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Let (A, S) be an Artin group of type FC and AT a stan-
dard parabolic subgroup of A. We use combinatorial tools
to show that the normalizer of AT , the commensurator of
AT , and the product of the quasi-centralizer of AT by AT

are equal. Furthermore, we show that the centralizer and the
quasi-centralizer of AT in A are generated by their intersec-
tions with the monoid A+.

0. Introduction.

Let S be a finite set and M = (ms,t)s,t∈S a symmetric matrix with ms,s = 1
for s ∈ S and ms,t ∈ N− {0, 1} ∪ {∞} for s 6= t in S. An Artin-Tits system
associated to M is the pair (AS , S) where AS is the group defined by the
presentation

AS =

〈
S
∣∣∣ sts . . .︸ ︷︷ ︸

ms,t terms

= tst . . .︸ ︷︷ ︸
ms,t terms

; ∀s, t ∈ S, s 6= t and ms,t 6= ∞

〉
.

The group AS is called an Artin group and relations sts . . .︸ ︷︷ ︸
ms,t terms

= tst . . .︸ ︷︷ ︸
ms,t terms

are called braid relations. For instance, if S = {s1, . . . , sn} with msi,sj = 3
for |i − j| = 1 and msi,sj = 2 otherwise, then the associated Artin group
is the braid group. We denote by A+

S the submonoid of AS generated by
S. This monoid A+

S has the same presentation as the group AS , considered
as a monoid presentation ([11]). When we add relations s2 = 1 to the
presentation of AS we obtain the Coxeter group WS associated to AS . We
say that AS is spherical if WS is finite. The matrix M may be represented
by a graph denoted by ΓS , whose set of vertices is S and where an edge joins
two vertices if ms,t ≥ 3; these edges are labelled by ms,t if ms,t ≥ 4. We say
that AS (or simply S) is indecomposable if the graph ΓS is connected. A
subgroup AT of AS generated by a part T of S is called a standard parabolic
subgroup, and a subgroup of AS conjugate to a standard parabolic subgroup
is called a parabolic subgroup. Van Der Lek showed ([14]) that (AT , T ) is
canonically isomorphic to the Artin-Tits system associated to the matrix
(ms,t)s,t∈T ; its graph ΓT is the full subgraph of ΓS generated by T . The
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indecomposable components of S are the maximal subsets of S which are
indecomposable.

One says that an Artin-Tits system (AS , S) (or simply an Artin group
AS) is of type FC if the following assertion is true:

∀T ⊂ S, (∀s, t ∈ T , ms,t 6= ∞⇒ AT is spherical).
For instance, the Artin group of the following graph is of type FC;

• • •
• 4 • ∞ • 4

•
•

If T is a subset of S we call centralizer (resp. quasi-centralizer, normaliser,
commensurator) of AT in AS the set

ZAS
(AT ) = {g ∈ AS | ∀s ∈ T, gs = sg},

QZAS
(AT ) = {g ∈ AS | gT = Tg},

NAS
(AT ) = {g ∈ AS | gT ⊂ AT g},

ComAS
(AT ) =

{g ∈ AS | gAT g−1 ∩AT has finite index in both AT and gAT g−1}
respectively. These sets are subgroups of AS .

The first of the three main theorems we will prove is the following:

Theorem 0.1. Let (AS , S) be an Artin-Tits system of type FC and X ⊂ S;
then

ComAS
(AX) = NAS

(AX) = AX ·QZAS
(AX).

This result was first proved by Rolfsen ([12]) in the case of braid groups;
Paris ([10]) proved it when AS is a spherical Artin group and T is indecom-
posable, finally in [8] we proved the result for any T when S is spherical.

In [6], the quasi-centralizer in the braid group of a part T of S is geo-
metrically described thanks to the notion of ribbon; this notion was first
generalised from a combinatorial viewpoint in [10] (and called conjugator)
to a general Artin group and indecomposable part T , and finally generalised
in [8] for any part T . The right viewpoint is to use the categorical language
and to see the quasi-centralizer (and centralizer) as a set of morphisms in a
groupoid.

Recall that (AS , S) is spherical if and only if S has a lcm in A+
S ; in that

case, this lcm is denoted by ∆S .

Definition 0.2. Let (AS , S) be an Artin-Tits system.
(i) We define the groupoid Conj (S) as follows:

(a) Objects of Conj (S) are subsets of S;
(b) the set Conj (S;X, Y ) of morphisms from X to Y is in bijection

with the set
{g ∈ AS | gXg−1 = Y };



PARABOLIC SUBGROUPS OF ARTIN GROUPS 245

(c) the composition of morphisms is defined by the product in AS :

g ◦ f = gf.

