ON A QUOTIENT OF THE UNRAMIFIED IWASAWA MODULE OVER AN ABELIAN NUMBER FIELD, II

Humio Ichimura
ON A QUOTIENT OF THE UNRAMIFIED IWASAWA MODULE OVER AN ABELIAN NUMBER FIELD, II

Humio Ichimura

Let p be an odd prime number, k an imaginary abelian field containing a primitive p-th root of unity, and k_∞/k the cyclotomic \mathbb{Z}_p-extension. Denote by L/k_∞ the maximal unramified pro-p abelian extension, and by L' the maximal intermediate field of L/k_∞ in which all prime divisors of k_∞ over p split completely. Let N/k_∞ (resp. N'/k_∞) be the pro-p abelian extension generated by all p-power roots of all units (resp. p-units) of k_∞. In the previous paper, we proved that the \mathbb{Z}_p-torsion subgroup of the odd part of the Galois group $\text{Gal}(N \cap L/k_\infty)$ is isomorphic, over the group ring $\mathbb{Z}_p[\text{Gal}(k/\mathbb{Q})]$, to a certain standard subquotient of the even part of the ideal class group of k_∞. In this paper, we prove that the same holds also for the Galois group $\text{Gal}(N' \cap L'/k_\infty)$.

1. Introduction.

Let p be a fixed odd prime number, k an imaginary abelian field containing a primitive p-th root of unity, and k_∞/k the cyclotomic \mathbb{Z}_p-extension. Let L/k_∞ be the maximal unramified pro-p abelian extension, and L' the maximal intermediate field of L/k_∞ in which all prime divisors of k_∞ over p split completely. We put

$$N = k_\infty(\epsilon^{1/p^n} \mid \epsilon \in E_\infty, \ n \geq 1), \quad N' = k_\infty(\epsilon^{1/p^n} \mid \epsilon \in E'_\infty, \ n \geq 1),$$

where E_∞ (resp. E'_∞) is the group of units (resp. p-units) of k_∞. Put

$$\mathcal{X} = \text{Gal}(L/k_\infty), \quad \mathcal{X}' = \text{Gal}(L'/k_\infty),$$

and let $\mathcal{X}^-, \mathcal{Y}^-, \mathcal{X}'^-, \mathcal{Y}'^-$ be the odd parts of the respective Galois groups. It is well-known that \mathcal{X}^- is (finitely generated and) torsion free over \mathbb{Z}_p (cf. Washington [14, Corollary 13.29]). It is also known (and is shown similarly) that \mathcal{X}'^- is torsion free over \mathbb{Z}_p. One naturally asks whether or not the quotients \mathcal{Y}^- of \mathcal{X}^- and \mathcal{Y}'^- of \mathcal{X}'^- are also torsion free over \mathbb{Z}_p.

This question arised in the previous investigation [5], [6] on a power integral basis problem over cyclotomic \mathbb{Z}_p-extensions.

Let A_∞ be the ideal class group of k_∞, and A^+_∞ its even part. It is conjectured by Greenberg [4] that $A^+_\infty = \{0\}$, which is far from being settled.
in general. Under this conjecture, it is known that $Y^- = X^-$ and $Y'^- = X'^-$, and hence Y^- and Y'^- are torsion free over \mathbb{Z}_p.

In the preceding paper [7], we proved that the \mathbb{Z}_p-torsion subgroup $\text{Tor} Y^-$ of Y^- is isomorphic, over the group ring $\mathbb{Z}_p[\text{Gal}(k/\mathbb{Q})]$, to a certain standard subquotient of A^+_∞ (under the assumption that p does not divide the degree $[k : \mathbb{Q}]$). Further, we gave some assertions on the vanishing of this subquotient.

