ON THE COMMUTATOR FORMULA OF A SPLIT BN-PAIR

Gwenaëlle Genet
ON THE COMMUTATOR FORMULA OF A SPLIT
BN-PAIR

GWENAËLLE GENET

The purpose of this note is to prove in an elementary way and with geometric considerations that the Levi decomposition of a finite group with a split BN-pair of characteristic \(p \) (a prime integer) implies the commutator formula.

1. Introduction.

Split BN-pairs are defined by a set of axioms devised to study finite reductive groups (see [CR, 69.1], [R, 3.1]). Such finite groups \(G \) are assumed to contain subgroups \(B, N \) and \(S \subseteq W := N/T \), with \(T := N \cap B \), such that among other things, \(T \triangleleft N \), \((W, S)\) is a Coxeter system, \(B \) can be written as a semi-direct \(B = UT \) where \(U \) is a Sylow \(p \)-subgroup of \(G \) and \(B \cap B^{w_0} = T \) (\(w_0 \) the longest element of \(W \)). Recalling the geometric representation of \(W \) in an euclidean space \(E \), we denote by \(\Phi \) the associated root system (a subset of the unit sphere), by \(\Delta \subseteq \Phi^+ \) the fundamental and positive systems of \(\Phi \), so that the fundamental reflections \(\{ s_\delta, \delta \in \Delta \} \) correspond with the elements of \(S \) (see [CR, 64.28] or [B]). For \(\delta \in \Delta \), one defines \(X_\delta := U \cap U^{w_0s_\delta} \). An elementary consequence of the axioms of BN-pairs ([CR, 69.2]) is:

\((R0) \) For arbitrary \(\gamma \in \Phi \), written as \(\gamma = w(\delta) \) with \(\delta \in \Delta \), \(w \in W \), one may define \(X_\gamma := w^{\ast}X_\delta \). This only depends on \(\gamma \) and \(X_\gamma \neq \{1\} \).

A nice extra property, satisfied in all finite reductive groups, is the commutator formula:

\(\forall \alpha, \beta \in \Phi, \alpha \neq \pm \beta, [X_\alpha, X_\beta] \subseteq \langle X_{i\alpha+j\beta}, i > 0, j > 0, i\alpha + j\beta \in \Phi \rangle \).

This is useful to check the crucial property of Levi decompositions, which is that for all subsets \(I \subseteq \Delta \), \(U \cap U^{w_I} \) is normal in \(U \) (\(w_I \) the longest element of \(W_I \)). In particular,

\(\forall \delta \in \Delta, U \cap U^{s_\delta} \triangleleft U. \)

N. Tinberg ([T]) has shown that (2) implies in an elementary way the Levi decomposition.

Here, we show a little more, namely that (1) follows from (2), without using the classification of BN-pairs or the case of rank 2 ([FS]). Note that (2)
is always satisfied when the root subgroups X_δ have order p. Our arguments are easy considerations in the reflection representation space. We recall two elementary properties of BN-pairs. Denote by l_S the length in W relative to S.

(R1) (See [CR, 69.2] or [R, 3.3] by iteration.) There is at least one sequence such that $\Phi^+ = \{\gamma_1, \ldots, \gamma_N\}$, $N = |\Phi^+|$ and $U = X_{\gamma_1} \cdots X_{\gamma_N}$. If $\gamma \in \Phi^+$, then $X_{-\gamma} \cap U = \{1\} = U \cap U^{w_0}$.

(R2) ([R, 2.3]) If $w \in W$ and $s \in S$ is such that $l_S(ws) = l_S(w) + 1$, then $U \cap U^{ws} \subseteq U \cap U^s$.

The author thanks M. Cabanes for his suggestions.

Notation. If E' is a subset of E, we denote $X(E') := \langle X_{\gamma}, \gamma \in E' \cap \Phi \rangle$ and if A is a nonempty subset of W, we denote $V_A := \cap_{w \in A} U^w$.