(ii) Let X, Y ⊂ S; we say that w ∈ Conj (S;X, Y ) is a positive elementary
Y -ribbon-X ([10, 8]) if:

(a) w = ∆X′ for X ′ an indecomposable component of X or,
(b) there exists t ∈ S such that the indecomposable component X ′ of

X ∪ {t} containing t is spherical and w = ∆X′∆−1
X′−{t}.

We say that w ∈ Conj (S;X, Y ) is an elementary Y -ribbon-X if it is a
positive elementary ribbon or w−1 is a positive elementary X-ribbon-
Y .

(iii) We denote Ribb (S) the smallest subcategory of Conj (S) which has
the same objects and which contains the elementary ribbons; the set
of morphisms from X to Y in Ribb (S) is denoted Ribb (S;X, Y ) and
its elements are called Y -ribbon-X.

Note that in Case (ii)(a), X = Y and that in Case (ii)(b) there exists
u ∈ S such that X t {u} = Y t {t}.

The second main theorem of this article is the following:

Theorem 0.3. Let (AS , S) be an Artin-Tits system of type FC; then the cat-
egory Conj (AS , S) is generated by the elementary ribbons; that is Conj (S) =
Ribb (S).

This result was proved by Paris in [10] for spherical Artin groups. In [8]
we proved a similar result in all Artin monoids; in that case, generators are
the positive elementary ribbons.

Corollary 0.4. Let (AS , S) be an Artin-Tits system of type FC and X ⊂ S;
then

w ∈ QZAS
(AX) ⇐⇒ w = wn . . . w1 with wi an elementary

Xi-ribbon-Xi−1 where X0 = Xn = X

and QZAS
(AX) is the subgroup of AS generated by QZAS

(AX) ∩A+
S .

Corollary 0.5. Let (AS , S) be an Artin-Tits system of type FC and X ⊂ S;
then ZAS

(AX) is the subgroup of AS generated by ZAS
(AX) ∩A+

S .

In Section 1, we recall relevant facts on Artin groups of type FC, on
Artin monoids and define some useful notations; in Section 2 we look at the
spherical case and in Section 3, we prove the main results.

1. Preliminaries.

In this part we assume that (A,S) is an Artin-Tits system associated to the
matrix M = (ms,t)s,t∈S .
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Lemma 1.1.

(i) ([2, 9]). A+ is left (resp. right) cancellable and every pair a, b ∈ A has
a left (resp. right) gcd, denoted a ∧l b (resp. a ∧r b).

(ii) ([14, Theorem II.4.13]). Let T be a nonempty subset of S. Then the
subgroup (〈T 〉A, T ) of A is canonically isomorphic to the Artin group
AT associated to the matrix (ms,t)s,t∈T . Furthermore, if T ′ is another
subset of S, then AT ∩AT ′ = AT∩T ′ with the notation A∅ = {1}.

Lemma 1.2. Assume that A is spherical and let a, b ∈ A+; then

(i) ([2]). a, b have a left lcm (resp. right lcm) in A+ denoted a ∨l b
(resp. a ∨r b).

(ii) ([5, Paragraph 4]). Let g ∈ A; g can be written g = g1∆n
S with g1 ∈ A+,

and n ∈ Z.
(iii) ([3, Theorem 2.6] and [4, Lemma 4.4]). Let g ∈ A; there exists unique

a, b ∈ A+ such that a ∧r b = 1 and g = ab−1. Furthermore, if c ∈ A+

such that gc ∈ A+ then c = bc′ for some c′ ∈ A+.

We call the decomposition g = ab−1 of (iii) the (right) orthogonal splitting
of g. In a similar way one can define the left orthogonal splitting of g.

Lemma 1.3 ([8, Corollary 4.4.6]). Let (A,S) be a spherical Artin group
and let s, t ∈ S, g ∈ A and j ∈ N∗ be such that sjg = gtj. Then:

(i) sg = gt;
(ii) if w = ab−1 is the orthogonal splitting of g, then{

sa = au,
tb = bu

for some u ∈ S.

Notation 1.4. Let (A,S) be an Artin group and let X ⊂ S.

(i) We denote by Xs the union of the spherical indecomposable compo-
nents of X and by Xas the complement X −Xs.

