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In this paper we obtain global well-posedness results for the
strongly damped wave equation usy + (—A)%u; = Au + f(u),
for 6 € [1,1], in H}(Q) x L?(R2) when € is a bounded smooth

27

domain and the map f grows like |u|::7J—r§ If f = 0, then
this equation generates an analytic semigroup with generator
—Ag). Special attention is devoted to the case when 6 = 1
since in this case the generator —.A(;) does not have com-
pact resolvent, contrary to the case 0 € [%,1). Under the
dissipativeness condition limsup,_, f(:) < 0 we prove the
existence of compact global attractors for this problem. In
the critical growth case we use Alekseev’s nonlinear variation
of constants formula to obtain that the semigroup is asymp-
totically smooth.

1. Introduction.

For 0 € [%, 1} , m > 0, we consider the global well-posedness and existence of
global attractors for a family of problems of the form

w4+ n(—=A)u + (—A)u = f(u), t >0, z€Q,
(1) u(0,z) = uo(z), u(0,2) =vo(z), € Q,
u(t,z) =0, t >0, z € 09,

where Q is a bounded C? smooth domain in R” and n > 3. We write further
A for —A with the Dirichlet boundary conditions. It is well-known that A
is a positive, self-adjoint operator with the domain D(A) = H%(Q) N H(Q)
and —A generates an analytic semigroup on X = X% = L2(Q). We denote
by X“ the fractional power spaces associated to the operator A; that is
X* = D(A?%) endowed with the graph norm.

The problems (1) will be viewed as ordinary differential equations in a

product space Y =Y = X3 x X0

o k) o L
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Here Agg) : D(A(g) CY? — Y and F are given by

(3) A m - |:A9(A1_9:i+77w):|
for [ZZ] € D(Aw), F <m> - [F?u)] ’

where
(4)

) =1 = {[{] e xitxxbeatormext) e ]

and F is the Nemitskil map associated to f(u). Of course,

A Lﬂ = [AQO—IZJ;AG@Z)} for [EZ] e X' x X9,

X' x X? being a dense subset of D(A)).
The linear problem associated to (2) in Y9,

(5) i+ A% 4 Au =0, t > 0, u(0) = ug, 4(0) = vy,

is studied in [7, 8, 9], where the sectoriality of A() is established and a
description of the fractional power spaces Y(‘g), a € [0,1] is given.

We choose as a base space for (1) the product space Y? = X 2 x X°. This
space seems to be the best possible to study the asymptotic behavior of (1)
since in it we may exhibit an energy functional to (1).

The cases 0 = % and 6 = 1 will deserve special attention. For 6 = %,

the form of the damping term A%ut allows us to obtain a more complete

description of the fractional power spaces associated to .A( 1. Using this,

2

we are able to describe the extrapolated fractional power scale generated

by (YO,A( 1 )) (see [5]) and obtain the convergence of bounded sets from
2

Y to the attractor in the strong topology of H'*%(Q) x H*(Q)-norm, a €

{ZT__%, 1). For § = 1 we have that the nonlinearity becomes subcritical,

nevertheless, we loose compactness of the semigroup and of the nonlinearity
(so that subcritical is of no help). However, in this latter case we are still
able to ensure the existence of a compact global attractor with the aid of a
nonlinear variation of constants formula.

The crucial result of [5] that we will use here is that:

Theorem 1. If f satisfies
(6) [f(u) = f(u)] < clu— /) (1 + Jul?™h + [o/]P7)
with p < ™2 then (1) is locally well-posed in H}(€2) x L*(1).
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In the present paper our main concern is the asymptotic behavior of (1)
and a great deal of our effort will go into the following conjecture.

Conjecture. If in addition to (6) f satisfies the dissipativeness condition

f(u)

(7) lim sup —= <0,

lul—o0 U
then the problem (1) with 0 € [%, 1] has a compact global attractor.

The paper is organized as follows. In Section 2 we briefly recall the results
of [5] concerning solvability of (1). Section 3 is devoted to a discussion of
the additional regularity of the solutions to (1). In Section 4 we prove the
global solvability and the existence of global attractors for (1), i.e.,

e in Subsection 4.1 we study the existence of a compact global attractor
for the case 0 = [1,1), p < 22 and f satisfying (6), (7),
e in Subsection 4.2 we treat the subcritical case p < Z—J_rg for 0 =1,

e in Subsection 4.3 we deal with the critical case p = Z—‘f% for 6 = 1.

We remark that for 6 = 1 the resolvent of Ay is not compact. However, we
are able to show that the semigroup {7'(¢)} corresponding to (1) is asymp-
totically smooth decomposing {T'(¢)} on a sum of the exponentially decaying
semigroup and a family of compact maps (see [11]). In the subcritical case
this may be accomplished based on compactness of the nonlinear term. In
the critical case the latter argument cannot be used and to overcome this
difficulty we employ the nonlinear variation of constants formula as in [3].

