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We identify the twisted sectors of a compact simplicial toric
variety. We do the same for a generic nondegenerate Calabi-
Yau hypersurface of an n-dimensional simplicial Fano toric
variety and then explicitly compute h1,1

orb and hn−2,1
orb for the

hypersurface. We give applications to the orbifold string the-
ory conjecture and orbifold mirror symmetry.

1. Introduction.

The K-Orbifold string theory conjecture states that there is a natural iso-
morphism between the Orbifold K-theory of a Gorenstein orbifold and the
ordinary K-theory of its crepant resolution (see [AR], [Ru]). To construct
a natural isomorphism as the conjecture demands, is a very hard problem.
But weaker versions of the conjecture that compare Euler numbers, Hodge
numbers, etc. have been studied extensively in the literature in the case
of orbifolds that are global-quotients. Batyrev [B2], and Batyrev and Dais
[BD] proved, in particular, the equality of orbifold Hodge numbers and the
Hodge numbers of smooth crepant resolutions for Gorenstein global-quotient
orbifolds. But there were no results for nonglobal-quotient orbifolds.

In this paper, we show that the orbifold Hodge numbers of a generic
Calabi-Yau hypersurface in a complex 4-dimensional simplicial Fano toric
variety coincide with the Hodge numbers of its smooth crepant resolution.
Besides being the first nonglobal-quotient example, this is also an important
example in mirror symmetry. An immediate corollary of this is the pairing
of orbifold Hodge numbers of Calabi-Yau 3-folds and their Batyrev mirrors.

While this paper was being refereed, extensive generalisations and related
results were reported in [BoM], [P] and [Y]. [BoM] and [P] use the charac-
terisation of twisted sectors presented here. [Y] uses the theory of algebraic
stacks and achieves a deep result. The survey article [Re] nicely explains
the heart of the matter.

Now we briefly describe how this article is organised. In Sections 2 and
3 we review relevant facts from orbifold cohomology and toric geometry re-
spectively. In Section 4 we find characterisations for the twisted sectors of
complete simplicial toric varieties and nondegenerate Calabi-Yau hypersur-
faces of simplicial Fano toric varieties. In Section 5 we compute formulas for
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some orbifold Hodge numbers of these hypersurfaces, state some corollaries
and then give an example.

2. Orbifolds.

2.1. Orbifold structure. Let U be a connected topological space, V a con-
nected n-dimensional smooth manifold and G a finite group acting smoothly
on V . Then an n-dimensional uniformising system of U is a triple (V,G, π),
where π : V → U is a continuous map inducing a homeomorphism between
the quotient space V/G and U . Two uniformising systems (Vi, Gi, πi), i =
1, 2, are isomorphic if there is a diffeomorphism φ : V1 → V2 and an isomor-
phism λ : G1 → G2 such that φ is λ-equivariant, and π2 ◦ φ = π1.

If (φ, λ) is an automorphism of (V,G, π), then there is a g ∈ G such that
φ(x) = g.x and λ(a) = gag−1, for any x ∈ V and a ∈ G.

Let i : U ′ → U be a connected open subset of U . An uniformising
system (V ′, G′, π′) of U ′ is said to be induced from (V,G, π) if there is a
monomorphism λ : G′ → G and a λ-equivariant open embedding φ : V ′ →
V such that i ◦ π′ = π ◦ φ. The pair (φ, λ) : (V ′, G′, π′) → (V,G, π) is
called an injection. Two uniformising systems (V1, G1, π1) and (V2, G2, π2)
of neighbourhoods U1 and U2 of a point p are equivalent at p if they induce
isomorphic uniformising systems for a neighbourhood U3 of p.

Let X be a Hausdorff, second countable topological space. An n-dimen-
sional orbifold structure on X is given by the following data: For every point
p ∈ X, there is an assigned neighbourhood Up of p and an n-dimensional
uniformising system (Vp, Gp, πp) of Up. The assignment satisfies the condi-
tion that for any point q ∈ Up, (Vp, Gp, πp) and (Vq, Gq, πq) are equivalent
at q.

Two orbifold structures {(Vp, Gp, πp) : p ∈ X} and {(V ′
p , G′

p, π
′
p) : p ∈ X}

are equivalent if for any p ∈ X, (Vp, Gp, πp) and (V ′
p , G′

p, π
′
p) are equivalent

at p. With a given equivalence class of orbifold structures on it, X is called
an orbifold.

We call each Up a uniformised neighbourhood of p, and (Vp, Gp, πp) a chart
at p. In fact we choose Up to be small enough that Gp has the minimum
possible order; that is, every element of Gp fixes the preimage of p in Vp.
In what follows, this choice is assumed. Then a point p is called smooth if
Gp is trivial; otherwise, it is called singular. X is called a global-quotient
orbifold if X itself is an uniformised open set.

An orbifold X is called reduced if Gp acts effectively on Vp. Furthermore
if a group element acts nontrivially, we require the fixed-point set to be of at
least (real) codimension two, so that the complement is locally connected.
We will deal with reduced orbifolds only. Note that even a reduced non-
smooth orbifold can have a smooth underlying variety because of examples
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with complex reflections. Gorenstein orbifolds do not present this problem
as they do not admit such complex reflections.

2.2. Orbifold (Chen-Ruan) cohomology. First we will describe the so-
called twisted sectors. Consider the set of pairs:

X̃ = {(p, (g)Gp) | p ∈ X, g ∈ Gp},

where (g)Gp denotes the conjugacy class of g in Gp. Then Kawasaki showed
(see [CR]) that X̃ has a natural orbifold structure. We will describe the
connected components of X̃. Recall that each point p has a local chart
(Vp, Gp, πp) which gives a local uniformised neighbourhood Up = πp(Vp).
If q ∈ Up, up to conjugation, there is an injective homomorphism Gq →
Gp. For g ∈ Gq, the conjugacy class (g)Gp is well-defined. We define an
equivalence relation (g)Gq

∼= (g)Gp . Let T denote the set of equivalence
classes. By an abuse of notation, we use (g) to denote the equivalence class
to which (g)Gq belongs. X̃ is decomposed as a disjoint union of connected
components

X̃ =
⊔

(g)∈T

X(g),

where
X(g) = {(p, (g′)Gp) | g′ ∈ Gp, (g′)Gp ∈ (g)}.

