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For Hamiltonian flows we establish the existence of peri-
odic orbits on a sequence of level sets approaching a Bott-
nondegenerate symplectic extremum of the Hamiltonian. As
a consequence, we show that a charge on a compact manifold
with a nondegenerate (i.e., symplectic) magnetic field has pe-
riodic orbits on a sequence of energy levels converging to zero.

1. Introduction.

In the early seventies, Alan Weinstein proved the following result which was
subsequently reproved by Jurgen Moser (using different methods) and is now
known as the Weinstein-Moser Theorem (see [We1, We3, Mo]).

Theorem 1.1 (Weinstein-Moser). Let H be a smooth function on a sym-
plectic manifold of dimension 2n. Then the Hamiltonian flow of H has at
least n periodic orbits on all level sets sufficiently close to a nondegenerate
extremum point of H.

In this paper, we attempt to extend this result from extremal points to
higher dimensional extrema of the Hamiltonian. In particular, we consider
the case of symplectic extremal submanifolds. More precisely, let H be a
smooth function on a symplectic manifold (W,Ω) such that H reaches an
extremum at a compact symplectic Bott-nondegenerate submanifold M2l ⊂
W 2n. We prove the following:

Theorem 1.2. The Hamiltonian flow defined on (W,Ω) by the function H
has at least one periodic orbit on a sequence of energy levels converging to
M .

In comparing these theorems, we see that here the existence of periodic
orbits for all sufficiently close level sets is weakened to existence on a se-
quence of level sets approaching M . We also note that the lower bound for
the number of periodic orbits is replaced by simple existence. It is unlikely
that this result is sharp. (The uncertainty as to where the true boundaries
of such existence results should lie is indicative of a lack of examples in this
area.) However, other existence results of this kind have recently been ob-
tained, see [Po] (Theorem 1.7 below) and [Ma]. Moreover, a result that is
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similar in strength to the Weinstein-Moser Theorem can be proved if one
imposes certain compatibility conditions on Ω and the Hessian of H on M .
Specifically, in [Ke] it is shown that under such assumptions there are at
least CL(M,Q) + (n− l) periodic orbits on all level sets sufficiently close to
M . Here CL(M,Q) denotes the cup-length of M over Q.

1.1. Symplectic magnetic flows. The question addressed here is moti-
vated further by the following interesting set of examples. Let (M,ω) be a
compact symplectic manifold and g a Riemannian metric on M . Consider
the Hamiltonian flow defined on T ∗M by the kinetic energy Hamiltonian

Hg : T ∗M → R
(q, p) 7→ ‖p‖2

g−1

and the twisted symplectic from dλ + π∗ω. Here π : T ∗M → M is the pro-
jection map and λ is the canonical Liouville one-form. These flows describe
the motion of a charged particle in a nondegenerate magnetic field and will
be referred to as symplectic magnetic flows. The zero section of T ∗M is a
symplectic minimum of Hg and in the context of the result above we are
concerned with the existence of periodic orbits on low energy levels. For
such flows, Theorem 1.2 implies the following result.

Theorem 1.3. For any symplectic form ω and metric g on M , the corre-
sponding symplectic magnetic flow has periodic orbits on a sequence of low
energy levels converging to zero.

To the knowledge of the authors, this is the most general existence result
for symplectic magnetic flows. However, much stronger results have been
established in a variety of different cases.

Theorem 1.4 ([Ar, Gi1]). Let M be a surface of genus k. Then for any
choice of ω and g, the corresponding symplectic magnetic flow has at least
three periodic orbits on all sufficiently low energy levels and at least 2k + 2
if they are nondegenerate.

Theorem 1.5 ([Ke, GK]). Let the metric g be of the form ω(· , J ·) for
some almost complex structure J on M . Then the corresponding symplectic
magnetic flow has at least CL(M,R) + l periodic orbits on all sufficiently
low energy levels and at least SB(M) if all orbits are nondegenerate. Here
SB(M) denotes the sum of Betti numbers of M .

In fact, the construction above produces a Hamiltonian flow for any man-
ifold M , closed two-form ω and metric g, i.e., ω can be degenerate. We call
these flows magnetic flows and refer the reader to [Gi2] for a more detailed
discussion of them and further references. The following are recent results
for magnetic flows which also hold in the symplectic case.
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Theorem 1.6 ([GK]). For any closed two-form ω and metric g on Tn, the
corresponding magnetic flow has periodic orbits on almost all energy levels.
(In fact, bounded neighborhoods of the zero section have finite Hofer–Zehnder
capacity.)

Theorem 1.7 ([Ma, Po]). For any metric on M and any nonzero weakly-
exact1 two-form, the corresponding magnetic flow has contractible periodic
orbits on a sequence of energy levels converging to zero.

These last two theorems represent interesting applications of tools from
other areas of symplectic topology to the existence question. The first result
is a direct application of the work on the Hofer–Zehnder capacity in [FHV]
and [Ji]. The second result is proved for M = Tn by Polterovich using
Hofer’s metric on the space of Hamiltonian diffeomorphisms (see [Po]). In
particular, he utilizes the relation between the nonminimizing geodesics of
Hofer’s metric and the existence of contractible periodic orbits (see [LM]).
This work is then extended to the more general form, as stated here, by
Macarini in [Ma].

2. Limiting dynamics and the variational problem.

2.1. The variational problem. Before starting the proof of Theorem 1.2,
we recall the variational framework for proving the existence of periodic
orbits of the Hamiltonian flow of a function H on a symplectic manifold
(W,Ω). First we choose a suitable class of loops in W , say the Fréchet
manifold of smooth loops, C∞(S1,W ). Then on C∞(S1,W ) we consider
the one-form F which takes v, an element of the tangent space at σ ∈
C∞(S1,W ), to

F(v) =
∫ 1

0
Ω(σ(s))(σ̇(s), v(s)) ds−

∫ 1

0
dH(σ(s))(v(s)) ds.(1)

It is clear from the least action principle that the zeroes of F on C∞(S1,W )
are periodic orbits of the Hamiltonian flow with period equal to one.

