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BOOLEAN ALGEBRAS OF PROJECTIONS & ALGEBRAS
OF SPECTRAL OPERATORS

H.R. Dowson, M.B. Ghaemi, and P.G. Spain

We show that, given a weak compactness condition which
is always satisfied when the underlying space does not contain
an isomorphic copy of c0, all the operators in the weakly closed
algebra generated by the real and imaginary parts of a fam-
ily of commuting scalar-type spectral operators on a Banach
space will again be scalar-type spectral operators, provided
that (and this is a necessary condition with even only two op-
erators) the Boolean algebra of projections generated by their
resolutions of the identity is uniformly bounded.

1. Introduction.

The problem we address, raised by Dunford [8] in 1954, is to find conditions
under which the sum and product of a pair of commuting scalar-type spectral
operators on a Banach space is also a scalar-type spectral operator.

Two difficulties arise when working on an arbitrary Banach space, as op-
posed to a Hilbert space: the unit ball of the algebra of bounded linear
operators need not be weakly compact; and the Boolean algebra gener-
ated by two uniformly bounded Boolean algebras of projections need not be
bounded [15].

In view of this we must restrict ourselves to the case where the Boolean
algebra generated by the resolutions of the identities is uniformly bounded.

Previous treatments of this problem [to show that the sum of two com-
muting scalar-type spectral operators is a scalar-type spectral operator] have
focussed on identifying the resolution of the identity of the sum [11, 16, 20].
These methods have worked essentially only when X contains no copy of c0.
However, this is precisely the case when one can exploit Grothendieck’s
theorem on the automatic weak compactness of linear mappings from a C∗-
algebra into X, and prove somewhat more: that all operators in the weakly
closed involutory algebra generated by them are scalar-type spectral oper-
ators. An advantage of this approach is that one does not have to identify
the resolutions of the identity of the sums, or products, or limits, directly.
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2 H.R. DOWSON, M.B. GHAEMI, AND P.G. SPAIN

2. C∗-algebras on Banach spaces.

The properties of scalar-type spectral operators and the involutory algebras
they generate seem best explained in the context of numerical range, of
hermitian operators, and of C∗-algebras. For the sake of completeness, and
the convenience of the reader, we present a résumé of the key results.

Consider a complex Banach space X; write L(X) for the Banach algebra
of bounded linear operators on X, endowed with the operator norm.

We write A1 for the unit ball of a subset A of a normed space.
We write 〈x, x′〉 for the value of the functional x′ in X ′ at x in X. Let ωωω

be the linear span of the functionals ωx,x′ : L(X) → C : T 7→ 〈Tx, x′〉. Let
Π be the set {

(x, x′) ∈ X ×X ′ :
〈
x, x′

〉
= ‖x‖ =

∥∥x′∥∥ = 1
}

and let ωωωΠ be the set of functionals

{ωx,x′ : (x, x′) ∈ Π}.
The strong operator topology and weak operator topology on L(X) are

of paramount importance: important here too are the BWO topology and
BSO topology, the strongest topologies coinciding with the weak and strong
topologies on bounded subsets of L(X) — see [9, VI, 9].

The ultraweak operator topology on L(X) is the topology generated by
the seminorms T 7→ |

∑
n 〈Txn, x′n〉| where {xn} and {x′n} range over pairs

of sequences in X and X ′ subject to
∑

n ‖xn‖ ‖x′n‖ < ∞. The ultrastrong
operator topology on L(H) is the topology generated by the seminorms T 7→{∑

n ‖Txn‖
2
} 1

2 where {xn} ranges over sequences for which
∑

n ‖xn‖
2 <∞.

The BWO topology coincides with the ultraweak topology, the BSO topol-
ogy with the ultrastrong topology, on L(H), when H is a Hilbert space.

The (spatial ) numerical range V (T ) of an operator T is defined to be

V (T ) ∆=
{ 〈
Tx, x′

〉
: (x, x′) ∈ Π

}
.

An operator R on X is hermitian if its numerical range is real i.e., if
V (R) ⊂ R; equivalently, if {

‖exp(irR)‖ : r ∈ R
}

is bounded. The set of hermitian operators is closed in the norm, strong
and weak operator topologies.

The following result is crucial:

Theorem 2.1 (Vidav-Palmer Theorem). Suppose that A is a unital subal-
gebra of L(X) [the unit being the identity operator on X]. Let H be the
set of hermitian elements of A. Then A = H + iH if and only if A is a
pre-C∗-algebra under the operator norm and the natural involution

∗ : A → A : R+ iJ 7→ R− iJ (R, J ∈ H).
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It then follows that B ∆= A is a C∗-algebra on X, containing the identity
IX on X. (See [3, §38] for a discussion of these topics.)

When B is a C∗-algebra on X the family ωωωΠ is a separating family of
states on B.

We shall use the following terminology: a von Neumann algebra is a
weakly closed C∗-algebra of operators on a Hilbert space, while a W∗-algebra
is a C∗-algebra which has a realisation as a von Neumann algebra [equiva-
lently, is a dual space of a Banach space].

Unital *-isomorphisms of C∗-algebras are isometric.

Theorem 2.2 (BWO Closure Theorem). Suppose that B is a C∗-algebra on
X and that its unit ball B1 is relatively weakly compact. Then the BWO
closure of B,

B˜ ∆=
∞⋃
n=1

nB1
w
,

is a W∗-algebra; and (B )̃1 = B1
w. Moreover, any faithful representation of

B˜ as a concrete von Neumann algebra is BWO bicontinuous.

The proof [24] rests on the fact that, by the identity of comparable com-
pact Hausdorff topologies, the weak topology on B1

w is the weak topology
induced by the states ωωωΠ.

It remains open, in general, to decide whether B˜= Bw.

2.1. Commutative C∗-algebras on X. The remaining results in this sec-
tion apply to any commutative unital C∗-subalgebra B of L(X), and in
particular to any algebra generated by a Boolean algebra of (hermitian)
projections: see §3.

The operators in a commutative C∗-subalgebra of L(X) are called normal
(sometimes strongly normal). Abstractly, they enjoy all the properties of
normal operators on Hilbert spaces.

Let Λ be the maximal ideal space of B and Θ the inverse Gelfand map

Θ : C(Λ) → B

which is a unital isometric *-isomorphism: Θ is also called the functional
calculus for B.

On restricting Θ to the C∗-subalgebra generated by I, T (for any T ∈ B)
we obtain a functional calculus for a (strongly) normal T : a unital isometric
*-isomorphism

ΘT : C(sp(T )) → B
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such that

ΘT (z 7→ 1) = I

ΘT (z 7→ z) = T

ΘT (z 7→ z) = T ∗

‖ΘT (f)‖ = ‖f‖sp(T )

(
f ∈ C(sp(T ))

)
.

The following two lemmas demonstrate how to some extent normal oper-
ators on a Banach space mimic normal operators on a Hilbert space:

Lemma 2.3. Let B be a commutative C∗-algebra on X and let H be the set
of hermitian elements of B. Suppose that H

K ∈ H and 0 ≤ H ≤ K. Then

‖Hx‖ ≤ ‖Kx‖
(
x ∈ X

)
.

For any ε > 0 the operator L = H/(K + εI) is defined in H, and, by
the functional calculus, 0 ≤ L ≤ 1; so ‖L‖ ≤ 1. It follows that ‖Hx‖ =
‖L(K + εI)x‖ ≤ ‖(K + εI)x‖. Now let ε→ 0.

The next result, originally due to Palmer [18, Lemma 2.7], helps us extend
the C∗ structure from B to C ∆= Bw. The following short proof is taken from
[4]:

Lemma 2.4. For all B ∈ B and x ∈ X we have

‖Bx‖ = ‖B∗x‖ .

Proof. For ε > 0 the functional calculus gives∥∥B −B2(B∗B + εI)−1B∗
∥∥ =

∥∥εB(B∗B + εI)−1
∥∥ ≤ √

ε/2,

and ∥∥B2(B∗B + εI)−1
∥∥ ≤ 1.

Thus, for any x ∈ X,

‖Bx‖ = lim
ε→0

∥∥B2(B∗B + εI)−1B∗x
∥∥ ≤ ‖B∗x‖ ,

and then ‖B∗x‖ ≤ ‖B∗∗x‖ = ‖Bx‖ . �

The weak closure of a commutative C∗-algebra on X is also a C∗-algebra
on X.

Theorem 2.5. Let B be a commutative C∗-algebra on X and let H be the
set of hermitian elements of B. Let Hw be the weak operator topology closure
of H, and Bw the weak operator topology closure of B. Then

Bw = Hw + iHw

and so Bw is a C∗-algebra. Moreover,
(
Bw
)
1

= B1
w. Hence B˜= Bw.
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Proof. First note that the weak and strong closures coincide for H and B
(they are both convex sets). Now Lemma 2.4 shows that Bs = Hs + iHs, so
Bw is a C∗-algebra.

Consider H ∈ (Hw)1. Then K =
(
I − [I − H2]

1
2

)
/H ∈ Hw, and H =

2K/(I + K2). Take a net Kα in H converging strongly to K: put Hα =
2Kα/(I +K2

α). Then

Hα −H = 2(I +K2
α)−1 (Kα −K) (I +K2)−1 +

1
2
Hα(K −Kα)H

so H ∈ H1
w. By the Russo-Dye Theorem [3, §38] we have (Bw)1 ⊆ B1

w. �

Corollary 2.6. If, further, the unit ball of B is relatively weakly compact,
then Bw is a W∗-algebra and any faithful representation of Bw as a concrete
von Neumann algebra on a Hilbert space is BWO bicontinuous (that is,
weakly bicontinuous on bounded sets).

Proof. Use Theorem 2.2. �

Remark 2.7. We show later (§4) that any such faithful representation is
also BSO bicontinuous (that is, strongly bicontinuous on bounded sets).
The proof (maybe the result) depends on being able to represent Bw by a
spectral measure: and the presence of c0 as a subspace of X seems to be the
natural obstruction to this: see §6 below.

3. Boolean algebras of projections & the algebras they generate.

Let X be a complex Banach space, and E a bounded Boolean algebra of
projections on X:

I ∈ E ⊆ L(X)
E ∈ E =⇒ E2 = E

E ∈ E =⇒ I − E ∈ E
E, F ∈ E =⇒ EF = FE ∈ E

‖E‖ ≤ KE (E ∈ E)

for some constant KE . Write aco E for the absolutely convex hull of E in
L(X).

It can be shown (see [6, 5.4]) that then

S =

{∑
finite

λjEj : |λj | ≤ 1, Ej ∈ E , EjEk = 0 (j 6= k)

}
is a bounded multiplicative semigroup of operators on X. If we define

‖x‖E = sup
{
‖Sx‖ : S ∈ S

}
(x ∈ X)
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we obtain a norm ‖·‖E on X, equivalent to the original norm on X, with
respect to which each element of E is hermitian. Thus, without loss of
generality,

we shall assume that all elements of E are hermitian.

Remark 3.1. By Sinclair’s Theorem ‖E‖ = 1 for any nonzero hermitian
projection.

Theorem 3.2. Let E be a Boolean algebra of hermitian projections on a
complex Banach space X. Then A, the linear span of E, is the *-algebra
generated by E: A is a commutative unital algebra, and A = H+ iH, where
H is the set of hermitian elements of A. So B, ∆= A, is a commutative
C∗-algebra on X.

Proof. Immediate from the Vidav-Palmer Theorem (Theorem 2.1). �

Lemma 3.3. Let S ∈ A and suppose that −I ≤ S ≤ I. Then

S ∈ 2 aco E .

Proof. Suppose first that 0 ≤ S ≤ I. Write S in E-step-form as S =
M∑
j=1

λjEj , where the Ej are pairwise disjoint. Then 0 ≤ λj ≤ 1. Arrange

the λj in descending order: then ‖S‖ = λ1. Define λM+1 = 0 and use Abel
summation —

S =
M∑
j=1

λjEj =
M∑
j=1

(λj − λj+1)

(
j∑

h=1

Eh

)
∈ aco E .

If −I ≤ S ≤ I, split S into its positive and negative parts. �

Theorem 3.4. Let E be a Boolean algebra of hermitian projections on a
complex Banach space X, and let B be the C∗-algebra it generates. Let B1

be the closed unit ball of B. Then

B1 ⊆ 4 aco E .

Proof. Consider an element B ∈ B such that ‖B‖ < 1. Given ε > 0 we can
find S = R + iJ in A such that ‖B −R− iJ‖ ≤ min{ε, 1 − ‖B‖}. Now
‖R‖
‖J‖ ≤ 1, so that, by Lemma 3.3, R

J ∈ 2 aco E . �

Corollary 3.5. The following are equivalent:
1) B1 is relatively weakly compact.
2) aco E is relatively weakly compact.
3) E is relatively weakly compact.

Proof. Use the Krein-Šmulian Theorem. �
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We can now state the main theorem of this section.

Theorem 3.6. Let E be a relatively weakly compact Boolean algebra of her-
mitian projections on a complex Banach space X, and let B be the C∗-algebra
generated by E. Then Bw is a W∗-algebra and any faithful representation of
Bw as a concrete von Neumann algebra on a Hilbert space is BWO bicon-
tinuous (that is, weakly bicontinuous on bounded sets).

Proof. This follows from Corollary 3.5 and Theorem 2.2. �

4. σ-complete Boolean algebras of projections & spectral
measures.

The fundamental results on Boolean algebras of projections on a Banach
space were developed by Bade and are to be found in [10, XVII]. Much
interesting material on this topic is also to be found in [21].

Following [10] we say that an abstract Boolean algebra E is (σ-)complete
if each (countable) subset of E has a supremum and infimum in E .
E , a Boolean algebra of projections on X, is (σ-)complete on X if each

(countable) subset F of E has a supremum and infimum in E such that(∨
F
)
X = lin{F X : F ∈ F},

(∧
F
)
X =

⋂
F∈F

F X.

It has been shown that E is (σ-)complete onX if and only if every bounded
monotone (sequence) net in E converges strongly to a limit [10, XVII.3.4].
In this case E must be bounded [10, XVII.3.3].

On Hilbert space. On a Hilbert space H the following two facts are
classical. We sketch their (elementary) proofs for the convenience of the
reader.

Fact 4.1. Any monotone net of hermitian projections on H has a supre-
mum, to which it converges strongly.

Proof. Let
(
Eα
)
α∈A be such a net. The generalized Cauchy-Schwarz in-

equality
〈
P 2ξ, ξ

〉
≤ 〈Pξ, ξ〉

〈
P 3ξ, ξ

〉
, which holds for any positive operator

P on H and any element ξ ∈ H, shows that the net
(
Eα
)
α∈A is strongly

Cauchy. Also, its limit must be the supremum. �

Fact 4.2. Suppose that
(
Eα
)
α∈A is a net of hermitian projections that con-

verges weakly to a projection E. Then it converges strongly.

Proof. This is immediate from the calculation

‖(E − Eα) ξ‖2 =
〈
(E − Eα)2 ξ, ξ

〉
=
〈
E2ξ, ξ

〉
− 〈EEα ξ, ξ〉 − 〈EαE ξ, ξ〉+

〈
E2
αξ, ξ

〉
→
〈
(E − E2) ξ, ξ

〉
= 0.

�
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It follows that on a Hilbert space every Boolean algebra E of hermitian
projections can be extended to a complete one; that Es is the smallest such
complete extension; and that Es = Ew

⋂
{projections on H}.

On a Banach space the situation is more delicate. It has been shown that
if E is σ-complete on X then Es is complete on X [10, XVII.3.23], and that
the family of projections in Ew coincides with Es. See Corollary 4.10 below
for a proof [independent of Bade’s original methods].

We shall require the following result, proposed as an exercise in [9]:

Lemma 4.3. If S ⊂ L(X) then S is relatively compact in the weak operator
topology if and only if the sets S x are relatively weakly compact for all x ∈ X.

Proof. See [9, VI.9.2]. �

4.1. Spectral measures. Let Σ be a σ-algebra of subsets of a set Ω and
Γ a total subset of X ′. A spectral measure of class (Σ,Γ) is a Boolean
algebra homomorphism σ 7→ E(σ) from Σ into L(X) such that 〈E(σ)x, x′〉
is countably additive for each x ∈ X and x′ ∈ Γ: by the Banach-Orlicz-Pettis
theorem any spectral measure of class X ′ is strongly countably additive.

A σ-complete Boolean algebra of projections E on X can be identified
with the range of a spectral measure of class X ′ on the Borel sets of the
Stone space of E ([5, Chapter I]): then each vector measure E x is strongly
countably additive.

Lemma 4.4. If µ is a strongly countably additive vector measure with values
in X then aco{µ(σ) : σ ∈ Σ} is relatively weakly compact.

Proof. Essentially this is a result of Bartle, Dunford and Schwartz [1, 2.3]:
see also [5, I.2.7 & I.5.3]. �

Corollary 4.5. If E is σ-complete then the set aco w(Ex) is weakly compact
for each x ∈ X.

Theorem 4.6. Let E be a σ-complete Boolean algebra of hermitian projec-
tions. Then C, ∆= Bw, the commutative C∗-algebra generated by E in the
weak operator topology, is a W∗-algebra, and C1 = B1

w ⊆ 4 aco w E. Fur-
thermore, any faithful representation of C as a von Neumann algebra on a
Hilbert space is weakly bicontinuous on bounded sets.

Proof. aco w(Ex) is weakly compact for each x ∈ X (Corollary 4.5) so aco(E)
is relatively weakly compact, by Lemma 4.3. Apply Theorem 3.6. �

Theorem 4.7. Let B be a commutative C∗-algebra on X such that B1 is
relatively weakly compact. Let C = Bw. Then there is a representing spectral
measure E(·) defined on the Borel sets of the Gelfand space Λ of C such that

Θ(f) =
∫

Λ
f(λ)E(dλ) (f ∈ C(Λ)).
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Proof. Let π : C → L(H) be a BWO continuous representation of C as a
concrete W∗-algebra. Let Ẽ(·) be a representing spectral measure for π(C):

π ◦Θ(f) =
∫

Λ
f(λ)Ẽ(dλ) (f ∈ C(Λ)).

Now define E(·) = π−1Ẽ(·): this yields a spectral measure on X
[
E(·) is

weakly countably additive, and so, by the Banach-Orlicz-Pettis theorem,
strongly countably additive

]
: and then

Θ(f) =
∫

Λ
f(λ)E(dλ) (f ∈ C(Λ)).

�

It is immediate that for a bounded net
(
Tα
)
α∈A of operators on a Hilbert

space we have (
Tα
)
α∈A →strongly 0 ⇐⇒

(
T ∗αTα

)
α∈A →weakly 0.

A similar result holds for normal operators on a Banach space provided
that they belong to a common W∗-algebra.

Theorem 4.8. Let C be a commutative W∗-algebra on X. Suppose that(
Sα
)
α∈A is a bounded net in C. Then(

Sα
)
α∈A →strongly 0 ⇐⇒

(
S∗αSα

)
α∈A →weakly 0.

Proof. Clearly Sα →strongly 0 implies that S∗αSα →strongly 0 , whence S∗αSα
→weakly 0.

Let E(·) be the representing spectral measure for C guaranteed by Theo-
rem 4.7.

Suppose that S∗αSα →weakly 0. Let fα = Θ−1Sα. Then

lim
α

〈
S∗αSαx, x

′〉 = lim
α

∫
Λ
|fα|2

〈
E(dλ)x, x′

〉
(x ∈ X, x′ ∈ X ′).

Therefore lim
α
fα = 0 in var 〈E(·)x, x′〉 measure and lim

α

∫
Λ fα 〈E(dλ)x, x′〉 =

0. For fixed x ∈ X the set {〈E(·)x, x′〉 : ‖x′‖ ≤ 1} is a relatively weakly
compact set of measures [9, IV.10.2]: hence lim

α

∫
Λ fα 〈E(dλ)x, x′〉 = 0 uni-

formly for ‖x′‖ ≤ 1 [14, Théorème 2]. Therefore lim
α

∫
Λ fαE(dλ)x = 0; that

is, Sα →strongly 0. �

Corollary 4.9. Let C be a commutative W∗-algebra on X. Then any faith-
ful concrete representation of C as a von Neumann algebra is weakly and
strongly bicontinuous on bounded sets.

Corollary 4.10. Let E be a σ-complete Boolean algebra of hermitian pro-
jections, and let

(
Eα
)
α∈A be a monotone net of hermitian projections in
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the commutative W∗-algebra C generated on X by E. Then
(
Eα
)
α∈A con-

verges strongly to a projection in C. So Es is complete on X. What is more,
Es = Ew

⋂
{projections in C}.

Proof. This follows immediately from the known results on Hilbert spaces
and from the strong bicontinuity of faithful representations guaranteed by
the theorem. �

The next corollary complements [23, Theorem 5] and [12, Theorems 1,
2].

Corollary 4.11. Let E be a bounded Boolean algebra of projections on a
Banach space X and suppose that E is relatively weakly compact. Then E
has a (σ-)complete extension contained in Es.
Remark 4.12. This happens automatically when X 6⊃ c0 (see §6).

Corollary 4.13 ([10, XVII.3.7]). Let E be a complete bounded Boolean al-
gebra of projections on a Banach space X. Then E is strongly closed.

Remark 4.14. The results of [7] overlap with ours.

5. Spectral operators.

An operator T ∈ L(X) is prespectral of class Γ if there is a spectral measure
E(·) of class (Σp,Γ) (here Σp is the family of Borel subsets of the complex
plane) such that for all σ ∈ Σp:

T E(σ) = E(σ)T,(1)

sp(T
∣∣E(σ)X) ⊆ σ.(2)

The spectral measure E(·) is called a resolution of the identity of class Γ for
T . If, further, T =

∫
sp(T ) λE(dλ), then T is a scalar-type operator of class

Γ.

Remark 5.1. Given a scalar-type spectral operator T =
∫
sp(T ) λE(dλ) we

can define its real part < T =
∫
sp(T ) < λ E(dλ), and its imaginary part

= T =
∫
sp(T ) = λ E(dλ). By the (closed) *-algebra generated by T we mean

the (closed) algebra generated by < T and = T .

An operator T ∈ L(X) is a spectral operator if it is prespectral of class X ′:
that is, if there is a spectral measure E(·) of class X ′ satisfying Conditions
(1) and (2) above, and if also

E(·) is strongly countably additive on Σp.

An important property of spectral operators is that if T is spectral and
S commutes with T , then S commutes with the resolution of the identity
of T [6, Theorem 6.6].

Scalar-type spectral operators have been characterised as follows:
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Theorem 5.2 ([17] & [22, Theorem]). The operator T ∈ L(X) is a scalar-
type spectral operator if and only if it satisfies the following two conditions:

(1) T has a functional calculus, and
(2) for every x ∈ X the map Θx : C(sp(T )) → X : f 7→ Θ(f)x is weakly

compact.

Note that by Lemma 4.3 Property (2) is equivalent to:
(2′) The functional calculus Θ : C(sp(T )) → L(X) is weakly compact in the

sense that Θ
({
f ∈ C(sp(T )) : ‖f‖sp(T ) ≤ 1

})
is relatively compact in

the weak operator topology of L(X).

6. In the absence of c0.

The following theorem goes back to Grothendieck, Bartle-Dunford-Schwartz,
and others. See [5, VI, Notes] for an interesting discussion of its genesis and
development.

Theorem 6.1. If B is a C∗-algebra, if Θ : B → X is a bounded operator,
and X does not contain a subspace isomorphic to c0, then Θ is a weakly
compact mapping.

Remarks on the proof. A stronger version of this theorem, where B may be
any complete Jordan algebra of operators, not necessarily commutative, can
be found in [25, Theorem 2]. That proof relies on James’s characterisation
of weakly compact sets and the Bessaga-Pe lczyński result that X contains no
copy of c0 if and only if all series

∑
n xn in X with

∑
n |〈xn, x′〉| convergent

for all x′ ∈ X ′ are unconditionally norm convergent.

Corollary 6.2. Let T be a normal operator on a Banach space X that does
not contain a subspace isomorphic to c0. Then T is a scalar-type spectral
operator.

Proof. T has a functional calculus (see §2) which, by the theorem, is weakly
compact. Apply Theorem 6.1. �

We can now present a theorem which is stronger than any other known
to us in this area.

Theorem 6.3. Let E be a bounded Boolean algebra of hermitian projec-
tions on a Banach space X and suppose that X does not contain a subspace
isomorphic to c0. Then the weakly closed algebra Bw generated by E is a
W∗-algebra and any faithful representation of Bw as a concrete von Neu-
mann algebra on a Hilbert space is BWO and BSO bicontinuous. Moreover,
every operator in Bw is a scalar-type spectral operator.

Proof. Theorem 6.1 shows that E is relatively weakly compact. The result
follows from Theorem 3.6, Corollary 4.9, and Corollary 6.2. �
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Corollary 6.4. Let T be a commuting family of scalar-type spectral oper-
ators on a Banach space X that does not contain a subspace isomorphic
to c0. Suppose that the Boolean algebra generated by the resolutions of the
identity of T for each T ∈ T is uniformly bounded. Then every operator in
the weakly closed *-algebra generated by T is a scalar-type spectral operator.

It has recently been shown [13, Theorem 2.5] that on a Banach lattice the
Boolean algebra generated by two commuting bounded Boolean algebras of
projections is itself bounded. Hence:

Corollary 6.5. Let X be a complex Banach lattice not containing a copy of
c0, and let T be a finite commuting family of scalar-type spectral operators
on X. Then every operator in the weakly closed *-algebra generated by T is
a scalar-type spectral operator.

c0 as the natural obstruction. If X contains c0 then there is a strongly
closed bounded Boolean algebra F of projections on X that is not complete
[12, Theorem 2]. Then the weakly closed algebra generated by F cannot
have relatively weakly compact unit ball, and there can be no BWO bicon-
tinuous faithful representation of this algebra on a Hilbert space.

7. Boolean algebras with countable basis.

As remarked above, c0 seems to be the natural essential obstruction to ex-
tending the results of the previous section. It is of course conceivable that
closer analysis will lead to a proof that the sum and product of a pair of
commuting scalar-type spectral operators must be scalar-type spectral op-
erators so long as the Boolean algebra generated by their resolutions of the
identity is bounded.

We shall say that a Boolean algebra E has a countable basis if it contains
a countable orthogonal subfamily F =

(
Fm
)
m∈N such that every E ∈ E can

be written as the strong sum of a subset of this family. Note that then

I =
∞∑
m=1

Fm, the sum being strongly convergent.

Lemma 7.1. Let C be a commutative C∗-algebra on X and
(
Fm
)
m∈N a

countable family of positive elements of C such that
∞∑
m=1

Fm converges in the

strong topology. Let Cm be any sequence in C for which 0 ≤ Cm ≤ I (∀m).
Then

∞∑
m=1

CmFm

converges strongly.
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Proof. Note that 0 ≤ CmFm ≤ Fm (∀m). Then, for M < N ,

0 ≤
N∑

m=M+1

CmFm ≤
N∑

m=M+1

Fm;

so, by Lemma 2.3, the sequence
(
CmFm

)
m=∈N is a strongly Cauchy sequence,

and hence strongly convergent. �

The following theorem generalises [13, Theorem 3.6]:

Theorem 7.2. Suppose that E(1) and E(2) are two commuting σ-complete
Boolean algebras of projections on X and that the Boolean algebra E gener-
ated by E(1) and E(2) is bounded. Assume, further, that E(2) has a countable
basis F =

(
Fm
)
m∈N. Then E has a σ-complete extension, and hence a

complete extension.

Proof. As remarked in §3 we may, and shall, assume that all the elements of
E(1) and E(2) are hermitian. Let C be the weakly closed C∗-algebra generated
by E .

For each sequence of projections
(
E

(1)
m

)
m∈N taken from E(1) we can, by

Lemma 7.1, define E =
∞∑
m=1

E
(1)
m Fm ∈ C. Each such E is a hermitian pro-

jection in C so has norm ≤ 1.
Consider

G ∆=

{ ∞∑
m=1

E(1)
m Fm : E(1)

m ∈ E(1)

}
.

It is clear that Fm ∈ G (∀m), so E(2) ⊆ G. Note also that for any
E(1) ∈ E(1) we have E(1) =

∑
m E(1)Fm, so E(1) ∈ G. Thus E(1) ∨ E(2) ⊆ G.

It is clear that G is closed under products. Further, for any

E =
∞∑
m=1

E(1)
m Fm ∈ G

we have

I − E =
∞∑
m=1

[
I − E(1)

m

]
Fm ∈ G,

and so G is a Boolean algebra of hermitian projections on X.
Note that for any such E ∈ G we have EFm = E

(1)
m Fm (∀m): thus any

element of G, which can be written, though not in a unique manner, as an
(orthogonal) sum

E =
∞∑
m=1

E(1)
m Fm,

satisfies
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E =
∞∑
m=1

E(1)
m Fm =

∞∑
m=1

EFm.

Now consider a sequence
(
Eh
)
h∈N of pairwise orthogonal projections in G:

Eh =
∞∑
m=1

E
(1)
h,mFm =

∞∑
m=1

EhFm.

For each k and m define

Gk,m
∆=

k∨
h=1

E
(1)
h,m ∈ E(1)

and then define

Gm
∆=

∞∨
k=1

Gk,m =
∞∨
h=1

E
(1)
h,m ∈ E(1).

Note that for each k and m

Gk,mFm =
k∨

h=1

E
(1)
h,mFm =

k∑
h=1

E
(1)
h,mFm =

(
k∑

h=1

Eh

)
Fm.

Suppose that x ∈ X and ε > 0. Then there exists an M such that∥∥∥∥∥x−
M∑
m=1

Fm x

∥∥∥∥∥ < ε

and so we can find N such that for 1 ≤ m ≤M and k ≥ N

‖(Gm −Gk,m)x‖ < ε/M.

Suppose that j < k: then 0 ≤
k∑

h=j+1

Eh ≤ I, and so, by Lemma 2.3,∥∥∥∥∥∥
 k∑
h=j+1

Eh

x

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
 k∑
h=j+1

Eh

(x− M∑
m=1

Fm x

)∥∥∥∥∥∥
+

M∑
m=1

∥∥∥∥∥∥
 k∑
h=j+1

Eh

Fmx

∥∥∥∥∥∥
≤

∥∥∥∥∥x−
M∑
m=1

Fm x

∥∥∥∥∥+
M∑
m=1

‖(Gk,m −Gj,m)Fm x‖

≤

∥∥∥∥∥x−
M∑
m=1

Fm x

∥∥∥∥∥+
M∑
m=1

‖(Gk,m −Gj,m)x‖

≤ ε+ ε = 2ε.
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This shows that G is σ-complete. Then Es is complete (Corollary 4.10).
�

From this we obtain the following results.

Theorem 7.3. Let E(1) and E(2) be two commuting σ-complete Boolean al-
gebras of hermitian projections on X. Suppose that the Boolean algebra E
generated by E(1) and E(2) is bounded, and that E(2) has a countable basis.
Then the weakly closed *-algebra C generated by E is a W∗-algebra.

Corollary 7.4 (Extension of [13, 3.6]). Let X be a Banach space and T1,
T2 be commuting scalar-type spectral operators on X with resolutions of the
identity E(1), E(2) such that E(1) ∨ E(1) is bounded. Suppose further that one
of these operators has countable spectrum. Then all operators in the weakly
closed *-algebra generated by T1 and T2 are scalar-type spectral operators.
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[2] C. Bessaga and A. Pe lczyński, On bases and unconditional convergence of series in
Banach spaces, Studia Math., 17 (1958), 151-164, MR 22 #5872, Zbl 0084.09805.

[3] F.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, 1973,
MR 54 #11013, Zbl 0271.46039.

[4] M.J. Crabb and P.G. Spain, Commutators and normal operators, Glasgow Math. J.,
18 (1977), 197-198, MR 56 #1115, Zbl 0351.47025.

[5] J. Diestel and J.J. Uhl Jr., Vector Measures, Amer. Math. Surveys, 15, Amer. Math.
Soc., 1977, MR 56 #12216, Zbl 0369.46039.

[6] H.R. Dowson, Spectral Theory of Linear Operators, Academic Press, 1978,
MR 80c:47022, Zbl 0384.47001.

[7] H.R. Dowson and T.A. Gillespie, A representation theorem for a complete Boolean
algebra of projections, Proc. Roy Soc. Edin., 83A (1979), 225-237, MR 80m:47039,
Zbl 0417.47014.

[8] N. Dunford, Spectral operators, Pacific J. Math., 4 (1954), 321-354, MR 16,142d,
Zbl 0056.34601.

[9] N. Dunford and J.T. Schwartz, Linear Operators. I. General Theory, Interscience,
New York, 1958, MR 22 #8302, Zbl 0084.10402.

[10] N. Dunford and J.T. Schwartz, Linear Operators, Part III: Spectral Operators, Inter-
science (Wiley), New York, 1971, MR 54 #1009.

[11] S.R. Foguel, Sums and products of commuting spectral operators, Ark. Mat., 3 (1957),
449-461, MR 21 #2914, Zbl 0081.12301.

[12] T.A. Gillespie, Strongly closed bounded Boolean algebras of projections, Glasgow
Math. J., 22 (1981), 73-75, MR 82a:46018, Zbl 0455.47024.

[13] , Boundedness criteria for Boolean algebras of projections, J. Functional Anal.,
148 (1997), 70-85, MR 98h:47048, Zbl 0909.46017.



16 H.R. DOWSON, M.B. GHAEMI, AND P.G. SPAIN

[14] A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type
C(K), Canad. J. Math., 5 (1953), 129-173, MR 15,438b, Zbl 0050.10902.

[15] S. Kakutani, An example concerning uniform boundedness of spectral measures,
Pacific J. Math., 4 (1954), 363-372, MR 16,143b, Zbl 0056.34702.