2. First results.

The following proposition shows how to express V_A, $A \subseteq W$, $A \neq \emptyset$, with the root groups X_{γ}, $\gamma \in \Phi$. For this, we need:

Lemma 1. Let $m \geq 1$, let $\gamma_1, \ldots, \gamma_m$ be pairwise distinct in Φ^+ and for every i, $1 \leq i \leq m$, let $x_i \in X_{\gamma_i}\setminus\{1\}$. Let $w \in W$, then $x_1 x_2 \ldots x_m \in U^w$ if and only if for every i, $w(\gamma_i) \in \Phi^+$.

Proof. If for all i, $w(\gamma_i) \in \Phi^+$, then for all i, $X_{w(\gamma_i)} = w X_{\gamma_i} \subseteq U$ because of (R1). We prove the converse by induction on $l_S(w)$. If $w = 1$, this is obvious.

If $w = s_\delta$, $\delta \in \Delta$, one must check δ is none of the γ_i’s. Suppose on the contrary that $\delta = \gamma_{i_0}$. Then $s_\delta(\gamma_i) \in \Phi^+$ for any $i \neq i_0$. So $x_1 \ldots x_{i_0-1} \in U^{s_\delta}$ and $x_{i_0} \ldots x_m \in U^{s_\delta}$ by the ‘if’. Then $x_{i_0} \in U^{s_\delta} \cap X_\delta \subseteq U^{s_\delta} \cap U^{s_\delta s_i} = \{1\}$, a contradiction.

For an arbitrary $w \in W$ with $l_S(w) \geq 1$, we can write $w = w' s_\delta$ for $w' \in W$, $\delta \in \Delta$ and $l_S(w') = l_S(w) - 1$. Then $U \cap U^{w} \subseteq U \cap U^{s_\delta}$ by (R2). We have just seen that, for all i, $s_\delta(\gamma_i) \in \Phi^+$. Set $\gamma'_i := s_\delta(\gamma_i)$, $x'_i := x_i^{s_\delta} \in X_{\gamma'_i}$ where $s_\delta \in N$ is a representative of s_δ. The result comes by applying the induction hypothesis to $x'_1 x'_2 \ldots x'_m \in U^{w'}$.

Proposition 1. For all nonempty subset $A \subseteq W$, we have $V_A = X(\Psi_A)$ where $\Psi_A := \{\gamma \in \Phi \mid \forall w \in A, w(\gamma) \in \Phi^+\}$. Moreover, $\Psi_A = \{\gamma \in \Phi \mid X_{\gamma} \subseteq V_A\}$.

Proof. Suppose $1 \in A$, so that $\Psi_A \subseteq \Phi^+$. Take a sequence $\gamma_1, \ldots, \gamma_N \in \Phi^+$ as in (R1), so that $\Psi_A = \{\gamma_{i_1}, \ldots, \gamma_{i_m}\}$ for $1 \leq i_1 < \cdots < i_m \leq N$. Then any $x \in V_A \subseteq U$, can be written as $x = x_1 \ldots x_N$ with $x_i \in X_{\gamma_i}$. The above lemma implies that $x_i = 1$ whenever $\gamma_i \notin \Psi_A$. Then $V_A = X(\Psi_A)$. So it makes clear that $\Psi_A \subseteq \{\gamma \in \Phi \mid X_{\gamma} \subseteq V_A\}$. But if $\gamma \in \Phi$ is such that
Proof. One inclusion is clear. For the other, let x find a linear form f be a finite set of Ψ. Lemma 2. about separation of convex sets. A last equality is proved. X_V for w_w. C open cone generated by the elements of the unit sphere at distance $< r$. C sets us that the set $G \subset \{ f(C\{0\}) \subseteq \mathbb{R}_+^* \text{ and } 0 \not\in f(\Psi) \}$. Then $C = \cap_{f \in F} f^{-1}(\mathbb{R}_+^*) \cup \{0\}$.