(ii) We denote by X⊥ the set {s ∈ S | ∀t ∈ X, ms,t = 2}; we have
X ∩X⊥ = ∅.

(iii) If Y is another subset of S we write X ∪ Y = X ⊕ Y if Y ⊂ X⊥. In
particular, X = Xs ⊕Xas.

(iv) If s ∈ X, we denote by X(s) the indecomposable component of X
which contains s.

In the following we write X⊥
as for (Xas)⊥.

To prove our main results we need to introduce the following notations
for a new family of subcategories of Conj (S) which generalises Ribb (S); we
only give notations for their morphisms.
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Notation 1.5. Let (AS , S) be an Artin group, and T ⊂ S. Consider the
smallest subcatgory of Conj (S) which has the same objects as Conj (S) and
which contains the elementary ribbons which are in AT . For X, Y ⊂ Y ,
we denote by Ribb (T ;X, Y ) the set of morphisms from X to Y in this
subcategory. They are Y -ribbons-X.
1.1. Artin-Tits system of type FC. We assume in this section that
(A,S) is of type FC. Recall that Artin groups of type FC have been de-
fined in the introduction. Most facts on Artin groups of type FC in this
part are proved in [1].

Proposition 1.6 ([13, Theorem 1]). Let G = G1 ∗H G2 the amalgamated
product of groups G1 and G2 over H. Let C1, C2 be transversals of G1/H
and G2/H respectively which contain 1. For all x ∈ G, there exists a unique
sequence (x1, . . . , xn, h) such that x = x1 . . . xnh with h ∈ H, and where the
xi are in C1 ∪ C2 with xi and xi+1 not in the same transversal.

We will call (x1, . . . , xn, h) the amalgam normal form of x relative to the
amalgamated product G1 ∗H G2 and we set |x|∗ = n. We have then |x|∗ = 0
if and only if x ∈ H.

Corollary 1.7 ([1, Corollary 1]). Let G = G1 ∗H G2 and g, c ∈ G. We
denote by (g1, . . . , gn, h) the amalgam normal form of g. Assume that gn ∈
C1 and |c|∗ ≤ 1, then: The amalgam normal form of gc is (g1, . . . , gn, gn+1, h

′) if c ∈ G2 −H,
(g1, . . . , gn−1, g

′
n, h′) if c ∈ G1 − (gnh)−1H,

(g1, . . . , gn−1, h
′) if c ∈ (gnh)−1H,

where (gn+1, h
′) is the amalgam normal form of hc in the first case, (g′n, h′)

is the amalgam normal form of gnhc in the second case and h′ = gnhc in
the third case.

Corollary 1.8. Let w = v1 . . . vm ∈ G such that v2j ∈ G2 −H and v2j+1 ∈
G1 − H for j ∈ {0, . . . , [m

2 ]}. If we denote by (w1, . . . , wn, h) the amalgam
normal form of w, then one has

m = n,
v1 = w1h1 with h1 ∈ H,
hi−1vi = wihi with i ∈ {2, . . . , n} with hi ∈ H,
hn = h.

Proposition 1.9 ([1, Proposition 2]).
(i) Let s1, s2 be in S be such that ms1,s2 = ∞. Let A1 = AS−{s1}, A2 =

AS−{s2} and A1,2 = AS−{s1,s2}, then the group A is the amalgamated
product of A1 and A2 over A1,2, that is A = A1 ∗A1,2 A2.

(ii) The set of Artin groups of type FC is the smallest class of Artin groups
which is closed under amalgamation over standard parabolic subgroups
and which contains spherical Artin groups.
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Proposition 1.10 ([1, Theorem 2]). Let T ⊂ S. There exists a function
mT : A → A such that for all w ∈ A one has:

(i) mT (w) ∈ wAT ;
(ii) for all v ∈ wAT , mT (v) = mT (w);
(iii) if w ∈ AU for U ⊂ S, then mT (w) ∈ AU .

The function mT gives a special representative of each coset of A/AT .

Notation 1.11. Assume that (A,S) is not spherical and fix s1, s2 ∈ S such
that ms1,s2 = ∞. We set A1 = AS1 , A2 = AS2 with S1 = S − {s1},
S2 = S − {s2} and S1,2 = S − {s1, s2}. Then we have A = A1 ∗A1,2 A2.
Transversals of A1/A1,2 and A2/A1,2 are transversals C1, C2 respectively
induced by mS1,2 .