Definition 1. X(g) is called a twisted sector if g 6= 1. We call X(1) = X the
nontwisted sector.

Assume that X is an almost complex orbifold with an almost complex
structure J (see [CR]). Then for a singular point p, J gives rise to an
effective representation ρp : Gp → GL(n, C). For any g ∈ Gp we write ρp(g),

up to conjugation, as a diagonal matrix diag
(
e
2πi

m1,g
mg , . . . , e

2πi
mn,g
mg

)
, where

mg is the order of g in Gp, and 0 ≤ mi,g < mg. Define a function ι : X̃ → Q
by

ι(p, (g)Gp) =
n∑

i=1

mi,g

mg
.

This function ι : X̃ → Q is locally constant. Denote its value on X(g) by
ι(g). ι(g) is called the degree shifting number of X(g). It has the following
properties:

(1) ι(g) is integral iff ρp(g) ∈ SL(n, C).
(2) ι(g) + ι(g−1) = rank (ρp(g)− Id) = n− dim(X(g)).

Definition 2. An almost complex orbifold is called Gorenstein if ι(g) is
integral for all (g).
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Remark. An almost complex, complex or Kähler structure on X induces
a corresponding similar structure on each X(g).

Definition 3. Let F be any field containing Q as a subfield. We define the
orbifold chomology groups of X with coefficients in F by

Hd
orb (X; F) = ⊕(g)∈T Hd−2ι(g)(X(g); F).

Definition 4. Let X be a closed complex orbifold. We define, for 0 ≤ p, q ≤
dimC X, orbifold Dolbeault cohomology groups

Hp,q
orb (X; C) = ⊕(g)H

p−ι(g),q−ι(g)(X(g); C).

Remark. When X is a closed Kähler orbifold (so is each X(g)), these Dol-
beault groups are related to the singular cohomology groups of X and X(g)

as in the manifold case, and the Hodge decomposition theorem holds for
these cohomology groups.

Definition 5. We define orbifold Hodge numbers by

hp,q
orb (X) = dim Hp,q

orb (X; C).

3. Facts from toric geometry.

3.1. Orbits, divisors and polytopes. A complex n-dimensional toric va-
riety XΞ is constructed from an n-dimensional lattice N and a fan Ξ in
NR = N ⊗Z R. We will write X for XΞ when there is no confusion. Let
M = Hom (N, Z) denote the dual lattice, with dual pairing denoted by 〈, 〉.
If σ is a cone in N , the dual cone σ̌ in MR determines a finitely generated
commutative semigroup Rσ = σ̌∩M . C[Rσ] is the C-algebra with generators
χm for each m ∈ Rσ and relations χmχm′

= χm+m′
. It gives an open affine

subset Uσ := spec(C[Rσ]) of X. A face τ of σ gives an inclusion Uτ → Uσ.
Ξ(d) denotes the set of d-dimensional cones of Ξ. We reserve the letter η

to denote elements of Ξ(1). For each η, let vη denote the unique generator of
the semigroup η∩N . The vη ∈ σ are the generators of σ. If r = |Ξ(1)| is the
number of 1-dimensional cones, we sometimes write the vη’s as v1, . . . , vr.

X is nonsingular iff for every cone in Ξ, its generators are part of a Z-basis
of N . Such a fan is called smooth. X is an orbifold iff the generators for
every cone in Ξ are linearly independent over R; and we say X and Ξ are
simplicial.

The action of the torus TN = U{0} = N ⊗ C on X has exactly one
orbit Oτ corresponding to each cone τ ∈ Ξ. Each Oη is an irreducible TN -
invariant Weil divisor denoted Dη. If X is complete, these generate the Chow
group An−1(X). Two TN -invariant Weil divisors are linearly equivalent iff
they differ by div (χm) =

∑
η〈m, vη〉Dη for some m ∈ M . A Weil divisor

D =
∑

η aηDη is Cartier iff for each σ ∈ Ξ, there is mσ ∈ M such that
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〈mσ, vη〉 = −aη whenever η ⊂ σ. A Cartier divisor D is ample iff 〈mσ, vη〉 >
−aη whenever η is not in σ and σ is n-dimensional.

If X is complete and D =
∑

η aηDη is Cartier, then ∆D = {m ∈ MR :
〈m, vη〉 ≥ −aη∀η} is a polytope. A polytope is called integral if its ver-
tices are integral. ∆D is integral if D is ample. Conversely, given any
n-dimensional integral polytope ∆ one can canonically associate a projec-
tive toric variety P∆ to it. See [CK], Section 3.2.2 for details. It comes with
a specific choice of ample divisor D∆ such that ∆D∆

= ∆. The TN orbit
closures of P∆ are in one-to-one correspondence with the nonempty faces F
of ∆. There is a natural inclusion of toric varieties PF ↪→ P∆.

Choose a basis for M . This corresponds to picking coordinates t1, . . . , tn
for the torus TN . Then, if m ∈ M is written m = (a1, . . . , an), we have
χm =

∏n
i=1 tai

i , so we can write tm instead of χm. For any k ≥ 0, we have
the space of Laurent polynomials L(k∆) = {f : f =

∑
m∈k∆∩M λmtm, λm ∈

C}. Each f ∈ L(k∆) gives the affine hypersurface Zf ⊂ TN defined by
f = 0. There is a TN -equivariant map H0(X,O(D)) '

⊕
m∈∆D∩M Cχm. So

L(k∆) ' H0(P∆,OP∆
(kD∆)). Under this isomorphism, f corresponds to an

effective divisor Zf ⊂ P∆. Zf is a hypersurface. It is a compactification of
Zf for generic f .

We will use the following notation:
(a) l(k∆) = |k∆ ∩M | =dim(L(k∆)),
(b) l∗(k∆) = |{m ∈ k∆ ∩M : m is not in any facet of k∆ ∩M}|.