At this point we are faced with several difficulties. The first among them
is the fact that the variational problem is far more tractable if F is exact.
For then we may look for the critical points of a functional instead of the
zeros of a one-form. As well, there need not exist closed orbits with period
equal to one. Finally, as stated, the variational approach does not allow us
to search for periodic orbits on a fixed level set of H.

The analysis of the limiting dynamics given below suggests that the search
for periodic orbits on level sets near M can be restricted to the subset of
small loops in C∞(S1,W ) that lie close to M . In making this restriction,
we are able to overcome the first problem by finding an action functional

1Recall that a form ω is called weakly-exact if ω is closed and [ω]|π2(M) = 0.
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whose derivative is equal to F on this subset. The restriction also allows us
to considerably simplify the analytic setting by using the method developed
by Weinstein in [We4] to prove the Arnold conjecture for C0-small Hamilto-
nians. The other difficulties are surmounted by adapting a set of techniques
developed by Viterbo, and Hofer and Zehnder in [HZ1, HZ2, HZ3, Vi].
Namely, we modify the function H (and hence our functional) to force any
periodic orbits on the desired energy levels to have positive action. Then we
show that the new action functional has critical points with positive action
by using a “linking argument” as in [HZ1, HZ2, HZ3].

2.2. The limiting dynamics. First, we consider the case when M is an
extremal point of the function H : W 2n→R and we recall briefly how one
begins to look for periodic orbits on the level sets near this point. Darboux’s
theorem allows us to work in a neighborhood of the origin in R2n with the
canonical symplectic form Ω0. Here the function looks like

H(z) =
1
2
Hzz(0)z2 +O(z3)

and we may assume that the origin is a local minimum so that the quadratic
form Hzz(0) is positive definite. The Hamiltonian vector field corresponding
to H is denoted by XH and is defined by

iXH
Ω0 = dH.

Let

Hε(z) = ε−2H(εz) =
1
2
Hzz(0)z2 +O(ε).

For ε 6= 0, the rescaling map z 7→ εz takes the flow of XH on {H = ε2} to
the flow of the Hamiltonian vector field XHε on {Hε = 1}. Thus, we may
instead look for periodic orbits for this flow.

The vector field XHε is defined by

iXHε
Ω0 = dHε

and we see that it is a Hamiltonian perturbation of the linear Hamiltonian
vector field X0 given by the equation

iX0Ω0 = Hzz(0)z.

Since Hzz(0) is positive definite, there exists a change of variable z 7→ y
which preserves Ω0 and puts Hzz(0) in the form

Hzz(0)y2 =
n∑
i=1

ai
2

(y2
i + y2

i+n),

see [HZ3, §1.7]. In these coordinates it becomes clear that X0 describes the
quasiperiodic motion of n uncoupled harmonic oscillators with frequencies
ai. The problem then reduces to showing that the periodic “normal modes”
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of X0 persist under the perturbation XHε (see [Ly, Mo, We1, We3] and
[FR]).

Next we consider the case when M is a symplectic extremal submanifold.
We will rescale globally in the normal directions to M and show that we
still get a well-defined and useful limiting vector field.

Set H|M = 0. The Tubular Neighborhood Theorem allows us to assume
that, for sufficiently small ε > 0, the level sets {H = ε2} lie in a neigh-
borhood of the zero section in the total space of a normal bundle N to M .
Accordingly, we may replace the manifold W by this neighborhood which
we will still denote by W . We choose the normal bundle to be (TM)Ω,
the symplectic orthogonal complement to TM . By Weinstein’s Symplectic
Neighborhood Theorem (see [We2]) we may also assume that Ω restricts to
the fibres in (TM)Ω∩W as a constant linear symplectic form, ΩN . Thus, the
level sets of interest lie in a symplectic vector bundle which is also equipped
with a fibrewise positive-definite quadratic form d2

NH, given by the Hes-
sian of H in the normal directions to M . As above, there exist coordinates
{yi(x)}2(n−l)

i=1 in each fibre Ex such that ΩN (x) is the canonical symplectic
form on R2(n−l) and

d2
NH(x)y2 =

(n−l)∑
i=1

ai(x)
2

(
y2
i + y2

i+(n−l)

)
.(2)

Note that in general these coordinates are not unique and cannot be chosen
to depend smoothly or even continuously on x. However, the eigenvalues
ai(x) of d2

NH(x) with respect to ΩN (x) are well-defined.
Starting with the Hamiltonian dynamical system defined on W ⊂ N by

iXH
Ω = dH

we let Φ: N→N be the global fibrewise dilation by a factor of ε, and set

Xε := Φ−1
∗XH

and
Ω̃ε := ε−2Φ∗Ω.

After this rescaling the new Hamiltonian dynamical system is given by

iXεΩ̃ε = d(ε−2Φ∗H).(3)

Lemma 2.1. As ε→0, Xε approaches a fibrewise, quasiperiodic vector field
X0. In particular, in each fibre Ex, the vector field X0 is the (linear) Hamil-
tonian vector field of the positive-definite form d2

NH(x) with respect to the
symplectic form ΩN (x).

