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We prove that the standard double bubble is the minimizing
double bubble in R4 and in certain higher dimensional cases,
extending the recent work in R3 of Hutchings, Morgan, Ritoré
and Ros.

1. Introduction.

1.1. The Double Bubble Conjecture.

Conjecture 1.1 (Double Bubble Conjecture). The least-area hypersurface
enclosing and separating two given volumes in Rn is the standard double
soap bubble of Figure 1, consisting of three (n − 1)-dimensional spherical
caps intersecting at 120 degree angles. (For the case of equal volumes, the
middle sphere is a flat disk.)

In 1990, Foisy et al. [F] proved the Double Bubble Conjecture in R2. In
1995, Hass, Hutchings and Schlafly [HHS], [HS] used a computer to prove
the conjecture for the case of equal volumes in R3. Most recently, in 2000,
Hutchings, Morgan, Ritoré and Ros [HMRR] have used stability arguments
to prove the conjecture for all cases in R3. Morgan’s reference [M] discusses
these results.

Here, we extend the methods of Hutchings et al. to higher dimensions.
Component bounds after Hutchings [H] guarantee that the “1 + k” double

Figure 1. The standard double bubble, consisting of three
spherical caps meeting at 120 degree angles, is the conjec-
tured least-area hypersurface that encloses two given volumes
in Rn.
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bubble — a double bubble in which one region is connected and the other
region has k components — is the only alternative to the standard double
bubble as the minimizing hypersurface in R4 and for sufficiently unequal
volumes in Rn, and that the larger region is connected (2.2, 2.5). By show-
ing such bubbles unstable, we prove the Double Bubble Conjecture in R4

(Theorem 9.1) and, when the larger region has more than 2/3 the total
volume, in Rn (Theorem 9.2).
1.2. The Instability Argument. An area-minimizing double bubble Σ
exists and has an axis of rotational symmetry L. Consider small rotations
about a line M orthogonal to L, chosen such that the points of tangency
between the rotation vector field v and Σ separate the bubble into at least
four pieces. Then we can linearly combine the restrictions of v to each piece
to obtain a vector field which vanishes on one piece and preserves volume.
By regularity for eigenfunctions, v is tangent to certain related parts of Σ,
implying that they are spheres centered on L ∩ M . This is the instability
argument of [HMRR] behind Theorem 4.1. The corollaries to the theorem
use the spherical pieces of Σ to show that it must be the standard double
bubble.

We consider Σ a nonstandard double bubble with the larger region con-
nected, and assume that Σ is a minimizer. In §6 and §7, we look at isolated
parts of Σ — its “root” and its “leaves” according to an associated tree struc-
ture — and we classify all possible root and leaf configurations in which no
useful perturbation axis M can be found. In §8 we combine our local clas-
sification results to nevertheless find a suitable M . By the above argument,
Σ cannot in fact be a minimizer. So, for example, the double bubble with
cross-section as in Figure 2 cannot be a minimizer.

Having eliminated all nonstandard double bubbles from consideration,
the only possible minimizer left is the standard double bubble.
1.3. Open Questions. It can be shown that the leaf classification of Propo-
sition 7.1 remains valid without the restriction that the larger region be
connected. The instability of all nonstandard double bubbles in which one
region is connected follows.

However, our component bounds are not strong enough to assure that one
region must always be connected; for higher dimensions, they in general only
establish that the larger region has at most 3 components and the smaller
region has a finite number of components [HLRS]. But we have not been
able to prove the instability of all double bubbles where both regions are
disconnected.

Indeed, our methods fail to prove unstable the 2+2 double bubble gener-
ated by rotating the curves of Figure 3 about the symmetry axis, in R5 or
higher dimensions (§5 explains the rotation numbers attached to the vertices
in the figure). Showing that this configuration is not minimizing, together
with our bounds in [HLRS] and the results here, would prove the Double
Bubble Conjecture in R5.
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Figure 2. The lines orthogonal to Σ through the points of
the separating set all pass through M . Σ cannot be a mini-
mizer.

Figure 3. A 2 + 2 double bubble might not have any disal-
lowed interior separating sets, thus cannot be eliminated as
unstable by our methods.

2. Double bubbles and component bounds.

A double bubble is a piecewise smooth oriented hypersurface Σ ⊂ Rn con-
sisting of three compact pieces Σ1, Σ2 and Σ0 (smooth on their interiors),
with a common boundary such that Σ1 ∪Σ0, Σ2 ∪Σ0 enclose two regions of
given volumes. Let An(v, w) be the least area of a double bubble enclosing
regions R of volume v and S of volume w. Let Ãn(v, w) ≥ An(v, w) be the
area of the standard double bubble. Let An(v) = nπ1/2v

n−1
n /(n/2)!1/n be

the area of a sphere of volume v.
[H] shows strict concavity of the least area function An(v, w) and uses it

to find bounds on the number of components of minimizing double bubbles.
We will list some of his results in Rn and numerically compute them in R4.
(See [HLRS] for more extensive numerical computations.)
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Theorem 2.1 ([H, Theorem 3.2]). If n ≥ 3, if (v1, w1), (v2, w2) are two
pairs of nonnegative volumes, and if 0 < t < 1, then

An(tv1 + (1− t)v2, tw1 + (1− t)w2) > tAn(v1, w1) + (1− t)An(v2, w2).

