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We consider F : M → N a minimal submanifold M of real
dimension 2n, immersed into a Kähler–Einstein manifold N
of complex dimension 2n, and scalar curvature R. We assume
that n ≥ 2 and F has equal Kähler angles. Our main result
is to prove that, if n = 2 and R 6= 0, then F is either a
complex submanifold or a Lagrangian submanifold. We also
prove that, if n ≥ 3, M is compact and orientable, then: (A)
If R < 0, then F is complex or Lagrangian; (B) If R = 0, the
Kähler angle must be constant. We also study pluriminimal
submanifolds with equal Kähler angles, and prove that, if they
are not complex submanifolds, N must be Ricci-flat and there
is a natural parallel homothetic isomorphism between TM
and the normal bundle.

1. Introduction.

Let (N, J, g) be a Kähler manifold of complex dimension 2n and F : M → N
an immersed submanifold of real dimension 2n. We denote by ω the Kähler
form of N , ω(X, Y ) = g(JX, Y ). On M we take the induced metric gM =
F ∗g. N is Kähler-Einstein if its Ricci tensor is a multiple of the metric,
RicciN = Rg. At each point p ∈ M , we identify F ∗ω with a skew-symmetric
operator of TpM by using the musical isomorphism with respect to gM ,
namely gM (F ∗ω(X), Y ) = F ∗ω(X, Y ). We take its polar decomposition

F ∗ω = g̃Jω(1.1)

where Jω : TpM → TpM is a (in fact unique) partial isometry with the
same kernel Kω as of F ∗w, and where g̃ is the positive semidefinite operator
g̃ = |F ∗ω| =

√
−(F ∗ω)2. It turns out that Jω : K⊥ω → K⊥ω defines a complex

structure on K⊥ω , the orthogonal complement of Kω in TpM . Moreover, it
is gM -orthogonal. If we denote by Ω0

2k the largest open set of M where
F ∗ω has constant rank 2k, 0 ≤ k ≤ n, then K⊥ω is a smooth sub-vector
bundle of TM on Ω0

2k. Moreover, g̃ and Jω are both smooth on these open
sets. The tensor g̃ is continuous on all M and locally Lipschitz, for the map
P → |P | is Lipschitz in the space of normal operators. Let {Xα, Yα}1≤α≤n
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be a gM -orthonormal basis of TpM , that diagonalizes F ∗ω at p, that is

F ∗ω =
⊕

0≤α≤n

[
0 − cos θα

cos θα 0

]
,(1.2)

where cos θ1 ≥ cos θ2 ≥ · · · ≥ cos θn ≥ 0. The angles {θα}1≤α≤n are the
Kähler angles of F at p. Thus, ∀α, F ∗ω(Xα) = cos θαYα, F ∗ω(Yα) =
− cos θαXα and if k ≥ 1, where 2k is the rank of F ∗ω at p, JωXα = Yα

∀α ≤ k. The Weyl’s perturbation theorem applied to the eigenvalues of the
symmetric operator |F ∗ω| shows that, ordering the cos θα in the above way,
the map p → cos θα(p) is locally Lipschitz on M , for each α. A complex
direction of F is a real two-plane P of TpM such that dF (P ) is a complex
line of TF (p)N , i.e., JdF (P ) ⊂ dF (P ). Similarly, P is said to be a La-
grangian direction of F if ω vanishes on dF (P ), that is, JdF (P )⊥dF (P ).
The immersion F has no complex directions iff cos θα < 1 ∀α. M is a
complex submanifold iff cos θα = 1 ∀α, and is a Lagrangian submanifold
iff cos θα = 0 ∀α. We say that F has equal Kähler angles if θα = θ ∀α.
Complex and Lagrangian submanifolds are examples of such case. If F is a
complex submanifold, then Jω is the complex structure induced by J of N .
The Kähler angles are some functions that at each point p of M measure the
deviation of the tangent plane TpM of M from a complex or a Lagrangian
subspace of TF (p)N . This concept was introduced by Chern and Wolfson
[Ch-W] for oriented surfaces, namely F ∗ω = cos θ Vol M . This cos θ may
have negative values and is smooth on all M . In our definition, for n = 1, we
demanded cos θ ≥ 0, that is, it is the modulus of the cos θ given for surfaces.
This may make our cos θ do not be smooth. We have chosen this defini-
tion, because in higher dimensions we do not have a preferential orientation
assigned to the real planes span {Xα, Yα}.

Our main aim is to find conditions for a minimal submanifold F to be
Lagrangian or complex, or M to be a Kähler manifold with respect to Jω.
A first result in this direction is due to Wolfson, for the case n = 1:

Theorem 1.1 ([W]). If M is a real compact surface and N is a complex
Kähler-Einstein surface with R < 0, anf if F is minimal with no complex
points, then F is Lagrangian.

Some results of [S-V] are a generalization of the above theorem to higher
dimensions. In this paper we study the case of equal Kähler angles. Let us
denote by∇XdF (Y ) = ∇dF (X, Y ) the second fundamental form of F . It is a
symmetric tensor and takes values in the normal bundle NM = (dF (TM))⊥.
F is minimal iff tracegM∇dF = 0. Let ( )⊥ denote the orthogonal projection
of F−1TN onto the normal bundle. If F is an immersion with no complex
directions at p and {Xα, Yα} diagonalizes F ∗ω at p, then {dF (Zα), dF (Zα),
(JdF (Zα))⊥, (JdF (Zα))⊥} constitutes a complex basis of T c

F (p)N , where
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Zα =
Xα − iYα

2
= “α”, Zα = Zα =

Xα + iYα

2
= “α”(1.3)

are complex vectors of the complexified tangent space of M at p. We extend
to the complexified vector bundles the Riemannian tensor metric gM (some-
times denoted by 〈, 〉), the curvature tensors of M and N , and any other
tensors that will occur, always by C-multilinearity. On M the Ricci tensor of
N can be described by the following expression ([S-V]): For U, V ∈ TF (p)N ,

RicciN (U, V ) =
∑

1≤µ≤n

4
sin2 θµ

RN (U, JV, dF (µ), (JdF (µ))⊥),(1.4)

where RN denotes the Riemannian curvature tensor of N . An application
of Codazzi equation to the above expression proves that, if N is Kähler-
Einstein with R 6= 0, Theorem 1.1 can be generalized to any dimension for
totally geodesic immersions without complex directions ([S-V]).

We can also obtain the same conclusion to “broadly-pluriminimal” immer-
sions for n = 2, and N Kähler-Einstein with negative Ricci tensor ([S-V]). A
minimal immersion F is said to be broadly-pluriminimal, if, for each p ∈ Ω0

2k,
with k ≥ 1, F is pluriharmonic with respect to any gM -orthogonal complex
structure J̃ = Jω ⊕ J ′ on TpM where J ′ is any gM -orthogonal complex
structure of Kω at p, that is, (∇dF )(1,1) = 0. The (1,1)-part of ∇dF is just
given by (∇dF )(1,1)(X, Y ) = 1

2(∇dF (X, Y ) +∇dF (J̃X, J̃Y )) ∀X, Y ∈ TpM.
If Kω = 0, this means that F is pluriharmonic with respect to the almost
complex structure Jω (see for example [O-V]). In this case, we say that F is
pluriminimal in the usual sense, or simply pluriminimal. Pluriharmonic im-
mersions are obviously minimal. If F has equal Kähler angles, then only Ω0

2n

is considered, where Kω = 0 and J̃ = Jω. Products of minimal real surfaces
of Kähler surfaces, totally geodesic submanifolds, minimal Lagrangian sub-
manifolds, and complex submanifolds are examples of broadly-pluriminimal
submanifolds. In Sections 2 and 3, using an isomorphism Φ from the tangent
bundle of M into the normal bundle, we will see that pluriminimal immer-
sions with equal Kähler angles immersed into Kähler-Einstein manifolds,
and that are not complex submanifolds, can be interpretated as subman-
ifolds with “torsion free” normal bundle. Moreover, they have constant
Kähler angle, and only exist on Ricci-flat manifolds. In this case, Φ defines
a parallel homothetic isomorphism between TM and NM .

For a minimal immersion F with no complex directions we consider the
locally Lipschitz map, symmetric on the Kähler angles,

κ =
∑

1≤α≤n

log
(

1 + cos θα

1− cos θα

)
.(1.5)
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This map is smooth on each Ω0
2k, nonnegative, and vanishes at Lagrangian

points. It is an increasing map on each cos θα. In [S-V] we have given an
expression for 4κ at a point p0 ∈ Ω0

2k, which we prove in the appendix of
this paper, namely,

4κ = 4i
∑
β

RicciN (JdF (β), dF (β))

(1.6)

+
∑
β,µ

32
sin2 θµ

Im (RN (dF (β), dF (µ), dF (β), JdF (µ) + i cos θµdF (µ)))

−
∑
β,µ,ρ

64(cos θµ + cos θρ)
sin2 θµ sin2 θρ

· Re
(
g(∇βdF (µ), JdF (ρ))g(∇βdF (ρ), JdF (µ))

)
+
∑
β,µ,ρ

32(cos θρ − cos θµ)
sin2 θµ sin2 θρ

·
(
|g(∇βdF (µ), JdF (ρ))|2 + |g(∇βdF (µ), JdF (ρ))|2

)
+
∑
β,µ,ρ

32(cos θµ + cos θρ)
sin2 θµ

(|〈∇βµ, ρ〉|2 + |〈∇βµ, ρ〉|2),

where {Xα, Yα}1≤α≤n is a gM -orthonormal local frame of M , with Yα =
JωXα for α ≤ k, {Xα, Yα}α≥k+1 any gM -orthonormal frame of Kω, and
which at p0 diagonalizes F ∗ω. For F pluriminimal on Ω0

2n and N Kähler-
Einstein, we can get the following very simple final expression on Ω0

2n ([S-V])

4κ = −2R

 ∑
1≤β≤n

cos θβ

 .(1.7)

If F has equal Kähler angles, then the expression of 4κ given in (1.6) can
also be substantially simplified. Minimal surfaces with constant curvature
and constant Kähler angle in complex space forms have been classified in [O].
Conditions on the curvature of M , N , and/or constant equal Kähler angles
lead to some conclusions in our case as well, as we show in the theorems
below. Henceforth, we assume N is Kähler-Einstein. The expression for
4κ, where the Ricci tensor of N appears, and the Weitzenböck formula for
F ∗ω, leading to an integral equation involving the scalar curvature R, some
trigonometric functions of the common Kähler angle, and the gradient of its
cosine (Proposition 4.2), are our tools to obtain the results of this paper. In
Section 4 we prove our main results, namely:
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Theorem 1.2. Let F be a minimal immersion of a manifold M , into a
Kähler-Einstein manifold N , with equal Kähler angles.

(i) If n = 2 and R 6= 0, then F is either a complex or a Lagrangian
submanifold.

(ii) If n ≥ 3, M is compact, orientable, R < 0, then F is either a complex
or Lagrangian submanifold.

(iii) If n ≥ 3, M is compact, orientable, R = 0, then the common Kähler
angle must be constant.

The conclusions in (i) and (ii) give a generalization of Theorem 1.1 to
higher dimensions and equal Kähler angles. The case n = 2 is the most
special, because, in this dimension, immersions with equal Kähler angles
have harmonic F ∗ω, as we will see in Section 3. The cases n = 3 or 4 also
have special properties. If the angle is constant we may allow R > 0:

Theorem 1.3. Let F be minimal with constant equal Kähler angles, M
compact, orientable, and R 6= 0. Then, F is either a complex or a La-
grangian submanifold.

Theorem 1.4. Let F be minimal with equal Kähler angles, and M compact,
orientable, with nonnegative isotropic scalar curvature. If n = 2, 3 or 4, then
one of the following cases holds:

(i) M is a complex submanifold of N .
(ii) M is a Lagrangian submanifold of N .
(iii) R = 0 and cos θ = constant 6= 0, 1, Jω is a complex integrable struc-

ture, with (M,Jω, gM ) a Kähler manifold.
For any n ≥ 1, any R, and constant equal Kähler angle, (i), (ii) or (iii) hold
as well.

This theorem can be applied, for instance, to flat minimal tori on Calabi-
Yau manifolds, or to spheres or products of S2 with S2 or with flat tori
minimaly immersed into Kähler-Einstein manifolds with positive scalar cur-
vature.

2. The morphism Φ.

We consider the following morphism of vector bundles

Φ : TM → NM
X → (JdF (X))⊥.

