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Laércio Aparecido Lucas and Osamu Saeki

Volume 207 No. 2 December 2002



PACIFIC JOURNAL OF MATHEMATICS
Vol. 207, No. 2, 2002

EMBEDDINGS OF Sp × Sq × Sr IN Sp+q+r+1
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Let f : Sp × Sq × Sr → Sp+q+r+1, 2 ≤ p ≤ q ≤ r, be a
smooth embedding. In this paper we show that the closure
of one of the two components of Sp+q+r+1 − f(Sp × Sq × Sr),
denoted by C1, is diffeomorphic to Sp × Sq × Dr+1 or Sp ×
Dq+1 × Sr or Dp+1 × Sq × Sr, provided that p + q 6= r or
p + q = r with r even. We also show that when p + q =
r with r odd, there exist infinitely many embeddings which
do not satisfy the above property. We also define standard
embeddings of Sp × Sq × Sr into Sp+q+r+1 and, using the
above result, we prove that if C1 has the homology of Sp ×Sq,
then f is standard, provided that q < r.

1. Introduction.

In [A], Alexander has shown that a piecewise linearly embedded torus in the
three sphere S3 bounds a solid torus in S3, which is know as Alexander’s
torus theorem. This theorem holds also for smooth embeddings.

Let f : Sp × Sq → Sp+q+1 be a codimension one smooth embedding with
p, q ≥ 1. Then the closure of one of the two components of Sp+q+1− f(Sp×
Sq) is diffeomorphic to Dp+1 × Sq if 1 ≤ p ≤ q with p + q 6= 3, and is
homeomorphic to D2 × S2 if p = 1 and q = 2. This is a generalization of
Alexander’s torus theorem and has been obtained in [K], [Wa], [G], [R]
and [LNS]. An important consequence of this result is that for 2 ≤ p ≤ q,
embeddings of Sp × Sq into Sp+q+1 are unique up to isotopy. In [LNS],
some applications of this result to the study of codimension two smooth
embeddings of Sp × Sq into Sp+q+2 have been given.

The purpose of this paper is to study codimension one smooth embeddings
of Sp × Sq × Sr into Sp+q+r+1. More precisely, we completely determine
the conditions on p, q and r in order that the closure of one of the two
components of Sp+q+r+1 − f(Sp × Sq × Sr) is diffeomorphic to the product
of two spheres and a disk. Our first result is the following.

Theorem 1.1. Let f : Sp × Sq × Sr → Sp+q+r+1 be a smooth embedding
with 2 ≤ p ≤ q ≤ r. We suppose p+ q 6= r, or p+ q = r and r is even. Then
the closure of one of the two components of Sp+q+r+1 − f(Sp × Sq × Sr) is
diffeomorphic to Sp × Sq ×Dr+1 or Sp ×Dq+1 × Sr or Dp+1 × Sq × Sr.
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It is surprising that the above condition on p, q and r is essential: i.e., if it
is not satisfied, then there exist infinitely many counter-examples, which can
be called exotic embeddings. In §9, we will show the following by explicitly
constructing such embeddings.

Theorem 1.2. If p, q ≥ 1 and p+q = r with r odd, then there exist mutually
distinct embeddings fn : Sp × Sq × Sr → Sp+q+r+1, n ∈ Z − {0}, such that
the closure of neither of the two components of Sp+q+r+1−fn(Sp×Sq×Sr)
is homotopy equivalent to the product of two spheres and a disk.

However, if we put some more conditions, then we have the following
theorem, which will be proved in §7. In the following, homology groups are
always with integer coefficients.

Theorem 1.3. Let f : Sp × Sq × Sr → Sp+q+r+1 be a smooth embedding
with 2 ≤ p ≤ q ≤ r. Then the closure of one of the two components of
Sp+q+r+1 − f(Sp × Sq × Sr), denoted by C1, has the same homology as
Sp × Sq or Sp × Sr or Sq × Sr. Furthermore, if C1 is homotopy equivalent
to Sp×Sq or Sp×Sr or Sq×Sr, then it is diffeomorphic to Sp×Sq×Dr+1

or Sp ×Dq+1 × Sr or Dp+1 × Sq × Sr respectively.

Using the above results, we can obtain more precise information about the
embedding f in some cases. In fact, we will prove, in §8, that if 2 ≤ p ≤ q < r
and C1 has the homology of Sp×Sq in Theorem 1.3, then f is standard (see
Definition 8.1 and Corollary 8.2).

The proof of Theorem 1.1 will be divided into five cases according to the
homology group structure of Sp × Sq × Sr as follows:

(A) p < q < r and r 6= p+ q, (B) p = q = r,
(C) p = q < r and p+ q 6= r, or p < q = r, (D) p = q and p+ q = r,
(E) p < q and p+ q = r with r even.

These cases will be treated in §2–§6 respectively. Our technique for the
proof of Theorem 1.1 is based on the standard homology theory and the
h-cobordism theorem [Sm, Mi], which is essentially the same as in [K],
[Wa], [G] or in [LNS]. The main difficulty lies in the construction of an
embedding of the product of two spheres into C1 which induces a homotopy
equivalence.

Throughout the paper, all manifolds and maps are assumed to be dif-
ferentiable of class C∞ and all homology and cohomology groups are with
coefficients in Z. The symbol “∼=” denotes a diffeomorphism between mani-
folds or an appropriate isomorphism between algebraic objects. The symbol
“[∗]” denotes the homology class represented by ∗. The notation “id” de-
notes the identity map.
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2. Case (A) p < q < r and r 6= p + q.