3.2. Homogeneous coordinate ring. We introduce a variable xη for each
η ∈ Ξ(1) and consider the polynomial ring S = C[xη : η ∈ Ξ(1)]. A
monomial in S is written xD =

∏
η x

aη
η , where D =

∑
η aηDη is an ef-

fective torus-invariant divisor on X. We say that xD has degree deg(xD) =
[D] ∈ An−1(X). Thus, S is graded by An−1(X). Given a divisor class
α ∈ An−1(X), Sα denotes the graded piece of S of degree α. We often write
the variables as x1, . . . , xr, where xi corresponds to the cone generator vi

and r = |Ξ(1)|. The ring S, together with the grading defined above is
called the homogeneous coordinate ring of X. See [CK], Chapter 3.2 for
more details.

If τ is any cone of Ξ then the orbit closure Oτ is given by the ideal (xi : vi

is a generator of τ) of S. Also the graded pieces of S have nice cohomolog-
ical interpretation. We noted that L(∆) ' H0(P,OP(D∆)). Now the map
sending the Laurent monomial tm to

∏
η x

〈m,vη〉+aη
η induces an isomorphism

H0(X,OX(D)) ' Sα, where α = [D] ∈ An−1(X).
3.3. Fano toric varieties. For any toric variety X, the anticanonical di-
visor −KX =

∑
η Dη. A complete toric variety X is called Fano if −KX is

Cartier and ample.
The anticanonical divisor of a Fano toric variety X detemines a reflexive

polytope ∆. An integral polytope is called reflexive if:
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(a) All facets Γ of ∆ are supported by an affine hyperplane of the form
{m ∈ MR : 〈m, vΓ〉 = −1} for some vΓ ∈ N .

(b) Int(∆) ∩M = {0}.
The polar polytope ∆◦ of the reflexive polytope ∆ is obtained by ∆◦ =

{v ∈ NR : 〈m, v〉 ≥ −1 for all m ∈ ∆} ⊂ NR. The fan Ξ of X can be retrieved
by coning over the proper faces of ∆◦. This fan is called the normal fan of
∆ and X = P∆. ∆◦ is also reflexive and (∆◦)◦ = ∆. The Fano toric variety
constructed from the normal fan of ∆◦ is denoted by P∆◦ .

We shall use F and F ◦ to denote a face of ∆ and ∆◦ respectively. There
exists an inclusion reversing duality between the faces of ∆ and ∆◦. For
instance, the face of ∆ dual to the face F ◦ of ∆◦ is defined as F̂ ◦ := {m ∈
∆ : 〈n, m〉 = −1∀n ∈ F ◦}. If τ is the cone in the normal fan of ∆ associated
to the face F ◦, then the orbit closure Oτ = PcF ◦ .

Generic anticanonical hypersurfaces V in P∆ and V ◦ in P∆◦ constitute
two families of Calabi-Yau varieties, which are conjectured to be mirror
families in the sense of Conformal Field Theory and called Batyrev mirrors
in the literature. These varieties are orbifolds if the corresponding ambient
toric variety is simplicial. Let V̂ and V̂ ◦ denote the MPCP resolutions (see
[B1] or [CK]) of V and V ◦ respectively. These are again Calabi-Yau. These
are smooth if n = 4.

Remark. A simplicial Fano toric variety or its Calabi-Yau hypersurfaces
are Gorenstein orbifolds, the orbifold structures arising naturally from the
algebraic structures. In particular, all the degree shifting numbers are inte-
gers and the singular locus is of at least complex codimension two.

4. Twisted sectors.

We claim that the twisted sectors of a toric variety or a Calabi-Yau hyper-
surface, up to reduction of orbifold structure, can be identified with subva-
rieties. Note that in general a twisted sector could be a multiple cover of
the corresponding singular locus even if the group actions are all Abelian.

4.1. Twisted sectors in simplicial toric variety. Let Ξ be any complete
simplicial fan. Then the orbifold structure of the toric variety XΞ can be
described as follows. Let σ be any n-dimensional cone of Ξ. Let v1, . . . , vn

be the generators of σ. These are linearly independent in NR. Let Nσ be the
sublattice of N generated by v1, . . . , vn. Let Gσ := N/Nσ be the quotient
group. Gσ is finite and abelian.

Let σ′ be the cone σ regarded in Nσ. Let σ̌′ be the dual cone of σ′ in Mσ,
the dual lattice of Nσ. Uσ′ =spec(C[σ̌′ ∩ Mσ]). Note that σ′ is a smooth
cone in Nσ. So Uσ′

∼= Cn.
There is a canonical dual pairing Mσ/M ×N/Nσ → Q/Z → C∗, the first

map by the pairing 〈, 〉 and the second by q 7→ exp(2πiq). Now Gσ acts on
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C[Mσ] , the group ring of Mσ, by v(χu) = exp(2πi〈u, v〉)χu, for v ∈ N and
u ∈ Mσ. Note that

(C[Mσ])Gσ = C[M ].(4.1.1)

Thus Gσ acts on Uσ′ . Let πσ be the quotient map. Then Uσ = Uσ′/Gσ. So
Uσ is uniformised by (Uσ′ , Gσ, πσ). For any τ < σ, the orbifold structure on
Uτ is same as the one induced from the uniformising system on Uσ. Then in
the absence of complex reflections, toric gluing implies that {(Uσ′ , Gσ, πσ) :
σ ∈ Ξ(n)} defines a reduced orbifold structure on X. We show this in the
general case.

Let B be the nonsingular matrix with generators v1, . . . , vn of σ as rows.
Then σ̌′ is generated in Mσ by the the column vectors v1, . . . , vn of the matrix
B−1. So χv1

, . . . , χvn
are the coordinates of Uσ′ . For any κ = (k1, . . . , kn) ∈

N , the corresponding coset [κ] ∈ Gσ acts on Uσ′ in these coordinates as a
diagonal matrix: diag(e2πic1 , . . . , e2πicn) where ci = 〈κ, vi〉. Such a matrix
is uniquely represented by an n-tuple a = (a1, . . . , an) where ai ∈ [0, 1)
and ci = ai + bi, bi ∈ Z. In matrix notation, κB−1 = a + b ⇐⇒ κ =
aB + bB. We denote the integral vector aB in N by κa and the diagonal
matrix corresponding to a by ga. κa ↔ ga gives a one to one correspondence
between the elements of Gσ and the integral vectors in N that are linear
combinations of the generators of σ with coefficients in [0, 1).

