Pacific Journal of Mathematics

PARAHORIC FIXED SPACES IN UNRAMIFIED PRINCIPAL SERIES REPRESENTATIONS

Joshua M. Lansky

Volume 204 No. 2

June 2002

PARAHORIC FIXED SPACES IN UNRAMIFIED PRINCIPAL SERIES REPRESENTATIONS

Joshua M. Lansky

Let k be a non-archimedean locally compact field and let G be the set of k-points of a connected reductive group defined over k. Let W be the relative Weyl group of G, and let $\mathcal{H}(G, B)$ be the Hecke algebra of G with respect to an Iwahori subgroup B of G. We compute the effects of $\mathcal{H}(G, B)$ and W on the B-fixed vectors of an unramified principal series representation I of G. We use this computation to determine the dimension of the space of K-fixed vectors in I, where K is a parahoric subgroup of G.

1. Introduction.

Let **G** be a reductive group defined over a non-archimedean locally compact field k and let $G = \mathbf{G}(k)$. Let P be a minimal parabolic subgroup of G with Levi decomposition P = MN, and let $P^- = MN^-$ be the corresponding decomposition of the opposite parabolic P^- . Let B be an Iwahori subgroup of G with an Iwahori decomposition with respect to P and M, i.e.,

$$B = (B \cap P)(B \cap M)(B \cap P^{-}).$$

Denote by W the relative Weyl group of G. Let χ be an unramified character of M (i.e., χ is trivial on M_0). Since $M \cong P/N$, χ extends to a character of P which we will also denote by χ . Let δ be the modulus character of P. Define $I(\chi)$ to be the unramified principal series representation of G induced by χ , i.e., the space of all locally constant functions $G \to \mathbb{C}$ such that

$$f(pg) = \chi \delta^{1/2}(p) f(g)$$
 for all p in P, g in G

on which G acts by right translation. It is well-known that the space $I(\chi)^B$ of B-fixed vectors in $I(\chi)$ has dimension dim $I(\chi)^B = |W|$ [3, Prop. 2.1]. In this paper, we generalize this result to the fixed space $I(\chi)^K$ where K is a parahoric subgroup of G containing B.

Let A be a maximal split torus in M and let \mathcal{N} be its normalizer in G. If M_0 is the maximal compact subgroup of M and $\widetilde{W} = \mathcal{N}/M_0$, then we have a surjection $\nu : \widetilde{W} \to W = \mathcal{N}/M$. Let K be a parahoric subgroup of G containing B and let W_K be the finite Coxeter subgroup of \widetilde{W} such that $K = BW_K B$ (see [4, §1]). We will prove the following:

Theorem 1.1. The dimension of $I(\chi)^K$ is $|W/\nu(W_K)|$.

As a Coxeter group, W_K is generated by a canonical finite set S of reflections. Thus

$$I(\chi)^K = \bigcap_{s \in S} I(\chi)^{\langle B, s \rangle}$$

In Section 3, we explicitly determine the effects of reflections $s \in S$ on $I(\chi)^B$ (Theorem 3.1) and as a corollary the actions of the generators of the Iwahori-Hecke algebra $\mathcal{H}(G, B)$ on $I(\chi)^B$ (Corollary 3.2). We then compute the subspaces $I(\chi)^{\langle B,s\rangle}$ in terms of the usual basis of $I(\chi)$ as given in [3, Prop. 2.1]. Then in Section 4, we complete the proof of Theorem 1.1 by showing that the dimension of the intersection of the $I(\chi)^{\langle B,s\rangle}$ is $|W/\nu(W_K)|$.

Let $\mathcal{H}(G, K)$ be the Hecke algebra of compactly supported functions $G \to \mathbb{C}$, bi-invariant by K. Let E be a simple $\mathcal{H}(G, K)$ -module. It is known that there is an irreducible admissible representation V of G such that E is isomorphic as a $\mathcal{H}(G, K)$ -module to the space V^K of K-fixed vectors [1, 2.10]. Since $V^B \supset V^K = E \neq 0$, it follows from a well-known result that V embeds inside some unramified principal series representation I of G so that dim $E = \dim V^K \leq \dim I^K$. Thus Theorem 1.1 has the following corollary:

Corollary 1.2. If K is a parahoric subgroup of G and E is a simple module over $\mathcal{H}(G, K)$, then

$$\dim E \le |W/\nu(W_K)|.$$

Moreover, this bound is sharp.

The sharpness of this bound is a result of the fact that there exist irreducible unramified principal series representations (see e.g., [2, Theorem 3.3]) and that for such a representation I, the $\mathcal{H}(G, K)$ -module I^K is simple [1, 2.10] and, by Theorem 1.1, of dimension $|W/\nu(W_K)|$.

Remark 1.3. While Theorem 1.1 is needed to prove the sharpness in Corollary 1.2, the inequality itself can be proved by a simpler argument. Indeed, it is easily demonstrated that $\dim I(\chi)^K \leq |W/\nu(W_K)|$ by noting that

$$\dim I(\chi)^K \le |P \backslash G/K|$$

and

$$|P \setminus G/K| = |W/\nu(W_K)|.$$

I would like to express my gratitude to both Benedict Gross and David Pollack for their many helpful suggestions for this paper.