First let us introduce some notations which will be used throughout the
proofs of Theorems 1.1 and 1.3 (§2–§7). Let f : Sp × Sq × Sr → Sp+q+r+1

be a smooth embedding with 2 ≤ p ≤ q ≤ r. Then, by Alexander duality,
Sp+q+r+1−f(Sp×Sq×Sr) consists exactly of two components and they are
simply connected by van Kampen’s theorem. We denote the two components
by C ′1 and C ′2 and their closures in Sp+q+r+1 by C1 and C2 respectively. We
identify C1 ∩ C2 = ∂C1 = ∂C2 with Sp × Sq × Sr by the embedding f .
Furthermore, i : ∂C1 → C1 will denote the inclusion map.

From now on, we assume p < q < r and r 6= p+ q in this section.

Lemma 2.1. Either C1 or C2 has the same homology as Sp × Sq × Dr+1

or Sp ×Dq+1 × Sr or Dp+1 × Sq × Sr.

Proof. By Alexander duality, we see easily that there are eight possibili-
ties for the homology groups (Hp(C1),Hq(C1),Hr(C1),Hq+r(C1),Hr+p(C1),
Hp+q(C1)):

(Z,Z, 0, 0, 0,Z), (Z, 0,Z, 0,Z, 0), (0,Z,Z,Z, 0, 0),(1)

(0, 0,Z,Z,Z, 0), (0,Z, 0,Z, 0,Z), (Z, 0, 0, 0,Z,Z),(2)

(Z,Z,Z, 0, 0, 0), (0, 0, 0,Z,Z,Z).(3)

In Case (1) C1 has the desired homology, and in Case (2) C2 has the desired
homology.

Suppose that C1 has the homology (Z, Z, Z, 0, 0, 0). Since we have
Hp+1(C1, ∂C1) ∼= Hq+r(C1) = 0 and Hq+1(C1, ∂C1) ∼= Hp+r(C1) = 0, the
homomorphisms i∗ : Hp(C1) → Hp(∂C1) and i∗ : Hq(C1) → Hq(∂C1) are
surjective, and hence so is i∗⊗ i∗ : Hp(C1)⊗Hq(C1) → Hp(∂C1)⊗Hq(∂C1).
Then the commutative diagram of cup products

Hp(C1)⊗Hq(C1)
i∗⊗i∗−−−−−→ Hp(∂C1)⊗Hq(∂C1)y^ y^

Hp+q(C1)
i∗−−−−−→ Hp+q(∂C1)

leads to a contradiction, since Hp+q(C1) = 0 and the second column is
nonzero. We see that the case (0, 0, 0,Z,Z,Z) cannot happen either by
using the same argument for C2. �

We may assume that C1 has the same homology as Sp×Sq×Dr+1 without
loss of generality. Note that we do not have p ≤ q ≤ r any more, although
p, q, r, p+ q, q + r and r + p are all distinct.

Lemma 2.2. The composite

ϕ : Sp × Sq × {∗} j−→ Sp × Sq × Sr = ∂C1
i−→ C1

is a homotopy equivalence, where j and i are the inclusion maps.
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Proof. Since i∗[{∗}×Sq×Sr] = 0 in Hq+r(C1) = 0, there exists a (q+r+1)-
chain (Γ, ∂Γ) in (C1, ∂C1) such that ∂Γ is homologous to {∗} × Sq × Sr in
∂C1. The intersection number [Γ, ∂Γ] · i∗[Sp × {∗} × {∗}] in C1 is equal to
the intersection number [{∗} × Sq × Sr] · [Sp × {∗} × {∗}] = ±1 in ∂C1.
This implies that ϕ∗ : Hp(Sp×Sq×{∗}) → Hp(C1) is an isomorphism, since
Hp(Sp×Sq×{∗}) ∼= Z is generated by [Sp×{∗}×{∗}] and ϕ∗[Sp×{∗}×{∗}]
must be a primitive homology class in Hp(C1) ∼= Z.

SinceHp+r(C1) = 0 andHr(C1) = 0, we see that ϕ∗ : Hk(Sp×Sq×{∗}) →
Hk(C1) is an isomorphism also for k = q and p+q by using similar arguments.
Then the result follows from Whitehead’s theorem. �

Proof of Theorem 1.1 for Case (A). Set Σ1 = Sp × Sq × {∗} ⊂ ∂C1 = Sp ×
Sq × Sr. We can push Σ1 into the interior of C1 by using an inward normal
vector field of ∂C1 in C1 and obtain a submanifold Σ′1. Let G be a sufficiently
small closed tubular neighborhood of Σ′1 in IntC1. We see easily that G is
diffeomorphic to Sp × Sq ×Dr+1.

By excision and Lemma 2.2, we see that the manifold V = C1 − IntG is
an h-cobordism between ∂G and ∂C1. Since dimV = p + q + r + 1 ≥ 6,
we see by the h-cobordism theorem [Sm, Mi] that V ∼= ∂G × [0, 1]. Then
we have C1 = V ∪ G ∼= ∂G × [0, 1] ∪ G ∼= G, which is diffeomorphic to
Sp × Sq ×Dr+1. �

3. Case (B) p = q = r.

The main tool used in this section is the result about automorphisms of
Hp(Sp×Sp×Sp) which can be realized by self-diffeomorphisms of Sp×Sp×Sp
(for details, see [LS]).

First, by the same argument as in the proof of Lemma 2.1, we may assume
that H∗(C1) ∼= H∗(Sp × Sp × Dp+1) without loss of generality. As in the
previous section, in order to prove Theorem 1.1 for this case, we have only
to show the following.