2. Local solvability of (1) in Y.

We start with the results of [5] on local well-posedness and regularity for
(2) with initial conditions in Y° and nonlinearities growing critically. Recall
that (see [5, Propositions 1, 4]):

Proposition 1. Ay, 0 € [%,1], is a sectorial, positive operator in Y.
The semigroup of contractions {e~*®'} is analytic in Yoy, a€ [0,1). It is
also compact for t > 0 except the case § = 1. Furthermore,

(8)

rX%—l—a(l—G) v Xea’ = [07 %}

@
Y = [Yovy(%]a = { [‘Z’
Al%—i—nweX@a}, ae [5.1].

c X%—i—a(l—&) % X&S‘—%—l—a(l—d?) .
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Following [1], we denote by Y()_,, 0 € [%, 1] , the extrapolated space of Y°
generated by A(g) which is the completion of the normed space (Y9, HA(_G% :
lyo). It was shown in [5, Proposition 5] that:

o Aw_, (Awp)_, being the closure of A(g) in Y(4)_, ) is sectorial and pos-

with D(Awg)_,) =Yg  =Y°,

itive operator in Y{g)_ (0)-

1
e imaginary powers of A(g)_, are bounded,

e A(y)_, has compact resolvent except for 6 = 1.

When dealing with fractional powers it is important to know the embed-
dings that relate the spaces in the fractional power scale and the known
spaces. Result below comes from [5, §2.2, §2.3] and will be needed to obtain
regularity and asymptotic compactness of the semigroup generated by (2).

Lemma 1. Let (X%, Ay), a € R] (A, being the realization of A in X*) be
generated by (L*(Q),(—Ap)). Then:
(i) Fora(l—0) < { andn =3 orn > 3,

(9) Y © H'P0=0(Q) s H*%(Q) € L%(Q) x L2(Q),
provided that 1 < q; < ﬁz(l_g), 1<q <2k ac0,3], 0¢e
1
[3:1]
(ii) form =3 and a = 0 = % the embedding (9) holds for 1 < ¢1 < oo,
1 < q2 < 3’

(iii) for n > 3 we have Y(l;)a C HY(Q) x H*(Q) for any a € [0,1];
-1
furthermore,
(10)
}/((;)—1 5 X3~ (1-a)(1-0) o x—3+a(1-0) 5 y5-(1-a)(1-0) y L),
42 ey a € 0.4, 0€ [h1]n 23,
whereas Y(Oi) =X2(Q) x XQT_I(Q) for any o € [0,1], n > 3.
-1

2

Following [5] we shall next study (1) as a sectorial problem (11) in Y{g)_,,
o€ [3,1],

g eon [ =7 () oo L= 3]

Our concern will be the e-regular solutions to (11) originating at the elements
of Y(le)_1 =Y?" (see Definition 2).

We first recall that if P is a sectorial, positive operator acting in a Banach
space Z = Z and ¢ is a nonnegative number, then:

Definition 1. G:D(G)— Z is e-regular relatively to (Z, Z%) (equivalently,
G is of class F(e, p,7v(g),C)) if and only if there are constants p > 1, y(g) >
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0, C' > 0 such that ps < y(g) < 1, G takes Z'*< into Z7(¢) and the following
estimate holds:

(12)  [G(z1) - Gl gree
< Cllzt = 2ol gnee (Il + zallfl +1) 21,20 € 215

The following result of [5, Corollary 2] plays an important role in the
regularity of the solutions of (1) and we will refer to it later in the paper.

Theorem 2. Assume that f satisfies (6) with 1 < p < ™2 and let F be the
map defined in (3). Then, F is an e-reqular map relatively to (Y(le),l , Y(g)_1>
for each € € [0, 2%] with v(e) = pe, that is,

a e ([)-=([2)
<|s] - [7]],,

'Y(E)
Yio)_

p—1 p—1

1-1-‘

i

1+4e€
}/(9)—1

U u’ 1+6
ARG

fore € [O, ;p} v(e) = ep. Moreover, if 0 = L, then (13) holds with (g) =

1+e
Y(G)—l

pe for each € € [ %)

Consider now an abstract problem:
(14) z+Pz=G(2), t >0, 2(0) = 2
(P, G as above) and take ¢ > 0, 7 > 0, zg € Z'. Recall that:
Definition 2. A function z = z(-, z0) : [0,7] — Z! is an e-regular solution
to the problem (14) if and only if z € C([0, 7], Z) N C((0, 7], Z'*¢), and
2(t) = e Plzg + /Ot e P=)G(2(s))ds for t e |0,7].

The existence of the e-regular solution to (11) under the assumptions (6)
has been recently discussed in [5] based on the original results reported in
[2], [4]. We thus have (see [2, Corollary 1], [5, Theorem 3]):

Theorem 3. Consider (11) as an abstract counterpart of (1) in Y _,,

0 € [%,1], choose [ZO] € Y? and denote by Byo ([ZO] ,r) a ball in YO
0 0

centered at go with radius r > 0. Suppose further that F is an e-reqular
0
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map relatively to (1/'(%)_1,)/7(9)71) and € > 0. Then, there are r > 0 and

70 > 0 such that for each [zo} € Byo ([zo] ,r) there exists a unique €-
0 0

reqular solution z (-, up,v0) to (11). In addition,

MR

whenever t € [0,79], 0 < ¢ < (o < v(e), [UI} ) [W] € Byo <[:}Lﬂ 77">7

U1

(i) [v (o) € € ((0.7] Y57 O) et (0m]. ¥3E) for 0 < ¢ <
v(g); in particular, [Z] (-, up,vo) satisfies both relations in (2).

Remark 1. Based on Theorem 2 one may substitute in the above Condi-
tions (i)-(iii) numbers &, vy(¢) such that

15) {’y(s) L ifoe (11,

2
v(¢) < 1 and ~(e) arbitrarily close to 1 if 6 = 1.