We easily verify that

Φ(X) = JdF (X)− dF (F ∗ω(X)).(2.1)

Both TM and NM are real vector bundles of the same dimension 2n. F
has no complex directions iff Φ is an isomorphism. In fact Φ(X) = 0,
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iff JdF (X) = dF (Y ) for some Y , i.e., span {X, Y = “JX”} is a complex
direction of F . Assume there are no complex directions. Then,

ĝ(X, Y ) = gM (X, Y )− gM (F ∗ω(X), F ∗ω(Y ))(2.2)

defines a Riemannian metric on M . With this metric, Φ : (TM, ĝ) →
(NM, g) is an isomorphism of Riemannian vector bundles. Let us denote
by ∇, ∇̂, ∇⊥, and ∇′, respectively, the Levi-Civita connection of (M, gM ),
the Levi-Civita connection of (M, ĝ), the usual connection of NM induced
by the Levi-Civita connection of N , and the connection on TM that makes
the isomorphism Φ parallel, namely ∇′= Φ−1∗∇⊥. We will also denote by
∇ the Levi-Civita connection of N and the induced connection on F−1TN ,
as well. Thus, if U is a smooth section of NM ⊂ F−1TN , and X, Y are
smooth vector fields on M , we have

∇⊥
X U = (∇XU)⊥ Φ(∇′

XY ) = ∇⊥
X (Φ(Y )).

The connections ∇ and ∇̂ have no torsion, because they are Levi-Civita,
but ∇′may have nonzero torsion T ′. Since both ∇̂and ∇′ are Riemannian
connections of TM for the same Riemannian metric ĝ, then T ′ = 0 iff
∇̂ = ∇′ iff Φ is parallel. Note that, if F is Lagrangian, then Φ(X) =
JdF (X) ∈ NM , J(NM) = dF (TM), and ĝ = gM , ∇̂ = ∇. Therefore,
∇XΦ (Y ) = (J∇XdF (Y ))⊥ = 0, that is, Φ is parallel, and so ∇′ = ∇, as
well. In the next section (Corollary 3.2), we will see a converse of this. We
extend Φ : TM c → NM c to the complexified spaces by C-linearity.

Lemma 2.1. If {Xα, Yα} is a diagonalizing gM -orthonormal basis of F ∗ω
at p, then at p, and for each α, β

Φ(T ′(Zα, Zβ)) = i(cos θα + cos θβ)∇ZαdF (Zβ)

Φ(T ′(Zα, Zβ)) = i(cos θα − cos θβ)∇ZαdF (Zβ).

Proof.

Φ(∇′
XY ) = ∇⊥

X (Φ(Y )) = (∇X(Φ(Y )))⊥

= (∇X(JdF (Y )− dF (F ∗ω(Y ))))⊥

= (J∇XdF (Y ) + JdF (∇XY )−∇XdF (F ∗ω(Y )))⊥.

Therefore, using the symmetry of the ∇dF and the fact that ∇is torsionless,

Φ(T ′(X, Y )) = Φ(∇′
XY −∇′

Y X − [X, Y ])(2.3)

= −∇XdF (F ∗ω(Y )) +∇Y dF (F ∗ω(X)).

The lemma follows now immediately. �
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For each U ∈ NMp, let us denote by AU : TpM → TpM the symmetric
operator gM (AU (X), Y ) = g(∇dF (X, Y ), U). From Lemma 2.1 and (2.3) we
have:

Proposition 2.1. If F is an immersion without complex directions, then:
(i) Φ is parallel iff F ∗ω anti-commutes with AU , ∀U ∈ NM .
(ii) If F has equal Kähler angles, on Ω0

2n, T ′ is of type (1, 1) with respect
to Jω.

(iii) On Ω0
2n, F is pluriminimal iff T ′ is of type (2, 0) + (0, 2) with respect

to Jω.

Remark 1. If we call ωNM the restriction of the Kähler form ω to the nor-
mal bundle NM , we see that, if {Xα, Yα} is a diagonalizing gM -orthonormal
basis of F ∗ω at a point p, then

{
Uα = Φ

(
Yα

sin θα

)
, Vα = Φ

(
Xα

sin θα

)}
is a diag-

onalizing g-orthonormal basis of ωNM . Moreover, NM has the same Kähler
angles as F . Let JNM denote the complex structure on NM defined by this
basis, that is, the one that comes from the polar decomposition of ωNM .
Then, ΦJω = −JNMΦ.

We should also remark the following:

Proposition 2.2. If F is an immersion with parallel 2-form F ∗ω, then
the Kähler angles are constant and, in particular, M = Ω0

2k for some
k. In this case, considering TM with the Levi-Civita connection ∇, Kω

and K⊥ω are parallel sub-vector bundles of TM , and Jω ∈ C∞(K⊥∗ω ⊗ K⊥ω ),
g̃, ĝ ∈ C∞(

⊙2 T ∗M) are parallel sections. Furthermore, (X, Y, Z) →
g(∇ZdF (X), JdF (Y )) is symmetric on TM , and, if F has no complex di-
rections, ∇̂ = ∇. Moreover, if cos θα1 > · · · > cos θαr are the distinct
eigenvalues of F ∗ω, the corresponding eigenspaces Eαt define a smooth in-
tegrable distribution of TM whose integral submanifolds are totally geodesic
submanifolds of M . The integral submanifolds of Eαr are isotropic in N
if cos θαr = 0, and the ones of Eα1 are complex submanifolds of N if
cos θα1 = 1. The other ones are Kähler manifolds with respect to Jω, and
F restricted to each one of them is an immersion of constant equal Kähler
angles θαt with respect to J .

Proof. If X, Y are smooth vector fields on M and Z ∈ TpM , an elementary
computation gives

∇ZF ∗ω(X, Y ) = −g(∇ZdF (X), JdF (Y )) + g(∇ZdF (Y ), JdF (X)),(2.4)

which proves the symmetry of (X, Y, Z) → g(∇ZdF (X), JdF (Y )). From
(2.2) we see that ĝ is parallel. Consequently, away from complex directions,
∇= ∇̂. If we parallel transport a diagonalizing orthonormal basis {Xα, Yα}
of F ∗ω at p0 along geodesics, on a neighbourhood of p0, since F ∗ω is parallel
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we get a diagonalizing orthonormal frame on a whole neighbourhood with
the property ∇Xα(p0) = ∇Yα(p0) = 0. It also follows that cos θα remains
constant along geodesics, so it is constant, and Jω(Xα) = Yα on a neigh-
bourhood of p0, with ∇Jω = 0 at p0, and so Jω is parallel. Similarly we
see that g̃ is parallel. If we extend F ∗ω to the complexified tangent space
T c

p0
M , then F ∗ω(Zα) = i cos θαZα, and F ∗ω(Zα) = −i cos θαZα. Obviously,

the corresponding eigenspaces of F ∗ω, are parallel sub-vector bundles of
T cM . �

3. Immersions with equal Kähler angles.

If F has equal Kähler angles, then

F ∗ω = cos θ Jω and ĝ = sin2 θ gM ,

with cos θ a locally Lipschitz map on M , smooth on the open set where it
does not vanish, and Ω0

2k = ∅ ∀k 6= 0, n. Note that sin2 θ and cos2 θ are
smooth on all M . The set L = cos θ−1({0}) is the set of Lagrangian points,
for, at these points, the tangent space of M is a Lagrangian subspace of
the tangent space of N . Similarly, we say that C = cos θ−1({1}) is the
set of complex points. If M has a fixed orientation, we can distinguish
the set of well-oriented complex points from the twisted complex points,
according Jω defines the same or the opposite orientation. On the open set
Ω0

2n = cos θ−1(R ∼ {0}) = M ∼ L, Jω defines a smooth almost complex
structure gM -orthogonal. On the open set cos θ−1(R ∼ {1}) = M ∼ C, ĝ is a
smooth metric conformally equivalent to gM . Thus, if n ≥ 2, ∇̂= ∇ iff θ is
constant. Since the Kähler angles are equal, any smooth local orthonormal
frame of the type {Xα, Yα = JωXα} diagonalizes F ∗ω on the whole set where
it is defined. Differentiating F ∗ω = cos θJω, we get∇XF ∗ω = d cos θ(X)Jω+
cos θ∇XJω, with Jω orthogonal to∇XJω with respect to the Hilbert-Schmidt
inner product (because ‖Jω‖2 = 2n is constant). Hence, considering F ∗ω an
operator on TM , on Ω0

2n ∪ Ω0
0

‖∇F ∗ω‖2 = 2n‖∇ cos θ‖2 + cos2 θ‖∇Jω‖2.(3.1)

Then, on Ω0
2n, ∇F ∗ω = 0 iff ∇Jω = 0 and θ is constant. Note that ‖∇F ∗ω‖2,

considering F ∗ω an operator on TM , is twice the square norm when con-
sidering F ∗ω a 2-form. From (2.3) we get, on M ∼ C,

Φ(T ′(X, Y )) = 2 cos θ(∇dF )(1,1)(JωX, Y ).(3.2)

The right-hand side of (3.2) is defined to be zero at a Lagrangian point.
Consequentely

Proposition 3.1. If F is an immersion with equal Kähler angles and with-
out complex points, then T ′ = 0, that is, ∇′ = ∇̂ iff Φ is parallel iff F is
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Lagrangian or pluriminimal. In particular, if F is minimal, Φ is parallel iff
F is broadly-pluriminimal.

This also holds for n = 1, where pluriminimality condition coincides with
minimality. In this case ±Jω is the natural (local) complex structure of the
surface (the sign depends on the (local) chosen orientation). Let Re (u+iv) =
u, for u, v ∈ NM .

Proposition 3.2. If F is any immersion with equal Kähler angles, then,
away from complex and Lagrangian points,

Φ
(

1− n

4
∇ log sin2 θ

)

=
4 cos θ

sin2 θ
Re

i
∑
β,µ

(g(∇µdF (µ), JdF (β))− g(∇µdF (β), JdF (µ)))Φ(β)

 ,

where ∇ log sin2 θ is the gradient with respect to gM .

If F is a complex submanifold on a open set, then Jω is the induced com-
plex structure on M and ∇dF is of type (2, 0). Applying Proposition 2.2
on Ω0

0, and Proposition 3.2 on open sets without complex and Lagrangian
points, and noting that {Φ(β),Φ(β) = Φ(β)}1≤β≤n multiplied by

√
2

sin θ con-
stitutes an unitary basis of NM c, we immediately conclude:

Corollary 3.1. If F is an immersion with equal Kähler angles, and n ≥ 2,
then θ is constant iff∑

µ

g(∇µdF (µ), JdF (β)) =
∑

µ

g(∇µdF (β), JdF (µ)) ∀β.(3.3)

Note that (3.3) is a sort of symmetry property, and the first term is just
n
2 g(H,JdF (β)), where H = 1

2ntracegM∇dF = 2
n

∑
µ∇dF (µ, µ) is the mean

curvature of F .

Theorem 3.1. If n ≥ 2 and F is a pluriminimal immersion with equal
Kähler angles then cos θ = constant. Moreover, if it is not a complex sub-
manifold, then ∇ = ∇̂ = ∇′, and N must be Ricci-flat. In particular, Φ
defines a parallel homothetic isomorphism from (TM, gM ) onto (NM, g).

Proof. On a neighbourhood of a non-complex point, from Proposition 3.1,
∇̂= ∇′, and from Corollary 3.1, cos θ is constant. Then ∇̂= ∇, as well. So if
F is not a complex submanifold, it has no complex points anywhere. Finally,
(1.7) for pluriminimal immersions with κ = constant gives R = 0. �

The above theorem and Proposition 3.1 lead to:

Corollary 3.2. If F is a minimal immersion with equal Kähler angles,
without complex points, n ≥ 2, and R 6= 0, then F is Lagrangian iff Φ
is parallel.
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To prove Proposition 3.2 we will need to relate the three connections of
M , ∇, ∇̂ and ∇′. Let {e1, . . . , e2n} = {Xµ, Yµ = JωXµ}1≤µ≤n be a local
gM -orthonormal frame away from the Lagrangian and complex set, and
∂1, . . . , ∂2n a local frame of M defined by a coordinate chart. Set gij =
gM (∂i, ∂j), ĝij = ĝ(∂i, ∂j) = sin2 θgij , and es =

∑
i λsi∂i. The Christofel

symbols are given by 2Γ̂k
ij =

∑
s ĝks(∂iĝsj +∂j ĝis−∂sĝij) = δkj∂i log sin2 θ +

δki∂j log sin2 θ −
∑

s gksgij∂s log sin2 θ + 2Γk
ij . Hence

∇̂∂i
∂j −∇∂i

∂j =
∑

k

(Γ̂k
ij − Γk

ij)∂k

=
1
2
(∂i(log sin2 θ)∂j + ∂j(log sin2 θ)∂i − gij∇(log sin2 θ)).

