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Let k be a non-archimedean locally compact field and let
G be the set of k-points of a connected reductive group de-
fined over k. Let W be the relative Weyl group of G, and let
H(G, B) be the Hecke algebra of G with respect to an Iwahori
subgroup B of G. We compute the effects of H(G, B) and W
on the B-fixed vectors of an unramified principal series repre-
sentation I of G. We use this computation to determine the
dimension of the space of K-fixed vectors in I, where K is a
parahoric subgroup of G.

1. Introduction.

Let G be a reductive group defined over a non-archimedean locally compact
field k and let G = G(k). Let P be a minimal parabolic subgroup of G with
Levi decomposition P = MN , and let P− = MN− be the corresponding
decomposition of the opposite parabolic P−. Let B be an Iwahori subgroup
of G with an Iwahori decomposition with respect to P and M , i.e.,

B = (B ∩ P )(B ∩M)(B ∩ P−).

Denote by W the relative Weyl group of G. Let χ be an unramified character
of M (i.e., χ is trivial on M0). Since M ∼= P/N , χ extends to a character
of P which we will also denote by χ. Let δ be the modulus character of P .
Define I(χ) to be the unramified principal series representation of G induced
by χ, i.e., the space of all locally constant functions G → C such that

f(pg) = χδ1/2(p)f(g) for all p in P , g in G

on which G acts by right translation. It is well-known that the space I(χ)B

of B-fixed vectors in I(χ) has dimension dim I(χ)B = |W | [3, Prop. 2.1]. In
this paper, we generalize this result to the fixed space I(χ)K where K is a
parahoric subgroup of G containing B.

Let A be a maximal split torus in M and let N be its normalizer in G.
If M0 is the maximal compact subgroup of M and W̃ = N/M0, then we
have a surjection ν : W̃ → W = N/M . Let K be a parahoric subgroup of
G containing B and let WK be the finite Coxeter subgroup of W̃ such that
K = BWKB (see [4, §1]). We will prove the following:
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Theorem 1.1. The dimension of I(χ)K is |W/ν(WK)|.

As a Coxeter group, WK is generated by a canonical finite set S of reflec-
tions. Thus

I(χ)K =
⋂
s∈S

I(χ)〈B,s〉.

In Section 3, we explicitly determine the effects of reflections s ∈ S on
I(χ)B (Theorem 3.1) and as a corollary the actions of the generators of the
Iwahori-Hecke algebra H(G, B) on I(χ)B (Corollary 3.2). We then compute
the subspaces I(χ)〈B,s〉 in terms of the usual basis of I(χ) as given in [3,
Prop. 2.1]. Then in Section 4, we complete the proof of Theorem 1.1 by
showing that the dimension of the intersection of the I(χ)〈B,s〉 is |W/ν(WK)|.

Let H(G, K) be the Hecke algebra of compactly supported functions G →
C, bi-invariant by K. Let E be a simple H(G, K)-module. It is known
that there is an irreducible admissible representation V of G such that E
is isomorphic as a H(G, K)-module to the space V K of K-fixed vectors [1,
2.10]. Since V B ⊃ V K = E 6= 0, it follows from a well-known result that V
embeds inside some unramified principal series representation I of G so that
dim E = dim V K ≤ dim IK . Thus Theorem 1.1 has the following corollary:

Corollary 1.2. If K is a parahoric subgroup of G and E is a simple module
over H(G, K), then

dim E ≤ |W/ν(WK)|.
Moreover, this bound is sharp.

The sharpness of this bound is a result of the fact that there exist ir-
reducible unramified principal series representations (see e.g., [2, Theorem
3.3]) and that for such a representation I, the H(G, K)-module IK is sim-
ple [1, 2.10] and, by Theorem 1.1, of dimension |W/ν(WK)|.

Remark 1.3. While Theorem 1.1 is needed to prove the sharpness in Corol-
lary 1.2, the inequality itself can be proved by a simpler argument. Indeed,
it is easily demonstrated that dim I(χ)K ≤ |W/ν(WK)| by noting that

dim I(χ)K ≤ |P\G/K|
and

|P\G/K| = |W/ν(WK)|.