We also point out that crucial in this discussion Condition (13) holds when-
ever p, €, y(¢) fulfill the restrictions
1

n+2—4y(e)(1 —0)
1 < <e< —
Ry s g S

pe <q(e) <

)

N[

(see [5, Lemma 3] for detailed calculations). For the case p < "2 this allows
us to require of the numbers ¢ and v(¢) in (15) to satisfy additionally the
inequality 7(g) > ep; for example we may then choose

(16)
2
€ > (Z—;g)z, v(g) = e™2 and ¢ sufficiently close to (Z—jrg) , ife=1,
max {0, p(n—z)zg?jgz)):zu—e)} <e< %, v(e) = 3, if l<f<1,
1) =3, 0<e< g, if 0 =1.

Consequently, in a subcritical case a number r in Theorem 3 can be chosen
arbitrarily large so that the time of existence can be chosen uniform on
bounded subsets of Y(b),l (see [2, Corollary 1]).
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3. Smoothing action of e-regular solutions.

Our aim here is to show that the e-regular solutions resulting from Theo-
rem 3 are in fact smoother solutions. Namely, they may be viewed as the
solutions to (2) within the approach of [12]. We shall assume that

2 1
(17) f satisfies (6) with p < ni 0e [27 27; ++ 64> -

Q€ n_2 1
20-0)(n+2)" ")
Lemma 2. Suppose that (17) holds. Then the map F defined in (3) takes

Y(%‘) into YO and is Lipschitz continuous on bounded subsets of Y(‘;)

Proof. The proof follows by standard calculations based on the Holder in-
equality and Sobolev embedding (see the description of Y(‘;) spaces given in

(8))- .

The above lemma and the general results of [12] imply then solvabil-
ity of (2) and consequently smoothness of the e-regular solutions stated in
Theorem 4 below.

Lemma 3. Under the assumptions of Lemma 2 for each [ZO} € Y(‘é‘) there
0
exists a unique Y( o) -solution to (2) defined on a maximal interval of ex-

istence [0, Tugo). That is, there exists a unique function [Z] (-, up,v0) €

C ([07Tu0,v0),y(?9‘)) such that:
. u
(1) |:’U:| (t?UO,UO) S C <(O,Tu(),’v0)7}/(19))7

(if) m (-0, 00) € C (0, g, Y35 )» B € 0,1),
(iii) both relations in (2) are satisfied.

Theorem 4. If, in addition to (17), we assume that
1 1 4
(18) ez’thern23and0:§ or 3§n§5and0€<2 2)

then the e-regular solutions from Theorem 3 fulfill Conditions (i)-(iii) o
Lemma 3.
Proof. Choose € > 0 in Theorem 2 such that

1e) € (23.1) itg=1n>3,

We)=4> grtity it0€(3:).3<n<5
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and let B] (+,up,vp) be e-regular solution obtained in Theorem 3 (see Re-

n—2
mark 1). Since Y(le;_jl(e) = Y(ggs) C )/(;gl_e)("+2) we find from Theorem 3(iii)
that

n—2
[ﬂ (s,up,vo) € Y(;Slf(")("H) for each s € (0, 7).

n—2 ~
According to Lemma 3 there exists Y(zélfa)("”) -solution [g] (-, u(s,up,vo),

v(8,up,v0)) to (1). This proves that

u u
[v} (t+ s,ug,vg) = ['6] (t,u(s,up,v0),v(s,u0,v0)), t € [0, Tug.vp),

and consequently,
U 1
v (tau()va) € Yv(e)a te (877—“0,”0)’

] o) € € () Y5) B €0

Since s > 0 could be arbitrarily small, the proof is complete. O

4. Global solvability of (2) and a global attractor.

4.1. Subcritical case: 0 € [%, 1). In this subsection we consider the exis-
tence of a compact global attractor for (2) when the growth of f is subcrit-
ical; that is, (6) holds with p < Z—i’% We first restrict our attention to the

cases mentioned in (18) when either # = 3 and n > 3 or § € (%, ni”) and
3<n<b.

Lemma 4. If (18) holds and f satisfies (6) with p < "2 then for any

n—27’
bounded set B C YV there are a time T > 0 and the numbers ¢ > 0,

v(g) > pe asin (16) such that the e-regular solutions [z] (+,up,vo) from The-

0
is bounded in Y(CQ% for arbitrary (o € [0,7v(¢)) and each t € (0,75). In par-

orem 3 originating at [ZO] € B exist and the set { [ZL] (t,ug,vg) : [ZO] € B}
0

__n=2
ticular, the set { [:}L] (t,ug,v0) : [ZO] € B} 18 precompact in 1/(531_9)("”) for
0

each t € (0,7p).

Proof. The proof is a direct consequence of Remark 1, Theorem 3 (ii), and
Theorem 4. U
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In the considerations below, devoted to the existence of the global attrac-
tor to (2) in a subcritical case, we shall follow the general abstract scheme
developed in [10, 6]. For convenience we recall this scheme in the proposition
below (see [10, Section 4.2]).

Proposition 2. Consider the Cauchy problem (14) where P : D(P) — Z is
a sectorial, positive operator having compact resolvent, and G : Z% — Z is
Lipschitz continuous on bounded subsets of Z% for some a € [0,1). Denote
by z(+, z0) a Z*-solution of (14) defined on a maximal interval of existence
[0,74,). Then, the following two conditions are equivalent:

(i) Relation S(t)zo = 2(t,20), t > 0, defines on Z% a compact C°-semi-
group {S(t)} of global Z*-solutions to (14) which has a compact global
attractor in Z.

