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Let (A,S) be an Artin group of type FC and Ar a stan-
dard parabolic subgroup of A. We use combinatorial tools
to show that the normalizer of Ar, the commensurator of
Ar, and the product of the quasi-centralizer of A+ by Ar
are equal. Furthermore, we show that the centralizer and the
quasi-centralizer of A1 in A are generated by their intersec-
tions with the monoid At.

0. Introduction.

Let S be a finite set and M = (ms¢)stes @ symmetric matrix with mg ¢ =1
for s € S and mgy € N—{0,1} U {oo} for s # ¢t in S. An Artin-Tits system
associated to M is the pair (Ag,S) where Ag is the group defined by the
presentation

AS:<S‘ sts... = {st... ;VS,tES,s#tandms,t#oo>.

ms,t terms ms,t terms

The group Ag is called an Artin group and relations sts... = t{st...
SN—~— S~
ms,t terms ms,t terms
are called braid relations. For instance, if S = {s1,...,s,} with my, s, =3
for |i — j| = 1 and ms, s; = 2 otherwise, then the associated Artin group

is the braid group. We denote by AJSr the submonoid of Ag generated by
S. This monoid A; has the same presentation as the group Ag, considered
as a monoid presentation ([11]). When we add relations s> = 1 to the
presentation of Ag we obtain the Coxeter group Wy associated to Ag. We
say that Ag is spherical if Wy is finite. The matrix M may be represented
by a graph denoted by I'g, whose set of vertices is S and where an edge joins
two vertices if mg; > 3; these edges are labelled by my; if mg; > 4. We say
that Ag (or simply S) is indecomposable if the graph I's is connected. A
subgroup Ar of Ag generated by a part 7" of S is called a standard parabolic
subgroup, and a subgroup of Ag conjugate to a standard parabolic subgroup
is called a parabolic subgroup. Van Der Lek showed ([14]) that (A7, T) is
canonically isomorphic to the Artin-Tits system associated to the matrix
(ms)ster; its graph I'z is the full subgraph of I'g generated by T'. The
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indecomposable components of S are the maximal subsets of S which are
indecomposable.
One says that an Artin-Tits system (Ag,S) (or simply an Artin group
Ag) is of type FC if the following assertion is true:
VI'C S, (Vs,t €T, mss # 0o = Ar is spherical).
For instance, the Artin group of the following graph is of type FC;

If T is a subset of S we call centralizer (resp. quasi-centralizer, normaliser,
commensurator) of Ar in Ag the set

Zag(Ar) ={g € As | Vs € T, gs = sg},
QZas(Ar) ={g € As | gT =Ty},
Nag(Ar) ={g € As | gT C Arg},

Comy, (A7) =
{g € As | gA7g~ ' N Ar has finite index in both A7 and gArg~'}

respectively. These sets are subgroups of Ag.
The first of the three main theorems we will prove is the following:

Theorem 0.1. Let (Ag, S) be an Artin-Tits system of type FC and X C S;
then

Comi(Ax) = Nag(Ax) = Ax - QZa,(Ax).

This result was first proved by Rolfsen ([12]) in the case of braid groups;
Paris ([10]) proved it when Ag is a spherical Artin group and T is indecom-
posable, finally in [8] we proved the result for any 7" when S is spherical.

In [6], the quasi-centralizer in the braid group of a part T of S is geo-
metrically described thanks to the notion of ribbon; this notion was first
generalised from a combinatorial viewpoint in [10] (and called conjugator)
to a general Artin group and indecomposable part T', and finally generalised
in [8] for any part T'. The right viewpoint is to use the categorical language
and to see the quasi-centralizer (and centralizer) as a set of morphisms in a
groupoid.

Recall that (Ag,S) is spherical if and only if S has a lem in Af; in that
case, this lem is denoted by Ag.

Definition 0.2. Let (Ag,S) be an Artin-Tits system.
(i) We define the groupoid Conj (S) as follows:
(a) Objects of Conj (S) are subsets of S;
(b) the set Conj(S5;X,Y) of morphisms from X to Y is in bijection
with the set
{g€As|gXg ' =Y}
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(c) the composition of morphisms is defined by the product in Ag:

gof=gyf

(ii) Let X,Y C S; we say that w € Conj (S; X,Y) is a positive elementary

Y-ribbon-X ([10, 8]) if:

(a) w = Axs for X' an indecomposable component of X or,

(b) there exists t € S such that the indecomposable component X’ of
X U {t} containing ¢ is spherical and w = AX/A;(}_{t}.

