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In this article we consider the problem posed by Whyte,
about the distribution of N point charges on the unit sphere,
whose mutual distances have maximal geometric mean. Some
properties of the extremal points are discussed. In the case
when N = 5 the optimal configuration is established rigor-
ously, which solves an open problem communicated by Rakh-
manov.

1. Introduction.

In 1952 L.L. Whyte [25] posed the question of distributing N points on the
sphere so that the product of their mutual distances is as large as possible.
Such points are sometimes referred to as logarithmic points because they
minimize the discrete logarithmic energy

E0(ωN ) :=
∑
i<j

log
1

|xi − xj |
(1.1)

among all point configurations ωN := {x1,x2, . . . ,xN} on the unit sphere
S2 := {x ∈ R3 : |x| = 1}. They are also known as elliptic Fekete points
(see [19]).

The Whyte’s problem stems from a more general minimal energy problem.
Given α > 0, the α-energy of ωN ⊂ S2 is defined by

Eα(ωN ) :=
∑
i<j

1
|xi − xj |α

.(1.2)

The minimal α-energy problem is to find the global minimum of (1.2) and
configuration(s) ω∗N which realize it. Such configurations are called α-
extremal. For the special case of logarithmic points (or α = 0) we shall
use in this paper the term optimal N -configurations.

When α = 1 the problem is called J.J. Thomson’s problem and dates back
to the beginning of twentieth century, when Föppl [8], under the suggestion
of Hilbert, investigated the so-called Thomson arrangements. He observed
that the point charges tend to distribute in sequences of rings. However,
Föppl considered only configurations that shared high symmetry properties.
In [5] the authors claim that the Föppl’s arrangements are optimal for the
special values of N = 1 − 6, 12, which they derive from Leech’s paper [14].
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The latter paper though only implies that the configurations are local ex-
trema or saddle points. We couldn’t find a reference which rigorously solves
the Thomson problem for N = 5. For N = 6 the problem has been resolved
in [26] (the solution is the vertices of regular octahedron). In [1] the author
obtains that the vertices of the regular icosahedron solve the Whyte’s prob-
lem (α = 0), and claims that the methods he uses can be applied to solve
the Thompson problem for N = 12. For other values of N , the problem has
been constantly attacked with numerical methods (see [5], [9], [15], [16],
[17]), with better configurations appearing in the literature occasionally.

Another distinguished problem is the Tammes problem, which occurs
when α → ∞. Since now the main contribution in (1.2) comes from the
smallest mutual distance, the problem reduces to maximizing the smallest
distance in the configuration. This problem is also referred to as the best
packing problem on the sphere, namely how to pack N congruent spherical
caps on the sphere, so that their radius is as large as possible. The problem
has been solved for N = 1− 12 and N = 24 (see [10], [7], [18]).

The other limiting case, when α → 0, leads to the Whyte’s problem,
stated at the beginning. It is easy to solve the problem for N = 2− 4. We
cited earlier the result of Andreev that the regular icosahedron is a solution
of the Whyte’s problem for N = 12. For N = 5 − 7 the problem has been
communicated by Rakhmanov in [4] as an open problem. In [11] the authors
obtained the solution of the Whyte’s problem for N = 6, using heavily the
fact that the vertices of the octahedron form a spherical design. They also
noted that the solution is unknown for N = 5. It this paper we derive the
following

Theorem 1. The five-point configuration that maximizes the geometric
mean of the mutual distances is unique up to rotations, and has two an-
tipodal points, say in the North and South Pole, and three that form an
equilateral triangle on the Equator.

Using Föppl notation, we can denote the optimal configuration as {1, 3, 1},
where the 1’s are at the poles and the 3 stands for regular 3-gon. Two other
configurations will be used in the paper, {5} for the regular pentagon on
a great circle, and {1, 4} for the configuration with one point at the North
Pole and a square inscribed in {z = −1/4} ∩ S2.