(ii) There are given:

e A Banach space Y, with D(P) C ),
e a locally bounded function C' : RT — RT,
e a nondecreasing function g : RT — RT,
e a number vy € [0,1),

such that, for each zy € Z%, both

(19) 12(¢, 20)ly < C(l[z0llz2), t € (0,72),

and
(20)  [IG(=(t, 20))llz < g(ll=(t, z0) ) (1 + [[2(t, z0) [ ), € (0,72),
hold, and the estimate (19) is asymptotically independent of zo € Z<.

Based on the abstract scheme of Proposition 2 (ii) we shall prove the
following theorem:

n—2
dissipative Condition (7). Then, for the numbers n, 0 admissible in (18)

and o € [W_&H)’l):

(i) There exists a compact C°-semigroup {T{g) o (t)} of global Y -solutions

to (2) which possesses a compact global attractor Ay o in Y,

()
.. U . ugp o o .
(i) Tipy,a(t) [Uo] = T(9)72(1777é)7(31+2) (t) L}O], for [ ] € Yy and t > 0;

Theorem 5. Let (18) holds, [ satisfies (6) with p € (1,w> and the

Vo
furthermore A (g) o = A(9)72(1:§;(2n+2) =: A,

(i) Tig)o(t) : Y — Y@, t>0, where Tig)0(t) [uo} = [ﬂ (t,up,v9) and

Vo

[ﬂ (-, u0,v0) s an e-reqular solution from Theorem 3, are well-defined

maps being the extensions of T(g) o(t), t > 0, to YO,
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(iv) Ay attracts bounded subsets of YO under {T(g) o (t)} in Y -norm.
Proof. The Proof of (i) occurs in four steps.

Step 1 (Y°-estimate and the Lyapunov function). Take [Zg] € Y(‘é‘) and
consider the corresponding Yg -solution [:}L (t,up,vo) of (2) resulting from

Lemma 3. Multiply the equation for v entering (2) by v = @ in L?*(Q)
and use the properties of the negative Laplacian with Dirichlet boundary
conditions to get

d (1 11 ! 3
& (310l + g1ttt = [ [ orasts) = <plaboliag, <o

This ensures in particular that
Uuo
Vo Yo ’

yeea (i) <o

where ¢, ¢ do not depend on 7,

w 1 1, .1
@ co([m]) = Gl + 514kl

—/Q/Owl £(s) ds dz, [Zj €Y’

and C : R™ — R™ is a locally bounded function independent of 7.

(21) H m (t, uo, v0)

Step 2 (subordination of the nonlinearity to a power of A(g)). Since 1 < p <
n+4(1-0)
n—2

that
(23)  |[f(u(t,uo,v0))ll 220

< g (Hu(t, UOaUO)”Hl(Q)) (1 + ||u(taUJOvUU)HlII-&-Qal(l—e)(Q)) ’

, then based on the Nirenberg-Gagliardo type inequality we obtain

t € (0, Tugve), With certain v € [0,1), a3 € [0,1) and some nondecreasing
function g : R™ — R* (see [10, Lemma 5.2.1]). Next, based on (23), we get

the relation
U

s ([

(24)

= [1f (ult, uo, v0))ll 220
yo

(e

v

@l
Yoy
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Step 3 (global solvability and compactness). Conditions (21) and (24) plus
the compactness of the resolvent of Ay ensure that to (2) corresponds a
compact C%-semigroup {T (6),a(t)} of global Y(‘;)—solutions having bounded
orbits of bounded sets. For the proof of the existence of a global attrac-
tor for {T(g)~(t)} in Yy it now suffices to show that the estimate (21) is

asymptotically independent of [uo} € Y(Ca“).
Vo

Step 4 (point dissipativeness of {1(g)(t)} - the role of the Lyapunov func-
tion). Functional Lo defined in (22) is a Lyapunov function for {T(s) (%)}
in Y(Oe‘). Therefore, w-limit sets of points from Y(‘g) lie within the set &£ of all
stationary solutions to (1). Our concern now is to prove that £ is bounded
in YO

Let [%] € £. Then v = 0, whereas @ is an H?()-solution of the elliptic
problem
(25) —Au = f(u), z € Q,
u =0 on 0f2.

With the use of (7) it is easy to show that if u solves (25), then ||| g1 (o) < ¢’
where ¢/ = (2, f) > 0 is independent of u. Consequently, we have

[@] <o m ce.
v v

Since each w-limit set w <[ZO] ), lies in &, is compact and attracts [uo} €
0

(26) |

YO

Vo
Y ) under {T9),(t)} in Y -norm, Condition (26) ensures in particular that

(27) lim sup

t—-4o0

[

m | U0 o
o <c7, [Uo] €Y.
Therefore, the estimate (21) is asymptotically independent of initial data
from Y G, which completes the Proof of Assertion (i).
Part (ii) is a consequence of the smoothing action of {T\g) o(t)}. Part (iii)
follows from Theorem 4. Finally, Part (iv) results from Lemma 4. Theorem 5
is thus proved. O

In the above considerations we assumed (18) and required that p in The-
orem 5 is less than %. These enabled the solutions to reach the space
Y(le) and provided better control over the asymptotics.