Lemma 3.1. There exists an embedding j : Sp × Sp → Sp × Sp × Sp with
trivial normal bundle such that the embedding

ϕ : Sp × Sp
j−→ Sp × Sp × Sp = ∂C1

i−→ C1(3.1)

is a homotopy equivalence.

Proof. (B1) When p is even. Consider the exact sequence

0 = Hp(C1, ∂C1) → Hp(C1)
i∗→ Hp(∂C1)

→ Hp+1(C1, ∂C1) → Hp+1(C1) = 0.

Since Hp+1(C1, ∂C1) ∼= Z is free, Im i∗ is a direct summand of Hp(∂C1).
Let ξ and η be generators of Hp(C1) ∼= Z⊕ Z and {α∗, β∗, γ∗} the basis of
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Hp(∂C1) ∼= Hom(Hp(∂C1),Z) ∼= Z⊕ Z⊕ Z dual to the basis

{α = [Sp × {∗} × {∗}], β = [{∗} × Sp × {∗}], γ = [{∗} × {∗} × Sp]}(3.2)

ofHp(∂C1). Then we have i∗ξ = aα∗+bβ∗+cγ∗ and i∗η = dα∗+eβ∗+gγ∗ for
some integers a, b, c, d, e and g. Since Im i∗ is a direct summand of Hp(∂C1),
there exist integers h, l,m such that

det

 a d h
b e l
c g m

 = ±1.

By the commutative diagram

Hp(C1)⊗Hp(C1)
i∗⊗i∗−−−−−→ Hp(∂C1)⊗Hp(∂C1)y^ y^

Z ∼= H2p(C1)
i∗−−−−−→ H2p(∂C1) ∼= Z⊕ Z⊕ Z,

we have that the subgroup generated by

i∗ξ ^ i∗ξ = 2ab(α∗ ^ β∗) + 2bc(β∗ ^ γ∗) + 2ca(γ∗ ^ α∗),

i∗ξ ^ i∗η = (ae+ bd)(α∗ ^ β∗) + (bg + ce)(β∗ ^ γ∗)

+ (cd+ ag)(γ∗ ^ α∗),

i∗η ^ i∗η = 2de(α∗ ^ β∗) + 2eg(β∗ ^ γ∗) + 2gd(γ∗ ^ α∗)

has rank at most one. Using the fact that {α∗ ^ β∗, β∗ ^ γ,∗ γ∗ ^ α∗} is
a basis of H2p(∂C1), we see easily that abc = deg = 0. Then, we can show
that for an embedding j : Sp × Sp → Sp × Sp × Sp such that j(Sp × Sp) =
{∗} × Sp × Sp, Sp × {∗} × Sp, or Sp × Sp × {∗}, the composite ϕ as in
(3.1) induces an isomorphism on the p-th cohomology groups. Then by
the universal coefficient theorem, ϕ∗ : Hp(Sp × Sp) → Hp(C1) is also an
isomorphism. Consider the commutative diagram

Hp(C1)⊗Hp(C1)
ϕ∗⊗ϕ∗−−−−−→ Hp(Sp × Sp)⊗Hp(Sp × Sp)yk1 ^

yk2 ^

Z ∼= H2p(C1)
ϕ∗−−−−−→ H2p(Sp × Sp) ∼= Z,

where k2 ◦ (ϕ∗ ⊗ ϕ∗) is an epimorphism, since k2 is unimodular. This im-
plies that ϕ∗ : H2p(C1) → H2p(Sp × Sp) is also an epimorphism. Since
H2p(C1) ∼= H2p(Sp × Sp) ∼= Z, we see that ϕ∗ : H2p(C1) → H2p(Sp × Sp)
is an isomorphism, which implies that ϕ∗ : H2p(Sp × Sp) → H2p(C1) is also
an isomorphism. Then by Whitehead’s theorem, the result follows.

In order to prove Lemma 3.1 when p is odd, we need the following, which
can be easily proved by examining the exact sequence

0 → ker i∗ → Hp(∂C1)
i∗→ Hp(C1) → Hp(C1, ∂C1) = 0.
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Lemma 3.2. For every p, there exists a basis {ζ1, ζ2, ζ} of Hp(∂C1) such
that {i∗ζ1, i∗ζ2} is a basis of Hp(C1) and i∗ζ = 0.

(B2) When p = 3 or p = 7. The following is a direct consequence of [LS,
Theorem 2.2].

Lemma 3.3. If p = 3 or p = 7, then there exists a diffeomorphism φ :
Sp × Sp × Sp → Sp × Sp × Sp such that φ∗Hp(Sp × Sp × {∗}) = 〈ζ1, ζ2〉,
where 〈ζ1, ζ2〉 is the subgroup of Hp(Sp × Sp × Sp) generated by ζ1 and ζ2.

By putting j = φ|Sp×Sp×{∗}, we see that Lemma 3.1 holds for p = 3, 7.

(B3) When p is odd with p 6= 3, 7. Let ηn : GL(n;Z) → GL(n;Z2)
be the natural homomorphism. Note that ηn is an epimorphism (see, for
example, [Mc, Proposition I.14]). We define the subgroup G1 of GL(n;Z)
by G1 = ηn

−1(ηn(Sn)), where we naturally identify the symmetric group
Sn with the corresponding subgroup of GL(n;Z). Note that G1 corresponds
to the set of those automorphisms which can be realized by diffeomorphisms
of the product of n copies of Sp for p odd with p 6= 3, 7 (see [LS]).

We define the matrix A ∈ GL(3;Z) by (ζ1, ζ2, ζ) = (α, β, γ)A, where
{α, β, γ} is the canonical basis of Hp(Sp × Sp × Sp) as in (3.2). Note that
A may not lie in G1.