[16] S. Kantorovitz, On the characterization of spectral operators, Trans. Amer. Math.
Soc., 110 (1964), 519-537, MR 28 #3329, Zbl 0139.08702.

[17] I. Kluvanek, Characterization of scalar-type spectral operators, Arch. Math. (Brno),
2 (1966), 153-156, MR 35 #2163, Zbl 0206.13704.

[18] T.W. Palmer, Unbounded normal operators on Banach spaces, Trans. Amer. Math.
Soc., 133 (1968), 385-414, MR 37 #6768, Zbl 0169.16901.

[19] G.K. Pedersen, C∗-Algebras and their Automorphism Groups, Academic Press, 1979,
MR 81e:46037, Zbl 0416.46043.

[20] N.W. Pedersen, The resolutions of the identity for sums and products of commuting
spectral operators, Math. Scand., 11 (1962), 123-130, MR 28 #479.

[21] W. Ricker, Operator Algebras generated by Commuting Projections: A Vector Mea-
sure Approach, Lecture Notes in Mathematics, 1711, 1999, MR 2001b:47055,
Zbl 0936.47020.

[22] P.G. Spain, On scalar-type spectral operators, Proc. Camb. Phil. Soc., 69 (1971),
409-410, MR 44 #7338, Zbl 0211.44702.

[23] , On commutative V∗-algebras II, Glasgow Math. J., 13 (1972), 129-134,
MR 47 #7461, Zbl 0245.46099.

[24] , The W∗-closure of a V∗-algebra, J. London Math. Soc. (2), 7 (1973), 385-386,
MR 49 #9649, Zbl 0272.46047.

[25] , A generalisation of a theorem of Grothendieck, Quarterly J. Math., 27 (1976),
475-479, MR 56 #1007, Zbl 0341.46007.

Received October 1, 2001.

Mathematics Department
University of Glasgow
Glasgow G12 8QW
Scotland
E-mail address: hrd@maths.gla.ac.uk

Mathematics Department
Birjand University
Birjand
Iran
E-mail address: mohammadbg@yahoo.com

Mathematics Department
University of Glasgow
Glasgow G12 8QW
Scotland
E-mail address: pgs@maths.gla.ac.uk



PACIFIC JOURNAL OF MATHEMATICS
Vol. 209, No. 1, 2003

ON RINGS WHICH ARE SUMS OF TWO PI-SUBRINGS: A
COMBINATORIAL APPROACH

B. Felzenszwalb, A. Giambruno, and G. Leal

We study the following open question: If a ring R is the
sum of two subrings A and B both satisfying a polynomial
identity, does R itself satisfy a polynomial identity? We give
a positive answer to this question in case R satisfies a special
“mixed” identity or (AB)k ⊆ A for some k ≥ 1 or A or B is
a Lie ideal. Our approach is based on a comparative analysis
of the sequences of codimensions of the three rings and their
asymptotics. As a reward we obtain a bound on the degree
of a polynomial identity satisfied by R as a function of the
degree of an identity satisfied by A and B.

1. Introduction.

Let R be a ring and suppose that A and B are two subrings of R such that
R = A+B is their sum. Here we consider the following open question:

If both A and B satisfy a polynomial identity (i.e., PI-rings), does R itself
satisfy a polynomial identity ?

The answer to this question is known to be positive in several cases. The
first result that can be read in this setting is due to Kegel [K]. He showed
that if A and B are both nilpotent rings (so, they satisfy an identity of the
type x1x2 . . . xn ≡ 0) then the same conclusion holds in R. Bahturin and
Giambruno in [BG] proved that if A and B are commutative rings then
R satisfies the identity [x1, x2][x3, x4] ≡ 0, where [x, y] = xy − yx is the
Lie bracket. This result was later generalized by Beidar and Mikhalev in
[BM]. They proved that if both, A and B satisfy an identity of the form
[x1, x2] . . . [x2n−1, x2n] ≡ 0 for some n ≥ 2, then R is a PI-ring. By extending
Kegel’s result, Kepczyk and Puczylowski in [KP1] showed that if A and B
are nil of bounded exponent (so, they satisfy an identity of the form xn ≡ 0)
then so is R. This result was later pushed further in [KP2] by proving that
if one of the two subrings is nil of bounded exponent and the other is PI,
then R is PI.

To our knowledge these are the only results proved so far which hold
without any further assumption on the structure of the ring R (or A or B).

On the other hand, in [Ro1] Rowen proved that if A and B are both right
(left) ideals of R, then an identity on both A and B forces R to be a PI-ring.

17
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This result was later extended in [KP3] where the authors proved that the
same conclusion holds if one requires that only A or B is a one-sided ideal.
In case the ring R is semiprime, the also showed that if A is nil PI and B is
PI then R is PI.

We remark that, except for some results about semiprime rings, only in
[K] and [BG] an explicit identity of R was exhibited. In all the other cases
proved so far, the authors have shown the existence of an identity for R
without providing any information on its explicit form or on its degree (as
a function of the degrees of an identity of A and B). The reason for such
failure is essentially the following: Most of these results use a reduction
technique to the prime case where structure theory can be applied through
the Martindale ring of quotients. Such reduction makes essentially use of
the so called “Amitsur’s trick” (see [Ro2]) which allows to pass from the
semiprime case to the general case but gives no information on the degree
of the identities so far found.

In this paper we answer this question in some special cases. Let R =
A+B, where A and B are subrings satisfying a polynomial identity.

We prove that if for some k ≥ 1, either (AB)k ⊆ A or (BA)k ⊆ A, then
R is PI. As a corollary we obtain the case when A is a one-sided ideal or the
case when AB = BA and Bk ⊆ A. Moreover, R is still PI if either A or B
is a Lie ideal of R. We shall remark that this last result can also be derived
from a theorem on special Lie algebras.

One can also consider, in a natural fashion, “mixed” identities or semi-
identities for R, i.e., polynomials in two distinct sets of variables

f(y1, . . . , yn, z1, . . . , zm)

that vanish when we evaluate the yi’s into elements of A and the zi’s into
elements of B. We prove that R is a PI-ring provided R satisfies a k-special
semi-identity i.e., an identity of the type f(y1, . . . , yk, z1, . . . , zk), for some
k ≥ 1 where only one monomial of the type yσ(1)zτ(1) . . . yσ(k)zτ(k) appears
with nonzero coefficient, for all σ, τ ∈ Sk.

In all these results, we obtain an explicit function giving the degree of an
identity for R in terms of the degree of an identity of A and B. Through
this function, an explicit identity for R can be constructed as it has been
shown by Regev in [R2]. More precisely, suppose that A and B satisfy an
identity of degree d and one of the above hypotheses holds. Then we prove
that R satisfies an identity of degree d′ where d′ is the least integer greater
than aa where a has the following value: a = 8e(d− 1)4, if A or B is a Lie
ideal; a = 8e(kd(d− 1)− 1)2(d− 1)2, if (AB)k ⊆ A; a = 8e(d− 1)4, if A is a
one-sided ideal; a = 8ek(d− 1)2, if R satisfies a k-special mixed identity of
degree k (here e is the basis of the natural logarithms).

Our technique is based on a combinatorial approach to the problem using
the sequence of codimensions of a ring. This sequence was introduced and
exploited by Regev in [R1]. He proved, through this method, that the
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tensor product of two PI-rings is a PI-ring. In this paper we follow that
approach and we attach to each of the rings R, A and B its codimension
sequence and through the study of the relations among these sequences and
their asymptotic behaviour we are able to prove our results. Unfortunately
our approach does not solve the problem in its generality. We feel that one
needs a better understanding through a deeper and throughout analysis of
the sequences of codimensions and their relations.

2. Preliminaries.

Throughout we shall assume that all rings are algebras over a fixed field F.
We make this assumption in order to simplify the notation. On the other
hand it is easily verified that our results are still valid for general rings if
one assumes that all polynomials have integer coefficients and that A and B
satisfy an identity which is a monic polynomial. To this end we recall that
by a theorem of Amitsur (see [Ro2]), if a ring satisfies an identity which is
proper for all its homomorphic images, then it satisfies an identity of the
type (Stk)l, for some k, l, where Stk is the standard polynomial of degree k.

Let X = {x1, x2, . . . } be a countable set and let F 〈X〉 be the free algebra
on X over F. Recall that a polynomial f(x1, . . . , xn) is an identity for the
algebra R if f(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ R (in this case we write
f ≡ 0 on R). In case R satisfies a nontrivial identity f , i.e., f 6= 0, we say
that R is a PI-algebra.

In general one defines

Id(R) = {f ∈ F 〈X〉 | f ≡ 0 on R},
the set of polynomial identities of R. Id(R) has a structure of T-ideal of
F 〈X〉 i.e., an ideal invariant under all endomorphisms of F 〈X〉; it is obvious
that R is a PI-algebra if and only if Id(R) 6= 0.

Recall that a polynomial f(x1, . . . , xn) is multilinear if each variable xi,
i = 1, . . . , n, appears in every monomial of f with degree one. Multilinear
polynomials are important; in fact it is well-known that if R satisfies an
identity of degree d then it satisfies a multilinear identity of degree ≤ d.

For every n ≥ 1 we define

Vn = SpanF {xσ(1) . . . xσ(n) | σ ∈ Sn}
where Sn is the symmetric group of degree n. Vn is the space of multilinear
polynomials in x1, . . . , xn. Since dimF Vn = n!, from the above observation
we easily get the following:

Remark 2.1. The algebra R satisfies a polynomial identity if and only if
there exists n ≥ 1 such that

dimF
Vn

Vn ∩ Id(R)
< n!
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The above remark, though trivial, will be essential not only in the proof
of the existence of an identity for R but also for the explicit computation of
the corresponding degree.

3. The basic reduction.

From now on we shall assume that R is an F -algebra such that R = A+B
for suitable subalgebras A and B. We shall also assume that A and B are
PI-algebras. For the sake of simplicity let us denote by d the degree of an
identity satisfied by A and B.

Our first aim is to relate the valuations of polynomials in A, B to those
in R. To this end, we introduce two new countable sets Y = {y1, y2, . . . }
and Z = {z1, z2, . . . }. Then, we let F 〈Y ∪Z〉 be the free algebra on the set
Y ∪ Z over F. We relate F 〈Y ∪ Z〉 to F 〈X〉 by assuming that xi = yi + zi,
i = 1, 2, . . . .

We can now define the notion of s-identity (or semi-identity) of R. A
polynomial f(y1, . . . , yn, z1, . . . , zm) ∈ F 〈Y ∪ Z〉 is an s-identity of R if
f(a1, . . . , an, b1, . . . , bm) = 0 for all a1, . . . , an ∈ A, b1, . . . , bm ∈ B. Accord-
ingly one defines

Ids(R) = {f ∈ F 〈Y ∪ Z〉 | f is an s-identity of R},
the ideal of s-identities of R. It is clear that Ids(R) is an ideal invariant
under all endomorphisms of F 〈Y ∪Z〉 that leave F 〈Y 〉 and F 〈Z〉 invariant.
Also Id(R), Id(A), Id(B) ⊆ Ids(R).

Now we need the notion of multilinear polynomial in F 〈Y ∪ Z〉. To this
end, we give the same degree one to the variables yi and zi for all i = 1, 2, . . . .
Then

Wn = SpanF {wσ(1) . . . wσ(n) | σ ∈ Sn, wi = yi or zi, for all i = 1, . . . , n}
is the space of multilinear polynomials in y1, z1, . . . , yn, zn. It is clear that
dimF Wn = 2nn! and

Vn ⊆Wn.

Since
Vn

Vn ∩ Id(R)
=

Vn
Vn ∩ (Wn ∩ Ids(R))

∼=
Vn + (Wn ∩ Ids(R))

Wn ∩ Ids(R)
⊆ Wn

Wn ∩ Ids(R)
,

we have the following:

Lemma 3.1. dimF
Vn

Vn ∩ Id(R)
≤ dimF

Wn

Wn ∩ Ids(R)
.

At the light of Remark 2.1, we can now make the following reduction.
Recall that R satisfies an identity of degree n if and only if dimF

Vn
Vn∩Id(R) <

n!

Remark 3.2. If there exists n ≥ 1 such that dimF
Wn

Wn ∩ Ids(R)
< n!, then

R is a PI-algebra and satisfies an identity of degree n.
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The spaces Wn are still too large for our computations. Hence we next
make one further reduction.

Let t ≥ 0 and fix integers 1 ≤ r1 ≤ · · · ≤ rt ≤ n. Then define

Vr1,...,rt = SpanF {wσ(1) . . . wσ(n) | σ ∈ Sn, wi = yi, for i ∈ {r1, . . . , rt},
wj = zj , for j 6∈ {r1, . . . , rt}}.

Clearly
Wn =

⊕
1≤r1≤···≤rt≤n

Vr1,...,rt .

Also, it is easy to see that Wn∩Ids(R) =
⊕

1≤r1≤···≤rt≤n(Vr1,...,rt∩Ids(R)).
It follows that

dimF
Wn

Wn ∩ Ids(R)
=

∑
1≤r1≤···≤rt≤n

dimF
Vr1,...,rt

Vr1,...,rt ∩ Ids(R)
.

Write for simplicity V1,...,t = Vt,n−t and notice that for all 1 ≤ r1 ≤ · · · ≤
rt ≤ n, Vr1,...,rt ∼= Vt,n−t and Vr1,...,rt ∩ Ids(R) ∼= Vt,n−t ∩ Ids(R). Since for

every t = 0, . . . , n, there exist
(
n
t

)
subspaces Vr1,...,rt isomorphic to Vt,n−t,

we get:

Lemma 3.3. dimF
Wn

Wn ∩ Ids(R)
=

n∑
t=0

(n
t

)
dimF

Vt,n−t
Vt,n−t ∩ Ids(R)

.

We can now prove the final reduction.

Remark 3.4. In order to prove that R is a PI-algebra, it is enough to prove
that there exists n ≥ 1 such that for all t = 0, 1, . . . , n,

dimF
Vt,n−t

Vt,n−t ∩ Ids(R)
<
n!
2n
.

In this case R satisfies an identity of degree n.

Proof. Suppose dimF
Vt,n−t

Vt,n−t∩Ids(R) <
n!
2n . Then, by the previous lemma,

dimF
Wn

Wn ∩ Ids(R)
<

n∑
t=0

(
n
t

)
n!
2n

= 2n
n!
2n

= n!

and we are done by Remark 3.2. �

4. Ordering monomials.

Let 1 ≤ d ≤ n. Recall (see [R2]) that a permutation σ ∈ Sn is called d-bad
if there exist 1 ≤ k1 < · · · < kd ≤ n such that σ(k1) > · · · > σ(kd). We say
that σ is d-good if it is not d-bad. The d-good permutations are quite spare
in Sn; in fact, as a consequence of a theorem of Dilworth one can prove the
following:
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Lemma 4.1 ([R2, Theorem 1.8]). In Sn the number of d-good permuta-
tions is ≤ (d−1)2n

(d−1)! .

The d-good permutations were used in PI-theory for finding a bound to
dimF

Vn
Vn∩Id(C) for a PI-algebra C.

We say that a monomial xσ(1) . . . xσ(n) is d-good if the corresponding
permutation σ is d-good. The result is the following:

Theorem 4.2 ([R2, Theorem 1.3]). Let C be an algebra satisfying an iden-
tity of degree d. Then every monomial in Vn can be written (mod. Id(C)) as
a linear combination of d-good monomials. Hence dimF

Vn
Vn∩Id(C) ≤

(d−1)2n

(d−1)! .

Next step is to generalize the above theorem by adapting it to our situ-
ation R = A + B. Recall that we are assuming throughout that A and B
satisfy an identity of degree d. In order to simplify the notation, we make
the following:

Definition 4.3. Let t ≥ 0 and write w ∈ Vt,n−t in the following form:

w = w1yσ(1) . . . yσ(i1)w2yσ(i1+1) . . . yσ(i2)w3 . . . wryσ(ir−1+1) . . . yσ(ir)wr+1

where w1, . . . , wr+1 are (eventually trivial) monomials in the variables zi.
If the permutation σ is d-good (d-bad) we say that w is d-y-good (d-y-bad
resp.).

Recall that an additive subgroup U of a ring R is a Lie ideal of R if for
all u ∈ U, r ∈ R, we have that [u, r] ∈ U .

Lemma 4.4. Let A be a Lie ideal of R. Then, for all t = 0, 1, . . . , n, Vt,n−t
is spanned (mod. Ids(R)) by all d-y-good monomials.

Proof. Suppose that the conclusion of the lemma is false. We first order the
monomials of Vt,n−t according to the left lexicographic order of the variables
yi. Then, among all monomials which do not satisfy the conclusion of the
lemma, we pick a smallest one (in the given order). Let such monomial be

w = w1yσ(1) . . . yσ(i1)w2 . . . wryσ(ir−1+1) . . . yσ(ir)wr+1.

In the monomial w we first make the formal substitution

yσ(is)ws+1 = yσ(is) + ws+1yσ(is)

for s = 1, . . . , r, where yσ(is) = [yσ(is), ws+1]. Since A ia a Lie ideal of R,
the elements yσ(is) evaluate to elements of A. It follows that we can write w
as a linear combination of monomials in the variables yi, yi, zi where either
some monomial wi has been absorbed in a yi or it has been moved to the
left past some yi.

A repeated application of this process allows us to write w as a linear
combination of monomials of the type

w′ = w′1y
′
σ(1) . . . y

′
σ(i1)y

′
σ(i1+1) . . . y

′
σ(i2) . . . y

′
σ(ir)
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where y′j = [yj , wu1 , . . . , wus ] for some u1, . . . , us, s ≥ 0 and w′1 is a monomial
in the variables zi. Note that in our terminology the Lie commutators are
left normed i.e., [x1, . . . , xn] = [[x1, x2], . . . , xn]. Also, in each monomial w′,
the permutation of the indices of the variables y′i is still σ.

Since the conclusion of the lemma does not hold for the monomial w,
then in particular σ is a d-bad permutation. It follows that there exist
1 ≤ j1 < · · · < jd ≤ t such that σ(j1) > · · · > σ(jd). Write

w′ = ay′′1y
′′
2 . . . y

′′
d

where a = w′1y
′
σ(1) . . . y

′
σ(j1−1) and

y′′1 = y′σ(j1) . . . y
′
σ(j2−1), . . . , y

′′
d = y′σ(jd) . . . y

′
σ(ir).

Let f(y1, . . . , yd) =
∑

τ∈Sd
ατyτ(1) . . . yτ(d) be a multilinear identity of

degree d satisfied by A. We may clearly assume that α1 = 1. Since A is
a subring and a Lie ideal of R, then the polynomials y′′1 , . . . , y

′′
d evaluate

to elements of A. It follows that f(y′′1 , . . . , y
′′
d) is an s-identity of R. Hence

f(y′′1 , . . . , y
′′
d) ∈ Ids(R) ∩ Vt,n−t.

Write

w′ = ay′′1 . . . y
′′
d ≡ −

∑
aατy

′′
τ(1) . . . y

′′
τ(d) (mod. Ids(R)).(1)

By the definition of y′′1 , . . . , y
′′
d , since σ is d-bad, it follows that each monomial

ay′′τ(1) . . . y
′′
τ(d), to the right-hand side of (1), is smaller that ay′′1y

′′
2 . . . y

′′
d (in

the left lexicographic order of the y′′i ’ s).
If we now recall the definition of the yi’s and we open up all the brack-

ets, we obtain that w′ and, so, the original monomial w, can be written
(mod. Ids(R)) as a linear combination of monomials (in the variables yi and
zi) which are smaller than w in the left lexicographic order of the yi’s. By
the minimality of w, it follows that the lemma holds for such monomials.
Hence each of them can be written as a linear combination (mod. Ids(R))
of monomials which are d-y-good. But then the same conclusion holds for
w and this is a contradiction. �

Lemma 4.5. Suppose that for some k ≥ 1, (AB)k ⊆ A. Then, for all
t = 0, 1, . . . , n, Vt,n−t is spanned (mod. Ids(R)) by all kd(d−1)-y-good mono-
mials.

Proof. Suppose that the conclusion of the lemma is false and take, as before,
a monomial w which does not satisfy the conclusion of the lemma and is
smallest in the order of the yi’s. Let

w = w1yσ(1) . . . yσ(i1)w2 . . . wryσ(ir−1+1) . . . yσ(ir)wr+1.

By the choice of w, in particular, σ is kd(d− 1)-bad and let 1 ≤ j1 < · · · <
jkd(d−1) ≤ t be such that σ(j1) > · · · > σ(jkd(d−1)). Suppose first that we
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can write
w = uyσ(jm)a1yσ(jm+1)a2 . . . adyσ(jm+d−1)v

for some m ∈ {1, 2, . . . , kd(d− 1)− d+ 1}, where a1, . . . , ad are monomials
in the only variables yi and u and v are suitable monomials.

In this case set yσ(jm)a1 = y′1, yσ(jm+1)a2 = y′2, . . . , yσ(jm+d−1)v = y′d.
Then

w = uy′1y
′
2 . . . y

′
d.

If f(y1, . . . , yd) is the multilinear identity of degree d satisfied by A, then
f(y′1, . . . , y

′
d) is still an identity of A and, by applying it as in the previous

lemma, we can write

w ≡ −
∑
τ∈Sd

ατuy
′
τ(1) . . . y

′
τ(d) (mod. Ids(R))(2)

for some ατ ∈ F. But each monomial on the right-hand side of (2) is smaller
than w in the order of the variables yi; hence we get, by the minimality of
w, that each of them can be written (mod. Ids(R)) as a linear combination
of kd(d− 1)-y-good monomials. But then the same conclusion holds for w,
a contradiction.

Hence we may assume that for any d indices jm < jm+1 < · · · < jm+d−1

(of the sequence giving the kd(d − 1)-y-badness of w), in the monomial w,
at least one variable zi appears between the variables yσ(jm) and yσ(jm+d−1).

Let us write w in the form

w = a0yσ(jp1 )a1yσ(jp2 )a2 . . . yσ(jpd
)ad

where p1 = 1, a0, a1, . . . , ad are monomials in the variables yi and zi and
yσ(jpm )am evaluates to either (AB)kA or (AB)k, for all m = 1, . . . , d. In
order for this decomposition to hold, we have to show that pd ≤ kd(d− 1).
In fact, by the assumption made above, in w, at least one variable zi appears
between two variables yσ(jm) and yσ(jm+d−1). Hence, for i = 1, . . . , d− 1,

pi+1 − pi ≤ k(d− 1),

but then, pd = 1+(p2−p1)+ · · ·+(pd−pd−1) ≤ kd(d−1) as claimed. Write
now

w = a0y
′
1y
′
2 . . . y

′
d

where y′1 = yσ(jp1 )a1, . . . , y
′
d = yσ(jpd

)ad and let f(y1, . . . , yd) be the identity
of A. Recall that y′i = yσ(jpi )

ai evaluates to (AB)kA or (AB)k and both
these sets lie in A by hypothesis. Hence f(y′1, . . . , y

′
d) is an s-identity of R

and f(y′1, . . . , y
′
d) ∈ Ids(R) ∩ Vt,n−t.

Through the identity f(y′1, . . . , y
′
d) we can now rearrange (mod. Ids(R))

the variables y′i in w and, as above, this leads to a contradiction due to the
minimality of w. �
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Corollary 4.6. If A is a one-sided ideal of R then, for all t = 0, 1, . . . , n,
Vt,n−t is spanned (mod. Ids(R)) by all d-y-good monomials.

Proof. From the previous lemma we get that Vt,n−t is spanned by the d(d−
1)-y-good monomials. We next show that this result can be improved as
claimed in the conclusion of the corollary. Suppose A is a one-sided ideal of
R.

As in the previous lemma we take w smallest in the order of the yi’s for
which the conclusion does not hold. We take 1 ≤ j1 < · · · < jd ≤ t such
that σ(j1) > · · · > σ(jd).

Then we write
w = ay′1y

′
2 . . . y

′
d

where a = w1yσ(1) . . . yσ(j1−1)w
′
1 and

y′1 = yσ(j1) . . . yσ(j2−1)w
′
2, . . . , y

′
d = w1yσ(jd) . . . wr+1

with w′1, w
′
2, . . . eventually trivial monomials in the variables zi. Since A

is a right ideal of R, the monomials y′1, . . . , y
′
d evaluate to elements of A.

Hence they can be rearranged (mod. Ids(R)) using the identity of A. This
completes the proof as in the previous lemmas. �

5. Mixed identities.

In this section we examine the case when R further satisfies a semi-identity
f ∈ Ids(R) of a special type. It is clear, by the standard multilinearization
process, that if R satisfies a nontrivial semi-identity of degree m, then it
also satisfies a multilinear one of degree ≤ m. If {i1, . . . , ik} is a subset of
{1, . . . , n} we denote by Sk(i1, . . . , ik) the subgroup of Sn of all permutations
fixing {1, . . . , n}\{i1, . . . , ik}. Also, in order to simplify the notation, we
write the variables zt+1, . . . , zn of Vt,n−t as z1, . . . , zn−t, respectively. We
now make the formal definition.

Definition 5.1. Let f(y1, . . . , yk, z1, . . . , zk) ∈ F 〈Y ∪ Z〉 be a multilinear
polynomial. We say that f is k-special if

f(y1, . . . , yk, z1, . . . , zk) = y1z1 . . . ykzk +
∑

σ∈S2k
σ 6∈T

ασwσ(1) . . . wσ(2k)

for some ασ ∈ F, where, for i = 1, . . . k, w2i = zi, w2i−1 = yi and T =
Sk(1, 3, . . . , 2k − 1)× Sk(2, 4, . . . , 2k) ⊆ S2k.

In few words, f is k-special if the only monomial of the type

yσ(1)zτ(1) . . . yσ(k)zτ(k)

appearing in f with nonzero coefficient is y1z1 . . . ykzk.
We next prove that in the presence of a k-special semi-identity for R we

can bound exponentially the dimension of Vt,n−t (mod. Ids(R)). Recall that
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if n ≥ 1 is an integer such that n = r1+ · · ·+rp, ri > 0, then the multinomial

coefficient is defined as
(

n
r1, . . . , rp

)
=

n!
r1! . . . rp!

.

Lemma 5.2. Suppose that R satisfies a k-special semi-identity. Then for
all t = 0, 1, . . . , n,

dimF
Vt,n−t

Vt,n−t ∩ Ids(R)
≤ (4k(d− 1)2)n

(d− 1)!
.

Proof. We decompose the space Vt,n−t as follows: Write t = q1 + · · · +
qp, n − t = r1 + · · · + rp where q1 ≥ 0, rp ≥ 0, for p > 1 we have that
q2, . . . , qp, r1, . . . , rp−1 are positive integers and at most one between q1 and
rp can eventually be zero. Then define (q, r) = (q1, . . . , qp, r1, . . . , rp) and

U
(p)
(q,r) = SpanF{yσ(1) . . . yσ(q1)zτ(1) . . . zτ(r1) . . . yσ(q1+···+qp−1+1)

. . . yσ(t)zτ(r1+···+rp−1+1) . . . zτ(n−t) | σ ∈ St, τ ∈ Sn−t}.
We write ⊕

(q,r)

U
(p)
(q,r) = U (p).

Clearly Vt,n−t = ⊕p≥1U
(p).

We claim that for every (q, r) and for every p,

U
(p)
(q,r) ⊆

⊕
s≤2k

U (s).(3)

In fact, suppose the above inclusion is false and pick a subspace U (p)
(q,r) with

p minimal such that U (p)
(q,r) is not contained in the right-hand side of (3).

Since p > 2k, every monomial in U
(p)
(q,r) is of the form

v = v1u1 . . . vpup

where v1, . . . , vp are monomials in the variables yi, u1, . . . , up are monomials
in the variables zi and either v1 or up is eventually trivial. Suppose for short
that v1 6= 1. Since, by hypothesis, R satisfies a k-special semi-identity and
A and B are subrings, we get that

v1u1 . . . vkuk ≡
∑

σ∈S2k
σ 6∈T

ασwσ(1) . . . wσ(2k) (mod. Ids(R)),

where w2i = vi and w2i−1 = ui, for i = 1, . . . , k. But then, this says that
(mod. Ids(R)) v is a linear combination of monomials belonging to some
U

(p1)
(s1,r1) with p1 < p. By the minimality of p, U (p1)

(s1,r1) ⊆
⊕
q≤2k

U (p) and, since

U
(p)
(s,r) ⊆ U

(p1)
(s1,r1), we get a contradiction.
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We now compute dimF U
(p)
(q,r) for every p ≤ 2k. Since both A and B

satisfy an identity of degree d, by Theorem 4.2, any monomial in the only
variables yi (in the only variables zi) can be written (mod. Ids(R)) as a linear
combination of d-good monomials. Moreover, by Lemma 4.1, the number
of d-good monomials in m variables is bounded by (d−1)2m

(d−1)! . Since in every

monomial of U (p)
(q,r) occur q1 consecutive variables yi, . . . , qp consecutive

variables yi (r1 consecutive variables zi, . . . , rp consecutive variables zi), we
get that U (p)

(q,r) is spanned (mod. Ids(R)) by at most

(d− 1)2q1

(d− 1)!
. . .

(d− 1)2qp

(d− 1)!
t!

q1! . . . qp!
(d− 1)2r1

(d− 1)!
. . .

(d− 1)2rp

(d− 1)!
(n− t)!
r1! . . . rp!

≤ (d− 1)2n

((d− 1)!)2p−1

(
t

q1, . . . , qp

)(
n− t

r1, . . . , rp

)
monomials.

Recall that if m,m1, . . . ,mp are positive integers such that m = m1+· · ·+

mp, by the multinomial theorem (see [Bi]), we have that
(

m
m1, . . . ,mp

)
≤

pm. Hence, since p ≤ 2k, we get that U (p)
(q,r) is spanned (mod. Ids(R)) by at

most
(d− 1)2n

(d− 1)!
(2k)t(2k)n−t =

(d− 1)2n(2k)n

(d− 1)!

monomials. Since there are at most 2n spaces U (p)
(q,r) inside Vt,n−t, the con-

clusion follows. �

6. The main results.

In the next lemma we prove that the results obtained in Lemma 4.4, Lem-
ma 4.5 and Corollary 4.6 allow us to get a suitable upper bound to the
dimension of Vt,n−t (modulo Vt,n−t ∩ Ids(R)).

Lemma 6.1. Let 0 ≤ t ≤ n and suppose that Vt,n−t is spanned (mod.
Ids(R)) by the c-y-good monomials, for some c ≥ 1. Then,

dimF
Vt,n−t

Vt,n−t ∩ Ids(R)
≤ 2n(c− 1)2t(d− 1)2(n−t)(t+ 1)n−t.

Proof. For t = q1 + · · ·+qp and n−t = r1 + · · ·+rp, let U (p)
(s,r) be the subspace

of Vt,n−t defined in the proof of the Lemma 5.2.
We shall compute the dimension of the spaces U (p)

(q,r) and, so, the dimension

of Vt,n−t (mod. Ids(R)), for t = 0, 1, . . . . By hypothesis U (p)
(q,r) is generated

(mod. Ids(R)) by all c-y-good monomials. By Lemma 4.1 the number of
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such monomials is bounded by (c−1)2t

(c−1)! . On the other hand, by recalling that
B satisfies an identity of degree d, by Theorem 4.2, every monomial in the
only variables zi can be written (mod. Ids(R)) as a linear combination of
d-good monomials. Since in every monomial of U (p)

(q,r) occur r1 consecutive

zi, . . . , rp consecutive zi, it follows that U (p)
(s,r) is spanned (mod. Ids(R)) by

at most

(c− 1)2t

(c− 1)!
(n− t)!
r1! . . . rp!

(d− 1)2r1

(d− 1)!
. . .

(d− 1)2rp

(d− 1)!

≤ (c− 1)2t(d− 1)2(n−t)

((c− 1)!(d− 1)!)p−1

(
n− t

r1, . . . , rp

)
≤ (c− 1)2t(d− 1)2(n−t)pn−t

monomials (note that the last inequality holds since by the multinomial

theorem
(

n− t
r1, . . . , rp

)
≤ pn−t).

Recalling that p ≤ t+ 1 and that there exist at most 2n subspaces U (p)
(q,r),

we get the desired conclusion. �

Theorem 6.2. Let R = A + B be a ring which is the sum of two subrings
A and B and suppose that A and B both satisfy an identity of degree d. We
have:

1) If (AB)k ⊆ A, for some k ≥ 1, then R is PI and satisfies an identity
whose degree is the least integer greater than aa where a = 8e(kd(d −
1) − 1)2(d − 1)2; in case A is a one-sided ideal then we can take a =
8e(d− 1)4;

2) if A is a Lie ideal, then R is PI and satisfies an identity whose degree
is the least integer greater than aa where a = 8e(d− 1)4;

3) if R satisfies a k-special semi-identity, for some k ≥ 1, then R is PI
and satisfies an identity whose degree is the least integer greater than
8ek(d− 1)2.

Proof. By Remark 3.4 it is enough to prove that there exists n such that

dimF
Vt,n−t

Vt,n−t ∩ Ids(R)
<
n!
2n
,

for all t = 0, . . . , n. The smallest n for which this inequality holds will also
give us the desired degree of an identity for R.

In order to get a bound for this smallest n, we are going to use the well-
known inequality (see, for instance, [FR, p. 105]) that holds for any x ≥ 1:(x

e

)x
<

Γ(x+ 1)√
2πx

< Γ(x+ 1)
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where Γ(x + 1) is the gamma function (recall that Γ(n + 1) = n! for every
natural number n) and e is the basis of the natural logarithms.