Since
∑

ij gijλsiλsj = 1,
∑

s ∇̂eses −∇eses =
∑

sij λsiλsj(∇̂∂i
∂j −∇∂i

∂j) =
(1− n)∇ log sin2 θ. Therefore,∑

µ

∇̂µµ−∇µµ =
1
4

∑
µ

(
∇̂XµXµ + ∇̂YµYµ −∇XµXµ −∇YµYµ

)
(3.4)

− i(∇̂XµYµ − ∇̂YµXµ −∇XµYµ +∇YµXµ)

=
1
4

∑
s

(∇̂eses −∇eses) +
i

4

∑
µ

([Yµ, Xµ]− [Yµ, Xµ])

=
(1− n)

4
∇ log sin2 θ.

Set S′(X, Y ) =∇′
XY − ∇̂XY . Then S′(X, Y )− S′(Y, X) = T ′(X, Y ). Similarly

we get ∑
µ∇′

µµ− ∇̂µµ = 1
4 tracegM

S′ − i
4

∑
µ T ′(Xµ, Yµ).(3.5)

Lemma 3.1. ∀X ∈ TpM ,
∑

i ĝ(S′(ei, ei), X) = −
∑

i ĝ(T ′(ei, X), ei).

Proof. We may assume that the local referencial ∂i is ĝ-orthonormal at a
fixed point p0. On a neighbourhood of p0, we define Γ′kij and S′kij as

∇′
∂i

∂j =
∑

k

Γ′kij∂k, S′(∂i, ∂j) =
∑

k

S′
k
ij∂k =

∑
k

(Γ′kij − Γ̂k
ij)∂k.

Then T ′ij
k= Γ′kij−Γ′kji, and, at p0, Γ′kij= ĝ(∇′

∂i
∂j , ∂k), S′kij = ĝ(S′(∂i, ∂j), ∂k)

= Γ′kij − Γ̂k
ij . ∇′ is a Riemannian connection with respect to ĝ. Then

∂iĝjk(p0) = ĝ(∇′
∂i

∂j , ∂k) + ĝ(∂j ,∇′
∂i

∂k) = Γ′kij + Γ′jik.
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Hence, at p0

2Γ̂k
ij =

∑
s

ĝks(∂iĝsj + ∂j ĝis − ∂sĝij)

= Γ′jik + Γ′kij + Γ′kji + Γ′ijk − Γ′jki − Γ′ikj

= (Γ′kij + Γ′kji) + (Γ′jik − Γ′jki) + (Γ′ijk − Γ′ikj)

= (Γ′kij + Γ′kji) + T ′
j
ik + T ′

i
jk.

But Γ′k
ij + Γ′k

ji = 2Γ′k
ij + (Γ′k

ji − Γ′k
ij) = 2Γ′k

ij + T ′k
ji. Thus

S′
k
ij = Γ′kij − Γ̂k

ij =
1
2
(T ′kij − T ′

j
ik + T ′

i
kj).

That is, at p0, ĝ(S′(∂i, ∂j), ∂k) = 1
2(ĝ(T ′(∂i, ∂j), ∂k) − ĝ(T ′(∂i, ∂k), ∂j) +

ĝ(T ′(∂k, ∂j), ∂i)). We may assume that, at p0, ∂i(p0) = ei
sin θ , leading to the

Lemma. �

Proof of Proposition 3.2. Following the proof of Lemma 2.1, Φ(∇′
Xµ−∇Xµ)

= ((J − i cos θ)∇XdF (µ))⊥. Hence, from (3.4),

Φ
(

(1− n)
4

∇ log sin2 θ

)
= Φ

(∑
µ

∇̂µµ−∇µµ

)

=
(

(J − i cos θ)
nH

2

)⊥
−
∑

µ

Φ(∇′
µµ− ∇̂µµ).

But, from (3.5),
∑

µ Φ(∇′
µµ− ∇̂µµ) = 1

4Φ(tracegM S′)− i
4Φ(

∑
µ T ′(Xµ, Yµ)).

The skew-symmetry of T ′ and (3.2) implies that

Φ

(∑
µ

T ′(Xµ, Yµ)

)
= −2i

∑
µ

Φ(T ′(µ, µ)) = 4 cos θ∇µdF (µ) = 2n cos θH.

Thus,
∑

µ Φ(∇′
µµ− ∇̂µµ) = 1

4Φ(tracegM S′)− ni
2 cos θH. Therefore,

Φ
(

(1− n)
4

∇ log sin2 θ

)
=

1
4
(2n(JH)⊥ − Φ(TracegM S′)).(3.6)
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Using Lemma 3.1, (3.2), and Φ(µ) = JdF (µ)− i cos θdF (µ), we have

Φ(TracegM S′)

=
∑
j,k

ĝ
(
S′(ej , ej),

ek

sin θ

)
Φ
( ek

sin θ

)
=
∑
j,k

−ĝ
(
T ′
(
ej ,

ek

sin θ

)
, ej

)
Φ
( ek

sin θ

)
=

−4
sin2 θ

∑
µ,β

((ĝ(T ′(µ, β), µ) + ĝ(T ′(µ, β), µ))Φ(β)

+ (ĝ(T ′(µ, β), µ) + ĝ(T ′(µ, β), µ))Φ(β))

= − 4
sin2 θ

∑
µ,β

(g(Φ(T ′(µ, β)),Φ(µ))Φ(β) + g(Φ(T ′(µ, β)),Φ(µ))Φ(β))

=
8i cos θ

sin2 θ

∑
µ,β

(g(∇µdF (β), JdF (µ))Φ(β)− g(∇µdF (β), JdF (µ))Φ(β)).

Writing (JH)⊥ in terms of Φ(β) and Φ(β),

2n(JH)⊥ =
∑
β

4n

sin2 θ
(g(JH,Φ(β))Φ(β) + g(JH,Φ(β))Φ(β))

=
∑
β,µ

8i cos θ

sin2 θ
(g(∇µdF (µ), JdF (β))Φ(β)

− g(∇µdF (µ), JdF (β))Φ(β)),

and substituing these equations into (3.6), we prove Proposition 3.2. �

3.1. The Weitzenböck formula for F ∗ω. For simplicity let us use the
notation

gXY Z = g(∇XdF (Y ), JdF (Z)).

We also observe that, from

∀µ i

2
cos θ = F ∗ω(µ, µ),(3.7)

valid on an open set, and from (2.4), we obtain ∀µ
i

2
d cos θ(X) = d(F ∗ω(µ, µ))(X)(3.8)

= ∇XF ∗ω(µ, µ) + F ∗ω(∇Xµ, µ) + F ∗ω(µ,∇Xµ)

= −gXµµ + gXµµ + 2(〈∇Xµ, µ〉+ 〈∇Xµ, µ〉)F ∗ω(µ, µ)

= −gXµµ + gXµµ (no sumation over µ).
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Then (3.3) is equivalent to g(∇XdF (µ), JdF (µ)) = g(∇XdF (µ), JdF (µ)), ∀µ
(or some µ). From JωZα = iZα, JωZα = −iZα and the fact that Jω is gM -
orthogonal, we get, on Ω0

2n, ∀α, β, and ∀v ∈ TM

〈∇vJω(α), β〉 = 2i〈∇vα, β〉, 〈∇vJω(α), β〉 = 0.(3.9)

Recall that, if ξ is a r+1-form on M , r ≥ 0, with values on a vector bundle
E over M with a connection ∇E , then δξ, the divergence of ξ, is the r-form
on M with values on E given by

δξ(u1, . . . , ur) = −
∑

s

∇E
es

ξ(es, u1, . . . , ur),

where e1, . . . , em is an orthonormal basis of TpM , ui ∈ TpM , and ∇Eξ is the
covariant derivative of ξ on

∧r+1 T ∗M ⊗ E. Thus, δ is the formal adjoint
of d on forms (cf. [E-L]). Note that δF ∗ω(X) = 〈δF ∗ω, X〉, ∀X ∈ TpM ,
considering on the left-hand side F ∗ω a (closed) 2-form on M and on the
right-hand side an endomorphism of TM .

Proposition 3.3. Let F be an immersion with equal Kähler angles and
∇ cos θ denote the gradient with respect to gM . On Ω0

2n, and considering
F ∗ω an endomorphism of TM .

δF ∗ω = (n− 2)Jω(∇ cos θ), cos θ(δJω) = (n− 1)Jω(∇ cos θ).

Thus,

(i) For n = 1, δJω = 0 (obviously !), and δF ∗ω = 0 iff θ is constant.
(ii) For n = 2, δF ∗ω = 0. Moreover, δJω = 0 iff θ is constant.
(iii) For n 6= 1, 2, δF ∗ω = 0 iff δJω = 0 iff θ is constant.

In particular, if n ≥ 2 and (Ω0
2n, Jω, g) is Kähler, then θ is constant.

Proof. Considering F ∗ω a 2-form on M , using the symmetry of ∇dF and
(2.4), if X∈TpM ,

δ(F ∗ω)(X) =
∑

µ

−2∇µF ∗ω(µ,X)− 2∇µF ∗ω(µ,X)

=
∑

µ

2gµµX − 2gµXµ + 2gµµX − 2gµXµ

= 2
∑

µ

(−gXµµ + gXµµ)− 4
∑

µ

(gµXµ− gµµX).

From (3.8), ni
2 d cos θ(X) =

∑
µ−gXµµ + gXµµ. Therefore,

δ(F ∗ω)(X) = nid cos θ(X)− 4
∑

µ

∇µF ∗ω(µ,X).(3.10)
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Since F ∗ω is of type (1, 1) with respect to Jω, and ∀Z ∈ T c
pM , ∀µ, β,

〈∇Zβ, µ〉 = −〈β,∇Zµ〉, we get using (3.9)

∇ZF ∗ω(µ, β) = d(F ∗ω(µ, β))(Z)− F ∗ω(∇Zµ, β)− F ∗ω(µ,∇Zβ)(3.11)

= 2i cos θ〈∇Zµ, β〉 = cos θ〈∇ZJω(µ), β〉.

Note that, since J2
ω = −Id, ∇XJω(JωY ) = −Jω(∇XJω(Y )), ∀X, Y ∈ TpM .

So

4
∑

µ

∇µJω(µ) =
∑

µ

∇XµJω(Xµ) +∇YµJω(Yµ) + i∇YµJω(Xµ)− i∇XµJω(Yµ)

= −δJω + i
∑

µ

(−∇XµJω(JωXµ)−∇YµJω(JωYµ))

= −(δJω + iJω(δJω)).

Hence, from (3.11), and since Jω is gM -orthogonal, ∀β∑
µ

∇µF ∗ω(µ, β) = −cos θ

4
〈δJω + iJω(δJω), β〉 = −cos θ

2
〈δJω, β〉.

Moreover, id cos θ(β) = d cos θ(Jωβ) = 〈∇ cos θ, Jωβ〉 = −〈Jω(∇ cos θ), β〉.
From (3.10), δF ∗ω(β) = 〈−nJω(∇ cos θ) + 2 cos θ δJω, β〉. Thus, if we con-
sider F ∗ω an endomorphism of TM , and since 〈, 〉, Jω, and F ∗ω are real
operators,

δF ∗ω = −nJω(∇ cos θ) + 2 cos θ δJω.(3.12)

On the other hand, F ∗ω = cos θJω. Then, an elementary computation gives

δF ∗ω = −Jω(∇ cos θ) + cos θ δJω.(3.13)

Comparing (3.12) with (3.13) we get the Proposition. �

If we apply the Weitzenböck formula to the 2-form F ∗ω, for an immersion
F : M → N we get (see e.g., [E-L] (1.32))

1
2
4‖F ∗ω‖2 = −〈4F ∗ω, F ∗ω〉+ ‖∇F ∗ω‖2 + 〈SF ∗ω, F ∗ω〉,(3.14)

where 〈, 〉 denotes the Hilbert-Schmidt inner product for 2-forms, and S is
the Ricci operator of

∧2 T ∗M . We note that we use the the sign convention
4φ = +TracegM Hess φ, for φ a smooth real map on M . This sign is opposite
to the one of [E-L], but here we use the same sign as in [E-L] for the
Laplacian of forms 4 = dδ + δd. If R denotes the curvature tensor of∧2 T ∗M , and X, Y, u, v ∈ TpM , ξ ∈

∧2 T ∗p M , then

R(X, Y )ξ (u, v) = −ξ(RM (X, Y )u, v)− ξ(u, RM (X, Y )v),

SF ∗ω(X, Y ) =
∑

1≤i≤2n

−R(ei, X)F ∗ω (ei, Y ) + R(ei, Y )F ∗ω (ei, X),
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where RM denotes the curvature tensor of M . In general, we use the fol-
lowing sign convention for curvature tensors: RM (X, Y )Z = −∇X∇Y Z +
∇Y∇XZ + ∇[X,Y ]Z. Then, RM (X, Y, Z,W ) = gM (RM (X, Y )Z,W ). It is
straightforward to prove:

Lemma 3.2. If {Xα, Yα} is a diagonalizing orthonormal basis of F ∗ω at p,

〈SF ∗ω, F ∗ω〉 =
∑

µ

4 cos2 θµRicciM (µ, µ) +
∑
µ,ρ

8 cos θµ cos θρR
M (ρ, ρ, µ, µ)

=
∑
µ,ρ

4(cos θµ + cos θρ)2RM (ρ, µ, ρ, µ)

+ 4(cos θµ − cos θρ)2RM (ρ, µ, ρ, µ).