2. Preliminaries.

See [6] or [3, §1] as a reference for much of the material in this section. In the following, we let k be a non-archimedean locally compact field. We denote by **G** a connected reductive algebraic group defined over k with group of

k-points G. Similarly, throughout this section, if **H** is any algebraic group defined over k, we will denote its k-points by the corresponding non-bold letter H.

Let **P** be a fixed minimal parabolic subgroup of **G** containing a maximal split torus **A** of **G**. Denote by **N** the unipotent radical of **P**, and by **M** the centralizer of **A**. Then **P** has Levi decomposition **MN**. Let Φ' denote the set of roots of **G** relative to **A** and Φ'_{nd} the subset of non-divisible roots. Also, let *W* be the relative Weyl group.

Denote by $\mathcal{B} = \mathcal{B}(\mathbf{G}, k)$ the Bruhat-Tits building of \mathbf{G} over k and by \mathcal{A} the apartment of \mathcal{B} stabilized by A. The normalizer \mathcal{N} of A in G is then the stabilizer of \mathcal{A} and the maximal compact subgroup M_0 of M is the kernel of the map $\mathcal{N} \to \operatorname{Aut}(\mathcal{A})$. Let $\widetilde{W} = \mathcal{N}/M_0$. Denote by Φ_{aff} the canonical affine root system on \mathcal{A} and by W_{aff} the corresponding affine Weyl group. Then W_{aff} may be identified with a normal subgroup of \widetilde{W} .

Fix a special point x_0 in \mathcal{B} and let Φ be the set of affine roots vanishing at x_0 . Then Φ is a reduced root system, and we have a bijection between Φ and Φ'_{nd} corresponding to the choice of x_0 . We let Φ^+ be the subset of positive affine roots corresponding to P and Δ the subset of simple roots.

Let C be the unique chamber in \mathcal{A} containing x_0 with the property that every α in Φ^+ takes positive values on C. Denote by B the Iwahori subgroup of G fixing C pointwise and by K_0 the special maximal compact subgroup fixing x_0 . Then $W = \mathcal{N}/M \cong (\mathcal{N} \cap K_0)/M_0$, which is the stabilizer of x_0 in \widetilde{W} . We will identify these groups throughout. We denote by ν the surjection $\widetilde{W} \to W$. The kernel of ν is the group of translations in \widetilde{W} .

For each α in Φ_{aff} , denote by $N(\alpha)$ the pointwise stabilizer of the halfapartment $\{x \in \mathcal{A} \mid \alpha(x) \geq 0\}$. We note that

$$B = M_0 \cdot \prod_{\alpha \in \Phi^+} N(\alpha) \cdot \prod_{\alpha \in \Phi^-} N(\alpha + 1).$$

Let $P_0 \subset P$ be the compact subgroup

$$P \cap K_0 = M_0 \cdot \prod_{\alpha \in \Phi^+} N(\alpha).$$

Let $\Phi = \bigcup \Phi_i$ be the decomposition of Φ into irreducible root systems. Denote by $\widetilde{\Delta}$ the set containing the highest root $\widetilde{\alpha}_i$ of Φ_i for each *i*. Let

$$\Delta_{\text{aff}} = \{ \alpha \in \Phi_{\text{aff}} \mid \alpha \in \Delta \text{ or } \alpha = \widetilde{\alpha} - 1 \text{ for some } \widetilde{\alpha} \in \widetilde{\Delta} \}.$$

For α in Δ_{aff} , let w_{α} be the reflection in Aut(\mathcal{A}) through the vanishing hyperplane of α . Then $S_{\text{aff}} = \{w_{\alpha} \mid \alpha \in \Delta_{\text{aff}}\}$ is a set of involutive generators for the Coxeter group W_{aff} .

For α in Φ , let a_{α} be the translation $w_{\alpha}w_{\alpha-1}$ on \mathcal{A} . We note that

$$a_{-\alpha} = a_{\alpha}^{-1}$$
 for any α in Φ .

We let K be a fixed parahoric subgroup of G containing B. Since the triple (G, B, \mathcal{N}) is a generalized Tits system (see [4, §1]), there exists a special subgroup W_K of W_{aff} such that $K = BW_K B$; W_K is finite as K is compact. We denote by S the subset of S_{aff} generating W_K .