Corollary 1.12. Assume that (A,S) is not spherical and let s1, s2 ∈ S with
ms1,s2 = ∞; one has A = A1 ∗A1,2 A2 with Notation 1.11. If w ∈ AT for
T ⊂ S then the amalgam normal form of w has its terms in AT .

1.2. Artin monoids.

Definition 1.13. Let (AS , S) be an Artin-Tits system.

(i) We define the small category Conj +(S) as follows:
(a) Objects of Conj +(S) are subsets of S;
(b) the set Conj +(S;X, Y ) of morphisms from X to Y is in bijection

with the set
{g ∈ A+ | gXg−1 = Y };

(c) the composition of morphisms is defined by the product in A+:

g ◦ f = gf.

(ii) We denote Ribb +(S) the smallest subcategory of Conj +(S) which has
the same objects and which contains the positive elementary ribbons
(see 0.2); the set of morphisms from X to Y in Ribb +(S) is denoted
Ribb +(S;X, Y ) and its elements are called positive Y -ribbon-X.

Categories Conj +(S) and Ribb +(S) are clearly subcategories of Conj (S)
and Ribb (S) respectively.

In the following, we will need the following theorem in the spherical case.
It is Theorem 0.3 but in the setting of the Artin monoid.

Theorem 1.14 ([10]). Let (AS , S) be an Artin-Tits system of spherical
type; then

Conj +(S) = Ribb +(S).

In fact this theorem is true in any Artin monoid ([8]).
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2. The spherical case.

As we said in the introduction, Theorems 0.1 and 0.3 are known in the
spherical case. Nevertheless we need to state precise results in the spherical
case to prove our theorems in type FC.

Theorem 2.1. Let (A,S) be a spherical Artin group and X, Y ⊂ S. Let
k ∈ Z− {0} and g ∈ A. The following are equivalent:

(1) gAXg−1 ⊂ AY ;
(2) g∆k

Xg−1 ∈ AY ;
(3) g = yx with y ∈ AY , x ∈ Ribb (S;X, R) for R ⊂ Y .

Proof. It is clear that (3) ⇒ (1) ⇒ (2). For (2) ⇒ (3), the proof is similar to
Proposition 3.1 of [7]; thanks to Lemma 1.2(ii), we may assume that g ∈ A+

and is Y -reduced (i.e., not divisible by any s ∈ Y ); then for all s ∈ X, we
have gsg−1 = t for some t ∈ Y . Thus g ∈ Ribb (S;X, R) with R ⊂ Y by
Theorem 1.14. �

Lemma 2.2. Let (A,S) be a spherical Artin group and let X, Y, T ⊂ S.
Let g ∈ AT be such that gAXg−1 ⊂ AY . Let s ∈ X − T ; then there exists
x ∈ AX(s)⊥∩T and y ∈ AY ∩T such that g = yx. Furthermore X(s) ⊂ Y .

Proof. Let g = a0b
−1
0 the orthogonal splitting of g in A+

T . One has a0 = a1a

where a is Y -reduced and a1 ∈ A+
Y ∩T . In the same way, one has b0 = b1b

where b is {s}⊥-reduced and b1 ∈ A+
{s}⊥∩T

. We obtain ab−1sba−1 ∈ AY ;

hence ab−1sba−1 = u−1v with u ⊥l v in A+
Y . Thus b−1sb = (ua)−1(va) with

b ⊥l sb, since b ∈ A+
S−{s} and is {s}⊥-reduced. Thus, there exists α in A+

such that va = αsb and ua = αb. This implies that (b ∨r a)a−1 divides
v and thus is in AY ∩T . On the other hand, we have ba−1 = c−1d with
c = (b ∨r a)b−1 ∈ A+

T and d = ((b ∨r a)a−1) ∈ A+
T∩Y . Thus csc−1 ∈ AY .