In particular, if F has equal Kähler angles at p, then, at p,

〈SF ∗ω, F ∗ω〉 = 16 cos2 θ
∑
ρ,µ

RM (ρ, µ, ρ, µ).

Moreover, if (M,Jω, gM) is Kähler in a neighbourhood of p, then 〈SF ∗ω, F ∗ω〉
= 0.

We recall the concept of nonnegative isotropic sectional curvature, for M
with dimension ≥ 4, defined by Micallef and Moore in [Mi-Mo]. Let

Kisot(σ) =
RM (z, w, z, w)
||z ∧ w||2

,

where σ = spanC{z, w} is a totally isotropic complex two-plane in T cM , that
is, u ∈ σ ⇒ gM (u, u) = 0, and where RM (x, y, u, v) is extend to the complex-
ified tangent space by C-multilinearity. The curvature of M is said to be non-
negative (resp. positive) on totally isotropic two-planes at p, if Kisot(σ) ≥ 0
(resp. > 0) whenever σ ⊂ T c

pM is a totally isotropic two-plane over p. If M
is compact, simply connected and has positive isotropic sectional curvature
everywhere, then M is homeomorphic to a sphere ([Mi-Mo]). If n ≥ 1,
T 2n is the flat torus, and S2 is the euclidean sphere of R3, then S2 × T 2n,
S2×S2, S2×S2×T 2n and the complex projective space CPn have isotropic
sectional curvature ≥ 0 but not > 0. If {Xα, Yα} is any orthonormal basis
of TpM , and “µ” denotes Zµ as in (1.3), the expression

Sisot({Zα}1≤α≤n) =
∑
ρ 6=µ

Kisot(spanC{ρ, µ}) = 4
∑
ρ,µ

RM (ρ, µ, ρ, µ)(3.15)

is a hermitian trace of the curvature of M restricted to the maximal totally
isotropic subspace spanC{Z1, . . . , Zn} of T cM . To require it to be ≥ 0,
for all maximal totally isotropic subspaces — and we will say that M has
nonnegative isotropic scalar curvature — seems, for n ≥ 2, to be strictly
weaker than to have nonnegative isotropic sectional curvature. We also
note that, any other metric conformaly equivalent to the flat metric g0 on
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the 2n-torus with nonnegative isotropic scalar curvature is homothetically
equivalent to g0, hence flat. In fact, in general, if ĝ = eφgM is a conformaly
equivalent metric on M , then, for each gM -orthonormal basis {Xα, Yα},
Ŝisot({Ẑα}) = e−φSisot({Zα}) − (n − 1)e−2φ(24φ + (n − 1)‖∇φ‖2), where
Ẑα are defined by the ĝ-orthonormal basis {e−

φ
2 Xα, e−

φ
2 Yα}. To require

24φ + (n − 1)‖∇φ‖2 ≤ 0, implies, in case of M compact, φ constant. We
observe that, if dimR M ≥ 6, then Sisot ≡ 0 does not imply M to be flat,
but Kisot ≡ 0 implies so. We also note that, if dimR(TpM) = 4, the set
of curvature tensors at p, with zero isotropic sectional curvature is a vector
space of dimension 9.

Recall that, for an immersion with equal Kähler angles, F ∗ω is parallel
iff θ is constant and if cos θ 6= 0, (M,Jω, gM ) is a Kähler manifold. We are
going to see that an extra condition on the scalar isotropic curvature of M
may imply itself that the Kähler angle is constant and/or ∇Jω = 0. From
Proposition 3.3, for any n ≥ 1, on Ω0

2n ∪ Ω0
0

‖δF ∗ω‖2 = (n− 2)2‖∇ cos θ‖2.(3.16)

In particular, if n 6= 2, ‖∇ cos θ‖2 is smoothly extended to all M , and from
(3.1) we get that cos2 θ‖∇Jω‖2 is also smooth. Observe that ‖δF ∗ω‖2 has
the same value considering δF ∗ω a vector or a 1-form, but considering F ∗ω
a 2-form (as in (3.14)) ‖∇F ∗ω‖2 is half of the square norm when considering
F ∗ω an operator of TM (as in (3.1)). For n = 2, F ∗ω is co-closed, and so
it is a harmonic 2-form. In fact, since F has equal Kähler angles, F ∗ω =
cos θ(X1

∗ ∧Y 1
∗ +X2

∗ ∧Y 2
∗ ), and so ∗F ∗ω = ±F ∗ω, where ∗ is the Hodge star-

operator of (M, g), for a fixed local orientation of M , and the ± sign depends
on the orientation of the diagonalizing basis. In particular, F ∗ω is co-closed
(on Ω0

0 ∪ Ω0
n and so on all M). From harmonicity of F ∗ω we may conclude

that if the set of Lagrangian points has non-empty interior, or more generaly,
if F ∗ω as a zero of infinite order, then F is Lagrangian (see e.g., [E-L] (1.27),
(1.28)). For any n ≥ 2, integrating (3.14) on M , using Stokes, (3.16) and
(3.1), and the fact that

∫
M 〈4F ∗ω, F ∗ω〉Vol M =

∫
M ‖δF ∗ω‖2 Vol M , we have

0 =
∫

M

(
(n− (n− 2)2)‖∇ cos θ‖2 +

1
2

cos2 θ‖∇Jω‖2

)
Vol M(3.17)

+
∫

M
〈SF ∗ω, F ∗ω〉Vol M .

The first integrand is smooth on M , for all n (for n = 2 it gives half of
(3.1)). The factor n − (n − 2)2 is respectively, > 0, = 0, < 0, according
n = 2 or 3, n = 4, and n ≥ 5. If M has nonnegative isotropic scalar cur-
vature, 〈SF ∗ω, F ∗ω〉 ≥ 0, by Lemma 3.2. Recall from Proposition 3.3 that
(Ω0

2n, Jω, g) to be Kähler is a sufficient condition to conclude θ is constant.
Then we conclude:
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Proposition 3.4. Let F be a non-Lagrangian immersion with equal Kähler
angles of a compact orientable M with nonnegative isotropic scalar curva-
ture into a Kähler manifold N . If n = 2, 3 or 4, then θ is constant and
(M,Jω, gM ) is a Kähler manifold. For any n ≥ 1 and θ constant, F ∗ω is
parallel, i.e., (M,Jω, gM ) is a Kähler manifold.

4. Minimal immersions with equal Kähler angles.

Let us assume that F : M → N is minimal with equal Kähler angles. On
a open set of M ∼ L where a orthonormal frame {Xα, Yα = Jω(Xα)} is
defined, we have from (3.11) and (2.4), for any p, Z ∈ TpM and µ, γ,

2 cos θ〈∇Zµ, γ〉 = −i∇ZF ∗ω(µ, γ) = igZµγ − igZγµ.(4.1)

Note that F ∗ω(∇Zµ, γ) = i cos θ〈∇Zµ, γ〉 = −i cos θ〈µ,∇Zγ〉 = −F ∗ω(µ,
∇Zγ). Hence, if µ 6= γ, ∇ZF ∗ω(µ, γ) = d(F ∗ω(µ, γ))(Z) = 0. Thus

gZµγ = gZγµ, ∀µ 6= γ.(4.2)

From (3.8), for each µ,

− i

2
d cos θ(Z) = −∇ZF ∗ω(µ, µ) = gZµµ− gZµµ (no sumation over µ).

(4.3)

From (1.6), on M ∼ (L ∪ C)

4κ = 4i
∑
β

RicciN (JdF (β), dF (β))

+
32

sin2 θ

∑
β,µ

Im (RN (dF (β), dF (µ), dF (β), JdF (µ)+i cos θdF (µ)))(4.4)

− 128 cos θ

sin4 θ

∑
β,µ,ρ

Re (gβµρ gβρµ)(4.5)

+
64 cos θ

sin2 θ

∑
β,µ,ρ

(|〈∇βµ, ρ〉|2 + |〈∇βµ, ρ〉|2),(4.6)

where now κ = n log
(

1+cos θ
1−cos θ

)
. Since R(X, Y, Z, JW ) is skew-symmetric on

(X, Y ) and symmetric on (Z,W ),
∑

µ,β RN (dF (β), dF (µ), dF (β), JdF (µ))=
0. Then, from the Gauss equation and minimality of F ,

(4.4) =
∑
β,µ

32
sin2 θ

Im (i cos θRN (dF (β), dF (µ), dF (β), dF (µ)))

=
32 cos θ

sin2 θ

∑
β,µ

RM (β, µ, β, µ) + g(∇dF (β, µ),∇dF (µ, β)).
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Using the unitary basis {
√

2
sin θΦ(ρ),

√
2

sin θΦ(ρ)} of the normal bundle,

32 cos θ

sin2 θ

∑
β,µ

g(∇dF (β, µ),∇dF (µ, β))(4.7)

=
64 cos θ

sin4 θ

∑
β,µ,ρ

(|gβµρ|2 + |gβµρ|2)

=
64 cos θ

sin4 θ

∑
β,µ,ρ

(|gβρµ|2 + |gµβρ|2) =
128 cos θ

sin4 θ

∑
β,µ,ρ

|gβρµ|2.

From (4.2) and (4.3),∑
β,µ,ρ

Re (gβµρ gβρµ) =
∑
β,µ

∑
ρ 6=µ

|gβρµ|2 +
∑
β,µ

Re (gβµµ gβµµ)

=
∑
β,µ,ρ

|gβρµ|2 −
∑
β,µ

|gβµµ|2 +
∑
β,µ

Re (gβµµ gβµµ)

=
∑
β,µ,ρ

|gβρµ|2 −
∑
β,µ

Re
(

i

2
d cos θ(β)gβµµ

)
,

so

(4.7) + (4.5) =
128 cos θ

sin4 θ

∑
β,µ

Re

(
i

2
d cos θ(β)gβµµ

)
.

On the other hand, Proposition 3.2 and minimality of F gives,

−
∑
β,µ

4 cos θ

sin2 θ
Re(igβµµ · β) =

1− n

4
∇ log sin2 θ =

(n− 1) cos θ

2 sin2 θ
∇ cos θ.

Consequentely,

128 cos θ

sin4 θ

∑
β,µ

Re
(

i

2
d cos θ(β)gβµµ

)

=
128 cos θ

sin4 θ

∑
β,µ

Re
(
− i

2
d cos θ(β)gβµµ

)

= −64 cos θ

sin4 θ
d cos θ

Re

∑
β,µ

igβµµ · β

 =
8(n− 1) cos θ

sin4 θ
‖∇ cos θ‖2.

That is,

(4.7) + (4.5) =
8(n− 1) cos θ

sin4 θ
‖∇ cos θ‖2.(4.8)
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Using (3.9),

‖∇Jω‖2 =
∑
β

4〈∇βJω, ∇βJω〉(4.9)

=
∑
β

∑
µ,ρ

16(|〈∇βJω(µ), ρ〉|2 + |〈∇βJω(µ), ρ〉|2)

= 64
∑
β,µ,ρ

(|〈∇βµ, ρ〉|2 + |〈∇βµ, ρ〉|2).

Thus we see that (4.6) = cos θ
sin2 θ

‖∇Jω‖2. So we have obtained the following
formula:

Proposition 4.1. If N is Kähler-Einstein with Ricci tensor RicciN = Rg,
and F is a minimal immersion with equal Kähler angles, on an open set
without complex and Lagrangian points,

4κ = cos θ

(
− 2nR +

32
sin2 θ

∑
β,µ

RM (β, µ, β, µ)(4.10)

+
1

sin2 θ
‖∇Jω‖2 +

8(n− 1)
sin4 θ

‖∇ cos θ‖2

)
.

Note that if n = 1 we get the expression of Wolfson [W], 4κ = −2R cos θ.