Theorem 2.1 yields a dimension-independent component bound for un-
equal volumes:

Corollary 2.2 ([H, Theorem 3.5]). If v > 2w, then in any least-area en-
closure of volumes v, w in Rn, R the region of volume v is connected.

A slightly more sophisticated decomposition argument, together with the
pigeonhole principle, gives a better component bound:

Theorem 2.3 ([H, Theorem 4.2]). Consider a minimal enclosure of vol-
umes v,w in Rn. Then the number of components k of R the region of
volume v satisfies

2An(v, w) ≥ An(w) + An(v + w) + An(v) · k1/n.

Clearly, k in Theorem 2.3 is finite:

Corollary 2.4 ([H, Corollary 4.3]). A minimal enclosure of two volumes
in Rn separates Rn into finitely many components.

Proposition 2.5. In a minimizing double bubble in R4, a region of at least
half the total volume is connected.

Proof. By concavity Theorem 2.1, for v ∈ [0, 1],

A4(v, 1− v) ≤ A4(.5, .5) ≤ Ã4(.5, .5) =

(
4
3

+
3
√

3
4π

)1/4

,

by computation. Hence, letting w = 1− v in Theorem 2.3, we obtain

k1/4 ≤ 1
v3/4

(64
3

+
12
√

3
π

)1/4

− 1

− (1
v
− 1
)3/4

<
1.3
v3/4

−
(

1
v
− 1
)3/4

=: b(v).

Differentiating b(v) gives that b′(v) has the same sign as 1 − 1.3(1 − v)1/4,
which is increasing. Hence b′(v) passes from having negative sign to having
positive sign, so on a closed interval b(v) attains its maximum at an endpoint.
Now,

b(.5)4 = (1.3 · 23/4 − 1)4 < 1.99

b(2/3)4 = (1.3 · (3/2)3/4 − (1/2)3/4)4 < 1.86.

Hence b(v)4 < 2 for v ∈ [0.5, 2/3], implying that k = 1; R is connected.
By Corollary 2.2, R is connected for v > 2/3. Hence R is connected for all
v ∈ [0.5, 1]. �
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Figure 4. A nonstandard minimal double bubble must be a
hypersurface of revolution consisting of a central bubble with
layers of toroidal bands. Here we show the generating curves
of a typical 4+4 double bubble, together with the associated
tree T .

3. Structure of minimal double bubbles.

The work of Almgren ([A] and see [M, Chapt. 13]) tells us that an area-
minimizing double bubble enclosing any two given volumes in Rn exists
and is almost everywhere regular, if we allow disconnected regions. It is
both stationary and stable. Hence, each region has a well-defined pressure,
positive by [H, Corollary 3.3].

Lemma 3.1 ([HMRR, Lemma 6.4]). In a minimizing double bubble for
unequal volumes, the smaller region has larger pressure.

This result follows easily from Hutchings concavity Theorem 2.1. Hutch-
ings further classifies possible nonstandard minimizing double bubbles:

Theorem 3.2 ([H, Theorem 5.1]). Any nonstandard minimal double bub-
ble is a hypersurface of revolution about some line L, composed of pieces
of constant mean curvature hypersurfaces meeting in threes at 120 degree
angles. The bubble is a topological sphere with a tree T of annular bands
attached, as in Figure 4. The two caps of the bottom component are pieces
of spheres, and the root of the tree has just one branch.

Hence, any minimal double bubble is determined by an upper half-planar
diagram of arcs of generating curves which, when rotated about L, generate
the double bubble. By studying these generating curves, we will eliminate
as unstable nonstandard double bubbles.

[HY] shows that the only constant mean-curvature hypersurfaces of rev-
olution are Delaunay hypersurfaces (Figure 5 and see [D], [E]):



352 B. REICHARDT, C. HEILMANN, Y. LAI, AND A. SPIELMAN

Figure 5. Smooth regions of the cluster are parts of De-
launay hypersurfaces: Catenoid, nodoid, unduloid, vertical
plane, sphere.

Theorem 3.3 ([HMRR, Proposition 4.3]). Let Γ be a complete upper half-
planar generating curve which, when rotated about L, generates a hypersur-
face Σ with constant mean curvature. Then exactly one of the following
statements holds:

1) Γ is a curve of catenary type and Σ is a hypersurface of catenoid type.
2) Γ is a locally convex curve and Σ is a nodoid.
3) Γ is a periodic graph over L and Σ is an unduloid or a cylinder.
4) Γ is a ray orthogonal to L and Σ is a vertical hyperplane.
5) Γ is a semi-circle and Σ is a sphere.

The Delaunay hypersurfaces with nonzero mean curvature are the sphere,
unduloid and nodoid. If Σ has positive mean curvature upward then it
must be a nodoid. If Γ is not graph, then Σ must be either a nodoid or a
hyperplane.