Through the remaining part of this subsection let us assume merely that

(6) holds with p € <1 ”—”) If this is the case one may choose ¢ > 0

' n—2
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n+2
n—2+4e(1-0)"

and justifies that we take
n+2—p(n—2)

4(1-6)
Now, choosing ¢, (g) according to (28) and defining ¢ = W}M we
obtain the estimate

arbitrarily small and satisfying p < This implies the inequality

n+2—4ep(1-0)
n—2

p <

(28) pe <(e) <

Il < const- Il o

and, consequently, we justify validity of the subordination condition

I ([l <o (L o], )

(0)—1
with an increasing function g(s) = const./(1 + s”), s > 0. Since the gap
between y(g) and 1 + ¢ is less then 1, Lipschitz Condition (13) allows to
obtain local Y(ge)—solutions for (11) and apply the scheme of Proposition 2

with 20 = Y(ggs_)l and Z% = Y(19)+_51 = Y(Ea) Using similar arguments as in
Steps 1-4 of Theorem 5 we thus obtain the following result.

' n—2
Condition (7) holds, then there exists € > 0 such that Conditions (i), (iii)
and (iv) of Theorem 5 hold with o = €.

Theorem 6. If f satisfies (6) with p € (1 "—*2) and the dissipativeness

4.2. Subcritical case: 0 = 1. In this section we restrict our attention to
the case § = 1 studied previously by many authors (see [15], [13], [11],
[16]).

Remark 2. In the recent paper [16] the dimension of the global attractor
was estimated. One can find however in this paper rather very strange
errors. First, the author takes X' x X! as the domain of A(1). However, if
the base space is Y, this operator is not closed with such a domain. This is
the case, when one needs to choose Yll) as the domain of Ay following the
description given in [9]. In this case it is thus rather unknown if the solution
possesses the regularity stated in [16, Lemma 1 (ii)] for initial data from Y.
Next in the proof of [16, Theorem 2] the author says that the semigroup
{e*A“)t} is compact. But this cannot be true because the resolvent of Ay
is not compact. The latter may be easily seen if we look at the embeddings

1
of Y{) spaces. Of course it is impossible for Y&) = X2 x X% tobe compactly
embedded in Y0 = X2 x X°.

Throughout the present subsection we shall consider functions f satisfying

subcritical growth; that is (6) with p < 2t2. In this particular case F
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1
takes Y(ll)_1 into Y(i)_l and is Lipschitz continuous in bounded sets (see [5,
Lemma 3]). This says that the map F is subcritical and Theorem 3 can be
rewritten in the following form.

Theorem 7. For any initial data [20] lying in a bounded subset B of Y(ll) )

0 _

there exists a number T = 7(B) and a unique 0-reqular solution [0,7] > t —
[z] (t,up,v0) € Y(11),1 to (11) which depends continuously on the initial data
and such that

m (- 119, v0) € C ((o,f],y(%l) et ((Om]’ é)l) |

Proof. The theorem above is a consequence of the results reported in [12].
[l

We remark further that local solutions from Theorem 7 are bounded in
the norm of Y9 uniformly on bounded sets. As in the Proof of Theorem 5
one may show the estimate (29) below.

Lemma 5. Let [ﬂ (-,up,v0) be a solution obtained in Theorem 7. If f

satisfies (6) with p < "2 and the dissipativeness Condition (7), then

)] <<((2])

where ¢ : Rt — RT is a locally bounded function.

(29) H m (t, uo, vo)

Our next step here is to prove that:

Lemma 6. Under the assumptions of Lemma 5 O-regular solutions from
Theorem 7 exist globally in time and the problem (11) defines a C°-semi-
group {T(1y0(t)} on Y° which has bounded orbits of bounded sets and is
asymptotically smooth.

Proof. The existence of a C%-semigroup with bounded orbits of bounded sets
follows from Lemma 5. To prove that {7(1)(t)} is asymptotically smooth
we use the variation of constants formula

t
T(1)0(t) [Z‘ﬂ — e A0t [:ﬂ + /0 e~ A (t=9) ¢ <T(1)’0(s) [53]) ds.

Recall that e AW-1? decays exponentially and that in the subcritical case

f takes bounded subsets of X 3 into bounded subsets of X _%M, for some

0 > 0. From this we have that F is a compact map from Y(ll)_1 =YY into
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1

1
Y('{’)_l = )/(1)7%- Since e ®-1! is a bounded linear operator from Y(f)_l to

Y(ll)i1 we have that the operator

U) m] - /O LAy (-0 <T(1),0(s) [ZSD ds

as a map from Y into Y is compact. It follows from the results in [11]
that T(1),0(t) is asymptotically smooth as a sum of an exponentially decaying
semigroup with a compact family of maps. This completes the proof. O

As an immediate consequence of these lemmas and of Step 4 in Theorem 5
we have the following result.

Theorem 8. Under the assumptions of Lemma 5, {T(1)o(t)} has a compact
global attractor Ay in YO,

3
The set A () is bounded in X2 x X2 = Y(i)_l (see [10, Lemma 3.2.1]).
Furthermore, noting that {7{) ()} is a dissipative CP-semigroup in Y(ll)_1
having bounded orbits of bounded sets, with simple computations based on
the variation of constants formula one can easily see that {T{;) ,(t)} is a point

dissipative C°-semigroup in Y(lJ,al with bounded orbits of bounded sets, for

each o € [0,%) (see [10, Corollary 4.3.2]). The semigroups {T(1).(t)} are
also asymptotically smooth which follows as in Lemma 6. This proves that:

Theorem 9. Under the assumptions of Lemma 5, the problem (11) defines
a C°-semigroup {T1) o(t)} on Y(IJ,O; which possesses a compact global attrac-
tor A1), for each o € [0, %) Furthermore, A1) is bounded in X3 x X3

and A(l),a = A(l),O for a e [O, %) .