Proposition 4.2. If N is Kähler-Einstein with Ricci tensor RicciN = Rg,
and F is a minimal immersion with equal Kähler angles, then:

(i) If n = 2,

R sin2 θ cos2 θ = 0.(4.11)

(ii) If n ≥ 3, then ‖∇| sin θ|‖2 can be smoothly extended to all M . More-
over, if M is compact and orientable,∫

M
nR sin2 θ cos2 θ Vol M(4.12)

=
∫

M
((n− 2)2‖∇ cos θ‖2 + 2(n− 2)‖∇| sin θ| ‖2)Vol M .

Proof. Multiplying (4.10) by sin2 θ cos θ, we get, on M ∼ C ∪ L, and using
Lemma 3.2,

sin2 θ cos θ4κ = −2n sin2 θ cos2 θR + 2〈SF ∗ω, F ∗ω〉

+ cos2 θ‖∇Jω‖2 +
8(n− 1) cos2 θ

sin2 θ
‖∇ cos θ‖2.
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On the other hand, κ = n log
(

1+cos θ
1−cos θ

)
, and so, 4κ = 2n

sin2 θ
4 cos θ +

4n cos θ
sin4 θ

‖∇ cos θ‖2. Hence,

2n cos θ4 cos θ +
4n cos2 θ

sin2 θ
‖∇ cos θ‖2(4.13)

= −2n sin2 θ cos2 θR + 2〈SF ∗ω, F ∗ω〉

+ cos2 θ‖∇Jω‖2 +
8(n− 1) cos2 θ

sin2 θ
‖∇ cos θ‖2.

Recall that, from (3.1), and considering F ∗ω a 2-form, ‖∇F ∗ω‖2 =
1
2 cos2 θ‖∇Jω‖2 + n‖∇ cos θ‖2. Since 4 cos2 θ = 2 cos θ4 cos θ + 2‖∇ cos θ‖2,
substituting this into (4.13), we have

n4 cos2 θ = −2n sin2 θ cos2 θR + 2〈SF ∗ω, F ∗ω〉(4.14)

+ 2‖∇F ∗ω‖2 +
4(n− 2) cos2 θ

sin2 θ
‖∇ cos θ‖2

and, for n = 2,

n4 cos2 θ = −2n sin2 θ cos2 θR + 2〈SF ∗ω, F ∗ω〉+ 2‖∇F ∗ω‖2.(4.15)

Let us now suppose that n ≥ 3. The sign of sin θ is not determined, because
we have chosen the interval where θ is such that cos θ ≥ 0. Nevertheless
we have | sin θ| =

√
1− cos θ

√
1 + cos θ. This map is continuous, smooth on

M ∼ C ∪ L but could be not Lipschitz near complex points. The last term
of (4.14) is given by

4(n− 2) cos2 θ

sin2 θ
‖∇ cos θ‖2 = (n− 2)

‖∇ cos2 θ‖2

sin2 θ

= (n− 2)
‖∇ sin2 θ‖2

sin2 θ
= 4(n− 2)‖∇| sin θ|‖2.

Then (4.14) is the equation

n4 cos2 θ = −2n sin2 θ cos2 θR + 2〈SF ∗ω, F ∗ω〉(4.16)

+ 2‖∇F ∗ω‖2 + 4(n− 2)‖∇| sin θ|‖2.

Clearly, (4.16) is valid on Ω0
2n ∼ C and also on Ω0

0 and at interior points of C.
From smoothness over all M of all terms but the last, and the fact that the
remaining set is a set of Lagrangian and complex points with no interior,
formula (4.16) is valid on all M , extending smoothly and nonnegatively
‖∇| sin θ| ‖2. Integrating it over M , and using (3.17) and (3.1), we have∫

M
2nR sin2 θ cos2 θ Vol M =

∫
M

(− 2(n− (n− 2)2) + 2n)‖∇ cos θ‖2

+ 4(n− 2)‖∇| sin θ|‖2 Vol M ,
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leading to (4.12). If n = 2, we see that (4.15) is also valid at Lagrangian
and complex points. In fact all terms of (4.15) vanish at interior points of
the Lagrangian and complex sets (see Lemma 3.2 and (3.1)). Since they
are smooth on all M , they must vanish at boundary points of C and of L.
Thus, the above equation is valid on all M , with or without complex or
Lagrangian points. Now, (4.11) follows from (4.15), and use of (3.14) with
‖F ∗ω‖2 = n cos2 θ and 4F ∗ω = 0. �

Proof of Theorem 1.2 and Theorem 1.3. If n = 2 and R 6= 0, (4.11) implies
sin2 θ cos2 θ = 0. Hence F is either Lagrangian or a complex submanifold.
If n ≥ 3, and M is compact and oriented, the right-hand side of (4.12)
is nonnegative, while the left-hand side is non-positive for R < 0. Then,
sin2 θ cos2 θ = 0 must hold on all M , that is, F is either Lagrangian or
complex. If R = 0, the right-hand side of (4.12) must vanish. Then, for
n ≥ 3, cos θ must be constant, and we have proved Theorem 1.2. If cos θ is
constant, the right-hand side of (4.12) vanishes. Hence, if R 6= 0, F is either
complex or Lagrangian, and Theorem 1.3 is proved. �

Proof of Theorem 1.4. If M is not Lagrangian, under the curvature condi-
tion on M , by Proposition 3.4, for n = 2, 3 or 4, (M,Jω, gM ) is a Kähler
manifold and cos θ is constant. So, if M is not a complex submanifold, by
(4.11), or (4.12), R = 0. In general, if n ≥ 1 and θ is constant, Proposi-
tion 3.4 also applies. �

Under the conditions of Proposition 3.4, if M is homeomorphic to a 4
or 6 dimensional sphere, immersed into a Kähler-Einstein manifold, with
equal Kähler angles and with nonnegative isotropic scalar curvature, then it
must be Lagrangian, for it is well-known that such manifolds cannot carry
a Kähler structure. Obviously, any Riemannian manifold M with strictly
positive isotropic scalar curvature cannot carry any Kähler structure, and
so the same conclusion must hold. No minimality is required to conclude
this.

As an observation, Proposition 3.4 should be compared with the following
lemma:

Lemma 4.1. Let F be an immersion with equal Kähler angles, and n ≥ 2.
If cos θ is constant then:

(i) (A,B, C) → gABC is symmetric whenever A,B, and C are not all of
the same type.

(ii) 〈∇βµ, γ〉 = 0, ∀β, µ, γ.
(iii) F ∗ω is an harmonic 2-form of constant norm.
(iv) 32

∑
β,µ RM (β, µ, β, µ) = −64

∑
β,µ,ρ |〈∇βµ, ρ〉|2 = −‖∇Jω‖2 ≤ 0 (only

in the case cos θ 6= 0).
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Proof. Since cos θ is constant, we obtain (4.3) = 0. This, together (4.2), and
the symmetry of ∇dF , proves (i). But (i) and (4.1) imply (ii). (iii) comes
from (3.16) and that ‖F ∗ω‖2 = n cos2 θ. Now we prove (iv). Since F ∗ω
is harmonic, from Weitzenböck formula (3.14) we conclude 〈SF ∗ω, F ∗ω〉 =
−‖∇F ∗ω‖2. Lemma 3.2 and (3.1) (but considering F ∗ω a 2-form) gives
(iv). �

Remark 2. If N is a Kähler manifold of constant holomorphic sectional
curvature equal to K (and so R = 2(2n+1)K), and the isotropic scalar cur-
vature of M satisfies Sisot ≥ c, c a constant, we get by Gauss equation, that
c ≤ n(n−1)K

4 . Thus, nonnegative isotropic scalar curvature on M is a possi-
ble condition for K ≥ 0. In the case K = 0, that is, N is the flat complex
torus, for n ≥ 2, F must be totally geodesic, and so M is flat. We also note
that Sisot > nR

4 is not a possible condition if K > 0. Such a condition, when
possible (and so N cannot be of constant holomorphic sectional curvature),
could lead to some conclusion by applying the maximum principle to (4.10)
at a maximum point of κ.

Example. Let (N, I, J, g) be an hyper-Kähler manifold of real dimension
8. Thus, I and J are two g-orthogonal complex structures on N , such
that IJ = −JI and ∇I = ∇J = 0, where ∇ is the Levi-Civita connection
relative to g. It is known that such manifolds are Ricci-flat ([B]). Set
K = IJ . For each ν, φ, we take “νφ” = (cos ν, sin ν cos φ, sin ν sinφ) ∈ S2,
and define Jνφ = cos νI + sin ν cos φJ + sin ν sin φK. These Jνφ are the
complex structures on N compatible with its hyper-Kähler structure, that
is, they are g-orthogonal and ∇Jνφ = 0.

Two of such complex structures, Jνφ and Jµρ, anti-commute at a point
p iff Jνφ(X) and Jµρ(X) are orthogonal for some nonzero X ∈ TpN , iff νφ
and µρ are orthogonal in R3. Thus, they anti-commute at a point p iff
they anti-commute everywhere. If that is the case Jνφ ◦ Jµρ = Jσε, where
{νφ, µρ, σε} is a direct orthonormal basis of R3. For each unit vector X ∈
TpN , set HX = span{X, IX, JX,KX} = span{X, Jνφ(X), Jµρ(X), Jσε(X)},
for any orthonormal basis {νφ, µρ, σε}. If Y ∈ H⊥

X is another unit vector,
then HX⊥HY . Let ωνφ be the Kähler form of (N, Jνφ, g). Let E be a 4-
dimensional vector subspace of TpN . We first note that E = HX for some
X ∈ E, iff Jνφ(E) ⊂ E for any ν, φ. If that is the case, then E is not a
Lagrangian subspace with respect to any complex structure Jµρ. In general,
E contains a Jνφ-complex line for some νφ iff dim(E∩HX) ≥ 2 for some X ∈
E. If that is the case, and if E is a Lagrangian subspace of TpN with respect
to Jµρ, then νφ⊥µρ. Furthermore, if E is a Jνφ-complex subspace, then E
is Jµρ-Lagrangian iff there exist an orthonormal basis {X, JνφX, Y, JνφY }
of E with HX⊥HY . To see this, let us suppose E is Jνφ-complex subspace
and Jµρ-Lagrangian. We take {X, JνφX, Y, JνφY } an ortonormal basis of E.
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Then Y ∈ span{X, JνφX, JµρX}⊥. So Y = tJσεX + Ỹ , for some t ∈ R and
Ỹ ∈ H⊥

X , and where {νφ, µρ, σε} is an ortonormal basis of R3. As E 6= HX ,
Ỹ 6= 0. From 0 = 〈JµρY, JνφX〉, we get t = 0. Thus, Y ∈ H⊥

X . We observe
that, in general, Jµρ-Lagrangian subspaces do not need to be Jνφ-complex,
as for example E = {X, JνφX, Y, JσεY }, with Y ∈ H⊥

X , that contains two
orthogonal complex lines for different complex strutures.

Any Jνφ-complex submanifold F : M → N of real dimension 4, is for each
µρ, a minimal submanifold of (N, Jµρ, g) with equal Kähler angles. More-
over, if for each point p ∈ M , there exist an orthonormal basis {X, JνφX, Y,
JνφY } of TpM with HX⊥HY , the Kähler angle is constant, given by cos θ =
|〈νφ, µρ〉|, where 〈, 〉 is the inner product of R3, and ±Jνφ is the complex
structure of M which comes from polar decomposition of ωµρ restricted to
M . In fact, such an orthonormal basis of TpM diagonalizes ωµρ restricted to
M . Next proposition is an application of Proposition 3.4 or Theorem 1.4, for
4-dimensional submanifolds of N , where ωI is the Kähler form of (N, I, g):

Proposition 4.3. Let F : M → N be a minimal immersion of a compact,
oriented 4-dimensional submanifold with nonnegative isotropic scalar curva-
ture, and such that ∀νφ ∈ S2, F has equal Kähler angles with respect to Jνφ.
If ∃p ∈ M and ∃X ∈ TpM , unit vector, such that dim(TpM ∩ HX) ≥ 2,
then there exists νφ ∈ S2 such that M is a Jνφ-complex submanifold. Fur-
thermore, if Jνφ = I then F : M → (N, I, g) is obviously pluriminimal.
If Jνφ 6= I but TpM ∩ H⊥

X 6= {0}, then F ∗ωI = cos νJνφ, and if F is not
I-Lagrangian, F : M → (N, I, g) is still pluriminimal.

Note that, if TpM = HX , then Jνφ can be chosen equal to I. The first
conclusion of this result should be compared with a result of Wolfson [W], for
M a real minimal surface and N a Ricci-flat K3 surface. In the latter case,
there is only one Kähler angle, ∀X dim(TpM ∩ HX) = 2 is automatically
satisfied, and the isotropic scalar curvature is always zero.