4. Instability by separation.

Let Σ ⊂ Rn be a regular stationary double bubble of revolution about axis
L, with upper half planar generating curves Γ consisting of arcs Γ̄i, with
interiors Γi, ending either at the axis or in threes at vertices vijk.

We consider the map f : ∪Γi −→ L ∪ {∞} ≡ [−∞,+∞]/(−∞ ∼ +∞)
which maps each p ∈ ∪Γi to the point L(p) ∩ L, where L(p) denotes the
normal line to Γ at p. Later we will denote the limiting values of f on
the left and right endpoints of Γi by iA, iB ∈ [−∞,+∞], respectively; for
consistency, we will often simply consider f(p) as its preimage in [−∞,+∞].
(With this notation, if iA ∈ f(Γj) and Γj is not a circle or hyperplane, then
for all p ∈ Γi sufficiently close to the left endpoint, f(p) ∈ f(Γj).)

Theorem 4.1 ([HMRR, Proposition 5.2]). Consider a stable double bub-
ble of revolution Σ ⊂ Rn, n ≥ 3, with axis L. Assume that there is a
minimal set of points {p1, . . . , pk} in ∪Γi with f(p1) = · · · = f(pk) which
separates Γ.
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Then every connected component of Σ which contains one of the points pi

is part of a sphere centered at x (if x ∈ L) or part of a hyperplane orthogonal
to L (in the case x = ∞).

We sketched the proof of this theorem in our introduction §1.2.

Corollary 4.2. No generating arc which turns downward past the vertical
can have an internal separating set, i.e., two points p1 6= p2 in the arc, with
f(p1) = f(p2).

Proof. Otherwise, by Theorem 4.1, the arc would have to be part of either
a circle with center on the axis L or a line perpendicular to L. But neither
turns past the vertical. �

Corollary 4.3. No generating arc which is not part of a vertical line can
go vertical twice, including at least once in its interior.

Proof. Such an arc (a nodoid by Theorem 3.3) has a separating set {f−1(x)}
for some x with |x| large enough, contradicting Corollary 4.2. �

Corollary 4.4. Consider a nonstandard minimizing double bubble. Then
there is no x ∈ L ∪ {∞} such that f−1(x) − {two circular caps} contains
points in the interiors of distinct Γi which separate Γ.

Proof. For x ∈ L, the statement is [HMRR, Proposition 5.7]. Arguments
using “force balancing” show that more pieces of the minimizer are spherical
and hence the bubble is the standard double bubble. For x = ∞, note that
a separating set crosses at least one outer boundary. By Theorem 4.1, this
boundary is a vertical line, contradicting positive pressure of the regions. �

We will consider various nonstandard double bubbles, and show that they
violate one of the above corollaries of Theorem 4.1, hence cannot be mini-
mizing.

5. Rotation notation.

A nonstandard minimal double bubble’s generating curves can be further
classified by how many notches m a vertex has been rotated from the stan-
dard position of Figure 6 in which all the generating curves are graphs
(unlike Figure 4). A positive rotation notch about a vertex corresponds to
an arc passing the vertical counterclockwise, as occurs for Γ3 from Figure 6
to Figure 7, and from Figure 8(a) to 8(b). The extreme position with an
arc leaving the vertex at the vertical divides two consecutive m cases. If the
limiting value of f along the vertical arc is +∞ (or the arc is a straight line),
the position is assigned the smaller m rotation number, and if the limiting
value is −∞, the position is given the larger m value.

The rotation numbers for our earlier 4 + 4 example are indicated in Fig-
ure 9.



354 B. REICHARDT, C. HEILMANN, Y. LAI, AND A. SPIELMAN

Figure 6. If all the generating curves are graphs, then m = 0
for each vertex.

Figure 7. From the curves of Figure 6, vertex v123 ≡ Γ1 ∩
Γ2 ∩ Γ3 has turned one counterclockwise “notch,” since Γ3

has passed the vertical. Hence m = 1 for v123.

Figure 8. A close-up of v123 as it turns one notch counter-
clockwise. In (a), m = 0 and 2A < 1B < 3A; on the right,
3A = +∞. In (b), m = 1 and 3A < 2A < 1B; 3A = −∞ on
the right.
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Figure 9. This nonstandard double bubble has the same
associated tree structure as those in Figures 6 and 7, but
some vertices have been rotated a notch or two left or right,
as indicated.

Figure 10. A root involves five arcs: Γ2, Γ3, Γ4, and the
two circular caps Γ1 and Γ5. In general, each vertex can
be rotated mi notches counterclockwise from the pictured
configuration, in which all arcs are graphs and m1 = m2 = 0.

6. Root stability.

The “root” of a nonstandard minimizing double bubble corresponds to the
root of its associated tree of Theorem 3.2 and Figure 4. The root involves
five arcs including circular caps to either side, as in Figure 10.

Proposition 6.1. In a minimizer, consider a root with the notation of Fig-
ure 10. Then (m1,m2) ∈ {(−1,−1), (0,−1), (0, 0), (1,−1), (1, 0), (1, 1)}.