Now let us examine the orbifold chart induced by (Uσ′ , Gσ, πσ) at any
point x ∈ Uσ. By the orbit decomposition of Uσ, there is a unique face
τ of σ such that x ∈ Oτ . Without loss of generality assume that τ is
generated by v1, . . . , vj , j ≤ n. Then any preimage of x with respect to πσ

has coordinates χvi
= 0 iff i ≤ j. Let z = (0, . . . , 0, zj+1, . . . , zn) be one such

preimage. Let Gτ := {ga ∈ Gσ : ai = 0 if j + 1 ≤ i ≤ n}. We can find a
small neighbourhood W ⊂ (C∗)n−j of (zj+1, . . . , zn) such that the inclusions
Cj ×W ↪→ Uσ′ and Gτ ↪→ Gσ induces an injection of uniformising systems
(Cj ×W,Gτ , π) ↪→ (Uσ′ , Gσ, πσ) on some small open neighbourhood Ux of
x. So we have Gx = Gτ and an orbifold chart (Cj ×W,Gτ , π). Note that
Gτ can be constructed from the set {κa =

∑j
i=1 aivi : κa ∈ N, ai ∈ [0, 1)}

which is completely determined by τ and hence is independent of σ.
Now we determine the twisted sectors. Take any x ∈ X. x belongs to

a unique Oτ . Assume the generators of τ are v1, . . . , vj . Consider any n-
dimensional σ > τ . Assume v1, . . . , vn generate σ. First suppose there is
a ga in Gx such that ai 6= 0,∀i ≤ j i.e., κa lies in the interior of τ . We
want to find the twisted sector X(ga). Consider ga as an element of Gσ. It
is clear that ga fixes z ∈ Uσ′ iff z1 = · · · = zj+s = 0, for some s ≥ 0. Hence
πσ(z) ∈ Oτ or πσ(z) ∈ Oδ for some δ > τ . So X(ga) ∩ Uσ = Oτ ∩ Uσ. Since
a twisted sector is connected, X(ga) = Oτ . If ga ∈ Gx is such that (without
loss of generality) only a1, . . . , ak 6= 0, k < j, then ga ∈ Gδ where δ is the
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cone generated by v1, . . . , vk and by the above argument X(ga) = Oδ. Thus
we have proved the following theorem:

Theorem 1. A twisted sector of any complete simplicial toric variety XΞ

is isomorphic to a subvariety Oτ of XΞ for some cone τ ∈ Ξ. Moreover,
there is a one-to-one correspondence between the set of twisted sectors of the
type Oτ and the set of integral vectors in the interior of τ which are linear
combinations of the 1-dimensional generators of τ with coeffients in (0, 1).

Note that the degree shifting number ι(ga) =
∑

ai. Now if XΞ is Fano,
i.e., Ξ is obtained by coning over the faces of a reflexive polytope ∆◦, then
the twisted sectors with ι = 1 are in one to one correspondence with the
integral interior points of faces of ∆◦.

4.2. Twisted sectors of a hypersurface of a Fano variety. We identify
the twisted sectors of a generic nondegenerate anticanonical (Calabi-Yau)
hypersurface V of a simplicial Fano toric variety X = P∆. Nondegenerate
means that V ∩Oτ is either empty or a smooth subvariety of codimension one
in Oτ , for each torus orbit Oτ in X. Then V turns out to be a suborbifold of
X. Also nondegeneracy is a generic condition. We show that V = Zf , for a
generic f ∈ L(∆), is nondegenerate and a suborbifold of X. For a different
treatment of this, see [BC].

Consider any n-dimensional cone σ with generators v1, . . . , vn. For nota-
tional simplicity set χvi

= zi. Then z1, . . . , zn are the coordinates of Uσ′ .
Let Y be the preimage of V ∩ Uσ in Uσ′ with respect to πσ. Then Y is
defined by the equation

∑
m∈∆∩M λm

∏n
i=1 zi

〈m,vi〉+1 = 0. This is because,
tm =

∏n
i=1 zi

qi ⇐⇒ m =
∑

qiv
i = B−1q ⇐⇒ q = mB ⇐⇒ qi = 〈m, vi〉.

The one is added to ensure that V is anticanonical. Note that by definition
of ∆, 〈m, vi〉 + 1 ≥ 0. If λmσ 6= 0 then Y does not pass through the ori-
gin. It can be checked from this description using Bertini’s theorem that for
generic values of the coefficients λm, Y is a smooth submanifold of Uσ′ that
intersects the coordinate planes zi1 = · · · = zij = 0 transversely.

Y is Gσ-stable by (4.1.1). When Y is smooth, all singularities of V ∩ Uσ

are quotient singularities induced by action of Gσ on Y . Since there are only
finitely many n-dimensional cones, V is nondegenerate and a suborbifold of
X. (Y, Gσ, πσ) is an uniformising system for V ∩ Uσ. Let τ be the face of
σ obtained by coning over the face F ◦ of ∆◦. Without loss of generality
let v1, . . . , vj : j ≥ 2 be the generators of τ . (We remarked in Section 3.3
that there is no codimension one singularity.) We want to find a chart for
any point x ∈ V ∩ Oτ . By our earlier remark that Y misses the origin of
Uσ′ , V ∩ Oσ is empty. So we need only consider proper faces τ of σ. First
assume that F ◦ has codimension 2. This means that Oτ has dimension 1.
Then the corollary on page 112 of [F] implies that the number of points in
V ∩ Oτ is the normalised volume of F̂ ◦, which equals l∗(F̂ ◦) + 1 since F̂ ◦
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has dimension 1. Since the only other points in Oτ in this case are Oσ for
n-dimensional cones σ > τ , all the intersection points actually lie in Oτ . If
codimension F ◦ is bigger than 2, then V ∩Oτ is irreducible by Bertini.