Proof. One can check that the fibre components of the Ω̃ε are independent
of ε and equal to ΩN . However, the limit of the Ω̃ε as ε→0 is not defined,
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i.e., in coordinates, all the terms with components along the base blow up
in the limit. Using the bundle isomorphisms

(Ω̃ε)[ : TW→T ∗W,

defined by each of the nondegenerate forms Ω̃ε, we can construct the dual
bivectors −Ω̃−1

ε ∈ Λ2(TW ). (We include the negative sign because if we
associate to Ω̃ε(m) a nondegenerate skew-symmetric matrix, then to the
dual bivector at m we associate the negative inverse of this matrix.) These
bivectors are nondegenerate Poisson structures and we may rewrite Equation
(3) as

Xε = −Ω̃−1
ε [d(ε−2Φ∗H)].(4)

In contrast to the Ω̃ε the Poisson structures Ω̃−1
ε do have a well-defined

limit, (ΩN )−1. This is a degenerate Poisson structure whose symplectic
leaves are the fibres of N . As well, for ε→0 we have ε−2Φ∗H→d2

NH. Hence,

X0 := lim
ε→0

Xε

= −(ΩN )−1[(dN (d2
NH)],

where dN denotes the exterior derivative with respect to just the fibre vari-
ables. This can be rewritten as

iX0Ω
N = dN (d2

NH).

Indeed, this equation defines the limiting vector field X0 globally and we
note that the convergence of Xε to X0 is Ck for any k.

By Equation (2) the flow of X0 is fibrewise quasiperiodic and we have at
least (n− l) periodic orbits in each fibre. �

By Lemma 2.1, the flow on the level {H = ε2} can be viewed (up to pa-
rameterization) as a small (Hamiltonian) perturbation of the quasiperiodic
flow of X0 on {d2

NH = 1}. Hence, one may expect that under this pertur-
bation the set of periodic orbits of X0 on {d2

NH = 1} (called the normal
modes of X0 following [We3]) splits into periodic orbits on {H = ε2} whose
number is bounded from below by the cup-length or the sum of Betti num-
bers of this set. These invariants depend on the pair of fibrewise forms d2

NH
and ΩN but should be greater than or equal to the corresponding invariants
of M .

When the eigenvalues ai(x) do not bifurcate as functions of the parameter
x ∈M , the set of normal modes of X0 is an orbifold, [Ke]. In this case the
perturbative analysis can indeed be carried out by adapting Moser’s method,
see [Bo, Mo]. This leads to a lower bound on the number of periodic
orbits in terms of the cup-length, [Ke]. Furthermore, when for every x the
eigenvalues ai(x) are equal to each other, a lower bound in terms of the sum
of Betti numbers of M has also been obtained in [GK]. (This is the case,
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for example, when codimM = 2. In particular, it is true for symplectic
magnetic flows on surfaces, [Gi1, Gi3]. The condition is also satisfied for
symplectic magnetic flows in higher dimensions when g = ω(·, J ·) for some
almost complex structure J on M , [Ke].)

In general, this perturbative approach encounters serious difficulties aris-
ing from the fact that the set of normal modes of X0 may fail to be a
manifold or an orbifold. In this work the limiting dynamics is used only as
motivation.

3. Simplification of the variational problem.

Expecting some of the normal modes of the limiting vector fieldX0 to always
persist under the Hamiltonian perturbation Xε, we will restrict our search
for periodic orbits to small loops near M . This will considerably simplify
the original variational problem.

To begin with, we fix some geometric structure on TW |M . Let J be
an almost complex structure that is compatible with Ω. This yields the
Riemannian metric gJ = Ω(·, J ·) on W . With the splitting

TW |M = TM ⊕ (TM)Ω,

we then have the decomposition

(TmW,Ω, J, gJ) = (TmM ⊕ (TmM)Ω, ωT ⊕ ωN , JT ⊕ JN , gT ⊕ gN )

where the subscripts T and N denote tangential and normal components,
respectively. With respect to this splitting we will write z = (x, y) for
z ∈ TmW , where x ∈ TmM and y ∈ (TmM)Ω.

3.1. A Darboux family. Following [We4], we note the existence of a Dar-
boux family for M ⊂W . This a parameterized version of a Darboux chart.
It consists of a neighborhood U of the zero section in TW |M and a mapping

Φ: U −→W

onto a neighborhood V of M ⊂W such that the following conditions hold.
1. Um = U ∩ TmW contains the origin.
2. Φm = Φ|Um is a symplectomorphism from (Um,Ω(m)) to (Vm,Ω),

where Vm is an open neighborhood of m ∈W .
3. Φm(0) = m and D0Φm is the identity.
In addition, we may assume that all neighborhoods Um are open balls of

a fixed radius with respect to gJ . For sufficiently small ε > 0, we may also
assume that the level set {H = ε2} lies in V .

3.2. A new loop space. Denote by C∞0 (S1, V ) the open subset of C∞(S1,
W ) consisting of small loops contained in V . This is an open neighborhood
of the constant loops in V . Based on our analysis of the limiting dynamics,
this is also where we expect to find low energy periodic orbits.
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Now, let Λm be the space of C∞ loops in TmW whose projections to TmM
have zero mean, and consider the Fréchet space bundle

Λ =
⋃
m∈M

Λm.

The map Φ pulls back C∞0 (S1, V ) onto an open neighborhood U of the zero
section in Λ, which in each fibre Λm consists of loops contained in Um. This
follows from the inverse function theorem and, put another way, is essentially
the fact that any small loop in M has a unique mean value in M with respect
to the map Φ. To be more precise, for every σ ∈ C∞0 (S1, V ), there exists
a unique m ∈ M such that σ = Φm(z) for some loop z ∈ Λm which takes
values in Um.

Since Ω is exact in a neighborhood of any of the loops in C∞0 (S1, V ), the
differential form F|C∞0 (S1,V ) is exact and so is its pullback by Φ. (Indeed, the
second term in (1) is always exact and the symplectic area of a small disc
bounded by the loop can be taken as a primitive of the first term.) We denote
the primitive of Φ∗(F|C∞0 (S1,V )) by F 0 and remark that F 0(m, z) = F 0

m(z),
where F 0

m is the restriction to U ∩ Λm and is given by

F 0
m(z) =

∫ 1

0

1
2
gJ(m)(−J(m)ż, z) dt−

∫ 1

0
H(Φm(z(t))) dt.

This is just the standard action functional for the Hamiltonian Φ∗mH which is
defined on the open subset Um of the symplectic vector space (TmW,Ω(m)).
In particular, as above, the first term is the symplectic area of the disc
bounded by z in this space.