I would like to express my gratitude to both Benedict Gross and David
Pollack for their many helpful suggestions for this paper.

2. Preliminaries.

See [6] or [3, §1] as a reference for much of the material in this section. In the
following, we let k be a non-archimedean locally compact field. We denote
by G a connected reductive algebraic group defined over k with group of
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k-points G. Similarly, throughout this section, if H is any algebraic group
defined over k, we will denote its k-points by the corresponding non-bold
letter H.

Let P be a fixed minimal parabolic subgroup of G containing a maximal
split torus A of G. Denote by N the unipotent radical of P, and by M the
centralizer of A. Then P has Levi decomposition MN. Let Φ′ denote the
set of roots of G relative to A and Φ′

nd the subset of non-divisible roots.
Also, let W be the relative Weyl group.

Denote by B = B(G, k) the Bruhat-Tits building of G over k and by A
the apartment of B stabilized by A. The normalizer N of A in G is then the
stabilizer of A and the maximal compact subgroup M0 of M is the kernel
of the map N → Aut(A). Let W̃ = N/M0. Denote by Φaff the canonical
affine root system on A and by Waff the corresponding affine Weyl group.
Then Waff may be identified with a normal subgroup of W̃ .

Fix a special point x0 in B and let Φ be the set of affine roots vanishing
at x0. Then Φ is a reduced root system, and we have a bijection between
Φ and Φ′

nd corresponding to the choice of x0 . We let Φ+ be the subset of
positive affine roots corresponding to P and ∆ the subset of simple roots.

Let C be the unique chamber in A containing x0 with the property that
every α in Φ+ takes positive values on C. Denote by B the Iwahori subgroup
of G fixing C pointwise and by K0 the special maximal compact subgroup
fixing x0. Then W = N/M ∼= (N ∩K0)/M0, which is the stabilizer of x0 in
W̃ . We will identify these groups throughout. We denote by ν the surjection
W̃ → W . The kernel of ν is the group of translations in W̃ .

For each α in Φaff, denote by N(α) the pointwise stabilizer of the half-
apartment {x ∈ A | α(x) ≥ 0}. We note that

B = M0 ·
∏

α∈Φ+

N(α) ·
∏

α∈Φ−

N(α + 1).

Let P0 ⊂ P be the compact subgroup

P ∩K0 = M0 ·
∏

α∈Φ+

N(α).

Let Φ =
⋃

Φi be the decomposition of Φ into irreducible root systems.
Denote by ∆̃ the set containing the highest root α̃i of Φi for each i. Let

∆aff = {α ∈ Φaff | α ∈ ∆ or α = α̃− 1 for some α̃ ∈ ∆̃}.

For α in ∆aff, let wα be the reflection in Aut(A) through the vanishing
hyperplane of α. Then Saff = {wα | α ∈ ∆aff} is a set of involutive generators
for the Coxeter group Waff.

For α in Φ, let aα be the translation wαwα−1 on A. We note that

a−α = a−1
α for any α in Φ.
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We let K be a fixed parahoric subgroup of G containing B. Since the
triple (G, B,N ) is a generalized Tits system (see [4, §1]), there exists a
special subgroup WK of Waff such that K = BWKB; WK is finite as K is
compact. We denote by S the subset of Saff generating WK .

For any w in W̃ , we denote by q(w) the index [BwB : B]. Also for α in
Φaff, we let qα be the index [N(α − 1) : N(α)]. We note that qα+2 = qα.
Since (cf. [5, Cor. 2.7])

BwαB = N(α)wαB for α in ∆,(1)

Bweα−1B = N(−α̃ + 1)weα−1B for α̃ in ∆̃,(2)

it follows that

q(wα) = qα+1 for α in ∆, q(weα−1) = qeα+2 = qeα for α̃ in ∆̃.