Following the same notation as before, x has a small neighbourhood Ux∩Y
such that ((Cj ×W )∩ Y, Gτ , π) is a chart for V at x. Cj ×W is , as before,
a suitable neighbourhood of some preimage z of x in Uσ′ . The tangent
space TYz is a Gτ -stable subspace of TCn

z . Any ga ∈ Gτ acts trivially on
TWz =span{∂/∂zi, i = j + 1, . . . , n}. By transversality, we can choose basis
{ξ1, . . . , ξn} of TCn

z such that ξi ∈ TYz ∀i ≤ n − 1 and ξn ∈ TWz. ga acts
trivially on ξn. This implies that the degree shifting number of ga|TYz is still∑j

i=1 ai.
From the description of the charts, it is clear that twisted sectors of V

are isomorphic to V ∩Oτ where 2 ≤ dim(τ) ≤ n− 1. Recall that Oτ = PcF ◦

where F̂ ◦ is the face of ∆ dual to F ◦. In particular we have the following
theorem:

Theorem 2. Let V be a generic nondegenerate anticanonical hypersurface
of an n-dimensional simplicial Fano toric variety P∆. Then the twisted
sectors of V are isomorphic to V ∩ PcF ◦ for some face F ◦ of ∆◦ such that
1 ≤ dim (F ◦) ≤ n−2. There is exactly one twisted sector of this type having
ι = 1, corresponding to each integral interior point of F ◦ if dim (F ◦) < n−2.
If dim (F ◦) = n− 2, then there are exactly l∗(F̂ ◦) + 1 twisted sectors of this
type having ι = 1, corresponding to each integral interior point of F ◦.

5. Orbifold Hodge numbers.

5.1. h1,1
orb (V ). Let V(g) denote a twisted sector of the hypersurface V and

ι(g) its degree shifting number. h1,1
orb (V ) = h1,1(V )+

∑
ι(g)=1 h0,0(V(g)). Since

h0,0(V(g)) = 1 for each twisted sector, by Theorem 2 we obtain∑
ι(g)=1

h0,0(V(g)) =
∑

1≤dim(F ◦)≤n−2

l∗(F ◦) +
∑

dim(F ◦)=n−2

l∗(F ◦)l∗(F̂ ◦)

= l(∆◦)− r − 1−
∑

dim(F ◦)=n−1

l∗(F ◦) +
∑

dim(F ◦)=n−2

l∗(F ◦)l∗(F̂ ◦).

To compute h1,1(V ) we invoke the following Lefschetz hyperplane theorem
([BC, Proposition 10.8]):

Lemma 1. Let V be a nondegenerate ample hypersurface of an n-dimen-
sional complete simplicial toric variety X. Then the natural map induced
by inclusion j∗ : H i(X) → H i(V ), is an isomorphism for i < n− 1 and an
injection for i = n− 1.
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In our case V is anticanonical, and since the anticanonical divisor of
a Fano variety is ample, V is ample. Also it is well-known ([F, Section
5.1]) that for any simplicial toric variety X, H2(X, R) = H1,1(X, R) =
An−1(X)⊗ R. So for n ≥ 4 , h1,1(V ) = h1,1(P∆) = rankAn−1(P∆) = r − n.
Thus we have the following theorem:

Theorem 3. For any generic nondegenerate anticanonical hypersurface V
of an n-dimensional simplicial Fano toric variety P∆, n ≥ 4,

h1,1
orb (V ) = l(∆◦)− n− 1−

∑
dim(F ◦)=n−1

l∗(F ◦) +
∑

dim(F ◦)=n−2

l∗(F ◦)l∗(F̂ ◦).

5.2. hn−2,1(V ). Next we compute hn−2,1(V ) for n ≥ 4. For this we use
the homogeneous coordinate ring S of X = P∆. Let v1, . . . , vr be the one-
dimensional cones of the normal fan of ∆. Let x1, . . . , xr be the correspond-
ing homogeneous coordinates. Let β0 = [−KX ] = [

∑r
i=1 Di] ∈ An−1(X).

Then Sβ0 ' L(∆). And the divisor f ∈ L(∆) corresponding to V can be
written in the homogeneous coordinates as f =

∑
m∈M∩∆ λm

∏r
i=1 xi

〈m,vi〉+1.

For notational simplicity, we will denote
∏r

i=1 xi
〈m,vi〉+1 by xm for any

m ∈ M . Define the Jacobian ideal of f to be J(f) = 〈∂f/∂x1, . . . , ∂f/∂xr〉.
First we quote the following theorem ([BC, Theorem 10.13]):

Lemma 2. Let X be an d-dimensional complete simplicial toric variety and
V ⊂ X be a quasi-smooth (i.e., suborbifold) ample hypersurface defined by
f ∈ Sβ. Then for k 6= (d/2) + 1, there exists a canonical isomorphism

(S/J(f))kβ−β0 ' PHd−k,k−1(V ).

Remark. The primitive cohomolgy PHd−1(V ) := Hd−1(V )/(im Hd−1(X)).
This coincides with the usual cohomology if d is even.

For our application of Lemma 2, set d = n, k = 2 and β = β0. With n ≥ 4
these choices imply that k 6= (d/2)+1 in the lemma. Also, Hn−2,1(X) = 0 if
n≥4 , so that PHn−2,1(V )=Hn−2,1(V ). Thus hn−2,1(V )=rank (S/J(f))β0 .

Lemma 3. xi∂f/∂xi ∈ J(f)β0 , i = 1, . . . , r, and the space of complex linear
relations among these has dimension r − (n + 1).

Proof.

xi
∂f

∂xi
=
∑
m

λm(〈m, vi〉+ 1)xm,

∑
i

cixi
∂f

∂xi
=
∑
m

λm

(〈
m,
∑

i

civi

〉
+
∑

i

ci

)
xm.