Suppose that Vt,n−t is spanned (mod. Ids(R)) by the c-y-good monomials,
for some c ≥ 1. Then, according to Lemma 6.1, it is enough to find a natural
number n such that

2n(c− 1)2t(d− 1)2(n−t)(t+ 1)n−t <
n!
2n

or, in view of the above remark,

(4e)n(c− 1)2t(d− 1)2(n−t)(t+ 1)n−t ≤ nn.

If we define a = 8e(c − 1)2(d − 1)2 then, since t + 1 ≤ 2t and t ≤ n, all we
need is n such that

antn−t ≤ nn.

Here we have two possibilities: If t ≤ n/a clearly the inequality holds for
every natural number n ≥ a. If n ≥ t > n/a it is easy to check that the
above inequality still holds for every natural number n ≥ aa.

By Lemma 4.4, in caseA is a Lie ideal ofR, Vt,n−t is spanned (mod. Ids(R))
by the d-y-good monomials. Hence by what we have just proved, by tak-
ing c = d, it follows that in this case R is PI and it satisfies an identity
of degree the least integer greater than aa where a = 8e(d − 1)4. Simi-
larly, in case (AB)k ⊆ A, by invoking Lemma 4.5 and c = kd(d− 1) above,
we get an identity for R of degree the least integer greater than aa where
a = 8e(kd(d− 1)− 1)2(d− 1)2.

Suppose now that R satisfies a k-special semi-identity. Then, by Lem-
ma 5.2, we know that

dimF
Vt,n−t

Vt,n−t ∩ Ids(R)
≤ (4k(d− 1)2)n

(d− 1)!
.

Therefore it is enough to take n ≥ 8ek(d− 1)2 > 8ek(d−1)2

n
√

(d−1)!
. �

One last remark is in order. As the referee has pointed out, the result:
If A and B are PI and one of them is a Lie ideal then R is PI, can also
be proved directly by an application of the theory of special Lie algebras
(see [B, Section 6.3]). In order to see this, regard R as a Lie algebra under
the bracket operation [ , ] and A and B as Lie subalgebras. Since a Lie
subalgebra of an associative PI-algebra is Lie PI ([B, Section 6.3]), both A
and B satisfy a nontrivial identity as Lie algebras. If, say, A is a Lie ideal,
then R/A is isomorphic to B which is Lie PI. Then the Lie algebra R, being
an extension of a PI-ideal A by a PI-quotient algebra B is PI. This clearly
implies that R is PI as an associative algebra.
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A METHOD OF WASHINGTON APPLIED TO THE
DERIVATION OF A TWO-VARIABLE p-ADIC

L-FUNCTION

Glenn J. Fox

We derive the existence of a specific two-variable p-adic L-
function by means of a method provided by Washington. This
two-variable function is a generalization of the one-variable
p-adic L-function of Kubota and Leopoldt, yielding the one-
variable function when the second variable vanishes.

1. Introduction.

In [5] Kubota and Leopoldt prove the existence of meromorphic functions,
Lp(s;χ), defined over the p-adic number field, that serve as p-adic equivalents
of the Dirichlet L-series. These p-adic L-functions interpolate the values

Lp(1− n;χ) = − 1
n

(
1− χn(p)pn−1

)
Bn,χn ,

whenever n is a positive integer. Here, Bn,χ denotes the nth generalized
Bernoulli number associated with the primitive Dirichlet character χ, and
χn = χω−n, with ω the Teichmüller character. Since the time of that publi-
cation, a number of individuals have derived the existence of these functions
by various means. In particular, Washington [8] derives the functions by
elementary means and expresses them in an explicit form:

Theorem 1. Let F be a positive integral multiple of q and fχ, and let

Lp(s;χ) =
1

s− 1
1
F

F∑
a=1

(a,p)=1

χ(a)〈a〉1−s
∞∑
m=0

(
1− s

m

)(
F

a

)m
Bm.

Then Lp(s;χ) is analytic for s ∈ D when χ 6= 1, and meromorphic for
s ∈ D, with a simple pole at s = 1 having residue 1 − 1/p, when χ = 1.
Furthermore, for each n ∈ Z, n ≥ 1,

Lp(1− n;χ) = − 1
n

(
1− χn(p)pn−1

)
Bn,χn .

Thus, Lp(s;χ) vanishes identically if χ(−1) = −1.

31
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Recently, a particular two-variable extension, Lp(s, t;χ), of the p-adic
L-functions was produced—one in which interpolating values of the two-
variable functions yield expressions in terms of the generalized Bernoulli
polynomials [3]. For positive integers n, these functions satisfy

Lp(1− n, t;χ) = − 1
n

(
Bn,χn(qt)− χn(p)pn−1Bn,χn

(
p−1qt

))
,

with the restriction that t ∈ Cp, |t|p ≤ 1. It has been shown that these in-
terpolating values share certain congruence properties with the correspond-
ing interpolating values of the one-variable functions [2]. By applying the
method that Washington used to derive Theorem 1, we obtain Lp(s, t;χ) by
elementary means and express the functions in an explicit form.

Theorem 2. Let F be a positive integral multiple of q and fχ, and let

Lp(s, t;χ) =
1

s− 1
χ(−1)
F

F∑
a=1

(a,p)=1

χ(a)〈a− qt〉1−s
∞∑
m=0

(
1− s

m

)(
F

a− qt

)m
Bm.

Then Lp(s, t;χ) is analytic for t ∈ Cp, |t|p ≤ 1, provided s ∈ D, except s 6= 1
when χ = 1. Also, if t ∈ Cp, |t|p ≤ 1, this function is analytic for s ∈ D
when χ 6= 1, and meromorphic for s ∈ D, with a simple pole at s = 1 having
residue 1− 1/p, when χ = 1. Furthermore, for each n ∈ Z, n ≥ 1,

Lp(1− n, t;χ) = − 1
n

(
Bn,χn(qt)− χn(p)pn−1Bn,χn

(
p−1qt

))
.

Thus, Lp(s, 0;χ) = Lp(s;χ) for each s ∈ D, with s 6= 1 if χ = 1.

By an analysis of the formula for Lp(s;χ) given in Theorem 1, one can
obtain Diamond’s formula for the value of L′p(0;χ) (see [6, p. 393]):

Theorem 3. Let χ be a primitive Dirichlet character, and let F be a positive
integral multiple of q and fχ. Then

L′p(0;χ) =
F∑

a=1
(a,p)=1

χ1(a)Gp
( a
F

)
− Lp(0;χ) logp(F ).

Here, the function Gp is the Diamond function, and logp is the p-adic
logarithm function of Iwasawa.

Young [9] derives a similar formula for (∂/∂s)Lp(0, t;χ) by means of a
p-adic integral representation of Lp(s, t;χ). However, his work is restricted
to those characters χ such that the conductor of χ1 is not a power of p.
The explicit formula given in Theorem 2 enables one to derive a formula for
(∂/∂s)Lp(0, t;χ), similar to that obtained by Young, but for all primitive
Dirichlet characters χ.
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Theorem 4. Let χ be a primitive Dirichlet character, and let F be a positive
integral multiple of q and fχ. Then for any t ∈ Cp, |t|p ≤ 1,

∂

∂s
Lp(0, t;χ) = χ(−1)

F∑
a=1

(a,p)=1

χ1(a)Gp

(
a− qt

F

)
− Lp(0;χ) logp(F ).

Note that, if χ(−1) = −1, then the function Lp(s;χ) vanishes identically.
However, Lp(s, t;χ) is not identically 0 for any character χ. Thus, Lp(s, t;χ)
provides us with a p-adic L-function that does not vanish identically for
those χ such that χ(−1) = −1. This may prove to be of use in the study of
structures associated with such characters.

2. Preliminaries.

Let χ be a Dirichlet character, defined modulo its conductor fχ. Then
χ(a)φ(fχ) = 1 for any a ∈ Z with (a, fχ) = 1, and χ(a) = 0 otherwise. For
two such characters χ and ψ, having conductors fχ and fψ, respectively, let
χψ denote the primitive character associated to the product of the charac-
ters. The conductor fχψ then divides lcm(fχ, fψ).

The generalized Bernoulli polynomials associated with χ, Bn,χ(t), are
defined by the generating function

fχ∑
a=1

χ(a)xe(a+t)x

efχx − 1
=

∞∑
n=0

Bn,χ(t)
xn

n!
.(1)

The corresponding generalized Bernoulli numbers can then be defined by
Bn,χ = Bn,χ(0). With this definition, the generalized Bernoulli polynomials
are expressed more precisely in terms of the expansion

Bn,χ(t) =
n∑

m=0

(
n

m

)
Bn−m,χt

m,

which is derived from (1).
The classical Bernoulli polynomials, Bn(t), are defined by

xetx

ex − 1
=

∞∑
n=0

Bn(t)
xn

n!
,

and the classical Bernoulli numbers by Bn = Bn(0). This yields the values
B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, . . . , with Bn = 0 for odd n ≥ 3.
The Bernoulli numbers are rational numbers, and the von Staudt-Clausen
theorem states that for even n ≥ 2,

Bn +
∑

p prime
(p−1)|n

1
p
∈ Z.
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Thus, the denominator of each Bn must be square-free. We also have the
relation

Bn(t) =
n∑

m=0

(
n

m

)
Bn−mt

m.(2)

The classical Bernoulli polynomials are related to the generalized Bernoulli
polynomials in that Bn,1(t) = (−1)nBn(−t), where χ = 1 is the unique
character having conductor 1 and satisfying χ(a) = 1 for each a ∈ Z.

Let p be a fixed prime. We will use Zp to represent the p-adic integers,
and Qp the p-adic rationals. Let Cp denote the completion of the algebraic
closure of Qp under the p-adic absolute value | · |p, normalized so that |p|p =
p−1. Fix an embedding of the algebraic closure of Q into Cp. Since each
value of a Dirichlet character χ is either 0 or a root of unity, we may consider
the values of χ as lying in Cp.

Denote q = 4 if p = 2 and q = p otherwise. Let ω denote the Teichmüller
character, having conductor fω = q. For an arbitrary character χ we then
define the character χn = χω−n, where n ∈ Z, in the sense of the product
of characters.

Let 〈a〉 = ω−1(a)a whenever (a, p) = 1. Then 〈a〉 ≡ 1 (mod qZp) for
these values of a. For our purposes, we extend this by defining 〈a + qt〉 =
ω−1(a)(a+ qt) for all a ∈ Z, with (a, p) = 1, and t ∈ Cp such that |t|p ≤ 1.
Then 〈a+ qt〉 = 〈a〉+ qω−1(a)t, so that 〈a+ qt〉 ≡ 1 (mod qZp[t]).

The p-adic logarithm function [4], logp, is the unique function mapping
C×
p → Cp that satisfies logp(1 + x) =

∑∞
n=1(−1)n−1xn/n for |x|p < 1,

logp(xy) = logp(x) + logp(y) for all x, y ∈ C×
p , and logp(p) = 0. Note that

these conditions imply that this function vanishes at any rational power of
p. The Diamond function [1] is defined by

Gp(x) =
(
x− 1

2

)
logp(x)− x+

∞∑
j=2

Bj
j(j − 1)

x1−j .

The domain of this function is |x|p > 1, with the p-adic convergence of this
sum being for each x in this domain.

Recall that whenever m ∈ Z, m ≥ 0, the power of p that divides m! is
given by the sum

∞∑
j=1

[
m

pj

]
≤ m

p− 1
,

where [x] is the unique integer n satisfying n ≤ x < n + 1. The bound on
this sum then implies that |m!|p ≥ |p|m/(p−1)

p .
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For each n ∈ Z, n ≥ 0, the quantity
(
x
n

)
is defined in like manner as the

binomial coefficients, denoting
(
x
0

)
= 1 and(

x

n

)
=

1
n!
x(x− 1) . . . (x− (n− 1))

for n > 0. Note that each such quantity is a polynomial in x.
Consider the following result from [8] (see also Chapter 5 of [7]):

Lemma 5. Let Aj(X) =
∑∞

n=0 an,jx
n, an,j ∈ Cp, j = 0, 1, . . . , be a se-

quence of power series, each of which converges in a fixed subset D of Cp,
such that:

(1) an,j → an,0 as j →∞ for each n; and
(2) for each s ∈ D and ε > 0, there exists n0 = n0(s, ε) such that

|
∑

n≥n0
an,js

n|p < ε for all j.
Then limj→∞Aj(s) = A0(s) for all s ∈ D.

This lemma is used by Washington to show that each of the functions 〈a〉s
and

∑∞
m=0

(
s
m

)
(F/a)mBm, where F is a multiple of q and fχ, is analytic in

D = {s ∈ Cp : |s − 1|p < |p|1/(p−1)
p |q|−1

p }. This, along with an identity
concerning generalized Bernoulli polynomials, enables the proof of the main
theorem of [8].

By the same means, we derive a similar result for a two-variable p-adic
L-function Lp(s, t;χ). This function is defined for s ∈ D, except s 6= 1 if
χ = 1, and t ∈ Cp, |t|p ≤ 1, and it interpolates the values

Lp(1− n, t;χ) = − 1
n

(
Bn,χn(qt)− χn(p)pn−1Bn,χn

(
p−1qt

))
,

where n ∈ Z, n ≥ 1. It is related to the one-variable function Lp(s;χ) in
that Lp(s, 0;χ) = Lp(s;χ) for each s in the domain of Lp(s;χ).

3. The two-variable p-adic L-function.

This now brings us to our main result. We will construct our function
Lp(s, t;χ) for s ∈ D, except s 6= 1 if χ = 1, and t ∈ Cp, |t|p ≤ 1, and
in the process derive an explicit formula for this function. Before we begin
this derivation, we need the following result concerning generalized Bernoulli
polynomials:

Lemma 6. Let g be a positive integral multiple of fχ. Then for each n ∈ Z,
n ≥ 0,

Bn,χ(t) = (−1)ngn−1
g−1∑
a=0

χ(−a)Bn

(
a− t

g

)
.

A version of this result appears in Chapter 2 of [4], and can be derived
by a manipulation of the appropriate generating functions.
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Proof of Theorem 2. Let a ∈ Z, (a, p) = 1. For t ∈ Cp, |t|p ≤ 1, the same
argument as that given in the proof of the main theorem of [8] can be
applied to show that each of the functions

∑∞
m=0

(
s
m

)
(F/(a− qt))mBm and

〈a − qt〉s =
∑∞

m=0

(
s
m

)
(〈a − qt〉 − 1)m is analytic for s ∈ D. This method

can also be used to show that the function
∑∞

m=0

(
s
m

)
(F/(a − qt))mBm is

analytic for t ∈ Cp, |t|p < |q|−1
p , whenever s ∈ D. It readily follows that

〈a − qt〉s = 〈a〉s
∑∞

m=0

(
s
m

)
(−a−1qt)m is analytic for t ∈ Cp, |t|p ≤ 1, when

s ∈ D. Thus, since (s− 1)Lp(s, t;χ) is a finite sum of products of these two
functions, it must also be analytic for s ∈ D given t ∈ Cp, |t|p ≤ 1, and for
t ∈ Cp, |t|p ≤ 1, whenever s ∈ D. Note that

lim
s→1

(s− 1)Lp(s, t;χ) =
χ(−1)
F

F∑
a=1

(a,p)=1

χ(a) =
{

1− p−1, if χ = 1,
0, if χ 6= 1.

Thus, our conclusions on when Lp(s, t;χ) is analytic or meromorphic follow.
Now let n ∈ Z, n ≥ 1, and fix t ∈ Cp, |t|p ≤ 1. Since F must be a multiple

of fχn , Lemma 6 implies that

Bn,χn(qt) = (−1)nFn−1
F−1∑
a=0

χn(−a)Bn

(
a− qt

F

)
.

If χn(p) 6= 0, then (p, fχn) = 1, so that F/p is a multiple of fχn . Therefore,

χn(p)pn−1Bn,χn

(
p−1qt

)
= (−1)nχn(p)Fn−1

F/p−1∑
a=0

χn(−a)Bn

(
a− p−1qt

Fp−1

)

= (−1)nFn−1
F−1∑
a=0
p|a

χn(−a)Bn

(
a− qt

F

)
.

The difference of these quantities yields

Bn,χn(qt)− χn(p)pn−1Bn,χn

(
p−1qt

)
= χ(−1)Fn−1

F∑
a=1

(a,p)=1

χn(a)Bn

(
a− qt

F

)
.

By using (2), we can rewrite the Bernoulli polynomial Bn(t) in this expres-
sion as

Bn

(
a− qt

F

)
= F−n(a− qt)n

n∑
m=0

(
n

m

)(
F

a− qt

)m
Bm.
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Since χn(a) = χ(a)ω−n(a) and ω−1(a)(a− qt) = 〈a− qt〉 for (a, p) = 1 and
t ∈ Cp, |t|p ≤ 1, we obtain

Bn,χn(qt)− χn(p)pn−1Bn,χn

(
p−1qt

)
=
χ(−1)
F

F∑
a=1

(a,p)=1

χ(a)〈a− qt〉n
∞∑
m=0

(
n

m

)(
F

a− qt

)m
Bm.

Therefore,

− 1
n

(
Bn,χn(qt)− χn(p)pn−1Bn,χn

(
p−1qt

))
= Lp(1− n, t;χ),

completing the proof. �

Note that the proof of the main theorem of [8] infers the existence of
the factor χ(−1) in the formula for Lp(s;χ). However, since χ(−1) 6= 1
implies that Lp(s;χ) is identically 0, this quantity is not needed in the given
expression. As Lp(s, t;χ) is not identically 0 for any character χ, the factor
χ(−1) is needed in the expression corresponding to this function.

In [7], Washington modifies the derivation of Lp(s;χ) by first defining the
function

Hp(s, a, F ) =
1

s− 1
1
F
〈a〉1−s

∞∑
m=0

(
1− s

m

)(
F

a

)m
Bm,(3)

where s ∈ D, s 6= 1, a ∈ Z with (a, p) = 1, and F is a multiple of q. The
function Lp(s;χ) can then be expressed as the sum

Lp(s;χ) =
F∑

a=1
(a,p)=1

χ(a)Hp(s, a, F ),

provided F is a multiple of both q and fχ. The function Hp(s, a, F ) is
meromorphic for s ∈ D with a simple pole at s = 1, having residue 1/F ,
and it interpolates the values

Hp(1− n, a, F ) = − 1
n
ω−n(a)Fn−1Bn

( a
F

)
,

where n ∈ Z, n ≥ 1.
It is obvious that we can express Lp(s, t;χ) in a similar manner. Using

(3) to define Hp(s, a − qt, F ) for all a ∈ Z, (a, p) = 1, and t ∈ Cp, |t|p ≤ 1,
we obtain

Lp(s, t;χ) = χ(−1)
F∑

a=1
(a,p)=1

χ(a)Hp(s, a− qt, F ).
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From the proof of Theorem 2, it follows that Hp(s, a− qt, F ) is analytic for
t ∈ Cp, |t|p ≤ 1, when s ∈ D, s 6= 1, and meromorphic for s ∈ D, with a
simple pole at s = 1, when t ∈ Cp, |t|p ≤ 1.

4. The value of (∂/∂s)Lp(0, t; χ).

Let us now consider the values of the first partial derivatives of the function
Lp(s, t;χ) at s = 0.

In [3], it is shown that whenever n ∈ Z, n ≥ 1,

∂n

∂tn
Lp(s, t;χ) = n!qn

(
−s
n

)
Lp(s+ n, t;χn)

for all s ∈ D, s 6= 1 if χ = 1, and t ∈ Cp with |t|p ≤ 1. Furthermore, we
have

lim
s→1−n

(
−s
n

)
Lp(s+ n, t;χ) = − 1

n

(
1− χ(p)p−1

)
B0,χ.

Therefore,

∂n

∂tn
Lp(1− n, t;χ) = −(n− 1)!qn

(
1− χn(p)p−1

)
B0,χn .

Since B0,χ = 0 whenever χ 6= 1, this becomes

∂n

∂tn
Lp(1− n, t;χ) =

{
−(n− 1)!qn

(
1− p−1

)
, if χn = 1,

0, if χn 6= 1.

Thus, when n = 1, we have the value of (∂/∂t)Lp(0, t;χ).
The value of (∂/∂s)Lp(0, t;χ) is given in Theorem 4. The proof of this

result follows in much the same manner as the proof of Theorem 3, given in
[6, pp. 393-394].

Proof of Theorem 4. The value of (∂/∂s)Lp(0, t;χ) is the coefficient of s in
the expansion of Lp(s, t;χ) about s = 0. We find this by determining the
constant and linear terms in the corresponding expansions of each of three
functions of s that make up the expression given in Theorem 2.

Expanding 1/(1− s) about s = 0 yields

1
1− s

= 1 + s+ · · · ,

while expanding 〈a− qt〉1−s about s = 0 yields

〈a− qt〉1−s = 〈a− qt〉
(
1− s logp〈a− qt〉+ · · ·

)
.

The expansion of
(
1−s
m

)
about s = 0 is given by(
1− s

m

)
=

(−1)m+1

m(m− 1)
s+ · · · ,
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provided m ≥ 2. Employing these expansions, along with some algebraic
manipulations, we obtain

∂

∂s
Lp(0, t;χ) = χ(−1)

F∑
a=1

(a,p)=1

χ1(a)

((
a− qt

F
− 1

2

)
logp〈a− qt〉 − a− qt

F

+
∞∑
m=2

1
m(m− 1)

(
a− qt

F

)1−m
Bm

)
.

Since ω(a) is a root of unity for (a, p) = 1, we see that logp〈a − qt〉 =
logp(a− qt). Therefore,

∂

∂s
Lp(0, t;χ) = χ(−1)

F∑
a=1

(a,p)=1

χ1(a)
(
F−1 logp(F ) · a+Gp

(
a− qt

F

))
.

By evaluating the sum

F−1
F∑

a=1
(a,p)=1

χ1(a)a = (1− χ1(a))B1,χ1 = −Lp(0;χ),

we obtain the result. �

By means similar to those used in the proof of Theorem 4, one can derive
the following formula for the value of Lp(1, t;χ), whenever χ 6= 1:

Lp(1, t;χ)

=
χ(−1)
F

F∑
a=1

(a,p)=1

χ(a)

(
− logp〈a− qt〉+

∞∑
m=1

(−1)m

m

(
F

a− qt

)m
Bm

)
,

where F is a positive integral multiple of q and fχ. This is a generalization
of a similar formula for Lp(1;χ) (see [6, p. 85]).
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BASS NUMBERS OF SEMIGROUP-GRADED LOCAL
COHOMOLOGY

David Helm and Ezra Miller

Given a module M over a ring R that has a grading by a
semigroup Q, we present a spectral sequence that computes
the local cohomology Hi

I(M) at any graded ideal I in terms of
Ext modules. We use this method to obtain finiteness results
for the local cohomology of graded modules over semigroup
rings. In particular we prove that for a semigroup Q whose
saturation Qsat is simplicial, and a finitely generated mod-
ule M over k[Q] that is graded by Qgp, the Bass numbers
of Hi

I(M) are finite for any Q-graded ideal I of k[Q]. Con-
versely, if Qsat is not simplicial, we find a graded ideal I and
graded k[Q]-module M such that the local cohomology mod-
ule Hi

I(M) has infinite-dimensional socle. We introduce and
exploit the combinatorially defined essential set of a semi-
group.

1. Introduction.

The local cohomology modules H i
I(M) for finitely generated modules M

over noetherian rings R have been studied for several decades. When I is a
maximal ideal of R the local cohomology of M is fairly well-understood (and
reasonably well-behaved), but for general ideals I much less is known, and
the behavior can be quite bad. For instance, Hartshorne [Har70] has shown
that the Bass numbers of H i

I(M) need not be finite for general I and R.
Recently, however, some progress has been made in special cases. When R

is a regular local ring containing a field, Lyubeznik [Lyu93], and Huneke
and Sharp [HS93] have shown that H i

I(M) has finite Bass numbers. In the
same spirit (albeit by different techniques), Yanagawa [Yan01] has shown
that if ω is the canonical module of a simplicial and normal semigroup ring
and I is a monomial ideal, then H i

I(ω) has finite Bass numbers.
Our approach is a substantial generalization of that found in [Yan01]. We

consider a noetherian ring R graded by a semigroup Q, and modules over R
graded by Qgp. In this setting, we introduce a functor called the Čech hull
(Section 2), which allows us to recover the full local cohomology of a finitely
generated module M from the portion of the local cohomology that lies in
those graded degrees that are elements of Q (Section 3). This piece of the

41
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local cohomology is often easier to understand than the entire module; in
particular it is finitely generated when R = k[Q] for an affine semigroup Q
(see Proposition 4.3, or Corollary 5.3 along with Proposition 5.4). Using
this fact we prove several finiteness results for the local cohomology of Qgp-
graded modules over affine semigroup rings (Section 5). In particular we
show (without Cohen-Macaulay hypotheses) that when the saturation Qsat

is simplicial, H i
I(M) has finite Bass numbers.

The converse holds, as well: Our construction of a local cohomology mod-
ule with infinite-dimensional socle when Qsat is not simplicial (Section 7)
contains Hartshorne’s counterexample to Grothendieck’s conjecture [Har70]
as the simplest special case. The constructions are polyhedral in nature,
exploiting a new combinatorial structure, the essential set of a semigroup
(Section 6). Properties of the essential set govern the associated primes,
and to some extent the module structure, of the local cohomology of the
canonical module.

The reader interested in affine semigroup rings rather than general semi-
group gradings need not endure anything in Sections 2-4 except Proposi-
tion 4.1 (which can be taken as a definition) and the two paragraphs preced-
ing it. Instead, begin with Section 7 and the first half of Section 6 (through
Example 6.5)—in either order—noting especially Theorem 7.1, which con-
tains our main results on local cohomology over affine semigroup rings. Then
continue with Proposition 4.1 and Section 5. The required results from other
parts of the paper can be referred to as necessary.

2. The Čech hull.

Let Q be a cancellative, commutative semigroup, and Qgp its Grothendieck
group, i.e., the group obtained from Q by adjoining an inverse for every
element. (The reader may safely assume for the purposes of this paper that
Q is affine—that is, a finitely generated submonoid of Zd with Qgp = Zd;
indeed, we will make this assumption starting in Section 4. However, we
hope that the extra generality in this section and the next will be useful
for more general semigroup gradings, such as those arising in the Cox ho-
mogeneous coordinate rings of toric geometry [Cox95].) We say a ring R
is Q-graded and an R-module M is Qgp-graded if we are given direct sum
decompositions

R =
⊕
a∈Q

Ra and M =
⊕
α∈Qgp

Mα

such that RaRb ⊆ Ra+b and RaMβ ⊆ Ma+β. The category of Qgp-graded
modules is henceforth denoted by M.

A morphism M → N in M is a degree-preserving R-module homomor-
phism; i.e., a map f of R-modules such that f(Mα) ⊆ Nα. We denote by
HomR(M,N) the R0-module of such morphisms and by HomR(M,N) the
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Qgp-graded R-module

HomR(M,N) =
⊕
α∈Qgp

HomR(M,N(α)) =
⊕
α∈Qgp

HomR(M(−α), N).

Here, the Qgp-graded R-module N(α) is the shift of N by α, defined by
N(α)β = Nα+β.

For a subset S ⊆ Qgp closed under the action of Q, we define the S-graded
part MS ⊆M to be

MS =
⊕
α∈S

Mα.

We frequently consider the case in which S = α + Q for some α ∈ Qgp. In
particular, taking MQ yields the part of M graded by elements of Q. Taking
S-graded parts is functorial and exact, for any S.

The theory we develop below revolves around the following question: To
what extent can we recover a module M from its Q-graded part MQ? If M is
finitely generated, for example, then although we may not be able to get M
from MQ, we can shift by some a ∈ Q to get M(−a) = M(−a)Q. Therefore,
the question is more meaningful for infinitely generated modules, such as
the local cohomology modules of a finitely generated module. We will find
that these belong to a certain class of modules that can be recovered from
Q-graded parts of other modules by a functor Č that we call the Čech hull,
as defined by the next result.

Theorem 2.1. The functor (−)Q : M → M taking Q-graded parts has a
right adjoint Č; that is, there exists a functor Č and natural isomorphisms

HomR(MQ, N) = HomR(M, ČN)

for any M,N ∈M.

Proof. Given N , we explicitly construct ČN by defining

(ČN)α = HomR(RQ−α, N(α))(1)

= HomR(RQ−α(−α), N).

The multiplication maps

Rb ⊗R0 (ČN)α → (ČN)b+α
are given by taking r ⊗ φ to (x 7→ φ(rx)). This is well-defined since multi-
plication by r ∈ Rb is a degree zero map RQ−α−b(−α− b) → RQ−α(−α).

Note that if a ∈ Q then RQ−a = R, so

(ČN)a = HomR(RQ−a(−a), N) = HomR(R(−a), N) = Na,

whence (ČN)Q = NQ. Therefore, given an element of HomR(M, ČN), tak-
ing its Q-graded part gives an element of HomR(MQ, NQ). This last module
is HomR(MQ, N) (since degree zero maps from MQ to N must land in NQ),
so we have produced a natural map HomR(M, ČN) → HomR(MQ, N).
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Conversely, if f ∈ HomR(MQ, N) then for each α ∈ Qgp we have a map

Mα → (ČN)α = HomR(RQ−α, N(α)) defined by x 7→ (r 7→ f(rx)).

This is well-defined since if r ∈ RQ−α and x ∈Mα, then rx ∈MQ, so we can
evaluate f(rx). We thus obtain a well-defined element of HomR(M, ČN),
whose Q-graded part is just f . This gives the natural inverse map for our
bijection. �

Remark 2.2. It is clear by looking at the graded pieces of Č that it is left
exact but not right exact, and that its derived functors are given in terms of
Ext modules; that is ((RiČ)M)α = ExtiR(RQ−α(−α),M). Since RQ−α(−α)
is supported on Q ⊂ Qgp, both the Čech hull and its derived functors depend
only on the Q-graded part of M .

Remark 2.3. The Čech hull was defined in [Mil00] for polynomial rings.
In this case Q = Nd, R = k[Q], and HomR(RQ−α(−α),M) = Mα+ , where
α+ is obtained from α by zeroing out the negative coordinates. Thus our
definition of Č agrees with the one in [Mil00]. Note that the Čech hull is
exact in this case, since RQ−α is free for all α, so the Ext modules that make
up the graded pieces of RiČ vanish.

Example 2.4. Let Q ⊂ Z2 be the semigroup generated by (0, 2),(1, 1), and
(2, 0), so that Qgp ⊂ Z2 is a lattice of index 2. Take R = k[Q], graded by
Q. If α = (x, y) ∈ Qgp, then x and y have the same parity. If x and y are
even, or if x and y have the same sign, then RQ−α(−α) is free. On the other
hand, if x is odd and negative while y is odd and positive, then RQ−α(−α)
is generated in degrees (1, y) and (0, y + 1). Moreover, one has an exact
sequence:

0 → RQ−α(−α− (1, 1)) −→ R(−1,−y)⊕R(0,−y − 1) −→ RQ−α(−α) → 0.

Splicing homological and graded shifts of this short exact sequence together
gives a free resolution F. of RQ−α(−α) such that Fi = R(−1− i,−y − i)⊕
R(−i,−y − i − 1). Since Q is symmetric in x and y, a similar result holds
with x and y reversed.

We now have free resolutions of RQ−α(−α) for every α ∈ Qgp, and we can
use them to compute the Cech hull and its derived functors. For instance,
consider the module k(−u,−v) consisting of a single copy of the residue field
k, supported in a degree (u, v) satisfying v > u > 1. Then for α = (x, y),
we find that HomR(RQ−α(−α), k(−u,−v)) is only nontrivial if α = (u, v).
Since Equation (1) implies that

RiČ(k(−u,−v))α ∼= ExtiR(RQ−α(−α), k(−u,−v)),

it follows that Č(k(−u,−v)) = k(−u,−v). In contrast, RiČ(k(−u,−v)) for
i > 1 can only be nonzero in degrees α for which x and y are odd and of
differing sign, since RQ−α(−α) is free otherwise.
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Suppose we have such an α, and let F. be the corresponding free resolution
of α constructed above. Then HomR(Fi, k(−u,−v)) is nonzero if (and only
if) one of the generators of Fi sits in degree (u, v). Referring to the expression
for the degrees of the Fi in terms of α (and remembering that we assumed
v > u > 1), we find that HomR(Fi, k(−u,−v)) is nonzero if and only if
i = u and y = v − u − 1 or if i = u − 1 and y = v − u + 1. In other
words, RiČ(k(−u,−v)) vanishes except when i ∈ {u − 1, u}. Moreover,
Ru−1Č(k(−u,−v)) is supported in those degrees α such that x is odd and
negative and y = v − u + 1, while RuČ(k(−u,−v)) is supported in those
degrees α such that x is odd and negative and y = v − u− 1.

To summarize, when v > u > 1, we have:
• Č(k(−u,−v)) = k(−u,−v)
• Ru−1Č(k(−u,−v)) = k[x−(2,0)](−1,−v + u− 1)
• RuČ(k(−u,−v)) = k[x−(2,0)](−1,−v + u+ 1)

and all other derived functors of Č vanish. Here, xα ∈ k[Qgp] is the element
corresponding to α ∈ Qgp.

3. Local cohomology.

In this section we study the interaction of the Čech hull with the functor
ΓI , which takes a module M to the submodule annhilated elementwise by
some power of the ideal I. If I is graded, then ΓI takes the category M of
Qgp-graded modules to itself.

Proposition 3.1. If R is noetherian, then Č and ΓI commute: ΓIČ =
ČΓI .

Proof.

(ΓIČM)α =
⋃
n

{x ∈ HomR(RQ−α(−α),M) | Inx = 0}

= HomR(RQ−α(−α),ΓIM)

= (ČΓIM)α.