For any w in \widetilde{W} , we denote by q(w) the index [BwB:B]. Also for α in Φ_{aff} , we let q_{α} be the index $[N(\alpha - 1) : N(\alpha)]$. We note that $q_{\alpha+2} = q_{\alpha}$. Since (cf. [5, Cor. 2.7])

(1)
$$Bw_{\alpha}B = N(\alpha)w_{\alpha}B \text{ for } \alpha \text{ in } \Delta,$$

(2)
$$Bw_{\widetilde{\alpha}-1}B = N(-\widetilde{\alpha}+1)w_{\widetilde{\alpha}-1}B \text{ for } \widetilde{\alpha} \text{ in } \widetilde{\Delta},$$

it follows that

$$q(w_{\alpha}) = q_{\alpha+1}$$
 for α in Δ , $q(w_{\widetilde{\alpha}-1}) = q_{\widetilde{\alpha}+2} = q_{\widetilde{\alpha}}$ for $\widetilde{\alpha}$ in Δ .

If $\alpha \in \Delta$, we denote by B_{α} the group $B \cap w_{\alpha} B w_{\alpha}$, and if $\widetilde{\alpha} \in \widetilde{\Delta}$, $B_{\widetilde{\alpha}-1}$ denotes the group $B \cap w_{\widetilde{\alpha}-1} B w_{\widetilde{\alpha}-1}$.

Let dx be the Haar measure on G for which B has volume 1. We denote by $\mathcal{H}(G, B)$ the Iwahori-Hecke algebra of compactly supported functions $G \to \mathbb{C}$ bi-invariant by B. The product on $\mathcal{H}(G, B)$ is given by convolution with respect to dx. Fix an unramified character χ of M and let δ be the modulus character of P. Denote by $I(\chi)$ the induced representation $\mathrm{Ind}_P^G(\chi \delta^{1/2})$, i.e., the unramified principal series representation induced by χ as described in Section 1. If x is an element of G, we will denote the action of x on $u \in I(\chi)$ by $u \mapsto x \cdot u$. Note that if $w \in \widetilde{W}$ then the expression $w \cdot u$ is well-defined for $u \in I(\chi)^B$ as w is determined modulo $M_0 \subset B$. A function $h \in \mathcal{H}(G, B)$ acts on $I(\chi)^B$ by the formula

$$h \cdot u = \int_G (x \cdot u) h(x) dx,$$

where $v \in I(\chi)^B$.

Let $C_c^{\infty}(G)$ be the space of locally constant, compactly supported functions $G \to \mathbb{C}$. The map $\mathcal{P}_{\chi} : C_c^{\infty}(G) \to I(\chi)$ defined by

$$\mathcal{P}_{\chi}(f)(g) = \int_{P} \chi^{-1} \delta^{1/2}(p) f(pg) dp$$

(where dp is the left Haar measure on P giving P_0 measure 1) is a G-equivariant surjection. The functions $\phi_{w,\chi} = \mathcal{P}_{\chi}(ch_{BwB})$ (w in W) form a basis of the subspace of B-fixed vectors $I(\chi)^B$ [3, Prop. 2.1]. Concretely, for $p \in P, w' \in W$ and $b \in B$, $\phi_{w,\chi}(pw'b)$ equals $\chi \delta^{1/2}(p)$ if w' = w and is zero otherwise.

3. The effect of W_{aff} on $I(\chi)^B$.

The goal of this section is to compute the effect of $s \in S_{\text{aff}}$ on $I(\chi)^B$. This will be important for the proof in the following section since we will need to determine the space $I(\chi)^{\langle B, s \rangle}$ of vectors in $I(\chi)^B$ fixed by s.

Theorem 3.1. Suppose that $w \in W$, $\alpha \in \Delta$ and $\tilde{\alpha} \in \tilde{\Delta}$. Then

$$w_{\alpha} \cdot \phi_{w,\chi} = \begin{cases} \operatorname{ch}_{Pww_{\alpha}B_{\alpha}}\phi_{ww_{\alpha},\chi} & \text{if } w\alpha \in \Phi^{+} \\ \phi_{ww_{\alpha},\chi} + \operatorname{ch}_{Pw(B-B_{\alpha})}\phi_{w,\chi} & \text{if } w\alpha \in \Phi^{-}, \end{cases}$$

 $w_{\widetilde{\alpha}-1} \cdot \phi_{w,\chi} = \begin{cases} \chi \delta^{1/2}(a_{w\widetilde{\alpha}}) \mathrm{ch}_{Pww_{\widetilde{\alpha}}B_{\widetilde{\alpha}-1}} \phi_{ww_{\widetilde{\alpha}},\chi} & \text{if } w\widetilde{\alpha} \in \Phi^-\\ \chi \delta^{1/2}(a_{w\widetilde{\alpha}}) \phi_{ww_{\widetilde{\alpha}},\chi} + \mathrm{ch}_{Pw(B-B_{\widetilde{\alpha}-1})} \phi_{w,\chi} & \text{if } w\widetilde{\alpha} \in \Phi^+. \end{cases}$

Proof. For any s in $S_{\text{aff}}, g \in G$,

$$(s \cdot \phi_{w,\chi})(g) = \phi_{w,\chi}(gs).$$

The Iwasawa decomposition enables us to write g = p'w'b' for some p' in P, w' in W, and b' in B. We will evaluate $\phi_{w,\chi}(gs) = \phi_{w,\chi}(p'w'b's)$ by determining the double coset in which p'w'b's lies.