We should also point out that similar problems are considered when α < 0.
Then one asks for the maximum in (1.2). When α = −1 this is, except for
some small values of N , a long standing open problem in discrete geometry.
We refer the reader to [6], [20], [21], [11] for more on this problem. For
generalizations of the α-energy problems to higher dimension see [13], [3].

Another important trend of investigation is asymptotical results concern-
ing the minimal energy and the optimal configurations as N →∞. We refer
the reader for details to [16], [17], [12], [13], [22], [23], [24].
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In Section 2 we consider some properties of the optimal configurations
and the Proof of Theorem 1 is presented in Section 3.

2. Some properties of optimal configurations.

In the next proposition we list some properties of the optimal configurations
(α = 0) in the d-dimensional case. These properties are essentially found
in [2] for d = 3. Although the generalization is not difficult, we choose to
include a proof to make things self-contained.

Proposition 2. Let X1, X2, . . . , XN be an optimal configuration on the unit
sphere Sd−1 in Rd. Then the center of mass of the configuration coincides
with the center of the sphere O and the following force conditions hold:

∑
j 6=i

−−−→
XjXi

|Xj −Xi|2
= fi
−−→
OXi i = 1, . . . , N,(2.1)

where f1 = · · · = fN = (N − 1)/2. Moreover,∑
j 6=i

|Xj −Xi|2 = 2N i = 1, . . . , N.(2.2)

Proof. First, we shall prove (2.1). Without loss of generality we can as-
sume that i = 1 and X1 = (0, . . . , 0, 1). Let Xj = (x(1)

j , x
(2)
j , . . . , x

(d)
j ),

j = 2, . . . , N be fixed, and let X = (x(1), x(2), . . . , x(d)) vary on Sd−1. The
function

f(X) =
N∑

j=2

1
2

log
1

|X −Xj |2
+

∑
2≤l<j≤N

log
1

|Xl −Xj |

has a minimum at X1 = (0, . . . , 0, 1), therefore its partial derivatives fx(k) ,
k = 1, . . . , d − 1, vanish at this point. In a neighborhood of (0, . . . , 0, 1)
we can write x(d) = x(d)(x(1), . . . , x(d−1)) and from |X|2 = 1 we have
∂x(d)/∂x(k) = −x(k)/x(d). Thus,

fx(k)(0, . . . , 0, 1) = −
N∑

j=2

(x(k) − x
(k)
j ) + (x(d) − x

(d)
j )∂x(d)/∂x(k)

|X −Xj |2

∣∣∣∣
(0,...,0,1)

(2.3)

= −
N∑

j=2

−x
(k)
j

|X1 −Xj |2
= 0 k = 1, . . . , d− 1.
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This implies (2.1) with some f1. To show that f1 = (N − 1)/2 we multiply
(2.1) for i = 1 with −−→OX1 and use the fact that

−−−→
XjX1 ·

−−→
OX1 = (−−→OX1 −

−−→
OXj) ·

−−→
OX1

= 1−−−→OXj ·
−−→
OX1 = (1/2)|−−→OXj −

−−→
OX1|2.

Since the choice i = 1 was arbitrary, we conclude that (2.1) is true for any
i.

Next, we derive that the center of mass is O. To do so we sum Equations
(2.1) for i = 1, . . . , N . The left-hand side is obviously zero, and since all
fi’s are equal, the right-hand side will be ((N − 1)/2)

∑−−→
OXi, which implies

that O is the center of mass of the system of points.
Finally, we show that (2.2) holds true whenever O is the center of mass

of the point configuration {Xi} on the unit sphere. Indeed, for fixed i we
get ∑

j 6=i

(−−→OXj −
−−→
OXi)2 =

∑
j 6=i

(2− 2−−→OXj ·
−−→
OXi)

= 2(N − 1)− 2−−→OXi ·
∑
j 6=i

−−→
OXj = 2N.

