Vol. 208, No. 1, 2003

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Construction de la tour des 2-corps de classes de Hilbert de certains corps biquadratiques

Abdelmalek Azizi

Vol. 208 (2003), No. 1, 1–10
Abstract

Let p and q be prime numbers such that p 1 mod 8, q ≡−1 mod 4 and (p
q) = 1, d = pq, k = Q(√d-,i), k2(1) be the 2-Hilbert class field of k, k2(2) be the 2-Hilbert class field of k2(1) and G2 be the Galois group of k2(2)∕k. The 2-part Ck,2 of the class group of k is of type (2,2), so k2(1) contains three extensions Ki∕k, i = 1, 2, 3. Our goal is to determine the group Ck,2, to study the problem of capitulation of the 2-classes of k in Ki, i = 1, 2, 3 and to construct the 2-class field tower of k.

Résumé.  

Soient p et q deux nombres premiers tels que p 1 mod 8, q ≡−1 mod 4 et (pq) = 1, d = pq, i = √ ---
− 1, k = Q(√ -
d,i), k2(1) le 2-corps de classes de Hilbert de k, k2(2) le 2-corps de classes de Hilbert de k2(1) et G2 le groupe de Galois de k2(2)∕k. La 2-partie Ck,2, du groupe de classes de k est de type (2,2), par suite k2(1) contient trois extensions Ki∕k, i = 1, 2, 3. On s’intéresse à déterminer le groupe Ck,2, à etudier la capitulation des 2-classes de k dans Ki, i = 1, 2, 3 et à la construction de la tour du 2-corps de classes de Hilbert de k.

Milestones
Received: 30 July 2001
Revised: 28 November 2001
Published: 1 January 2003
Authors
Abdelmalek Azizi
Département de Mathématiques
Faculté des Sciences
Université Mohammed 1
Oujda
Marocco