Proof. Γ1 and Γ5 are parts of semi-circles, turning inward by positive pres-
sure of the regions. It follows that m1,m2 ∈ {−1, 0, 1}.

If (m1,m2) = (−1, 0) as in Figure 11, then [−∞, 3B) ⊂ f(Γ3), where 3B
denotes the image under f of the right-hand endpoint of Γ3. Consideration
of vertex v345 ≡ Γ3 ∩ Γ4 ∩ Γ̄5 gives 4B < 3B. Hence 4B ∈ f(Γ3), giving
a separating set through Γ3 and Γ4. Since this contradicts Corollary 4.4,
(m1,m2) 6= (−1, 0). Similarly, (m1,m2) 6= (0, 1).

If (m1,m2) = (−1, 1), then Γ3 goes vertical twice in its interior, violating
Corollary 4.3. Hence (m1,m2) 6= (−1, 1), as asserted. �
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Figure 11. If (m1,m2) = (−1, 0), then [−∞, 3B) ⊂ f(Γ3)
and 4B < 3B, so 4B ∈ f(Γ3).

Figure 12. If Γ2 turns vertical downward after leaving the
left circular cap, then the rotation number m1 of vertex v123

is either −1, 0 or 1.

Proposition 6.2. In a minimizer, consider a root with the notation of Fig-
ure 10. Then neither Γ2 nor Γ4 can turn vertical downward after leaving a
circular cap.

Proof. Suppose Γ2 turns vertical downward after leaving vertex v123. By
Theorem 3.3 and positive pressure of the regions, Γ2 is a concave rightward
nodoid. By Proposition 6.1, m1 ∈ {−1, 0, 1}, as shown in Figure 12.

First, consider m1 = −1. Then (−∞, 2A) ⊂ f(Γ2). By Proposition 6.1,
m2 ∈ {−1, 0, 1}, so Γ3 goes vertical before reaching v345. Hence [−∞, 3B) ⊂
f(Γ3).

Second, consider m1 = 0. Then (−∞, 2A) ⊂ f(Γ2) again, and 3A < 2A.
Third, consider m1 = 1. Then f(Γ2) = L ∪ {∞}.
In each case, f(Γ2) ∩ f(Γ3) 6= ∅, giving a separating set contrary to

Corollary 4.4. Therefore Γ2 cannot turn vertical downward after leaving v123.
Symmetrical considerations show that Γ4 cannot turn vertical downward
after leaving v345. �

7. Leaf stability.

A “leaf” of a nonstandard minimizing double bubble corresponds to a leaf
of its associated tree of Theorem 3.2 and Figure 4. A leaf involves four arcs,
with a standard notation as in Figure 13. We say that one case “models” an-
other if they are symmetrical under horizontal reflection and/or relabelling.
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Figure 13. A leaf involves four arcs: Γ1, Γ2, Γ3, Γ4. In gen-
eral each vertex can be rotated mi notches counterclockwise
from the pictured configuration, in which all arcs are graphs
and m1 = m2 = 0.

Figure 14. The two near graph cases (0, 0) and (0, 1), shown
here, and the cases (0, 2) and (2, 1) model all leaves belonging
to the smaller region. Case (0, 0) models case (3, 3), and case
(0, 1) models cases (−2,−3), (−1, 0) and (3, 2), modulo (6, 6).

Figure 15. Case (0, 2) models cases (−2, 0), (−1,−3) and (3, 1).

Case (m1,m2) = (a, b) models cases (a, b), (−b,−a), (b + 3, a + 3), and
(3− a, 3− b), up to rotation by (6, 6).

Proposition 7.1. In a minimizer for unequal volumes, consider a leaf be-
longing to the smaller region, with the notation of Figure 13. Then the only
possible (m1,m2) cases, up to rotation by (6, 6), are:

(0, 0), (3, 3); (−2,−3), (−1, 0), (0, 1), (3, 2);

(−2, 0), (−1,−3), (0, 2), (3, 1); and (−2,−1), (−1,−2), (1, 2), (2, 1).

In particular, every leaf is modeled on one of the four of Figures 14, 15
and 16.

Proof. First we need Lemma 7.2, in which we will use verticality arguments
(refer to Corollary 4.3) to obtain general bounds on (m1,m2) cases. We will
then eliminate as unstable individual cases.
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Figure 16. Case (2, 1) models cases (−2,−1), (−1,−2) and (1, 2).

Lemma 7.2. With the assumptions as above, the only possibly stable rota-
tion cases for (m1,m2), up to rotation by (6, 6), are:

m1 ∈ {−2,−1} =⇒ −3 ≤ m2 ≤ 0
m1 = 0 =⇒ −3 ≤ m2 ≤ 3

m1 ∈ {1, 2} =⇒ 0 ≤ m2 ≤ 3
m1 = 3 =⇒ 0 ≤ m2 ≤ 6

Proof. First, consider m1 ∈ {−2,−1}. Γ3 leaves v123 to the right, while Γ2

leaves v123 to the left. If m2 = −4, Γ3 enters v234 from the left, thus goes
vertical twice (in its interior) if m2 ≤ −4. If m2 = 1, Γ2 enters v234 from the
right, thus goes vertical twice if m2 ≥ 1. By Corollary 4.3, −3 ≤ m2 ≤ 0, as
asserted.