�

Remark. It is certainly a remarkable fact that in the case of logarithmic
interaction, if the charges are in equilibrium, then their center of mass co-
incides with the center of the sphere. Another important consequence is
formula (2.2), which explains the phenomenon that when in equilibrium,
the charges tend to arrange so that there are fewer different distances. For
example, this formula enables us to derive an elementary proof of the fact
that the regular simplex inscribed in the unit sphere Sd−1 is the only α-
extremal configuration with d+1 points for any α ≥ 0 (compare with [11]).

Corollary 3. The only α-extremal configuration with d + 1 points on Sd−1

for α ≥ 0 is the regular d + 1-simplex inscribed in Sd−1.

Proof. First, we consider the case α = 0. Suppose that X1, X2, . . . , Xd+1

is an optimal configuration on Sd−1. Then from the arithmetic-geometric
mean and (2.2) we get

d+1∏
i=1

∏
j 6=i

|Xi −Xj |2
 ≤ d+1∏

i=1

1
d

∑
j 6=i

|Xi −Xj |2
d

(2.4)

=
(

2(d + 1)
d

)d(d+1)

.

Since equality holds only when all mutual distances |Xi−Xj | are equal, the
corollary easily follows in this case.
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In the general case we again use the arithmetic-geometric mean, as well
as (2.4), to derive∑

1≤i<j≤d+1

1
|Xi −Xj |α

≥ d(d + 1)/2(∏
1≤i<j≤d+1 |Xi −Xj |

)α(2.5)

≥ d(d + 1)/2

(2(d + 1)/d)αd(d+1)/4
,

with equality holding only for the regular simplex. �

3. Optimal configuration for five points.

In this section we prove Theorem 1. First, we consider only configurations
that have antipodal points and show that among these {1, 3, 1} has maximal
geometrical mean (Lemma 4 below). Next, in Lemma 5 we show that in an
optimal configuration there must be at least two adjacent edges with equal
length. Using the symmetrical properties arising from this, we shall prove
the theorem at the end of the section.

Lemma 4. Among all configurations with a pair of antipodal points, the
one that maximizes the geometrical mean is the {1, 3, 1} configuration.

Proof. Let D and E be two antipodal points on the sphere. Without loss
of generality we may assume that D = (0, 0, 1) and E = (0, 0,−1). Since
4ADE is a right triangle inscribed in a circle of radius one, AD . AE ≤ 2.
Similarly, BD .BE ≤ 2 and CD .CE ≤ 2. Observe, that equality holds in
all three inequalities if and only if A,B, C ∈ xy-plane.

On the other hand, we have that AB . AC .BC = 4 . R . S4ABC , where R
is the radius of the circumscribed circle and S4ABC is the area of 4ABC.
It is clear that the larger R is, the larger the product is, and for fixed R the
maximum of S4ABC occurs only when the triangle is equilateral. Therefore,
AB . AC .BC ≤ 3 .

√
3. Thus, we get that for any configuration with D

and E fixed at the poles, the maximum of the product of the ten mutual
distances occurs only at the {1, 3, 1} configuration. �

Next, we show that an optimal configuration has at least two equal adja-
cent edges.

Lemma 5. If ω = {A,B, C, D, E} is an optimal 5-configuration which max-
imizes the geometrical mean of the mutual distances, then there are at least
two adjacent edges that have equal length.

Proof. We first introduce some notation. We shall use lower letter index for
the corresponding coordinates of the points, for example A = (xA, yA, zA).
Set E to be the North Pole and let A′, B′, C ′, and D′ be images in the
xy-plane of the corresponding points on the sphere under a stereographical
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projection. Denote with A∗, B∗, C∗, and D∗ the projections onto the z-axis
of A, B, C, and D, respectively. The length of a vector, say −−→AB , we will
denote with AB only.

We now focus on how the force conditions (2.1) affect the the vectors
−−→
OA′,

−−→
OB′,

−−→
OC ′, and

−−→
OD′. The force condition on E is:
−−→
EA

EA2
+
−−→
EB

EB2
+
−−→
EC

EC2
+
−−→
ED

ED2
= 2−−→EO .(3.1)

We have the representation
−−→
EA =

−−−→
EA∗ +

−−−→
A∗A = (1− zA)−−→EO + (1− zA)

−−→
OA′(3.2)

= EA2(−−→EO +
−−→
OA′)/2.

