:/G(m-u)h(:r)dx,

where v € I(x)5.

Let C2°(G) be the space of locally constant, compactly supported func-
tions G — C. The map Py, : C°(G) — I(x) defined by

PuNle) = [ x718%0) Fo0) do
(where dp is the left Haar measure on P giving Py measure 1) is a G-
equivariant surjection. The functions ¢, = Py(chpyp) (w in W) form a
basis of the subspace of B-fixed vectors I(x)? [3, Prop. 2.1]. Concretely, for
p € Paw' € W and b € B, ¢y (pw'd) equals x5'/2(p) if w’ = w and is zero
otherwise.
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3. The effect of Wog on I(x)".

The goal of this section is to compute the effect of s € Sz on I(x)®. This
will be important for the proof in the following section since we will need to
determine the space I(x){5*) of vectors in I(x)? fixed by s.

Theorem 3.1. Suppose that w e W, a € A and a € A. Then

W - ¢ — CthwaBagbwwa,X ’Lf wo € ot
oo Puwwe,x T Wpw(B—By)Pw,y if wa € 7,

W 1- ¢ — { X51/2(aw&)Cthw&B&,l(ﬁwwa,x @f wa E Qi
o X X‘Sl/Q(aw&')QZ)wwa,x + Cth(B—Ba,l)(ﬁw,x Zf wa € (I)+'

Proof. For any s in Sag, g € G,
(5 Pwx)(9) = Puw,x(95)-

The Iwasawa decomposition enables us to write ¢ = p'w'd’ for some p’ in
P, w' in W, and b’ in B. We will evaluate ¢y (95) = ¢duw(p'w't's) by
determining the double coset in which p'w’V's lies.

We first consider s = w, for @ € A. Now if w'a € T then by (1)

pPw'tw, € p'wBw,B

= pw' N(a)w.B

= p'N(w'a)w'w,B

C (p'N)w'w,B.
Since x6'/2 is trivial on N, it follows that ¢y, , (p'w'b'w,) equals x6/2(p') if
w = w'w, and 0 otherwise.

If, on the other hand, w'a € ®~ then suppose first that v/ € B,. Then
pw'bwy € pPuw'bweB = p'ww,B

since wo Bawa C B. Thus ¢y, (p'w'bw,) equals x6Y/2(p') if w = w'w, and
0 otherwise.

Lastly, suppose that w'a € ®~ and 0/ € B — B,. It is easily deduced from
w'a € @~ that

Pw' BwoB = Pw'w,B U Puw'B.

Moreover, one can show that p’w'b'w, € Pw’'B if and only if &’ is an element
of B — B,. Thus p'w'b/w, = pw'b for some p € P, b € B. Since

p iy = u/lnual)'_lu/_1 e PNKy=F

and since x0'/? is trivial on Py, we have that x8'/2(p) = x6'/2(p’). There-
fore, ¢u (P'w'b'w,) equals x3'/2(p') if w = w’ and 0 otherwise.
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Note that w'a € ®* if and only if w'w,o = —w'ac € ®F. Using this, we
assemble the preceding cases to obtain that

xOY2(p)  if wa € ®F, w' = wwy, V' € B,
XOV2(p) if wa € 7, w = ww,

x6Y2(p) ifwa e ®,w' =w, ¥ € B— B,
0 otherwise.

(wq - ¢w,x)(p,wlb/) =

This immediately implies the first result of the theorem. N
We now prove the second formula by calculating wg_; - ¢y, for a € A.
Assume first that w'a € ®~. Then by (2)

pw'bwz_, € pwBwz_B
= pw'N(—a+1)wz_ B
= p'N(—v'a+ 1)w'wzazB
C (Pa_ywaN)w'wszB.
Since x is trivial on NV, it follows that ¢y, , (p'w'b'wz_1) equals XOYV2(pa_yz)

if w = w'wg and 0 otherwise.
Now suppose that w'ac € ® and that ¥ € Bz_;. Then

pw'twz_1 € pPuw'bwz_1B = pw'wz_1B = (pla_gz)w'wzB
since wg_1Bgz_1wsz—1 C B. It follows that ¢, (p'w'b'wz_1) is equal to
X062 (pla_yg) if w = w'wgz and 0 otherwise.
Finally, suppose that b’ € B — Bz_;. As before, it can be shown that
Pw'Bwgz_1B = Puw'wzB U Puw'B,

and furthermore that p'w'd'wgz_; € Pw'B if and only if ¥’ is an element of
B — B5_;. Hence p'w'V'wgz_1 = pw'b for some p € P, b € B. It is easily
shown that this forces p~'p/ € NPy so that xd'/2(p) = x6Y/2(p'). Thus
Gwy(P'W'b'wsz_1) equals x6Y2(p') if w = w’ and 0 otherwise.