Let \mathcal{O}_∞ be the ring of integers of k_∞, and $\mathcal{O}'_\infty = \mathcal{O}_\infty[1/p]$ the ring of p-integers. The pairs (L, N) and (L', N') are objects associated to \mathcal{O}_∞ and \mathcal{O}'_∞, respectively. Since k_∞/k is wildly ramified at p, it is often more natural to use the p-integers \mathcal{O}'_∞ than \mathcal{O}_∞. Therefore, it is desirable to obtain a corresponding result for the pair (X', Y'). In this paper, we prove that the \mathbb{Z}_p-torsion subgroup $\text{Tor} Y'^-$ of Y'^- is also isomorphic to the above mentioned subquotient of A^+_∞ as a $\mathbb{Z}_p[\text{Gal}(k/\mathbb{Q})]$-module. Namely, $\text{Tor} Y^-$ and $\text{Tor} Y'^-$ are isomorphic to each other over $\mathbb{Z}_p[\text{Gal}(k/\mathbb{Q})]$.

2. Results.

Let k be an imaginary abelian field with $\zeta_p \in k^\times$, and $\Delta = \text{Gal}(k/\mathbb{Q})$, $\Gamma = \text{Gal}(k_\infty/k)$. We assume that

(H) \hspace{1cm} p \text{ does not divide the degree } [k : \mathbb{Q}].

Then, we have a canonical decomposition

$$\text{Gal}(k_\infty/\mathbb{Q}) = \Delta \times \Gamma.$$

A \mathbb{Q}_p-valued character of Δ defined and irreducible over \mathbb{Q}_p is simply called a \mathbb{Q}_p-character. For a \mathbb{Q}_p-character Φ of Δ and a $\mathbb{Z}_p[\Delta]$-module X, we denote by X^+, X^- and $X(\Phi)$ the even part, the odd part and the Φ-component $e_\Phi X$ of X, respectively. Here, e_Φ is the idempotent of $\mathbb{Q}_p[\Delta]$ defined by

$$e_\Phi = \frac{1}{|\Delta|} \sum_{\sigma \in \Delta} \Phi(\sigma)\sigma^{-1},$$

which is an element of $\mathbb{Z}_p[\Delta]$ by the assumption (H).

Throughout this paper, we fix an even \mathbb{Q}_p-character Ψ of Δ and its irreducible component ψ over the algebraic closure $\overline{\mathbb{Q}}_p$. Denote by Ψ^* and ψ^* the odd characters of Δ associated to Ψ and ψ by

$$\Psi^*(\sigma) = \omega(\sigma)\Psi(\sigma^{-1}), \hspace{1cm} \psi^*(\sigma) = \omega(\sigma)\psi(\sigma^{-1}), \hspace{1cm} (\sigma \in \Delta),$$

respectively, where ω is the character of Δ representing the Galois action on ζ_p. We often regard ψ and ψ^* as primitive Dirichlet characters.

Let k_n ($n \geq 0$) be the n-th layer of k_∞/k with $k_0 = k$, and A_n the Sylow p-subgroup of the ideal class group of k_n. Let

$$A_\infty = \lim_{\longrightarrow} A_n.$$
be the inductive limit with respect to the inclusion maps \(k_n \to k_m \) (\(n < m \)).

Denote by \(\widetilde{A}_0 \) the image of \(A_0 \) in \(A_\infty \). Let \(A_\infty^\Gamma \) be the elements of \(A_\infty \) fixed by the action of \(\Gamma = \text{Gal}(k_\infty/k) \). It is known (cf. [4, Proposition 1]) that \((A_\infty^\Gamma)^+ \) is a finite abelian group as a consequence of the Leopoldt conjecture for \((k,p)\) proved by Brumer [1]. Hence, so is \((A_\infty^\Gamma/\widetilde{A}_0)(\Psi) \). On the other hand, Tor\(Y(\Psi^*) \) and Tor\(Y'(\Psi^*) \) are also finite since \(X^- \) is finitely generated over \(\mathbb{Z}_p \) by the theorem of Ferrero and Washington [2].

For the trivial character \(\Psi_0 \), it is known (cf. [14, Proposition 6.16]) that \(A_\infty(\Psi_0) = \{0\} \) and \(X(\Psi_0^*) = \{0\} \). So, in what follows, we assume that \(\Psi \) is nontrivial (and even).

In [7], we proved the following:

Theorem 1. The finite abelian groups Tor\(Y(\Psi^*) \) and \((A_\infty^\Gamma/\widetilde{A}_0)(\Psi) \) are isomorphic to each other.