If α ∈ ∆, we denote by Bα the group B ∩ wαBwα, and if α̃ ∈ ∆̃, Beα−1

denotes the group B ∩ weα−1Bweα−1.
Let dx be the Haar measure on G for which B has volume 1. We denote by

H(G, B) the Iwahori-Hecke algebra of compactly supported functions G → C
bi-invariant by B. The product on H(G, B) is given by convolution with
respect to dx. Fix an unramified character χ of M and let δ be the modulus
character of P . Denote by I(χ) the induced representation IndG

P (χδ1/2), i.e.,
the unramified principal series representation induced by χ as described in
Section 1. If x is an element of G, we will denote the action of x on u ∈ I(χ)
by u 7→ x · u. Note that if w ∈ W̃ then the expression w · u is well-defined
for u ∈ I(χ)B as w is determined modulo M0 ⊂ B. A function h ∈ H(G, B)
acts on I(χ)B by the formula

h · u =
∫

G
(x · u) h(x) dx,

where v ∈ I(χ)B.
Let C∞

c (G) be the space of locally constant, compactly supported func-
tions G → C. The map Pχ : C∞

c (G) → I(χ) defined by

Pχ(f)(g) =
∫

P
χ−1δ1/2(p) f(pg) dp

(where dp is the left Haar measure on P giving P0 measure 1) is a G-
equivariant surjection. The functions φw,χ = Pχ(chBwB) (w in W ) form a
basis of the subspace of B-fixed vectors I(χ)B [3, Prop. 2.1]. Concretely, for
p ∈ P ,w′ ∈ W and b ∈ B, φw,χ(pw′b) equals χδ1/2(p) if w′ = w and is zero
otherwise.
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3. The effect of Waff on I(χ)B.

The goal of this section is to compute the effect of s ∈ Saff on I(χ)B. This
will be important for the proof in the following section since we will need to
determine the space I(χ)〈B,s〉 of vectors in I(χ)B fixed by s.

Theorem 3.1. Suppose that w ∈ W , α ∈ ∆ and α̃ ∈ ∆̃. Then

wα · φw,χ =
{

chPwwαBαφwwα,χ if wα ∈ Φ+

φwwα,χ + chPw(B−Bα)φw,χ if wα ∈ Φ−,

weα−1 · φw,χ =
{

χδ1/2(aweα)chPwweαBeα−1
φwweα,χ if wα̃ ∈ Φ−

χδ1/2(aweα)φwweα,χ + chPw(B−Beα−1)φw,χ if wα̃ ∈ Φ+.

Proof. For any s in Saff, g ∈ G,

(s · φw,χ)(g) = φw,χ(gs).

The Iwasawa decomposition enables us to write g = p′w′b′ for some p′ in
P , w′ in W , and b′ in B. We will evaluate φw,χ(gs) = φw,χ(p′w′b′s) by
determining the double coset in which p′w′b′s lies.

We first consider s = wα for α ∈ ∆. Now if w′α ∈ Φ+ then by (1)

p′w′b′wα ∈ p′w′BwαB

= p′w′N(α)wαB

= p′N(w′α)w′wαB

⊂ (p′N)w′wαB.

Since χδ1/2 is trivial on N , it follows that φw,χ(p′w′b′wα) equals χδ1/2(p′) if
w = w′wα and 0 otherwise.

If, on the other hand, w′α ∈ Φ− then suppose first that b′ ∈ Bα. Then

p′w′b′wα ∈ p′w′b′wαB = p′w′wαB

since wαBαwα ⊂ B. Thus φw,χ(p′w′b′wα) equals χδ1/2(p′) if w = w′wα and
0 otherwise.

Lastly, suppose that w′α ∈ Φ− and b′ ∈ B−Bα. It is easily deduced from
w′α ∈ Φ− that

Pw′BwαB = Pw′wαB ∪ Pw′B.

Moreover, one can show that p′w′b′wα ∈ Pw′B if and only if b′ is an element
of B −Bα. Thus p′w′b′wα = pw′b for some p ∈ P , b ∈ B. Since

p−1p′ = w′bwαb′
−1

w′−1 ∈ P ∩K0 = P0

and since χδ1/2 is trivial on P0, we have that χδ1/2(p) = χδ1/2(p′). There-
fore, φw,χ(p′w′b′wα) equals χδ1/2(p′) if w = w′ and 0 otherwise.
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Note that w′α ∈ Φ± if and only if w′wαα = −w′α ∈ Φ∓. Using this, we
assemble the preceding cases to obtain that

(wα · φw,χ)(p′w′b′) =


χδ1/2(p′) if wα ∈ Φ+, w′ = wwα, b′ ∈ Bα

χδ1/2(p′) if wα ∈ Φ−, w′ = wwα

χδ1/2(p′) if wα ∈ Φ−, w′ = w, b′ ∈ B −Bα

0 otherwise.