Second, consider m1 = 0. Γ3 leaves v123 going upward to the right, while
Γ2 leaves v123 going downward to the right. If m2 = −4, Γ3 enters v234 from
the left, thus goes vertical twice if m2 ≤ −4. If m2 = 4, Γ2 enters v234 from
the left, thus goes vertical twice if m2 ≥ 4. By Corollary 4.3, −3 ≤ m2 ≤ 3,
as asserted.

Third, consider m1 ∈ {1, 2}. Considerations symmetrical to those of the
cases m1 ∈ {−2,−1} give 0 ≤ m2 ≤ 3, as asserted.

Fourth, consider m1 = 3. Considerations symmetrical to those of the case
m1 = 0 give 0 ≤ m2 ≤ 6, as asserted. �

To finish the proof of Proposition 7.1, we will use slightly more involved
arguments to show that leaves with the following (m1,m2) rotation pairs
cannot belong to the smaller region of a minimizer:

(−2,−2), (−1,−1), (0,−3), (0,−2), (0,−1), (0, 3),

(1, 0), (1, 1), (1, 3), (2, 0), (2, 2), (2, 3), (3, 0), (3, 4), (3, 5), (3, 6).

Note that by Lemma 3.1, the leaf component has positive pressure larger
than that of the adjacent component; Γ2 and Γ3 rotate about L to form
hypersurfaces of positive mean curvature into the leaf.

• Case (1, 1) models cases (−2,−2), (−1,−1), (2, 2); see Figure 17.
4A ∈ f(Γ3), since 3B < 4A and (3B,+∞] ⊂ f(Γ3).
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Figure 17. Case (1, 1) models cases (−2,−2), (−1,−1), (2, 2).

Figure 18. Case (1, 0) models cases (0,−1), (2, 3), (3, 4).
Case (2, 0) models cases (0,−2), (1, 3), (3, 5).

Figure 19. Case (3, 0) models cases (0,−3), (0, 3), (3, 6).

Γ2 goes vertical, so by Theorem 3.3 must be part of a concave left-
ward nodoid. Hence the normal to Γ4 at v234 stays right of Γ2 and
in particular of v123, implying 2A < 4A. Since (2A,+∞] ⊂ f(Γ2),
4A ∈ f(Γ2).

Corollary 4.4 for Γ2, Γ3, Γ4 implies instability.
• Case (1, 0) models cases (0,−1), (2, 3), (3, 4), and case (2, 0) models

cases (0,−2), (1, 3), (3, 5); see Figure 18.
For both cases, again 3B < 4A and (3B,+∞] ⊂ f(Γ3) imply 4A ∈

f(Γ3). Since 4A < 2B, Corollary 4.4 for Γ2, Γ3, Γ4 yields 4A ≤ 2A.
Therefore, the net angle θ3 through which Γ3 turns satisfies θ3 > 180

degrees, since v123 is clearly left of v234. Also, Γ3 leaves v234 above the
horizontal, and Corollary 4.2 for Γ3 gives 3A ≤ 3B. Since Γ2 rotates
about L to form a hypersurface of positive mean curvature upwards
into the leaf, by Theorem 3.3 Γ2 is a (strictly convex) nodoid. We can
now apply Lemma 7.3 to obtain 2A < 4A, a contradiction.

• Case (3, 0) models cases (0,−3), (0, 3), (3, 6); see Figure 19.
Γ2 goes vertical, so by Theorem 3.3 must be part of a concave right-

ward nodoid or a hyperplane, contradicting Lemma 3.1. �
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Lemma 7.3 ([HMRR, Corollary 5.10]). Consider the (1, 0), (2, 0) and
(2, 1) cases of Figures 18 and 16. Assume that the net angle θ3 through
which Γ3 turns exceeds 180 degrees, that Γ3 leaves v234 at or above the hor-
izontal, that 3A ≤ 3B, and that Γ2 is strictly convex. Then 2A < 4A.

Corollary 7.4. For a (2, 1) leaf in a minimizer, as in Figure 16, Γ3 leaves
v234 below the horizontal.

Proof. 4A ∈ f(Γ3) since 3B < 4A and (3B,+∞] ⊂ f(Γ3). Since also
(2A, +∞] ⊂ f(Γ2), Corollary 4.4 for Γ2, Γ3, Γ4 yields 4A ≤ 2A.

Γ2 goes vertical, so by Theorem 3.3 must be part of a concave leftward
nodoid. Hence the normal to Γ4 at v234 stays right of Γ2 and in particular
of v123, implying θ3 > 180 degrees. By Corollary 4.2 for Γ3, 3A ≤ 3B.

Now if Γ3 leaves v234 at or above the horizontal, then Lemma 7.3 gives
2A < 4A, a contradiction. �

Lemma 7.5. For a (0, 0) or (0, 1) leaf in a minimizer, as in Figure 14,
1B ≤ f(Γ3) ≤ 4A and 1B < 4A.