As for the subquotient \(A_\infty^\Gamma/\widetilde{A}_0 \) of \(A_\infty \), we proved in [7, Proposition 1] the following:

Proposition 1. When \(\psi(p) \neq 1 \), we have \((A_\infty^\Gamma/\widetilde{A}_0)(\Psi) = \{0\} \).

For more on this subquotient, see [7, Proposition 3] and [8].

The main result of this paper is as follows.

Theorem 2. Tor\(Y'(\Psi^*) \) is isomorphic to \((A_\infty^\Gamma/\widetilde{A}_0)(\Psi) \) as an abelian group.

We obtain the following corollary from Theorems 1 and 2.

Corollary. The \(\mathbb{Z}_p[\Delta] \)-modules Tor\(Y'^- \) and Tor\(Y^- \) are isomorphic to each other.

We put

\[\mathcal{H} = \text{Gal}(N/k_\infty) \quad \text{and} \quad \mathcal{H}' = \text{Gal}(N'/k_\infty). \]

It is known (cf. [6, Claim (page 97)]) that, by the restriction map,

\[\mathcal{H}'(\Psi^*) = \mathcal{H}(\Psi^*). \tag{1} \]

This is because the Leopoldt conjecture for \((k_n,p)\) holds for all \(n \geq 0 \) by [1]. It is also known (see Section 4.2 (Proof of Lemma 1)) that, by the restriction map,

\[\mathcal{X}(\Psi^*) = \mathcal{X}'(\Psi^*) \quad \text{when} \quad \psi^*(p) \neq 1. \tag{2} \]

Therefore, when \(\psi^*(p) \neq 1 \), we have \(\mathcal{Y}'(\Psi^*) = \mathcal{Y}(\Psi^*) \). By this and Proposition 1, we see that Theorem 2 follows immediately from Theorem 1 and the following:

Theorem 3. When \(\psi^*(p) = 1 \), \(\mathcal{Y}'(\Psi^*) \) is torsion free over \(\mathbb{Z}_p \).
Remark 1. Let A'_n be the Sylow p-subgroup of the p-ideal-class group of k_n in the sense of Iwasawa [10, Section 4.3], and let A'_∞ be the inductive limit of A'_n with respect to the inclusion maps $k_n \rightarrow k_m$ ($n < m$). Denote by \tilde{A}'_0 the image of A'_0 in A'_∞. To talk about the Galois groups X', Y', it is more natural to use A'_∞ than A_∞. However, it is known (cf. [4, Corollary]) that the natural projections $A'^+\infty \rightarrow A'^+\infty$ and $\tilde{A}'_0 \rightarrow \tilde{A}'_0$ are isomorphisms as a consequence of the Leopoldt conjecture for (k_n, p) ($n \geq 0$).

Remark 2. It is conjectured that $A'^+\infty = \{0\}$ (cf. [4]). We have many numerical examples of (k, p) with $A'^+\infty = \{0\}$, but no counter examples (see Kraft and Schoof [11], Kurihara [12], Sumida and the author [9]). However, the conjecture is not yet proved to be true in general.

3. Proof of Theorem 3.

We recall a standard notation. Let $O = O_\psi$ be the subring of $\overline{\mathbb{Q}}_p$ generated by the values of ψ over \mathbb{Z}_p. We identify the subring $e_\psi^{-1} O_\psi \mathbb{Z}_p[\Delta]$ of $\mathbb{Z}_p[\Delta]$ with O by sending $e_\psi^{-1} \sigma$ to $\psi^{-1}(\sigma)$, $(\sigma \in \Delta)$. Then, for a $\mathbb{Z}_p[\Delta]$-module X, $X(\Psi^*)$ is regarded as an O-module. We fix a topological generator γ of Γ. We identify, as usual, the completed group ring $e_\psi^{-1} O_\psi \mathbb{Z}_p[\Delta][[\Gamma]]$ with the power series ring $\Lambda = O[[T]]$ by $\gamma = 1 + T$ and the above identification. Thus, for a $\mathbb{Z}_p[\Delta][[\Gamma]]$-module X (such as several Galois groups over k_∞), we can regard $X(\Psi^*)$ as a module over O or Λ. We denote by q the element of $p\mathbb{Z}_p$ such that $\zeta^\gamma = \zeta^{1+q}$ for all $\zeta \in \mu_p\infty$.