We say that w € Conj (S; X,Y) is an elementary Y-ribbon-X if it is a

positive elementary ribbon or w™! is a positive elementary X-ribbon-

Y.

(iii) We denote Ribb (S) the smallest subcategory of Conj (S) which has
the same objects and which contains the elementary ribbons; the set
of morphisms from X to Y in Ribb (.5) is denoted Ribb (S; X,Y’) and
its elements are called Y-ribbon-X.

Note that in Case (ii)(a), X = Y and that in Case (ii)(b) there exists
u € S such that X U{u} =Y U {t}.
The second main theorem of this article is the following:

Theorem 0.3. Let (Ag, S) be an Artin-Tits system of type FC; then the cat-
egory Conj (Ag, S) is generated by the elementary ribbons; that is Conj (S) =
Ribb (S).

This result was proved by Paris in [10] for spherical Artin groups. In [8]
we proved a similar result in all Artin monoids; in that case, generators are
the positive elementary ribbons.

Corollary 0.4. Let (Ag, S) be an Artin-Tits system of type FC and X C S;
then

weE QRZy,(Ax) = w=wy... w1 withw; an elementary
X;-ribbon-X;_1 where Xog =X, =X
and QZ a4 (Ax) is the subgroup of Ag generated by QZa4(Ax) N A;C.

Corollary 0.5. Let (Ag,S) be an Artin-Tits system of type FC and X C S,
then Za4(Ax) is the subgroup of Ag generated by Z,(Ax) N Ajgr.

In Section 1, we recall relevant facts on Artin groups of type FC, on
Artin monoids and define some useful notations; in Section 2 we look at the
spherical case and in Section 3, we prove the main results.

1. Preliminaries.

In this part we assume that (A, .S) is an Artin-Tits system associated to the
matrix M = (mgy)stes-
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Lemma 1.1.

(i) ([2,9]). AT is left (resp. right) cancellable and every pair a,b € A has
a left (resp. right) ged, denoted a N\ b (resp. a Ay b).

(ii) ([14, Theorem I1.4.13]). Let T' be a nonempty subset of S. Then the
subgroup ((T')a,T) of A is canonically isomorphic to the Artin group
At associated to the matrix (m&t)&tegp. Furthermore, if T' is another
subset of S, then Ar N Apr = Apnpr with the notation Ay = {1}.

Lemma 1.2. Assume that A is spherical and let a,b € A*; then

(i) ([2]). a,b have a left lem (resp. right lem) in AT denoted a V; b
(resp. a V, b).
(ii) ([5, Paragraphd]). Let g € A; g can be written g = g1 AL with g1 € AT,
and n € Z.
(iii) ([3, Theorem 2.6] and [4, Lemma 4.4]). Let g € A; there exists unique
a,b € At such that a A, b =1 and g = ab~'. Furthermore, if c € AT
such that gc € AT then ¢ = bc for some ¢’ € AT,

We call the decomposition g = ab~! of (iii) the (right) orthogonal splitting
of g. In a similar way one can define the left orthogonal splitting of g.

Lemma 1.3 ([8, Corollary 4.4.6]). Let (A,S) be a spherical Artin group
and let s,t € .S, g € A and j € N* be such that s’g = gt?. Then:

(i) sg = gt;
(i) if w = ab~! is the orthogonal splitting of g, then

sa = au,
th =bu
for some u € S.

Notation 1.4. Let (A, S5) be an Artin group and let X C S.

(i) We denote by X the union of the spherical indecomposable compo-
nents of X and by X,s the complement X — Xj.

(ii) We denote by X+ the set {s € S | Vt € X, ms; = 2}; we have
Xnxt=0.

(iii) If Y is another subset of S we write XUY = X @Y if Y ¢ X*. In
particular, X = X, ® X4s.

(iv) If s € X, we denote by X(s) the indecomposable component of X
which contains s.

In the following we write X5 for (Xg)*.

To prove our main results we need to introduce the following notations
for a new family of subcategories of Conj (S) which generalises Ribb (.5); we
only give notations for their morphisms.
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Notation 1.5. Let (Ag,S) be an Artin group, and 7' C S. Consider the
smallest subcatgory of Conj (S) which has the same objects as Conj (S) and
which contains the elementary ribbons which are in A7. For XY C Y,
we denote by Ribb (T; X,Y") the set of morphisms from X to Y in this
subcategory. They are Y-ribbons-X.