4.3. Attractors in the critical growth case: 6 = 1. In this subsection
we shall consider the case when f satisfies (6) with the critical exponent
p=rt

4.3.1. The case of strong dissipation. We begin from the simpler case
when the semigroup {7(¢)} corresponding to (11) is exponentially decaying
and the attractor is a one point set {(0,0)}.

Proposition 3. Under the strong dissipative condition
(30) sf(s) <0, seR,

Equation (11) defines a C°-semigroup on Y° which has a compact global
attractor A1) = {(0,0)}.

Proof. Note that both Theorem 7 and Lemma 5 remain true under the
assumptions of the present subsection. Therefore, there exists corresponding
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to (11) semigroup {7(1) o(t)} in Y? of global 0-regular solutions with bounded
orbits of bounded sets. Based on (30) we shall next prove that

< h(r)efMg(r)t7

U B 0
[Uo} € B, = Byo ({O] ,r), t>0, r>0,

where h(r) is described in (38) and Mz(r) is described in (34) and (36). In
particular, {(0,0)} is a unique equilibrium which attracts bounded subsets
of YV.

Following [3] we introduce a functional

(32)  Ls <m]> = Lo ([Z;D —|—5/Qw1w2da:, 5 >0, [lw”j €Y",

where L is a standard Lyapunov functional to (1) given in (22). We remark

that as a consequence of (30) the integral [, [;"* f(s)dsdxz is nonpositive.
2

is bounded by
YO

o 2]

Vo Yo

Therefore, for ¢ sufficiently small the quantity ‘H }

w1
o [1]) o 5 bt |

Estimating in a standard way we have

%55 <T<1>70(t) [ZSD

1
= —n[| A2 0(t, uo, v0) || F2(q) + 010 (t, w0, v0) |72

+ 5/ u(t,uo,vo)(Au(t,uo,vo) + nAv(t, ug,vo) + f(u(t,uo,vo)))d:p
Q

N, 1
< —§||AQU(757U0,UO)||%2(Q) + 0l|v(t, uo, vo) 1720
o\ | 1
=5 (1= 5 1abutt o, w0l

Applying next inequality [[v||z2q) < c1 ”A%UH r2(Q) We obtain for each ¢ €
2
(O, min {307’21, %}) the estimate
2

d U ) 6, 1
Lo (T(l),o(t) [”((J)D < —§\|U(t,uo,vo)\|%2(9) - §||A2“(tv“0700)”%2(9)'
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Since (30) implies in particular that f(0) = 0, Condition (6) ensures that

/Q/OMI f(s)dsdx

_ 1 4 1
<c <1 + \|A2w1\£z(29)> HA”UIH%%QV wi € Hy(Q).

Defining
4) My =sup {abutt o o0y |10 € B e 20
0
) _ 1
Ms(r) = —————5—, where ¢>1 and § € | 0,min 3772 ,— ,
8¢(1 4 M ?) N

we may increase the right-hand side of (33) to get
(35)

L o ]
< —Ms(r)Ls (Tu), (t) { D M;s(r / /U(t UWO) s)dsdz

+6Mdﬂ/UGWm%)@Um%M — S lett, o, w0)
Q

d, 1
- ZHAQU(ta U, UO)”%Q(Q)

U 3 Ms(r) 1 1 )
< 3500125 (Tayolt) 1)) +6 | 25— = § | 1430t 00,0l

Vo 2 8
Ms(r) 1
( ) 4) [ (t, w0, v0) 1720

. n 1 Uo
— >
d€ (0,m1n{3c%,n}), [UO}GBT,t_O.
2

Let us next choose § = ¢ so small that both

B czMg(T) 1 1 2
(86) 0| 5 =5 | I42ult,u0,v0)ll3a(q

2
~( Mx(r) &
+3 ( P 4) [o(t, o, v0) [Tz () < 0

2
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and

o Hofg]], = (o 3)

are satisfied. For such value of § inequality (35) reads:

iﬁ < Tiy,0(t) [UOD < —M;(r) L3 <T(1),0(t) [:}‘3]) [:}‘g] €B,, t>0

and we obtain the estimate

9
U, U,
Ti1y,0(t) { 0] < 8L; (T(1),o(t) [USD
YO
where

Vo
(38) h(r) = 8sup {ﬁg ([ZSD ; [Zﬂ € BT} .

The proof is complete. O

IN

Vo

h(r)e_Mg(r)t, [uo] €B., t>0

4.3.2. Nonlinear variation of constants formula. Our next concern
is to prove for a pair of problems (39), (40) given below the Alekseev’s
nonlinear variation of constants formula (42) (see [3, Theorem 2.2]). In
these considerations we shall need the following assumptions:

(Ho) P is a sectorial, positive operator in a Banach space Z = Z° with
the domain Z! and for some a € [0,1) functions Gy : Z% — Z°,
Gy : Z% — Z“ are such that G has continuous Frechét derivative and
(G2 is Lipschitz continuous on bounded sets.

(H1) There exists a Banach space Y = Yo densely embedded in Z¢ such
that Py0 (P|y0 being a realization of P in Y°) is sectorial and positive

in )Y with the domain Y! and Gy, Go are Lipschitz continuous on
bounded sets as the maps from Y into ).

For £ € Z® let z = z(t, &) be a solution (as in [12, Chapter 3]) to
(39) 2+ Pz=Gi(z), t >0, z2(0) =¢.
Similarly, let z = Z(¢, &) be a solution to
(40) Z+P7=G1(3)+ Ga(3), t >0, Z(0) =¢.