Lemma 3.4. There exists a matrix A′ ∈ G1 ⊂ GL(3;Z) such that {i∗ζ ′1,
i∗ζ

′
2} is a basis of Hp(C1), where (ζ ′1, ζ

′
2, ζ

′) = (α, β, γ)A′.

Note that i∗ζ ′ may not be zero in Hp(C1) any more.

Proof of Lemma 3.4. By changing the order of α, β, γ and by adding ζ to
ζ1, ζ2 if necessary, we may assume that A2 = η3(A) is of the form a b ∗

c d ∗
0 0 1

 ∈ GL(3;Z2).

Since η2 : GL(2;Z) → GL(2;Z2) is surjective, there exists a matrix B ∈
GL(2;Z) with

η2(B) =
(
a b
c d

)
.

Using B, we can change ζ1, ζ2 so that A2 is of the form 1 0 ∗
0 1 ∗
0 0 1

 .

Finally, adding ζ1, ζ2 to ζ, we get the desired basis {ζ ′1, ζ ′2, ζ ′}. �

Now by using the same argument as in Case (B2) together with [LS,
Theorem 2.2], we see that Lemma 3.1 holds for this case as well. This
completes the proof of Lemma 3.1, and hence Theorem 1.1 for Case (B). �
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4. Case (C) p = q < r and p + q 6= r, or p < q = r.

We will assume that p = q 6= r 6= p + q throughout this section, although
r can be smaller than p = q. By the same argument as in the proof of
Lemma 2.1, we see that it suffices to study the cases

H∗(C1) ∼= H∗(Sp × Sp ×Dr+1),(C1)

H∗(C1) ∼= H∗(Sp ×Dp+1 × Sr).(C2)

(C1) When H∗(C1) ∼= H∗(Sp × Sp × Dr+1). Let j : Sp × Sp × {∗} →
Sp × Sp × Sr = ∂C1 be the inclusion and set ϕ = i ◦ j. By carefully
examining the exact sequence of the triple (C1, ∂C1, S

p × Sp × {∗})

· · · → Hk(∂C1, S
p × Sp × {∗}) → Hk(C1, S

p × Sp × {∗}) → Hk(C1, ∂C1)

→ Hk−1(∂C1, S
p × Sp × {∗}) → · · ·

and by applying an argument similar to that in the proof of Lemma 3.1, we
can show that the inclusion map ϕ : Sp × Sp × {∗} → C1 gives a homotopy
equivalence. Then as in §2, we see that C1

∼= Sp × Sp ×Dr+1.

(C2) When H∗(C1) ∼= H∗(Sp ×Dp+1 × Sr).

Lemma 4.1. There exists an embedding ψ : Sp → Sp × Sp such that the
embedding

ϕ : Sp × Sr
ψ×id−→ (Sp × Sp)× Sr = ∂C1

i→ C1(4.1)

is a homotopy equivalence.

Proof. As in Lemma 3.2, there exists a basis {ζ, ζ1} of Hp(∂C1) ∼= Z⊕Z such
that i∗ζ = 0 and i∗ζ1 is a generator of Hp(C1) ∼= Z. By the isomorphism
Hp(∂C1) ∼= Hp(Sp×Sp×Sr) ∼= Hp(Sp×Sp×{∗}), ζ1 ∈ Hp(∂C1) corresponds
to an element ζ ′1 ∈ Hp(Sp × Sp × {∗}) ∼= πp(Sp × Sp). When p ≥ 3, by [H]
or [Wh], we can represent ζ ′1 by an embedding ψ : Sp → Sp × Sp. Then
the composite ϕ as in (4.1) is an embedding such that ϕ∗ : Hp(Sp × Sr) →
Hp(C1) is an isomorphism.

When p = 2, we cannot use the above argument (see, for example, [KM]).
However, since p = 2 is even, we can show that the embedding ψ : Sp →
Sp×Sp such that ψ(Sp) = {∗}×Sp or Sp×{∗} satisfies the same property,
by using an argument similar to that in (B1) of the proof of Lemma 3.1.

Then by the same arguments as in the proofs of Lemmas 2.2 and 3.1, we
see that ϕ : Sp × Sr → C1 is a homotopy equivalence. This completes the
proof of Lemma 4.1. �

Let Σ′1 denote the submanifold of C1 which is obtained by pushing Σ1 =
ϕ(Sp×Sr) into the interior of C1 using a normal vector field of ∂C1 pointing
toward IntC1.
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Lemma 4.2. The normal bundle of Σ′1 in C1 is trivial.

Proof. Let ψ : Sp → Sp×Sp be the embedding as above. It suffices to show
that the normal bundle νeϕ of ϕ̃ = f ◦ (ψ× id) : Sp×Sr → S2p+r+1 is trivial.
We have

νeϕ ∼= π∗(νψ)⊕ ε1Sp×Sr
∼= π∗(νψ)⊕ π∗(ε1Sp) ∼= π∗(νψ ⊕ ε1Sp),

where π : Sp × Sr → Sp is the projection to the first factor, νψ denotes the
normal bundle of ψ, and ε1X denotes the trivial line bundle over a space X.
On the other hand, using the embedding

ψ̃ : Sp
ψ−→ Sp × Sp↪→S2p+1,

we see that νψ ⊕ ε1Sp is trivial. Thus the result follows. �

Finally, by the same argument as in Case (A), we see that Theorem 1.1
holds for Case (C2) as well. �

5. Case (D) p = q and p + q = r.

By the same argument as in the proof of Lemma 2.1, we see that either C1

or C2 has the same homology as Sp × Sp ×Dr+1 or Sp ×Dp+1 × Sr.
When H∗(C1) ∼= H∗(Sp × Sp ×Dr+1) or H∗(C2) ∼= H∗(Sp × Sp ×Dr+1),

by using arguments similar to those in Case (C1), we see that C1 or C2 is
diffeomorphic to Sp × Sp ×Dr+1.