Proof. From the assumption, dim(TpM ∩ HX) ≥ 2, we may take a unit
vector Z ∈ TpM ∩ HX such that Z⊥X. Then, Z = Jνφ(X) for some νφ.
Thus, span {X, Jνφ(X)} ⊂ TpM . This implies F ∗ωνφ(X, Jνφ(X)) = 1. As
the Kähler angles are equal, cos θνφ = 1 at p. Applying Proposition 3.4
to F : M → (N, Jνφ, g), F ∗ωνφ = cos θνφJωνφ

with cos θνφ constant. Then
cos θνφ = 1 everywhere. That is, M is a Jνφ-complex submanifold. More-
over, from the second assumption, TpM ∩ H⊥

X 6= {0}, we may take a unit
vector Y ∈ TpM∩H⊥

X . Then {X, JνφX, Y, JνφY } constitutes an orthonormal
basis of TpM , that diagonalizes F ∗ωI , and F ∗ωI = cos νJνφ. This means
that ν or ν +π is the constant Kähler angle of F : M → (N, I, g), and, since
M is a Jνφ-complex submanifold, it is pluriharmonic with respect to ±Jνφ,
and so, if cos ν 6= 0, it is pluriminimal as an immersion into (N, I, g). �
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5. Appendix: The computation of 4κ.

We prove (1.6) for F minimal and away from complex directions. First, we
compute some derivative formulas of a determinant, which we will need.

Lemma 5.1. Let A : M → Mm×m(C) be a smooth map of matrices p →
A(p) = [A1, . . . , Am], where Ai(p) is a column vector of Cm and M is a
Riemannian manifold with its Levi-Civita connection ∇. Assume that, at
p0, A(p0) is a diagonal matrix D = D(λ1, . . . , λm). Then, at p0

d (detA)(Z) =
∑

1≤j≤m

∏
k 6=j

λk

 dAj
j(Z),

Hess (det A)(Z,W ) = ∇d(detA)(Z,W )

=
∑

1≤j,k≤m

∏
s 6=j,k

λs

det

[
dAj

j(Z) dAk
j (Z)

dAj
k(W ) dAk

k(W )

]

+
∑

1≤j≤m

∏
s 6=j

λs

Hess Aj
j(Z,W ).

In particular, if e1, . . . , er is an orthonormal basis of Tp0M , then, at p0,

4(det A) = Trace Hess (det A)

=
∑

1≤α≤r

∑
1≤j,k≤m

∏
s 6=j,k

λs

det

[
dAj

j(eα) dAk
j (eα)

dAj
k(eα) dAk

k(eα)

]

+
∑

1≤j≤m

∏
s 6=j

λs

4Aj
j .

On each Ω0
2k, the complex structure Jω and the sub-vector bundle K⊥ω

are smooth. Moreover, Jω is gM -orthogonal. Thus, for each p0 ∈ Ω0
2k, there

exists a locally gM -orthonormal frame of K⊥ω defined on a neighbourhood
of p0, of the form X1, JωX1, . . . , Xk, JωXk. We enlarge this frame to a gM -
orthonormal local frame on M , on a neighbourhood of p0:

X1, Y1 = JωX1, . . . , Xk , Yk = JωXk, Xk+1, Yk+1, . . . , Xn, Yn(5.1)

where Xk+1, Yk+1, . . . Xn, Yn is any gM -orthonormal frame of Kω, and which
at p0 is a diagonalizing basis of F ∗ω. Note that in general, without some
restrictive conditions, it is not possible to get smooth diagonalizing gM -
orthonormal frames in a whole neighbourhood of a point p0. We use the
notations in Section 3.1. We define a local complex structure on a neigh-
bourhood of p0 ∈ Ω0

2k as J̃ = Jω ⊕ J ′, where Jω is defined only on K⊥ω , and
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J ′ is the local complex structure on Kω, defined on a neighbourhood of p0

by

J ′Zα = iZα, J ′Zα = −iZα, ∀α ≥ k + 1.(5.2)

Thus, the vectors Zα are of type (1,0) with respect to J̃ , for ∀α. Since J̃ is
gM -orthogonal, then, ∀α, β, on a neighbourhood of p0,

〈∇Z J̃(α), β〉 = 2i〈∇Zα, β〉 = −〈α,∇Z J̃(β)〉, 〈∇Z J̃(α), β〉 = 0.(5.3)

Note that F ∗ω and g̃, where g̃ is given in (1.1), are both of type (1, 1)
with respect to J̃ , and have the same kernel Kω. They are related by
g̃(X, Y ) = F ∗ω(X, Jω(Y )). Set g̃AB = g̃(A,B), and define B = B, ∀A,B ∈
{1, . . . , n, 1, . . . , n}, and set εα = +1, εα = −1, ∀1 ≤ α ≤ n. Let ∀1 ≤ α, β ≤
n and A,B ∈ {1, . . . , n, 1, . . . , n}, C ∈ {1, . . . , n} ∪ {k + 1, . . . , n}. Then

F ∗ω(α, C) = g(JdF (α), dF (C)) = 0 ∀p near p0

F ∗ω(α, β) = g(JdF (α), dF (β)) = i
2δαβ cos θα at p0

g̃AB = iεBF ∗ω(A,B) = iεBg(JdF (A), dF (B)) ∀p near p0

g̃αC = g̃αC = 0 ∀p near p0

g̃αβ = g̃αβ = 1
2δαβ cos θα at p0.

(5.4)

At a point p0, with Kähler angles θα, gM ± g̃ is represented in the unitary
basis {

√
2α,

√
2α}, by the diagonal matrix gM ± g̃ = D(1 ± cos θ1, . . . , 1 ±

cos θn, 1± cos θ1, . . . , 1± cos θn), and so

det(gM ± g̃) =
∏

1≤α≤n

(1± cos θα)2.(5.5)

If p0 is a point without complex directions, cos θα 6= 1, ∀α ∈ {1, . . . , n}, then
g̃ < gM . Thus, on a neighbourhood of p0, we may consider the map κ.

κ =
1
2

log
(

det(gM + g̃)
det(gM − g̃)

)
=

∑
1≤α≤n

log
(

1 + cos θα

1− cos θα

)
.(5.6)

This map is continuous away from the complex directions, and smooth on
each Ω0

2k. We wish to compute 4κ on Ω0
2k.

Lemma 5.2. At p0 ∈ Ω0
2k, without complex directions and for Z,W ∈

Tp0M ,

d(det(gM ± g̃))(Z) = ±4
∑

1≤µ≤n

∏
1≤α≤n(1± cos θα)2

(1± cos θµ)
dg̃µµ(Z),
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Hess(det(gM ± g̃))(Z,W )

= 16

 ∏
1≤α≤n

(1± cos θα)2

∑
µ,ρ

1
(1± cos θµ)(1± cos θρ)

dg̃µµ(Z)dg̃ρρ(W )

− 8

 ∏
1≤α≤n

(1± cos θα)2

∑
µ,ρ

1
(1± cos θµ)(1± cos θρ)

dg̃µρ(W )dg̃ρµ(Z)

± 4

 ∏
1≤α≤n

(1± cos θα)2

∑
µ

1
(1± cos θµ)

Hess g̃µµ(Z,W ).

Proof. Using the unitary basis {
√

2α,
√

2α} of T c
pM , for p near p0, gM ± g̃

is represented by the matrix

gM ± g̃ =
[

gM ± g̃(
√

2α,
√

2γ) gM ± g̃(
√

2α,
√

2γ)
gM ± g̃(

√
2α,

√
2γ) gM ± g̃(

√
2α,

√
2γ)

]
=
[

δαγ ± 2g̃αγ 0
0 δαγ ± 2g̃αγ

]
that at p0 is the diagonal matrix D(1±cos θ1, . . . , 1±cos θn, 1±cos θ1, . . . , 1±
cos θn). The lemma follows as a simple application of Lemma 5.1, and noting
that g̃µρ = g̃ρµ. �

On Ω0
2k,

24κ = 4 log(det(gM + g̃))−4 log(det(gM − g̃))

=
4(det(gM + g̃))

det(gM + g̃)
− ‖d(det(gM + g̃))‖2

(det(gM + g̃))2

− 4(det(gM − g̃))
det(gM − g̃)

+
‖d(det(gM − g̃))‖2

(det(gM − g̃))2
.

From the above lemma and

‖d(det(gM ± g̃))‖2 = 4
∑
β

d(det(gM ± g̃))(β)d(det(gM ± g̃))(β)

4det(gM ± g̃) = 4
∑
β

Hess(det(gM ± g̃))(β, β)

we have at p0,

24κ =
∑
β,µ,ρ

64(cos θµ + cos θρ)
sin2 θµ sin2 θρ

dg̃µρ(β)dg̃ρµ(β) +
∑
β,µ

32
sin2 θµ

Hessg̃µµ(β, β).

(5.7)

Recalling (2.4), and d(F ∗ω(X, Y ))(Z) = ∇ZF ∗ω(X, Y ) + F ∗ω(∇ZX, Y ) +
F ∗ω(X,∇ZY ), using (5.4), we obtain:
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Lemma 5.3. ∀p near p0 ∈ Ω0
2k, Z ∈ T c

pM , and µ, γ ∈ {1, . . . , n}

dg̃µγ(Z) = igZµγ − igZγµ + 2
∑

ρ

(〈∇Zµ, ρ〉g̃ργ + 〈∇Zγ, ρ〉g̃µρ)

0 = dg̃µγ(Z) = −igZµγ + igZγµ + 2
∑

ρ

(〈∇Zµ, ρ〉g̃ργ − 〈∇Zγ, ρ〉g̃µρ).

In particular, at p0

dg̃µγ(Z) = igZµγ − igZγµ− (cos θµ − cos θγ)〈∇Zµ, γ〉
0 = dg̃µγ(Z) = −igZµγ + igZγµ + (cos θµ + cos θγ)〈∇Zµ, γ〉.

Lemma 5.4. If F is minimal and p0 ∈ Ω0
2k is a point without complex

directions, then for each µ ∈ {1, . . . , n}∑
1≤β≤n

Hess g̃µµ(β, β) =
∑

1≤β≤n

d(dg̃µµ(β))(β)− dg̃µµ(∇ββ)

=
∑

1≤β≤n

iRN (dF (β), dF (β), dF (µ), JdF (µ) + i cos θµdF (µ))

+ 2Im (RN (dF (β), dF (µ), dF (β), JdF (µ) + i cos θµdF (µ)))

+ 2
∑

1≤ρ≤n

(cos θρ − cos θµ)
sin2 θρ

(|gβµρ|2 + |gβµρ|2)

− 2
∑

1≤ρ≤n

(cos θρ + cos θµ)
sin2 θρ

(|gβµρ|2 + |gβµρ|2)

+
∑

1≤ρ≤n

−2i〈∇µβ, ρ〉gβρµ− 2i〈∇µβ, ρ〉gβρµ− 2i〈∇µβ, ρ〉gρβµ

+
∑

1≤ρ≤n

2i〈∇βµ, ρ〉gβρµ− 2i〈∇µβ, ρ〉gρβµ + 2i〈∇βµ, ρ〉gρβµ

+
∑

1≤ρ≤n

2i〈∇µβ, ρ〉gβρµ + 2i〈∇µβ, ρ〉gβρµ + 2i〈∇µβ, ρ〉gρβµ

+
∑

1≤ρ≤n

−2i〈∇βµ, ρ〉gρβµ + 2i〈∇µβ, ρ〉gρβµ− 2i〈∇βµ, ρ〉gρβµ

+
∑

1≤ρ≤n

2i〈∇βµ, ρ〉gβµρ + 2i〈∇βµ, ρ〉gβµρ− 2i〈∇βµ, ρ〉gβµρ

+
∑

1≤ρ≤n

−2i〈∇βµ, ρ〉gβµρ + 2i〈∇βµ, ρ〉gβρµ− 2i〈∇βµ, ρ〉gβµρ

+
∑

1≤ρ≤n

2i〈∇βµ, ρ〉gβµρ− 2i〈∇βµ, ρ〉gβρµ

− 2
∑

1≤ρ≤n

(cos θµ − cos θρ)(|〈∇βµ, ρ〉|2 + |〈∇βµ, ρ〉|2).
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Proof. We denote by ∇X∇Y dF the covariant derivative of ∇Y dF in T ∗M ⊗
F−1TN , and by R(X, Y )ξ, the curvature tensor of this connection, namely
(R(X, Y )ξ)(Z) = RN (dF (X), dF (Y ))ξ(Z) − ξ(RM (X, Y )Z). From Lem-
ma 5.3, for p on a neighbourhood of p0,

dg̃µµ(β) = ig(∇βdF (µ), JdF (µ))− ig(∇βdF (µ), JdF (µ))

+ 2
∑

ρ

(〈∇βµ, ρ〉g̃ρµ + 〈∇βµ, ρ〉g̃µρ).