Lemma 7. Suppose that the requirements of (Hy) and (Hy) are satisfied.
Then, the following conditions hold:

(41) The function (0,+00) X Z* 3 (t,w) — z(t,w) € Z

has continuous Frechét derivative,

(42)  3(t,6) = 2(1,€) / O (5,25, €) a5, E))ds, £ 0.



304 A.N. CARVALHO AND J.W. CHOLEWA

Proof. Condition (41) is a consequence of [12, Corollary 3.4.6]. Next, since
z(t,w) in (41) is a C'-function, using the chain rule we obtain

0z

(43) %[Z(t - 872(875))] =—z (t - 3,5(3,5)) + %(t - 875(375)) :27 (37€)'

For ¢ € Y9 assumptions of (H;) guarantee that 2(s, &) € V! and z (0, 2(s, €))
exists in Y’-norm. Since Y C Z?, the derivative z (0, Z(s,£)) exists in Z9-
norm and we have:

(44) (t—s5,3(5,6) = lim z2(t—s+h,z(s,8)) — z(t — s,2(s,€))

h—0+ h
= lim Z(t—S,Z(h, g(&f))) —Z(t—S,Z(O,g(S,f)))
S0t h
= 22 (1 5, 2(5,€0)200,3(5,€)).
Connecting (43), (44), and (40) we get

(45)
% [Z(t - S,E(S,{))] = gj(t - S,E(S,&))(PZ(O, g(své‘)) - G1(2<07E(37§)))

— PZ(s5,€) + G1(Z(s,€)) + G2(2(5,€)))
_ %j(t — 5, 2(s,€))Ga(2(5, ).

Integrating both sides of (45) we show that (42) holds for ¢ € Y°.
Now choose & € Z and consider a sequence {£,} € V¥ convergent to &
in Z%. We know that

(46)
- Loz - -
0.6 = 206+ [ 52— 5 F6,6)GalE(s,60)ds, 10, nEN,
0
where z(-,&,) and Z(-,&,) tend in Z to z(-,&) and z(-,&p) respectively.
Since convergence of z(,&,) and Z(+, &,) is uniform with respect to ¢ varying

in compact subintervals of [0, 400) (see [12, Theorem 3.4.1]), passing to the
limit in (46) we obtain (42) for £ € Z®. The proof is complete. O

Remark 3. Lemma 7 remains true if instead of (Hp) and (H;) we assume
that (H|) and (H;) hold.

(H|)) P is a sectorial, positive operator in a Banach space Z = 79 with the
domain Z!, a > 3 > 0 satisfy a — 8 € [0,1) and functions G; : Z% —
ZP Gy : Z® — Z“ are such that G has continuous Frechét derivative
and G is Lipschitz continuous on bounded sets.

Proof. Indeed, since P|ZB (P\26 being the realization of P in W0 := Zﬁ)
is a sectorial, positive operator with D(ﬂzﬁ) = 781 = W' (see [10,
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Proposition 1.3.8]) and, for o/ = a — 3, W = (Z%)*=8 = Z%  (see 1, p.
260]) we repeat the arguments of Lemma 7 with B__, WO and W instead
of P, Z°, Z«. O

The next lemma shows validity of the Alekseev’s formula for a pair of
sectorial problems (see (47), (48) below) connected to the strongly damped
wave Equation (1).

Lemma 8. Let n =3,4,5,6. Suppose that:

o f=fitfo, i R=>R,i=1,2,
e f1 satisfies (6) with p = "2, f1 has second order derivative, |f{'(s)| <

n—27’ —
c(1+ sl

nt2
n—2

2), and, in addition, sfi(s) <0 for s € R,
* fa satisfies (6) with p < "5 and, moreover, limsupj|_
Then:
(i) Assumptions of (Hy) hold with P = A(yy_,, 70 = Yoy, a=1,0=

BT B e A

where Fy, Fy are Nemitskii maps corresponding to f1 and fo respec-
tively.
(i) Assumptions of (H1) hold with o =1, Y° = X1 x X0 Y' = X1 x X1,
and P|_ = Aq) .
y0 Ix1 % x0

L) < .

S

7

DO

(iii) Alekseev’s formula (42) holds with & := [Zﬂ ,2:=T() [758] denoting

the solution to

1 R R o v R e P

and z :== S <-7 [ZO ) denoting the solution to
0

o s b e Bl

iv) S| t, uo exponentially decays to 0, uniformly for U0 varying in
(iv) vl ) P y decay y for || varying
bounded subsets of Y°.

Proof. The Proof of (i) is standard. For the validity of (ii) the crucial prop-
erty is that A(l)‘ _ defines a sectorial operator (see [15, Proposition 2.2]).
XXX

Condition (iii) follows from Lemma 7. Finally, the convergence in (iv) is a
consequence of Proposition 3. O
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4.3.3. Existence theorem. With the use of Alekseev’s formula we may
finally obtain the existence of a compact global attractor for the semigroup
{T'(t)} corresponding to (1) in the critical growth case.

Theorem 10. Under the assumptions of Lemma 8 and the additional as-
sumption that fo is continuously differentiable function with |f}| < ¢, the
problem (47) defines in Y9 a C°-semigroup {T(t)} of O-reqular solutions
which possesses a compact global attractor in Y.

Proof. The assertions of Theorem 7 and Lemma 5 remain valid under the as-
sumptions of the present theorem. The existence of a CO-semigroup {T'(¢)}
in Y9 with bounded orbits of bounded sets is thus straightforward. If we
proved that {T'(t)} is asymptotically smooth, then the existence of a Lya-
punov functional Ly (see (22)) and the boundedness of the set of stationary
solutions would guarantee that {7'(¢)} is point dissipative. Consequently,
{T(t)} would possess a compact global attractor in Y°.