Let c = c2c1 with c1 ∈ A+
{s}⊥∩T

and c2 reduced-{s}⊥ in A+
T . Then we

have c2sc
−1
2 ∈ AY with c2s ⊥r c2. Thus both c2 and s are in AY . Then

g = y0x0 with x0 = c1b
−1
1 ∈ A{s}⊥∩T and y0 = a1d

−1c2 ∈ AY ∩T . We
have x0AXx−1

0 ⊂ AY with x0 ∈ A{s}⊥∩T . If x0 = 1 or X(s) = {s}, the
result holds with x = x0 and y = y0. Assume x0 6= 1 and X(s) 6= {s}.
Choose s′ ∈ X(s) − ({s}⊥ ∪ {s}) (it exists since X(s) 6= {s}). Applying
the argument to g′ = x0, T ′ = {s}⊥ ∩ T , and s′, we obtain x0 = y1x1

with x1 ∈ A{s′}⊥∩{s}⊥∩T and y1 ∈ AY ∩T . Repeating this process yields
g = y0 . . . ynxn with xn ∈ A{s}⊥∩{s′}⊥∩···∩{s(n)}⊥∩T and y0 . . . yn ∈ AT∩Y .
The process will terminate when either xn = 1 or

X(s)−

(
i=n⋂
i=0

{s(i)}⊥ ∪
i=n⋃
i=0

{s(i)}

)
= ∅

which means that X(s) =
⋃i=n

i=0{s(i)} and xn ∈ ATi=n
i=0 {s(i)}⊥∩T = AX(s)⊥∩T .

In either case, the result follows with x = xn and y = y0 . . . yn. �
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Proposition 2.3. Under the hypotheses of Theorem 2.1, if g ∈ AT for
T ⊂ S, then, (1), (2) and (3) are equivalent to
(3′) g = yx with y ∈ AY ∩T , x ∈ Ribb (T ∩ (

⋃
s∈X−T X(s))⊥;X, R) where

R is of the form
⋃

s∈X−T X(s)⊕ T1 ⊂ Y with T1 ⊂ T ∩ Y .

Proof. It is clear that (3′) ⇒ (3). Let us show that (1) ⇒ (3′) by induction
on the cardinal of X − T . It is enough to find x, y such that y ∈ AY and
x ∈ Ribb (T∩(

⋃
s∈X−T X(s))⊥;X, R) since that implies y ∈ AT and the type

of R. If X−T = ∅, that is X ⊂ T , then gAXg−1 ⊂ AY ∩T in AT and we apply
Theorem 2.1 in AT . Otherwise Lemma 2.2 proves that for all #(X−T ) ≥ 1
and s ∈ X − T then g = y1x1 with x1 in AX(s)⊥∩T and y1 in AY ∩T . Thus,
in AX(s)⊥ we have x1(X − X(s))x−1

1 ⊂ AY ∩X(s)⊥ with x1 in AT∩X(s)⊥ .
We apply the induction hypothesis in AX(s)⊥ , after replacing g by x1, X by
X−X(s), T by T∩X(s)⊥ and Y by Y ∩X(s)⊥ ; we have #((X∩X(s)⊥)−(T∩
X(s)⊥)) < #(X −T ) since s /∈ X ∩X(s)⊥ and s ∈ X −T . We get x1 = y2x
with x in Ribb (T∩X(s)⊥∩

⋂
u∈X−X(s)−T X(u)⊥;X−X(s), R1) with R1 ⊂ Y

and y2 ∈ AY . But X(s)⊥ ∩
⋂

u∈X−X(s)−T X(u)⊥ = (
⋃

u∈X−T X(u))⊥. Thus
g = yx with y = y1y2 ∈ AY and x ∈ Ribb (T ∩ (

⋃
u∈X−T X(u))⊥;X, R). �

3. Proof of the main results.

Proposition 3.1. Let (A,S) be an Artin group of type FC. Let X, Y, T ⊂ S
with X spherical. Let k ∈ Z−{0} and g ∈ AT . The following are equivalent:

(1) gAXg−1 ⊂ AY ;
(2) g∆k

Xg−1 ∈ AY ;
(3) g = yx with y ∈ AY ∩T and x ∈ Ribb (T ∩ (

⋃
s∈X−T X(s))⊥;X, R) for

some R ⊂ Y .

Proof. Implications (3) ⇒ (1) ⇒ (2) are clear. Let us show that (2) ⇒ (3)
by induction on the number m of amalgamations; that is the number of
edges in ΓS labelled with ∞. If m = 0 then A is spherical and the result
is true by Theorem 2.1 and Proposition 2.3. Assume now that m ≥ 1 and
that Proposition 3.1 is true for any Artin group of type FC with a number
of amalgamation less than or equal to m − 1. We choose s1, s2 ∈ S such
that ms1,s2 = ∞ and we use Notation 1.11. Note that since AX is spherical,
we have X ⊂ S1 or X ⊂ S2. Denote by (g1, . . . , gn, h) the amalgam normal
form of g ; elements gi and h are in AT by Corollary 1.12. For m fixed, let us
do an induction on n. We have g1 . . . gnh∆k

Xh−1g−1
n . . . g−1

1 ∈ AY . If n = 0
then the formula holds in A1 or in A2 and we conclude by the induction
hypothesis on m applied in A1 or in A2. Assume now that n ≥ 1. We may
assume without loss of generality that gn ∈ A1.

