Vol. 205, No. 1, 2002

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Combinatorial excursions in moduli space

Roger W. Barnard and G. Brock Williams

Vol. 205 (2002), No. 1, 3–30
Abstract

Given an abstract triangulation of a torus, there is a unique point in moduli space which supports a circle packing for this triangulation. We will describe combinatorial deformations analogous to the process of conformal welding. These combinatorial deformations allow us to travel in moduli space from any packable torus to a point arbitrarily close to any other torus we choose. We also provide two proofs of Toki’s result that any torus can be transformed into any other by a conformal welding and compute the maps necessary to accomplish the welding.

Milestones
Received: 31 October 2000
Revised: 31 May 2001
Published: 1 July 2002
Authors
Roger W. Barnard
Department of Mathematics
Texas Tech University
Lubbock, TX 79409
G. Brock Williams
Department of Mathematics
Texas Tech University
Lubbock, TX 79409