Let M/k_∞ be the maximal pro-p abelian extension unramified outside p. The fields N, L, N' and L' are intermediate fields of M/k_∞. We put

$$\mathcal{G} = \text{Gal}(M/k_\infty), \quad \mathcal{Z}' = \text{Gal}(M/N')$$
$$\mathcal{I} = \text{Gal}(M/L), \quad \mathcal{I}' = \text{Gal}(M/L').$$

For a \mathbb{Q}_p-character Φ of Δ, denote by $M(\Phi)$ the intermediate field of M/k_∞ corresponding to $\bigoplus_{\Phi'} \mathcal{G}(\Phi')$ by Galois theory where Φ' runs over the \mathbb{Q}_p-characters of Δ with $\Phi' \neq \Phi$. Then, $\text{Gal}(M(\Phi)/k_\infty) = \mathcal{G}(\Phi)$. We define $N(\Phi), L(\Phi)$, etc, in a similar way.

As we have mentioned in Section 2, $\mathcal{H}'(\Psi^*) = \mathcal{H}(\Psi^*)$. Therefore, by the assertion [6, Lemma 1] on $\mathcal{H}(\Psi^*)$, there exists an injective Λ-homomorphism

$$\iota : \mathcal{H}'(\Psi^*) \hookrightarrow \begin{cases} \Lambda, & \text{when } \psi(p) \neq 1, \\ \Lambda \oplus \Lambda/(T - q), & \text{when } \psi(p) = 1, \end{cases}$$

with a finite cokernel. This is the Δ-decomposed version of [10, Theorem 15]. In the next section, we prove the following two lemmas.
Lemma 1. There exists a Λ-isomorphism:

$$\mathcal{I}'(\Psi^*) \cong \begin{cases}
\Lambda, & \text{when } \psi(p) \neq 1, \\
\Lambda \oplus \Lambda/(T - q), & \text{when } \psi(p) = 1.
\end{cases}$$

Lemma 2. We have $M(\Psi^*) = N'(\Psi^*)L'(\Psi^*)$.

Proof of Theorem 3. Assume that $\psi^*(p) = 1$. We put

$$\mathcal{I}'(\Psi^*) = \mathcal{I}'(\Psi^*) \mathcal{Z}'(\Psi^*) / \mathcal{Z}'(\Psi^*).$$

Then, we have $\mathcal{I}'(\Psi^*) \subseteq \mathcal{H}'(\Psi^*)$, and

$$\mathcal{Y}'(\Psi^*) \cong \mathcal{H}'(\Psi^*) / \mathcal{I}'(\Psi^*).$$

As $\psi^*(p) = 1$, we see from Lemmas 1 and 2 that

$$\mathcal{I}'(\Psi^*) \cong \mathcal{I}'(\Psi^*) \cong \Lambda.$$

Let ι be an embedding of $\mathcal{H}'(\Psi^*)$ into Λ with a finite cokernel. By the above, the image $\iota(\mathcal{I}'(\Psi^*))$ of $\mathcal{I}'(\Psi^*)$ equals a principal ideal (f) of Λ for some $f \in \Lambda$. Therefore, we obtain an injective Λ-homomorphism

$$\mathcal{Y}'(\Psi^*) \hookrightarrow \Lambda / (f)$$

with a finite cokernel. On the other hand, f is relatively prime to p by [2]. Hence, $\mathcal{Y}'(\Psi^*)$ is torsion free over \mathbf{Z}_p. □

4. Proof of lemmas.

4.1. Preliminaries. In this subsection, we give and recall some assertions on some groups of local universal norms of k_∞/k and the Galois groups $\mathcal{I} = \text{Gal}(M/L)$, $\mathcal{I}' = \text{Gal}(M/L')$. For a while, we fix a prime ideal p of k over p. We denote the unique prime ideal of k_n over p simply by p. Let $k_{n,p}$ be the completion of k_n at p, and $\mathcal{U}_{n,p}$ the group of principal units of $k_{n,p}$.