Similar equations hold for −−→EB , −−→EC , and −−→ED . Substituting these in (3.1)
we get

−−→
OA′ +

−−→
OB′ +

−−→
OC ′ +

−−→
OD′ = 0.(3.3)

Equation (3.3) is an interesting observation, which is true for any N ,
namely if ωN is an optimal configuration and we apply a stereographical
projection with one of the points being the pole, the center of mass of the
images of the other N − 1 points is at the origin (recall that O is also a
center of mass of ωN ).

Next, we consider the center of mass condition. It can be written as
−−→
EA +−−→EB +−−→EC +−−→ED = 5−−→EO .

Using similar manipulation and the fact that EA2+EB2+EC2+ED2 = 10
(see (2.2)) we derive

EA2−−→OA′ + EB2−−→OB′ + EC2−−→OC ′ + ED2−−→OD′ = 0.(3.4)

We now consider the condition at A (the conditions at B, C, and D being
similar),

−−→
AB

AB2
+
−−→
AC

AC2
+
−−→
AD

AD2
+
−−→
AE

AE2
= 2−−→AO .

We introduce E in the vectors above to get
−−→
EB −−−→EA

AB2
+
−−→
EC −−−→EA

AC2
+
−−→
ED −−−→EA

AD2
+
−−−→EA

AE2
= 2(−−→EO −−−→EA ),

which after regrouping becomes

−−→
EA

(
2− 1

AB2
− 1

AC2
− 1

AD2
− 1

AE2

)
+
−−→
EB

AB2
+
−−→
EC

AC2
+
−−→
ED

AD2
= 2−−→EO .
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Applying (3.2) and its companions to this equation, and using the orthogo-
nality of −−→EO to

−−→
OA′,

−−→
OB′,

−−→
OC ′,

−−→
OD′ we get

EA2

(
2− 1

AB2
− 1

AC2
− 1

AD2
− 1

AE2

)
−−→
EO(3.5)

=
(

4− EB2

AB2
− EC2

AC2
− ED2

AD2

)
−−→
EO

and

EA2

(
2− 1

AB2
− 1

AC2
− 1

AD2
− 1

AE2

)
−−→
OA′

+
EB2

AB2

−−→
OB′ +

EC2

AC2

−−→
OC ′ +

ED2

AD2

−−→
OD′ = 0,

which in the end provides

(
4− EB2

AB2
− EC2

AC2
− ED2

AD2

)
−−→
OA′ +

EB2

AB2

−−→
OB′ +

EC2

AC2

−−→
OC ′ +

ED2

AD2

−−→
OD′ = 0.

(3.6)

Interchanging A←→ B, A←→ C, A←→ D we get

EA2

BA2

−−→
OA′ +

(
4− EA2

BA2
− EC2

BC2
− ED2

BD2

)
−−→
OB′ +

EC2

BC2

−−→
OC ′ +

ED2

BD2

−−→
OD′ = 0,

(3.7)

EA2

CA2

−−→
OA′ +

EB2

CB2

−−→
OB′ +

(
4− EA2

CA2
− EB2

CB2
− ED2

CD2

)
−−→
OC ′ +

ED2

CD2

−−→
OD′ = 0,

(3.8)

EA2

DA2

−−→
OA′ +

EB2

DB2

−−→
OB′ +

EC2

DC2

−−→
OC ′ +

(
4− EA2

DA2
− EB2

DB2
− EC2

DC2

)
−−→
OD′ = 0.

(3.9)

Observe that (3.4) is obtained as a sum of (3.3), (3.6), (3.7), (3.8), and (3.9)
(using of course the equality for the coefficients in (3.5) and its companions),
so in general we could use only five of these six equations. In addition we
have Equations (2.2).