If X 6⊂ A1 then by Corollary 1.8, the amalgam normal form of g∆k
Xg−1

is of the shape (g1, . . . , gn, g′n+1, . . . , g
′
2n+1, h

′) with g′n+1 = mS1,2(h∆k
Xh−1).
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But g∆k
Xg−1 ∈ AY thus g1 . . . gn ∈ AY ∩T by Corollary 1.12 and h∆k

Xh−1 ∈
AY . Thus, to conclude, we apply the induction hypothesis on n at rank
n = 0 to h.

If X ⊂ A1 and gnh∆k
X(gnh)−1 /∈ A1,2 then the amalgam normal form of

g∆k
Xg−1 is of shape (g1, . . . , gn−1, g

′
n, . . . , g′2n−1, h

′) with

g′n = mS1,2(gnh∆k
X(gnh)−1).

But g∆k
Xg−1 ∈ AY ; then we get g1 . . . gn−1 ∈ AY ∩T by Corollary 1.12 and

thus gnh∆k
X(gnh)−1 ∈ AY ; thus we may apply the induction hypothesis on

m in A1 at gnh and conclude.
If X ⊂ S1 and gnh∆k

X(gnh)−1 ∈ A1,2 then by the induction hypothesis
on m applied in A1, we get gnh = y1x1 with

x1 ∈ Ribb

T ∩

( ⋃
t∈X−T

X(t)

)⊥

;X, R


for R ⊂ S1,2 and y1 ∈ A1,2 ∩AT . We get g1 . . . gn−1y1∆k

R(g1 . . . gn−1y1)−1 ∈
AY and by the induction hypothesis on n applied at rank n−1 to g1 . . . gn−1y1

∈ AT , we obtain g1 . . . gn−1y1 = yx2 with

x2 ∈ Ribb

T ∩

( ⋃
t∈X−T

X(t)

)⊥

;R,R1


for some R1 ⊂ Y and y ∈ AY ∩T .

Thus g = yx2x1 and x2x1 ∈ Ribb (T ∩ (
⋃

t∈X−T X(t))⊥;X, R1) for R1 ⊂
Y . �

Theorem 3.2. Let (A,S) be an Artin group of type FC and let X, Y, T ⊂ S.
Let g ∈ AT and k ∈ Z− {0}. The following are equivalent:

(1) gAXg−1 ⊂ AY ;
(2) g∆k

Xs
g−1 ∈ AY , g = yx with x ∈ AX⊥

as∩T , y ∈ AY ∩T and Xas ⊂ Y ;
(3) g = yx with y ∈ AY ∩T and x ∈ Ribb (T∩X⊥

as;Xs, R) with R⊕Xas ⊂ Y .

Proof. It is clear that (3) ⇒ (2) and that Proposition 3.1 induces (2) ⇒ (1).
Let us show that (1) ⇒ (3). We are carrying out an induction on the number
r(X) of edges in Γ(X) which are labelled with ∞. If r(X) = 0, then X is
spherical and the result is true by Proposition 3.1. Assume now X is not
spherical (that is r(X) ≥ 1) and fix s1, s2 in X such that ms1,s2 = ∞.
We assume that if (A′, S′) is an Artin group of type FC and X ′, Y ′, T ′ are
three parts of S′ such that r(X ′) < r(X) then for all g′ of A′

T ′ we have:
g′−1AX′g′ ⊂ A′

Y ′ ⇒ g′ = y′x′ where x′ ∈ Ribb (T ′ ∩ X ′⊥
as;X

′
s, R

′) and
y′ ∈ A′

Y ′∩T ′ with R′ ⊕X ′
as ⊂ Y ′.