Let

$$\mathcal{V}_{n,p} = \bigcap_{m \geq n} N_{m/n} \mathcal{U}_{m,p} \quad \text{and} \quad \mathcal{W}_{n,p} = \bigcap_{m \geq n} N_{m/n}((k_{m,p}^\times)^{(p)})$$

be the groups of universal norms. Here, $N_{m/n}$ denotes the norm map from k_m^\times to k_n^\times, and for an abelian group X, $X^{(p)}$ denotes the maximal pro-p quotient. We put

$$\mathcal{U}_n = \prod_{p | \mathfrak{p}} \mathcal{U}_{n,p}, \quad \mathcal{V}_n = \prod_{p | \mathfrak{p}} \mathcal{V}_{n,p}, \quad \mathcal{W}_n = \prod_{p | \mathfrak{p}} \mathcal{W}_{n,p},$$

where \mathfrak{p} runs over the primes of k over p. These are closed subgroups of the maximal pro-p quotient $\widehat{k_n^\times} = (\prod_{p | \mathfrak{p}} k_{m,p}^\times)^{(p)}$. Denote by φ_n the natural embedding of k_n^\times into $\widehat{k_n^\times}$. Let E_n (resp. E'_n) be the group of units (resp. p-units) of k_n, and let \mathcal{E}_n (resp. \mathcal{E}'_n) be the closure of $\varphi_n(E_n)$ (resp. $\varphi_n(E'_n)$).
in \hat{k}_n^\times. Let \mathcal{U}_∞, \mathcal{E}_∞, \mathcal{W}_∞, \mathcal{E}'_∞ be the projective limits of \mathcal{U}_n, \mathcal{E}_n, \mathcal{W}_n, \mathcal{E}'_n with respect to the relative norms, respectively:

$$
\mathcal{U}_\infty = \lim\limits_\leftarrow \mathcal{U}_n \quad (= \lim\limits_\leftarrow \mathcal{V}_n), \quad \mathcal{E}'_\infty = \lim\limits_\leftarrow \mathcal{E}'_n \quad (= \lim\limits_\leftarrow (\mathcal{W}_n \cap \mathcal{E}'_n)), \quad \text{etc}.
$$

These groups are naturally regarded as modules over $\mathbb{Z}_p[\Delta][\Gamma]$.

Lemma 3. The projection $P : \mathcal{W}_\infty \to \mathcal{W}_0$ induces an isomorphism

$$
\mathcal{W}_\infty / \mathcal{W}_0 \cong \mathcal{W}_0.
$$

Proof. It is clear that the projection P is surjective and that $\mathcal{W}^T_\infty \subseteq \ker P$. So, it suffices to show that ker $P \subseteq \mathcal{W}^T_\infty$. Let $u = (u_n)_{n \geq 0}$ be an element of ker P with $u_n \in \mathcal{W}_n$. As $u_0 = 1$, we see that u_n is contained in \mathcal{U}_n. We can write $u_n = w^T_n$ for some $w_n \in \prod_{p \mid p} \hat{k}_n^\times$ by Hilbert Satz 90. Hence, $u_n = \overline{w}^T_n$, \overline{w}_n being the projection of w_n in \hat{k}_n^\times. Denote by $x^{(n)}_1$ the element of the product $X = \prod_{\ell} \hat{k}_\ell^\times$ whose ℓ-th component is $N_n/\ell (w_n)$ (resp. 1) for $\ell \leq n$ (resp. $\ell > n$). Since X is compact, $\{x^{(n)}_1\}$ has an accumulation point x in X. We easily see that $x \in \mathcal{W}_\infty$ and $x^T = u$. Therefore, ker $P \subseteq \mathcal{W}^T_\infty$. \square

By class field theory, it is known (cf. [14, Corollary 13.6]) that the inertia group I is canonically isomorphic to $\mathcal{U}_\infty / \mathcal{E}_\infty$ over $\mathbb{Z}_p[\Delta][\Gamma]$. As Ψ^* is odd and $\Psi^* \neq \omega$, it follows that $\mathcal{E}_\infty (\Psi^*) = \{0\}$ by a theorem on units of CM-fields (cf. [14, Theorem 4.12]). Therefore, we obtain a Λ-isomorphism

$$
I(\Psi^*) \cong \mathcal{U}_\infty (\Psi^*).
$$

(3)