This immediately implies the first result of the theorem.
We now prove the second formula by calculating weα−1 · φw,χ for α̃ ∈ ∆̃.

Assume first that w′α̃ ∈ Φ−. Then by (2)

p′w′b′weα−1 ∈ p′w′Bweα−1B

= p′w′N(−α̃ + 1)weα−1B

= p′N(−w′α̃ + 1)w′weαaeαB

⊂ (p′a−w′eαN)w′weαB.

Since χ is trivial on N , it follows that φw,χ(p′w′b′weα−1) equals χδ1/2(p′a−w′eα)
if w = w′weα and 0 otherwise.

Now suppose that w′α̃ ∈ Φ+ and that b′ ∈ Beα−1. Then

p′w′b′weα−1 ∈ p′w′b′weα−1B = p′w′weα−1B = (p′a−w′eα)w′weαB

since weα−1Beα−1weα−1 ⊂ B. It follows that φw,χ(p′w′b′weα−1) is equal to
χδ1/2(p′a−w′eα) if w = w′weα and 0 otherwise.

Finally, suppose that b′ ∈ B −Beα−1. As before, it can be shown that

Pw′Bweα−1B = Pw′weαB ∪ Pw′B,

and furthermore that p′w′b′weα−1 ∈ Pw′B if and only if b′ is an element of
B − Beα−1. Hence p′w′b′weα−1 = pw′b for some p ∈ P , b ∈ B. It is easily
shown that this forces p−1p′ ∈ NP0 so that χδ1/2(p) = χδ1/2(p′). Thus
φw,χ(p′w′b′weα−1) equals χδ1/2(p′) if w = w′ and 0 otherwise.

Noting that w′α̃ ∈ Φ± if and only if w′weαα̃ = −w′α̃ ∈ Φ∓, we obtain

(wα · φw,χ)(p′w′b′)

=


χδ1/2(aweα)χδ1/2(p′) if wα̃ ∈ Φ−, w′ = wweα, b′ ∈ Beα−1

χδ1/2(aweα)χδ1/2(p′) if wα̃ ∈ Φ+, w′ = wweα
χδ1/2(p′) if wα̃ ∈ Φ+, w′ = w, b′ ∈ B −Beα−1

0 otherwise.

The second result follows. �

Theorem 3.1 has the following corollary giving the action of chBsB for s
in Saff.
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Corollary 3.2. Suppose that w ∈ W , α ∈ ∆ and α̃ ∈ ∆̃. Then

chBwαB · φw,χ =
{

φwwα,χ if wα ∈ Φ+

qα+1φwwα,χ + (qα+1 − 1)φw,χ if wα ∈ Φ−,

chBweα−1B · φw,χ =
{

χδ1/2(aweα)φwweα,χ if wα̃ ∈ Φ−

χδ1/2(aweα)qeαφwweα,χ + (qeα − 1)φw,χ if wα̃ ∈ Φ+.

Proof. We prove the first formula in the case wα ∈ Φ−. The other cases are
handled similarly. For g ∈ G we have

(chBwαB · φw,χ)(g) =
∫

G
φw,χ(gx)chBwαB(x)dx

=
∫

BwαB
φw,χ(gx)dx

=
∑

n

φw,χ(gnwα)

=
∑

n

(wα · φw,χ)(gn),

where n ranges over a set of representatives in N(α) for N(α)/N(α + 1).
If g ∈ PwwαB then so is gn for each of the qwα = qα+1 representatives

n. On the other hand, if g ∈ PwB, then gn ∈ Pw(B − Bα) for precisely
qα+1 − 1 of the representatives n. Thus

(chBwαB · φw,χ)(g) =
∑

n

(wα · φw,χ)(gn)

=
∑

n

[
φwwα,χ(gn) + chPw(B−Bα)(gn)φw,χ(gn)

]
= qα+1φwwα,χ(g) + (qα+1 − 1)φw,χ(g).