We have thus simplified the original variational problem to that of finding
a critical point of the functional F 0 in U (a neighborhood of the zero section
in the Fréchet space bundle Λ).

4. An outline of the proof.

4.1. Step 1. First we utilize the freedom to choose another Hamiltonian
H̃ : W→R that shares the level set {H = ε2} with H. In fact, we make our
changes to the pullbacks Φ∗mH in such a way that each new function hm
keeps the level set {Φ∗mH = ε2} ⊂ TmW and is equal to the pull back, by
Φm, of a new global Hamiltonian H̃ defined on V ⊂ W . We then consider
the functional F (m, z) = Fm(z) defined on U ⊂ Λ by

Fm(z) =
∫ 1

0

1
2
gJ(m)(−J(m)ż, z) dt−

∫ 1

0
hm(z(t)) dt.(5)

Choosing extensions of the maps hm so that the functional F is defined
on all of Λ we then prove
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Lemma 4.1. The choices and extensions above can be made in such a way
that any critical point zc of F on Λ, satisfying F (zc) > 0, corresponds to a
periodic orbit of the original system on {H = ε2 + ρ ε

2

4 } for some ρ ∈ [−ε, ε].

4.2. Step 2. We extend the domain of definition of F to be the Hilbert
space bundle

Λ̃ =
⋃
m∈M

Λ̃m,

where Λ̃m is the space of H
1
2 loops in TmW whose projections to TmM have

zero mean.
Theorem 1.2 will then follow from:

Lemma 4.2. There exists a critical point zc ∈ Λ ⊂ Λ̃ of F such that
F (zc) > 0.

5. Step 1.

5.1. A new Hamiltonian and functional. In looking for periodic or-
bits on the level set {H = ε2} we may replace H by any other function
which shares this level set. Here we construct such a function which also
shares with H all the level sets close to {H = ε2}. This is accomplished
by altering (and extending) the pullbacks Φ∗mH into a family of functions
hm : TmW→R+ which is smooth in m and satisfies the following conditions:

1. There is a function H̃ : V ⊂ W→R such that Φ∗mH̃ = hm|Um for all
m ∈ M and H̃ shares the level sets {H = ε2 + ρ ε

2

4 } with H, for all
ρ ∈ [−ε, ε].

2. All the hm = 0 on an open neighborhood of TmM × {0} ⊂ TmW .
3. Let Qm(z) = q

2‖y‖
2
m for some positive q to be specified later. Then

‖∇hm(z)−∇Qm(z)‖m is bounded and hm = Qm for large ‖y‖m.
4. For the functional F defined in (5), a critical point zc with F (zc) > 0

corresponds to a periodic orbit of XH on {H = ε2 + ρ ε
2

4 } for some
ρ ∈ [−ε, ε].

Remark 5.1. The constant q > 0 is chosen so that q is not an even integer
and q is greater than a certain constant depending only on W and M . The
assumption that q is not an even integer is crucial in verifying the Palais–
Smale condition for the functional F (Claim 6.4). The lower bound for q is
essential in Proposition 6.6; see also Remark 6.7.

5.1.1. Construction of the hm. For ρ ∈ [−1, 1] and for each m ∈M let

Sρ,m =
{
φ∗mH = ε2 + ρ

ε2

4

}
⊂ Um.
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Extend the hypersurfaces Sρ,m outside Um by smoothly and quickly joining
them to the hypersurfaces{

(x, y) ∈ TmW | ‖y‖m = ε2 + ρ
ε2

4

}
.

We still refer to these extended hypersurfaces as the Sρ,m and note that they
will be level surfaces of our new functions hm. Denote the union of these
hypersurfaces in TmW by

Cm =
⋃

ρ∈[−1,1]

Sρ,m.

Set
γm = max

(x,y)∈S1,m

‖y‖m and γ = max
m∈M

γm.

Fixing q as in Remark 5.1, we choose constants r and b such that

γ < r < 2γ and
q

2
πr2 < b < qπr2.

We then use the following smooth functions to specify the behavior of hm
in Cm and asymptotically in the normal directions. Let f ∈ C∞([−1, 1],R+)
have the properties

f(s) =

{
0 for s ∈ (−1,−ε]
b for s ∈ [ε, 1) = b

and
f ′(s) > 0 for − ε < s < ε.

Also, let g ∈ C∞((0,∞),R+) satisfy

g(s) =

{
b for s ≤ r
q
2πs

2 for large s

and
g(s) ≥ q

2
πs2 and 0 < ġ(s) ≤ qπs for s > r.

Note that TmW\Cm has two connected components, Am and Bm, where
Bm is the open set containing TmM × {0} ⊂ TmW . Finally, we set

hm(z) =


0 if z ∈ Bm
f(ρ) if z ∈ Sρ,m for −1 < ρ < 1
b if z ∈ Am and ‖y‖m ≤ r

g(‖y‖m) if ‖y‖m ≥ r.

(See Figure 5.1 below.) The functions hm defined in this way clearly satisfy
Conditions 1, 2 and 3 as stated above.
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h  = 0

A m

mB mC 

mh  = bmU 

T N
m

(T M)m

mT M

m

m

m

m

     

||y||  = r

||y||  = r

mh  = b

m

mh   is quadratic in ||y||m

h   is quadratic in ||y||

Figure 5.1. The functions hm.