Proof. First, consider case (0, 0). Then 2A < 1B and 4A < 2B. Since v123

is left of v234, 1B < 2B and 2A < 4A. Hence 1B, 4A ∈ f(Γ2).
Second, consider case (0, 1). Then 2A < 1B. Since v123 is left of v234,

2A < 4A. Since (2A,+∞] ⊂ f(Γ2), again 1B, 4A ∈ f(Γ2).
In both cases, 1B < 3A and 3B < 4A. Corollary 4.4 for Γ1, Γ2, Γ3,

and for Γ2, Γ3, Γ4 gives 1B ≤ f(Γ3) and f(Γ3) ≤ 4A, respectively. Since
1B < 3A, 1B < 4A, as claimed. �

Proposition 7.6. An arc of outer boundary cannot turn vertical downward
after leaving a leaf of the smaller region of a minimizer.

Proof. First, consider cases (0, 0) and (0, 1) of Figure 14. By Lemma 7.5,
1B < 4A. If Γ1 turns vertical downward, (1B,+∞) ⊂ f(Γ1). Since by posi-
tive pressure Γ4 is not a hyperplane, f(Γ1)∩f(Γ4) 6= ∅. Corollary 4.4 implies
instability, so Γ1 cannot turn vertical downward. Similarly, Γ4 cannot turn
vertical downward.

Second, consider case (0, 2) of Figure 15.
If Γ1 turns vertical downward, then (1B,+∞) ⊂ f(Γ1). Also, (2A,+∞] ⊂

f(Γ2), and consideration of v123 gives 2A < 1B < 3A. Therefore, f(Γ1) ∩
f(Γ2) ∩ f(Γ3) 6= ∅ (by Lemma 3.1, Γ3 is not a vertical line), contrary to
Corollary 4.4. Hence Γ1 cannot turn vertical downward.

If Γ4 turns vertical downward and to the right, then f(Γ4) = L ∪ {∞}.
If Γ4 turns vertical downward and to the left, then (4A, +∞) ⊂ f(Γ4).
Either way, (2A, +∞] ⊂ f(Γ2). Consideration of v234 gives 4A < 3B, while
2A < 3B since v123 is left of v234. Also, 3B 6= +∞; otherwise Γ3 is a
concave leftward nodoid or a hyperplane, both disallowed by Lemma 3.1.
Thus, 3B ∈ f(Γ2) ∩ f(Γ4). Corollary 4.4 for Γ2, Γ3, Γ4 implies instability.
Hence Γ4 cannot turn vertical downward.
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Figure 20. The associated tree T for a 1 + k double bubble
has just one branch from the root and k− 1 leaves above the
connected middle region. (The pictured notation is for
Proposition 8.2.)

Third, consider case (2, 1) of Figure 16. Since ∞ ∈ f(Γ2)∩f(Γ3), if either
Γ1 or Γ4 goes vertical at all, then there is a separating set involving that
arc, Γ2 and Γ3, violating Corollary 4.4.

By Proposition 7.1, every locally stable leaf of larger pressure can be
modeled by one of the cases (0, 0), (0, 1), (0, 2) or (2, 1). We conclude that
an arc of outer boundary cannot turn vertical downward after leaving any
such leaf. �

Corollary 7.7. In a minimizer, any arc of outer boundary between two
leaves of the smaller region, from a circular cap to such a leaf, or between
the two circular caps is graph.

Proof. If such an arc goes vertical in its interior, then it is a nodoid or
vertical line, by Theorem 3.3. By positive pressure, it must be a nodoid.
Therefore it turns vertical downward after leaving either a circular cap or a
leaf of the smaller region, contradicting Proposition 6.2 or Proposition 7.6,
respectively. �

8. 1 + k double bubbles.

For any minimal 1 + k double bubble, i.e., an area-minimizing nonstandard
double bubble in which one region is connected and the other region has k
components, by Theorem 3.2 the associated tree T has just one branch from
the root and k−1 leaves above the connected middle region, as in Figure 20.

Proposition 8.1. In a 1 + k minimizer, k > 1, in which the larger region
is connected, there can be no leaf with left rotation number m1 ≥ 3 or with
right rotation number m2 ≤ −3. In particular, with the standard notation
of Figure 13, each leaf has rotation pair

(m1,m2) ∈ {(0, 0), (−1, 0), (0, 1), (−2, 0), (0, 2),±(1, 2),±(2, 1)}.
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Proof. Assume that there is a leaf with m2 ≤ −3. Let m3 measure the
rotation of the right endpoint of Γ4.

Suppose Γ4 connects to another leaf. If m2 = −3 or −4, then by positive
pressure Γ4 is a convex nodoid and m3 ≤ −3. If m2 ≤ −5, then by Corol-
lary 7.7 m3 ≤ −5. In either case, by Proposition 7.1, m4 the right rotation
number of this adjacent leaf satisfies m4 ≤ −3 also. By induction, every leaf
combinatorially to the right of the original leaf has right rotation number at
most −3.

Hence we may assume that Γ4 connects to the right circular cap. By pos-
itive pressure, m3 ≤ −2, beyond the range of {−1, 0, 1} allowed by Proposi-
tion 6.1.