�

Henceforth we assume R is noetherian. In Proposition 3.3 we shall apply
the spectral sequence of a composite functor to the functors ΓIČ and ČΓI .
In order to do this we use the fact that both ΓI and Č take injectives to
injectives. For ΓI this is standard; for Č this follows from Lemma 3.2, whose
extra precision is vital for Section 5.

Lemma 3.2. Let J be an indecomposable injective in M. Then ČJ = 0
if JQ = 0, and ČJ = J otherwise. In particular, Č takes injectives to
injectives.
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Proof. The first statement is clear, since Č depends only on the Q-graded
portion of a module. The last statement follows from the others, using the
fact that every injective is a direct sum of indecomposable injectives (this
uses the noetherian hypothesis).

For the remaining statement, write J = E (R/p)(α) for some prime p of R
and α ∈ Qgp. Then (R/p)(α) is an essential submodule of J , so since JQ is
nonzero, (R/p)(α)Q is nonzero. Now (R/p)(α)Q is an essential submodule of
(R/p)(α) (since R/p is an integral domain), so it is an essential submodule
of J . Thus in particular JQ is an essential submodule of J .

The inclusion JQ → J induces a map φ : J → ČJ , by the adjointness
property of Č. Moreover, φ is injective, since it restricts to the identity on
the essential submodule JQ. Thus J is a direct summand of ČJ , since J is
injective. We claim that ČJ is an essential extension of J , from which the
result follows immediately.

Let x ∈ (ČJ)α = HomR(RQ−α(−α), JQ) be a nonzero homogeneous ele-
ment. Then there is an r ∈ R such that x(r) is nonzero, and then rx = x(r)
is a nonzero element of JQ. Thus ČJ is an essential extension of JQ and
hence of J as well. �

Proposition 3.3. Let M be a graded R-module. There are spectral se-
quences E(M) and F (M) described by

Ep,q2 (M) = RpČHq
I (M) ⇒ Rp+q(ΓIČ)M

F p,q2 (M) = Hp
I (RqČM) ⇒ Rp+q(ΓIČ)M.

Proof. These are spectral sequences for the composite functors ČΓI and ΓIČ
[Wei94], using Proposition 3.1 along with Lemma 3.2 and the fact that ΓI
takes injectives to injectives. �

Example 3.4. We return to the case of Remark 2.3; that is, R = k[Nd].
Here Č is exact, and so the spectral sequences E(M) and F (M) both col-
lapse. The proposition simply says that H i

I(ČM) = ČH i
I(M). The right

derived functors of the Čech hull measure the degree to which this equality
fails in other rings.

Ultimately, the goal of this section is Theorem 3.10, which describes how
the local cohomology modules of M can be reconstructed from a finite col-
lection of submodules thereof, using the Čech hull and its derived functors.
After a choosing a certain α ∈ Qgp, this is accomplished by a spectral se-
quence E(M(−α)) that only depends on the (finitely generated) Q-graded
parts of the local cohomology modules of M(−α), since RpČHq

I (−) depends
only on the Q-graded part of Hq

I (−).
For this approach to work, we of course need Rp+q(ΓIČ)M to be a lo-

cal cohomology module. To this end, we use the spectral sequence F (M).
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Although the filtration that arises from F (M) is generally nontrivial, we
avoid this nuisance by replacing M with a suitable Qgp-graded shift, forcing
F to collapse in low cohomological degree. We find this suitable shift in
Corollary 3.6 using Proposition 3.5, which is interesting in its own right.

Proposition 3.5. Let J. be a minimal injective resolution of a finitely gen-
erated module M ∈ M. Let p be a homogeneous prime of R, let m be a ho-
mogeneous maximal ideal containing p, and let c = dim(R/p)− dim(R/m).
If every indecomposable summand of ΓmJ

i+c has nonzero Q-graded part,
then every indecomposable summand of J i isomorphic to a shift of E (R/p)
has nonzero Q-graded part.

Proof. Inverting all homogeneous elements outside m fixes all shifts of
E (R/p) as well as ΓmJ

i, so we assume henceforth that m is the unique
maximal homogeneous ideal of R.

We begin with the case c = 1. Using (−)(p) to denote the localization by
all homogeneous elements outside of p, it is a standard fact (in [BH93,
p. 101], for instance) that (ExtiR(R/p, M))(p) = (HomR(R/p, J i))(p) ⊂
(ΓpJ

i)(p) is an essential extension. Therefore, we need only show that every
indecomposable submodule of the free (R/p)(p)-module (ExtiR(R/p,M))(p)

has nonzero Q-graded part.
Choose a homogeneous element x ∈ m \ p, and define L by the exact

sequence

0 → R/p
x−→ R/p −→ L→ 0,

where x→ is multiplication by x. The long exact sequence for Ext.R(−,M)
provides a right exact sequence

ExtiR(R/p,M) x−→ ExtiR(R/p,M) −→ L(i, x,M) → 0

for the appropriate submodule L(i, x,M) ⊆ Exti+1
R (L,M). Tensoring with

R/m yields an isomorphism R/m⊗ExtiR(R/p,M) ∼= R/m⊗L(i, x,M) since
multiplication by x becomes the zero map. Nakayama’s lemma implies that
ExtiR(R/p,M), and hence (ExtiR(R/p,M))(p), is generated by elements in
degrees γ ∈ Qgp such that L(i, x,M)γ ⊆ Exti+1

R (L,M)γ 6= 0.
Now Exti+1

R (L,M) is the (i+1)st cohomology of the complex HomR(L, J.)
⊂ ΓmJ

., whose socle subcomplex HomR(R/m, J.) ⊆ HomR(L, J.) (the in-
clusion being induced by the surjection L�R/m) is equal to Ext.R(R/m,M).
The hypothesis on (ΓmJ

i)Q in the Proposition implies that Exti+1
R (R/m,M)

must in fact equal its Q-graded part. Given any degree γ ∈ Qgp for which
Exti+1

R (L,M)γ 6= 0, we therefore can find a homogeneous element r ∈ R such
that γ+deg(r) ∈ Q. Note that p annihilates L and hence also HomR(L, J.),
so we can always find our element r outside of p. When we invert r to form
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the localization (ExtiR(R/p,M))(p), any generator y in degree γ can be re-
placed by the generator ry whose degree is in Q. This concludes the case
where c = 1.

The general case proceeds by induction on c, replacing R with its
homogeneous localization at a prime containing p and having dimension
dim(R/p)− 1. �

Recall that the Bass number of a module M at the prime p in cohomo-
logical degree i is the number of indecomposable summands isomorphic to
a shift of E (R/p) appearing at the ith stage in any minimal injective reso-
lution of M . These numbers are always finite if M is finitely generated, but
may in general be infinite.

Corollary 3.6. Suppose R has a unique maximal homogeneous ideal m. Let
M ∈M be a finitely generated R-module, and n be a positive integer. Then
there exists α ∈ Qgp such that for all β ∈ α+Q,

1. Č(M(−β)) = M(−β), and
2. RjČ(M(−β)) = 0 if 1 ≤ j < n.

Proof. Since M is finitely generated, the Bass numbers of M at m are finite.
Thus ΓmJ

i is a finite direct sum of indecomposables for each i ≤ n+dim(R).
These can be moved to have nonzero Q-graded part by some shift (−α).
Lemma 3.2 and Proposition 3.5 together then imply that Č fixes J.(−β) in
cohomological degree n and less for all β ∈ α+Q. �

Remark 3.7. If R is a ring with only finitely many homogeneous primes
(e.g., a semigroup ring), then the conclusion of Corollary 3.6 holds for any
M with finite Bass numbers, as then M has an injective resolution with
finitely many summands in each cohomological degree.

Example 3.8. Let Q ⊂ Zd be a finitely generated semigroup, and let R =
k[Q], graded by Q. Ishida [Ish88] constructed a dualizing complex for R,
in which each indecomposable injective appears without shift. When R is
Cohen-Macaulay, this is an injective resolution of the canonical module ωR
that is fixed by the Čech hull. Hence Corollary 3.6 holds for ωR with α = 0.
It follows that for q > 0 we have

F p,q2 (ωR) = Hp
I (RqČωR) = 0,

so F (ωR) converges to Hp+q
I (ωR). Thus E(ωR) likewise converges to a filtra-

tion of Hp+q
I (ωR). We will use this fact in the next section (Proposition 4.9)

to compute Hp+q
I (ωR) for I prime.

Example 3.9. The phenomenon predicted by Corollary 3.6 is clearly il-
lustrated in Example 2.4: As u and v increase, the derived functors of
Č(k(−u,−v)) in positive cohomological degrees < u− 1 vanish.
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Theorem 3.10. Suppose R has a unique homogeneous maximal ideal. Let
M be a finitely generated R-module, and n be a positive integer. Then there
exists α ∈ Qgp such that for all β ∈ α+Q, the spectral sequence

Ep,q2 (M(−β)) = RpČHq
I (M(−β)) ⇒ Hp+q

I (M)(−β)

converges to a local cohomology module for p+ q < n.

Proof. Choose α as in Corollary 3.6. Then for all β ∈ α+Q,

F p,q2 (M(−β)) = Hp
I (RqČM(−β)) =

{
0 if q > 0
Hp
I (M)(−β) if q = 0

.

Hence if p+q < n, Rp+q(ΓIČ)(M(−β)) = Hp+q
I (M(−β)). Since E(M(−β))

converges to the former by Proposition 3.3, the result follows. �

Injective resolutions are rarely finite, so no matter which α is chosen in
Theorem 3.10, F (M) really can converge to something other than Hp+q

I (M)
in large cohomological degrees. For example, if we take Q, R, and k(−u,−v)
as in Example 2.4, then H i

I(k(−u,−v)) vanishes for i ≥ 1 and any I. On
the other hand, we have F p,q2 (k(−u,−v)) = 0 for p ≥ 1 and F 0,q

2 nonzero for
q ∈ {u−1, u}, so the nonvanishing derived functors of Č cause F (k(−u,−v))
to fail to converge to local cohomology in these degrees.

However, since Hp+q
I (M) vanishes in sufficiently high cohomological de-

grees, choosing n large in the theorem does show how the collection of Q-
graded parts Hj

I (M)(−β)Q for all j determine the entire local cohomology
modules. As we shall see in Section 4, the Q-graded portion of a local coho-
mology module is often much easier to understand than the local cohomology
module itself.

4. Semigroup rings.

One of the ways of understanding local cohomologyH.
I(−) in terms of finitely

generated modules is by taking limits (over m) of modules Ext.R(R/Im,−).
Unfortunately, these limits are frequently quite badly behaved (see[EMS00],
for example). Here, we bypass them entirely, in the case where R = k[Q] is an
affine semigroup algebra over a field k, by constructing the graded pieces of
H

.
I(M) in terms of the derived functors Ext.R(R/Im,M) of HomR(R/Im,M)

for a single fixed m, using Theorem 3.10. In order for this to work, we need
to know what the Q-graded part of local cohomology looks like.

In Sections 4-7, we set R = k[Q], an affine semigroup algebra graded by
Q ⊆ Zd, which is not assumed normal. Such a ring satisfies the hypotheses
of Corollary 3.6, so that all of the machinery of the previous sections applies.
For k[Q] we also have a simpler expression for the Čech hull. In what follows,
Q is viewed as contained in k[Q] via a 7→ xa.
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Proposition 4.1. When R = k[Q] and M ∈M, we have

(ČM)β ∼= HomR(RQ+β,M).

If a ∈ Q, we have a commutative diagram:

(ČM)β
·xa−→ (ČM)β+a

↓ ↓
HomR(RQ+β,M) −→ HomR(RQ+a+β,M),

where the vertical arrows are isomorphisms and the bottom arrow is induced
by the inclusion of RQ+a+β in RQ+β.

Proof. By definition, (ČM)β = HomR(RQ−β(−β),M). Multiplication by xβ

induces an injection RQ−β(−β) → RQ+β; this is an isomorphism since both
of these modules are supported in the same degrees.

Moreover, one has the following commutative diagram:

RQ−β−a(−β − a) ·xa−→ RQ−β(−β)
↓ ↓

RQ+β+a −→ RQ+β

from which the rest of the proposition follows immediately. �

Lemma 4.2. Let J = E (R/p)(−α) be an indecomposable injective, and I
an ideal of R. There exists n ∈ N such that for all m > n, (ΓIJ)Q =
HomR(R/Im, J)Q.

Proof. Suppose I is not contained in p. Then some element of I acts as a
unit on R/p, so ΓIJ = HomR(R/Im, J) = 0 and the result is trivial. Thus
it suffices to show this result for I contained in p. In this case ΓIJ = J , so
it suffices to show that HomR(R/Im, J)Q = JQ; i.e., that every element of
JQ is killed by Im.

Let τ be a linear functional that takes nonnegative values on Q, such that
if b ∈ Q, then τ(b) > 0 ⇔ b ∈ p. Then E (R/p) is supported in those degrees
β such that τ(β) ≤ 0. Thus J is supported in those degrees β such that
τ(β) ≤ τ(α) =: n.

Suppose m > n. Let y ∈ JQ and x ∈ Im be nonzero homogeneous
elements of degrees b and c, respectively. Then τ(b) ≥ 0 because b ∈ Q and
τ(c) ≥ m because x ∈ Im ⊆ pm. Thus xy lies in degree b+c and τ(b+c) > n,
so xy = 0, as required. �

Now we can apply the Lemma to describe Q-graded parts of local coho-
mology.

Proposition 4.3. Let M ∈M be finitely generated, and I be a graded ideal
of R. Fix a nonnegative integer i. Then there exists m0 ∈ N such that for
any m ≥ m0,

H i
I(M)Q ∼= ExtiR(R/Im,M)Q.
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Proof. Let J. be an injective resolution for M , and choose m0 sufficiently
large that (ΓIN)Q = HomR(R/Im, N)Q agree for every m ≥ m0 and every
indecomposable injective summand N appearing in cohomological degree
i or lower in J

.. Then the first i right derived functors of (ΓI−)Q and
HomR(R/Im,−)Q agree on M ; since (−)Q is exact this means H i

I(M)Q ∼=
ExtiR(R/Im,−)Q. �

Example 4.4. If Q is saturated and M = ωR then the power of I in Propo-
sition 4.3 can be set equal to 1; i.e.,

ExtpR(R/I, ωR)Q ∼= Hp
I (ωR)Q,

since the indecomposable summands of the injective resolution of ωR are
unshifted E (R/p)’s.

Corollary 4.5. If M ∈ M is finitely generated, H i
I(M)Q is finitely gener-

ated.

Corollary 4.6. Let M ∈ M be finitely generated. Then H i
I(M) has a

finitely generated essential submodule if and only if for some β ∈ Qgp the
natural map H i

I(M)(−β) → Č(H i
I(M)(−β)) is an injection.

Proof. Suppose H i
I(M) has a finitely generated essential submodule N .

Then we can shift N so that all of its generators have degrees in Q; i.e., there
exists β such that N(−β) ⊂ (H i

I(M)(−β))Q. Since the map H i
I(M)(−β) →

ČH i
I(M)(−β) is injective on its Q-graded part, it is injective on N(−β);

since N(−β) is essential the map is injective everywhere.
Conversely, H i

I(M)(−β)Q is an essential submodule of Č(H i
I(M)(−β))

and hence of H i
I(M)(−β). By Corollary 4.5 it is finitely generated. �

The upshot of the above is that since the spectral sequence E(M) of
Proposition 3.3 depends only on the Q-graded parts of the local cohomol-
ogy modules whic appear in it, we can just replace these local cohomology
modules with the corresponding Ext-modules.

Theorem 4.7. Let M be a finitely generated module over R = k[Q], and n
be a positive integer. Then there exists α ∈ Qgp such that for all β ∈ α+Q,
there exists m ∈ Z making the spectral sequence

Ep,q2 (M(−β)) = RpČExtqR(R/Im,M(−β)) ⇒ Hp+q
I (M)(−β)

from Proposition 3.3 converge to a local cohomology module for p + q < n.
Taking degree γ parts for any γ ∈ Qgp yields a spectral sequence of iterated
Ext modules,

Ep,q2 (M(−β))γ = ExtpR(RQ+γ(β),ExtqR(R/Im,M)) ⇒ Hp+q
I (M)γ−β .

Proof. This is immediate from Theorem 3.10 and Proposition 4.3. �
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Example 4.8. Returning to the setting of Example 3.4, we find using this
theorem that if M is a Zd-graded module over a polynomial ring in d vari-
ables and I is a monomial ideal, then there exist m ∈ Z and β ∈ Zd such
that H i

I(M) = ČExtiR(R/Im,M(−β)). This generalizes a result proved
independently by Mustaţǎ [Mus00] and Terai [Ter99].

For saturated Q, Theorem 4.7 takes an especially nice form for canonical
modules. Recall that a face of Q is the set of degrees of elements outside a
prime ideal of R.

Proposition 4.9. Suppose R is normal and of dimension d. Let p be a
prime of R, corresponding to an n-dimensional face of Q. Then Hd−i

p (ωR) ∼=
Rn−iČ(ωR/p).

Proof. RqČExtpR(R/p, ωR) ⇒ Hp+q
p (ωR) by Example 4.4 and Theorem 4.7.

SinceR/p is a dimension n Cohen-Macaulay quotient of the Cohen-Macaulay
ring R of dimension d, the module ExtpR(R/p, ωR) is nonzero only when
p = d−n, in which case it is ωR/p. Thus the spectral sequence degenerates,
and RqČ(ωR/p) ∼= Hq+d−n

p (ωR). �

Example 4.10. Let Q be the semigroup on four generators {x, y, u, v} and
one relation x+u = y+v, and R = k[Q]. In [Har70], Hartshorne shows that
for the ideal I = (xu,xv), the local cohomology module H1

I (ωR) has a finitely
generated essential submodule while H2

I (ωR) has an infinite dimensional
socle, supported in degrees n(x − v) for n > 0. This is consistent with
Proposition 4.9, which says that infinite-dimensional socles must arise from
a nonvanishing higher derived functor of the Čech hull. See Section 7 for a
combinatorial explanation of why this bad behavior occurs, in the context
of its generalization to arbitrary affine semigroup rings.

5. Finiteness for simplicial semigroups.

Letting Q ⊆ Zd be affine as in the previous section, the above machinery
allows us to make strong statements about local cohomology over R = k[Q].
Indeed, the fact that local cohomology modules “come from” the derived
functors of the Čech hull forces certain structure on them. This structure
is codified in the notion of a straight module, a common generalization of
notions due to Miller [Mil00] (who defined a-determined modules over a
polynomial ring for a ∈ Nn) and Yanagawa [Yan01, Yan00] (who defined
straightness for a restrictive class of modules over semigroup rings). One ob-
tains from Theorem 4.7 that local cohomology modules over semigroup rings
are straight when shifted appropriately. Over a simplicial (and not neces-
sarily normal) semigroup ring this forces them to have finite Bass numbers
(Theorem 5.8). The key to all this is the following definition:
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Definition 5.1. Let Q ⊆ Zd be affine and R = k[Q]. The category S of
straight R-modules is the smallest subcategory of the Qgp-graded modules
M such that (1) all indecomposable injectives J satisfying JQ 6= 0 are
in S; (2) finite direct sums of modules in S are in S; and (3) if φ is a
homomorphism of straight modules, then ker(φ) and coker(φ) are straight.

Proposition 5.2. Let M ∈ M be finitely generated. Then RiČM is
straight.

Proof. By definition, a finite direct sum of straight modules is straight. Thus
if C. is a complex of finite direct sums of indecomposable injectives, and
each indecomposable injective in C

. has nontrivial Q-graded part, then C
.

is a complex of straight modules, and the cohomology of C. is straight. In
particular, if C. = ČJ

. is the Čech hull of an injective resolution J
. of

M , then ČJ
. is a complex of straight modules by Lemma 3.2. Thus its

cohomology is straight, as required. �

Corollary 5.3. Let M ∈ M be finitely generated. Then there exists an
element a ∈ Q such that H i

I(M)(−a) is straight.

Proof. By Theorem 4.7 and Proposition 5.2, we have a ∈ Q such that
H i
I(M)(−a) is the limit of a spectral sequence of straight modules. This

spectral sequence yields a finite filtration of H i
I(M)(−a) whose associated

graded modules are therefore straight. �

Straight modules have a number of useful properties. In particular, the
fact that they can be “built out of” indecomposable injectives with nontrivial
Q-graded part by taking kernels, cokernels, and finite direct sums forces
many of their graded pieces to be isomorphic to each other.

Proposition 5.4. Let M be a straight module over R = k[Q]. Then:
1. MQ is finitely generated.
2. M(−a) is straight for all a ∈ Q.
3. Multiplication by xa is an isomorphism Mβ → Ma+β whenever β ∈
Qgp and a ∈ Q satisfy (β +Q) ∩Q = (a+ β +Q) ∩Q.

Proof. If the above three properties hold for M and N , then they also hold
for M ⊕ N , as well as ker(φ) and coker(φ) for any φ : M → N . Thus it
suffices to check that if J is an indecomposable injective, and JQ is nonzero,
then J has the above properties. JQ is clearly finitely generated, and if JQ
is nonzero, so is J(−a)Q, so the first two properties are clear.

For the third property, note that ČJ = J by Lemma 3.2. Thus in partic-
ular,

Jβ = (ČJ)β = HomR(RQ+β, J)

and Ja+β = (ČJ)a+β = HomR(RQ+a+β, J).
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The hypothesis in part 3 says that RQ+β = RQ+a+β, whence multiplication
by xa is an isomorphism Jβ → Ja+β, as required. �

The third property of Proposition 5.4 motivates the following definition:

Definition 5.5. An essential point for Q is an element ε ∈ Qgp such that if
a ∈ Q and (ε+Q)∩Q = (a+ ε+Q)∩Q, then a is a unit. The essential set
E is the Q-set generated by the essential points; i.e., E is the union

⋃
(Q+ε)

over essential points ε.

Now we derive the main theorem of this section, Theorem 5.8, from com-
binatorial properties of the essential set, which we develop in detail in Sec-
tion 6. The key results from that section which we use below are Lemma 6.6,
which is an existence result for essential points, and Proposition 6.13, which
allows us to control the size of the essential set when Q has simplicial satu-
ration.

Proposition 5.6. If M is straight, then ME is an essential submodule of
M .

Proof. Suppose 0 6= x ∈Mα, and choose an essential point ε with ε− α ∈ Q
and (ε+Q)∩Q = (α+Q)∩Q, using Lemma 6.6. Proposition 5.4 shows that
multiplication by xε−α is an isomorphism Mα →Mε. Thus any submodule
of M containing x contains xε−αx ∈ME . �

Observe that the results in this section so far have used no extra hypothe-
ses on the affine semigroup Q. Since our goal involves simplicial semigroups,
this will change starting now.

Proposition 5.7. Let Q be an affine semigroup whose saturation is sim-
plicial modulo units, and M a straight module over k[Q]. Then the Bass
numbers of M are finite.

Proof. Taking a as in Proposition 6.13, we find that ME ⊂ MQ−a, so
ME(−a) ⊂ (M(−a))Q. Since M(−a) is straight, M(−a)Q is finitely gener-
ated. Thus ME is finitely generated, so M has a finitely generated essential
submodule by Proposition 5.6. In particular, its Bass numbers in cohomo-
logical degree zero are finite. Moreover, if J. is a minimal injective resolution
of M , then J0(−a) is straight because it has a Q-graded essential submodule
M(−a)Q. Therefore coker(M(−a) → J0(−a)) is straight, whence the result
follows by induction on the cohomological degree. �

The Bass numbers of such an M at ungraded primes are also finite, by
results of [GW78].

Theorem 5.8. Let Q be an affine semigroup whose saturation is simplicial
modulo units. If M is a finitely generated Qgp-graded k[Q]-module, then the
Bass numbers of H i

I(M) are finite, for any Q-graded ideal I.
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Proof. This is immediate from Proposition 5.7 and Corollary 5.3. �

Corollary 5.9. Suppose Q is affine, with Qsat simplicial modulo units, and
let M ∈ M be finitely generated over R = k[Q]. Then there exist β ∈ Qgp

and n ∈ N such that

H i
I(M)(−β) ∼= ČExtiR(R/In,M(−β)).

Proof. Since the Bass numbers of H i
I(M) are finite, by Remark 3.7 there

exists β such that H i
I(M)(−β) is fixed by the Čech hull. Then H i

I(M)(−β) is
the Cech hull of itsQ-graded part and the result follows from Proposition 4.3.

�

6. The essential set.

The essential set, introduced in Definition 5.5, fleshes out in some detail the
combinatorics hidden in an affine semigroup. Since we believe this combi-
natorics is of independent interest, we determine in Theorem 6.2, Proposi-
tion 6.4, and the comments in between, the structure of the essential set in
the saturated case, along with its relation to Hilbert bases, monomial mod-
ules, irrelevant ideals of toric varieties, and Alexander duality. The rest of
the section we devote to providing the necessary relations between essential
sets of unsaturated semigroups and those of their saturations, including the
results already applied in Section 5.

We need a bit of notation. Associated to an affine semigroup Q are its
facets F1, . . . , Fr; these are the degrees of homogeneous elements outside of
the r codimension-one Q-graded primes of k[Q]. There are unique primitive
integer-valued linear functionals {τ1, . . . , τr} on Qgp, nonnegative on Q, such
that Fi = {b ∈ Q | τi(b) = 0}. Given α ∈ Qgp, define τ(α) ∈ Zr to be the
vector (τ1(α), . . . , τr(α)), and let τ(α)+ be the vector obtained from τ(α) by
replacing its negative entries with zeros.

Lemma 6.1. Suppose Q is saturated. Then (α +Q) ∩Q = (β +Q) ∩Q if
and only if τ(α)+ = τ(β)+. In particular, ε is an essential point if and only
if τ(ε)+ 6= τ(a+ ε)+ for all nonunits a in some generating set for Q.

Proof. Since Q is saturated, (α+Q)∩Q is the set of lattice points γ ∈ Qgp

inside the polyhderon defined by {τi(γ) ≥ 0 and τi(γ) ≥ τi(α) | i = 1, . . . , r}.
This is the polyhedron defined by the inequalities {τi(γ) ≥ τ(α)+i | i =
1, . . . , r}, and the first claim follows easily.

The map τ : Qgp → Zr takes Q to the semigroup τ(Q) isomorphic to
the quotient of Q by its group of units. As a consequence, the definition of
essential point translates to: ε is an essential point if and only if τ(ε)+ 6=
τ(a+ ε)+ for all nonunits a ∈ Q. But since τi is nonnegative on Q for all i,
the second statement follows. �
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The lack of nontrivial units in τ(Q) endows it with a unique minimal set
H of semigroup generators, called the Hilbert basis of τ(Q). Each element
of H imposes a condition that α must satisfy to be essential. To express this
condition, define, for h ∈ Nr, the set 〈h〉 = {ζ ∈ Zr | ζi > −hi for some i
such that hi > 0}. Observe that 〈h〉 is a union of half-spaces, and is defined
in such a way that τ−1(〈τ(a)〉) = {ε ∈ Qgp | τ(ε)+ 6= τ(ε+ a)+}.

Theorem 6.2. If Q is saturated then the essential set E consists entirely of
essential points. Furthermore, E = τ−1(

⋂
h∈H〈h〉) =

⋂
h∈H τ

−1(〈h〉).

Proof. The second sentence follows from Lemma 6.1 and the remarks fol-
lowing it because τ−1(H) generates Q. Since 〈h〉 is stable under the action
of Q, τ−1(〈h〉) is Q-stable, too. Thus the essential points already form a
Q-set, which therefore equals E . �

Example 6.3. We consider once again the semigroup Q generated by three
elements x, y, z such that x + y = 2z. τ embeds Q in Z2 by sending x to
(2, 0), y to (0, 2), and z to (1, 1); the image of Qgp in Z2 is the sublattice of
index 2 consisting of pairs (u, v) such that u and v have the same parity.

The points (0, 2), (1, 1) and (2, 0) form a Hilbert basis for τ(Q). 〈(0, 2)〉
consists of those points (u, v) in Z2 with v ≥ −1; similarly 〈(2, 0)〉 consists
of those points with u ≥ −1. Finally 〈(1, 1)〉 consists of points with either u
or v nonnegative. Thus the essential points are those points α ∈ Qgp such
that τ(α) has one of the following forms:

1. (−1, v) for some odd positive v.
2. (u,−1) for some odd positive u.
3. (u, v) for u, v nonnegative and with the same parity.
Figure 1 shows the essential set embedded in Z2 via τ . The spots (both

hollow and solid) represent elements of Qgp; solid spots are essential points.
The regions in which α+Q∩Q remain constant are enclosed by dotted lines.
Note in particular that there is an essential point in every region, and that
the essential points form a Q-set, as predicted by the theorem.

If we refer back to Example 2.4, we see that the socles of RpČ computed
there lie within the essential set, as Proposition 5.6 and Proposition 5.2
predict. Also note that z+E ⊂ Q. One will be able to translate E so that it
lies inQ precisely whenQ is simplicial; this is the content of Proposition 6.13,
which is the central goal of this section.

The essential set E is related to a number of other notions already playing
roles in the study of semigroup algebras and toric varieties. For instance,
the subset 〈H〉 :=

⋂
h∈H〈h〉 of Zr is a monomial module [BS98], so E might

be called a skew monomial module inside the lattice Qgp. To get a better
picture, 〈H〉 ⊂ Zr is a “fuzzy neighborhood” of a certain union U of orthants,
in the sense that there is a vector z ∈ Nr such that U ⊆ 〈H〉 ⊆ U−z. In fact,
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Figure 1. The essential set of the semigroup generated by
(2, 0), (1, 1), and (0, 2).

each set 〈h〉 contains and approximates the union Uh =
⋃
hi>0{ζ ∈ Zr | ζi ≥

0} of half-spaces, and U =
⋂
h∈H Uh; our z can be any vector with zi > hi

for all h ∈ H and all i.
We can get an even better handle on U in the case where Q is the cone

over Q, an integral polytope in Zd−1 × {1} ⊂ Zd−1 × Z = Zd. For each
face F of Q, let van(F ) ⊆ {1, . . . , r} be the indices of functionals vanishing
on F ; similarly, for z ∈ Nr, let van(z) = {i ∈ {1, . . . , r} | zi = 0}. For
instance, if F = Fi is a facet then van(Fi) = {i}, and van(z) = van(F ) if
and only if zi = 0 and zj > 0 for all j 6= i. The polynomial ring k[Nr] is the
Cox homogeneous coordinate ring [Cox95] of the projective toric variety X
whose isomorphism class and embedding in projective space are determined
by Q. The Cox ring comes equipped with the irrelevant ideal B = 〈xz | z ∈
Nr and van(z) ⊆ van(F ) for some face F of Q〉.

Proposition 6.4. If Č is the Čech hull over Nr, then −ζ ∈ U if and only
if xζ 6∈ Č(B). Equivalently, the k[Nr]-submodule 〈xζ | ζ ∈ U〉 ⊂ k[Zr] is the
shift by (1, . . . , 1) ∈ Zr of the Čech hull Č(B?) of the ideal B? Alexander
dual to B [ER98], [MP01, Lecture VI].

In the case where Q is a simple polytope, so the corresponding projective
toric variety is simplicial, B? is the Stanley-Reisner ideal for the simplicial
polytope polar to Q.

Proof. The equivalence of the two statements is [Mil98, Lemma 2.11]. Note
that Č(B) is, a priori, a submodule of k[Zr] since the latter is the injective
hull of B and the former is an essential extension. Now xζ ∈ Č(B) if and
only if van(ζ+) ⊆ van(F ) for some face F by Remark 2.3. On the other
hand, −ζ ∈ Uh precisely when ζi ≤ 0 for some i with hi > 0; that is, when
van(ζ+) 6⊆ van(h). Therefore, −ζ 6∈ U if and only if van(ζ+) ⊆ van(h) for
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some h ∈ H. This occurs if and only if van(ζ+) ⊆ van(F ) for some face
F , because: van(F ) ⊆ van(h) for all h ∈ F ; and each h ∈ H lies in the
relative interior of some F , so van(h) = van(F ) for this F . We conclude
that xζ ∈ Č(B) if and only if −ζ 6∈ U . �

Example 6.5. We illustrate this for the semigroup Q of Example 4.10; that
is, the semigroup on four generators {x, y, u, v} with the relation x+u = y+
v. If we order the four facets appropriately, τ embeds Qgp in Z4 by sending
x to (1, 0, 0, 1), y to (0, 1, 0, 1), u to (0, 1, 1, 0) and v to (1, 0, 1, 0). The image
τ(Qgp) is the lattice consisting of points (a, b, c, d) with a+ c = b+ d.

Now 〈(1, 0, 0, 1)〉 is the set of (a, b, c, d) in Z4 such that either a or d is
nonnegative. Thus, if α ∈ Qgp is an essential point, with τ(α) = (a, b, c, d),
then either a or d is nonnegative. Similarly, using the other elements of the
Hilbert basis, we find that:

• Either b or d is nonnegative.
• Either b or c is nonnegative.
• Either a or c is nonnegative.

Note that in this example, the irrelevant ideal B of Proposition 6.4 is
generated by the elements x(1,0,0,1),x(0,1,0,1),x(0,1,1,0), and x(1,0,1,0) in the
polynomial ring k[N4]. The Čech hull of this ideal is thus supported precisely
on those (a, b, c, d) ∈ Z4 such that at least one of the pairs {a, d}, {b, d},
{b, c}, {a, c} consists of strictly positive integers. Therefore, an element of
Z4 fails to be in this support if and only if its negative satisfies the above
four conditions. To summarize, those elements α of Qgp such that −τ(α) is
not in the support of ČB are essential points, as Proposition 6.4 predicts.