1.1. Artin-Tits system of type FC. We assume in this section that
(A, S) is of type FC. Recall that Artin groups of type FC have been de-
fined in the introduction. Most facts on Artin groups of type FC in this
part are proved in [1].

Proposition 1.6 ([13, Theorem 1]). Let G = Gy xg G2 the amalgamated
product of groups G1 and Ga over H. Let Cy, Cy be transversals of G1/H
and Ga/H respectively which contain 1. For all x € G, there ezists a unique
sequence (1, ...,Tn,h) such that x = x1...x,h with h € H, and where the
x; are in C1 U Cy with x; and x;4+1 not in the same transversal.

We will call (z1,...,2,,h) the amalgam normal form of z relative to the
amalgamated product Gy xg G2 and we set |z|. = n. We have then |z|, =0
if and only if z € H.

Corollary 1.7 ([1, Corollary 1]). Let G = G1 *xg G2 and g,c € G. We
denote by (g1, - .., gn, h) the amalgam normal form of g. Assume that g, €
Cy and |c|« < 1, then: The amalgam normal form of gc is

(gl""vgnagn+lah,> Z’fCGGQ_H?
(917 oo 7gnflag;u h,) ch € Gl - (gnh’)_lH7
(917 oo 7gn717h/) ch € (gnh)_le

where (gny1, ') is the amalgam normal form of he in the first case, (gl,, h')
is the amalgam normal form of gnhc in the second case and h' = g,hc in
the third case.

Corollary 1.8. Let w = v1...vy € G such that vy; € G2 — H and vajq1 €
G1— H forj € {0,...,[%]}. If we denote by (w1,...,wy,h) the amalgam
normal form of w, then one has

m=n,
v1 = wihy with hy € H,
h;_1v; = w;h; with i € {2, R ,n} with h; € H,
hy, = h.

Proposition 1.9 ([1, Proposition 2]).

(i) Let s1,s2 be in S be such that ms, s, = 0o. Let Ay = Ag_(4), A2 =
As_{s;) and A12 = Ag_(y, s,), then the group A is the amalgamated
product of Ay and Ay over Aj 2, that is A= Ay * Ay o As.

(ii) The set of Artin groups of type FC is the smallest class of Artin groups
which is closed under amalgamation over standard parabolic subgroups
and which contains spherical Artin groups.



248 EDDY GODELLE

Proposition 1.10 ([1, Theorem 2]). Let T' C S. There ezists a function
mr : A — A such that for oll w € A one has:
(i) mr(w) € wAT;
(ii) for allv € wAr, mp(v) = mr(w);
(iii) if w e Ay for U C S, then mp(w) € Ay.

The function my gives a special representative of each coset of A/Arp.

Notation 1.11. Assume that (A, 5) is not spherical and fix s1, s2 € S such
that mg, 5, = 00. We set Ay = Ag,, Ay = Ag, with S = 5 — {s1},
So =S —{s2} and S12 = S — {s1,s2}. Then we have A = Aj %4, , Ao.
Transversals of A;/A;2 and Ay/A; o are transversals Cp,Cy respectively
induced by myg, ,.

Corollary 1.12. Assume that (A, S) is not spherical and let s1, s € S with
Mg, sy = 00; one has A = Ay x4, , Ay with Notation 1.11. If w € Ar for
T C S then the amalgam normal form of w has its terms in Ar.

1.2. Artin monoids.

Definition 1.13. Let (Ag,.S) be an Artin-Tits system.

(i) We define the small category Conj ™ (S) as follows:
(a) Objects of Conj*(S) are subsets of S;
(b) the set Conj*(S; X,Y) of morphisms from X to Y is in bijection
with the set

{ge AT | gXg ' =Y}

(c) the composition of morphisms is defined by the product in A*:

gof=gf.

(ii) We denote Ribb T(S) the smallest subcategory of Conj *(.S) which has
the same objects and which contains the positive elementary ribbons
(see 0.2); the set of morphisms from X to Y in Ribb T (S) is denoted
Ribb T(S; X,Y) and its elements are called positive Y-ribbon-X.

Categories Conj *(S) and Ribb *(S) are clearly subcategories of Conj (.5)
and Ribb () respectively.