WhenH∗(C1) ∼= H∗(Sp×Dp+1×Sr), we see easily thatH∗(C2) ∼= H∗(Sp×
Dp+1×Sr)(∼= H∗(Dp+1×Sp×Sr)). First we prepare the following lemmas.
Note that r = 2p is even and that dim ∂C1 is equal to 2r.

Lemma 5.1. There exists a basis {ζ, ζ ′} of Hr(∂C1) ∼= Z ⊕ Z such that
i∗ζ = 0, ζ · ζ = 0, ζ · ζ ′ = 1 and ζ ′ · ζ ′ = 0.

The above lemma can be proved by using an argument similar to that in
[LNS, Lemmas 3.2-3.4].

Set α = [Sp×Sp×{∗}] and β = [{∗}×{∗}×Sr], which generateHr(∂C1) =
Hr(Sp × Sp × Sr). We have α · α = β · β = 0 and may assume α · β = 1,
choosing suitable orientations for Sp × Sp × {∗} and {∗} × {∗} × Sr.

Lemma 5.2. If p ≥ 3, then for some embedding ψ : Sp → Sp × Sp, the
composite

ϕ1 : Sp × Sr
ψ×id−→ (Sp × Sp)× Sr = ∂C1

i−→ C1 or

ϕ2 : Sp × Sr
ψ×id−→ (Sp × Sp)× Sr = ∂C2

j−→ C2

is a homotopy equivalence, where i and j are the inclusion maps.
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Proof. We have H∗(C1) ∼= H∗(Sp × Dp+1 × Sr) ∼= H∗(C2). Consider the
endomorphism Θ : Hr(Sp×Sp×Sr) → Hr(Sp×Sp×Sr) defined by Θ(α) = ζ ′

and Θ(β) = ζ. Since ζ · ζ = ζ ′ · ζ ′ = 0 and ζ · ζ ′ = 1, we see that Θ is an
automorphism of (Hr(Sp × Sp × Sr), ·), where “·” denotes the intersection
form. By an argument similar to that of [LNS, Lemma 3.5], we have that
ζ = ±α and ζ ′ = ±β, or ζ = ±β and ζ ′ = ±α.

When ζ = ±α and ζ ′ = ±β, we have i∗[Sp × Sp × {∗}] = 0, and as
in Lemma 2.2, i1∗ : Hr({∗} × {∗} × Sr) → Hr(C1) is an isomorphism,
where i1 is the inclusion map. Similarly, when ζ = ±β and ζ ′ = ±α,
j1∗ : Hr({∗} × {∗} × Sr) → Hr(C2) is an isomorphism for the inclusion
map j1. Then, since p ≥ 3, by arguments similar to those in the proofs of
Lemmas 4.1 and 3.1, we have the desired result. �

When p = 2, we cannot apply the same argument. Nevertheless, as in the
proof of Lemma 5.2, we may assume that i1∗ : Hr({∗}×{∗}×Sr) → Hr(C1)
is an isomorphism.

Consider a collar neighborhood c : ∂C1 × [0, 1] → C1 of ∂C1 in C1, where
c(x, 0) = x for every x ∈ ∂C1. We will use the identification

∂C1 × [0, 1]
f−1×id−−−−−→Sp × Sp × Sr × [0, 1] ∼= (Sp × Sp × [0, 1])× Sr.

Lemma 5.3. If p = 2, then there exists an embedding ψ1 : Sp → Sp×Sp×
[0, 1] such that the embedding ϕ : Sp × Sr → C1 defined by

ϕ : Sp × Sr
ψ1×id−→ (Sp × Sp × [0, 1])× Sr

∼= Sp × Sp × Sr × [0, 1]
f×id−→ ∂C1 × [0, 1] c→ C1

is a homotopy equivalence.

Proof. As in the proof of Lemma 4.1, there exists a continuous map ψ′ :
Sp → Sp×Sp which represents ζ ′1 ∈ Hp(Sp×Sp)(∼= πp(Sp×Sp)) ∼= Hp(Sp×
Sp×Sr) with i∗ζ ′1 being a generator of Hp(C1) ∼= Z. Consider the composite

ψ′′ : Sp
ψ′−→ Sp × Sp

i′−→ Sp × Sp × [0, 1],

where i′ : Sp × Sp = Sp × Sp × {0} → Sp × Sp × [0, 1] is the inclusion map.
By [H, Theorem 1(a)], there exists a differentiable embedding ψ1 : Sp →
Sp×Sp× [0, 1] homotopic to ψ′′. Then, ϕ is a differentiable embedding such
that ϕ∗ : Hp(Sp × Sr) → Hp(C1) is an isomorphism. The rest of the proof
is the same as before. �

As in Lemma 4.2, if p ≥ 3, then the normal bundles of ϕ1 and ϕ2 of
Lemma 5.2 are trivial. When p = 2, by embedding Sp×Sp× [0, 1] in S2p+1,
we see that ψ1 as above has trivial normal bundle νψ1 . Furthermore, we
have νϕ ∼= π∗(νψ1), where π : Sp × Sr → Sp is the projection to the first
factor. Hence νϕ is trivial.
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Then as in the previous sections, we see that C1
∼= Sp × Dp+1 × Sr or

C2
∼= Sp × Dp+1 × Sr. This completes the proof of Theorem 1.1 for Case

(D). �

6. Case (E) p < q and p + q = r with r even.

By the same argument as in the proof of Lemma 2.1, we see that either
C1 or C2 has the same homology as Sp × Sq ×Dr+1 or Sp ×Dq+1 × Sr or
Dp+1 × Sq × Sr.