Proof. One inclusion is clear. For the other, let $x \not\in C$, so $x \neq 0$. We will find a linear form f such that $f(C\{0\}) \subseteq \mathbb{R}_+^*$, $f(x) < 0$ and $0 \not\in f(\Psi)$. One may assume that x has norm 1. If $r > 0$, let C_r (resp. D_r) be the open cone generated by the elements of the unit sphere at distance $< r$ from the elements of C (resp. from x). For r sufficiently small, we clearly have $C_r \cap D_r = C_r \cap -C_r = \emptyset$. Taking a hyperplane separating the open convex sets C_r and D_r, it is clear that such a hyperplane must contain 0. This tells us that the set $G := \{ f \in E^V, f(C\{0\}) \subseteq \mathbb{R}_+^*, f(x) < 0 \}$ is not empty. Now, it is easy to see that G is an open set of the dual E^V and that the set $\{ f \in G, 0 \not\in f(\Psi) \}$ is not empty. Thus our claim.

The consequence of the above on “convex” subsets of Φ and corresponding subgroups of G is as follows.

Lemma 2. Let C be a closed convex cone of E such that $C \cap -C = \{0\}$. Let Ψ be a finite set of $E \setminus \{0\}$ and let F be the subset of the dual E^V of E, $F = \{ f \in E^V : f(C\{0\}) \subseteq \mathbb{R}_+^* \text{ and } 0 \not\in f(\Psi) \}$. Then $C = \cap_{f \in F} f^{-1}(\mathbb{R}_+^*) \cup \{0\}$.

Proof.

(i) The inclusion $C \cap \Phi \subseteq \Psi_{A(\Phi)}$ is trivial. On the other hand, we have $C \cap \Phi = \cap_{f \in F} f^{-1}(\mathbb{R}_+^*) \cap \Phi$ where the set F consists of the $f \in E^V$ such that $f(C\{0\}) \subseteq \mathbb{R}_+^*$ and $0 \not\in f(\Phi)$ (Lemma 2). But for $f \in F$, $f^{-1}(\mathbb{R}_+^*) \cap \Phi$ is not empty and therefore some unique fundamental system. By transitivity of W on fundamental systems, there is $w_f \in W$ such that $f^{-1}(\mathbb{R}_+^*) \cap \Phi = w_f^{-1}(\Phi^+)$. Obviously, $w_f \in A(\Phi)$. So we get the reverse inclusion we seek.

(ii) By (i) above, we have $X(\Phi) = X(\Psi_{A(\Phi)})$. But Proposition 1 tells us that the latter is indeed $V_{A(\Phi)}$.

Corollary 1. Let C and D be two closed convex cones of E such that $C \cap -C = D \cap -D = \{0\}$. Then, $X(C) \cap X(D) = X(C \cap D)$.

Proof. With Proposition 2 (ii), we clearly have $X(C) \cap X(D) = V_{A(C)} \cap V_{A(D)} = V_{A(C) \cup A(D)}$, and the latter is $X(\Psi_{A(C) \cup A(D)})$ by Proposition 1. But
\[\Psi_{A(C) \cup A(D)} = \Psi_{A(C)} \cap \Psi_{A(D)} \] that is again equal to \(C \cap D \cap \Phi \) by Proposition 2 (i). We get our claim. \[\Box \]

3. The commutator formula.

Theorem 1. If \(G \) is a finite group with a split BN-pair satisfying the hypothesis (2), then it satisfies the commutator formula (1).

Proof. For all finite subset \(Y \subseteq E \), we denote by \(C(Y) \) the closed convex cone generated by \(Y \). We use the abbreviation \(C(y, z) := C(\{y, z\}) \).