In the following, we will need the following theorem in the spherical case.
It is Theorem 0.3 but in the setting of the Artin monoid.

Theorem 1.14 ([10]). Let (Ag,S) be an Artin-Tits system of spherical
type; then
Conj *(S) = Ribb 7(9).

In fact this theorem is true in any Artin monoid ([8]).
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2. The spherical case.

As we said in the introduction, Theorems 0.1 and 0.3 are known in the
spherical case. Nevertheless we need to state precise results in the spherical
case to prove our theorems in type FC.

Theorem 2.1. Let (A, S) be a spherical Artin group and X,Y C S. Let
ke Z—{0} and g € A. The following are equivalent:

(1) gAxg™" C Ay;

(2) gAkg™! € Ay;

(3) g =yzx withy € Ay, x € Ribb (S; X, R) for RC Y.
Proof. Tt is clear that (3) = (1) = (2). For (2) = (3), the proof is similar to
Proposition 3.1 of [7]; thanks to Lemma 1.2(ii), we may assume that g € AT
and is Y-reduced (i.e., not divisible by any s € Y); then for all s € X, we
have gsg~! = t for some t € Y. Thus g € Ribb (S; X, R) with R C Y by
Theorem 1.14. O

Lemma 2.2. Let (A,S) be a spherical Artin group and let X, Y, T C S.
Let g € Ap be such that gAxg~' C Ay. Let s € X — T ; then there exists
x € Ax(syLnr and y € Aynr such that g = yx. Furthermore X (s) CY.

Proof. Let g = apby ! the orthogonal splitting of ¢ in A;F. One has ag = aqa
where a is Y-reduced and a; € A;;OT. In the same way, one has by = b1b
where b is {s}*-reduced and b; € AE;}LOT' We obtain ab~lsba™! € Ay;
hence ab~!sba™! = v~ with u L; v in Ay, Thus b=1sb = (ua) ™' (va) with
b L; sb, since b € A;_{S} and is {s}*-reduced. Thus, there exists o in A*
such that va = asb and ua = ab. This implies that (b V, a)a™! divides
v and thus is in Aynr. On the other hand, we have ba™! = c¢~!d with
c=BV,a)bt € Af and d = ((bV,a)a™!) € Af . Thus csc™! € Ay.

Let ¢ = c9cq with ¢ € A%:}LHT and ¢y reduced-{s}* in A}. Then we

have 023051 € Ay with cs 1, co. Thus both ¢y and s are in Ay. Then
g = YoZo with zg = Clbl_l € A{S}LQT and Yo = ald_lcg € Aynr. We
have zgAxx,' C Ay with zo € Aggyiare I zg = 1 or X(s) = {s}, the
result holds with z = zp and y = yp. Assume zy # 1 and X(s) # {s}.
Choose s’ € X(s) — ({s}*+ U {s}) (it exists since X(s) # {s}). Applying
the argument to ¢’ = xg, 7" = {s}* NT, and s/, we obtain zy = yi21
with 21 € Aggyinginr and y1 € Aynr. Repeating this process yields
g =Y. YnTy with x, € A{S}LO{S/}LQ,,,Q{S(n)}LOT and yo...yn € Arny.
The process will terminate when either z,, = 1 or

X(s)— (lﬁ{s(i)}l U lGL{S(i)}) =0
i=0 i=0

which means that X (s) = U;ig{s(i)} and x, € Am?ig{sm}LmT = Ax(s)Lnr-
In either case, the result follows with z = z,, and y =y . . . Yn. U
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Proposition 2.3. Under the hypotheses of Theorem 2.1, if g € Ar for
T C S, then, (1), (2) and (3) are equivalent to

(3) g = yz withy € Aynr, © € Ribb (T’ N (Usex_7 X(5))F; X, R) where
R is of the form U,ex_r X(s) @ Ty CY withTy CTNY.