For a generic f we can assume that λm 6= 0 for each m ∈ ∆ ∩M . Hence∑
i cixi∂f/∂xi ≡ 0 ⇐⇒ 〈m,

∑
i civi〉+

∑
i ci = 0 ∀m ∈ ∆ ∩M .
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In particular, taking m = 0 we get
∑

i ci = 0. Therefore 〈m,
∑

i civi〉 = 0
∀m ∈ ∆ ∩M and since ∆ is n-dimensional we have

∑
i civi = 0.

Thus
∑

i cixi∂f/∂xi ≡ 0 ⇐⇒
∑

i civi = 0 and
∑

i ci = 0.
Now let ṽi = (vi, 1) ∈ Rn+1 ⊂ Cn+1 = Rn+1 ⊗ C.
Since the vi’s are vertices of ∆◦, the ṽi’s are generators of the (n + 1)-

dimensional cone {q ∈ Rn+1 : qt ∈ ∆◦ × {1} for some t ∈ R>0}. So the
ṽi’s span Rn+1 over R, and hence they span Rn+1 ⊗ C over C. Note that
(
∑

civi,
∑

ci) =
∑

ciṽi. Hence the lemma follows. �

Without loss of generality assume that the xk∂f/∂xk, k = 1, . . . , n + 1,
are linearly independent. In other words ṽk, k = 1, . . . , n + 1 are linearly
independent. We will consider monomials

∏
j 6=i xj

pj that have same degree
in S as xi. So we want m∗ ∈ M such that 〈m∗, vj〉 = pj ≥ 0 > −1 if j 6= i
and 〈m∗, vi〉 = −1. Such m∗ is given by interior lattice points of Fi, the
(n − 1)-dimensional face of ∆ that is dual to the 0-dimensional face {vi}
of ∆◦. Then for each m∗ ∈ Int(Fi) ∩ M ,

∏
j 6=i xj

〈m∗,vj〉∂f/∂xi belongs to
J(f)β0 . Together with the xi∂f/∂xi, these generate J(f)β0 as we vary over
all i.

In the following computation, we denote the characteristic function of a
set by I(·). For instance, I(m′ ∈ ∆) is 1 when m′ ∈ ∆ and 0 otherwise.
Also, recall that f =

∑
m′∈M∩∆ λm′xm′

.∏
j 6=i

xj
〈m∗,vj〉

 ∂f/∂xi

=

 r∏
j=1

xj
〈m∗,vj〉

xi∂f/∂xi

=
∑

m′∈∆∩M

λm′(〈m′, vi〉+ 1)xm′+m∗

=
∑

m′+m∗∈∆∩M

λm′(〈m′, vi〉+ 1)I(m′ ∈ ∆)xm′+m∗

=
∑

m∈∆∩M

λm−m∗(〈m−m∗, vi〉+ 1)I(m−m∗ ∈ ∆)xm.

To justify the fourth line in the above calculation, note that given m′ ∈
∆∩M , either m′+m∗ ∈ ∆∩M or 〈m′, vi〉+1 = 0. Then setting m = m′+m∗

leads to the last line.
Let Int(Fi) ∩M = {mi,is : 1 ≤ s ≤ ti; ti ≥ 0}.

Then J(f)β0 = span{xk∂f/∂xk,
∏r

j=1 xj
〈mis ,vj〉xi∂f/∂xi : 1 ≤ k ≤ n+1, 1 ≤

is ≤ ti, i = 1, . . . , r}. We want to find the dimension of this complex vector
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space. So we study the space of linear relations:∑
k

ckxk∂f/∂xk +
∑
i,is

di,is

r∏
j=1

xj
〈mis ,vj〉xi∂f/∂xi ≡ 0

⇐⇒∑
m

{∑
k

ckλm(〈vk,m〉+ 1)

+
∑
i,is

di,isλm−mi,is
I(m−mi,is ∈ ∆)(〈m−mi,is , vi〉+ 1)

}
xm ≡ 0

⇐⇒∑
k

ckλm(〈vk,m〉+ 1) +
∑

di,isλm−mi,is
I(m−mi,is ∈ ∆)〈m, vi〉 ≡ 0

for each m ∈ ∆ ∩M, [note: 〈mi,is , vi〉 = −1].

This is a system of l(∆) number of linear equations in γ = n + 1 +∑r
i=1 l∗(Fi) variables namely ck, di,is . Note that l(∆) ≥ γ. We shall find a

nonsingular subsystem of rank γ.
To do so pick n linearly independent vertices m1, . . . ,mn of ∆ and let

mn+1 = 0, the origin. Then from the above system we pick the equations
corresponding to m = m1, . . . ,mn+1 and m = mi,is : i = 1, . . . , r; 0 ≤ is ≤
ti. Denote this γ × γ system by (∗∗). It can be written as:[

P A
B Q

](
c
d

)
=
(

0
0

)
where

P =


λm1(〈m1, v1〉+ 1) . . . λm1(〈m1, vn+1〉+ 1)
. . . . . . . . .
λmn(〈mn, v1〉+ 1) . . . λmn(〈mn, vn+1〉+ 1)
λ0 . . . λ0


Q=

 λm1,1−m1,1I(.) (〈m1,1−m1,1, v1〉+1) . . . λm1,1−mr,tr
I(.) (〈m1,1−mr,tr , vr〉+1)

. . . . . . . . .
λmr,tr−m1,1I(.) (〈mr,tr−m1,1, v1〉+1) . . . λmr,tr−mr,tr

I(.) (〈mr,tr−mr,tr , vr〉+1)

.
Observe that all the diagonal entries of Q are λ0, and none of its off-

diagonal entries has λ0. Also any entry of A is of the form λmk−mi,is
I(.)

and hence does not involve λ0. Similarly an entry of B is of the form
λmi,is

(〈mi,is , vk〉+ 1) and so does not have λ0.

Consider the determinant of the coefficient matrix
[

P A
B Q

]
as a poly-

nomial in the λ’s. Then the term of this determinant having the highest
power of λ0 is (λ0)

P
l∗(Fi)detP. We will show below that detP = nonzero
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constant times λm1 . . . λmnλ0. Thus the determinant of the coeffcient ma-
trix of the system (**) is a nontrivial polynomial in the λ’s and is therefore
nonzero for generic choice of the λ’s. Hence J(f)β0 has rank γ as a complex
vector space, for a generic f ∈ L(∆). Since Sβ0 ' L(∆), so (S/J(f))β0 has
rank l(∆)− γ, for a generic f .