Now suppose that there is an optimal configuration A,B, C, D, and E
with no two adjacent edges of equal length. Because of Lemma 4 we need
to consider only the case when there is no point at the South Pole, meaning
that the vectors

−−→
OA′,

−−→
OB′,

−−→
OC ′, and

−−→
OD′ are all nonzero. Then no two of

these vectors are colinear. Indeed, suppose for example that
−−→
OB′ = k

−−→
OA′.

From (3.3) and (3.4) we get that

(EA2 − ED2)
−−→
OA′ + (EB2 − ED2)

−−→
OB′ + (EC2 − ED2)

−−→
OC ′ = 0,(3.10)
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which shows that
−−→
OC ′ = l

−−→
OA′ (recall that EC2 6= ED2 according to our

assumption). Then, from (3.3)
−−→
OD′ = −(1 + l + k)

−−→
OA′, which implies that

all five points A,B, C, D, and E lie on a great circle. The point configuration
that maximizes the geometric mean in this case will be the regular pentagon
(denoted {5} in Föppl notation). Comparing the product of distances for
the two configurations {5} and {1, 3, 1} we see that the former is not an
optimal configuration∏

{5}
= 210 sin5(π/5) sin5(2π/5) = 55.901... < 83.138... = 48

√
3 =

∏
{1,3,1}

.

Consider now the set of equations (3.3), (3.4), (3.6), (3.7), (3.8), and
(3.9). Since all the vectors

−−→
OA′,

−−→
OB′,

−−→
OC ′, and

−−→
OD′ are mutually indepen-

dent, the rank of the matrix formed by their coordinates (x1, y1), (x2, y2),
(x3, y3), (x4, y4) respectively, is two, which shows that (x1, x2, x3, x4) and
(y1, y2, y3, y4) are linearly independent. Then the matrix

1 1 1 1

EA2 EB2 EC2 ED2

4− EB2

AB2 − EC2

AC2 − ED2

AD2
EB2

AB2
EC2

AC2
ED2

AD2

EA2

BA2 4− EA2

BA2 − EC2

BC2 − ED2

BD2
EC2

BC2
ED2

BD2

EA2

CA2
EB2

CB2 4− EA2

CA2 − EB2

CB2 − ED2

CD2
ED2

CD2

EA2

DA2
EB2

DB2
EC2

DC2 4− EA2

DA2 − EB2

DB2 − EC2

DC2


has rank two because its kernel contains (x1, x2, x3, x4) and (y1, y2, y3, y4),
and because

det
(

1 1
EA2 EB2

)
6= 0.

Now consider the submatrix formed by the first three rows
1 1 1 1

EA2 EB2 EC2 ED2

4− EB2

AB2 − EC2

AC2 − ED2

AD2
EB2

AB2
EC2

AC2
ED2

AD2

 .(3.11)
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We know that its rank is two. Applying elementary operations, we get (recall
(2.2))

rank


4 1 1 1

10 EB2 EC2 ED2

4 EB2

AB2
EC2

AC2
ED2

AD2

(3.12)

= rank


2 1

EB2
1

EC2
1

ED2

2 2
5

2
5

2
5

2 1
AB2

1
AC2

1
AD2

 = 2,

from which we derive the sequence of equations (similar equations hold when
we interchange A←→ B, A←→ C, A←→ D)

2
5 −

1
EB2

2
5 −

1
AB2

=
2
5 −

1
EC2

2
5 −

1
AC2

=
2
5 −

1
ED2

2
5 −

1
AD2

.(3.13)

Observe that no vertex can have an edge of length
√

5/2, because this
immediately leads to an adjacent pair of equal length (indeed, from (3.12)
if 1/EB2 = 2/5, then 1/AB2 = 2/5 or 1/EC2 = 2/5). Since the sum of the
squares of the distances coming out of the same vertex equals 10 (see (2.2)),
we get that from every vertex there will be an edge <

√
5/2 and an edge

>
√

5/2.
Suppose now that there is a vertex with three of the edges stemming out

greater than
√

5/2. Without loss of generality we may assume this vertex
to be E, and we can choose the smallest edge to be EA. Let us order the
rest of the edges, say

EA2 < 5/2 < EB2 < EC2 < ED2.