�

The following corollary of Theorem 3.1 gives a basis for I(χ)〈B,s〉, s ∈ Saff.

Corollary 3.3. Suppose α ∈ ∆ and α̃ ∈ ∆̃. Then

(i) {φw,χ + φwwα,χ | w ∈ W,wα ∈ Φ+} is a basis for the fixed space
I(χ)〈B,wα〉.

(ii) {φw,χ + χδ1/2(aweα)φwweα,χ | w ∈ W,wα̃ ∈ Φ+} is a basis for the fixed
space I(χ)〈B,weα−1〉.

Proof. Let s ∈ Saff. Note that

s · I(χ)B ∩ I(χ)B = I(χ)sBs ∩ I(χ)B = I(χ)〈sBs,B〉 = I(χ)〈B,s〉.
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Thus I(χ)〈B,s〉 is precisely the set of vectors in I(χ)B sent to I(χ)B by s. It
is clear from Theorem 3.1 that if s = wα this set is spanned by

{φw,χ + φwwα,χ | w ∈ W,wα ∈ Φ+},
and if s = weα−1 this set is spanned by

{φw,χ + χδ1/2(aweα)φwweα,χ | w ∈ W,wα̃ ∈ Φ+}.
�

4. Proof of Theorem 1.1.

We now prove that the dimension of

I(χ)K = I(χ)BWKB =
⋂
s∈S

I(χ)〈B,s〉

is equal to |W/ν(WK)|.
Suppose that f =

∑
w∈W c(w)φw,χ is a vector in I(χ)B with the c(w) ∈ C.

Then it is easily deduced from Corollary 3.3 that f ∈
⋂

s∈S I(χ)〈B,s〉 if and
only if for all w ∈ W ,

c(wwα) = c(w) for all α ∈ ∆ with wα ∈ S(3)

c(wweα) = χδ1/2(aweα)c(w) for all α̃ ∈ ∆̃ with weα−1 ∈ S.(4)

Let V be the space of functions c : W → C satisfying (3) and (4). Then
dim I(χ)K = dim V . Since ν(wβ−1) = ν(wβ) = wβ for all β ∈ Φ, it follows
that c(w) determines c(ww′) for all w′ ∈ 〈ν(s) | s ∈ S〉 = ν(WK) so

dim V ≤ |W/ν(WK)|.
We will prove that dim V = |W/ν(WK)|.

Remark 4.1. We note that if WK ⊂ W (i.e., if K ⊂ K0) then it is clear
that dim V = dim I(χ)K = |W/ν(WK)| since in this case only the relations
in (3) appear.

Since WK is finite, it contains no non-trivial translations so ν is injective
on WK . Thus ν(WK) ∼= WK , and ν(WK) is generated as a Coxeter group
by ν(S). We will denote the element of WK corresponding to t ∈ ν(S) by
ν−1(t). Define recursively a function [ ] from the set of finite sequences of
elements of ν(S) to Waff. Let t1, . . . , tn ∈ ν(S). For the empty sequence ∅,
let [∅] = e. Define

[t1] =
{

e if ν−1(t1) = wα, α ∈ ∆
aeα if ν−1(t1) = weα−1, α̃ ∈ ∆̃,

and then set

[t1, . . . , tn] =
{

[t1, . . . , tn−1] if ν−1(tn) = wα, α ∈ ∆
[t1, . . . , tn−1] at1···tn−1eα if ν−1(tn) = weα−1, α̃ ∈ ∆̃.
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It follows easily from the definition of [ ] that

[t1, . . . , tk](t1 · · · tk)[tk+1, . . . , tn](t1 · · · tk)−1 = [t1, . . . , tn].(5)

We claim that the element [t1, . . . , tn] of Waff depends only on the product
t1 · · · tn and not on the particular sequence t1, . . . , tn.

Lemma 4.2. Let t1, . . . , tn, u1, . . . , um be elements of ν(S) such that

t1 · · · tn = u1 · · ·um.

Then [t1, . . . , tn] = [u1, . . . , um].