The choices of f and g also yield the following inequalities which will be
used later:

−b+
q

2
π‖y‖2

m ≤ hm(z) ≤ q

2
π‖y‖2

m + b,(6)

‖∇hm(z)‖m ≤ c1‖z‖m for some c1 ∈ R+.(7)

The second of these is the most crucial and follows from the inequality

‖∇Nhm(z)‖m ≤ qπ‖y‖m for ‖y‖m ≥ r

coupled with the facts that hm(0) = 0 and that ∇Thm has compact support.

Remark 5.2. Each function hm is of the type considered in [Gi3]. They
differ from those in [Vi] and [HZ1] in that the level sets Sρ,m are not compact
and the functions are asymptotically quadratic only in the normal directions.
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5.2. Locating critical points with positive action. We now prove that
the functions hm have property 4.

Claim 5.3. A critical point of Fm, say z(t) = x(t)+y(t), satisfying Fm(z) >
0 must lie in Sρ,m ∩ Um for some ρ ∈ [−ε, ε].

Proof. First we show that Fm(z) > 0 implies that z ∈ Sρ,m for some ρ ∈
[−ε, ε]. If z(t) is a constant solution then

Fm(z) = −
∫ 1

0
hm(z(t)) dt ≤ 0,

since hm ≥ 0. Hence, we only have to discount those critical points with
‖y(t)‖m ≥ r for some t ∈ [0, 1]. In fact, because hm depends only on the
fibre variable past r, we get ‖y(t)‖m = ‖y(0)‖m for all t in [0, 1]. When
‖y(t)‖m ≥ r, we also have

∇hm(z(t)) = ġ(‖y(0)‖m)
y(t)

‖y(0)‖m
.

Hence,

Fm(z) =
∫ 1

0

(
1
2
gJ(m)(−J(m)ż(t), z(t))− hm(z(t))

)
dt

=
∫ 1

0

(
1
2
ġ(‖y(0)‖m)‖y(0)‖m − hm(y(0))

)
dt

=
1
2
ġ(‖y(0)‖m)‖y(0)‖m − hm(y(0))

≤ 1
2
ġ(‖y(0)‖m)‖y(0)‖m − q

2
π‖y(0)‖2

m

≤ 0.

The last two inequalities follow from the fact that

hm(x, y) = g(‖y‖m) ≥ q

2
π‖y‖2

m

for ‖y‖m ≥ r, and ġ(s) ≤ qπs.
Next we show that x(t) ⊂ Um ∩ TmM . A critical point of Fm is a one-

periodic solution of the Hamiltonian dynamical system defined on TmW by
hm and Ω(m). Thus, x(t) has period one and because of our splitting of
TW |M it satisfies

ẋ(t) = JT (m)∇Thm(z(t)).

Now, since x(t) has zero mean,

x(t) =
∫ 1

0
(x(s)− x(t)) ds.



HAMILTONIAN FLOWS NEAR SYMPLECTIC EXTREMA 81

Hence,

‖x(t)‖m ≤
∫ 1

0
‖x(s)− x(t)‖m ds

≤ sup
s∈[0,1]

‖ẋ(s)‖m

≤ ‖JT (m)‖m sup
z∈TmW

‖∇Thm(z)‖m.

It is easily checked for our choice of f that ‖∇Thm(z)‖m is of order ε for all
z ∈ Cm. Hence, x(t) remains sufficiently close to the origin and the proof of
the claim is complete. �

Since a critical point of F on Λ must also be a critical point of Fm on Λm
for some m ∈M , the claim yields Lemma 4.1.

Remark 5.4. At this point we can see why a stronger existence result is
not attainable using these techniques. For example, consider what happens
when we try to prove that there are periodic orbits on level sets arbitrarily
close to a fixed level set {H = ε2}. As in the previous claim, we would like
to distinguish any periodic orbits on the candidate level sets by forcing them
to have positive action. Accordingly, we define the functions hm using a new
function f which switches from 0 to b on an arbitrarily small neighborhood
of zero, say (−δ, δ). Unfortunately, when δ is too small, i.e., when we look
for periodic orbits on level sets too close to {H = ε2}, we lose control of
the size of ‖∇Thm(z)‖m. Consequently, given a critical loop z ∈ Λm with
positive action, we no longer know that z lies within Um. Some part of it
may lie in the extended portions of Sρ,m and so z no longer corresponds to
a periodic orbit of our original system.

6. Step 2.

6.1. Extending the domain of F. We extend the domain of the func-
tional F from the Fréchet space bundle Λ to the Hilbert space bundle Λ̃
defined below. This extension is motivated by the fact that F has a simple
form on Λ̃ which allows us to easily verify that the negative gradient flow
of F has the properties necessary to employ Minimax techniques to detect
critical points. In particular, we are able to extend the “linking argument”
of Hofer and Zehnder for R2n (see [HZ1, HZ2, HZ3]) to our bundle TW |M
over M .

Remark 6.1. Alternatively, one can show that F has a positive critical
value by using the cohomological argument as in [Vi] or [Gi3], combined
with the reduction to finite dimensions from [CZ].

Let Λ̃ be the Hilbert bundle over M with fibres Λ̃m consisting of H
1
2 loops

in TmW whose projections to TmM have zero mean. We may consider Λ̃m
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as the space of Fourier series

z(t) =
∑
k∈Z

ek2πJ(m)tzk,

with zk = xk + yk ∈ TmW and x0 = 0, which converge with respect to the
norm ‖ ‖ 1

2
,m given by the inner product

〈z, z′〉m = gJ(m)(z0, z′0) + 2π
∑
k∈Z

|k|gJ(m)(zk, z′k).

This space clearly includes Λ and is contained in the bundle of fibrewise
L2-loops.

The bundle Λ̃ splits naturally in two ways. First there is the orthogonal
splitting which in each fibre has the form

Λ̃m = E−m ⊕ E0
m ⊕ E+

m.