We first consider $s = w_{\alpha}$ for $\alpha \in \Delta$. Now if $w' \alpha \in \Phi^+$ then by (1)

$$p'w'b'w_{\alpha} \in p'w'Bw_{\alpha}B$$

= $p'w'N(\alpha)w_{\alpha}B$
= $p'N(w'\alpha)w'w_{\alpha}B$
 $\subset (p'N)w'w_{\alpha}B.$

Since $\chi \delta^{1/2}$ is trivial on N, it follows that $\phi_{w,\chi}(p'w'b'w_{\alpha})$ equals $\chi \delta^{1/2}(p')$ if $w = w'w_{\alpha}$ and 0 otherwise.

If, on the other hand, $w'\alpha \in \Phi^-$ then suppose first that $b' \in B_\alpha$. Then

$$p'w'b'w_{\alpha} \in p'w'b'w_{\alpha}B = p'w'w_{\alpha}B$$

since $w_{\alpha}B_{\alpha}w_{\alpha} \subset B$. Thus $\phi_{w,\chi}(p'w'b'w_{\alpha})$ equals $\chi\delta^{1/2}(p')$ if $w = w'w_{\alpha}$ and 0 otherwise.

Lastly, suppose that $w'\alpha \in \Phi^-$ and $b' \in B - B_\alpha$. It is easily deduced from $w'\alpha \in \Phi^-$ that

$$Pw'Bw_{\alpha}B = Pw'w_{\alpha}B \cup Pw'B.$$

Moreover, one can show that $p'w'b'w_{\alpha} \in Pw'B$ if and only if b' is an element of $B - B_{\alpha}$. Thus $p'w'b'w_{\alpha} = pw'b$ for some $p \in P, b \in B$. Since

$$p^{-1}p' = w'bw_{\alpha}b'^{-1}w'^{-1} \in P \cap K_0 = P_0$$

and since $\chi \delta^{1/2}$ is trivial on P_0 , we have that $\chi \delta^{1/2}(p) = \chi \delta^{1/2}(p')$. Therefore, $\phi_{w,\chi}(p'w'b'w_{\alpha})$ equals $\chi \delta^{1/2}(p')$ if w = w' and 0 otherwise. Note that $w'\alpha \in \Phi^{\pm}$ if and only if $w'w_{\alpha}\alpha = -w'\alpha \in \Phi^{\mp}$. Using this, we assemble the preceding cases to obtain that

$$(w_{\alpha} \cdot \phi_{w,\chi})(p'w'b') = \begin{cases} \chi \delta^{1/2}(p') & \text{if } w\alpha \in \Phi^+, w' = ww_{\alpha}, b' \in B_{\alpha} \\ \chi \delta^{1/2}(p') & \text{if } w\alpha \in \Phi^-, w' = ww_{\alpha} \\ \chi \delta^{1/2}(p') & \text{if } w\alpha \in \Phi^-, w' = w, b' \in B - B_{\alpha} \\ 0 & \text{otherwise.} \end{cases}$$

This immediately implies the first result of the theorem.

We now prove the second formula by calculating $w_{\tilde{\alpha}-1} \cdot \phi_{w,\chi}$ for $\tilde{\alpha} \in \Delta$. Assume first that $w'\tilde{\alpha} \in \Phi^-$. Then by (2)

$$p'w'b'w_{\widetilde{\alpha}-1} \in p'w'Bw_{\widetilde{\alpha}-1}B$$

= $p'w'N(-\widetilde{\alpha}+1)w_{\widetilde{\alpha}-1}B$
= $p'N(-w'\widetilde{\alpha}+1)w'w_{\widetilde{\alpha}}a_{\widetilde{\alpha}}B$
 $\subset (p'a_{-w'\widetilde{\alpha}}N)w'w_{\widetilde{\alpha}}B.$

Since χ is trivial on N, it follows that $\phi_{w,\chi}(p'w'b'w_{\tilde{\alpha}-1})$ equals $\chi \delta^{1/2}(p'a_{-w'\tilde{\alpha}})$ if $w = w'w_{\tilde{\alpha}}$ and 0 otherwise.

Now suppose that $w'\widetilde{\alpha} \in \Phi^+$ and that $b' \in B_{\widetilde{\alpha}-1}$. Then

$$p'w'b'w_{\widetilde{\alpha}-1} \in p'w'b'w_{\widetilde{\alpha}-1}B = p'w'w_{\widetilde{\alpha}-1}B = (p'a_{-w'\widetilde{\alpha}})w'w_{\widetilde{\alpha}}B$$

since $w_{\tilde{\alpha}-1}B_{\tilde{\alpha}-1}w_{\tilde{\alpha}-1} \subset B$. It follows that $\phi_{w,\chi}(p'w'b'w_{\tilde{\alpha}-1})$ is equal to $\chi \delta^{1/2}(p'a_{-w'\tilde{\alpha}})$ if $w = w'w_{\tilde{\alpha}}$ and 0 otherwise.