Proof. 1t is clear that (3") = (3). Let us show that (1) = (3') by induction
on the cardinal of X — T. It is enough to find z,y such that y € Ay and
z € Ribb (TN(U,ex_7 X (s))*; X, R) since that implies y € Ay and the type
of R. If X—T = (), that is X C T, then gAxg~! C Aynr in A7 and we apply
Theorem 2.1 in Ap. Otherwise Lemma 2.2 proves that for all #(X —T7) > 1
and s € X — T then g = yy21 with z1 in Ax(S)J_mT and y; in Aynp. Thus,
in Aygr we have z1(X — X(s))ay! Aynx(s)r With @1 in Apny e
We apply the induction hypothesis in Ax (1, after replacing g by z1, X by
X—X(s), Tby TNX(s)* and Y by YNX(s)* ; we have #((XNX(s)1)— (TN
X(s)1) < #(X —T) since s ¢ XN X(s)r and s € X —T. We get x1 = yox
with z in Ribb (TﬁX(s)Lﬂﬂ%XfX(s)fT X(u)t; X—X(s),Ry) with Ry C Y
and yo € Ay. But X(s)t N MNuex—x(s)-T X(u)t = (Uyex_r X (w)*. Thus
g =yz with y = y192 € Ay and z € Ribb (T'N (Uyex_7 X ()5 X, R). O

3. Proof of the main results.

Proposition 3.1. Let (A, S) be an Artin group of type FC. Let X, Y, T C S
with X spherical. Letk € Z—{0} and g € Ap. The following are equivalent:

(1) gAxg™" C Ay;

(2) gAkg™! € Ay;

(3) g = yx with y € Ayqr and x € Ribb (T N (Uyex_r X(5))1; X, R) for
some RCY.

Proof. Implications (3) = (1) = (2) are clear. Let us show that (2) = (3)
by induction on the number m of amalgamations; that is the number of
edges in I'g labelled with co. If m = 0 then A is spherical and the result
is true by Theorem 2.1 and Proposition 2.3. Assume now that m > 1 and
that Proposition 3.1 is true for any Artin group of type FC with a number
of amalgamation less than or equal to m — 1. We choose s1,s2 € S such
that myg, s, = 0o and we use Notation 1.11. Note that since Ax is spherical,
we have X C S7 or X C Sy. Denote by (g1, ..., gn, h) the amalgam normal
form of g ; elements g; and h are in Ap by Corollary 1.12. For m fixed, let us
do an induction on n. We have g; .. .gnhA’)“{hflggl . -91_1 €eAy. Ifn=20
then the formula holds in Ay or in As and we conclude by the induction
hypothesis on m applied in Ay or in As. Assume now that n > 1. We may
assume without loss of generality that g, € A;.

If X ¢ A; then by Corollary 1.8, the amalgam normal form of gAI}’(g_l
is of the shape (g1,. .., 9n, Gpy1s-- > Gong1, M) With g, = mSLQ(hA];(h’l).
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But gAk g~ € Ay thus g1 ...9, € Aynr by Corollary 1.12 and hA%R™1 €
Ay. Thus, to conclude, we apply the induction hypothesis on n at rank
n =0 to h.

If X C A and gnhA])“((gnh)*l ¢ Aj 2 then the amalgam normal form of

gA&g’l is of shape (g1, ., gn—1,90,- - - Jon_1, ') with
97/1 = Mg, (gnhAl;((gnh)_l)-

But gAl)f(g_1 € Ay; then we get g1...gn—1 € Aynr by Corollary 1.12 and
thus gnhA’)“((gnh)_l € Ay; thus we may apply the induction hypothesis on
m in Ay at g,h and conclude.

If X € 51 and gnhAlﬁf(gnh)_l € Aj o then by the induction hypothesis
on m applied in A1, we get g,h = y121 with

1
z1 € Ribb Tﬂ( U X(t)) ‘X, R

teX-T

for RC Si2and y; € A12N Ar. We get g1 .. .gn,lylA'}L(gl cgnoyn) "t e
Ay and by the induction hypothesis on n applied at rank n—1to gy ... gn_191
€ Ap, we obtain g1 ...gn,_1y1 = yxo with

1
x5 € Ribb Tﬂ( U X(t)) ‘R, R,
teX-T

for some Ry CY and y € Aynr.
Thus g = yxozy and zoz1 € Ribb (TN (Uyex_r X (1) X, Ry) for Ry C
Y. O

Theorem 3.2. Let (A, S) be an Artin group of type FC and let X, Y, T C S.
Let g € Ap and k € Z — {0}. The following are equivalent:
(1) gAxg™" C Ay;
(2) gA’I;(Sg*1 €Ay, g=yz withx € Axp, y € Aynr and Xqs C Y
(3) g = yx withy € Aynr and x € Ribb (TNX5; X, R) with RO X, C Y.

as?