Lemma 4. The (n + 1)× (n + 1) matrix P = ((Pi,j = λmi(〈mi, vj〉+ 1) ))
is nonsingular for generic chioce of λ’s.

Proof. Let E be the (n+1)× (n+1) matrix (( Ei,j = (〈mi, vj〉+1) )). Then
detP = λm1 . . . λmn+1detE. We claim that E is nonsingular. Otherwise
there exists a nontrivial vector (c1, . . . , cn+1) such that

∑n+1
k=1 ck(〈mi, vk〉 +

1) = 0 for all i = 1, . . . , n+1. In particular, for i = n+1 we get
∑n+1

k=1 ck = 0.
This implies

∑n+1
k=1 ck〈mi, vk〉 = 0 for all i = 1, . . . , n. Since m1, . . . ,mn

are linearly independent, this would imply that
∑n+1

k=1 ck〈m, vk〉 = 0 for all
m ∈ ∆. Therefore

∑n+1
k=1 ckvk = 0. this combined with

∑
ck = 0 implies that∑n+1

k=1 ckṽk = 0 which contradicts the linear independence of ṽ1, . . . , ṽn+1.
Thus the lemma holds. �

So we have the following theorem:

Theorem 4. For any generic nondegenerate anticanonical hypersurface V
of an n-dimensional simplicial Fano toric variety P∆, and n ≥ 4,

hn−2,1(V ) = l(∆)− n− 1−
∑

dim(F )=n−1

l∗(F ).

5.3. Cohomology of the twisted sectors of V . We now want to com-
pute hn−3,0(V(g)) for any twisted sector V(g)

∼= V ∩ PcF ◦ . This is obviously
zero if dim (F ◦) > 1, since dim (PcF ◦) = n − 1−dim(F ◦). So we will only
consider the case dim(F ◦) = 1. Let τ be the 2-dimensional cone obtained
by coning over F ◦. As noted earlier Oτ = PcF ◦ . The restriction of V to Oτ

gives a quasi-smooth ample hypersurface of Oτ , which we shall identify with
V(g). So we are again in a situation where we can invoke Lemma 2.

For this we need to understand the homogeneous coordinate ring S′ of
Oτ . According to Fulton [F], Section 3.1, a fan for Oτ can be constucted
from the fan Ξ of X as follows.

Let Nτ be the sublattice of N generated by the primitive one dimensional
generators of τ . Let N(τ) = N/Nτ . The dual lattice of N(τ) is given by
M(τ) = τ⊥ ∩M . The star of a cone τ can be defined abstractly as the set
of cones σ in Ξ that contain τ as a face. Such cones σ are determined by
their images in N(τ) i.e., by σ = (σ +(Nτ )R)/(Nτ )R ⊂ NR/(Nτ )R = N(τ)R.
These cones {σ : τ < σ} form a fan Star(τ) in N(τ). Oτ is the toric
variety corresponding to this fan. Without loss of generality, let v1, v2 be
the generators of τ . The corresponding Weil divisors in X are D1 and D2.
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Assume that vj , j = 3, . . . , l are the 1-dimensional cones of Ξ such that
{v1, v2, vj} generate a 3-dimensional cone of Ξ. In other words, vj , j =
3, . . . , l are the 1-dimensional cones of Star(τ). Let D̃j := D1D2Dj for
j = 3, . . . , r. Note that D̃j = 0 if j > l. The divisor of Oτ corresponding
to vj is D̃j for j = 3, . . . , l. So the homogeneous coordinate ring S′ is
generated by variables yj corresponding to D̃j for j = 3, . . . , l. Denote by
α0 the anticanonical class

∑l
j=3 D̃j in S′.

On the other hand the divisor V restricts to −KXD1D2 = (D1 + · · · +
Dr)D1D2 =

∑l
j=3 D̃j + (D1 + D2)D1D2. To see what (D1 + D2)D1D2 is in

terms of the D̃js , we can pick a point m ∈ F̂ ◦∩M and let bi := 〈m, vi〉, 1 ≤
i ≤ r. Then

∑r
i=1 biDi is linearly equivalent to zero. Note that b1 = b2 = −1.

Hence we have D1 +D2 =
∑r

i=3 biDi. So, (D1 +D2)D1D2 =
∑l

i=3 biD̃i. Let
α be the class in S′ representing the effective ample divisor −KXD1D2. Let
f ′ be the associated homogeneous polynomial in the yjs. Now we can apply
Lemma 2 to the (n− 2)-dimensional variety Oτ and the ample hypersurface
V(g). Choose k = 1 in the lemma to get

(S′/J(f ′))α−α0 ' PHn−3,0(V(g)) = Hn−3,0(V(g))

since Hn−3,0(Oτ ) = 0.
Now α − α0 = [α −

∑l
j=3 D̃j ]. A typical generator ∂f ′/∂yi ∈ J(f ′)

has degree [α − D̃i]. There are no nonconstant regular functions on the
projective variety Oτ . So any nontrivial effective divisor, and in particular
D̃i,

∑
j=3,...,l;j 6=i D̃j and

∑
j=3,...,l D̃j are not linearly equivalent to zero. This

implies that J(f ′)α−α0 = 0. Hence we obtain that

(S′)α−α0 ' Hn−3,0(V(g)).

Now α − α0 = [
∑l

j=3 bjD̃j ]. We want to identify the effective divisors

in this class. So we want m∗ ∈ M(τ) such that
∑l

j=3(bj + 〈m∗, vj〉)D̃j

is effective. This is if and only if (bj + 〈m∗, vj〉) ≥ 0 for all j = 3, . . . , l

⇐⇒ (〈m + m∗, vj〉) ≥ 0 > −1 for j = 3, . . . , l ⇐⇒ m + m∗ ∈Int(F̂ ◦) ∩M .
To justify the last step note that 〈m + m∗, vi〉 = −1 for i = 1, 2.