Then at p0,

d(dg̃µµ(β))(β)

= ig(∇β(∇βdF (µ)), JdF (µ)) + ig(∇βdF (µ),∇β(JdF (µ)))

− ig(∇β(∇βdF (µ)), JdF (µ))− ig(∇βdF (µ),∇β(JdF (µ)))

+ 2
∑

ρ

(∇β(〈∇βµ, ρ〉)g̃ρµ +∇β(〈∇βµ, ρ〉)g̃µρ)

+
∑

ρ

2〈∇βµ, ρ〉dg̃ρµ(β) + 2〈∇βµ, ρ〉dg̃µρ(β)(5.8)

= ig(∇β(∇βdF (µ)), JdF (µ)) + ig(∇βdF (µ), J∇βdF (µ))

+ ig(∇βdF (µ), JdF (∇βµ))− ig(∇β(∇βdF (µ)), JdF (µ))

− ig(∇βdF (µ), J∇βdF (µ))− ig(∇βdF (µ), JdF (∇βµ))

+ cos θµ(∇β(〈∇βµ, µ〉) +∇β(〈µ,∇βµ〉)) + (5.8)

= ig(∇β(∇βdF (µ)), JdF (µ))(5.9)

+ ig(∇βdF (µ), J∇βdF (µ))

+
∑

ρ

2i〈∇βµ, ρ〉gβµρ + 2i〈∇βµ, ρ〉gβµρ

− ig(∇β(∇βdF (µ)), JdF (µ))(5.10)

− ig(∇βdF (µ), J∇βdF (µ))

+
∑

ρ

−2i〈∇βµ, ρ〉gβµρ− 2i〈∇βµ, ρ〉gβµρ

+ cos θµ(∇β(〈∇βµ, µ〉) +∇β(〈µ,∇βµ〉))(5.11)

+ (5.8).
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The term (5.11) vanishes because 〈∇βµ, µ〉 = −〈µ,∇βµ〉 on a neighbourhood
of p0. Minimality of F implies∑

β

∇β(∇βdF (µ))

=
∑
β

∇β(∇µdF (β)) =
∑
β

∇β∇µdF (β) +∇µdF (∇ββ)

=
∑
β

∇µ∇βdF (β)−∇[µ,β]dF (β) + (R(µ, β)dF )(β) +∇µdF (∇ββ)

=
∑
β

∇µ(∇βdF (β))−∇βdF (∇µβ)−∇[µ,β]dF (β)

+ RN (dF (µ), dF (β))dF (β)− dF (RM (µ, β)β) +∇µdF (∇ββ)

=
∑
β

∑
ρ

−2〈∇µβ, ρ〉∇βdF (ρ) +
∑

ρ

−2〈∇µβ, ρ〉∇βdF (ρ)

−
∑

ρ

(2〈∇µβ, ρ〉 − 2〈∇βµ, ρ〉)∇ρdF (β)

−
∑

ρ

(2〈∇µβ, ρ〉 − 2〈∇βµ, ρ〉)∇ρdF (β)

+ RN (dF (µ), dF (β))dF (β)− dF (RM (µ, β)β)

+
∑

ρ

2〈∇ββ, ρ〉∇µdF (ρ) +
∑

ρ

2〈∇ββ, ρ〉∇µdF (ρ).

Hence∑
β

(5.9) =
∑
β

iRN (dF (µ), dF (β), dF (β), JdF (µ))− cos θµRM (µ, β, β, µ)

+
∑
βρ

−2i〈∇µβ, ρ〉gβρµ− 2i〈∇µβ, ρ〉gβρµ

+
∑
βρ

2i(−〈∇µβ, ρ〉+ 〈∇βµ, ρ〉)gρβµ

+
∑
βρ

2i(−〈∇µβ, ρ〉+ 〈∇βµ, ρ〉)gρβµ

+
∑
βρ

2i〈∇ββ, ρ〉gµρµ + 2i〈∇ββ, ρ〉gµρµ.

Similarly
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−
∑
β

(5.10) =
∑
β

iRN (dF (µ), dF (β), dF (β), JdF (µ)) + cos θµRM (µ, β, β, µ)

+
∑
βρ

−2i〈∇µβ, ρ〉gβρµ− 2i〈∇µβ, ρ〉gβρµ

+
∑
βρ

2i(−〈∇µβ, ρ〉+ 〈∇βµ, ρ〉)gρβµ

+
∑
βρ

2i(−〈∇µβ, ρ〉+ 〈∇βµ, ρ〉)gρβµ

+
∑
βρ

2i〈∇ββ, ρ〉gµρµ + 2i〈∇ββ, ρ〉gµρµ.

Using Bianchi identity,

iRN (dF (µ), dF (β), dF (β), JdF (µ))

− iRN (dF (µ), dF (β), dF (β), JdF (µ))

= −iRN (dF (β), dF (µ), dF (β), JdF (µ))

− iRN (dF (β), dF (β), dF (µ), JdF (µ))

− iRN (dF (µ), dF (β), dF (β), JdF (µ))

= iRN (dF (β), dF (β), dF (µ), JdF (µ))

+ 2Im(RN (dF (β), dF (µ), dF (β), JdF (µ))),

and by Gauss equation, and minimality of F ,∑
β

−RM (µ, β, β, µ)−RM (µ, β, β, µ)

=
∑
β

RM (β, µ, β, µ) + RM (β, β, µ, µ)−RM (µ, β, β, µ)

=
∑
β

−RM (β, β, µ, µ) + 2RM (β, µ, β, µ)

=
∑
β

−RN (dF (β), dF (β), dF (µ), dF (µ))

− g(∇βdF (µ),∇βdF (µ)) + g(∇βdF (µ),∇βdF (µ))

+ 2RN (dF (β), dF (µ), dF (β), dF (µ))

+ 2g(∇βdF (β),∇µdF (µ))− 2g(∇βdF (µ),∇µdF (β))
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=
∑
β

−RN (dF (β), dF (β), dF (µ), dF (µ))

+ 2RN (dF (β), dF (µ), dF (β), dF (µ))

− g(∇βdF (µ),∇βdF (µ))− g(∇βdF (µ),∇µdF (β)).

Note that RN (dF (β), dF (µ), dF (β), dF (µ)) = Im (iRN (dF (β), dF (µ),
dF (β), dF (µ))), since it is real. Therefore,∑

β

d(dg̃µµ(β))(β)

=
∑
β

iRN (dF (β), dF (β), dF (µ), JdF (µ) + i cos θµdF (µ))

+ 2Im(RN (dF (β), dF (µ), dF (β), JdF (µ) + i cos θµdF (µ)))

− cos θµ g(∇βdF (µ),∇βdF (µ))− cos θµ g(∇βdF (µ),∇µdF (β))(5.12)

+
∑

ρ

−2i〈∇µβ, ρ〉gβρµ− 2i〈∇µβ, ρ〉gβρµ

+
∑

ρ

2i(−〈∇µβ, ρ〉+ 〈∇βµ, ρ〉)gρβµ

+
∑

ρ

2i(−〈∇µβ, ρ〉+ 〈∇βµ, ρ〉)gρβµ

+
∑

ρ

2i〈∇ββ, ρ〉gµρµ + 2i〈∇ββ, ρ〉gµρµ(5.13)

+
∑

ρ

2i〈∇µβ, ρ〉gβρµ + 2i〈∇µβ, ρ〉gβρµ

+
∑

ρ

2i(〈∇µβ, ρ〉 − 〈∇βµ, ρ〉)gρβµ + 2i(〈∇µβ, ρ〉 − 〈∇βµ, ρ〉)gρβµ

+
∑

ρ

−2i〈∇ββ, ρ〉gµρµ− 2i〈∇ββ, ρ〉gµρµ(5.14)

+ ig(∇βdF (µ), J∇βdF (µ))− ig(∇βdF (µ), J∇βdF (µ))(5.15)

+
∑

ρ

2i〈∇βµ, ρ〉gβµρ + 2i〈∇βµ, ρ〉gβµρ

∑
ρ

−2i〈∇βµ, ρ〉gβµρ− 2i〈∇βµ, ρ〉gβµρ + (5.8).

Using the unitary basis
{ √

2
sin θρ

Φ(ρ),
√

2
sin θρ

Φ(ρ)
}

of the normal bundle, and
(2.1)
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(5.12) + (5.15)

= −
∑
β,ρ

2 cos θµ

sin2 θρ
(|gβµρ|2 + |gβµρ|2)−

∑
β,ρ

2 cos θµ

sin2 θρ
(|gβµρ|2 + |gβµρ|2)

−
∑
β,ρ

2 cos θρ

sin2 θρ
(|gβµρ|2 − |gβµρ|2) +

∑
β,ρ

2 cos θρ

sin2 θρ
(|gβµρ|2 − |gβµρ|2)

= 2
∑
β,ρ

(cos θρ − cos θµ)
sin2 θρ

|gβµρ|2 − 2
∑
β,ρ

(cos θρ + cos θµ)
sin2 θρ

|gβµρ|2

− 2
∑
β,ρ

(cos θρ + cos θµ)
sin2 θρ

|gβµρ|2 + 2
∑
β,ρ

(cos θρ − cos θµ)
sin2 θρ

|gβµρ|2.

Applying Lemma 5.3 we have

dg̃µµ

(
∇ββ

)
=
∑

ρ

2
〈
∇ββ, ρ

〉
dg̃µµ(ρ) +

∑
ρ

2
〈
∇ββ, ρ

〉
dg̃µµ(ρ)

= 2i
∑

ρ

(〈
∇ββ, ρ

〉
gρµµ−

〈
∇ββ, ρ

〉
gρµµ

+
〈
∇ββ, ρ

〉
gρµµ−

〈
∇ββ, ρ

〉
gρµµ

)
= (5.13) + (5.14).

Finally

(5.8) =
∑

ρ

2 〈∇βµ, ρ〉
(
igβρµ− igβµρ

)
−
∑

ρ

2 〈∇βµ, ρ〉 (cos θρ − cos θµ)
〈
∇βρ, µ

〉
+
∑

ρ

2〈∇βµ, ρ〉
(
igβµρ− igβρµ

)
−
∑

ρ

2〈∇βµ, ρ〉(cos θµ − cos θρ)
〈
∇βµ, ρ

〉
=
∑

ρ

2i〈∇βµ, ρ〉gβρµ− 2i〈∇βµ, ρ〉gβµρ

+
∑

ρ

2i〈∇βµ, ρ〉gβµρ− 2i〈∇βµ, ρ〉gβρµ

− 2
∑

ρ

(cos θµ − cos θρ)(|〈∇βµ, ρ〉|2 + |〈∇βµ, ρ〉|2).

These expressions lead to the expression of the lemma. �
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Finally, we have:

Proposition 5.1. If F is minimal without complex directions, then for each
0 ≤ k ≤ 2n at each p0 ∈ Ω0

2k,

4κ = 4i
∑
β

RicciN (JdF (β), dF (β))

+
∑
β,µ

32
sin2 θµ

Im(RN (dF (β), dF (µ), dF (β), JdF (µ) + i cos θµdF (µ)))

−
∑
β,µ,ρ

64(cos θµ+cos θρ)
sin2 θµ sin2 θρ

Re(gβµρgβρµ)

+
∑
β,µ,ρ

32(cos θρ − cos θµ)
sin2 θµ sin2 θρ

(|gβµρ|2 + |gβµρ|2)

+
∑
β,µ,ρ

32(cos θµ + cos θρ)
sin2 θµ

(|〈∇βµ, ρ〉|2 + |〈∇βµ, ρ〉|2).