Clearly, then the denominators of all three fractions of (3.13) must have the
same sign. Since EA2 < 5/2 and EA2+AB2+AC2+AD2 = 10, this is only
possible if they are all positive. If EB2 > AB2 (EB2 < AB2), then the first
fraction in (3.13) is greater (less) than 1, which implies that EC2 > AC2

and ED2 > AD2 (EC2 < AC2 and ED2 < AD2), which is a contradiction
with EA2 + AB2 + AC2 + AD2 = 10 = EA2 + EB2 + EC2 + ED2.

Similarly, we derive a contradiction in the case when there are three edges
less than

√
5/2. Then we choose

EB2 < EC2 < ED2 < 5/2 < EA2,

and the rest of the argument is similar.
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Now we can assume that all vertices have two edges that are >
√

5/2 and
two edges that are <

√
5/2. Without loss of generality we may assume that

EA2 < EB2 < 5/2 < EC2 < ED2.

Then the denominators of the second and the third fraction in (3.13) have
the same sign, and because AE2 < 5/2, this sign is positive, i.e., AC2 > 5/2
and AD2 > 5/2. A similar argument can be applied to the companion of
(3.13) when A←→ B

2
5 −

1
EA2

2
5 −

1
BA2

=
2
5 −

1
EC2

2
5 −

1
BC2

=
2
5 −

1
ED2

2
5 −

1
BD2

.(3.14)

Here EB2 < 5/2 forces BC2 > 5/2 and BD2 > 5/2. But this leads to a
contradiction, because we obtained three edges CA, CB, and CE coming
out of C and >

√
5/2.

The latter contradiction proves the lemma. �

We now are ready to prove our main result.

Proof of Theorem 1. Let A, B, C, D, and E be an optimal configuration.
By Lemmas 4 and 5 we may assume that no two points are antipodal and
that there is a pair of adjacent edges with equal length, say EC = ED.
Multiplying (3.3) by EC2 and subtracting it from (3.4) we obtain

(EA2 − EC2)
−−→
OA′ + (EB2 − EC2)

−−→
OB′ = 0.

If EB = EC, then EA = EC =
√

5/2 (see (2.2)) and the configuration
must be {1, 4} in Föppl notation (i.e., zA = zB = zC = zD = −1/4 and
ABCD is a square). In this case we can verify that∏

{1,4}
=

5533

210
= 82.397... < 83.138... = 48

√
3 =

∏
{1,3,1}

.

Thus we may assume that EB 6= EC. Then
−−→
OB′ = k

−−→
OA′. Since EC = ED

implies that OC ′ = OD′, we obtain from (3.3) that −−→OM = −((1+k)/2)
−−→
OA′,

where M is the midpoint of C ′D′. This means that E, A, and B lie on a
great circle and the plane that they form bisects CD. Then AC = AD and
BC = BD.

Now consider 4EAB. We claim that it has at least two equal sides.
Suppose not.

Equations (3.3), (3.4), and (3.6) become
−−→
OA′ +

−−→
OB′ +2−−→OM = 0,

EA2−−→OA′ +EB2−−→OB′ +2EC2−−→OM = 0,(
4− EB2

AB2 − 2EC2

AC2

)−−→
OA′ +EB2

AB2

−−→
OB′ +2EC2

AC2

−−→
OM = 0.

(3.15)
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As in Lemma 5 we can derive
2
5 −

1
EB2

2
5 −

1
AB2

=
2
5 −

1
EC2

2
5 −

1
AC2

.(3.16)

Interchanging A←→ B we obtain also that
2
5 −

1
EA2

2
5 −

1
AB2

=
2
5 −

1
EC2

2
5 −

1
BC2

.(3.17)

Utilizing Equations (2.2) for the vertices E, A, and B we get

EA2 + EB2 + 2EC2 = 10, AB2 + 2AC2 + EA2 = 10,

AB2 + 2BC2 + EB2 = 10.