Noting that w'a € ® if and only if w'wzad = —w'a € ®F, we obtain

(Wa - D) (P'w')
X51/2(awa)xdl/2(p’) ifwa e @, w =wwgz, bV € By_;
X51/2(awa)x51/2(p’) if wa € o1, w' = wwg

B X8 (p') if wa € 1, w' =w, b € B— Bz
0 otherwise.
The second result follows. O

Theorem 3.1 has the following corollary giving the action of chpsp for s
in Sag.
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Corollary 3.2. Suppose that w € W, a € A and & € A. Then

chpw.B - ¢ - Puwa,x if wo € T

e X qa+1¢wwa,x + (Qa+1 - 1)¢W’X Zf wa € P,

ch . ¢ — Xdl/z(aw&')gbwwa,x ’Lf wa € ¢~
Buaab X X51/2(aw&)Q&¢wwa,x + (Qa - 1)¢w,x Z'f wa € o,

Proof. We prove the first formula in the case wa € ®~. The other cases are
handled similarly. For g € G we have

(chpwns - dun)(g) = /G Su(92)Ch B, 5 ()

= / ¢w,x(g$)dx
Bwa B
= Z ¢w,x(gnwa)

= 3 (wa - un)(gn),

n

where n ranges over a set of representatives in N(«) for N(a)/N(a+ 1).

If g € Pww,B then so is gn for each of the g, = qq+1 representatives
n. On the other hand, if ¢ € PwB, then gn € Pw(B — B,) for precisely
Go+1 — 1 of the representatives n. Thus

(chBuwaB * Puwx)(9) = Z(wa “ Puwx)(gn)

n

— Z [Purwax (97) + chpu(s—B,)(97) Puw . (97)]

n

- Qa—&—l(z)wwa,x(g) + (Qa—f—l - 1)¢w,x(9)'
O

The following corollary of Theorem 3.1 gives a basis for I(x){5*), s € Sug.

Corollary 3.3. Suppose a« € A and & € A. Then
(1) {Pwyx T Puwwary | w € Wywa € ®T} is a basis for the fized space
I(x) B,
(i1) {Pw.x + X0 (Awg)Pwws x | w € Wowa € &t} is a basis for the fived

space I(x)Bwa-1),

Proof. Let s € S,. Note that
s- 1007 NI0)" = 100" N 1()7 = 10077 = 1(x) P,
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Thus I(x){*) is precisely the set of vectors in I(x)? sent to I(x)? by s. It
is clear from Theorem 3.1 that if s = w,, this set is spanned by

{Dwx + Puwwax | W E W,wa € &1}
and if s = wg_1 this set is spanned by

{gbw,x + X51/2(aw&)¢wwa,x ‘ we W wa € (I)+}.

4. Proof of Theorem 1.1.

We now prove that the dimension of

100N = I()P"E = () 1(x)P*
s€S
is equal to |W/v(Wk)|.
Suppose that f =Y, oy ¢(w)dw,y is a vector in I(x)? with the c(w) € C.
Then it is easily deduced from Corollary 3.3 that f € [,cg I(x){B) if and
only if for all w € W,

(3) c(wwy) = c(w) for all @ € A with w,, € S

(4) clwwg) = X51/2(awa)c(w) for all @ € A with wg_; € S.
Let V' be the space of functions ¢ : W — C satisfying (3) and (4). Then
dim I(x)X = dim V. Since v(wg_1) = v(wg) = wg for all B € ®, it follows
that ¢(w) determines c(ww’) for all w' € (v(s) | s € S) = v(Wk) so

dimV < |W/v(Wk)|.
We will prove that dim V' = |W/v(Wk)|.

Remark 4.1. We note that if Wx C W (ie., if K C Kj) then it is clear
that dim V = dim I(x)® = |W/v(W[)| since in this case only the relations
in (3) appear.