To prove that {T'(t)} is asymptotically smooth we apply Lemma 8 (iii)
decomposing {T'(t)} so that

o) =s(:[5)) rea 5] 3] er e

where S < [ZO]> is a solution to (48) and

v 2] = [ (1 sro [2]) e (reo [1] ) s

By Lemma 8 (iv) to Justlfy asymptotic smoothness of {T'(¢t)} we only need
to prove that U(t) : Y¥ — Y? is a compact map for each t > 0 (see [11,
Lemma 3.2.3]).

As a consequence of the growth restriction for fs, F» takes bounded
subsets of X2 into bounded subsets of X° for any 6 € (0,%) (see [3,
Lemma 5.2]). This suggests that it might be possible to take advantage
of the smoothing properties of analytic semigroups and study the equation

for 2 o <t —5,T(s) [ ]) Ga < (s) [:}LO}> in another space which would be
0

slightly smoother than the original base space Y.
For this purpose fix certain dg € (0 ) and set B0 = F = X37% x X%,
Then Ay = A(l)l is sectorial on E0 (see [13, Theorem 1.1]) and we
EO

verify (similarly as in [5, Proposition 1 and Lemma 1]) that Ay = A

I o

considered on a base space E? with the domain E! = { [EZ] € X2+

X3+ . p+mp € X119 4 is maximal accretive with zero in the resolvent set.
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Generally speaking, it may be observed that a number of facts previously

proved for Ay defined on Y0 with the aid of A : X! — X, may be reproved

for Ay = ‘A(l)l , that is for A(;) redefined on E° with the aid of A|X50 :
EO

X100 — X% instead of A: X' — X (sce (3));

% -1 o @ P
A, M = {Axéo (<p+77¢)] =4 M for M =

For example, since A|X o is selfadjoint and positive definite on EY, we
may use the general results of [9] to get the characterization

EY — D((Alxéo)%) X D((A|X60 )¥) = [X50’X1+50:| % [X60,X1+60]a

D=

— X3T00 » xoth o ¢ [0, ;] :

In particular E3 is thus a product space X 30 X %JF‘SO, so that repeating
part of the proof of [5, Lemma 1] we get the inclusion

1 1 1
E2, =F_;1 D X210 x x 3%,
2

By our assumptions, Fy : X > — X2 and consequently also G : Y(11)71 —

1
2
Yi

(1)_, are Frechét differentiable functions and

5= st = 1],

w

where Vp € {T(s) [Zg] 1 s> 0,

< T} =: 3,
yo

UuQ
(2]
fulfills the relations

ds

E(t’ Vo) + A(l)_IS(t, Vo) = G1(S(t, Vo)), t >0, S(0,Vp) = Vp.

Consequently, from [12, Theorem 3.4.4] we know that V = g—i(-, V0)G2(Wo)
is a mild solution in Y(ll)_1 of the equation

dw
(49) —= H A W = GS(L V)W, £ >0,

where

]:;H(t,w) and W(0) = Ga(V).
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1
Equation (49) has a uniqueness property since H : Rt x Y? — }/(?)—1 is
Hoélder continuous with respect to the first argument and Lipschitz contin-
uous with respect to the second argument uniformly on bounded subsets of
R x E°,
If we justified that the equation

aw
50 —
(50)  ——+ (A
has a unique solution in E°, it would have to coincide with V and we could
study V" as the solution to (50). If we could additionally estimate the solution
to (50) in Ep, we would be able finally to justify compactness of U(t) : Y —
Y0 using the fact that bounded subsets of E° are precompact in Y.

For the solvability of (50) with the initial data in EY it suffices to justify
1

that H : Rt x E° — Ezl is Holder continuous with respect to the first
argument and Lipschitz continuous with respect to the second argument
uniformly on bounded subsets of Rt x E°. We remark, omitting detailed
calculations, that the Holder continuity follows from the fact that (since Vp

)—1W = G/I(S(t"/ﬂ))wv t>0, W(O) = GZ(V[))v

I go

1
belongs to Yé)) S(-, Vo) : Rt — Y9 is Holder continuous on bounded sets as
well as from the existence of f” with the prescribed growth. The Lipschitz

continuity is a result of the growth restriction for f’.
We next find the estimate

1
LA @EDX g~ gesy < B (0@l g ) (1411l gy ) 5 X € XEFL 20,

(here h: R — R* is a nondecreasing function) which shows that V' is the
global solution in E° to the problem (50), where the growth of nonlinear
term H(t, W) is sublinear, i.e.,
(51) IHEW 3 < hISE Vo)lyo) (X + [W(E)llgo), > 0.

Z1

Since Ga(Vp) € EY and since ||G2(Vo)||go < C(||Vollyo) for some contin-
uous function C(-) and since both {T'(¢)} (which controls Vp) and {S(¢)}
(which enters the crucial estimate (51)) have orbits of bounded subsets of
YY bounded in the norm of YO, after standard calculations based on the
integral counterpart of (50) we obtain that

(52)  [W()llpo < const.(r,7), t €[0,7], Vo € Xy, 720, 7>0.

What was said above makes clear that we may substitute W = V into the
left-hand side of (52). Compactness of U(t) follows thus from (52) and
from compactness of the embedding E° € Y. The Proof of Theorem 10 is
complete. O
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