Finally, suppose that $b' \in B - B_{\tilde{\alpha}-1}$. As before, it can be shown that

$$Pw'Bw_{\widetilde{\alpha}-1}B = Pw'w_{\widetilde{\alpha}}B \cup Pw'B,$$

and furthermore that $p'w'b'w_{\tilde{\alpha}-1} \in Pw'B$ if and only if b' is an element of $B - B_{\tilde{\alpha}-1}$. Hence $p'w'b'w_{\tilde{\alpha}-1} = pw'b$ for some $p \in P$, $b \in B$. It is easily shown that this forces $p^{-1}p' \in NP_0$ so that $\chi \delta^{1/2}(p) = \chi \delta^{1/2}(p')$. Thus $\phi_{w,\chi}(p'w'b'w_{\tilde{\alpha}-1})$ equals $\chi \delta^{1/2}(p')$ if w = w' and 0 otherwise.

Noting that $w'\widetilde{\alpha} \in \Phi^{\pm}$ if and only if $w'w_{\widetilde{\alpha}}\widetilde{\alpha} = -w'\widetilde{\alpha} \in \Phi^{\mp}$, we obtain

$$\begin{aligned} &(w_{\alpha} \cdot \phi_{w,\chi})(p'w'b') \\ &= \begin{cases} \chi \delta^{1/2}(a_{w\widetilde{\alpha}})\chi \delta^{1/2}(p') & \text{if } w\widetilde{\alpha} \in \Phi^{-}, w' = ww_{\widetilde{\alpha}}, b' \in B_{\widetilde{\alpha}-1} \\ \chi \delta^{1/2}(a_{w\widetilde{\alpha}})\chi \delta^{1/2}(p') & \text{if } w\widetilde{\alpha} \in \Phi^{+}, w' = ww_{\widetilde{\alpha}} \\ \chi \delta^{1/2}(p') & \text{if } w\widetilde{\alpha} \in \Phi^{+}, w' = w, b' \in B - B_{\widetilde{\alpha}-1} \\ 0 & \text{otherwise.} \end{cases}$$

The second result follows.

Theorem 3.1 has the following corollary giving the action of ch_{BsB} for s in S_{aff} .

Corollary 3.2. Suppose that $w \in W$, $\alpha \in \Delta$ and $\tilde{\alpha} \in \tilde{\Delta}$. Then

$$\operatorname{ch}_{Bw_{\alpha}B} \cdot \phi_{w,\chi} = \begin{cases} \phi_{ww_{\alpha},\chi} & \text{if } w\alpha \in \Phi^{+} \\ q_{\alpha+1}\phi_{ww_{\alpha},\chi} + (q_{\alpha+1}-1)\phi_{w,\chi} & \text{if } w\alpha \in \Phi^{-}, \end{cases}$$
$$\operatorname{ch}_{Bw_{\widetilde{\alpha}-1}B} \cdot \phi_{w,\chi} = \begin{cases} \chi \delta^{1/2}(a_{w\widetilde{\alpha}})\phi_{ww_{\widetilde{\alpha}},\chi} & \text{if } w\widetilde{\alpha} \in \Phi^{-} \\ \chi \delta^{1/2}(a_{w\widetilde{\alpha}})q_{\widetilde{\alpha}}\phi_{ww_{\widetilde{\alpha}},\chi} + (q_{\widetilde{\alpha}}-1)\phi_{w,\chi} & \text{if } w\widetilde{\alpha} \in \Phi^{+}. \end{cases}$$

Proof. We prove the first formula in the case $w\alpha \in \Phi^-$. The other cases are handled similarly. For $g \in G$ we have

$$(\operatorname{ch}_{Bw_{\alpha}B} \cdot \phi_{w,\chi})(g) = \int_{G} \phi_{w,\chi}(gx) \operatorname{ch}_{Bw_{\alpha}B}(x) dx$$
$$= \int_{Bw_{\alpha}B} \phi_{w,\chi}(gx) dx$$
$$= \sum_{n} \phi_{w,\chi}(gnw_{\alpha})$$
$$= \sum_{n} (w_{\alpha} \cdot \phi_{w,\chi})(gn),$$

where n ranges over a set of representatives in $N(\alpha)$ for $N(\alpha)/N(\alpha+1)$.

If $g \in Pww_{\alpha}B$ then so is gn for each of the $q_{w_{\alpha}} = q_{\alpha+1}$ representatives n. On the other hand, if $g \in PwB$, then $gn \in Pw(B - B_{\alpha})$ for precisely $q_{\alpha+1} - 1$ of the representatives n. Thus

$$(\operatorname{ch}_{Bw_{\alpha}B} \cdot \phi_{w,\chi})(g) = \sum_{n} (w_{\alpha} \cdot \phi_{w,\chi})(gn)$$
$$= \sum_{n} \left[\phi_{ww_{\alpha},\chi}(gn) + \operatorname{ch}_{Pw(B-B_{\alpha})}(gn)\phi_{w,\chi}(gn) \right]$$
$$= q_{\alpha+1}\phi_{ww_{\alpha},\chi}(g) + (q_{\alpha+1}-1)\phi_{w,\chi}(g).$$

The following corollary of Theorem 3.1 gives a basis for $I(\chi)^{\langle B,s\rangle}$, $s \in S_{\text{aff}}$.