On the Λ-structure of \mathcal{U}_∞, it is known (cf. Gillard [3, Proposition 1]) that

$$
\mathcal{U}_\infty (\Psi^*) \cong \begin{cases}
\Lambda, & \text{when } \psi(p) \neq 1, \\
\Lambda \oplus \Lambda / (T - q), & \text{when } \psi(p) = 1.
\end{cases}
$$

(4)

It is also known (cf. [3, Proposition 2]) that

$$
\mathcal{V}_0 (\Psi^*) \cong \begin{cases}
O, & \text{when } \psi(p) \neq 1 \text{ and } \psi^* (p) \neq 1, \\
O \oplus O / q, & \text{when } \psi(p) = 1, \\
\{0\}, & \text{when } \psi^* (p) = 1.
\end{cases}
$$

(5)

As for the decomposition group I', we need to prove the following:

Proposition 2. The reciprocity law map induces a canonical isomorphism

$$
I' \cong \mathcal{W}_\infty / \mathcal{E}'_\infty
$$

over $\mathbb{Z}_p[\Delta][[\Gamma]]$.

Proof. Let M_n (resp. L'_n) be the maximal abelian extension of k_n contained in M (resp. L'). It suffices to prove that

$$
\text{Gal}(M_n / L'_n) \cong \mathcal{W}_n / (\mathcal{W}_n \cap \mathcal{E}'_n)
$$

(6)
since \mathcal{I}' is the projective limit of $\text{Gal}(M_n/L'_n)$ with respect to the restriction maps. It suffices to show the assertion (6) only when $n = 0$ by considering k_n as the base field.

For an integer $m \geq 0$, we put

$$W^{(m)} = \prod_{p | p} N_{m/0} k^\times_{m,p} \supseteq U_0^{m}.$$

For a prime divisor q of k relatively prime to p, let U_q be the group of local units (resp. the multiplicative group) of the completion k_q of k at q when q is finite (resp. infinite). Let J_k be the group of idèles of k. We define its subgroups A, B, C as follows:

$$A = W^{(m)} \times \prod_{q \not| p} \{1\}, \quad B = U_0^{m} \times \prod_{q \not| p} \{1\}, \quad C = \prod_{p | p} \{1\} \times \prod_{q | p} U_q,$$

where p (resp. q) runs over the primes of k dividing p (resp. relatively prime to p).

Denote by H the Hilbert p-class field of k. Let $M_{0,m}$ be the maximal intermediate field of M_0/H whose Galois group over H is of exponent p^m. Clearly, $M_{0,m}$ contains k_m. Let $L'_{0,m}$ be the maximal intermediate field of $M_{0,m}/k_m$ in which all prime divisors of k_m over p split completely. We have a natural isomorphism

$$(7) \quad \text{Gal}(M_0/L'_0) \cong \lim_{\leftarrow} \text{Gal}(M_{0,m}/L'_{0,m}),$$

the projective limit being taken with respect to the restriction maps.

It is known that the reciprocity law map induces isomorphisms

$$\text{Gal}(M_{0,m}/k) \cong \left(J_k/k^\times BC\right)(p) \quad \text{and} \quad \text{Gal}(L'_{0,m}/k) \cong \left(J_k/k^\times AC\right)(p).$$

For this, see Sumida [13, pp. 692-693]. Therefore, we obtain a canonical isomorphism

$$\text{Gal}(M_{0,m}/L'_{0,m}) \cong (k^\times AC/k^\times BC)(p) \cong \left(A/(A \cap (k^\times BC))\right)(p).$$

We easily see that

$$A \cap (k^\times BC) = (W^{(m)} \cap (E'_0 U_0^{m})) \times \prod_{q | p} \{1\}.$$

Here, we are regarding E'_0 as a subgroup of $\prod_{p | p} k^\times_{0,p}$ in the natural way. Hence, we have

$$\text{Gal}(M_{0,m}/L'_{0,m}) \cong (W^{(m)}/(W^{(m)} \cap (E'_0 U_0^{m})))^{(p)}.$$

From this and (7), we obtain

$$\text{Gal}(M_0/L'_0) \cong \mathcal{W}_0/(\mathcal{W}_0 \cap \mathcal{E}'_0)$$

by an elementary but tedious argument on the topology of $\hat{k}_0^\times = (\prod_{p | p} k^\times_{0,p})^{(p)}$, which we leave to the reader. \qed
4.2. Proof of Lemmas 1 and 2.

