Vol. 206, No. 1, 2002

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Canonical bases and the conjugating representation of a semisimple group

Pierre Baumann

Vol. 206 (2002), No. 1, 25–37
Abstract

Let G be a semisimple simply connected affine algebraic group over an algebraically closed field k of characteristic zero, let A(G) be the k-algebra of regular functions of G, and let C(G) be the subalgebra consisting of class functions. We explain how Lusztig’s work on canonical bases affords a constructive proof of the fact, due to Richardson, that A(G) is a free C(G)-module.

Milestones
Received: 28 December 2000
Published: 1 September 2002
Authors
Pierre Baumann
Institut de Recherche Mathématique Avancée
Université Louis Pasteur et CNRS
7, rue René Descartes
F-67084 Strasbourg Cedex
France