The conditions on τ(α) given above, together with the fact that (a, b, c, d)
= τ(α) (and therefore a + b = c + d), imply that α is an essential point if
(and only if) at most one of {a, b, c, d} is negative. Note that no finite shift
will take all of the essential points inside of Q, since one has essential points
α whose negative coordinate is −n for any natural number n. In particular,
the degrees of the socle elements of H2

(x,u)(ωR) produced in Example 4.10 are
a set of essential points whose negative coordinates are unbounded below.

More generally, the fact that we cannot shift the essential set into Q
means that we cannot rule out the possibility of local cohomology having
infinite Bass numbers. In fact, we will construct a local cohomology module
with infinite Bass numbers whenever the essential set cannot be shifted into
Q (Corollary 7.5).

During our proof of Theorem 5.8, we needed certain results about the
structure of E . In order to obtain them in the generality we used in Section 5,
we no longer assume that Q is saturated. We begin with a lemma used in
the proof of Proposition 5.6.
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Lemma 6.6. Given α ∈ Qgp, there exists some essential point ε with (ε+
Q) ∩Q = (α+Q) ∩Q.

Proof. Any element β ∈ Qgp satisfying (β + Q) ∩ Q = (α + Q) ∩ Q must
also satisfy τ(β) � τ(γ) for all γ ∈ (α + Q) ∩ Q, where � is the partial
order by componentwise comparison. The set of possibilities for τ(β) ∈ Zr
satisfying this condition is bounded above, and thus has a maximal element
τ(ε). Moreover, τ(β) = τ(ε) for some β ∈ Qgp if and only if β − ε is a unit
of Q. This proves that ε is an essential point. �

The major combinatorial result used in the previous section is the fact
that if Qsat is (modulo its units) simplicial, then E can be shifted inside
of Q. Therefore, we want an analog to Lemma 6.1 which holds even for
semigroups which are not saturated. The key tool relating the combinatorics
of a semigroup to the combinatorics of its normalization is provided by the
next lemma. Recall that a face of Q is the set of degrees of elements outside
a prime ideal of k[Q].

Lemma 6.7. Let F be a face of Q. There exists aF ∈ F such that aF+QF ⊂
Q, where QF := (Q+ F gp) ∩Qsat is the partial saturation of Q at F .

Proof. Let R′ = k[QF ] and R̃ = k[Qsat]. Then, letting p ⊂ R = k[Q] be
the prime ideal such that R/p = k[F ], the R-algebra R′ is the intersection
R(p) ∩ R̃ of the homogeneous localization at p with the normalization. The
Lemma calls for a homogeneous element outside of p to be in the conductor
ideal

annR(R′/R) = {x ∈ R | xR′ ⊂ R}.
Such an element exists precisely when annR(R′/R)(p) = R; i.e., when the
localizations R(p) and R′ ⊗R R(p) are equal. But

R′ ⊗R R(p) = R(p) ∩ (R̃⊗R R(p))

= R(p) ∩ R̃(p eR)

= R(p)

because R(p) ⊆ R̃
(p eR)

. �

Remark 6.8. When F = Q, then QF = Qsat, and this is the well-known
fact that every semigroup Q contains an element a with a+Qsat ⊂ Q.

With Lemma 6.7 in hand, we can now find a sufficient condition under
which (β + Q) ∩ Q = (a + β + Q) ∩ Q. Let vanτ (F ) ⊆ {τ1, . . . , τr} be the
subset consisting of functionals vanishing on the face F of Q.

Lemma 6.9. Let a ∈ F , and suppose we have β ∈ Qgp such that τi(a +
aF + β) ≤ 0 for all τi 6∈ vanτ (F ). Then (β +Q) ∩Q = (a+ β +Q) ∩Q.
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Proof. Noting that τj(a) = τj(aF ) = 0 for τj ∈ vanτ (F ), the hypothesis on
a+ aF + β implies that the intersections with Q are contained in (a+ aF +
β +Qsat). Therefore, it is enough to show that

(β +Q) ∩ (a+ aF + β + Qsat) = (a+ β +Q) ∩ (a+ aF + β + Qsat).

This follows by adding β or a+β to both sides of the equality in Lemma 6.10,
below, and setting respectively b = a+ aF or b = aF . �

Lemma 6.10. If b ∈ F and b+QF ⊆ Q, then Q ∩ (b+Qsat) = b+QF .

Proof. We show Q∩(b+Qsat) = (b+QF )∩(b+Qsat), which obviously equals
b + QF . Now Q ∩ (b + Qsat) ⊇ (b + QF ) ∩ (b + Qsat), because Q contains
b+QF ; and Q∩ (b+Qsat) ⊆ (b+QF )∩ (b+Qsat), because a− b ∈ QF when
a ∈ Q ∩ (b+Qsat), by definition of QF . �

We are now in a position to state and prove the unsaturated analog of
Lemma 6.1.

Proposition 6.11. Choose aQ so that τi(aQ) ≥ τi(aF ) for all i and F .
Suppose a ∈ Q, β ∈ Qgp, and τ(aQ + β)+ = τ(a+ aQ + β)+. Then (β +
Q) ∩Q = (a+ β +Q) ∩Q.

Proof. Let F be the smallest face of Q containing a. Then for all τi not
vanishing on F , we have τi(a) > 0, so τi(a + aQ + β) ≤ 0 (as otherwise
the ith coordinates of τ(aQ + β)+ and τ(a + aQ + β)+ are unequal). Thus
τi(a+ β) ≤ τi(−aQ) ≤ −τi(aF ), and by Lemma 6.9 we have (β +Q) ∩Q =
(a+ β +Q) ∩Q, as required. �

The approximation to Theorem 6.2 in the unsaturated case is as follows:

Corollary 6.12. Let H be the Hilbert basis for τ(Q), and aQ be as in Propo-
sition 6.11. Then E + aQ ⊆

⋂
h∈H τ

−1(〈h〉).

Proof. Pick, for each h ∈ H, an element qh ∈ Q with τ(qh) = h. Suppose
ε is an essential point. Setting β = ε and a = qh in Proposition 6.11, we
have τ(ε+ aQ)+ 6= τ(ε+ aQ + qh)+. Just as before Theorem 6.2, we have
τ(ε+ aQ) ∈ 〈h〉, and this holds for all h ∈ H. �

Proposition 6.13. Suppose Qsat is simplicial (modulo units). Then there
exists a ∈ Q such that a+ E ⊂ Q.

Proof. The hypothesis on Q means precisely that for each i = 1, . . . , r, the
image τ(Q) contains an element hi ∈ H in its Hilbert basis whose unique
nonzero coordinate is hii > 0. Observe that 〈hi〉 = {ζ ∈ Zr | ζi > −hii}
is a half-space by definition. Setting h = (h1

1, . . . , h
r
r) ∈ Zr, we find that

h+
⋂
h∈H〈h〉 ⊆ h+

⋂r
i=1〈hi〉 ⊆ Nr. By Corollary 6.12 we may take a = aQ+h̃

for any h̃ ∈ Q satisfying τ(h̃) = h. �
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7. Infinite-dimensional socles.

In this section we prove our principal result concerning semigroup rings,
Theorem 7.1, by combining Theorem 5.8 with its converse, namely that if
Qsat is not simplicial then one can always find an ideal I for which local
cohomology is not well-behaved. We avoid dealing with nontrivial units
here, since they add nothing to the content, but obscure the statement.

Theorem 7.1. Let Q be an affine semigroup of dimension d with trivial
unit group (but not necessarily saturated ). The following are equivalent:

1. The saturation Qsat is simplicial.
2. For every Q-graded ideal I and every finitely generated Q-graded k[Q]-

module M , the Bass numbers of H i
I(M) are finite.

3. For every Q-graded prime p of dimension 2, Hd−1
p (ωk[Qsat]) has finitely

generated socle.

This theorem provides a proof and generalization of Example 4.10. The
key to our argument is Yanagawa’s computation of the local cohomology
of the canonical module ωk[Q] over a normal semigroup ring k[Q] [Yan01].
To state it, let τ1, . . . , τr be linear functionals which vanish on the facets
F1, . . . , Fr of Q and take nonnegative integer values on Q, as in the previous
sections. For the sake of simplicity we assume that Q has no nonzero units.
Choose a hyperplane H transverse to the real cone R+Q generated by Q,
so that Q = (R+Q) ∩H is a polytope of dimension d − 1 = dim(k[Q]) − 1
whose faces (including the empty face ∅) correspond to the primes of k[Q].

Definition 7.2. Let F ∈ Q correspond to F ∈ Q (so 0 ∈ Q corresponds to
∅ ∈ Q, for example). Define the polyhedral cell subcomplex

F (α) = {F ′ ∈ F | (α+ R+Q) ∩ F ′ = ∅}
of F for any face F ⊆ Q and α ∈ Qgp.

Theorem 7.3 ([Yan01, Theorem 6.1]). Let Q be saturated and p be a
graded prime of k[Q], corresponding to a face F of Q. Then Hd−i

p (ωk[Q])α ∼=
H̃ i−1(F , F (α)) for all α ∈ Qgp.

We will apply this when p has dimension 2; that is, when F is an edge of
Q.

Proposition 7.4. If p corresponds to the edge F and Q is saturated, then:
1. Hd−1

p (ωk[Q])α = 0 if τi(α) > 0 for some i such that F i ∩ F 6= ∅.
2. Hd−1

p (ωk[Q])α = 0 if τi(α) ≤ 0 for all i such that F i ∩ F = ∅.
3. Hd−1

p (ωk[Q])α = k if neither of the above conditions holds.

Proof. Suppose the first condition holds. If F i contains F , then α + R+Q
misses F entirely, so F (α) = F , and the zeroth relative homology is zero.
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Otherwise, F i∩F is a vertex of the edge F , and F (α) contains at least that
vertex. Thus the relative homology is again zero.

If the second condition holds, but the first does not, then τi(α) ≤ 0 for
all i. This implies F (α) is the void complex—not even ∅ ∈ F (α), so the
zeroth relative homology is still zero.

In the third case, F (α) consists of just the empty face ∅, and the zeroth
relative homology is the number of connected components of F . �

Corollary 7.5. Let F be an edge of Q such that there exists a facet F j of
Q with F j ∩ F = ∅. Let p be the prime of k[Q] corresponding to F . Then
if Q is saturated, Hd−1

p (ωk[Q]) has an infinite-dimensional socle.

Proof. Every nonzero element x ∈ Hd−1
p (ωk[Q]) is annihilated by some power

of the maximal ideal of k[Q]. To see this, suppose x is homogeneous of degree
α, and assume that for some β ∈ Q, we had xnβx 6= 0 for all n ∈ N. Then,
by Proposition 7.4, τi(nβ + α) ≤ 0 for all n and all i such that F i ∩ F 6= ∅.
Thus τi(β) = 0 for all such i, so β ∈ F i for all such i. But the intersection
of all such F i is empty, so β = 0.

If F j ∩F = ∅, then choose α ∈ Qgp such that τj(α) > 0 and τi(α) ≤ 0 for
i 6= j. Proposition 7.4 implies that Hd−1

p (ωk[Q])α is nonzero and killed by
some power of the maximal ideal, so Hd−1

p (ωk[Q]) has nontrivial socle. Sup-
pose its socle were finite-dimensional. Then there would exist β ∈ Qgp such
that τj(β) is maximal among the socle degrees in Qgp. But since τj(α) > 0,
we have τj(β) > 0, so τj(2β) > τj(β). Moreover the local cohomology
is nontrivial in degree 2β. Taking a nonzero element of Hd−1

p (ωk[Q])2β and
multiplying it by a sufficiently large power of the maximal ideal then yields a
socle element in a degree γ with τj(γ) > τj(β), which is a contradiction. �

Proof of Theorem 7.1. 1 ⇒ 2 is Theorem 5.8, and 2 ⇒ 3 is because ωk[Qsat]

is finitely generated over k[Q]. For 3 ⇒ 1, the unsaturated case follows from
the saturated case. Indeed, any Qsat-graded ideal I ⊂ k[Qsat] is generated
up to radical by elements y = (y1, . . . , ys) in k[Q] (high powers of any
homogeneous generating set for I will do). If M is any k[Qsat]-module, the
cohomology of the Čech complex C.(y;M) on these generators is therefore
a module over both k[Qsat] and k[Q]. As such, it is simultaneously the local
cohomology of M over k[Qsat] with support on I ⊂ k[Qsat] and over k[Q]
with support on I∩k[Q]. Furthermore, any socle element of a k[Qsat]-module
is also a socle element over k[Q], since the maximal ideal of k[Q] is contained
in the maximal ideal of k[Qsat].

Thus by Corollary 7.5, it suffices to produce, for any polytope Q 6= sim-
plex, an edge F of Q that misses some facet. Equivalently, it suffices to
show that if Q is a polytope in which every edge meets every facet then Q
is a simplex. Let F ∈ Q be a facet, and τ a linear functional supporting
F , nonnegative on Q. Suppose τ takes a minimal nonzero value at a vertex
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v 6∈ F . If more than one vertex of Q lies off of F , there is an edge (necessar-
ily missing F ) connecting v to some vertex at which τ > 0. Thus, if every
edge meets every facet, there can be only one vertex of Q lying off of each
facet, and Q must be a simplex. �

8. Open problems.

It has been seen above that affine semigroup rings provide a wealth of ex-
amples and counterexamples to general questions about local cohomology in
singular varieties. In particular, they shed some light on some of the general
questions posed by Huneke on local cohomology [Hun92]:

1. When is H i
I(M) zero?

2. When is H i
I(M) finitely generated?

3. When is H i
I(M) artinian?

4. When is the number of associated primes of H i
I(M) finite?

Although the answer to the fourth is trivially “always” in the cases discussed
in this paper, the above examples provide clues as to how to refine the first
three, given a grading.

Section 4 provides a possibility for answering Question 1: Relate the van-
ishing of local cohomology in a given cohomological degree to the vanishing
of Ext modules in that cohomological degree and lower. Theorem 4.7 estab-
lishes this link for graded modules over semigroup rings; we believe that such
a connection exists in significantly more generality, but we are unaware of
how to relate infinitely generated modules to finitely generated ones with-
out resorting to a grading. The key concept is that of a certain kind of
“constancy”, provided here by the Čech hull. This type of constancy is rem-
iniscent of the characteristic 0 regular local case, in which the modules in
question are treated as D-modules [Lyu93]. Perhaps the right generaliza-
tion of D-module to the singular setting will provide the appropriate notion
of constancy to bridge finitely generated Ext modules and local cohomology.

A partial answer to Question 2 in the general (local, ungraded) case con-
cerns numerical criteria on the heights of primes and cohomological degrees
involved [Hun92]. In the semigroup-graded case, finite generation can be
viewed as a convex-geometric problem, dealing with Q-graded degrees in
which the summands in a minimal injective resolution are nonzero. We ex-
pect in the Q-graded case for these considerations to yield geometric and
combinatorial criteria in addition to the general numerical criteria. For the
canonical module of a normal semigroup ring, for instance, local cohomology
at a graded prime ideal p of R is finitely generated if and only if it vanishes,
since Proposition 4.9 expresses such cohomology in terms of derived functors
of Č, which are never finitely generated if they are nonzero, or in terms of
ČωR/p, which is also never finitely generated.

As pointed out by Huneke [Hun92], Question 3 has two parts, namely:
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3a. When is the maximal ideal the only associated prime of H i
I(M)?

3b. When are the Bass numbers of H i
I(M) finite?

Both 3a and 3b should have concrete combinatorial answers in the semigroup
case, at least when M is a canonical module. In fact, we expect the essential
set to play a pivotal role in answering these and the following refinement of
3a: For which cohomological degrees i and graded ideals I is a given prime
of k[Q] associated to H i

I(ωk[Q])?
As for Question 3b, it seems to be connected with the kinds of singularities

which appear in the normalization of the ring R. Whether this holds in more
generality than simply for semigroup rings is an interesting question. For
instance, one can try classifying the singularities of a ring R or ideals I
for which the modules H i

I(M) can have infinite Bass numbers (or, for that
matter, which primes can appear with infinite Bass number). Even in the
case of a semigroup ring, we do not have satisfactory answers to these last
questions.

Finally, is there a global version of the Čech hull that works for toric
varieties, and if so, what is its relation to the Čech hull over the Cox homo-
geneous coordinate ring [Cox95]? More generally, for varieties with a torus
action, can a global Čech hull give information about cohomology with sup-
port on subvarieties fixed pointwise by subgroups of the acting torus? In the
toric case, properties of a global Čech hull will be governed by the group of
Weil divisors modulo Cartier divisors, introduced by Thompson to control
resolutions of singularities [Tho01].
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EXAMPLES OF BIREDUCIBLE DEHN FILLINGS

James A. Hoffman and Daniel Matignon

If an irreducible manifold M admits two Dehn fillings along
distinct slopes each filling resulting in a reducible manifold,
then we call these bireducible Dehn fillings. The first example
of bireducible Dehn fillings is due to Gordon and Litherland.
More recently, Eudave-Muñoz and Wu presented the first in-
finite family of manifolds which admit bireducible Dehn fill-
ings. We present another infinite family of hyperbolic man-
ifolds which admit bireducible Dehn fillings. The manifolds
obtained by the fillings are always the connect sum of two lens
spaces.

0. Introduction.

Let M be an orientable 3-manifold with toroidal boundary T . Given a slope
r on T , the Dehn filling of M along r, denoted by M(r), is the manifold
obtained by identifying T with the boundary of a solid torus V so that r
bounds a meridian disk in V .

In this paper, we are especially interested in those Dehn fillings which
produce reducible manifolds. Recall that a manifold is reducible if it contains
an essential 2-sphere, that is, a 2-sphere which does not bound a 3-ball. If
an irreducible manifold M admits two Dehn fillings along distinct slopes
each filling resulting in a reducible manifold, then we call these bireducible
Dehn fillings.

The first example of bireducible Dehn fillings is due to Gordon and Lither-
land [GLi]. More recently, Eudave-Muñoz and Wu [EW] presented the
first infinite family of manifolds with admit bireducible Dehn fillings. They
show that for each p 6= 0 there is a hyperbolic manifold Mp such that
MP (∞) ∼= Q(2,−2)#RP 3 and MP (0) ∼= Q(2p,−2p)#RP 3, where Q(r, s) is
the double branched cover of a Montesinos tangle T [r, s].

We present another infinite family of hyperbolic manifolds which admit
bireducible Dehn fillings, all with exactly one toroidal boundary compo-
nent. They represent counterexamples to the generalization of the Cabling-
Conjecture [GS] since they are hyperbolic. Notice that examples with a
single boundary component can be constructed from the examples given in
[EW] (for more details, see the end of Section 4).

67
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Theorem 1. There exists an infinite family of hyperbolic manifolds which
admit bireducible Dehn fillings. More precisely, there exist families of hy-
perbolic manifolds M t

2, M
t
3 and M t

4, parameterized by an integer t, such
that:

a) M t
2(∞) ∼= L(−2, 1)#L(−4, 1) and

M t
2(t) ∼= L(2, 1) #L(t2 − 2t+ 1, t− 2) for t 6= 0, 1, 2,

b) M t
3(∞) ∼= L(−3, 1)#L(−3, 1) and

M t
3(t) ∼= L(3, 1) #L(t2 − t+ 1, t− 1) for t 6= 0, 1,

c) M t
4(∞) ∼= L(−4, 1)#L(−2, 1) and

M t
4(t) ∼= L(4, 1) #L(t2 + 1, t) for t 6= 0.

Note that in each instance, the manifold resulting from the Dehn filling
is the connect sum of two lens spaces. The lens space L(p, q) is the manifold
obtained by performing p/q-Dehn surgery on the unknot. The restrictions
on the parameter t are there to account for cases where either the resultant
manifold is not reducible (i.e., one of the summands is L(1, n) ∼= S3), or one
summand of the resultant manifold is not a lens space. The latter occurs
in Case (a) with t = 1. Here we get the summand L(0,−1) ∼= S2 × S1.
This case is also uninteresting since the manifold (before the Dehn filling)
is reducible.

1. Surgery instructions.

In this section, we show how to construct a family of manifolds with one
toroidal boundary component. Begin with the five component link L ⊂ S3

shown in Figure 1 having components A, B, C, D and K. The box labeled
t represents t full twists. Positive values represent right-handed twists; and,
negative values represent left-handed twists. For example,
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� � ����� �	� �

Define M t
(a,b,c,d) to be the manifold obtained by removing a regular neigh-

borhood of K and performing Dehn surgery on the components A, B, C
and D along the respective slopes a, b, c and d. The parameter t repre-
sents the number of twists between the components K and C (as shown
in Figure 1). In particular, we are interested in the families of manifolds
M t

(−1,−2,1,2), M
t
(−1,−2,2,1), M

t
(−2,−1,1,2) and M t

(−2,−1,2,1) parametrized by the
nonzero integer t.

Also, let T = ∂M t
(a,b,c,d) be the boundary torus. If r is a slope in T , then

define M t
(a,b,c,d)(r) to be the manifold obtained by performing a Dehn filling

along r.
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2. Bireducibility.

Here we show that there are two slopes, namely ∞ = 1
0 and t, in the bound-

ary of M t
(a,b,c,d) such that the Dehn fillings, M t

(a,b,c,d)(∞) and M t
(a,b,c,d)(t),

are both reducible manifolds. Moreover, the resulting summands are all lens
spaces.

The following proofs use the link-calculus of 3-manifolds as described in
Chapter 9H of [R]. The proofs consist of a series of link diagrams with ac-
companying surgery coefficients. Each transition between diagrams is either
an isotopy or a twisting about an unknotted component. In order to sim-
plify the statements of the following claims, we will consider L(1, n) ∼= S3

and L(0,±1) ∼= S2 × S1 as lens spaces. This inclusion applies only to this
section of the paper. Let us first consider the manifolds for which a = −1,
b = −2.

Claim 1. M t
(−1,−2,c,d)(t)

∼= L(t2 + (1− c)t+ 1, t+ 1− c)#L(d+ 2, 1).

Proof. We refer the reader to Figure 2. In the first transition, component
D is isotoped so that components B and D “pass through” component A in
like fashion. This is done to facilitate the twisting of component A in the
second transition.

In transition 2, we perform a single positive twist about component A.
Since A now has a trivial surgery coefficient, it is removed from the dia-
gram. Note that the surgery coefficients increase for components B and D
as they link component A. In transition 3, we perform a single positive twist
about component B. Again, the component is removed as it has a trivial
surgery coefficient; and, the surgery coefficients for components C and D
are increased.

Transition 4 introduces a new component F linking components C and K,
and gives it −t− 1 twists (to unwind the twisting of components C and K).
Thus the surgery coefficient of F is 1

−t−1 . This new component is temporary
and simplifies the diagram for the next transition. Moreover, we achieve the
desired effect that the surgery coefficient of K is now −1. At this point,
component C and D have, respectively, surgery coefficients c− t and d+ 2.

In transition 5, we perform a single positive twist about component K,
giving it a trivial surgery coefficient. We will keep K in the diagram so
that we may see how it lies in the resulting manifold. Note that the surgery
coefficient of component C is unchanged as it has linking number zero with
component K. The surgery coefficient of F is increased by the twist.

Transition 6 is an isotopy of component C. In transition 7, components
D, F and K are isotoped to facilitate a twisting about component C.

In transition 8, we perform a single negative twist about component C.
This is done so the coefficient of component F once again represents −t− 1
twists. Transitions 9 and 10 are isotopies of component D in an attempt to



BIREDUCIBLE DEHN FILLINGS 71

separate components C and D. In transition 9, the lower arc of D is flyped
to the top of the diagram. Also, a lower loop of D is untwisted. In transition
10, component D is pulled taut at the expense of twisting component K.

Transition 11 is an isotopy of components F and C. Component C is
pulled down. We also localize component F so that, in transition 12, we
may perform t+ 1 twists about F .

The final diagram shows us the knot K with trivial surgery coefficient.
If we disregard K, we see two unknotted and unlinked components. Each
component, C and D, represents a lens space summand (possibly S3 or
S2 × S1) of M t

(−1,−2,c,d)(t), thus proving the claim. �

Next, consider the manifolds for which a = −2 and b = −1.

Claim 2. M t
(−2,−1,c,d)(t)

∼= L(t2 − ct+ 1, t− c)#L(d+ 1, 1).

Proof. We refer the reader to Figure 3. The proof of this claim is nearly
identical to the proof of Claim 1. Transition 1 is an isotopy of component
D. In transition 2, we perform a single positive twist on component B.
This gives B a trivial surgery coefficient; so it is removed. The surgery
coefficient of components A and C increase to −1 and c+ 1, respectively. In
transition 3, we perform a single positive twist on component A. This gives
A a trivial surgery coefficient; so it too is removed. The surgery coefficients
of components C and D each increase by 1. The remaining transitions are
identical to those in Claim 1, the only difference being the surgery coefficients
of components C and D. �
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Figure 2. The equivalence of M(−1,−2,c,d)(t) and L(t2 + (1− c)t+ 1, t+ 1−
c)#L(d+ 2, 1).
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Figure 3. The equivalence of M(−2,−1,c,d)(t) and L(t2−ct+1, t−c)#L(d+
1, 1).
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Figure 4. The equivalence of M t
(a,b,2,1)(∞) and L(a−2, 1)#L(b−1, 1) with

t > 0.
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Figure 5. The equivalence of M t
(a,b,2,1)(∞) and L(a−2, 1)#L(b−1, 1) with

t < 0.
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(a,b,1,2)(∞) and L(a−1, 1)#L(b−2, 1) with
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In our third claim, we consider the manifolds for which c = 2 and d = 1.

Claim 3. M t
(a,b,2,1)(∞) ∼= L(a− 2, 1)#L(b− 1, 1).

Proof. There are two cases, t > 0 and t < 0, in the proof of this claim. The
two cases are nearly identical. We refer the reader to Figures 4 and 5. In
transition 1, we perform a single negative twist about component D giving
it a trivial surgery coefficient. Component D thus is removed from the dia-
gram. The surgery coefficients of components A and C are each reduced by
1. We also see in transitions 1 and 2 a rather involved isotopy of component
K in which the twisting of components K and C is replaced by the looping
of K around C. This is done to facilitate transition 3, where we perform
a single negative twist about component C. This gives C a trivial surgery
coefficient; so it is removed from the diagram. The surgery coefficients of
components A and B are reduced to a−2 and b−1, respectively. Note that
K keeps its trivial surgery coefficient.

Transition 4 is the start of another involved isotopy. This isotopy sep-
arates components A and B. The reader should first isotop the foremost
(and leftmost) arc of component A so that it moves: In front of the diagram,
through the interior of the disk bounded by component B, and behind the
diagram. During this isotopy, A will snag one of the strands of component
K. In transition 5, we deform component B to an oval. We note that com-
ponents A and B are unlinked and unknotted. Thus each component, A and
B, represents a lens space summand of M t

(a,b,2,1)(∞) proving the claim. �

Finally, we consider the manifolds for which c = 1 and d = 2.

Claim 4. M t
(a,b,1,2)(∞) ∼= L(a− 1, 1)#L(b− 2, 1).

Proof. Again there are two nearly identical cases to consider, t > 0 and
t < 0. We refer the reader to Figures 6 and 7. This proof is similar to
that of Claim 3. Transition 1 is an isotopy of component K in which the
twisting of K and C is replaced by the looping of K around C. This is done
to facilitate transition 2, where we perform a single negative twist about
component C. This gives C a trivial surgery coefficient; so it is removed
from the diagram. The surgery coefficients of components B and D are
each reduced by one.

Transition 3 is an isotopy which shrinks component D and stretches com-
ponent A. In transition 4, we perform a single negative twist about compo-
nent D giving it a trivial surgery coefficient, and so it is removed from the
diagram. The surgery coefficients of components A and B are reduced to
a− 1 and b− 2, respectively.

We separate components A and B with an isotopy in transition 5. The
reader should refer to the transitions 4 and 5 in the proof of Claim 3 for
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clarification. We note that components A and B are unlinked and unknot-
ted. Thus each component, A and B, represents a lens space summand of
M t

(a,b,1,2)(∞) proving the claim. �

These four claims give us the following corollary. Part (a) of the corollary
follows from Claims 2 and 3. Part (c) follows from Claims 1 and 4. And
Part (b) follows from either Claims 2 and 4 or from Claims 1 and 3.

Corollary 2.1. If t is an integer, then
a) M t

(−2,−1,2,1)(∞) ∼= L(−4, 1)#L(−2, 1) and
M t

(−2,−1,2,1)(t)
∼= L(t2 − 2t+ 1, t− 2)#L(2, 1).

b) M t
(−2,−1,1,2)(∞) ∼= L(−3, 1)#L(−3, 1) and

M t
(−2,−1,1,2)(t)

∼= L(t2 − t+ 1, t− 1)#L(3, 1), also
M t

(−1,−2,2,1)(∞) ∼= L(−3, 1)#L(−3, 1) and
M t

(−1,−2,2,1)(t)
∼= L(t2 − t+ 1, t− 1)#L(3, 1),

c) M t
(−1,−2,1,2)(∞) ∼= L(−2, 1)#L(−4, 1) and

M t
(−1,−2,1,2)(t)

∼= L(t2 + 1, t)#L(4, 1).

For the remainder of this paper, we wish to restrict our results to the cases
which yield true lens spaces (thus excluding S3 and S2 × S1). In Case (a),
we must exclude the values t = 0, 1 and 2. Likewise, in Case (b) we exclude
t = 0 and 1, and in Case (c) we exclude t = 0. All other integral values of t
are admissible.

We should remark, at this point, that these excluded cases are genuinely
uninteresting. If the manifolds, before Dehn filling, were hyperbolic, then we
might be able to claim a counterexample to a generalized cabling conjecture.
But alas, the excluded manifolds are not hyperbolic.

3. Hyperbolicity.

Let M be any one of the manifolds M t
(−1,−2,1,2), M

t
(−1,−2,2,1), M

t
(−2,−1,1,2)

and M t
(−2,−1,2,1) where t is an admissible integer. In this section, we prove

that M is hyperbolic (i.e., the interior of M admits a hyperbolic structure).
Since each manifold M has toroidal boundary T = ∂M , we need to show M
is irreducible, ∂-irreducible, atoroidal, and not Seifert fibered [T].

Lemma 3.1. If S is a separating reducing 2-sphere in M(∞) or M(t), then
S may not be isotoped so that S ∩ T = ∅.

Proof. It suffices to prove the claim for M(t) since if a reducing 2-sphere
S could be made disjoint from T in M(∞), then either S would also be a
reducing 2-sphere disjoint from T in M(t) or S would be inessential in M(t).
In the latter case, both summands of M(t) would have to appear in M(∞).
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First note that, for the connect sum of two irreducible manifolds, there
is only one isotopy class of reducing (essential) 2-spheres. By Corollary 2.1,
M(t) is homeomorphic to the connect sum of two lens spaces. Thus any
reducing 2-sphere in M(t) can be isotoped to a “standard” sphere S which
misses the cores of the lens space summands. That is, we may assume S
separates to the two link components with the nontrivial surgery coefficients
shown in the final diagrams in Figures 2 and 3. Since S is reducing, it must
separate the two cores and intersect the component K. Recall that T is the
torus boundary of a regular neighborhood of K. Now the problem can be
restated by claiming K cannot be isotoped in M(t) to miss S.

Again, we refer the reader to the final diagrams in Figures 2 and 3. Note
that the link diagrams are identical, only the surgery coefficients differ.
For this link diagram, with t 6= 0, the Alexander polynomial is given by
∆(a) = a2− 4a+ 6− 4a−1 + a−2 when all components are given a clockwise
orientation. Recall that if L is a split link, then the Alexander polynomial is
zero for that link. So we conclude that the three components in this diagram
are indeed linked.

Every arc of K in M(t)−S links with the core of the lens space summands.
So for any product neighborhood S × I of S, where S = S × {0}, such that
S × {1} and K intersect transversaly, we have |(S × {1}) ∩K| ≥ |S ∩K|.
Therefore, from Proposition 1.1 of [E], |S∩K| is minimal. So, it is impossible
for K to be isotoped to miss S. �

Lemma 3.2. M is irreducible and ∂-irreducible.

Proof. Suppose that M is reducible with S a reducing sphere in M . If S is
nonseparating in M , then S is nonseparating in M(r). But by Corollary 2.1,
there are slopes r for which M(r) is the connect sum of two lens spaces. And
these manifolds contain no nonseparating spheres.

So assume that S is a separating sphere in M . Then M = X#Y where
∂X = ∂M and Y 6= S3. Thus M(r) = X(r)#Y . In particular, M(∞) =
X(∞)#Y ∼= L1#L2 where L1 and L2 are lens spaces. By the uniqueness of
decomposition, we can assumeX(∞) ∼= L1 and Y ∼= L2. But this contradicts
Lemma 3.1.

If M is ∂-reducible, since M is irreducible and ∂M is a torus, then M
must be a solid torus. But this is impossible since the fillings of a solid torus
are well-known and do not correspond to the results of Corollary 2.1. �

Bireducible manifolds are not Seifert fibered. Thus we have the following
lemma:

Lemma 3.3. M is not Seifert fibered.

Proof. If M is Seifert fibered, then M(r) is Seifert fibered for all but one
slope r for which M is reducible [H]. But by Corollary 2.1, we have two
slopes for which Dehn filling produces reducible manifolds. �
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The following lemma is proved in [EW]:

Lemma 3.4 (Eudave-Muñoz, Wu). Let W be an irreducible and ∂-irreduc-
ible 3-manifold. If both W (r1) and W (r2) are reducible and ∂-reducible, then
r1 = r2.

Next, we show that M does not contain an essential torus.

Lemma 3.5. M is atoroidal.