H∗(C1) ∼= H∗(Sp × Sq ×Dr+1) or H∗(C2) ∼= H∗(Sp × Sq ×Dr+1).(E1)

We may assume that H∗(C1) ∼= H∗(Sp×Sq×Dr+1). Then by arguments
similar to those in the proofs of Lemmas 2.2 and 3.1, we see that the inclusion
map

ϕ : Sp × Sq × {∗} → Sp × Sq × Sr = ∂C1
i→ C1

is a homotopy equivalence. Then the rest of the proof for this case is the
same as before.

Remark 6.1. Even when p+ q = r with r odd, if H∗(C1) ∼= H∗(Sp × Sq ×
Dr+1), then we can prove that C1

∼= Sp × Sq × Dr+1 by using the above
argument.

H∗(C1) ∼= H∗(Sp ×Dq+1 × Sr)(⇔ H∗(C2) ∼= H∗(Dp+1 × Sq × Sr)).(E2)

Let i1 : Sp×{∗}×Sr → Sp×Sq×Sr, j : ∂C2 → C2 and j1 : {∗}×Sq×Sr →
Sp × Sq × Sr be the inclusion maps. By using arguments similar to the
previous ones, we can show the following.

Lemma 6.2. The inclusion

ϕ1 : Sp × {∗} × Sr
i1−→ Sp × Sq × Sr = ∂C1

i−→ C1 or

ϕ2 : {∗} × Sq × Sr
j1−→ Sp × Sq × Sr = ∂C2

j−→ C2

is a homotopy equivalence.

Thus, Theorem 1.1 holds for Case (E2). This completes the proof of
Theorem 1.1 for all the cases. �

7. Case (F) p + q = r with r odd.

In this section, let us consider the case where r = p + q with r odd. The
main result of this section is the following:

Proposition 7.1. Let f : Sp×Sq×Sr → Sp+q+r+1 be a smooth embedding
and C1 the closure of one of the two components of Sp+q+r+1−f(Sp×Sq×Sr)
with p, q ≥ 2, r = p+ q and r odd.

(1) If H∗(C1) ∼= H∗(Sp×Sq), then C1 is diffeomorphic to Sp×Sq×Dr+1.
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(2) If C1 has the same cohomology ring as Sp×Sr or Sq ×Sr, then C1 is
diffeomorphic to Sp ×Dq+1 × Sr or Dp+1 × Sq × Sr respectively.

Lemma 7.2. If C1 has the same cohomology ring as Sp × Sr or Sq × Sr,
then Hr(C1) is generated by i∗[{∗} × {∗} × Sr].

Proof. Suppose that C1 has the same cohomology ring as Sp×Sr. The other
case can be proved similarly. It is not difficult to show that i∗ : Hk(∂C1) →
Hk(C1) is an isomorphism for k = p and p+ r as in the proof of Lemma 2.2.
Set

α∗ = [Sp × Sq × {∗}]∗, β∗ = [{∗} × {∗} × Sr]∗ ∈ Hr(∂C1) ∼= Z⊕ Z,

γ∗ = [Sp × {∗} × {∗}]∗ ∈ Hp(∂C1) ∼= Z,

δ∗ = [Sp × {∗} × Sr]∗ ∈ Hp+r(∂C1) ∼= Z,

and let ξp ∈ Hp(C1) ∼= Z and ξr ∈ Hr(C1) ∼= Z be generators, where each
[∗]∗ means a dual basis. Note that we have γ∗ ^ β∗ = ±δ∗ and γ∗ ^ α∗ = 0.

Let us consider the commutative diagram

Hp(C1)⊗Hr(C1)
i∗⊗i∗−−−−−→ Hp(∂C1)⊗Hr(∂C1)y^ y^

Hp+r(C1)
i∗−−−−−→ Hp+r(∂C1).

The cohomology class ξp ^ ξr generates Hp+r(C1), since C1 has the same
cohomology ring as Sp×Sr. On the other hand, we have i∗ξp = ±[Sp×{∗}×
{∗}]∗ = ±γ∗, since i∗ : Hp(C1) → Hp(∂C1) is an isomorphism. Furthermore,
the cohomology class i∗(ξp ^ ξr) generatesHp+r(∂C1), since i∗ in the second
row is an isomorphism. We can put i∗ξr = aα∗ + bβ∗ for some integers a
and b. We see easily that i∗(ξp ^ ξr) = ±bδ∗. This implies that b = ±1.

Then we see that 〈ξr, i∗[{∗} × {∗} × Sr]〉 = ±1, where 〈∗, ∗〉 denotes the
Kronecker product. Thus, i∗[{∗} × {∗} × Sr] generates Hr(C1). �

Proof of Proposition 7.1. (1) This follows from Remark 6.1.
(2) We may assume that C1 has the same cohomology ring as Sp × Sr.

Consider the inclusion map

ϕ : Sp × {∗} × Sr → Sp × Sq × Sr = ∂C1
i→ C1.

By Lemma 7.2, ϕ∗ : Hr(Sp × {∗} × Sr) → Hr(C1) is an isomorphism.
Furthermore, as has been seen in the proof of Lemma 7.2, ϕ∗ : Hk(Sp ×
{∗} × Sr) → Hk(C1) is an isomorphism for k = p and p + r. Thus, ϕ is
a homotopy equivalence. Then by arguments similar to those in §2, we see
that C1

∼= Sp ×Dq+1 × Sr. �

Proof of Theorem 1.3. The theorem follows from Theorem 1.1 and Proposi-
tion 7.1. �
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8. Standard embeddings.

