Vol. 205, No. 2, 2002

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Springer theory in braid groups and the Birman–Ko–Lee monoid

David Bessis, François Digne and Jean Michel

Vol. 205 (2002), No. 2, 287–309
Abstract

We state a conjecture about centralizers of certain roots of central elements in braid groups, and check it for braid groups of type A, B, G(d,1,r) and a couple of other cases. Our proof makes use of results from Birman-Ko-Lee, of which we give a new intrinsic account.

Milestones
Received: 4 October 2000
Revised: 2 January 2001
Published: 1 August 2002
Authors
David Bessis
Yale University
Department of Mathematics
PO Box 208 283, New Haven CT 06520-8283
François Digne
LAMFA, Université de Picardie-Jules Verne
33, Rue Saint-Leu
80039 Amiens Cedex
France
Jean Michel
LAMFA, Université de Picardie-Jules Verne
33, Rue Saint-Leu
80039 Amiens Cedex
France
Institut de Mathématiques
Université Paris VII
175, rue du Chevaleret
75013 Paris
France