Corollary 3.3. Suppose $\alpha \in \Delta$ and $\tilde{\alpha} \in \tilde{\Delta}$. Then

- (i) $\{\phi_{w,\chi} + \phi_{ww_{\alpha},\chi} \mid w \in W, w\alpha \in \Phi^+\}$ is a basis for the fixed space $I(\chi)^{\langle B, w_{\alpha} \rangle}$.
- (ii) $\{\phi_{w,\chi} + \chi \delta^{1/2}(a_{w\widetilde{\alpha}})\phi_{ww_{\widetilde{\alpha}},\chi} \mid w \in W, w\widetilde{\alpha} \in \Phi^+\}$ is a basis for the fixed space $I(\chi)^{\langle B, w_{\widetilde{\alpha}-1} \rangle}$.

Proof. Let $s \in S_{aff}$. Note that

$$s \cdot I(\chi)^B \cap I(\chi)^B = I(\chi)^{sBs} \cap I(\chi)^B = I(\chi)^{\langle sBs, B \rangle} = I(\chi)^{\langle B, s \rangle}.$$

Thus $I(\chi)^{\langle B,s\rangle}$ is precisely the set of vectors in $I(\chi)^B$ sent to $I(\chi)^B$ by s. It is clear from Theorem 3.1 that if $s = w_{\alpha}$ this set is spanned by

$$\{\phi_{w,\chi} + \phi_{ww_{\alpha},\chi} \mid w \in W, w\alpha \in \Phi^+\},\$$

and if $s = w_{\tilde{\alpha}-1}$ this set is spanned by

$$\{\phi_{w,\chi} + \chi \delta^{1/2}(a_{w\widetilde{\alpha}})\phi_{ww_{\widetilde{\alpha}},\chi} \mid w \in W, w\widetilde{\alpha} \in \Phi^+\}.$$

4. Proof of Theorem 1.1.

We now prove that the dimension of

$$I(\chi)^K = I(\chi)^{BW_K B} = \bigcap_{s \in S} I(\chi)^{\langle B, s \rangle}$$

is equal to $|W/\nu(W_K)|$.

Suppose that $f = \sum_{w \in W} c(w) \phi_{w,\chi}$ is a vector in $I(\chi)^B$ with the $c(w) \in \mathbb{C}$. Then it is easily deduced from Corollary 3.3 that $f \in \bigcap_{s \in S} I(\chi)^{\langle B, s \rangle}$ if and only if for all $w \in W$,

(3)
$$c(ww_{\alpha}) = c(w) \text{ for all } \alpha \in \Delta \text{ with } w_{\alpha} \in S$$

(4)
$$c(ww_{\widetilde{\alpha}}) = \chi \delta^{1/2}(a_{w\widetilde{\alpha}})c(w) \text{ for all } \widetilde{\alpha} \in \widetilde{\Delta} \text{ with } w_{\widetilde{\alpha}-1} \in S.$$

Let V be the space of functions $c: W \to \mathbb{C}$ satisfying (3) and (4). Then dim $I(\chi)^K = \dim V$. Since $\nu(w_{\beta-1}) = \nu(w_{\beta}) = w_{\beta}$ for all $\beta \in \Phi$, it follows that c(w) determines c(ww') for all $w' \in \langle \nu(s) | s \in S \rangle = \nu(W_K)$ so

 $\dim V \le |W/\nu(W_K)|.$

We will prove that dim $V = |W/\nu(W_K)|$.

Remark 4.1. We note that if $W_K \subset W$ (i.e., if $K \subset K_0$) then it is clear that dim $V = \dim I(\chi)^K = |W/\nu(W_K)|$ since in this case only the relations in (3) appear.

Since W_K is finite, it contains no non-trivial translations so ν is injective on W_K . Thus $\nu(W_K) \cong W_K$, and $\nu(W_K)$ is generated as a Coxeter group by $\nu(S)$. We will denote the element of W_K corresponding to $t \in \nu(S)$ by $\nu^{-1}(t)$. Define recursively a function [] from the set of finite sequences of elements of $\nu(S)$ to W_{aff} . Let $t_1, \ldots, t_n \in \nu(S)$. For the empty sequence \emptyset , let $[\emptyset] = e$. Define

$$[t_1] = \begin{cases} e & \text{if } \nu^{-1}(t_1) = w_\alpha, \ \alpha \in \Delta \\ a_{\widetilde{\alpha}} & \text{if } \nu^{-1}(t_1) = w_{\widetilde{\alpha}-1}, \ \widetilde{\alpha} \in \widetilde{\Delta}, \end{cases}$$

and then set

$$[t_1,\ldots,t_n] = \begin{cases} [t_1,\ldots,t_{n-1}] & \text{if } \nu^{-1}(t_n) = w_\alpha, \ \alpha \in \Delta\\ [t_1,\ldots,t_{n-1}] a_{t_1\cdots t_{n-1}\widetilde{\alpha}} & \text{if } \nu^{-1}(t_n) = w_{\widetilde{\alpha}-1}, \ \widetilde{\alpha} \in \widetilde{\Delta}. \end{cases}$$