From this contradiction, it follows that m2 ≥ −2 for each leaf. Sym-
metrical considerations give m1 ≤ 2 for each leaf. The second assertion
follows from applying these inequalities to the possible (m1,m2) pairs of
Proposition 7.1. �

Define a leaf to be near graph if it has rotation pair (m1,m2) ∈ {(−1, 0),
(0, 0), (0, 1)}, as in Figure 14.

Proposition 8.2. Consider a 1 + k minimizer, with the notation of Fig-
ure 20, in which the first j, 0 ≤ j ≤ k− 1, leaves on the left are near graph.
If m1 ∈ {−1, 0} — necessarily true if j > 0, or if j = 0 and m2 ≤ 1 — then
m2k ∈ {−1, 0} and 0B ≤ (j + 1)B.

Proof. By Corollary 7.7, Γ1, . . . ,Γk, the outer boundaries of the middle com-
ponent indexed from left to right, are graph.

If m2 ≤ 1 and m1 = 1, then Γ1 turns vertical in its interior, a contradic-
tion. Hence m2 ≤ 1 — trivially true if j > 0 — implies m1 ∈ {−1, 0}, the
only remaining possibilities of Proposition 6.1.

Suppose m1 ∈ {−1, 0}; by Proposition 6.1, m2k ∈ {−1, 0}. If m1 = −1,
then [−∞, 0B) ⊂ f(Γ0). If m1 = 0, then consideration of v01 gives 0A <
1A, implying by Corollary 4.4 for Γ0, Γ1 that 0A ≤ 1B. In either case,
Corollary 4.4 for Γ0, Γ1 gives 0B ≤ 1B, the statement for j = 0.

Now assume j > 0. Suppose 0B ≤ iB, where 1 ≤ i ≤ j. By Lemma 7.5
with relabelling, iB < (i + 1)A. Hence 0B < (i + 1)A, implying by Corol-
lary 4.4 for Γ0, Γi+1 that 0B ≤ (i+1)B. The statement follows by induction
in i. �

Corollary 8.3. A 1 + k minimizer must have at least one leaf above the
middle component which is not near graph. In particular, a nonstandard
1 + 1 double bubble cannot be minimizing.

Proof. Suppose all the leaves are near graph (true if k = 1, when there are
no leaves). By Proposition 8.2 applied once to each side, m1 = m2 = 0, and
0B ≤ kB. Consideration of v0k (the right vertex, if k = 1) gives kB < 0B,
a contradiction. �
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Lemma 8.4. A 1 + k minimizer includes at most one (2, 1)-modeled leaf:
Cases ±(1, 2) and ±(2, 1).

Proof. In a (2, 1)-modeled leaf as in Figure 16, ∞ ∈ f(Γ2) ∩ f(Γ3). If the
minimizer includes more than one such leaf, {f−1(∞)} separates Γ, violating
Corollary 4.4. �

Lemma 8.5. In a 1 + k minimizer in which the larger region is connected,
only a (0, 2) leaf may be directly to the left of a (2, 1) leaf. Also, every
(0, 2) leaf in the minimizer must be directly to the left of a (2, 1) leaf. The
minimizer does not include any (1, 2) or (−2,−1) leaves.

Proof. Consider a (2, 1) leaf as in Figure 16, and assume that Γ1 connects
to another leaf. Let m0 measure the rotation of the (combinatorially) left
endpoint of Γ1. By positive pressure, Γ1 is a concave rightward nodoid, so
m0 ≥ 2. By Proposition 8.1, the adjacent leaf has rotation pair (0, 2) or
(1, 2), and Lemma 8.4 disallows the latter possibility. Hence indeed, if the
minimizer contains a (2, 1) leaf, then either that leaf is the leftmost leaf in
the minimizer or it is just to the right of a (0, 2) leaf.

Now assume there is a leaf with rotation pair (m1,m2) ∈ {(0, 2), (1, 2)},
as in Figure 15 or Figure 16 with reflection and relabelling. Let m3 measure
the rotation of the right endpoint of Γ4.

If Γ4 connects to the right circular cap, by Proposition 6.1 m3 ∈ {−1, 0, 1}.
Hence Γ4 turns vertical downward after leaving the root, violating Proposi-
tion 6.2.

Therefore Γ4 connects to another leaf. By positive pressure, Γ4 is a con-
cave rightward nodoid, implying m3 ≤ 2. For m3 ≤ 1, Γ4 turns vertical
downward after leaving the adjacent leaf, violating Proposition 7.6. Thus
m3 = 2, whence by Proposition 8.1 the adjacent leaf has rotation pair (2, 1).

Therefore, if (m1,m2) = (0, 2), then the leaf is directly to the left of a
(2, 1) leaf, as asserted.

If on the other hand (m1,m2) = (1, 2), then again the leaf is directly to
the left of a (2, 1) leaf. But now the minimizer includes both a (1, 2) and a
(2, 1) leaf, contradicting Lemma 8.4. Hence the minimizer includes no (1, 2)
leaves. By symmetry, nor does it include any (−2,−1) leaves. �

Proposition 8.6. A nonstandard double bubble in Rn, n ≥ 3, in which the
larger region is connected and the smaller region has k ≥ 1 components is
not minimizing.