Proof. 1t is clear that (3) = (2) and that Proposition 3.1 induces (2) = (1).
Let us show that (1) = (3). We are carrying out an induction on the number
r(X) of edges in I'(X') which are labelled with co. If 7(X) = 0, then X is
spherical and the result is true by Proposition 3.1. Assume now X is not
spherical (that is 7(X) > 1) and fix s1,s2 in X such that mg, 5, = oo.
We assume that if (A’;S’) is an Artin group of type FC and X', Y’ T" are
three parts of S’ such that r(X’) < r(X) then for all ¢’ of A/, we have:
d "Axg C Ay, = ¢ = y'2’ where 2’ € Ribb(T" N X’js;Xg,R’) and
y € Ay with R' & X/, C Y.

We have A = Aj x4,, A2 with Notation 1.11. Let (g1,...,gn,h) be the
amalgam normal form of g. The first step is to show that it is enough to
prove the result for the case n = 0. Assume n > 1. Without loss of generality
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we may assume that g, € A;. Furthermore g ...g,hs1h g, .. -91_1 € Ay
since s1 € X. By Corollary 1.8 we infer that the amalgam normal form of
g1...gnhs1h~tg .. g7! is of the shape (g1, . ., Gn, Ghsts- - - s Gonir, B') and
has its terms in Ay. Thus g1 ... gy, is in Aynr. We get that hAxh™! is also
in Ay. Thus if (1) = (3) for any g such that n = 0, the theorem will be
proved. Assume g = h € Ay 3. Denote by T} (resp. T») the indecomposable
component of X — {81} (resp. X — {s2}) which contains s (resp. s1). In A;
we have gAy_ {sl}g_ C Ay_ys,y thus by the induction hypothesis,we get
g = y171 with y; in Aynz and o1 € Ribb (TN (X — {51} &; (X — {s1})s, R1)
with Ry in Y —{s;}. Furthermore, since s ¢ A; 2 and g € A; 2, we get, either
by the induction hypothesis (if 77 is not spherical) or by Proposition 3.1,
that we can find z1 € Ribb (T{- NT N (X — {s1})L; (X — {s1})s, R1). From
y1 € Ay, we infer that 21 Axx lisin Ay. We can use the same argument if
we replace g by x1 and exchange the roles of A1 and As; we find, thanks to
the inclusion xlAX_{SQ}:cfl C Ay_ys,y in Ag, that x1 = yox with yo € Aynr
and z € Ribb (THNTENTN(X —{s1 LN (X —{s2})%; (X —{s2})s, R2) with
Ry in Y. Finally, since Ty UTy = X (s1) = X(s2), we get T-NT3-NTN (X —
{81})(15 (X {82})as = TQXL We get that g = y1y2x with Y1Yy2 € AYﬁTv
x in Ribb (TN X; X, R) since X, C (X — {s2})sand RC Ry C Y. O

The two following lemmas are used to prove (ii) and the first equality of
(i) in Theorem 3.5.

Lemma 3.3. Let (A,S) be an Artin group of type FC; then QZs(A) =
QZASS (ASS)

Proof. Tt is clear that QZ4(A) = QZag, (As,) - Q@Zag,, (As,,). Then it is
enough to prove that QZag, (As,.) = {1} and since it is the product of
quasi-centralizers of its indecomposable components, it is enough to show
that if X is indecomposable not spherical, then QZ4(A) = {1}. Let A
be such a group and let ¢ € QZ4(A); choose T' C S maximal spherical
and let 7" = ¢gT'g~' C S. Then by Proposition 3.1 applied to the equality

g YArg = A with T, we get that T =T and g € Ap ; thus g € QZa, (Ar).
Let (T; )1<z<k be the indecomposable components of T' then QZ 4, (Ar) =
{A]Tl A%LC,VZ ji € Z}. Thus g = Ah A%“ with j; € Z for all i €
{1,...,k}. Assume that there exists i € {1 k} such that j; # 0. Since T
is maximal spherical and S is indecomposable and not spherical, there exists
s€T;andt € S—T such that ms; = co. Weget A = AS—{s}*As_{S,t}AS—{t}
and gsg~! = s with s; € T since j; # 0, this is impossible by Corollary 1.8.
Thus for all 4, we get j; =0 and g = 1. (]
Lemma 3.4. Let A = Ay x4,, Aa be a non-spherical Artin group of type

FC in the Notation of 1.11. Let X C S be such that {s1,s2} C X, let X; =
X NS; forie{1,2}; then Coma(Ax) N A; C Comy,(Ax,) forie {1,2}.