Subtracting the first and the second equation we get

EB2 −AB2 = 2(AC2 − EC2),(3.18)

and subtracting the first and the third equation

EA2 −AB2 = 2(BC2 − EC2).(3.19)

After simplification (3.16) can be written as

2EC2AC2(EB2 −AB2) + 2AB2EB2(AC2 − EC2)

+ 5EC2AB2 − 5EB2AC2 = 0,

which using (3.18) can be factored as

(EB2 −AB2)
[
2EC2AC2 + AB2EB2 − 5

2
AB2 − 5AC2

]
= 0.

Since EB 6= AB we get

2EC2AC2 + AB2EB2 − 5
2
AB2 − 5AC2 = 0.(3.20)

Equations (3.17) and (3.19) are obtained from (3.16) and (3.18) by inter-
changing A←→ B, therefore we derive similarly

2EC2BC2 + AB2EA2 − 5
2
AB2 − 5BC2 = 0.(3.21)

Subtracting (3.20) and (3.21) and using the fact that EB2−EA2 = 2(AC2−
BC2) (which we get from (3.18) and (3.19)), we finally obtain that

(AC2 −BC2)(2EC2 + 2AB2 − 5) = 0.(3.22)

If AC = BC, then AC = AD = BC = BD (recall that AC = AD and
BC = BD), which means that C and D lie on the perpendicular bisector of
AB. Since O is the center of mass of A, B, C, D, and E, we get that EA =
EB, which contradicts our assumption. This means that 2EC2 +2AB2 = 5.
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By symmetry 2AC2 + 2EB2 = 5 and 2BC2 + 2EA2 = 5. But then
EA2 < 5/2, EB2 < 5/2, and EC2 = ED2 < 5/2. This contradicts (2.2).
Therefore, 4EAB has at least two equal sides.

Without loss of generality we may assume that EA = EB. Then it is easy
to see that AC = BC (recall that we already have EC = ED, AC = AD,
BC = BD, and CD ⊥ EAB). Let E = (0, 0, 1), and let EAB ∈ xz−plane,
ECD ∈ yz−plane. Denote zA = zB = h and zC = zD = g, where h + g =
−1/2 (because O is the center of mass of the configuration). The coordinates
of the points are:

A = (
√

1− h2, 0, h), B = (−
√

1− h2, 0, h),

C = (0,
√

1− g2, g), D = (0,−
√

1− g2, g).

We now have that
−−→
OA′ = −−−→OB′ and

−−→
OC ′ = −−−→OD′. Then from (3.6) and

(3.8) we get

EA2

AB2
+

EC2

AC2
= 2(3.23)

EA2

AC2
+

EC2

CD2
= 2.(3.24)

We have EA2 = 2(1−h), EC2 = 2(1−g), AB2 = 4(1−h2), CD2 = 4(1−g2)
and AC2 = 2(1− gh). After substitution in (3.23) and (3.24) we get

1
2(1 + h)

+
1− g

1− gh
= 2(3.25)

1
2(1 + g)

+
1− h

1− gh
= 2.(3.26)

Subtracting the two equations we obtain

(g − h)(−1− 2(h + g)− 3hg)
2(1 + g)(1 + h)(1− gh)

= 0

and since h + g = −1/2, we get that hg(g − h) = 0. If g − h = 0 then
g = h = −1/4 and the configuration is {1, 4}, which is not an optimal. If
g = 0, then h = −1/2, which implies that AB is a diameter and 4ECD
is an equilateral triangle on a great circle perpendicular to AB. Similarly
when h = 0 and g = −1/2. Thus, if a configuration is optimal, then up to
rotation it must be {1, 3, 1}.

On the other hand, by the compactness of the sphere the global maximum
of the product of distances exists. This proves the theorem. �
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