It follows easily from the definition of [] that

(5)
$$[t_1, \ldots, t_k](t_1 \cdots t_k)[t_{k+1}, \ldots, t_n](t_1 \cdots t_k)^{-1} = [t_1, \ldots, t_n].$$

We claim that the element $[t_1, \ldots, t_n]$ of W_{aff} depends only on the product $t_1 \cdots t_n$ and not on the particular sequence t_1, \ldots, t_n .

Lemma 4.2. Let $t_1, \ldots, t_n, u_1, \ldots, u_m$ be elements of $\nu(S)$ such that

$$t_1\cdots t_n=u_1\cdots u_m.$$

Then $[t_1, \ldots, t_n] = [u_1, \ldots, u_m].$

Proof. Since $(\nu(W_K), \nu(S))$ is a Coxeter group, the word $t_1 \cdots t_n$ is obtainable from $u_1 \cdots u_m$ via the basic Coxeter group relations among the elements of $\nu(S)$, i.e., those of the form $(tu)^{m(t,u)} = e$, where $t, u \in \nu(S)$ and m(t, u) is some number in $\{1, 2, 3, 4, 6\}$ (see e.g. [5, 1.6]). Therefore, it suffices to show that [] remains unchanged when a subsequence of consecutive terms in a sequence t_1, \ldots, t_n is deleted according to such a relation. In fact, due to (5) one need only show that

(6)
$$[\underbrace{t, u, t, u, \dots, t, u}_{m(t, u)}] = [\emptyset] = e$$

for each basic relation $(tu)^{m(t,u)} = e$ among the elements of $\nu(S)$.

It is clear that (6) holds if $\nu^{-1}(t), \nu^{-1}(u) \in W$. Therefore we shall consider only those relations which involve some reflection $t \in \nu(S)$ such that $\nu^{-1}(t) \notin W$. Such a t is necessarily of the form $w_{\widetilde{\alpha}} = \nu(w_{\widetilde{\alpha}-1})$ for some $\widetilde{\alpha} \in \widetilde{\Delta}$. The basic relations involving $w_{\widetilde{\alpha}}$ are of the form

(7)
$$(w_{\widetilde{\alpha}}u)^m = \epsilon$$

where $u \in \nu(S)$ and $m \in \{1, 2, 3, 4\}$. (It is never the case that m = 6.)

First consider the case m = 1. Here u must equal $w_{\tilde{\alpha}}$ so (6) holds as

$$[w_{\widetilde{\alpha}}, w_{\widetilde{\alpha}}] = a_{\widetilde{\alpha}} a_{w_{\widetilde{\alpha}}\widetilde{\alpha}} = a_{\widetilde{\alpha}} a_{-\widetilde{\alpha}} = e$$

Now suppose that m > 1 and $\nu^{-1}(u) \in W$ in (7). Then

$$\underbrace{[w_{\widetilde{\alpha}}, u, \dots, w_{\widetilde{\alpha}}, u]}_{m} = a_{\widetilde{\alpha}} \dots a_{(w_{\widetilde{\alpha}}u)^{m-1}\widetilde{\alpha}}.$$

Since $w_{\widetilde{\alpha}}u$ is a rotation of order $m, \widetilde{\alpha} + \cdots + (w_{\widetilde{\alpha}}u)^{m-1}\widetilde{\alpha} = 0$ so (6) holds as

$$a_{\widetilde{\alpha}} \dots a_{(w_{\widetilde{\alpha}}u)^{m-1}\widetilde{\alpha}} = e.$$

Finally, suppose m > 1 and $\nu^{-1}(u) \notin W$ in (7). In this case, it follows that m = 2 and $u = w_{\widetilde{\beta}}$ for some $\widetilde{\beta} \in \widetilde{\Delta}$. Then $w_{\widetilde{\beta}}(\widetilde{\alpha}) = \widetilde{\alpha}$ and $w_{\widetilde{\alpha}}(\widetilde{\beta}) = \widetilde{\beta}$. It follows that (6) holds again as

$$[w_{\widetilde{\alpha}}, w_{\widetilde{\beta}}, w_{\widetilde{\alpha}}, w_{\widetilde{\beta}},] = a_{\widetilde{\alpha}} a_{w_{\widetilde{\alpha}} \widetilde{\beta}} a_{w_{\widetilde{\alpha}} w_{\widetilde{\beta}} \widetilde{\alpha}} a_{w_{\widetilde{\alpha}} w_{\widetilde{\beta}} w_{\widetilde{\alpha}} \widetilde{\beta}} = a_{\widetilde{\alpha}} a_{\widetilde{\beta}} a_{-\widetilde{\alpha}} a_{-\widetilde{\beta}} = e.$$

Let $t_1, \ldots, t_n \in \nu(S)$. Since $[t_1, \ldots, t_n]$ depends only on the product $t_1 \cdots t_n$, [] gives a function $\nu(W_K) \to W_{\text{aff}}$, which we will also denote by []. Explicitly, for $w \in \nu(W_K)$, $[w] = [t_1, \ldots, t_n]$ for any $t_1, \ldots, t_n \in \nu(S)$ with $w = t_1 \cdots t_n$. Note that [] is a 1-cocycle from $\nu(W_K)$ to the group of translations in W_{aff} .