Proof. Suppose that M contains an essential torus F . Then F must be sep-
arating. Otherwise, M(∞) would contain a nonseparating torus or sphere,
contradicting Corollary 2.1. Let W and W ′ be the two components of M cut
along F , where W contains ∂M . Using Lemma 3.2, we may conclude that
W is both irreducible and ∂-irreducible (as is W ′). By Corollary 2.1, both
M(∞) and M(t) are atoroidal and reducible. Thus F must be compressible
in both W (∞) and W (t).

If both W (∞) and W (t) are reducible, then this contradicts Lemma 3.4.
Thus, we may assume that one of them is irreducible (i.e., it is a solid torus).

Let x ∈ {∞, t} such that W (x) ∼= S1 × D2. Let y ∈ {∞, t} and x 6= y.
Let Kx be the core of the Dehn filling, and Vx = N(Kx). Then W =
W (x) − intVx. Note that W ′ = M − W and W ′ = M(γ) − W (γ), for
all slopes γ ∈ ∂M . Recall that F = ∂W ′ ∼= ∂W (γ). Therefore W ′ =
M(x)−W (x) ∼=

(
L(a, b)#L(p, q)

)
− S1 ×D2. Let r be a slope in F which

corresponds to a meridian of W (x) ∼= S1 ×D2. Then W ′(r) is reducible.
Now we examine W ′ = M(y) −W (y). Let s be the slope in F , which

corresponds to a meridian in ∂W (y). So, r is the meridian slope in ∂W (x)
and s is the slope of the new meridian in ∂W (y) ∼= ∂W (x) after performing
surgery on Kx along y.

We consider two cases, according to whether W (y) is reducible or not.

Case 1: W (y) is reducible (i.e., W (y) ∼= S1 ×D2#L(p, q)).
It follows from theorems of Gabai and Scharlemann ([Ga] and [S]) that

W is a cable space.

Case 2: W (y) is irreducible.
From Gabai’s Theorem 1.1 [Ga], W is the exterior of a braid in a solid

torus. So, in both cases, we can apply Gordon’s Lemma 3.3 [Go] (here W

and Kx take place of respectively Y and J). Thus, ∆(r, s) =
∣∣∣∣ nw2

(w,m)

∣∣∣∣ ≥ |w|,

where w is the winding number of Kx in the solid torus W (x).
In the first case, Kx is (p, q)-cable knot (hence q ≥ 2). So |w| > 1. In the

second case, Kx is a braid, then again | w |> 1. Consequently, ∆(r, s) > 1.
Note that this result also follows from [B] Theorem 2.5.

Now, in the first case W ′(s) is a lens space, which contradicts [BZ]. In
the second case, W ′(s) is also reducible, which contradicts [GLu]. �
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The results of this section show that any one of the manifolds M t
(−1,−2,1,2),

M t
(−1,−2,2,1), M

t
(−2,−1,1,2) and M t

(−2,−1,2,1), where t is an admissible integer,
is a hyperbolic manifold. This fact and Corollary 2.1 suffice to prove Theo-
rem 1.

4. Comments and questions.

The use of both positive and negative values in the parameter t produces
redundancy in the list of manifolds up to homeomorphism. This redundancy
is made explicit in the correspondences shown in the next theorem.

Theorem 2. The following manifolds are homeomorphic:
a) M t

(−2,−1,2,1)(t)
∼= M2−t

(−2,−1,2,1)(2− t) for all t ≤ −1.

b) M t
(−1,−2,2,1)(t)

∼= M1−t
(−1,−2,2,1)(1− t) for all t ≤ −1.

c) M t
(−1,−2,1,2)(t)

∼= M−t
(−1,−2,1,2)(−t) for all t ≤ −1.

Proof. This proof is based on the fact that two lens spaces L(p, q) and L(p, q′)
are of the same homeomorphism type if and only if ±qq′ ∼= 1(mod p) [R].
We only prove Case (a), as the other two cases are similar. By Corollary 2.1,
M t

(−2,−1,2,1)(t)
∼= L(t2−2t+1, t−2) andM2−t

(−2,−1,2,1)(2−t) ∼= L(t2−2t+1,−t).
The homeomorphism of the two follows since −(2 − t)(−t) = 2t − t2 =
1− (t2 − 2t+ 1). �

We would like to point out that all known examples of bireducible fill-
ings result in a summand which is homeomorphic to one of the lens spaces
L(2, 1), L(3, 1), or L(4, 1). The Eudave-Muñoz and Wu examples [EW] and
the Gordon and Litherland example [GLi] always have an L(2, 1) summand.
This begs the question: Does there exist an example in which no summand
is homeomorphic to either L(2, 1), L(3, 1), or L(4, 1)?

Second, we would like the reader to note that there are no known examples
of “trireducible” manifolds. According to Gordon and Luecke [GLu], if two
fillings on an irreducible manifold with torus boundary produce reducible
manifolds, then the slopes of the fillings must have a minimal geometric
intersection of one. This means an irreducible manifold can have at most
three slopes for which Dehn filling produces a reducible manifold. Does
there exist a manifold which is trireducible?

Finally, in all known examples, the minimum number of times one of the
reducing spheres meets the core of the Dehn filling is bounded by four. In
our examples and the Eudave-Muñoz and Wu examples [EW], the other
reducing sphere in each family meets the core an arbitrarily large number
of times. Does there exist an example in which both minimal intersections
are larger than four? And if so, is there a family of examples in which both
minimal intersections are unbounded?
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For the readers’ convenience, here is a way to construct examples of hy-
perbolic manifolds with a single boundary manifold which have bireducible
Dehn fillings, from the examples given in [EW].

It is shown in [EW] Theorem 3.6 that there is a collection of hyperbolic
manifolds, denoted Mp, with two toroidal boundary components T0 and T1,
such that T0 has two reducing slopes. If r is a slope in T0, denote the Dehn
filling along r by Mp(r); and, if r is in T1, denote the Dehn filling by (r)Mp.

It follows from [EW] Lemma 3.1 that for the slopes ∞ and 0 in T0, both
Mp(∞) and Mp(0) are reducible. Now, from [EW] Figure 3.1, (∞)Mp and
(0)Mp are also both reducible, where ∞ and 0 are slopes in T1. Then, from
[EW] Table 1.1, if r is a slope in T1 such that ∆(r,∞) > 3 or ∆(r, 0) > 3
then (r)Mp is hyperbolic.

So, for almost all r (for all except at most 16 values of r) (r)Mp is a
hyperbolic manifold, with a single boundary component, and with bire-
ducible Dehn fillings. Furthermore, (r)Mp(∞) = RP 3#S1 and (r)Mp(0) =
RP 3#S2, where S1 and S2 are small Seifert fibered spaces (in a few cases
they are lens spaces).
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Figure 1. The five component link L ⊂ S3.
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HOMOTOPY MINIMAL PERIODS FOR MAPS OF THREE
DIMENSIONAL NILMANIFOLDS

Jerzy Jezierski and Wac law Marzantowicz

A natural number m is called the homotopy minimal period
of a map f : X → X if it is a minimal period for every map
g homotopic to f. The set HPer (f) of all minimal homotopy
periods is an invariant of the dynamics of f which is the same
for a small perturbation of f. In this paper we give a complete
description of the sets of homotopy minimal periods of self-
maps of nonabelian three dimensional nilmanifold which is a
counterpart of the corresponding characterization for three
dimensional torus proved by Jiang and Llibre. As a corollary
we show that if 2 ∈ HPer (f) then HPer (f) = N for such a map.

0. Introduction.

One of the natural problems in dynamical systems is the study of the ho-
motopy minimal periods of self-map f : X → X i.e., these periods which
are also minimal periods for every map g homotopic to f. An aim is to give
a complete characterization, of the set HPer (f) of all homotopy minimal
periods, in terms of the homological information on f. Since the homotopy
minimal period preserves under a small perturbation of a manifold map, one
can say that the set of all homotopy minimal periods describes the rigid part
of dynamics of f. A description of the set of all homotopy minimal periods of
a map is difficult in general, however here are some results for the mappings
of compact homogenous spaces of Lie groups by a discrete subgroup.

After the case of maps of the circle in [4] (Block, Guckenheimer, Misi-
urewicz and Young) in the second instance maps of two-dimensional torus
(X = T 2) have been investigated in a series of papers [1] and [2] by Alsedá,
Baldwin, Llibre, Swanson and Szlenk. In our notion they gave a complete
description of the set of all homotopy minimal periods of a map of the circle
or two torus respectively. The answer is given in terms of the linearization
of map f , i.e., an integral matrix of the linear map induced by f. In the
work of Jiang and Llibre [12] the qualitative description of this set was suc-
cessfully studied for maps of r-dimensional torus, for an arbitrary r ≥ 1.
All of them use the Nielsen theory, which for the torus maps has very nice
algebraic description ([5]) and prepossessing geometric properties ([12], [17]
and [18]).

85
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Using the general result of [12] Jiang and Llibre gave also a complete
description of the set of all homotopy minimal periods (called them the
minimal set of periods) of a map of the three torus. It can be done with
relatively easy handling using algebraic integers of degree equal or less than
three.

Recently the authors extended the main theorem of [12] onto the case of
a map f of an arbitrary compact nilmanifold X with the similar qualitative
statement ([10] Thm. A). The crucial step of the mentioned fact was a proof
that NPn(f) = 0 implies that f ∼ g, where g has no periodic points of the
minimal period n. Basing also on this theorem we give here a complete de-
scription of the set of minimal homotopy periods of a compact nonabelian
three dimensional nilmanifold (Theorem 3.1). A preliminary version of this
theorem has been presented already in [10] (Thm. C) but that statement
does not contain all restrictions on the sets of homotopy minimal periods
that appear in the discussed case. Here we make use of the classification
of compact three dimensional nilmanifolds and the fact that every such nil-
manifold X forms a fibration with S1 as the fiber and T 2 as the base (cf. [6]).
Moreover every self-map of X is homotopic to a fiber map of this fibration
due the Fadell-Husseini theorem (cf. [6]). This means that the integral 3×3
matrix A corresponding to f is a direct sum of one-dimensional and two-
dimensional summand which yields that its characteristic polynomial is the
multiple of a two polynomials of degree one and two, corresponding to the
fiber mapf1 and the base map f respectively. It lets us to derive the set of
homotopy minimal periods of f from the corresponding sets of the factors
f1, f (Theorem 3.1) by use of a formula (Theorem 3.5, Corollary 3.6). Due
to this factorization we can use the previous classification done in [2] and
[4], and do not need to cope with algebra. The main necessary topologi-
cal ingredient, with except the mentioned Thm. A of [10], is a description
of the form of automorphism of any nilpotent nonabelian group of rank 3
(Proposition 2.12). In particular this yields that the degree of base map f
is equal to the degree of fiber map f1 (Corollary 2.13).

As an application we specify our theorem to the case of a homeomorphism
of such a nilmanifold (Theorem 4.1).

Here is the scheme of the paper. In Section 1 we recall the formula for
the homotopy minimal periods of self-maps of S1 and T2 ([4], [1] and [2]).
In Section 2 the necessary information about nilmanifolds and theorem on
HPer f for the self-maps of nilmanifolds of [10] are recalled. Also general
form of an automorphism of any nilpotent nonabelian group of rank 3 is
given. This gives a necessary and sufficient condition on 3 × 3 matrix to
be the linearization of a self-map of such a manifold. Then in Section 3 we
show how to reduce the 3-nilmanifold case to S1 and T2. This let us to prove
the main result (Theorem 3.1). As an application we present a theorem of
Šarkovskii type (Corollary 3.9) that says that for a self-map of nonabelian
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three nilmanifold the existence of homotopy period 2 implies the existence of
all homotopy minimal periods. Finally we show that for a homeomorphism
f of such manifold if HPer (f) 6= ∅ then HPer (f) = N with except two
special cases when HPer (f) = N \ 2N.

1. Homotopy minimal periods of self-maps of S1 and T 2.

In this section we recall the explicit formulae of the homotopy minimal peri-
ods of self-maps of S1 and T 2 presented in [4], [1] and [2]. First we recall the
basic definitions used in [12] and [10]. Remaining a standard terminology,
let f : X → X be a self-map of a compact connected polyhedron X, and n be
a natural number. Let Fix(f) be the fixed point set of f, Pm(f) := Fix(fm)
and let

Pm(f) := Pm(f) \
⋃

n|m,n<m

Pn(f),

denote the set of periodic points with least period m.
Recall that Per(f) denotes the set of all minimal periods of f i.e.,

Per(f) := {m ∈ N; Pm(f) 6= ∅}.
When a map g : X → X is homotopic to f, we shall write g ' f. Define the
set of homotopy minimal periods to be the set

HPer (f) :=
⋂
g'f

Per(g).(1.1)

Boju Jiang and Llibre use the name “the minimal set of periods” but we
hope that what we use here more emphasizes that n ∈ HPer (f) iff n is a
minimal period for every g homotopic to f.

We begin with X = S1 which was studied by Block and co-authors in [4].
The meaning of letters (E), (F), (G) as well as the definition of matrix A
and the set TA ⊂ N in the theorem given below are given in the next section
(Theorem 2.3).

Theorem 1.2 ([4]). Let f : S1 → S1 be a map of the circle and d ∈ Z =
M1×1(Z) be the matrix corresponding to f i.e., the degree of f.

There are three types for the minimal homotopy periods of f :
(E) HPer (f) = ∅ if and only if d = 1.
(F) HPer (f) is nonempty and finite if and only if d = −1 or d = 0. We

have HPer (f) = {1} then. Moreover the sets TA are equal to N \ 2N
and N correspondingly.

(G) HPer (f) is equal to N for the remaining d, i.e., |d| > 1, with the
exception of one special case d = −2 where TA = N but HPer (f) =
N \ {2}.

The caseX = T 2 had been completely described by Alseda and co-authors
in [1] and [2]. A reformulation of it is the following:
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Theorem 1.3 ([2]). Let f : T 2 → T 2 be a map of the torus, A ∈M2×2(Z)
the linearization of f, and χA(t) = t2−at+b be its characteristic polynomial.

There are three types for the minimal homotopy periods of f :
(E) HPer (f) = ∅ if and only if −a+ b+ 1 = 0.
(F) HPer (f) is nonempty and finite for 6 cases corresponding to one of

the six pairs (a, b) listed below

(0, 0), (−1, 0), (−2, 1), (0, 1), (−1, 1), (1, 1).

We have HPer (f) ⊂ {1, 2, 3} then. Moreover the sets TA and HPer (f)
are the following:

Cases of Type (F)

( a, b) TA HPer (f)

( 0, 0) N {1}
( 0, 1) N \ 4N {1, 2}
(−1, 0) N \ 2N {1}
(−1, 1) N \ 3N {1}
(−2, 1) N \ 2N {1}
( 1, 1) N \ 6N {1, 2, 3}

(G) HPer (f) is infinite for the remaining a, and b. Furthermore, HPer (f)
is equal to N for all pairs (a, b) ∈ Z2 with the exception of the following
special cases listed below. We say that a pair (a, b) ∈ Z2 satisfies
condition
10 if a 6= 0 and a+ b+ 1 = 0,
20 if a+ b = 0,
30 if a+ b+ 2 = 0 respectively,
and (a, b) is not one of the pairs of case (E) and (F).

We have the following table of special cases:

Special Cases of Type (G)

( a, b) TA HPer (f)

(−2, 2) N N \ {2, 3}
(−1, 2) N N \ {3}
( 0, 2) N N \ {4}
( a, b), (a, b) satisfies 10 N \ 2N N \ 2N

( a, b), (a, b) satisfies 20 N N \ {2}
( a, b), (a, b) satisfies 30 N N \ {2}
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2. Nilmanifolds.

A compact manifold M is a nilmanifold iff it is of the form G/Γ where G is
a simply connected nilpotent Lie group of dimension r and Γ is a lattice of
rank r of G i.e., a discrete, torsion free, subgroup of G of rank r ([14] and
[16]). Then the fundamental group of M is Γ and Γ uniquely determines M
up to homeomorphism.

Fadell and Husseini in [6] show that every self map on M can be induc-
tively fibered on an orientable fibration into a map on torus and a map on
a lower dimensional nilmanifold ([6, Thm. 3.3]). This enables the proof of
the following theorem (cf. [9] and [13], see also [10] for an exposition of it):

Theorem 2.1. Let f : X → X be a map of a compact nilmanifold X of
dimension r. Then there exists an r × r matrix A with integral coefficients
such that

L(fm) = det(I−Am)

for every m ∈ N.

The integral matrix A is the basic object in study minimal and homotopy
minimal periods of a self-map f : X → X. Note that if X = T r is the
torus then A is the unique homomorphism of Γ = Zr which corresponds
to f and A is called the linearization of f (cf. [9] and [13]). As matter of
fact the spectrum of matrix A, or equivalently the characteristic polynomial
χA(t) ∈ Z[t] determines the set HPer (f). For given A ∈Mr×r(Z) we set

TA := {n ∈ N |det(I−An) 6= 0}.(2.2)

In the case if A = Af is the matrix associated to a self-map f : X → X
of a compact nilmanifold X we call TA the set of algebraic periods of f. The
main result of [9] says the following:

Theorem 2.3 ([10], Thm. A). Let f : X → X be a map of a compact
nilmanifold X of dimension r, A the matrix associated with f and TA ⊂ N
the set of algebraic periods of f.

Then HPer (f) ⊂ TA and it is in one of the following three (mutually ex-
clusive) types, where the letters E, F, and G are chosen to represent “empty”,
“finite” and “generic” respectively:
(E) HPer (f) is empty if and only if N(f) = L(f) = 0, i.e., if and only if

1 is an eigenvalue of A;
(F) HPer (f) is nonempty but finite if and only if all the eigenvalues of A

are either zero or roots of unity different from 1;
(G) HPer (f) is infinite and TA \HPer (f) is finite.
Moreover, for every dimension r of X, there are finite sets P (r), Q(r) of

integers such that HPer (f) ⊂ P (r) in Type F and TA \ HPer (f) ⊂ Q(r) in
Type (G).
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Theorem 2.3 generalizes the corresponding result of Boju Jiang and Llibre
([12, Thm. B]) from the torus map onto the case of any compact nilmanifold.
The last was used by Jiang and Llibre to give a complete description of all
homotopy minimal periods of an arbitrary map of three torus in the terms
of characteristic polynomial χA(t) of its linearization ([12, Thm. C]). The
corresponding result for three dimensional nonabelian nilmanifolds was given
in a not complete form in [10] (Thm. C). Now we would like to present a
complete version of this description. To do this we need a little bit more
information about three nilmanifolds.

We would like to remind the reader that the simplest nontrivial ex-
amples of compact nilmanifolds are Iwasawa manifolds Nn(R)/Nn(Z) and
Nn(C)/Nn(Z[i]), where Z[i] is the ring of Gaussian integers and for any ring
R with unity Nn(R) denotes the group of all unipotent upper triangular
matrices whose entries are elements of the ring R. The Iwasawa 3-manifold
N3(R)/N3(Z), called also “Baby Nil” is the simplest example of compact
three dimensional nonabelian nilmanifold, since N3(Z) 6= Z3. Generaliza-
tions of the Iwasawa manifolds are compact nilmanifolds N3(R)/Γp,q,r, where
the subgroup Γp,q,r, with fixed p, q, r ∈ N consists of all matrices of the form1 k

p
m
p·q·r

0 1 l
q

0 0 1

 , where k, l, m ∈ Z.(2.4)

Since the group N3(R) are named the Heisenberg group, the nilmanifolds
N3(R)/Γp,q,r, are also called the Heisenberg nilmanifolds. The groups π1(X)
for all compact nilmanifolds X are precisely all finitely generated torsion-free
nilpotent groups (see [3], [7], [14] and [16]).

This leads to the following well-known classification theorem ([7, 4.1, Cor.
2]):

Theorem 2.5. Let X be a compact nilmanifold of dimension 3. Then X is
diffeomorphic to T 3 or to N3(R)/Γ1,1,r with some r ∈ N.

Proof. The point is that any finitely generated nilpotent group of rank 3 is
isomorphic to Z3 or to the group Γ1,1,r with some r ∈ N (cf. [7, 4.1, Cor. 2]).

We explain it briefly. In fact the correspondence1 x z
0 1 y
0 0 1

 7→
1 px pqz

0 1 qy
0 0 1


is an isomorphism of N3(R) sending Γp,q,r onto Γ1,1,r. It is sufficient to show
[!] that any discrete subgroup of rank 3 of R3 , or N3(R) is equal, up to
isomorphism, to Z3 , or Γp,q,r respectively.

Since a nilmanifold is the quotient of a simply connected nilpotent Lie
group by its uniform (hence discrete) subgroup, it remains to know that any
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three dimensional simply connected non-commutative nilpotent Lie group
is isomorphic to the Heisenberg group N3(R). The last follows from the fact
that there is one non-commutative nilpotent Lie algebra of dimension three,
up to isomorphism.

Then a three nilmanifold different than torus is of the form N3(R)/Γ where
Γ is a uniform subgroup in N3(R) hence Γ = Γp,q,r for some p, q, r ∈ N. We
notice that N3(R)/Γp,q,r = N3(R)/Γ1,1,r. �

Next we point out that the Fadell-Husseini toral fibration of a three-
dimensional compact nilmanifold has a special form. Since the commutator

G1 =

〈
[N3(R),N3(R)] =

1 0 z
0 1 0
0 0 1

 : z ∈ R

〉
(2.6)

is one dimensional, the quotient space G1/Γ∩G1 ≈ S1. By the dimensional
reasons the base space must be 2-torus and the fibration becomes S1 ⊂
N1,1,r → T 2.

The above gives the following statement:

Proposition 2.7. Let f : X → X be a map of compact nilmanifold X of
dimension 3 not diffeomorphic to T 3, and f1 : S1 → S1, f : T 2 → T 2 a
pair of maps associated with f considered as a fiber map. Then the matrix
A corresponding to f by Theorem 2.1 has the form[

d 0
0 A

]
= A1 ⊕A,

where A1 = [d], with d := deg(f1) the degree of the fiber map f1, and A ∈
M2×2(Z) is the matrix corresponding to the map f of base T 2.

Consequently the characteristic polynomial of f is equal to χA(t) = χA1(t)·
χA(t) = (t − d)(t2 − at + b), where d ∈ Z, t − d = χA1(t), a, b ∈ Z and
t2 − at+ b = χA(t) is the characteristic polynomial of A. Moreover a = trA
and b = detA = deg(f).

Proof. All with the exception of the last equality are obvious algebraically.
The equality detA = deg(f) is well-known for the torus map induced by an
integral matrix. �

The above proposition gives a natural restriction on an integral 3 × 3
matrix of the linearization any map of such a manifold. Now we formulate
next algebraic restriction that comes from the geometry of the discussed
spaces. First we recall a more general fact:

Proposition 2.8. Let Γ = π1(X) be the fundamental group of a compact
nilmanifold X = G/Γ. Then every map f : X → X is homotopic to a



92 JERZY JEZIERSKI AND WAC LAW MARZANTOWICZ

map given by a homomorphism Φ : G→ G and the induced homomorphism
π1(Φ) : Γ → Γ is equal to Φ|Γ.

Inversely, for every homomorphism φ : Γ → Γ there exist a map f : X →
X such that π1(f) = φ.

Proof. The statement follows from the fact that X is the K(Γ, 1)-space
(cf. [6]), the fact that every endomorphism φ of Γ has a unique extension to
an endomorphism Φ of G (cf. [16]), and that for a map f : X → X given by
a homomorphism Φ of G the induced map of the fundamental group π1(f)
is equal to Φ|Γ. �

With respect to Theorem 2.5 and Proposition 2.8 and the below it is
enough to determine the set of matrices of linearization of all endomor-
phisms of Γ = Γ1,1,r. We begin with a description of Γ1,1,r. Then we give
a description of all endomorphisms of Γ1,1,r. We follow the approach of [8]
where the case of Γ1,1,1 was discussed.

Assigning to any matrix1 x z
0 1 y
0 0 1

 , where x, y, z ∈ R the vector (x, y, z)

we get the homeomorphism between N3(R) and R3. In these coordinates the
multiplication has form

(x, y, z) ∗ (x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′).

Using the coordinates we see that Γ1,1,r ⊂ N3(R) is generated by the matrices

a := (1, 0, 0), b := (0, 1, 0), c := (0, 0, 1/r),

since (m, p, q/r) = ambpcq−mp. Moreover the only relations are

aba−1b−1 = cr, aca−1c−1 = e, bcb−1c−1 = e.(2.9)

Let φ : R3 → R3 be a map and let

φ(a) = (α1, β1, γ1), φ(b) = (α2, β2, γ2), φ(c) = (α3, β3, γ3).

We look for a necessary and sufficient condition on φ to extend to homo-
morphism of Γ1,1,r. Suppose that φ extends to a such homomorphism. Then
for some integer k

φ(c) = ck,(2.10)

because the cyclic group generated by c is equal to the center of Γ1,1,r,
consequently α3 = 0 β3 = 0 γ3 = k. Using the first equality of (2.9) and
(2.10), deriving φ(a)φ(b)φ(a)−1φ(b)−1, and comparing the coordinates we
get

k = α1β2 − α2β1.(2.11)
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Note that φ(c) = ck implies that the second and third relations of (2.9) are
preserved, because φ(c) is in the center of Γ1,1,r. Notice that γ1 , γ2 may be
arbitrary. Since (2.9) are the only relations we get the following fact:

Proposition 2.12. A map φ : Γ1,1,r → Γ1,1,r defined in the coordinate
system by its values on the generators a, b, c as

φ(a) = (α1, β1, γ1), φ(b) = (α2, β2, γ2), φ(c) = (α3, β3, γ3)

extends to an automorphism of Γ1,1,r iff α3 = β3 = 0, and γ3 = α1β2−α2β1.
Consequently a 3 × 3 integral matrix A is the linearization matrix of a

map of X given by an endomorphism of Γ1,1,r iff it is of the form

A = A1 ⊕A =

k 0 0
0 α1 β1

0 α2 β2


where detA = k.

Finally we formulate a topological consequence of Proposition 2.12:

Corollary 2.13. Let X → X be a map of three dimensional nilmanifold
not diffeomorphic to the torus.

Then there exists k ∈ Z such that deg f = k2. In particular if deg f 6= 0
then f preserves the orientation.

Proof. Note that for a fiber-map f = (f1, f) we have deg f = deg f1 deg f.
On the other hand we have just shown that for a map induced by a ho-
momorphism, thus for every map, we have deg f1 = d = detA = deg f, by
Proposition 2.12. �

3. The main theorem.

Theorem 3.1. Let f : X → X be a map of three-dimensional compact
nilmanifold X not diffeomorphic to T 3. Let A = A1 ⊕ A ∈ M3×3(Z) be the
matrix induced by the fibre map f = (f1, f) (Theorem 2.1) and χA(t) =
χA1(t) · χA(t) = (t − d)(t2 − at + b) be its characteristic polynomial. Then
d = b and there are three types for the minimal homotopy periods of f :
(E) HPer (f) = ∅ if and only if or d = 1 or −a+ d+ 1 = 0.
(F) HPer (f) is nonempty and finite only for 2 cases corresponding to

d = 0

combined with one of the two pairs (a, b)

(0, 0), and (−1, 0).

We have HPer (f) = {1} then. Moreover the sets TA and HPer (f) are
the following:
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Map Cases of Type (F)

(d, a, b) TA HPer (f)

(0, 0, 0) N {1}
(0, −1, 0) N \ 2N {1}

(G) HPer (f) is infinite for the remaining (d, a, b = d). Furthermore,
HPer (f) is equal to N for all triples (d, a, b = d) ∈ Z3 with the excep-
tion of the following special cases listed below:

Special Cases of Type (G)

( d, a, b) TA HPer (f)

a+ d+ 1 = 0, with a 6= 0, N \ 2N N \ 2N
and d /∈ {−2, −1, 0, 1}
( 0, −2, 0) N N \ {2}
(−1, 1, −1) N \ 2N N \ 2N

(−1, −1, −1) N \ 2N N \ 2N

(−2, 1, −2) N \ 2N N \ 2N

(−2, 0, −2) N N \ {2}
(−2, 2, −2) N N \ {2}

Moreover for every pair subset S1 ⊂ S2 ⊂ N, appearing as HPer (f)
and TA listed above there exists a map f : X → X such that HPer (f) =
S1 and TA = S2.

To prove Theorem 3.1 we show an algorithm which allows us to express the
homotopy minimal periods of a given self-map of a (nontrivial) 3-nilmanifold
by the corresponding data of self-maps on S1 and T 2. This will be obtained
as a consequence of formulas deriving the set TA of algebraic periods of
A = ⊕l1Ai from the sets TAi and analogously HPer (f) from HPer (fi) for
a map f : X → X where the sequence of torus maps {fi}l1 come from
consecutive applications of the Fadell-Husseini fibrations.

Let us start with some more general remarks. Recall that a matrix A ∈
Mr×r(Z) of a self-map of compact nilmanifold X according to Theorem 2.1
is given by the following procedure: Suppose that a self-map f : X → X,
dimX = r is a fiber map given by the Fadell-Husseini theorem i.e., a map
such that the diagram
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T s1
f1−−−→ T s1

ι

y ι

y
X

f−−−→ X

p

y p

y
X

f−−−→ X

commutes. Then f1 : T s1 → T s1 is induced, up to homotopy, by a matrix
A1 ∈ Ms1×s1(Z). By induction on the dimension, we can assume that with
f is assigned a matrix A = ⊕l2Aj A ∈M(r−s1)×(r−s1)(Z), Aj ∈Msj×sj (Z).

Put

A := A1 ⊕A = ⊕li=1Aj ,(3.1)

where l is the length of the given tower of consecutive Fadell-Husseini fibra-
tions.

We begin with the following consequence of Theorem 2.1:

Proposition 3.2. For a given map f of a compact nilmanifold X the matrix
A and consequently its characteristic polynomial

χA(t) =
l∏
1

χAj (t) ∈ Z[t]

depends only on the homotopy class of f.

Definition 3.3. For a given map f : X → X, let (f1, f2, . . . , fl) be a tower
of torus maps given by the described above procedure. The number

s := max
1≤j≤l

sj = max
1≤j≤l

degχAj (t)

we call the size of this tower.

Now we have to formulate a criterion to determine whether a natural
number is a homotopy minimal period of a given map of nilmanifold (cf. [8]
and [12] for the torus case, or [9] and [10] for the nilmanifold case).

Theorem 3.4. Let f : X → X be a map of a compact nilmanifold X. Then
m /∈ HPer (f) if and only if either N(f) = 0 or N(fm) = N(fm/p) for some
prime factor p of m.

Consequently m ∈ HPer (f) if and only if:
a) N(fm) = |L(fm)| = |det(I−Am)| = |χmA (1)| 6= 0, and
b) for every prime p|m we have N(fm) > N(fm/p).



96 JERZY JEZIERSKI AND WAC LAW MARZANTOWICZ

Proof. Recall that m /∈ HPer (f) ⇔ NPm(f) = 0 (by [17] and [18] for tori,
by [10] for nilmanifolds). On the other hand NPm(f) = 0 ⇔ N(f) = 0
or N(fm) = N(fm/p) for some prime factor p of m ([12] for tori, [10] for
nilmanifolds). �

We are in position to formulate the formula which allows us to derive
the sets TA and HPer (f) of a map f with a given Fadell-Husseini tower
(f1, f2, . . . , fl).

Theorem 3.5. Let f : X → X be a map of a compact nilmanifold X of
dimension r. Let next (f1, . . . , , fl) be the tower of consecutive torus maps
given by the Fadell-Husseini fibrations and (A1, . . . , Al) the sequence of their
linearizations and A = ⊕l1Aj the matrix corresponding to f.

Then

TA = ∩l1 TAj and

TA ∩ (∪l1 HPer (fj)) ⊂ HPer (f).

Proof. By the definition, m ∈ TA iff det(I−Am) = χAm(1) 6= 0. But χA(1) =∏l
1 χAj (1) which proves the first equality.
To prove the second formula, first note that |χAn(1)| divides |χAm(1)|

if n|m (provided χAn(1) 6= 0) for every integral matrix A. Consequently,
by Theorem 3.4 it follows that m ∈ HPer (f) if m ∈ TA and there exists
1 ≤ j0 ≤ l such that |χAm

j0
(1)| > |χ

A
m/p
j0

(1)| for every prime p|m, since

|χAm
j

(1)| ≥ |χ
A

m/p
j

(1)| for the remaining j. This shows the statement. �

As a consequence of the above theorem we have the following fact:

Corollary 3.6. Let f : X → X be as in Theorem 3.5 and m = pa a prime
power. Then m ∈ HPer (f) if and only if m ∈ TA ∩ (∪l1 HPer (fj)).

Proof. By the argument of Theorem 3.5, since p is the only prime dividing
m there exists 1 ≤ j ≤ l such that |χAm

j
(1)| > |χ

A
m/p
j

(1)|. But this means

that m = pa ∈ HPer (fj) in respect of Theorem 3.4. �

The next theorem reduces the computation of HPer (f) to HPer (f) and
TA which are given by Theorem 3.1.

Theorem 3.7. Let X be a three dimensional compact nilmanifold different
from a torus. Let f : X → X induces the pair of (f1, f) in the resulting
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Fadell-Husseini S1 ⊂ X → T 2 for X. Let d = deg f1. Then

HPer (f) =



TA for d /∈ {0,−1,+1,−2}
∅ for d = 1
HPer (f) for d = 0
HPer (f) \ 2N for d = −1
TA \ {2} for d = −2 and 2 /∈ HPer (f)
TA for d = −2 and 2 ∈ HPer (f).

Proof. We consider the following cases:

1. Let d /∈ {0,−1,+1,−2}. Then HPer (f1) = TA1 = N. We will show that
HPer (f) = TA. ⊂ is evident since HPer (f) ⊆ TA = TA ∩ TA1 = TA. On the
other hand, Theorem 3.5 implies HPer (f) ⊃ TA ∩ {HPer (f)∪HPer (f1)} =
TA = TA, which gives ⊃.