Since m is fixed, the required effective divisors are in one-to-one correspon-
dence with the interior lattice points of F̂ ◦. Hence hn−3,0(V(g)) = l∗(F̂ ◦).
Since there are l∗(F ◦) twisted sectors isomorphic to V ∩ PcF ◦ we have the
following:

hn−2,1
orb (V )

= hn−2,1(V ) +
∑

ι(g)=1

hn−3,0(V(g))
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= l(∆)− n− 1−
∑

dim(F )=n−1

l∗(F ) +
∑

dim(F ◦)=1

l∗(F ◦)l∗(F̂ ◦)

= l(∆)− n− 1−
∑

dim(F )=n−1

l∗(F ) +
∑

dim(F )=n−2

l∗(F )l∗(F̂ ).

For the last step we used the one-to-one correspondence between faces of
∆ and ∆◦.

5.4. Main results. Combining the above formula with Theorem 4 we have
the following theorem:

Theorem 5. For any generic nondegenerate anticanonical hypersurface V
of an n-dimensional simplicial Fano toric variety P∆, n ≥ 4,

hn−2,1
orb (V ) = l(∆)− n− 1−

∑
dim(F )=n−1

l∗(F ) +
∑

dim(F )=n−2

l∗(F )l∗(F̂ ).

Corollary 1. If V̂ is an MPCP desingularisation of any generic nonde-
generate anticanonical hypersurface V of an n-dimensional simplicial Fano
toric variety P∆, n ≥ 4, then hp,1

orb (V ) = hp,1(V̂ ) for p = 1 and p = n− 2.

Proof. The formulas for hp,1(V̂ ) for p = 1, n−2 computed in [B1] by Batyrev
match the orbifold Hodge numbers for V obtained in Theorem 3 and Theo-
rem 5. �

Corollary 2. In the case n = 4, hp,q
orb (V ) = hp,q(V̂ ) for any p and q.

Proof. We need only consider p, q ≤ 3. Also hp,0
orb ≡ hp,0 by definition since ι

is nonnegative. So, by Serre duality for ordinary and orbifold cohomologies,
it is enough to consider just the cases p = 1, q = 1 and p = 2, q = 1. These
are addressed by Corollary 1. (We should remark here that in this case V̂
is actually smooth.) �

Corollary 3. If P∆◦ is also simplicial, and V ◦ is a generic nondegener-
ate anticanonical hypersurface of P∆◦, then h1,1

orb (V ) = hn−2,1
orb (V ◦) and vice

versa.

Proof. Follows from interchanging the roles of ∆ and ∆◦ in the formulas. �

Remark. In particular, for the n = 4 case, we have hp,q
orb(V ) = h3−p,q

orb (V ◦).
This is an example of ‘mirror symmetry’ of orbifold hodge numbers.

5.5. An example. This example first appeared in the Greene-Plesser mir-
ror construction [GP] and was also studied in [COFKM] in the context of
mirror symmetry.

Consider the complex 4-dimensional weighted projective space X = P(1,1,
2,2,2). It is a simplicial Fano toric variety. Its fan Ξ has the following
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1-dimensional cones in N ∼= Z4: v1 = (−1,−2,−2,−2), v2 = (1, 0, 0, 0),
v3 = (0, 1, 0, 0), v4 = (0, 0, 1, 0), v5 = (0, 0, 0, 1). Ξ has five 4-dimensional
cones, obtained by dropping one of the vi’s at a time and taking the cone
generated by the remaining four.

Let Di denote the torus-invariant divisor given by the orbit closure Ovi .
It is easy to check that in A3(X), [D2] = [D1] and [Di] = 2[D1] for i ≥ 3.
Construct the homogeneous coordinate ring of X by introducing variables
xi corresponding to vi. Then deg(x1)= deg(x2) = 1 (= [D1]) and deg(xi)=2
for i ≥ 3.

This leads to the more familiar description of P(1,1,2,2,2) as (C5−{0})/C∗.
The action of any α ∈ C∗ on C5 − {0} is as follows:

α.[x1 : x2 : x3 : x4 : x5] = [αx1 : αx2 : α2x3 : α2x4 : α2x5].

In this description, Di corresponds to the hyperplane {xi = 0} and the 4-
dimensional cones of Ξ correspond to the open sets {xi 6= 0}. It is also easily
seen that the singular locus of X is precisely the surface {x1 = x2 = 0}. In
fact, this represents the only twisted sector of X. The vi’s are the vertices
of a reflexive polytope ∆◦. The faces of ∆◦ have only one interior lattice
point: (0,−1,−1,−1) = 1

2(v1 + v2). This lattice point corresponds to the
twisted sector and the local isotropy group is Z2.

The dual reflexive polytope ∆ in MR has the following vertices:

w1 = (−1,−1,−1,−1), w2 = (7,−1,−1,−1), w3 = (−1, 3,−1,−1),

w4 = (−1,−1, 3,−1), w5 = (−1,−1,−1, 3).
∆ is the polytope corresponding to the anticanonical divisor −KX =∑5
i=1 Di of X, and X = P∆. If V is a generic nondegenerate Calabi-Yau

(anticanonical) hypersurface of X, then V has just one twisted sector namely
C = V ∩ {x1 = x2 = 0}. One can directly compute the genus of this curve
C by using the Riemann-Hurwitz formula. It turns out to be 3. V has the
Hodge numbers: h1,0 = h2,0 = 0, h3,0 = 1, h1,1 = 1, h2,1 = 83. Since the
degree shifting number of the twisted sector C is 1, we compute h1,1

orb (V ) =
h1,1(V )+h0,0(C) = 1+1 = 2, and h2,1

orb (V ) = h2,1(V )+h1,0(C) = 83+3 = 86.
The dual Fano veriety P∆◦ is also simplicial. This is easily checked since

its fan is is obtained by coning over the faces of ∆. In fact, P∆◦ = P∆/Z3
4.

This is also shown easily. First, observe that w1 = −w2 − 2w3 − 2w4 − 2w5.
Secondly, if M is the sublattice of M generated by w2, w3, w4, w5, then M/M
= Z3

4.
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