As a consequence of Theorem 1.1, we have the following Corollary 8.2. This
result is important, since it gives a sufficient condition for an embedding to
be standard. The characterization of standard embeddings is fundamental
in the study of embeddings.

Let us begin by defining standard embeddings.

Definition 8.1. Let g : Sp × Sq → Sp+q+r+1 be a smooth embedding. We
say that g is standard or that Sp×Sq is standardly embedded in Sp+q+r+1, if
g(Sp×Sq) is isotopic to the boundary of a tubular neighborhood of Sp or Sq

standardly embedded in Sp+q+r+1 in the usual sense. We say that a smooth
embedding f : Sp × Sq × Sr → Sp+q+r+1 is standard if f(Sp × Sq × Sr) is
isotopic to the boundary of a tubular neighborhood of Sp × Sq or Sq × Sr

or Sp × Sr standardly embedded in Sp+q+r+1.

Corollary 8.2. Let f : Sp × Sq × Sr → Sp+q+r+1 be a smooth embedding
with 2 ≤ p ≤ q < r and C1 the closure of one of the two components of
Sp+q+r+1 − f(Sp × Sq × Sr). If H∗(C1) ∼= H∗(Sp × Sq), then f is standard.

Proof. By Theorem 1.1 and Proposition 7.1 (1) together with our dimen-
sional assumptions, f(Sp×Sq×Sr) bounds in Sp+q+r+1 an embedded man-
ifold T diffeomorphic to Sp × Sq × Dr+1. Note that T is a tubular neigh-
borhood of S, where S is the product of two spheres Sp × Sq embedded in
Sp+q+r+1 which corresponds to Sp × Sq × {0} ⊂ Sp × Sq × Dr+1 ∼= T ⊂
Sp+q+r+1.

By [H] together with our hypothesis on p, q and r, there exists a diffeo-
morphism h : Sp+q+r+1 → Sp+q+r+1 isotopic to the identity such that h(S)
is the product of spheres Sp × Sq standardly embedded in Sp+q+r+1. Then
h(T ) is a tubular neighborhood of Sp×Sq. Thus, f(Sp×Sq×Sr) bounds the
tubular neighborhood h−1(h(T )) = T of h−1(Sp × Sq), which is standardly
embedded in Sp+q+r+1. Therefore, f is standard. �

Remark 8.3. Compare the above corollary with [LNS, Theorem 1.3] about
codimension one embeddings of product of two spheres.

9. Exotic embeddings.

In this section, let us consider the case where r = p + q with r odd and
prove Theorem 1.2, which insures the existence of exotic embeddings un-
der this dimensional assumption. The result is surprising when compared
with Theorem 1.1 and the results obtained in [A], [K], [Wa], [G], [R] and
[LNS] about codimension one embeddings of product of two spheres. In
the following, we will construct the embeddings fn so that the complements
Sp+q+r+1 − fn(Sp × Sq × Sr) are not homotopy equivalent to each other.
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Let us write S2r+1 as the union

S2r+1 = (Dr+1
−2 × Sr) ∪ϕ− (Sr × Sr × I) ∪ϕ+ (Sr ×Dr+1

2 ),(9.1)

where I = [−1, 1], Dr+1
±2 are (r+1)-disks, and ϕ− : ∂(Dr+1

−2 ×Sr) → Sr×Sr×
{−1} and ϕ+ : ∂(Sr×Dr+1

2 ) → Sr×Sr×{1} are the standard identification
maps. Since Sr× I is diffeomorphic to the closure of the complement of two
disjoint (r + 1)-disks in Sr+1 = (Sp × Dq+1) ∪ (Dp+1 × Sq), we can write
Sr × Sr × I as the union of

X− = ((Sp ×Dq+1)− IntDr+1
−1 )× Sr and

X+ = ((Dp+1 × Sq)− IntDr+1
1 )× Sr

attached along Sp×Sq×Sr, which is a boundary component of each, where
Dr+1
±1 are interior disks. Note that the embedding Sp×Sq×Sr = X−∩X+ ⊂

X−∪X+ = Sr×Sr×I ⊂ S2r+1 defined via (9.1) is standard. In the following,
we will modify this embedding by changing the identification maps ϕ± in
(9.1).

Let ψ : Sr × Sr → Sr × Sr be an arbitrary diffeomorphism. By (9.1), we
still have

S2r+1 ∼= (Dr+1
−2 × Sr) ∪ϕ−◦ψ (Sr × Sr × I) ∪ϕ+◦ψ (Sr ×Dr+1

2 ).

Put

X̃− = (Dr+1
−2 × Sr) ∪ϕ−◦ψ X−, X̃+ = X+ ∪ϕ+◦ψ (Sr ×Dr+1

2 ),

and consider Sp × Sq × Sr = X̃− ∩ X̃+ ⊂ X̃− ∪ X̃+ = S2r+1. We will show
that, for a suitable diffeomorphism ψ, X̃± are not homotopy equivalent to
the product of two spheres.

Suppose that ψ∗ : Hr(Sr ×Sr) → Hr(Sr ×Sr) is given by ψ∗α = kα+ lβ
and ψ∗β = mα+ nβ, where

A =
(
k m
l n

)
∈ GL(2;Z), and

α = [∂Dr+1
−2 × {∗}] = [Sr × {∗}], β = [{∗} × ∂Dr+1

2 ] = [{∗} × Sr]

are the generators of Hr(Sr × Sr). Then by using standard techniques in
homology theory, we can show the following:

Lemma 9.1.