Proof. From (5.7) and Lemma 5.4 we get

24κ

=
∑
β,µ,ρ

64(cos θµ + cos θρ)
sin2 θµ sin2 θρ

dg̃µρ(β)dg̃ρµ(β)

+
∑
β,µ

32i

sin2 θµ
RN (dF (β), dF (β), dF (µ), JdF (µ) + i cos θµdF (µ))

+
∑
β,µ

64
sin2 θµ

Im(RN (dF (β), dF (µ), dF (β), JdF (µ)

+ i cos θµdF (µ)))

+
∑
β,µ,ρ

64(cos θρ − cos θµ)
sin2 θµ sin2 θρ

(|gβµρ|2 + |gβµρ|2)

−
∑
β,µ,ρ

64(cos θρ + cos θµ)
sin2 θµ sin2 θρ

(|gβµρ|2 + |gβµρ|2)

+
∑
β,µ,ρ

− 64i
sin2 θµ

〈∇µβ, ρ〉gβρµ− 64i
sin2 θµ

〈∇µβ, ρ〉gβρµ− 64i
sin2 θµ

〈∇µβ, ρ〉gρβµ

(5.16)

+
∑
β,µ,ρ

64i
sin2 θµ

〈
∇βµ, ρ

〉
gβρµ− 64i

sin2 θµ
〈∇µβ, ρ〉gρβµ + 64i

sin2 θµ

〈
∇βµ, ρ

〉
gρβµ

(5.17)
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+
∑
β,µ,ρ

64i
sin2 θµ

〈∇µβ, ρ〉 gβρµ + 64i
sin2 θµ

〈∇µβ, ρ〉gβρµ + 64i
sin2 θµ

〈∇µβ, ρ〉gρβµ

(5.18)

+
∑
β,µ,ρ

− 64i
sin2 θµ

〈
∇βµ, ρ

〉
gρβµ + 64i

sin2 θµ
〈∇µβ, ρ〉gρβµ− 64i

sin2 θµ

〈
∇βµ, ρ

〉
gρβµ

(5.19)

+
∑
β,µ,ρ

64i
sin2 θµ

〈
∇βµ, ρ

〉
gβµρ + 64i

sin2 θµ

〈
∇βµ, ρ

〉
gβµρ− 64i

sin2 θµ

〈
∇βµ, ρ

〉
gβµρ

(5.20)

+
∑
β,µ,ρ

− 64i
sin2 θµ

〈
∇βµ, ρ

〉
gβµρ + 64i

sin2 θµ
〈∇βµ, ρ〉gβρµ− 64i

sin2 θµ
〈∇βµ, ρ〉gβµρ

(5.21)

+
∑
β,µ,ρ

64i

sin2 θµ
〈∇βµ, ρ〉gβµρ− 64i

sin2 θµ
〈∇βµ, ρ〉gβρµ

(5.22)

−
∑
β,µ,ρ

64(cos θµ − cos θρ)
sin2 θµ

(∣∣∣〈∇βµ, ρ
〉∣∣∣2 +

∣∣∣〈∇βµ, ρ
〉∣∣∣2) .

Interchanging ρ with β in the first term of (5.16) (that we named by (5.16)(1),
and similarly to other equations), we see that (5.16)(1)+(5.17)(2) = 0. Inter-
changing ρ with β in (5.18)(1), we get (5.18)(1)+(5.19)(2) = 0. In (5.16)(2),
〈∇µβ, ρ〉 is skew-symmetric on ρ and β, and gβρµ is symmetric on ρ and β.
Hence (5.16)(2) = 0. Similarly (5.16)(3) = (5.18)(2) = (5.18)(3) = 0. If we
interchange ρ with µ in (5.17)(1),

(5.17)(1) + (5.20)(2) = −
∑
β,µ,ρ

64i(sin2 θµ − sin2 θρ)
sin2 θµ sin2 θρ

〈
∇βµ, ρ

〉
gβµρ.

Interchanging ρ with µ in (5.17)(3), we get

(5.17)(3) + (5.20)(3) = −
∑
β,µ,ρ

64i(sin2 θµ + sin2 θρ)
sin2 θµ sin2 θρ

〈
∇βµ, ρ

〉
gβµρ.

Interchanging ρ with µ in (5.19)(1), we get

(5.19)(1) + (5.20)(1) =
∑
β,µ,ρ

64i(sin2 θµ + sin2 θρ)
sin2 θµ sin2 θρ

〈
∇βµ, ρ

〉
gβµρ.

Interchanging ρ with µ in (5.19)(3), we get

(5.19)(3) + (5.21)(1) =
∑
β,µ,ρ

64i(sin2 θµ − sin2 θρ)
sin2 θµ sin2 θρ

〈
∇βµ, ρ

〉
gβµρ.



MINIMAL SUBMANIFOLDS OF KE MANIFOLDS 231

Interchanging ρ with µ in (5.21)(2),

(5.21)(2) + (5.22)(1) =
∑
β,µ,ρ

64i(− sin2 θµ + sin2 θρ)
sin2 θµ sin2 θρ

〈∇βµ, ρ〉 gβµρ.

Interchanging ρ with µ in (5.22)(2), we obtain

(5.22)(2) + (5.21)(3) =
∑
β,µ,ρ

64i(sin2 θµ − sin2 θρ)
sin2 θµ sin2 θρ

〈∇βµ, ρ〉 gβµρ.

Therefore,

24κ

=
∑
β,µ,ρ

64(cos θµ + cos θρ)
sin2 θµ sin2 θρ

dg̃µρ(β)dg̃ρµ(β)(5.23)

+
∑
β,µ

32i

sin2 θµ
RN (dF (β), dF (β), dF (µ), JdF (µ) + i cos θµdF (µ))(5.24)

+
∑
β,µ

64
sin2 θµ

Im(RN (dF (β), dF (µ), dF (β), JdF (µ)

+ i cos θµdF (µ)))

+
∑
β,µ,ρ

64(cos θρ − cos θµ)
sin2 θµ sin2 θρ

|gβµρ|2(5.25)

−
∑
β,µ,ρ

64(cos θρ + cos θµ)
sin2 θµ sin2 θρ

|gβµρ|2(5.26)

−
∑
β,µ,ρ

64(cos θρ + cos θµ)
sin2 θµ sin2 θρ

|gβµρ|2(5.27)

+
∑
β,µ,ρ

64(cos θρ − cos θµ)
sin2 θµ sin2 θρ

|gβµρ|2(5.28)

−
∑
β,µ,ρ

64i(sin2 θµ − sin2 θρ)
sin2 θµ sin2 θρ

〈
∇βµ, ρ

〉
gβµρ(5.29)

−
∑
β,µ,ρ

64i(sin2 θµ + sin2 θρ)
sin2 θµ sin2 θρ

〈
∇βµ, ρ

〉
gβµρ(5.30)

+
∑
β,µ,ρ

64i(sin2 θµ + sin2 θρ)
sin2 θµ sin2 θρ

〈
∇βµ, ρ

〉
gβµρ(5.31)

+
∑
β,µ,ρ

64i(sin2 θµ − sin2 θρ)
sin2 θµ sin2 θρ

〈
∇βµ, ρ

〉
gβµρ(5.32)
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+
∑
β,µ,ρ

64i(− sin2 θµ + sin2 θρ)
sin2 θµ sin2 θρ

〈∇βµ, ρ〉 gβµρ(5.33)

+
∑
β,µ,ρ

64i(sin2 θµ − sin2 θρ)
sin2 θµ sin2 θρ

〈∇βµ, ρ〉 gβµρ(5.34)

−
∑
β,µ,ρ

64(cos θµ − cos θρ)
sin2 θµ

(∣∣∣〈∇βµ, ρ
〉∣∣∣2 +

∣∣∣ 〈∇βµ, ρ
〉 ∣∣∣2) .(5.35)

By Lemma 5.3,

(5.23) =
∑
β,µ,ρ

64(cos θµ + cos θρ)
sin2 θµ sin2 θρ

·
(
igβµρ− igβρµ− (cos θµ − cos θρ)

〈
∇βµ, ρ

〉)
·

· (igβρµ− igβµρ− (cos θρ − cos θµ) 〈∇βρ, µ〉)

= −
∑
β,µ,ρ

64(cos θµ + cos θρ)
sin2 θµ sin2 θρ

gβµρgβρµ

+
∑
β,µ,ρ

64(cos θµ + cos θρ)
sin2 θµ sin2 θρ

|gβµρ|2(5.36)

+
∑
β,µ,ρ

64i(cos2 θµ − cos2 θρ)
sin2 θµ sin2 θρ

gβµρ 〈∇βρ, µ〉(5.37)

+
∑
β,µ,ρ

64(cos θµ + cos θρ)
sin2 θµ sin2 θρ

|gβρµ|2(5.38)

−
∑
β,µ,ρ

64(cos θµ + cos θρ)
sin2 θµ sin2 θρ

gβµρgβρµ

−
∑
β,µ,ρ

64i(cos2 θµ − cos2 θρ)
sin2 θµ sin2 θρ

〈∇βρ, µ〉 gβρµ(5.39)

−
∑
β,µ,ρ

64i(cos2 θµ − cos2 θρ)
sin2 θµ sin2 θρ

〈
∇βµ, ρ

〉
gβρµ(5.40)

+
∑
β,µ,ρ

64i(cos2 θµ − cos2 θρ)
sin2 θµ sin2 θρ

〈
∇βµ, ρ

〉
gβµρ(5.41)

+
∑
β,µ,ρ

64(cos2 θµ − cos2 θρ)
sin2 θµ sin2 θρ

(cos θρ − cos θµ)
〈
∇βµ, ρ

〉
〈∇βρ, µ〉 .(5.42)

Immediately we have, (5.27) + (5.36) = (5.32) + (5.41) = (5.33) + (5.37) =
0, and interchanging µ with ρ in (5.26), (5.34) and in (5.40), we get, (5.26)+
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(5.38) = (5.29) + (5.40) = (5.34) + (5.39) = 0. Note that∑
µ,ρ

(cos θµ − cos θρ)
sin2 θµ

| 〈∇βµ, ρ〉 |2 =
∑
µ,ρ

(cos θρ − cos θµ)
sin2 θρ

∣∣∣〈∇βµ, ρ
〉∣∣∣2 .

Hence (5.35) + (5.42) = 0. Then,

24κ

=
∑
β,µ

32i

sin2 θµ
RN (dF (β), dF (β), dF (µ), JdF (µ) + i cos θµdF (µ))(5.43)

+
∑
β,µ

64
sin2 θµ

Im(RN (dF (β), dF (µ), dF (β), JdF (µ)

+ i cos θµdF (µ)))

+
∑
β,µ,ρ

−64(cos θµ + cos θρ)
sin2 θµ sin2 θρ

(gβµρgβρµ + gβµρgβρµ)(5.44)

+
∑
β,µ,ρ

64(cos θρ − cos θµ)
sin2 θµ sin2 θρ

(|gβµρ|2 + |gβµρ|2)

−
∑
β,µ,ρ

64i(sin2 θµ + sin2 θρ)
sin2 θµ sin2 θρ

〈
∇βµ, ρ

〉
gβµρ(5.45)

+
∑
β,µ,ρ

64i(sin2 θµ + sin2 θρ)
sin2 θµ sin2 θρ

〈
∇βµ, ρ

〉
gβµρ.(5.46)

Using Lemma 5.3, and interchanging ρ by µ when necessary,

(5.45) + (5.46)

=
∑
β,µ,ρ

− 64i

sin2 θρ

〈
∇βµ, ρ

〉
gβµρ− 64i

sin2 θµ

〈
∇βµ, ρ

〉
gβµρ

+
64i

sin2 θµ

〈
∇βµ, ρ

〉
gβµρ +

64i

sin2 θρ

〈
∇βµ, ρ

〉
gβµρ

=
∑
β,µ,ρ

−64i

sin2 θµ

〈
∇βµ, ρ

〉
(gβµρ− gβρµ)

+
∑
β,µ,ρ

64i

sin2 θµ

〈
∇βµ, ρ

〉
(gβµρ− gβρµ)

=
∑
β,µ,ρ

64
sin2 θµ

〈
∇βµ, ρ

〉
(cos θµ + cos θρ) 〈∇βµ, ρ〉

+
64

sin2 θµ

〈
∇βµ, ρ

〉
(cos θµ + cos θρ) 〈∇βµ, ρ〉
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=
∑
β,µ,ρ

64(cos θµ + cos θρ)
sin2 θµ

(∣∣∣〈∇βµ, ρ
〉∣∣∣2 +

∣∣∣ 〈∇βµ, ρ
〉 ∣∣∣2) .

Obviously

(5.44) =
∑
β,µ,ρ

−128(cos θµ + cos θρ)
sin2 θµ sin2 θρ

Re(gβµρgβρµ).

From (1.4), (2.1), and the J-invariance of Ricci,

(5.43) = 8i
∑
β

RicciN (JdF (β), dF (β)),

and the expression of the Proposition follows. �

After completion and posting of this work in the e-print archive (with no.
math.DG/0002050) my attention was drawn to a related paper by A.Ghigi
[G], published in the meantime, which contains the same result as ours for
the case R 6= 0 and n = 2, but proved in a different way.

Acknowledgments. We would like to thank very much Professor James
Eells and Professor Claude LeBrun for helpful discussions and encourage-
ment.
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