Suppose \(G \) satisfies (2). Denote \(U_\delta = U \cap U^\delta \) when \(\delta \in \Delta \). Let \(\alpha \in \Delta \) and \(\beta \in \Phi^+ \), \(\alpha \neq \beta \). We have \(U_\alpha = V_{\{1,s_\alpha\}} = X(\Psi_{\{1,s_\alpha\}}) \) and \(X_\beta \subseteq U_\alpha \) by Proposition 1 because \(\Psi_{\{1,s_\alpha\}} = \Phi^+ \setminus \{\alpha\} \). But \(\Phi^+ \setminus \{\alpha\} = \Phi \cap C(\Phi^+ \setminus \{\alpha\}) \) because any positive linear combination of positive roots that is again a root is a positive one and \(\alpha \) is a fundamental root, so is a minimal positive linear combination of positive roots. Therefore, \(U_\alpha = X(C(\Phi^+ \setminus \{\alpha\})) \). Besides, since \(X_\alpha \subseteq U \), \([X_\alpha, X_\beta] \subseteq [X_\alpha, U_\alpha] \subseteq U_\alpha \) by hypothesis (2). On the other hand, both \(X_\alpha \) and \(X_\beta \) are subgroups of \(X(C(\alpha, \beta)) \), so \([X_\alpha, X_\beta] \subseteq X(C(\alpha, \beta)) \). The closed convex cones \(C(\Phi^+ \setminus \{\alpha\}) \) and \(C(\alpha, \beta) \) satisfy \(C \cap -C = \{0\} \) by property of positive roots ([B]) then Corollary 1 implies \([X_\alpha, X_\beta] \subseteq U_\alpha \cap X(C(\alpha, \beta)) = X(C(\Phi^+ \setminus \{\alpha\}) \cap C(\alpha, \beta)) = X(C(\alpha, \beta) \setminus \{\alpha\}) \). So we get, for all \(\alpha \in \Delta \), \(\beta \in \Phi^+ \setminus \{\alpha\} \),

\[[X_\alpha, X_\beta] \subseteq X(C(\alpha, \beta) \setminus \{\alpha\}). \]

If \(\alpha \in \Delta \), \(\beta \in \Phi^- \setminus \{-\alpha\} \), we also have (3) by applying the above to \(w_0s_\alpha(\alpha) \in \Delta \), \(w_0s_\alpha(\beta) \in \Phi^+ \) and conjugating the corresponding subgroups of \(G \) by \(s_\alpha w_0 \in W \). So we have (3) for any \(\alpha \in \Delta \), \(\beta \in \Phi \setminus \{\pm \alpha\} \).

If \(\alpha, \beta \) are any non-proportional arbitrary roots, there is \(w \in W \) such that \(w(\alpha) \in \Delta \), then again we have (3). Now, exchanging the rôles of \(\alpha \) and \(\beta \), (3) becomes \([X_\alpha, X_\beta] \subseteq X(C(\alpha, \beta) \setminus \{\beta\}) \). It is clear that each set \(\Phi \cap (C(\alpha, \beta) \setminus \{\alpha\}) \), \(\Phi \cap (C(\alpha, \beta) \setminus \{\beta\}) \), and \(\Phi \cap (C(\alpha, \beta) \setminus \{\alpha, \beta\}) \) is of the type \(\Phi \cap C \) where \(C \) is a closed convex cone such that \(C \cap -C = \{0\} \) (draw a picture in the plane generated by \(\alpha \) and \(\beta \)). Then Corollary 1 gives \(X(C(\alpha, \beta) \setminus \{\alpha\}) \cap X(C(\alpha, \beta) \setminus \{\beta\}) = X(C(\alpha, \beta) \setminus \{\alpha, \beta\}) \). We get our claim. \[\Box \]

References

Received January 8, 2001 and revised May 4, 2001.

UFR de Mathématiques - Case 7012
Université Denis Diderot - Paris 7
2, Place Jussieu
75251 Paris Cedex 05
France
E-mail address: genet@math.jussieu.fr