We have A = A1 ∗A1,2 A2 with Notation 1.11. Let (g1, . . . , gn, h) be the
amalgam normal form of g. The first step is to show that it is enough to
prove the result for the case n = 0. Assume n ≥ 1. Without loss of generality



252 EDDY GODELLE

we may assume that gn ∈ A1. Furthermore g1 . . . gnhs1h
−1g−1

n . . . g−1
1 ∈ AY

since s1 ∈ X. By Corollary 1.8 we infer that the amalgam normal form of
g1 . . . gnhs1h

−1g−1
n . . . g−1

1 is of the shape (g1, . . . , gn, g′n+1, . . . , g
′
2n+1, h

′) and
has its terms in AY . Thus g1 . . . gn is in AY ∩T . We get that hAXh−1 is also
in AY . Thus if (1) ⇒ (3) for any g such that n = 0, the theorem will be
proved. Assume g = h ∈ A1,2. Denote by T1 (resp. T2) the indecomposable
component of X−{s1} (resp. X−{s2}) which contains s2 (resp. s1). In A1

we have gAX−{s1}g
−1 ⊂ AY −{s1} thus by the induction hypothesis,we get

g = y1x1 with y1 in AY ∩T and x1 ∈ Ribb (T ∩ (X−{s1})⊥as; (X−{s1})s, R1)
with R1 in Y−{s1}. Furthermore, since s2 /∈ A1,2 and g ∈ A1,2, we get, either
by the induction hypothesis (if T1 is not spherical) or by Proposition 3.1,
that we can find x1 ∈ Ribb (T⊥

1 ∩ T ∩ (X − {s1})⊥as; (X − {s1})s, R1). From
y1 ∈ AY , we infer that x1AXx−1

1 is in AY . We can use the same argument if
we replace g by x1 and exchange the roles of A1 and A2; we find, thanks to
the inclusion x1AX−{s2}x

−1
1 ⊂ AY −{s2} in A2, that x1 = y2x with y2 ∈ AY ∩T

and x ∈ Ribb (T⊥
1 ∩T⊥

2 ∩T∩(X−{s1})⊥as∩(X−{s2})⊥as; (X−{s2})s, R2) with
R2 in Y . Finally, since T1∪T2 = X(s1) = X(s2), we get T⊥

1 ∩T⊥
2 ∩T ∩ (X−

{s1})⊥as∩ (X−{s2})⊥as = T ∩X⊥
as. We get that g = y1y2x with y1y2 ∈ AY ∩T ,

x in Ribb (T ∩X⊥
as;Xs, R) since Xs ⊂ (X − {s2})s and R ⊂ R2 ⊂ Y . �

The two following lemmas are used to prove (ii) and the first equality of
(i) in Theorem 3.5.

Lemma 3.3. Let (A,S) be an Artin group of type FC; then QZA(A) =
QZASs

(ASs).

Proof. It is clear that QZA(A) = QZASs
(ASs) · QZASas

(ASas). Then it is
enough to prove that QZASas

(ASas) = {1} and since it is the product of
quasi-centralizers of its indecomposable components, it is enough to show
that if X is indecomposable not spherical, then QZA(A) = {1}. Let A
be such a group and let g ∈ QZA(A); choose T ⊂ S maximal spherical
and let T ′ = gTg−1 ⊂ S. Then by Proposition 3.1 applied to the equality
g−1AT g = AT ′ with T , we get that T = T ′ and g ∈ AT ; thus g ∈ QZAT

(AT ).
Let (Ti)1≤i≤k be the indecomposable components of T then QZAT

(AT ) =
{∆j1

T1
. . .∆jk

Tk
;∀i, ji ∈ Z}. Thus g = ∆j1

T1
. . .∆jk

Tk
with ji ∈ Z for all i ∈

{1, . . . , k}. Assume that there exists i ∈ {1, . . . , k} such that ji 6= 0. Since T
is maximal spherical and S is indecomposable and not spherical, there exists
s ∈ Ti and t ∈ S−T such that ms,t = ∞. We get A = AS−{s}∗AS−{s,t}AS−{t}
and gsg−1 = s1 with s1 ∈ T ; since ji 6= 0, this is impossible by Corollary 1.8.
Thus for all i, we get ji = 0 and g = 1. �

Lemma 3.4. Let A = A1 ∗A1,2 A2 be a non-spherical Artin group of type
FC in the Notation of 1.11. Let X ⊂ S be such that {s1, s2} ⊂ X, let Xi =
X ∩ Si for i ∈ {1, 2}; then ComA(AX) ∩Ai ⊂ ComAi(AXi) for i ∈ {1, 2}.
Proof. By symmetry, it is enough to prove the result for i = 1. Let g ∈
ComA(AX) ∩ A1. We have to show that AX1 ∩ (gAX1g

−1) has finite index
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in AX1 and in gAX1g
−1. For this, we show that if x, y ∈ AX1 (resp. x, y ∈

gAX1g
−1) have the same image in AX/(AX∩gAXg−1) (resp. gAXg−1/(AX∩

gAXg−1)) then they have the same image in AX1/(AX1 ∩ gAX1g
−1) (resp.

gAX1g
−1/(AX1 ∩ gAX1g

−1)).
Let x, y ∈ AX1 be such that xα = y for some α ∈ AX∩(gAXg−1). We have

α = xy−1 ∈ AX1 ∩AX ∩ (gAXg−1) = AX1 ∩ (gAXg−1) = AX1 ∩ (gAX1g
−1).