2. Let d = 1. Then HPer (f) = ∅ by Theorem 2.3.

3. Let d = 0. Then χk(t) = tχk(t) gives N(fk) = |χk(1)| = |χk(1)| =
N(fk) which implies

HPer (f) = HPer (f).

4. Let d = −1. We will show that HPer (f) = HPer (f) \ 2N . We notice
that TA1 = N \ 2N and HPer (f1) = {1}. Now χk(t) = (t− (−1)k)χk(t) gives

N(fk) =

{
2N(fk) for k odd,
0 for k even.

By Theorem 3.4 notice that no even number k belongs to HPer (f) since
N(fk) = 0 and that any odd number k will either belong to both of HPer (f)
and HPer (f) or neither of these since N(fk) = 2N(fk). Consequently

HPer (f) = HPer (f) \ 2N

in this case.

5. Let d = −2. Now by definition TA1 = N and from Theorem 1.2
HPer (f1) = N \ {2} . Then TA = TA, and by Theorem 3.5 HPer (f) ⊃
TA ∩ {HPer (f1) ∪HPer (f)} = TA ∩ {(N \ {2}) ∪HPer (f)}.

Consequently we have

HPer (f) =

{
TA \ {2} for 2 /∈ HPer (f)
TA for 2 ∈ HPer (f).

�
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Proof of Theorem 3.1. We shall use Theorems 1.2, 1.3, 3.7, and Proposi-
tion 2.12. From Proposition 2.12 it follows that d = b. At first we notice
that

HPer (f) = ∅ ⇐⇒ HPer (f) = ∅ or HPer (f1) = ∅
⇐⇒ det(A) = 0 or d = 1
⇐⇒ 1− a+ d = 0 or d = 1.

We will assume now that HPer (f) 6= ∅ . Suppose first that d /∈ {−2, −1,
0, 1}. From Theorem 1.3 it follows that TA1= N and consequently HPer (f)=
TA = TA by Theorem 3.7. Now we look for the case TA 6= N and d /∈
{−2, −1, 0, 1} in the tables of Theorem 1.3. The second condition does not
hold if f ∈ (F). On the other hand if f ∈ (G) then the first condition holds
iff (a, b) satisfies 10) i.e., a 6= 0, and a + d + 1 = 0. HPer (f) = TA = TA =
N \ 2N then. This gives the first row of the table of special cases (G) of the
statement.

Let d = 0 . Then HPer (f) = HPer (f) by Theorem 3.7. Looking at the
tables of Theorem 1.3 we get the two triples which gives the case (F) of the
statement. Moreover, substituting b = d = 0 to the special cases 10, 20, 30

of (G) of Theorem 1.3, deriving a, and excluding pairs (a, b) that have been
already listed we get the second row of the case (G) of the statement.

Let d = −1. Then TA1 = N\2N and HPer (f1) = {1}. Thus TA = TA\2N.
On the other hand HPer (f) ⊃ TA ∩HPer (f) = HPer (f) \ 2N. Now looking
at the tables of Theorem 1.3 we notice that b = d = −1 may occur only in
(G). But even then HPer (f) ⊃ N \ 2N. Thus N \ 2N = TA ⊃ HPer (f) ⊃
HPer (f) \ 2N ⊃ N \ 2N implies HPer (f) = N \ 2N. On the other hand we
notice that this occurs exactly for (1,−1) and (−1,−1). This gives the third
and the fourth line of the exceptional cases in 3.1 (G).

Let d = −2. By Theorem 3.7

HPer (f) =

{
TA \ {2} for 2 /∈ HPer (f)
TA for 2 ∈ HPer (f).

Lemma 3.8 shows that 2 /∈ HPer (f) iff a = 0, 1, 2. In all remaining
cases (d = −2,HPer (f) 6= ∅) HPer (f) = TA. In Theorem 1.3 we look
for the cases TA 6= N (with d = −2). This is possible only for (a, d) =
(1,−2), (2,−2), (0,−2) the three exceptional cases discussed in Lemma 3.8.
In all remaining cases HPer (f) = TA = N. Now the three last lines in the
table in Theorem 3.1 (G) follow from Lemma 3.8.

We are left with the task to prove that for every pair of sets listed as
(TA, and HPer (f)) in the statement of Theorem 3.1 there exists a map
f : N3(R)/Γp,q,r → N3(R)/Γp,q,r which gives this pair. Fix a, b = d ∈ Z. For
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given a, b we define an integral matrix

A =

 b 0 0
0 a b
0 −1 0

 .
By Proposition 2.12 A defines a homomorphisms of Γp,q,r and hence a map
of N3(R)/Γp,q,r whose linearization is equal A = A1⊕A. We have detA = b,

and trA = a, which proves the theorem. �

An elementary consideration gives the lemma below, which verification is
left to the reader.

Lemma 3.8. If d = −2 and HPer (f) 6= ∅ then 2 /∈ HPer (f) ⇐⇒ a =
0, 1, 2. Moreover:

- TA = HPer (f) = N \ 2N for a = 1,
- TA = N, HPer (f) = N \ {2} for a = 0 or a = 2.

As a consequence of Theorem 3.1 we get the following:

Corollary 3.9. If a self map of a 3-nilmanifold different than 3-torus is
such that 3 ∈ HPer (f) then N \ 2N ⊂ HPer (f) ⊂ Per(f). If 2 ∈ HPer (f)
then N = HPer (f) = Per(f). In particular, the first assumption is satisfied
if L(f3) 6= L(f) and the second if L(f2) 6= L(f).

Proof. By Theorem 3.1, HPer (f) finite implies HPer (f) ⊂ {1}. Thus 3 ∈
HPer (f) implies case (G) hence HPer (f) ⊃ N\2N. If 2 ∈ HPer (f) then the
special cases in Theorem 3.1 are excluded hence HPer f = N. �

Remark 3.10. It is easy to note that one may modify Theorem 3.1 to a
nilmanifold of any dimension provided the size of its Fadell-Husseini tower
is less or equal to two. If the size of tower is less or equal to three these
approach should still work due to the complete description of the homotopy
minimal periods of the three torus maps done by Jiang and Llibre in [12].

Remark 3.11. Roughly speaking Corollary 3.9 is a Šarkovskii type theo-
rem. Instead of the existence of an orbit of a given length (here 2 or 3) we
need a stronger assumption 2 or 3 ∈ HPer (f). However the conclusion is
also stronger, because it states the existence of homotopy minimal periods.

Remark 3.12. The next natural and possible to achieve case is a descrip-
tion of minimal homotopy periods of maps of some low dimensional compact
solvmanifolds especially of dimension 4. The latter needs a slight modifica-
tions of theorems of [10] and some facts already proved in [9]. The possibility
of non Nielsen number fibre uniformity on the associated Mostow fibrations
for solvmanifolds makes the study more complicated.
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4. Homeomorphisms of 3-nilmanifolds.

We will formulate a version of the last section for homeomorphisms of three
dimensional nilmanifolds (see [12] for the corresponding theorem for a home-
omorphism of the three dimensional torus).

Theorem 4.1. Let f : X → X be a homeomorphism of three-dimensional
compact nilmanifold X not diffeomorphic to T 3. Let A = A1⊕A ∈M3×3(Z)
be the matrix induced by the fibre map f = (f1, f) (Proposition 2.7) and
χA(t) = χA1(t) · χA(t) = (t − d)(t2 − at + b) its characteristic polynomial.
Then d = b = ±1 and consequently HPer (f) = ∅ iff d = 1 or (d = −1 and
a = 0). For d = −1 and the remaining a we have HPer (f) = N with the
only two exceptions being when a = 1 or a = −1. For these special cases
TA = HPer (f) = N \ 2N.

Proof. The statement follows from Theorem 3.1 and the fact that d = ±1.
�

As a direct consequence we get the following analog of the Šarkovskii type
for a homeomorphisms of nonabelian three nilmanifolds:

Corollary 4.2. Let f : X → X be a homeomorphism, or more general
a homotopy equivalence, of a compact three dimensional nilmanifold X not
diffeomorphic to the torus. If HPer (f) 6= ∅ then N\2N ⊂ HPer (f). Moreover
if 2 ∈ HPer (f), e.g., if L(f2) 6= L(f), (or if any 2k ∈ HPer (f)) then
HPer (f) = N.

Acknowledgements. The authors wish to express their thanks to the ref-
eree for several helpful comments concerning the subject and form of the
paper.
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SOME EISENSTEIN SERIES IDENTITIES RELATED TO
MODULAR EQUATIONS OF THE SEVENTH ORDER

Zhi-Guo Liu

Dedicated to my friend Richard Lewis

In this paper we will use one well-known modular equation
of seventh order, one theta function identity of S. McCullough
and L.-C. Shen, 1994, and the complex variable theory of el-
liptic functions to prove some new septic identities for theta
functions. Then we use these identities to provide new proofs
of some Eisenstein series identities in Ramanujan’s notebooks
or “lost” notebook. We also derive a new identity for Eisen-
stein series and some curious trigonometric identities.

1. Introduction.

Suppose throughout that q = exp(2πiτ), where τ has positive imaginary
part, and set

(z; q)∞ =
∞∏
n=0

(1− zqn).(1.1)

The Dedekind eta-function is defined by

η(τ) = q
1
24 (q; q)∞ = e

πiτ
12

∞∏
n=1

(1− e2πinτ ).(1.2)

For brevity, we define

h(τ) =
η4(7τ)
η4(τ)

, k(τ) =
η7(τ)
η(7τ)

, and ρ(τ) = 7
η(49τ)
η(τ)

.(1.3)

Throughout this article we will use
(
n
7

)
to denote the Legendre symbol.

The Eisenstein series T (τ), L(τ),M(τ), and N(τ) are defined by

T (τ) = 1 + 2
∞∑
n=1

(n
7

) qn

1− qn
= 1 + 2

∞∑
n=1

(n
7

) e2πinτ

1− e2πinτ
,(1.4)

L(τ) = 1− 24
∞∑
n=1

nqn

1− qn
= 1− 24

∞∑
n=1

ne2πinτ

1− e2πinτ
,(1.5)

103
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M(τ) = 1 + 240
∞∑
n=1

n3qn

1− qn
= 1 + 240

∞∑
n=1

n3e2πinτ

1− e2πinτ
,(1.6)

and

N(τ) = 1− 504
∞∑
n=1

n5qn

1− qn
= 1− 504

∞∑
n=1

n5e2πinτ

1− e2πinτ
.(1.7)

In his lost notebook [17, p, 53], S. Ramanujan recorded without proofs
formulas for T (rτ), L(rτ),M(rτ), and N(rτ), for certain positive integers
r, as sums of quotients of Dedekind eta-functions. These particular quo-
tients (called Hauptmoduls) frequently arise in the theory and applications
of modular forms and elliptic functions. In particular, Ramanujan claimed
that:

Theorem 1. Let k(τ), h(τ),M(τ) and N(τ) defined by (1.3), (1.6), and
(1.7), respectively. Then we have

M(τ) = k(τ)4/3
(
1 + 245h(τ) + 2401h2(τ)

)
(1.8)

·
(
1 + 13h(τ) + 49h2(τ)

)1/3
,

M(7τ) = k(τ)4/3
(
1 + 5h(τ) + h2(τ)

) (
1 + 13h(τ) + 49h2(τ)

)1/3
,(1.9)

N(τ) = k(τ)2
(

1− 72(5 + 2
√

7)h(τ)− 73(21 + 8
√

7)h2(τ)
)

(1.10)

·
(

1− 72(5− 2
√

7)h(τ)− 73(21− 8
√

7)h2(τ)
)
,

and

N(7τ) = k(τ)2
(

1 + (7 + 2
√

7)h(τ) + (21 + 8
√

7)h2(τ)
)

(1.11)

·
(

1 + (7− 2
√

7)h(τ) + (21− 8
√

7)h2(τ)
)
.

These identities reveal deep connections between Eisenstein series and
Dedekind eta-functions. The first published proofs of (1.8)-(1.11) are due
to S. Raghavan and S.S. Rangachari [16], who used the theory of modular
forms with which Ramanujan was unfamiliar. These proofs give a uniform
explanation of the existence of these identities but do not provide any insight
into how Ramanujan discovered the identities. These proofs are essentially
verifications. It is desirable to find more natural proofs of the aforementioned
identities without employing the theory of modular forms. B.C. Berndt,
H.H. Chan, J. Sohn, and S.H. Son [3] recently found proofs of (1.8)-(1.11)
based entirely on results found in Ramanujan’s notebooks [18]. In fact,
their proofs depend upon some modular equations of the seventh order of
Ramanujan.
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In the present paper, we present a quite different approach. Our main
tools are the following three Lemmas:

Lemma 2. The sum of all the residues of an elliptic function at the poles
inside a period-parallelogram is zero.

Lemma 3. Let θ1(z|q) be Jacobi theta function defined by (2.1) below. Then:

(q; q)∞
θ1(2z|q)
θ1(z|q)

= 2
∞∑

n=−∞
(−1)nq

1
2
(3n2+n) cos(6n+ 1)z,(1.12)

θ′1
θ1

(x|q) +
θ′1
θ1

(y|q) +
θ′1
θ1

(z|q)− θ′1
θ1

(x+ y + z|q)(1.13)

= θ′1(0|q) θ1(x+ y|q)θ1(y + z|q)θ1(z + x|q)
θ1(x|q)θ1(y|q)θ1(z|q)θ1(x+ y + z|q)

.

Lemma 4. Let h(τ) and ρ(τ) be defined by (1.3). Then

7ρ3(τ) + 35ρ2(τ) + 49ρ(τ) + (ρ2(τ) + 7ρ(τ) + 7)(1.14)

·
√

4ρ3(τ) + 21ρ2(τ) + 28ρ(τ) = 98h(τ).

Lemma 2 is a fundamental theorem of elliptic functions and can be found
in [5, p. 22]. Recently, in [9, 10, 11, 12, 13], we have used Lemma 2 to set up
many important theta function identities. Identity (1.12) is the well-known
quintuple identity [6, 7, 8, 21]. For an interesting account of this identity,
one can consult [2, p. 83]. Identity (1.13) was derived by S. McCullough and
L.-C. Shen in their remarkable paper [14], in which they used the properties
of theta functions to study the Sezgö kernel of an annulus. Identity (1.14)
is [22, p. 117, Equation (4.5)]. It plays a pivotal role in the study of the
modular equations of degree 7.

It should be emphasized that our method is constructive and can be used
to derive theta function identities and Eisenstein series identities, rather
than just to verify previously derived identities. This method provides
deeper insight into the theory of theta function identities and Eisenstein
series identities.

In this paper we will also prove the following identities:

Theorem 5. Let k(τ), h(τ), and T (τ) be defined by (1.3) and (1.4), respec-
tively. Then we have

8− 7
∞∑
n=1

(n
7

) n2qn

1− qn
= k(τ)(8 + 49h(τ)),(1.15)

T (τ) = k(τ)1/3
(
1 + 13h(τ) + 49h2(τ)

)1/3
,(1.16)
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A(τ) : = 1 + 4
∞∑
n=1

nqn

1− qn
− 28

∞∑
n=1

nq7n

1− q7n
(1.17)

= T 2(τ) = k(τ)2/3
(
1 + 13h(τ) + 49h2(τ)

)2/3
and

16 +
∞∑
n=1

(n
7

) n4qn

1− qn
= k(τ)5/3(16 + 49h(τ))(1.18)

·
(
1 + 13h(τ) + 49h2(τ)

)2/3
.

Equation (1.15) can also be found in [17, p. 53] and the first published
proof of (1.15) are due to S. Raghavan [15], who used the theory of modular
forms. Equations (1.16) and (1.17) are contained in Entry 5 (i) of Chapter
21 of Ramanujan’s second notebook [18]. In [2, p, 467-473], B.C. Berndt
has given proofs of (1.8) and (1.9) by using some modular equations of the
seventh order. Many wonderful applications of (1.16) have been given in
[10]. To the author’s best knowledge (1.18) is a new identity.

In the course of our investigations, we obtain the following intriguing
identities of theta functions:

Theorem 6. If k(τ), h(τ) and ρ(τ) are defined by (1.3). Then we have

θ1(2π
7 |q)

θ1(π7 |q)
−
θ1(3π

7 |q)
θ1(2π

7 |q)
+

θ1(π7 |q)
θ1(3π

7 |q)
= 1 + ρ(τ),(1.19)

θ1(π7 |q)
θ1(2π

7 |q)
−
θ1(2π

7 |q)
θ1(3π

7 |q)
+
θ1(3π

7 |q)
θ1(π7 |q)

(1.20)

=
1
2

(3ρ(τ) + 4) +
1
2

√
4ρ3(τ) + 21ρ2(τ) + 28ρ(τ),

θ2
1(π7 |q)
θ1(3π

7 |q)
−
θ2
1(2π

7 |q)
θ1(π7 |q)

+
θ2
1(3π

7 |q)
θ1(2π

7 |q)
= 0,(1.21)

θ1(2π
7 |q)

θ4
1(π7 |q)

−
θ1(π7 |q)
θ4
1(3π

7 |q)
+
θ1(3π

7 |q)
θ4
1(2π

7 |q)
=

1√
7
η−2(τ)η−1(7τ) (8 + 49h(τ)) ,(1.22)

θ4
1(3π

7 |q)
θ1(π7 |q)

−
θ4
1(π7 |q)
θ1(2π

7 |q)
−
θ4
1(2π

7 |q)
θ1(3π

7 |q)
=
√

7η2(τ)η(7τ) (5 + 49h(τ)) ,(1.23)

θ7
1(2π

7 |q)
θ7
1(π7 |q)

−
θ7
1(3π

7 |q)
θ7
1(2π

7 |q)
+

θ7
1(π7 |q)

θ7
1(3π

7 |q)
= 57 + 2× 73h(τ) + 74h2(τ),(1.24)



SOME EISENSTEIN SERIES IDENTITIES 107

θ7
1(π7 |q)

θ7
1(2π

7 |q)
−
θ7
1(2π

7 |q)
θ7
1(3π

7 |q)
+
θ7
1(3π

7 |q)
θ7
1(π7 |q)

(1.25)

= 289 + 18× 73h(τ) + 19× 74h2(τ) + 76h3(τ),

θ3
1(3π

7 |q)
θ6
1(π7 |q)

−
θ3
1(π7 |q)

θ6
1(2π

7 |q)
+
θ3
1(2π

7 |q)
θ6
1(3π

7 |q)
(1.26)

=
1√
7
η−2(τ)η−1(7τ)

(
46 + 637h(τ) + 492h2(τ)

)
,

(
θ1(3π

7 |q)
θ2
1(π7 |q)

−
θ1(π7 |q)
θ2
1(2π

7 |q)
+
θ1(2π

7 |q)
θ2
1(3π

7 |q)

)3

(1.27)

= 7
√

7η−2(τ)η−1(7τ)
(
1 + 13h(τ) + 49h2(τ)

)
and

θ−7
1

(π
7
|q
)
− θ−7

1

(
2π
7
|q
)
− θ−7

1

(
3π
7
|q
)

(1.28)

=
√

7η−14(τ)η−7(7τ) (1 + 7h(τ))

·
(
1 + 13h(τ) + 49h2(τ)

)1/3
.

Using the product representation of θ1(z|q) given by (2.2) and letting
q → 0 in (1.19)-(1.28), we readily find the following curious trigonometric
identities:

Corollary 7. We have:

sin(2π/7)
sin(π/7)

− sin(3π/7)
sin(2π/7)

+
sin(π/7)
sin(3π/7)

= 1,(1.29)

sin(π/7)
sin(2π/7)

− sin(2π/7)
sin(3π/7)

+
sin(3π/7)
sin(π/7)

= 2,(1.30)

sin2(π/7)
sin(3π/7)

− sin2(2π/7)
sin(π/7)

+
sin2(3π/7)
sin(2π/7)

= 0,(1.31)

sin(2π/7)
sin4(π/7)

− sin(π/7)
sin4(3π/7)

+
sin(3π/7)
sin4(2π/7)

=
64
7

√
7,(1.32)

sin4(3π/7)
sin(π/7)

− sin4(π/7)
sin(2π/7)

− sin4(2π/7)
sin(3π/7)

=
5
8

√
7,(1.33)

sin7(2π/7)
sin7(π/7)

− sin7(3π/7)
sin7(2π/7)

+
sin7(π/7)
sin7(3π/7)

= 57,(1.34)

sin7(π/7)
sin7(2π/7)

− sin7(2π/7)
sin7(3π/7)

+
sin7(3π/7)
sin7(π/7)

= 289,(1.35)
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sin3(3π/7)
sin6(π/7)

− sin3(π/7)
sin6(2π/7)

+
sin3(2π/7)
sin6(3π/7)

=
368√

7
,(1.36)

sin(2π/7)
sin2(3π/7)

− sin(π/7)
sin2(2π/7)

+
sin(3π/7)
sin2(π/7)

= 2
√

7,(1.37)

csc7
(π

7

)
− csc7

(
2π
7

)
− csc7

(
3π
7

)
= 27

√
7.(1.38)

Equations (1.31) and (1.37) have been found by Berndt and Zhang [4].
The rest of the article is organized as follows: In Section 2 we introduce

some basic facts about theta function θ1(z|q). In Section 3 we prove (1.19)
using the quintuple product identity. Section 4 is devoted to the proofs
of (1.20) and (1.21). In Section 5 we derive (1.22) and (1.23). Sections 6
and 7 are devoted to the proofs of (1.24)-(1.28). In Section 8 we prove (1.15),
(1.16), and (1.17). In Sections 9 and 10 we derive (1.8)-(1.11). Lastly, in
Section 11 we prove (1.18).

2. Some basic facts about θ1(z|τ ).

We begin with the definition of the classical theta function θ1(z|q) [23, p.
464]

θ1(z|q) = −iq
1
8

∞∑
n=−∞

(−1)nq
1
2
n(n+1)e(2n+1)iz(2.1)

= 2q
1
8

∞∑
n=0

(−1)nq
1
2
n(n+1) sin(2n+ 1)z.

Using the Jacobi triple product formula we have [23, p. 470]

θ1(z|q) = 2q
1
8 (sin z)(q; q)∞(qe2iz; q)∞(qe−2iz; q)∞.(2.2)

Differentiating the above equation with respect to z and then putting z = 0
we find that

θ′1(0|q) = 2q
1
8 (q; q)3∞ = 2η3(τ),(2.3)

where and throughout this paper the prime means the partial derivative
with respective to z.

From the definition of θ1(z|q), the functional equations

θ1(z + π|q) = −θ1(z|q), θ1(z + πτ |q) = −q−1/2e−2πizθ1(z|q)(2.4)

can be easily verified. Differentiating the above equations with respect to z,
and then setting z = 0, we find that

θ′1(π|q) = −θ′1(0|q), θ′1(πτ |q) = −q−1/2θ′1(0|q).(2.5)
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Taking z = π
7 ,

2π
7 , and 3π

7 , respectively in (2.2) and then multiplying the
three resulting equations together we find that

θ1

(π
7
|q
)
θ1

(
2π
7
|q
)
θ1

(
3π
7
|q
)

=
√

7q
3
8 (q; q)2∞(q7; q7)∞ =

√
7η2(τ)η(7τ).

(2.6)

The Fourier series expansion for the logarithmic derivatives of θ1(z|q) [23,
p. 489] is

θ′1
θ1

(z|q) = cot z + 4
∞∑
n=1

qn

1− qn
sin 2nz.(2.7)

Substituting

cot z =
1
z
− z

3
− z3

45
− 2z5

945
− z7

4725
+ · · ·(2.8)

and

sin z = z − 1
3!
z3 +

1
5!
z5 − 1

7!
z7 + · · ·(2.9)

into (2.7) gives

θ′1
θ1

(z|q) =
1
z
− 1

3
L(τ)z − 1

45
M(τ)z3 − 2

945
N(τ)z5(2.10)

− 1
4725

(
1 + 480

∞∑
n=1

n7qn

1− qn

)
z7 + · · · .

By the infinite products expansion for θ1(z|q) and direct computation, we
find that

θ1(7z|q7) = −(q7; q7)∞
(q; q)7∞

θ1(z|q)
3∏
r=1

θ1

(
z − rπ

7
|q
)
θ1

(
z +

rπ

7
|q
)
.(2.11)

We now take the logarithmic derivative of this equation and obtain

3∑
r=1

θ′1
θ1

(
z − rπ

7
|q
)

+
3∑
r=1

θ′1
θ1

(
z +

rπ

7
|q
)

= 7
θ′1
θ1

(7z|q7)− θ′1
θ1

(z|τ).(2.12)

Using (2.10) on the right-hand side of (2.12) yields

3∑
r=1

θ′1
θ1

(
z − rπ

7
|q
)

+
3∑
r=1

θ′1
θ1

(
z +

rπ

7
|q
)

(2.13)

=
1
3
(
L(τ)− 72L(7τ)

)
z +

1
45
(
M(τ)− 74M(7τ)

)
z3 +O(z5).
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Differentiating with repect to z and then setting z = 0 gives

(
θ′1
θ1

)′ (π
7
|q
)

+
(
θ′1
θ1

)′(2π
7
|q
)

+
(
θ′1
θ1

)′(3π
7
|q
)

=
1
6
(
L(τ)− 72L(7τ)

)
.

(2.14)

Differentiating (2.13) with repect to z, three times, and then setting z = 0
we obtain (

θ′1
θ1

)′′′ (π
7
|q
)

+
(
θ′1
θ1

)′′′(2π
7
|q
)

+
(
θ′1
θ1

)′′′(3π
7
|q
)

(2.15)

=
1
15
(
M(τ)− 74M(7τ)

)
.

3. The proof of (1.19).

We recall the quintuple product identity (see Lemma 3)

(q; q)∞
θ1(2z|q)
θ1(z|q)

= 2
∞∑

n=−∞
(−1)nq

1
2
(3n2+n) cos(6n+ 1)z.(3.1)

When z = 0, (3.1) reduces to the Euler identity

(q; q)∞ =
∞∑

n=−∞
(−1)nq

1
2
(3n2+n).(3.2)

Denote

s(n) := cos
(6n+ 1)π

7
− cos

2(6n+ 1)π
7

+ cos
3(6n+ 1)π

7
.(3.3)

By taking z = π
7 , z = −2π

7 , and z = 3π
7 , respectively, in (3.1) and then

adding the resulting equations we obtain

(q; q)∞

{
θ1(2π

7 |q)
θ1(π7 |q)

−
θ1(3π

7 |q)
θ1(2π

7 |q)
+

θ1(π7 |q)
θ1(3π

7 |q)

}
(3.4)

= 2
∞∑

n=−∞
(−1)nq

1
2
(3n2+n)s(n).

From the following easily verified elementary trigonometric facts:

s(n) =
{
−3, n ≡ 1 (mod 7)
1
2 , n 6≡ 1 (mod 7),(3.5)
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we have the evaluation

2
∞∑

n=−∞
(−1)nq

1
2
(3n2+n)s(n)

(3.6)

= 2
∞∑

n=−∞
n6≡1 (mod 7)

(−1)nq
1
2
(3n2+n)s(n) + 2

∞∑
n=−∞

n≡1 (mod 7)

(−1)nq
1
2
(3n2+n)s(n)

=
∞∑

n=−∞
n6≡1 (mod 7)

(−1)nq
1
2
(3n2+n) − 6

∞∑
n=−∞

n≡1 (mod 7)

(−1)nq
1
2
(3n2+n)

=
∞∑

n=−∞
(−1)nq

1
2
(3n2+n) + 7q2

∞∑
n=−∞

(−1)nq
1
2
(147n2+49n)

= (q; q)∞ + 7q2(q49; q49)∞.

In the last step we have used Euler’s identity (3.2). Substituting the above
equation into (3.4) we obtain (1.19). This completes the proof of (1.19).

4. The proofs of (1.20) and (1.21).

We first prove (1.21) and then prove (1.20).
Let

f(z) =
θ3
1(z|q)

θ1(z − π
7 |q)θ1(z − 2π

7 |q)θ1(z − 4π
7 |q)

.(4.1)

Using (2.4) we can easily show that f(z) is an elliptic functions with periods
π and πτ . It has three simple poles π

7 , 2π
7 , and 4π

7 and no other poles.
Let res(f ;x) denote the residue of f(z) at x. We have the following

evaluations:

res
(
f ;
π

7

)
= lim

z→π
7

(
z − π

7

)
f(z)(4.2)

= lim
z→π

7

(z − π
7 )

θ1(z − π
7 |q)

× lim
z→π

7

θ3
1(z|q)

θ1(z − 2π
7 |q)θ1(z − 4π

7 |q)
.

By L’Hôpital’s rule,

lim
z→π

7

(z − π
7 )

θ1(z − π
7 |q)

=
1

θ′1(0|q)
.(4.3)

It is plain that

lim
z→π

7

θ3
1(z|q)

θ1(z − 2π
7 |q)θ1(z − 4π

7 |q)
=

θ2
1(π7 |q)
θ1(3π

7 |q)
.(4.4)
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Therefore we have

res
(
f ;
π

7

)
=

θ2
1(π7 |q)

θ′1(0|q)θ1(3π
7 |q)

.(4.5)

In the same way we find that

res
(
f ;

2π
7

)
= −

θ2
1(2π

7 |q)
θ′1(0|q)θ1(π7 |q)

,(4.6)

res
(
f ;

4π
7

)
=

θ2
1(3π

7 |q)
θ′1(0|q)θ1(2π

7 |q)
.(4.7)

On the other hand, Lemma 2 gives

res
(
f ;
π

7

)
+ res

(
f ;

2π
7

)
+ res

(
f ;

4π
7

)
= 0.(4.8)

Substituting (4.5)-(4.7) into the above equation we obtain (1.21).
We are now ready to prove (1.20). Letting

a :=
θ1(2π

7 |q)
θ1(π7 |q)

, b := −
θ1(3π

7 |q)
θ1(2π

7 |q)
, c :=

θ1(π7 |q)
θ1(3π

7 |q)
,(4.9)

and recalling (1.3), we find that (1.19) can be rewritten as

a+ b+ c = 1 + ρ(τ).(4.10)

Using (4.4) we find that (1.21) can be written as

ab2 − a2 + c = 0.(4.11)

It is obvious that

abc = −1.(4.12)

Multiplying (4.11) by a−1 and c, respectively, and then using (4.12) in the
resulting equations we find that

bc2 − b2 + a = 0,(4.13)

ca2 − c2 + b = 0.(4.14)

Denote

Q := ab+ bc+ ca, P := a+ b+ c = 1 + ρ(τ), R := abc = −1.(4.15)

Multiplying (4.11) by a, (4.13) by b, and (4.14) by c and then adding the
resulting equations we find that

(a2b2 + b2c2 + c2a2)− (a3 + b3 + c3) + ab+ bc+ ca = 0.(4.16)

Using the theory of elementary symmetric polynomials, we readily find that
the above equation can be rewritten as

Q2 + (3ρ(τ) + 4)Q− (ρ3(τ) + 3ρ2(τ) + ρ(τ)− 4) = 0.(4.17)



SOME EISENSTEIN SERIES IDENTITIES 113

Solving the above equation for Q, we obtain

Q = −1
2

(3ρ(τ) + 4)− 1
2

√
4ρ3(τ) + 21ρ2(τ) + 28ρ(τ).(4.18)

Noting the definitions of a, b, and c, (4.9), we find that (4.18) is (1.20).

5. The proofs of (1.22) and (1.23).

Using (2.6) and (4.9) we readily find that

y1 := a3b = −
√

7η2(τ)η(7τ)
θ1(2π

7 |q)
θ4
1(π7 |q)

,(5.1)

y2 := b3c = −
√

7η2(τ)η(7τ)
θ1(3π

7 |q)
θ4
1(2π

7 |q)
,(5.2)

y3 := c3a =
√

7η2(τ)η(7τ)
θ1(π7 |q)
θ4
1(3π

7 |q)
.(5.3)

From (4.11)-(4.14) and some straightforward evaluations we find that

y1y2 = −y1 − 1,(5.4)

y2y3 = −y2 − 1,(5.5)

y3y1 = −y3 − 1,(5.6)

y1y2y3 = 1.(5.7)

We now compute y1 + y2 + y3 and y1y2 + y2y3 + y3y1. Noting (4.12)
and (4.15), we have the evaluation

PQ = (a+ b+ c)(ab+ bc+ ca)(5.8)

= ac2 + cb2 + ba2 + ab2 + bc2 + ca2 − 3.

Adding (4.11), (4.13), and (4.14), we find that

ab2 + bc2 + ca2 = a2 + b2 + c2 − a− b− c(5.9)

= (a+ b+ c)2 − 2(ab+ bc+ ca)− a− b− c

= P 2 − 2Q− P.

Substituting the above equation into (5.8), we find that

ac2 + cb2 + ba2 = −P 2 + PQ+ P + 2Q+ 3.(5.10)

Using (4.11), (4.13), (4.14), and the above equation, we readily find that

ab3 + bc3 + ca3 = a(c2 − b) + b(a2 − c) + c(b2 − a)(5.11)

= ac2 + cb2 + ba2 − ab− bc− ca

= −P 2 + PQ+ P +Q+ 3.
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Employing (4.11), (4.12), (4.13), (4.14), and the above equation, we find
that

a3b+ b3c+ c3a = (a2 + b2 + c2)(ab+ bc+ ca)(5.12)

− ab3 − bc3 − ca3 + a+ b+ c

= (P 2 − 2Q)Q+ P 2 − PQ− P −Q− 3 + P

= P 2Q+ P 2 − 2Q2 − PQ−Q− 3.