Proof. Suppose otherwise and consider the generating curves of the mini-
mizer.

By Corollary 8.3, the minimizer includes at least one leaf which is not near
graph. By Proposition 8.1, the possibilities for this leaf, up to horizontal
reflection, are (0, 2), (1, 2) or (2, 1). Lemma 8.5 rules out case (1, 2) (and,
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Figure 21. If the (2, 1) leaf is the leftmost leaf, then all
other leaves are near graph.

symmetrically, case (−2,−1)). If the minimizer includes a (0, 2) leaf, then
there is a (2, 1) leaf directly to its right, also by Lemma 8.5.

Hence, after horizontal reflection if necessary, the minimizer includes at
least one (2, 1) leaf. By Lemma 8.4, the minimizer includes exactly one (2, 1)
leaf, and no (−1,−2) leaves. Therefore, since by Lemma 8.5 every (0, 2) leaf
is directly to the left of a (2, 1) leaf, there is at most one (0, 2) leaf, and no
(−2, 0) leaves. By Lemma 8.5, if there is a leaf to the left of the (2, 1) leaf,
then it is the (0, 2) leaf. If there is no leaf to the left of the (2, 1) leaf, then
there are no (0, 2) leaves.

All leaves not directly to the left of the (2, 1) leaf must be near graph, the
only possibilities allowed by Proposition 8.1 which still remain.

First, assume the (2, 1) leaf is the leftmost leaf, as in Figure 21. By Corol-
lary 7.7, Γ1 is graph, implying by Proposition 6.1 that m1 = 1. Consider
the downward normal n to Γ4 at v234. By Lemma 3.1 and Theorem 3.3,
Γ2 is a concave leftward nodoid, so n stays above and to the right of Γ2.
By Corollary 7.4, Γ3 leaves v234 below the horizontal, implying that n is
counterclockwise from the downward tangent to Γ1 at v01. Since by positive
pressure Γ1 is a concave rightward nodoid, n is counterclockwise from every
downward tangent to Γ1. Therefore, n stays above Γ1 and 0A < 4A. But
by Proposition 8.2 applied from the right, 4A ≤ 0A, a contradiction. Hence
the (2, 1) leaf is not the leftmost leaf.

Second, assume there is a (0, 2) leaf to the left of the (2, 1) leaf, with the
notation of Figure 22. Again, similar arguments using Corollary 7.4 show
that the downward normal n to Γ7 at v567 stays to the right of Γ4. Since
v123 is left of v234, n is counterclockwise and to the right of the downward
normal to Γ1 at v123, whence 1B < 7A. But by Proposition 8.2 applied
once to each side, m1 = m2k = 0, 0B ≤ 1B and 7A ≤ 0A. Combining
the inequalities yields 0B < 0A, a clear impossibility when m1 = m2k = 0.
Hence there can be no leaf to the left of the (2, 1) leaf.

Therefore, a 1 + k minimizer cannot include a (2, 1) leaf, a contradiction.
Thus indeed, a 1 + k bubble in which the larger region is connected cannot
be minimizing. �
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Figure 22. If the (2, 1) leaf is just to the right of a (0, 2)
leaf, then all other leaves are near graph.

9. Proofs of the Double Bubble Conjecture.

Theorem 9.1 (Double Bubble Conjecture in R4). In R4, the standard
double bubble is the unique area-minimizing double bubble.

Proof. For equal volumes, both regions are connected by Proposition 2.5.
By Corollary 8.3, the area-minimizing double bubble is the standard double
bubble.

For unequal volumes, the larger region is connected by Proposition 2.5,
and the smaller region has a finite number of components by Corollary 2.4.
By Proposition 8.6, the area-minimizing double bubble is the standard dou-
ble bubble. �

Theorem 9.2 (Double Bubble Conjecture for disparate volumes). In Rn,
n ≥ 3, the standard double bubble is the unique area-minimizing double
bubble for prescribed volumes v, w, with v > 2w.

Proof. The larger region is connected by Corollary 2.2, and the smaller re-
gion has a finite number of components by Corollary 2.4. By Proposition 8.6,
an area-minimizing double bubble must be the standard double bubble. �

Acknowledgements. The authors were the members of the 1999 Geome-
try Group of the Williams College SMALL undergraduate research project.
Their work was partially funded by the National Science Foundation. They
gratefully thank Professor Frank Morgan for his very helpful comments and
advice.

References

[A] F.J. Almgren, Jr., Existence and regularity almost everywhere of solutions to
elliptic variational problems with constraints, Memoirs Amer. Math. Soc., 165(4)
(1976), 1-199, MR 54 #8420, Zbl 0327.49043.

http://www.ams.org/mathscinet-getitem?mr=54:8420
http://www.emis.de/cgi-bin/MATH-item?0327.49043


366 B. REICHARDT, C. HEILMANN, Y. LAI, AND A. SPIELMAN
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