(1) The homology group Hr(X̃−) is isomorphic to Z and is generated by
ξ = m[∂Dr+1

−1 ×{∗}]+n[{∗}×Sr], where ∂Dr+1
−1 ×{∗}, {∗}×Sr ⊂ X−

and we can identify [∂Dr+1
−1 ×{∗}] with [Sp×Sq×{∗}] (Sp×Sq×{∗} ⊂

∂X̃−). Furthermore, we have [{∗} × Sr] = ±kξ.
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(2) The homology group Hr(X̃+) is isomorphic to Z and is generated by
ξ′ = k[∂Dr+1

1 ×{∗}] + l[{∗}× Sr], where ∂Dr+1
1 ×{∗}, {∗}× Sr ⊂ X+

and we can identify [∂Dr+1
1 ×{∗}] with [Sp×Sq×{∗}] (Sp×Sq×{∗} ⊂

∂X̃+). Furthermore, we have [{∗} × Sr] = ∓mξ′.
Then we have the following:

Lemma 9.2.
(1) The manifold X̃− is not homotopy equivalent to Sp × Sq ×Dr+1 nor

to Dp+1 × Sq × Sr.
(2) The manifold X̃+ is not homotopy equivalent to Sp ×Dq+1 × Sr nor

to Sp × Sq ×Dr+1.
(3) If k 6= ±1 and m 6= ±1, then the manifolds X̃± are not homotopy

equivalent to Sp ×Dq+1 × Sr or Dp+1 × Sq × Sr respectively.

Proof. We see easily that Hq(X̃−) = 0 = Hp(X̃+), from which (1) and (2)
follow. Part (3) follows from Lemmas 9.1 and 7.2. �

Using the above lemma, we can easily show the following.

Proposition 9.3. If the diffeomorphism ψ : Sr × Sr → Sr × Sr satisfies
k 6= ±1 and m 6= ±1, then the embedding f̃ : Sp × Sq × Sr = X̃− ∩ X̃+ →
X̃− ∪ X̃+ = Sp+q+r+1 has the property that the closure of neither of the two
components of Sp+q+r+1 − f̃(Sp × Sq × Sr) is homotopy equivalent to the
product of two spheres and a disk.

By [G, Proposition 2.5] or [LS, Theorem 2.2], for each matrix

κn =
(

4n+ 1 2n
2 1

)
∈ GL(2;Z)

with n 6= 0, the automorphism of Hr(Sr × Sr) given by the matrix κn is
realized by a diffeomorphism ψn : Sr × Sr → Sr × Sr, since r is odd. In
this way, we can construct infinitely many embeddings fn : Sp × Sq × Sr →
Sp+q+r+1 which satisfy the property of Proposition 9.3 by setting fn = f̃
with ψ = ψn, since 4n+ 1 6= ±1 and 2n 6= ±1.

The following lemma is important in showing that the embeddings fn :
Sp × Sq × Sr → Sp+q+r+1 constructed from the matrices κn are mutually
distinct.

Lemma 9.4. Let W be a compact manifold such that ∂W = Sp × Sq × Sr,
p, q ≥ 1, r = p+q with r odd, and H∗(W ) ∼= H∗(Sp×Sr). Let ξp ∈ Hp(W ) ∼=
Z, ξr ∈ Hr(W ) ∼= Z, ξp+r ∈ Hp+r(W ) ∼= Z and η ∈ Hr(W ) ∼= Z be respective
generators. If ξp ^ ξr = kξp+r (k ∈ Z), then i∗[{∗} × {∗} × Sr] = ±kη,
where i : ∂W →W is the inclusion.

The above lemma can be proved by an argument similar to that in the
proof of Lemma 7.2.
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Definition 9.5. We call the number |k| ∈ Z in Lemma 9.4 the cup product
invariant of W . Note that |k| ∈ Z is well-defined: More precisely, |k| is a
homotopy invariant of W .

Proof of Theorem 1.2. Consider the embeddings fn :Sp×Sq×Sr→Sp+q+r+1

constructed from the matrices κn with n 6= 0. These satisfy the property of
Proposition 9.3. We will show that the embeddings fn are mutually distinct.

Let fn1 : Sp × Sq × Sr → Sp+q+r+1 be the embedding constructed from
the matrix κn1 with n1 6= 0. We may assume that H∗(C1) ∼= H∗(Sp × Sr)
and H∗(C2) ∼= H∗(Sq × Sr), where C1 and C2 are the closures of the two
components of Sp+q+r+1 − fn1(S

p × Sq × Sr). The cup product invariants
of C1 and C2 are equal to |4n1 + 1| and |2n1| respectively by Lemma 9.1.

Similarly, for the embedding fn2 : Sp × Sq × Sr → Sp+q+r+1 constructed
from the matrix κn2 with n1 6= n2 6= 0, we may assume that H∗(C3) ∼=
H∗(Sp × Sr) and H∗(C4) ∼= H∗(Sq × Sr), where C3 and C4 are the closures
of the two components of Sp+q+r+1− fn2(S

p×Sq×Sr). Suppose that there
exists a diffeomorphism h : Sp+q+r+1 → Sp+q+r+1 such that h(fn1(S

p ×
Sq × Sr)) = fn2(S

p × Sq × Sr). Then we have h(C1) = C3, which implies
that |4n1 + 1| = |4n2 + 1|. This contradicts the assumption that n1 6= n2.
Therefore, fn1 and fn2 are distinct if n1 6= n2. This completes the proof of
Theorem 1.2. �

Remark 9.6. When n = 0, for the embedding f0, if p, q ≥ 2, then it follows
from Proposition 7.1 that C1 is diffeomorphic to Sp ×Dq+1 × Sr.
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