Since Wi is finite, it contains no non-trivial translations so v is injective
on Wg. Thus v(Wg) = Wk, and v(Wk) is generated as a Coxeter group
by v(S). We will denote the element of Wx corresponding to ¢ € v(S) by
v~ 1(t). Define recursively a function [ ] from the set of finite sequences of
elements of v(S) to Wag. Let t1,...,t, € v(S). For the empty sequence 0,
let [0] = e. Define

] = e ifvit]) = wa, a €A
U= ag if v7H(t1) = wz_1, @ € A,
and then set

it . ]:{ [t1, ... tn1] 11-‘1/—1(1tn):wa,aeA~
ot [ty s tnt] @y, g i v (t) = wa_1, @ € A
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It follows easily from the definition of [ | that

(5) [tla s >tk](t1 v 'tk)[tk+17 s 7tn](t1 o 'tk)_l = [tla s 7tn]

We claim that the element [t1,. .. ,t,] of W,g depends only on the product
t1---t, and not on the particular sequence t1,... ,t,.
Lemma 4.2. Let ty,... ,ty,u1,...,uny be elements of v(S) such that

Then [t1,... tp] = (U1, ... ,Up).

Proof. Since (v(Wg),v(S)) is a Coxeter group, the word ¢; - - - ¢, is obtain-
able from wuq - - - u,, via the basic Coxeter group relations among the elements
of v(S), i.e., those of the form (tu)™®%) = e, where t,u € v(S) and m(t,u)
is some number in {1,2,3,4,6} (see e.g. [5, 1.6]). Therefore, it suffices to
show that [ ] remains unchanged when a subsequence of consecutive terms
in a sequence tq,... ,t, is deleted according to such a relation. In fact, due
to (5) one need only show that

(6) toutu,... . tuf=[0]=e

m(t,u)

for each basic relation (tu)™*%) = ¢ among the elements of v(S).

It is clear that (6) holds if v~ 1(¢), v~ (u) € W. Therefore we shall consider
only those relations which involve some reflection t € v/(.S) such that v=1(¢) ¢
W. Such a t is necessarily of the form wg = v(wz_;) for some & € A. The
basic relations involving wg are of the form

(7) (wau)™ = e

where u € v(S) and m € {1,2,3,4}. (It is never the case that m = 6.)
First consider the case m = 1. Here u must equal wg so (6) holds as

(wg, wg) = aga,.a = aga_g = e.
Now suppose that m > 1 and v~ !(u) € W in (7). Then

[Wa, U, ... Wz, U] = ag ... Apyouym—1a-
7

m
Since wgu is a rotation of order m, &+ - -+ (wzgu)™ 1a = 0 so (6) holds as
ag - - - a(wau)mfla = €.

Finally, suppose m > 1 and v~!(u) ¢ W in (7). In this case, it follows
that m = 2 and u = wj for some 3 € A. Then wﬁ(&) = a and wgz(B) = S.
It follows that (6) holds again as

[wa, wg, wa, wg, | = aga

waﬁaw&wﬁaawawlgwaﬁ = Galdgi-ad_g = ¢
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Let t1,...,t, € v(S). Since [t1,...,t,] depends only on the product
ty---tn, [ ] gives a function v(Wg) — W,g, which we will also denote by
[ ]. Explicitly, for w € v(Wgk), [w] = [t1,... ,t,] for any ti,... ,t, € v(S)
with w = ¢; ---t,. Note that [ ] is a 1-cocycle from v(W[) to the group of
translations in Wg.

Proposition 4.3. The space V' of functions W — C satisfying (3) and (4)
has dimension |W/v(Wg)]|.

Proof. Let R be a set of representatives for the left cosets of v(Wg) in W.
For each o € R, define the function ¢, : W — C by setting

o (w) = X8V 2 (') if w = ow' € ov(Wk)
7 0 if w ¢ ov(Wk).

The ¢, are clearly linearly independent and are |WW/v(Wi)| in number. It
suffices then to show that the ¢, are in V.

Fix 0 € R. Let a be an element of A such that w, € S. If w ¢ ov(Wk)
then ww, ¢ ov(Wk) so

co(w) =0 = co(wwy).
If w=ow € ov(Wk) then
co(wwa) = co(ow'ws) = X51/2<[w/wa}) = X‘Sl/Q([w/D = Co(w).

Thus (3) holds for ¢,.
Now let @ be an element of A such that wz_; € S. As before, if w ¢
ov(Wp) then

Co(w) = 0 = x6"*(awa)co(wwg).

And if w = ow’ € ov(Wk) then

co(wwz) = co(ow'wg)
X6 ([w'wa])
X6 ([w')awa)
= X6 ([w])x0"*(awa)
= X6"*(awa)co(w).
Thus ¢, satisfies (4) and lies in V. O

It follows that dim I(x)® = dimV = |[W/v(Wk)|.
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