Here, the space E−m consists of the series with nonzero Fourier coefficients
for k < 0 only. The spaces E0

m and E+
m are defined analogously. We also

have the orthogonal splitting of the Λ̃m into loops contained in TmM and
loops contained in (TmM)Ω. For example, z(t) = x(t) + y(t) where the
Fourier coefficients of x(t) and y(t) are contained in TmM and (TmM)Ω,
respectively. We denote this splitting by

Λ̃ = ET ⊕ EN .

In considering the functional F on the bundle Λ̃, we focus first on the
fibres where we have

Fm(z) =
∫ 1

0

1
2
g̃J(m)(−J(m)ż, z) dt−

∫ 1

0
hm(z(t)) dt.

With respect to the orthogonal splitting z = z−+z0+z+ it is straightforward
to check that

Fm(z) =
1
2

(
‖z+‖2

1
2
,m
− ‖z−‖2

1
2
,m

)
−

∫ 1

0
hm(z(t)) dt

and the H
1
2 -gradient with respect to the fibre variables of Λ̃m is

∇Fm(z)(v) = gJ(m)(z+ − z−, v)−
∫ 1

0
gJ(m)(∇hm(z), v) dt.

The total gradient flow of F is actually comprised of the gradient flows
of the Fm on the fibres Λ̃m, coupled with a smooth flow on M. Since M
is compact, the behavior of the flows on the fibres is the only essential
component in considering compactness properties of the total flow.

Claim 6.2. The vector field ∇F is smooth and has a globally defined flow
on Λ̃.



HAMILTONIAN FLOWS NEAR SYMPLECTIC EXTREMA 83

The smoothness of ∇F follows from that of the functions hm. Inequality
(7) then implies that ∇F is sublinear in the fibre directions which yields the
completeness of the gradient flow (see [AMR]).

Claim 6.3. Critical points of Fm on Λ̃m are smooth.

This is a standard regularity result (see [HZ3, Lemma 5, p. 88]). It
justifies the extension of domains since any critical point of F must satisfy
∇Fm(z) = 0 for some m ∈M and so ∇F (z) = 0 implies that z ∈ Λ.

Claim 6.4. F satisfies the Palais-Smale condition on Λ̃, provided that q is
not an even integer.

For the sake of clarity we defer the proof of this claim to an appendix.
We just mention here that the claim follows from the careful choice of the
asymptotic quadratic behavior of the functions hm.
6.2. Proof of Lemma 4.2. We use the Minimax Lemma to establish the
existence of a critical point of F with a positive critical value and so we recall
the setting of this theory. Let G be a C1 function on a Hilbert manifold L
and let T be a family of subsets T ⊂ L. Set

c(G,T) = inf sup
T∈T z∈T

G(z).

We then have the following (see, e.g., [HZ3]):

Lemma 6.5 (Minimax Lemma). Let the following properties hold for G
and T:

1. G satisfies the Palais-Smale condition.
2. The gradient vector field of G gives rise to a global flow ψt.
3. The family T is positively invariant under the gradient flow, i.e., ψt(T )
∈ T for all T ∈ T and t ≥ 0.

4. −∞ < c(G,T) <∞.
Then there exists zc ∈ L such that

∇G(zc) = 0 and G(zc) = c(h,T).

Denoting the flow of the negative gradient field of F by ψt we must now
define a ψt-invariant family of sets T such that 0 < c(F,T) <∞. To achieve
this, we extend the linking argument of [HZ1].

Proposition 6.6. Let e+N be a nonvanishing section of smooth loops in E+
N

with ‖e+N (m)‖2
1
2
,m

= 2π for all m ∈ M and let q be greater than a certain

constant depending on e+N only. Then there exists a sufficiently large τ > 0
such that for all m ∈M the subsets

Σm =
{
x− + y− + y0 + se+N (m) ∈ Λ̃m |

‖x− + y− + y0‖ 1
2
,m ≤ τ, 0 ≤ s ≤ τ

}
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satisfy F |∂Σm
≤ 0.

Proof. First we label the parts of ∂Σm as follows

σ1 = {s = 0},
σ2 = {s = τ},

σ3 =
{
‖x− + y− + y0‖ 1

2
,m = τ

}
.

For z = x− + x+ + y− + y0 + y+ ∈ Λ̃m recall that

Fm(z) =
1
2

(
‖x+ + y+‖2

1
2
,m
− ‖x− + y−‖2

1
2
,m

)
−

∫ 1

0
hm(z(t)) dt

=
1
2

(
‖x+‖2

1
2
,m

+ ‖y+‖2
1
2
,m

)
− 1

2

(
‖x−‖2

1
2
,m

+ ‖y−‖2
1
2
,m

)
−

∫ 1

0
hm(z(t)) dt.

On σ1 we have points of the form z = x− + y− + y0 so that

Fm|σ1
(z) = −1

2

(
‖x−‖2

1
2
,m

+ ‖y−‖2
1
2
,m

)
−

∫ 1

0
hm(z1(t)) dt ≤ 0.

For the other parts of the boundary we need to employ the first half of
inequality (6),

hm(z) ≥ q

2
π‖y‖2

m − b.

This yields∫ 1

0
hm(z(t)) dt

≥ q

2
π

(∫ 1

0
‖y−(t)‖2

m dt+
∫ 1

0
‖y0‖2

m dt+
∫ 1

0
‖y+(t)‖2

m dt

)
− b

which when restricted to Σm becomes∫ 1

0
hm(z(t)) dt

≥ q

2
π

(∫ 1

0
‖y−(t)‖2

m dt+ ‖y0‖2
m + s2

∫ 1

0
‖e+N (m)(t)‖2

m dt

)
− b.

Overall, on Σm we now have

Fm(z) ≤ b− 1
2

∥∥x− + y− + y0
∥∥2

1
2
,m
− s2

(
q

2
π

∫ 1

0
‖e+N (m)(t)‖2

m dt− π

)
.