Proof. By symmetry, it is enough to prove the result for ¢ = 1. Let g €
Comy(Ax) N A;. We have to show that Ay, N (gAx,g~!) has finite index
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in Ay, and in gAx,g'. For this, we show that if 2,y € Ax, (resp. z,y €
gAx, g7 1) have the same image in Ay /(AxNgAxg™?!) (resp. gAxg~'/(AxN
gAxg™!)) then they have the same image in Ay, /(Ax, N gAx, 97 ") (resp.
gAX1gil/(AX1 N gAXLgil))'

Let z,y € Ax, be such that za = y for some o € AxN(gAxg~'). We have
o= my‘l €Ax, NAx N (gAXg_l) =Ax, N (gAxg_l) =Ax, N (gAXlg_l).
The last equality come from the fact that ¢ is in Ag, and that Ay, =
Agnx = Ag, N Ax. Let 2,y € gAx, g~ ! be such that za = y for some « €
AxN(gAxg™'); we have by the same arguments that o € Ax, N(gAx,g7}).
Thus g € Comy, (Ax, ). O

Theorem 3.5. Let (A,S) be an Artin group of type FC. Let X C S; then:

(i) Coma(Ax) = Na(Ax) = Ax - QZa(Ax);
(i) Conj(S;X,Y) = Ribb (S; X,Y) C Ribb (X2, Xs,Ys). Furthermore, if

Conj (S; X,Y) # 0 then the inclusion is a equality and Xas = Yys.

Proof. Thanks to Theorem 3.2 we get the inclusions Ax - QZ4(Ax) C
Na(Ax) C Ax - Ribb (X}; X5, X5) C Ax - QZa(Ax). That proves the
second equality of (i): Na(Ax) = Ax - QZa(Ax). If Conj(S;X,Y) =
0 then (ii) is clear since Ribb (S;X,Y) C Conj(S;X,Y). Assume now
that Conj (S;X,Y) # 0. Since Conj(S;X,Y) C Ax - Ribb (X1; Xg, Xs),
one has X,, = Y,,, and Ribb (X4; X,,Y;) C Conj(S;X,Y); then we get
Conj (S; X,Y) = QZa,(Ax) - Ribb (X}; X;,Y;). Now, by Lemma 3.3
QZay(Ax) = QZay, (Ax,) and since X is spherical, we get QZa, (Ax,) =
Ribb (Xs; X5, Xs). Then, we proved (ii). We have now to prove the first
equality of (i). We have clearly Coma(Ax) D Na(Ax); if X is spherical, we
prove the other inclusion as in [10] thanks to the implication (2) = (1) of
Proposition 3.1. Let us show that Com4(Ax) C Na(Ax) for X not spheri-
cal. In order to do this, we proceed by induction on the number r of edges
labelled with oo in the graph I'y. Note that for r = 0, we have that X
is spherical and the result is true in that case. Assume r > 1 and write
A = Ay *4,, A such that {s1,s2} € X following Notation 1.11. By the
induction hypothesis, we have Coma(Axns;) = Na,(Axns,) for i € {1,2}.
Let g € Coma(Ax) and (g1,...,9n,h) its amalgam normal form. There
exists p € N — {0} such that gsig~! and gshg™! are in Ax. If n # 0, we
infer from Corollary 1.8 that g; ...g, € Ax and thus h € Comy4(Ax). Now,
for g = h € Comy(Ax) N Aj2, we can apply Lemma 3.4; we get that for
i € {1,2}, we have h € Comy,(Axns;). But by the induction hypothesis,
COmAi(AXmSi) = NAi(AXﬁSi)- Then h € NAl(AXmsl) N NAQ(AXQS2) -
Na(Ax). O

Corollary 3.6. Let (A, S) be an Artin groups of type FC. Let X C S; Then:
(1) @Za(Ax) = Ribb (X; Xs, Xs);

as?

(i) Za(Ax) = (Za(Ax) N AT) 45
(iil) QZa(Ax) = (QZa(Ax)NAT) 4.
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Proof. The (i) is a particular case of 3.5(ii); (ii) and (iii) are equivalent by
[8] Theorem 4.1.2; furthermore, it is clear that 3.5(ii) implies (iii) thanks to
Lemma 1.3. U
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