Proof. Since (ν(WK), ν(S)) is a Coxeter group, the word t1 · · · tn is obtain-
able from u1 · · ·um via the basic Coxeter group relations among the elements
of ν(S), i.e., those of the form (tu)m(t,u) = e, where t, u ∈ ν(S) and m(t, u)
is some number in {1, 2, 3, 4, 6} (see e.g. [5, 1.6]). Therefore, it suffices to
show that [ ] remains unchanged when a subsequence of consecutive terms
in a sequence t1, . . . , tn is deleted according to such a relation. In fact, due
to (5) one need only show that

[t, u, t, u, . . . , t, u︸ ︷︷ ︸
m(t,u)

] = [∅] = e(6)

for each basic relation (tu)m(t,u) = e among the elements of ν(S).
It is clear that (6) holds if ν−1(t), ν−1(u) ∈ W . Therefore we shall consider

only those relations which involve some reflection t ∈ ν(S) such that ν−1(t) /∈
W . Such a t is necessarily of the form weα = ν(weα−1) for some α̃ ∈ ∆̃. The
basic relations involving weα are of the form

(weαu)m = e(7)

where u ∈ ν(S) and m ∈ {1, 2, 3, 4}. (It is never the case that m = 6.)
First consider the case m = 1. Here u must equal weα so (6) holds as

[weα, weα] = aeαaweα eα = aeαa−eα = e.

Now suppose that m > 1 and ν−1(u) ∈ W in (7). Then

[weα, u, . . . , weα, u]︸ ︷︷ ︸
m

= aeα . . . a(weαu)m−1eα.

Since weαu is a rotation of order m, α̃ + · · ·+(weαu)m−1α̃ = 0 so (6) holds as

aeα . . . a(weαu)m−1eα = e.

Finally, suppose m > 1 and ν−1(u) /∈ W in (7). In this case, it follows
that m = 2 and u = weβ for some β̃ ∈ ∆̃. Then weβ(α̃) = α̃ and weα(β̃) = β̃.
It follows that (6) holds again as

[weα, weβ , weα, weβ, ] = aeαa
weα eβaweαweβ eαa

weαweβweα eβ = aeαaeβa−eαa−eβ = e.

�
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Let t1, . . . , tn ∈ ν(S). Since [t1, . . . , tn] depends only on the product
t1 · · · tn, [ ] gives a function ν(WK) → Waff, which we will also denote by
[ ]. Explicitly, for w ∈ ν(WK), [w] = [t1, . . . , tn] for any t1, . . . , tn ∈ ν(S)
with w = t1 · · · tn. Note that [ ] is a 1-cocycle from ν(WK) to the group of
translations in Waff.

Proposition 4.3. The space V of functions W → C satisfying (3) and (4)
has dimension |W/ν(WK)|.

Proof. Let R be a set of representatives for the left cosets of ν(WK) in W .
For each σ ∈ R, define the function cσ : W → C by setting

cσ(w) =
{

χδ1/2([w′]) if w = σw′ ∈ σν(WK)
0 if w /∈ σν(WK).

The cσ are clearly linearly independent and are |W/ν(WK)| in number. It
suffices then to show that the cσ are in V .

Fix σ ∈ R. Let α be an element of ∆ such that wα ∈ S. If w /∈ σν(WK)
then wwα /∈ σν(WK) so

cσ(w) = 0 = cσ(wwα).

If w = σw′ ∈ σν(WK) then

cσ(wwα) = cσ(σw′wα) = χδ1/2([w′wα]) = χδ1/2([w′]) = cσ(w).

Thus (3) holds for cσ.
Now let α̃ be an element of ∆̃ such that weα−1 ∈ S. As before, if w /∈

σν(WK) then

cσ(w) = 0 = χδ1/2(aweα)cσ(wweα).

And if w = σw′ ∈ σν(WK) then

cσ(wweα) = cσ(σw′weα)

= χδ1/2([w′weα])

= χδ1/2([w′]aw′eα)

= χδ1/2([w′])χδ1/2(aw′eα)

= χδ1/2(aw′eα)cσ(w).

Thus cσ satisfies (4) and lies in V . �

It follows that dim I(χ)K = dim V = |W/ν(WK)|.
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