For our nonvanishing section e+N it is clear that there exists a real constant
c > 0 such that

∫ 1
0 ‖e

+
N (m)(t)‖2

m dt ≥ c for all m ∈ M . We now choose q to
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be greater than 2
c . Then for τ large enough to satisfy both τ2( q2πc− π) ≥ b

and 1
2τ

2 ≥ b, we have Fm|σ2,σ3 ≤ 0. �

Remark 6.7. One can show that e+N can be chosen in such a way that it
suffices to take q strictly greater than 2l/(n− l).

Proposition 6.8. There exists a sufficiently small α > 0 such that for all
m ∈M the subsets

Γm =
{
y+ ∈ Λ̃m | ‖y+‖2

1
2
,m

= α
}

satisfy F |Γm
≥ β > 0 for some β ∈ R+.

Proof. Since the functions hm are equal to zero on a neighborhood of TmM×
{0} ⊂ TmW , the functions

βm : Λ̃m → R

z 7→
∫ 1

0
hm(z(t)) dt

satisfy βm(0) = 0, β′m(0) = 0, and β′′m(0) = 0 for all m in M . (Here “′”
denotes a fibrewise derivative.) Restricting to the spaces E+

N (m) we see then
that

Fm|E+
N (m)(z) =

1
2

(
‖y+‖2

1
2
,m

)
+O

(
‖y+‖3

1
2
,m

)
.

�

For τ > α, each Σm and Γm intersect at
√

α
2πe

+
N (m). Since Σm and Γm

depend smoothly on m we may extend them to form global subsets of the
bundle Λ̃. We denote these subsets as Σ and Γ, and note that they also
intersect (in each fibre). Since F |∂Σ ≤ 0 and F |Γ > 0, we expect the image
of Σ under the negative gradient flow of F to still intersect Γ.

Proposition 6.9. ψt(Σ) ∩ Γ 6= ∅, for all t ≥ 0.

Proof. Let P−, P 0 and P+ be the projection maps corresponding to the
splitting Λ̃ = E− ⊕ E0 ⊕ E+. Consider the maps

ϕt : Σ → E− ⊕ E0 ⊕ Re+N
(m, z) 7→

(
ψtm(m, z), (P− + P 0)ψtz(m, z)

+ (‖ψtz(m, z)‖2
1
2
,m
− α)e+N (ψtm(m, z))

)
,

where z = z− + z0 + se+N (m) ∈ Σm. Letting Z be the zero section in
E− ⊕ E0 ⊕ Re+N it follows easily that

ψt(Σ) ∩ Γ 6= ∅ ⇐⇒ (ϕt)−1(Z) 6= ∅.
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The maps ϕt are smooth and we claim that they are also nonlinear Fred-
holm maps with index equal to zero. This is easily confirmed for ϕ0 and so
must also hold for ϕt with t > 0 sufficiently small. Then, since ϕt = (ϕ

t
k )k

for any k ∈ N, it also holds for arbitrary t.
One may also easily verify that ϕ0 is transversal to Z and that (ϕ0)−1(Z)

= e+N ⊂ Σ ∩ Γ.
We now consider a fixed t > 0. Note that if ϕt is not transversal to Z,

then the proof is complete since transversality must fail at some (m, 0) ∈ Z
with (ϕt)−1((m, 0)) ∈ Σ. Hence, we may assume that ϕt is transversal to
Z. By the extension theorem of Smale (see [Sm, Theorem 3.1]) we can then
perturb the homotopy ϕr, r ∈ [0, t], from ϕ0 to ϕt to a transversal Fredholm
homotopy

ϕ̃ : Σ× [0, t] → E− ⊕ E0 ⊕ Re+N
such that ϕ̃(· , 0) = ϕ0(·) and ϕ̃(· , t) = ϕt(·). The sign of F on ∂Σ and Γ
ensures that (ϕs)−1(Z) ∩ ∂Σ = ∅ for all s ≥ 0. Consequently, (ϕ̃)−1(Z) ∩
{∂Σ× [0, t]} = ∅. With this, Theorem 3.3 of [Sm] implies that (ϕ̃)−1(Z) is
a 2l + 1 dimensional submanifold of Σ× [0, t] with boundary equal to

{(ϕ0)−1(Z)× {0}}
∐
{(ϕt)−1(Z)× {t}}.

Upon projecting toM we see that these boundary components must generate
the same homology class in H2l(M ; Z2). It is easy to see that the first
component generates the fundamental class and hence the second component
must be nonempty. �

Remark 6.10. A similar argument shows that ψt(Σ) ∩ Γm 6= ∅ for any
m ∈M .

We now complete the proof of Lemma 4.2 and hence Theorem 1.2 with a
direct application of the Minimax Lemma. Consider the family of subsets
T = {ψt(Σ) | t ≥ 0}. It is clearly positively invariant under the flow. Let

c(F,T) = inf
t≥0

sup
z∈ψt(Σ)

F (z).

By the previous propositions and the fact that F takes bounded sets to
bounded sets we have

β ≤ inf
z∈Γ

F (z) ≤ sup
z∈ψt(Σ)

F (z) ≤ ∞.

This implies that
0 < β ≤ c(F,T) <∞

and by the Minimax Lemma we have proven the existence of the desired
critical point.
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7. Appendix: The Palais–Smale condition for F.

Proof of Claim 6.4: F satisfies the Palais-Smale condition on Λ̃. We will
make use of two distance functions on the bundle Λ̃, which we now de-
fine. Consider the two fibrewise norms, ‖ ‖0,m and ‖ ‖ 1

2
,m, which are given

by
‖z‖ s

2
,m = ‖z0‖2

m + 2π
∑
k∈Z

|k|s‖zk‖2
m

for s = 0 and s = 1, respectively, where z(t) =
∑

k∈Z e
k2πJ(m)tzk. Each of

these norms yields a fibrewise metric which, when coupled with the base
metric gJ , define an L2 and an H

1
2 metric on Λ̃. We are interested in the

distance functions corresponding to these metrics which we will denote by
dL2 and d

H
1
2
.