The last equality come from the fact that g is in AS1 and that AX1 =
AS1∩X = AS1 ∩ AX . Let x, y ∈ gAX1g

−1 be such that xα = y for some α ∈
AX ∩(gAXg−1); we have by the same arguments that α ∈ AX1 ∩(gAX1g

−1).
Thus g ∈ ComA1(AX1). �

Theorem 3.5. Let (A,S) be an Artin group of type FC. Let X ⊂ S; then:
(i) ComA(AX) = NA(AX) = AX ·QZA(AX);
(ii) Conj (S;X, Y ) = Ribb (S;X, Y ) ⊂ Ribb (X⊥

as, Xs, Ys). Furthermore, if
Conj (S;X, Y ) 6= ∅ then the inclusion is a equality and Xas = Yas.

Proof. Thanks to Theorem 3.2 we get the inclusions AX · QZA(AX) ⊂
NA(AX) ⊂ AX · Ribb (X⊥

as;Xs, Xs) ⊂ AX · QZA(AX). That proves the
second equality of (i): NA(AX) = AX · QZA(AX). If Conj (S;X, Y ) =
∅ then (ii) is clear since Ribb (S;X, Y ) ⊂ Conj (S;X, Y ). Assume now
that Conj (S;X, Y ) 6= ∅. Since Conj (S;X, Y ) ⊂ AX · Ribb (X⊥

as;XS , XS),
one has Xas = Yas, and Ribb (X⊥

as;Xs, Ys) ⊂ Conj (S;X, Y ); then we get
Conj (S;X, Y ) = QZAX

(AX) · Ribb (X⊥
as;Xs, Ys). Now, by Lemma 3.3

QZAX
(AX) = QZAXs

(AXs) and since Xs is spherical, we get QZAXs
(AXs) =

Ribb (Xs;Xs, Xs). Then, we proved (ii). We have now to prove the first
equality of (i). We have clearly ComA(AX) ⊃ NA(AX); if X is spherical, we
prove the other inclusion as in [10] thanks to the implication (2) ⇒ (1) of
Proposition 3.1. Let us show that ComA(AX) ⊂ NA(AX) for X not spheri-
cal. In order to do this, we proceed by induction on the number r of edges
labelled with ∞ in the graph ΓX . Note that for r = 0, we have that X
is spherical and the result is true in that case. Assume r ≥ 1 and write
A = A1 ∗A1,2 A2 such that {s1, s2} ∈ X following Notation 1.11. By the
induction hypothesis, we have ComA(AX∩Si) = NAi(AX∩Si) for i ∈ {1, 2}.
Let g ∈ ComA(AX) and (g1, . . . , gn, h) its amalgam normal form. There
exists p ∈ N − {0} such that gsp

1g
−1 and gsp

2g
−1 are in AX . If n 6= 0, we

infer from Corollary 1.8 that g1 . . . gn ∈ AX and thus h ∈ ComA(AX). Now,
for g = h ∈ ComA(AX) ∩ A1,2, we can apply Lemma 3.4; we get that for
i ∈ {1, 2}, we have h ∈ ComAi(AX∩Si). But by the induction hypothesis,
ComAi(AX∩Si) = NAi(AX∩Si). Then h ∈ NA1(AX∩S1) ∩ NA2(AX∩S2) ⊂
NA(AX). �

Corollary 3.6. Let (A,S) be an Artin groups of type FC. Let X ⊂ S; Then:
(i) QZA(AX) = Ribb (X⊥

as;Xs, Xs);
(ii) ZA(AX) = 〈ZA(AX) ∩A+〉A;
(iii) QZA(AX) = 〈QZA(AX) ∩A+〉A.
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Proof. The (i) is a particular case of 3.5(ii); (ii) and (iii) are equivalent by
[8] Theorem 4.1.2; furthermore, it is clear that 3.5(ii) implies (iii) thanks to
Lemma 1.3. �
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