Proof of Lemma 1 (and the formula (2)). Let B_n be the subgroup of A_n consisting of classes which contain a product of prime ideals of k_n over p, and let B_∞ be the projective limit of B_n with respect to the relative norms.

From class field theory, we see that \mathcal{I}'/\mathcal{I} is canonically isomorphic to B_∞. Let $D (\subset \Delta)$ be the decomposition group of p at k. Then, we have a natural surjection

$$
\mathbb{Z}_p[\Delta/D] \twoheadrightarrow B_\infty \cong \mathcal{I}'/\mathcal{I}
$$

over $\mathbb{Z}_p[\Delta]$. We see that $\mathbb{Z}_p[\Delta/D](\Psi^*) = \{0\}$ or O according as $\psi^*(p) \neq 1$ or $\psi^*(p) = 1$. Let $\psi^*(p) \neq 1$. Then, from the above surjection, we see that $\mathcal{I}'(\Psi^*) = I(\Psi^*)$ (from which (2) follows). Hence, the assertion of Lemma 1 follows from (3) and (4) in this case.

Let $\psi^*(p) = 1$. We have the following exact sequence of $\mathbb{Z}_p[\Delta]$-modules.

$$
\{0\} \rightarrow \mathcal{U}_0 \rightarrow \left(\prod_{p | \mathcal{P}} \mathbb{Z}_p^\times \right)^{(p)} \rightarrow \mathbb{Z}_p[\Delta/D] \rightarrow \{0\}.
$$

As $\psi^*(p) = 1$, we see from (5) that

$$(\mathcal{W}_0 \cap \mathcal{U}_0)(\Psi^*) = \mathcal{V}_0(\Psi^*) = \{0\}.$$

Therefore, by the above exact sequence, we see that the O-module $\mathcal{W}_0(\Psi^*)$ is free of rank one (or $\mathcal{W}_0(\Psi^*) = \{0\}$). Hence, $\mathcal{W}_\infty(\Psi^*)$ is cyclic over Λ by Lemma 3 and Nakayama’s lemma (cf. [14, Lemma 13.16]). By this and Proposition 2, $\mathcal{I}'(\Psi^*)$ is cyclic over Λ. Then, we obtain $\mathcal{I}'(\Psi^*) \cong \Lambda$ since $\mathcal{I} \subseteq \mathcal{I}'$ and $\mathcal{I}(\Psi^*) \cong \Lambda$ by (3) and (4). □

Proof of Lemma 2. It is known (cf. [6, Proposition 3]) that

$$M(\Psi^*) = N(\Psi^*)L(\Psi^*).$$

Let $\psi^*(p) \neq 1$. Then, $N'(\Psi^*) = N(\Psi^*)$ and $L'(\Psi^*) = L(\Psi^*)$ by (1) and (2). Hence, the assertion follows from the above in this case. Let $\psi^*(p) = 1$. Then, by Lemma 1, $\mathcal{I}'(\Psi^*) \cong \Lambda$. On the other hand, $Z'(\Psi^*)$ is finitely generated and torsion over Λ by [10, Theorems 5, 14]. Therefore, we obtain $Z'(\Psi^*) \cap \mathcal{I}'(\Psi^*) = \{0\}$, and hence $M(\Psi^*) = N'(\Psi^*)L'(\Psi^*)$. □

References

Received November 16, 2000 and revised November 28, 2001. The author was partially supported by Grant-in-Aid for Scientific Research (C), (No. 13640036), the Ministry of Education, Science, Sports and Culture of Japan.

Department of Mathematics
Yokohama City University
22–2, Seto, Kanazawa–ku, Yokohama, 236–0027
JAPAN

E-mail address: ichimura@yokohama-cu.ac.jp