Proposition 4.3. The space V of functions $W \to \mathbb{C}$ satisfying (3) and (4) has dimension $|W/\nu(W_K)|$.

Proof. Let R be a set of representatives for the left cosets of $\nu(W_K)$ in W. For each $\sigma \in R$, define the function $c_{\sigma} : W \to \mathbb{C}$ by setting

$$c_{\sigma}(w) = \begin{cases} \chi \delta^{1/2}([w']) & \text{if } w = \sigma w' \in \sigma \nu(W_K) \\ 0 & \text{if } w \notin \sigma \nu(W_K). \end{cases}$$

The c_{σ} are clearly linearly independent and are $|W/\nu(W_K)|$ in number. It suffices then to show that the c_{σ} are in V.

Fix $\sigma \in R$. Let α be an element of Δ such that $w_{\alpha} \in S$. If $w \notin \sigma \nu(W_K)$ then $ww_{\alpha} \notin \sigma \nu(W_K)$ so

$$c_{\sigma}(w) = 0 = c_{\sigma}(ww_{\alpha}).$$

If $w = \sigma w' \in \sigma \nu(W_K)$ then

$$c_{\sigma}(ww_{\alpha}) = c_{\sigma}(\sigma w'w_{\alpha}) = \chi \delta^{1/2}([w'w_{\alpha}]) = \chi \delta^{1/2}([w']) = c_{\sigma}(w).$$

Thus (3) holds for c_{σ} .

Now let $\widetilde{\alpha}$ be an element of $\widetilde{\Delta}$ such that $w_{\widetilde{\alpha}-1} \in S$. As before, if $w \notin \sigma \nu(W_K)$ then

$$c_{\sigma}(w) = 0 = \chi \delta^{1/2}(a_{w\widetilde{\alpha}})c_{\sigma}(ww_{\widetilde{\alpha}}).$$

And if $w = \sigma w' \in \sigma \nu(W_K)$ then

$$c_{\sigma}(ww_{\widetilde{\alpha}}) = c_{\sigma}(\sigma w'w_{\widetilde{\alpha}})$$

$$= \chi \delta^{1/2}([w'w_{\widetilde{\alpha}}])$$

$$= \chi \delta^{1/2}([w']a_{w'\widetilde{\alpha}})$$

$$= \chi \delta^{1/2}([w'])\chi \delta^{1/2}(a_{w'\widetilde{\alpha}})$$

$$= \chi \delta^{1/2}(a_{w'\widetilde{\alpha}})c_{\sigma}(w).$$

Thus c_{σ} satisfies (4) and lies in V.

It follows that dim $I(\chi)^K = \dim V = |W/\nu(W_K)|$.

References

- I.N. Bernstein and A.V. Zelevinskii, Representations of the group GL(n, F), where F is a non-Archimedean local field, Russian Math. Surveys, **31**(3) (1976), 1-66, MR 54 #12988, Zbl 0348.43007.
- [2] P. Cartier, Representations of p-adic groups: A survey, Automorphic Forms, Representations, and L-functions (Providence, RI) (Armand Borel and William Casselman, eds.), Proc. Symp. Pure Math., 33, Amer. Math. Soc., (1977), 111-155, MR 81e:22029, Zbl 0421.22010.
- W. Casselman, The unramified principal series of p-adic groups I, Compositio Math., 40 (1980), 387-406, MR 83a:22018, Zbl 0472.22004.
- [4] N. Iwahori, Generalized Tits system (Bruhat decomposition) on p-adic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Providence, RI) (Armand Borel and George D. Mostow, eds.), Proc. Symp. Pure Math., 9, Amer. Math. Soc., (1966), 71-89, MR 35 #6693, Zbl 0199.06901.
- [5] N. Iwahori and H. Matsumoto, On some Bruhat decompositions and the structure of the Hecke ring of p-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math., 25 (1965), 237-280, MR 32 #2486.
- [6] J. Tits, Reductive groups over local fields, Automorphic Forms, Representations, and L-functions (Providence, RI) (Armand Borel and William Casselman, eds.), Proc. Symp. Pure Math., 33, Amer. Math. Soc., (1977), 29-69, MR 80h:20064, Zbl 0415.20035.

Received August 1, 2000 and revised January 9, 2001.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ROCHESTER ROCHESTER, NEW YORK 14627 *E-mail address*: lansky@math.rochester.edu