Given a sequence {(mi, zi)} ⊂ Λ̃ such that for the H
1
2 -gradient we have

∇F (mi, zi)→0(8)

with respect to theH
1
2 metric, we need to show that there exists a convergent

subsequence with respect to d
H

1
2
. (Since M is compact we already know

that there is a convergent subsequence mi→m0 ∈M .)
In what follows we focus entirely on the fibre component of the gradient

(equal to the gradient of the restriction to a fibre), which we again denote
by ∇. The fibre component, ∇F , is a function Λ̃ → Λ̃, where we identify
a tangent space to the fiber Λ̃m with the fibre itself. Clearly, the norm of
the fibre component does not exceed the norm of the gradient and hence (8)
still holds for the fibre components.

Consider the special form that Condition (8) takes on Λ̃. Recall that the
functional F is given as F (m, z) = Fm(z) = αm(z)− βm(z), where

αm(z) =
∫ 1

0

1
2
g̃J(m)(−Jmż, z) dt and βm(z) =

∫ 1

0
hm(z(t)) dt.

With respect to the fibrewise orthogonal splitting z = z− + z0 + z+ (see
Section 6.1), it is straightforward to check that

αm(z) =
1
2

(
‖z+‖2

1
2
,m
− ‖z−‖2

1
2
,m

)
and, since ∇ denotes the fibre component of the gradient,

∇αm(z) = z+ − z−.

As in [HZ3, Prop. 5 p. 86-7], one can also show that

∇βm(z) = j∗m∇hm(z),

where j∗m is the formal adjoint of the inclusion jm : H
1
2 (S1, TmW )→L2(S1,

TmW ) and is a compact map. Indeed, our second inequality (7) implies that
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∇hm takes bounded sets in L2(S1, TmW ) to bounded sets so that the map
∇β : Λ̃ → Λ̃ defined as ∇β(m, z) = ∇βm(z), is also compact.

We may now rewrite (8), in a slightly weakened form, as

‖(z+
i − z−i )− (∇β(mi, zi))‖ 1

2
,mi

→ 0.

Assume first that the ‖zi‖ 1
2
,mi

are bounded for an infinite subsequence of
points. Without loss of generality we may assume that (mi, zi) is this subse-
quence. By the compactness of the map∇β we know that {(mi,∇β(mi, zi))}
is relatively compact. Thus, the sequence {(mi, z

+
i − z−i )} has a convergent

subsequence. Note that z+
i and z−i are orthogonal to each other in Λ̃mi .

After passing if necessary to subsequences, this implies that each of the se-
quences {(mi, z

+
i )} and {(mi, z

−
i )} converges for the same subsequence of

points (mi, zi). As before, we may restrict our attention to this subsequence.
Finally, since {(mi, z

0
i )} is a bounded sequence in a finite dimensional space

it too has a convergent subsequence and the proof in this case is finished.
Looking for a contradiction, we assume that ‖zi‖ 1

2
,mi

are unbounded for
some infinite sequence on which we now focus. Set

ui =
zi

‖zi‖ 1
2
,mi

and wi =
∇hmi(zi)
‖zi‖ 1

2
,mi

.

The assumption (8) now takes the form∥∥u+
i − u−i − j∗mi

wi
∥∥

1
2
,mi

→ 0.

By inequality (7), the sequence ‖wi‖L2,mi
is bounded. Indeed,

‖wi‖L2,mi
≤
‖∇hmi(zi)‖L2,mi

‖zi‖ 1
2
,mi

≤
‖∇hmi(zi)i‖L2,mi

‖zi‖L2,mi

≤ c1.

The compactness of the operators j∗mi
then implies that {(mi, j

∗
mi
wi)} is

relatively compact in Λ̃ with respect to d
H

1
2
. Hence, the sequence {(mi, u

+
i −

u−i )} is also relatively compact in Λ̃ with respect to d
H

1
2
. Just as above we

then get a convergent subsequence

(mi, ui)→(m0, u).

Note also that
‖u‖ 1

2
,m = lim ‖ui‖ 1

2
,mi

= 1.

Now

dL2

(
(mi, wi), (m0,∇Qm0(u))

)
≤ dL2

(
(mi, wi), (mi,∇Qmi(ui))

)
+ dL2

(
(m0,∇Qm0(u)), (mi,∇Qmi(ui))

)
,
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where Qm(z) is the quadratic term in the definition of hm. The second term
on the right hand side goes to zero as i→∞ because ∇Q is continuous. As
for the first term, we have

dL2

(
(mi, wi), (mi,∇Qmi(ui))

)
=

1
‖zi‖ 1

2
,mi

‖∇hmi(zi)−∇Qmi(zi)‖L2,mi
.

However, by the construction of hm, the difference hm − Qm has compact
support, and hence, as is easy to see, ‖∇hm − ∇Qm‖L2 is bounded on Λ̃.
Thus the first term also goes to zero and

(mi, wi)→(m0,∇Qm0(u))

with respect to dL2 . This means that

(mi, j
∗
mi
wi)→(m0, j

∗
m0
∇Qm0(u))

with respect to d
H

1
2
. Accordingly, u satisfies

u+ − u− − j∗m0
(∇Q(m0, u)) = 0.

This is equivalent to

JN (m0)u̇N = qπuN and uT = 0.

However, uN→JN (m0)u̇N is a self adjoint map on EN (m0) with spectrum
{2πZ}. Since q is not a positive even integer, this forces uN = 0 and we get
a contradiction to ‖u‖ 1

2
,m0

= 1. �
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