Therefore, by using Lemma 4, (4.10), (4.18), and the definitions of y1, y2,
and y3, we obtain

y1 + y2 + y3 = a3b+ b3c+ c3a

(5.13)

= P 2Q+ P 2 − PQ− 2Q2 −Q− 3

= (ρ2(τ) + 7ρ(τ) + 7)Q− 2ρ3(τ)− 5ρ2(τ) + 6

= −1
2

(ρ2(τ) + 7ρ(τ) + 7)
(

3ρ(τ) + 4 +
√

4ρ3(τ) + 21ρ2(τ) + 28ρ(τ)
)

− 2ρ3(τ)− 5ρ2(τ) + 6

= −1
2
(
ρ2(τ) + 7ρ(τ) + 7

)√
4ρ3(τ) + 21ρ2(τ) + 28ρ(τ)

− 1
2
(
7ρ3(τ) + 35ρ2(τ) + 49ρ(τ)

)
− 8

= −8− 49
η4(7τ)
η4(τ)

= −8− 49h(τ).

The above equation is equivalent to (1.22).
Adding (5.4), (5.5), and (5.6) and then using the above equation we im-

mediately have

y1y2 + y2y3 + y3y1 = −(y1 + y2 + y3)− 3(5.14)

= 5 + 49
η4(7τ)
η4(τ)

= 5 + 49h(τ).

The above equation is equivalent to (1.23).

6. The proofs of (1.24) and (1.25).

Multiplying (4.11) by ab, (4.13) by bc, (4.14) by ac, and noting the definitions
of y1, y2, and y3, we find that

a2b3 = y1 + 1, b2c3 = y2 + 1, c2a3 = y3 + 1.(6.1)
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Multiplying (4.11) by b3, (4.13) by c3, (4.14) by a3, and using the definitions
of y1, y2, and y3, we obtain

ab5 = a2b3 − y2, bc5 = b2c3 − y3, ca5 = c2a3 − y1.(6.2)

Combining (6.1) and (6.2) we have

ab5 = y1 − y2 + 1, bc5 = y2 − y3 + 1, ca5 = y3 − y1 + 1.(6.3)

Multiplying (4.11) by a5, (4.13) by b5 and (4.14) by c5, we find that

a7 = a5c+ y2
1, b7 = b5a+ y2

2, c7 = c5b+ y2
3.(6.4)

From (6.3) and (6.4) we find the following relations:

a7 = y2
1 − y1 + y3 + 1, b7 = y2

2 − y2 + y1 + 1, c7 = y2
3 − y3 + y2 + 1.

(6.5)

Using the above relations, (5.13), and (5.14), we immediately have

a7 + b7 + c7(6.6)

= y2
1 + y2

2 + y2
3 + 3

= (y1 + y2 + y3)2 − 2(y1y2 + y2y3 + y3y1) + 3

= (8 + 49h(τ))2 − 2 (5 + 49h(τ)) + 3

= 57 + 2× 73h(τ) + 74h2(τ).

The above equation is equivalent to (1.24).
By using (6.5) and (5.4)-(5.7) we find that

a7b7 = y1(y1 + 1)2, b7c7 = y2(y2 + 1)2, c7a7 = y3(y3 + 1)2.(6.7)

Adding the three equations together in (6.7) and then using (5.4)-(5.7),
(5.13), and (5.14), we obtain

a7b7 + b7c7 + c7a7(6.8)

= y1(y1 + 1)2 + y2(y2 + 1)2 + y3(y3 + 1)2

= (y1 + y2 + y3)3 − 3(y1 + y2 + y3)(y1y2 + y2y3 + y3y1)

+ 3y1y2y3 + 2(y1 + y2 + y3)2 − 4(y1y2 + y2y3 + y3y1)
+ y1 + y2 + y3

= (y1 + y2 + y3)3 + 5(y1 + y2 + y3)2 + 14(y1 + y2 + y3) + 15

= −289− 18× 73h(τ)− 19× 74h2(τ)− 76h3(τ).

The above equation is equivalent to (1.25).
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7. The proofs of (1.26), (1.27) and (1.28).

Multiplying (4.11) by a4b2, (4.13) by b4c2, (4.14) by a2c4, and using (5.1)-
(5.4), we find that

a5b4 = y2
1 + y1, b5c4 = y2

2 + y2, c5a4 = y2
3 + y3.(7.1)

Therefore we have

a5b4 + b5c4 + c5a4 = y2
1 + y1 + y2

2 + y2 + y2
3 + y3(7.2)

= (y1 + y2 + y3)2 − 2(y1y2 + y2y3 + y3y1)
+ y1 + y2 + y3.

Substituting (5.13) and (5.14) into the above equation we obtain

a5b4 + b5c4 + c5a4 = 46 + 13× 49h(τ) + 492h2(τ).(7.3)

The above equation is the same as (1.26).
Now we prove (1.27). By a direct evaluation,

(x1 + x2 + x3)3(7.4)

= x3
1 + x3

2 + x3
3 + 6x1x2x3

+ 3x2
1x2 + 3x2

1x3 + 3x2
2x1 + 3x2

2x3 + 3x2
3x1 + 3x3

3x2.

Taking x1 = 3
√
y2
1y2, x2 = 3

√
y2
2y3, and x3 = 3

√
y2
3y1 and using (5.4)-(5.7),

we obtain (
3

√
y2
1y2 + 3

√
y2
2y3 + 3

√
y2
3y1

)3

(7.5)

= y2
1y2 + y2

2y3 + y2
3y1 + 3(y1 + y2 + y3)

+ 3(y1y2 + y2y3 + y3y4) + 6

= −y1(y1 + 1)− y2(y2 + 1)− y3(y3 + 1)

+ 3(y1 + y2 + y3) + 3(y1y2 + y2y3 + y3y4) + 6

= −y2
1 − y2

2 − y2
3 + 2(y1 + y2 + y3)

+ 3(y1y2 + y2y3 + y3y4) + 6

= −(y1 + y2 + y3)2 − 3(y1 + y2 + y3)− 9

= −49
(
1 + 13h(τ) + 49h2(τ)

)
.

Noting the definitions of y1, y2, and y3, we find that the above equation is
equivalent to (1.27).

Finally we prove (1.28). Denote

∆ := −8− 49h(τ).(7.6)
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Then (5.13) and (5.14) can be written in the following forms, respectively:

y1 + y2 + y3 = ∆(7.7)

y1y2 + y2y3 + y4y5 = −∆− 3.(7.8)

By (5.4)-(5.7), (7.7), and (7.8),

y2
1 + y2

2 + y2
3 = ∆2 + 2∆ + 6,(7.9)

y3
1 + y3

2 + y3
3 = ∆3 + 3∆2 + 9∆ + 3, ,(7.10)

y4
1 + y4

2 + y4
3 = ∆4 + 4∆3 + 14∆2 + 16∆ + 18,(7.11)

y5
1 + y5

2 + y5
3 = ∆5 + 5∆4 + 20∆3 + 35∆2 + 50∆ + 15.(7.12)

Taking x1 = 3
√
y5
1y2, x2 = 3

√
y5
2y3, and x3 = 3

√
y5
3y1 in (7.4) and us-

ing (5.4)-(5.7), we obtain(
3

√
y5
1y2 + 3

√
y5
2y3 + 3

√
y5
3y1

)3

(7.13)

= y5
1y2 + y5

2y3 + y5
3y1 + 3(y3

1y3 + y3
3y2 + y3

2y1)

+ 3(y3
1y

2
2 + y3

2y
2
3 + y3

3y
2
1) + 6

= −(y5
1 + y5

2 + y5
3)− (y4

1 + y4
2 + y4

3)

+ 3(y3
1 + y3

2 + y3
3) + 3(y2

1 + y2
2 + y2

3) + 3(y1 + y2 + y3)− 3

= −(∆2 + 3∆ + 9)(∆ + 1)3

= 75(1 + 13h(τ) + 49h2(τ))(1 + 7h(τ)).

Substituting (5.1)-(5.3) and (7.6) into the above equation, we obtain (1.28).

8. The proofs of (1.15), (1.16) and (1.17).

We recall the following identity (see, for example, [20]):

cot2 y − cot2 x+ 8
∞∑
n=1

nqn

1− qn
(cos 2nx− cos 2ny)(8.1)

= θ′1(0|q)2 θ1(x− y|q)θ1(x+ y|q)
θ2
1(x|q)θ2

1(x|q)
.

Dividing both sides of this equation by x− y and then letting y → x, we get

2 cotx(1 + cot2 x)− 16
∞∑
n=1

n2qn

1− qn
sin 2nx = θ′1(0|q)3 θ1(2x|q)

θ4
1(x|q)

.(8.2)
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Taking x = π
7 ,

2π
7 , and −3π

7 , respectively, in the above equation and then
adding the resulting equations we get

s− 16
∞∑
n=1

s(n)
n2qn

1− qn
= θ′1(0|q)3

(
θ1(2π

7 |q)
θ4
1(π7 |q)

−
θ1(π7 |q)
θ4
1(3π

7 |q)
+
θ1(3π

7 |q)
θ4
1(2π

7 |q)

)
.

(8.3)

Here

s = 2 cot
π

7

(
1 + cot3

π

7

)
+ 2 cot

2π
7

(
1 + cot3

2π
7

)
(8.4)

− 2 cot
3π
7

(
1 + cot3

3π
7

)
,

s(n) = sin
2nπ

7
+ sin

4nπ
7

− sin
6nπ

7
.(8.5)

Setting q = 0 in (8.3) and then using (1.32) we have

s =
sin(2π/7)
sin4(π/7)

− sin(π/7)
sin4(3π/7)

+
sin(3π/7)
sin4(2π/7)

=
64
7

√
7.(8.6)

From [13, p. 145, Equation (7.18)] we know that

s(n) = sin
2nπ

7
+ sin

4nπ
7

− sin
6nπ

7
=
√

7
2

(n
7

)
.(8.7)

Substituting (8.6) and (8.7) into (8.3) and then using (1.22) in the resuting
equation we obtain (1.15).

To prove (1.16), we recall the identity of Mccullogh and L.-C. Shen (see
Lemma 3)

θ′1
θ1

(x|q) +
θ′1
θ1

(y|q) +
θ′1
θ1

(z|q)− θ′1
θ1

(x+ y + z|q)(8.8)

= θ′1(0|q) θ1(x+ y|q)θ1(y + z|q)θ1(z + x|q)
θ1(x|q)θ1(y|q)θ1(z|q)θ1(x+ y + z|q)

.

Taking (x, y, z) = (π7 ,−
3π
7 ,−

3π
7 ), (π7 ,−

2π
7 ,−

2π
7 ), and (π7 ,

π
7 ,

2π
7 ), respec-

tively, in the above equation we obtain

θ′1
θ1

(π
7
|q
)
− θ′1
θ1

(
2π
7
|q
)
− 2

θ′1
θ1

(
3π
7
|q
)

= θ′1(0|q)
θ1(2π

7 |q)
θ2
1(3π

7 |q)
,(8.9)

θ′1
θ1

(π
7
|q
)
− 2

θ′1
θ1

(
2π
7
|q
)

+
θ′1
θ1

(
3π
7
|q
)

= θ′1(0|q)
θ1(π7 |q)
θ2
1(2π

7 |q)
,(8.10)

2
θ′1
θ1

(π
7
|q
)

+
θ′1
θ1

(
2π
7
|q
)

+
θ′1
θ1

(
3π
7
|q
)

= θ′1(0|q)
θ1(3π

7 |q)
θ2
1(π7 |q)

.(8.11)
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Adding (8.9), (8.10), and (8.11) gives

2
(

cot
π

7
+ cot

2π
7
− cot

3π
7

)
(8.12)

+ 8
∞∑
n=1

qn

1− qn

(
sin

2nπ
7

+ sin
4nπ

7
− sin

6nπ
7

)

= θ′1(0|q)

(
θ1(3π

7 |q)
θ2
1(π7 |q)

−
θ1(π7 |q)
θ2
1(2π

7 |q)
+
θ1(2π

7 |q)
θ2
1(3π

7 |q)

)
.

Setting q = 0 and then using (1.35), we obtain

cot
π

7
+ cot

2π
7
− cot

3π
7

=
√

7.(8.13)

Substituting (8.7), (8.13), and (1.27) into the above equation we obtain (1.16).
To prove (1.14), we construct the following elliptic function:

f(z) :=
θ1(z + π

7 |q)θ1(z + 2π
7 |q)θ1(z − 3π

7 |q)
θ3
1(z|q)

.(8.14)

By using (2.4), it is easy to check that f(z) is an elliptic function with
periods π and πτ . Also, f(z) has only one pole at 0, and its order is 3. We
now compute res(f ; 0).

It is plain that

res(f ; 0) =
1
2

[
d2(z3f(z))

d2z

]
z=0

.(8.15)

Set

F (z) := z3f(z), φ(z) =
F ′(z)
F (z)

.(8.16)

By logarithmic differentitation we easily find that

res(f ; 0) =
1
2

[
d2(z3f(z))

d2z

]
z=0

=
1
2
F (0)

(
φ(0)2 + φ′(0)

)
.(8.17)

Using (2.10) we find that

φ(z) =
z

3
− 3

θ′1
θ1

(z|q) +
θ′1
θ1

(
z +

π

7
|q
)

(8.18)

+
θ′1
θ1

(
z +

2π
7
|q
)

+
θ′1
θ1

(
z − 3π

7
|q
)

= L(τ)z +
θ′1
θ1

(
z +

π

7
|q
)

+
θ′1
θ1

(
z +

2π
7
|q
)

+
θ′1
θ1

(
z − 3π

7
|q
)

+O(z3).
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Setting z = 0 and then using (8.7) and (8.13), we obtain

φ(0) =
θ′1
θ1

(π
7
|q
)

+
θ′1
θ1

(
2π
7
|q
)
− θ′1
θ1

(
3π
7
|q
)

(8.19)

=
(

cot
π

7
+ cot

2π
7
− cot

3π
7

)
+ 4

∞∑
n=1

qn

1− qn

(
sin

2nπ
7

+ sin
4nπ

7
− sin

6nπ
7

)

=
√

7

(
1 + 2

∞∑
n=1

(n
7

) qn

1− qn

)
.

Differentiating (8.18) with respect to z, setting z = 0, and using (2.14), we
find that

φ′(0) = L(τ) +
(
θ′1
θ1

)′ (π
7
|q
)

+
(
θ′1
θ1

)′(2π
7
|q
)

+
(
θ′1
θ1

)′(3π
7
|q
)

(8.20)

= −7

(
1 + 4

∞∑
n=1

nqn

1− qn
− 28

∞∑
n=1

nq7n

1− q7n

)
.

Note that

F (0) = −
θ1(π7 |q)θ1(2π

7 |q)θ1(3π
7 |q)

θ′1(0|q)3
6= 0.(8.21)

Substituting (8.19) and (8.20) into (8.17) and using Lemma 2, we find that

1 + 4
∞∑
n=1

nqn

1− qn
− 28

∞∑
n=1

nq7n

1− q7n
=

(
1 + 2

∞∑
n=1

(n
7

) qn

1− qn

)2

.(8.22)

Combining (1.16) and (8.22) we obtain (1.17).

9. The proofs of (1.8) and (1.9).

To prove (1.8) and (1.9), we introduce the function

f(z) =
θ1(2z|q)θ1(3z|q)
θ6
1(z|q)θ1(7z|q7)

.(9.1)

By using (2.4) we readily verify that f(z) is an elliptic function with pe-
riods π and πτ . The poles of f(z) are 0 and π

7 ,
2π
7 , . . . ,

6π
7 . Furthermore,

π
7 ,

2π
7 , . . . ,

6π
7 are simple poles and 0 is a pole of order 5.

From Lemma 2, we have

res(f ; 0) +
6∑

k=1

res
(
f ;
kπ

7

)
= 0.(9.2)
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Now,

res
(
f ;
π

7

)
= lim

z→π
7

(
z − π

7

)
f(z)(9.3)

= −
θ1(2π

7 |q)θ1
(

3π
7 |q

)
7θ′1(0|q7)θ6

1(π7 |q)
= − 1

2
√

7
η2(τ)
η2(7τ)

θ−7
1

(π
7
|q
)
,

and we also find that

res
(
f ;

6π
7

)
= res

(
f ;
π

7

)
= − 1

2
√

7
η2(τ)
η2(7τ)

θ−7
1

(π
7
|q
)
.(9.4)

In the same way we find that

res
(
f ;

2π
7

)
= res

(
f ;

5π
7

)
=

1
2
√

7
η2(τ)
η2(7τ)

θ−7
1

(
2π
7
|q
)
,(9.5)

res
(
f ;

3π
7

)
= res

(
f ;

4π
7

)
=

1
2
√

7
η2(τ)
η2(7τ)

θ−7
1

(
3π
7
|q
)
.(9.6)

To compute res(f ; 0), we define

F (z) := z5f(z), φ(z) :=
F ′(z)
F (z)

.(9.7)

It is plain that

F (0) =
6

7θ′1(0|q7)θ′1(0|q)4
=

3
112η3(7τ)η12(τ)

.(9.8)

By an elementary calculation,

res(f ; 0) =
1
24

[
F (4)(z)

]
z=0

(9.9)

=
F (0)
24

(
φ4(0) + 6φ2(0)φ′(0) + 4φ(0)φ′′(0) + 3φ′(0)2 + φ′′′(0)

)
.

Using (2.10), we find that

φ(z) =
5
z
− 6

θ′1
θ1

(z|q) + 2
θ′1
θ1

(2z|q) + 3
θ′1
θ1

(3z|q)− 7
θ′1
θ1

(7z|q7)(9.10)

=
7
3

(7L(7τ)− L(τ)) z

+
7
45

(343M(7τ)− 13M(τ)) z3 +O(z5).

This yields

φ′(0) =
7
3

(7L(7τ)− L(τ)) = 14A(τ), φ(0) = 0, φ′′(0) = 0,(9.11)

φ′′′(0) =
14
15

(343M(7τ)− 13M(τ)) .
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Substituting the above equations into (9.9) we arrive at

res(f ; 0) =
1

960
η−3(7τ)η−12(τ)(9.12)

·
(
630A2(τ) + 343M(7τ)− 13M(τ)

)
.

Substituting (9.3)-(9.6) and (9.13) into (9.2) we obtain

630A2(τ) + 343M(7τ)− 13M(τ)(9.13)

=
960√

7
η14(τ)η(7τ)

(
θ−7
1

(π
7
|q
)
− θ−7

1

(
2π
7
|q
)
− θ−7

1

(
3π
7
|q
))

.

Substituting (1.28) into (9.13) we obtain the following interesting result:

Lemma 8. We have

630A2(τ) + 343M(7τ)− 13M(τ)(9.14)

= 960k(τ)4/3 (1 + 7h(τ))
(
1 + 13h(τ) + 49h2(τ)

)1/3
.

From [1, pp. 24, 48, 69] we know that

η(−1/τ) =
√
−iτη(τ),(9.15)

L(−1/τ) = −6τi
π

+ τ2L(τ),(9.16)

M(−1/τ) = τ4M(τ),(9.17)

N(−1/τ) = τ6N(τ).(9.18)

It follows that

η(−1/7τ) =
√
−7iτη(7τ),(9.19)

A(−1/7τ) = −7τ2A(τ),(9.20)

M(−1/7τ) = (7τ)4M(7τ),(9.21)

N(−1/7τ) = (7τ)6N(7τ),(9.22)

h(−1/7τ) = 7−2h−1(τ).(9.23)

Replacing τ by −1/7τ in (9.14) and then using (9.20), (9.21), and (9.23) in
the resulting equation we deduce that:

Lemma 9. We have

90A2(τ)− 91M(7τ) +M(τ)(9.24)

= 960k(τ)4/3
(
7h(τ) + h2(τ)

) (
1 + 13h(τ) + 49h2(τ)

)1/3
.

By solving the linear system of equations, (9.14) and (9.24), for M(τ) and
M(7τ) we deduce the following theorem:
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Theorem 10. We have

7M(7τ) = 15A2(τ)− 8k(τ)4/3
(
1 + 20h(τ) + 91h2(τ)

)
(9.25)

·
(
1 + 13h(τ) + 49h2(τ)

)1/3
M(τ) = 105A2(τ)− 8k(τ)4/3

(
13 + 140h(τ) + 343h2(τ)

)
(9.26)

·
(
1 + 13h(τ) + 49h2(τ)

)1/3
.

Substituting (1.17) into the above equations, respectively, we obtain (1.8)
and (1.9).

10. The proofs of (1.10) and (1.11).

Let

f(z) =
θ1(z|q)θ1(2z|q7)

θ11
1 (z|q7)

.(10.1)

It is easy to check that f(z) is an elliptic function with periods π and 7πτ .
Also, f(z) has only one pole at 0, and its order is 9. From lemma 2 we have

res(f ; 0) = 0.(10.2)

Set

F (z) := z9f(z), φ(z) :=
F ′(z)
F (z)

.(10.3)

Using (2.10) we find that

φ(z) =
9
z

+
θ′1
θ1

(z|q)− 11
θ′1
θ1

(z|q7) + 2
θ′1
θ1

(2z|q7)(10.4)

= 2z − 2
15
z3 − 4

35
z5 − 246

4725
z7 + 4

∞∑
n=1

qn

1− qn
sin 2nz

+ 4
∞∑
n=1

q7n

1− q7n
(2 sin 4nz − 11 sin 2nz) +O(z9).

It follows that

φ′(0) = 2A(τ),(10.5)

φ′′′(0) = − 2
15

(M(τ) + 5M(7τ)) ,(10.6)

φ(5)(0) = −16
63

(N(τ) + 53N(7τ)) ,(10.7)

φ(0) = φ′′(0) = φ(4)(0) = φ(6)(0) = 0,(10.8)
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and

φ(7)(0) = −16
15

(
1 + 480

∞∑
n=1

n7qn

1− qn
+ 245 + 245× 480

n7q7n

1− q7n

)
.(10.9)

Employing the identity [1, p. 199], [19]

M2(τ) = 1 + 480
∞∑
n=1

n7qn

1− qn
,(10.10)

Equation (10.9) can be written as

φ(7)(0) = −16
15
(
M2(τ) + 245M2(7τ)

)
.(10.11)

Using the fact that φ(0) = φ′′(0) = φ(4)(0) = φ(6)(0) = 0, we find that by
a direct computation,

res(f ; 0) =
1
8!
F (0)

(
105φ′(0)4 + 210φ′(0)2φ′′′(0)(10.12)

+ 28φ′(0)φ(5)(0) + 35φ′′′(0)2 + φ(7)(0)
)
.

Substituting (10.5), (10.6), (10.7), and (10.11) into (10.12) and then us-
ing (10.1) yields

N(τ) + 53N(7τ)(10.13)

=
63
8
A2(τ) (15A(τ)−M(τ)− 5M(7τ))

− 1
32A(τ)

(
M2(τ)− 14M(τ)M(7τ) + 553M2(7τ)

)
.

Replacing τ by −1/7τ in the above equation and then applying (9.20)-
(9.23) in the resulting equation, we deduce that

53N(τ) + 76N(7τ)(10.14)

= −441
8
A(τ)

(
15× 72A2(τ)− 5M(τ)− 74M(7τ)

)
+

1
32A(τ)

(
79M2(τ)− 2× 74M(τ)M(7τ) + 77M2(7τ)

)
.

Solving the above two equations for N(τ) and N(7τ) we obtain the fol-
lowing lemma:
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Lemma 11. We have

N(τ) =
49

2320
A(τ)

(
135× 72A2(τ)− 2× 74M(7τ)− 388M(τ)

)
(10.15)

− 1
27840A(τ)

(
77M2(7τ)− 6× 74M(τ)M(7τ)

+ 923M2(τ)
)
,

N(7τ) =
7

2320
A(τ)

(
−135A2(τ) + 2M(τ) + 388M(τ)

)
(10.16)

+
1

27840A(τ)

(
M2(τ)− 42M(τ)M(7τ)

+ 6461M2(7τ)
)
.

Substituting (1.8), (1.9), and (1.16) into the above two equations, respec-
tively, we obtain (1.10) and (1.11).

11. The proof of (1.18).

In this section we first evaluate some elementary trigonometric sums. Let
ω =exp(2πi

7 ). It is well-known that

(1− x)
6∏
r=1

(1− xωr) = 1− x7.(11.1)

It follows that for x 6= 1,(
1− 2x cos

2π
7

+ x2

)(
1− 2x cos

4π
7

+ x2

)(
1− 2x cos

6π
7

+ x2

)
(11.2)

=
1− x7

1− x
.

Letting x→ 1 gives

26 sin2 π

7
sin2 2π

7
sin2 3π

7
= 7,(11.3)

and from this we obtain

sin
π

7
sin

2π
7

sin
3π
7

=
1
8

√
7.(11.4)

Similarly, setting x = −1 in (11.2), we have

cos
π

7
cos

2π
7

cos
3π
7

=
1
8
.(11.5)

Combining the above two equations we obtain

cot
π

7
cot

2π
7

cot
3π
7

=
1√
7
.(11.6)
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We recall the identity (see (8.13))

cot
π

7
+ cot

2π
7
− cot

3π
7

=
√

7.(11.7)

Taking q = 0 in (2.14), we obtain

cot2
π

7
+ cot2

2π
7

+ cot2
3π
7

= 5.(11.8)

From (11.6), (11.7), and (11.8), we readily find that

cot
π

7
, cot

2π
7
, and − cot

3π
7

(11.9)

are the roots of cubic equation

x3 −
√

7x2 + x+
1√
7

= 0.(11.10)

Let

sn = cotn
π

7
+ cotn

2π
7

+ (−1)n cotn
3π
7
.(11.11)

Then from (11.10) we obtain the following recurrence formula:

sn+3 =
√

7sn+2 − sn+1 −
1√
7
sn, s0 = 3, s1 =

√
7, s2 = 5.(11.12)

It follows that

s3 =
25√

7
, s4 = 19, s5 =

103√
7
.(11.13)

It can be easily verified that

cot(4) x = 16 cotx+ 40 cot3 x+ 24 cot5 x.(11.14)

Therefore we have

cot(4) π

7
+ cot(4) 2π

7
+ cot(4)

3π
7

= 16s1 + 40s3 + 24s5 =
3584√

7
.(11.15)

Now we begin to prove (1.18). Using (2.4) we can verify that

f(z) =
θ1(2z|q)θ1(z + π

7 |q)θ1(z + 2π
7 |q)θ1(z − 3π

7 |q)
θ7
1(z|q)

(11.16)

is an elliptic function with only one pole, namely, at 0 with order 6.
Set

F (z) := z6f(z), φ(z) :=
F ′(z)
F (z)

.(11.17)
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We find that

φ(z) =
6
z
− 7

θ′1
θ1

(z|q) + 2
θ′1
θ1

(z|q)(11.18)

+
θ′1
θ1

(
z +

π

7
|q
)

+
θ′1
θ1

(
z +

2π
7
|q
)

+
θ′1
θ1

(
z − 3π

7
|q
)

= L(τ)z − z3

5
M(τ) +

θ′1
θ1

(
z +

π

7
|q
)

+
θ′1
θ1

(
z +

2π
7
|q
)

+
θ′1
θ1

(
z − 3π

7
|q
)

+O(z5).

Setting z = 0 and then using (8.19), we find that

φ(0) =
θ′1
θ1

(π
7
|q
)

+
θ′1
θ1

(
2π
7
|q
)
− θ′1
θ1

(
3π
7
|q
)

(11.19)

=
√

7

(
1 + 2

∞∑
n=1

(n
7

) qn

1− qn

)
.

Differentiating (11.18) with repect to z and then setting z = 0 and finally
using (2.14), we obtain

φ′(0) = L(τ) +
(
θ′1
θ1

)′ (π
7
|q
)

+
(
θ′1
θ1

)′(2π
7
|q
)

+
(
θ′1
θ1

)′(3π
7
|q
)

(11.20)

= −7A(τ).

Differentiating (11.18) twice with repect to z , seting z = 0, and using (8.6)
and (8.7), we obtain

φ′′(0) =
(
θ′1
θ1

)′′ (π
7
|q
)

+
(
θ′1
θ1

)′′(2π
7
|q
)
−
(
θ′1
θ1

)′′(3π
7
|q
)

(11.21)

=
8√
7

(
8− 7

∞∑
n=1

(n
7

) n2qn

1− qn

)
.

Using (2.15), we find that

φ′′′(0) = −6
5
M(τ) +

(
θ′1
θ1

)′′′ (π
7
|q
)

(11.22)

+
(
θ′1
θ1

)′′′(2π
7
|q
)

+
(
θ′1
θ1

)′′′(3π
7
|q
)

= − 1
15

(7M(τ) + 2401M(7τ)) .
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From (11.16) and (8.7), we have

φ(4)(0) =
(
θ′1
θ1

)(4) (π
7
|q
)

+
(
θ′1
θ1

)(4)(2π
7
|q
)
−
(
θ′1
θ1

)(4)(3π
7
|q
)

(11.23)

= cot(4) π

7
+ cot(4)

2π
7

+ cot(4)
3π
7

+ 64
∞∑
n=1

n4qn

1− qn

(
sin

2nπ
7

+ sin
4nπ

7
− sin

6nπ
7

)

= 32
√

7

(
16 +

∞∑
n=1

(n
7

) n4qn

1− qn

)
.

By logarithmic differentiation we find that

res(f ; 0) =
1

120
F (0)

(
φ(0)5 + 10φ(0)3φ′(0) + 5φ(0)φ′′′(0)(11.24)

+ 10φ(0)2φ′′(0) + 15φ(0)φ′(0)2

+ 10φ′(0)φ′′(0) + φ(4)(0)
)
.

Substituting (11.19)-(11.23) into the above equation and then using (8.19)
in the resulting equation and finally using the fact that res(f ; 0) = 0, we
obtain

96

(
16 +

∞∑
n=1

(n
7

) n4qn

1− qn

)
(11.25)

=

(
1 + 2

∞∑
n=1

(n
7

) qn

1− qn

)
(17M(τ) + 2401M(7τ))

− 882

(
1 + 2

∞∑
n=1

(n
7

) qn

1− qn

)5

.

Substituting (1.8), (1.9), and (1.16) into the above equation we immediately
obtain (1.18).
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IRREDUCIBLE NUMERICAL SEMIGROUPS

J.C. Rosales and M.B. Branco

We give a characterization for irreducible numerical semi-
groups. From this characterization we obtain that every irre-
ducible numerical semigroup is either a symmetric or pseudo-
symmetric numerical semigroup. We study the minimal pre-
sentations of an irreducible numerical semigroup. Separately,
we deal with the cases of maximal embedding dimension and
multiplicity 3 and 4.

1. Introduction and basic concepts.

A numerical semigroup is a subset S of N closed under addition, 0 ∈ S
and generates Z as a group (here N and Z denote the set of nonnegative
integers and the set of the integers, respectively). From this definition we
obtain (see [2] and [13]) the following results.

(1) The set N \ S is finite, we refer to the greatest integer not belonging
to S as the Frobenius number of S and denote it by g(S).

(2) The semigroup S has a unique minimal system of generators {n0 <
n1 < · · · < np} . We refer to the numbers n0 and p + 1 as the
multiplicity and embedding dimension of S and denote them by
m(S) and µ(S), respectively.

Let F = {a0X0 + · · ·+ apXp : a0, . . . , ap ∈ N} be the free monoid generated
by {X0, . . . , Xp} and let ϕ : F → S be the monoid epimorphism defined by

ϕ(a0X0 + · · ·+ apXp) = a0n0 + · · ·+ apnp.

It is well-known that if σ is the kernel congruence of ϕ (that is, xσy if
ϕ(x) = ϕ(y)), then S is isomorphic to the quotient monoid F/σ (see [13]).
Rédei shows in [9] that the congruence σ is finitely generated and therefore
there exists

ρ = {(x1, y1), . . . , (xt, yt)} ⊆ F × F

such that σ is the smallest congruence on F that contains ρ. The set ρ is
called a presentation for the numerical semigroup S. We say that ρ is
minimal presentation if no proper subset of ρ generates σ. In [10] it is
shown that the concepts of minimal presentation and presentation with the
lowest cardinality coincide for a numerical semigroup.

131



132 J.C. ROSALES AND M.B. BRANCO

Numerical semigroups have been widely studied in the literature not only
from the semigroupist point of view but also to give us a series of exam-
ples in ring theory through the concept of the semigroup ring associated to
a numerical semigroup (see for instance [7], [4], [5], [8], [15]). Along this
line, if K is a field, K[S] is the finite type K-algebra associated to S and
K[X0, . . . , Xp] is the polynomial ring in p+1 indeterminates, the K-algebras
epimorphism λ : K[X] → K[S] such that Xi 7→ ti is a S-graded ring ho-
momorphism with degree zero. Therefore, the prime ideal P = kernel(λ)
(called the ideal associated to the semigroup) is homogeneous and defines a
monomial curve in the (p+1)-dimensional affine space on K. Herzog proves
in [7] that finding a system of generators for P is equivalent to finding a
presentation for S. Let us also notice that Kunz in [8] proves that K[S] is
Gorestein if and only if S is symmetric and Barucci-Dobbs-Fontana prove
in [2] that K[S] is Kunz if and only if S is pseudo-symmetric.

We say that a numerical semigroup is irreducible if it can not be ex-
pressed as an intersection of two numerical semigroups containing it prop-
erly. In Theorem 1, we see that S is irreducible if and only if S is maximal
in the set of all numerical semigroups with Frobenius number g(S). From
[6] and [2] we deduce that the class of irreducible semigroups with odd (re-
spectively even) Frobenius number is the same as the class of symmetric
(respectively pseudo-symmetric) numerical semigroups. Moreover, [11] pro-
vides a study of the irreducible numerical semigroups with odd Frobenius
number. Our aim in this paper is to generalize these results for irreducible
numerical semigroups in general (that is, with Frobenius number even or
odd).

The contents in this paper are organized as follows. In Section 2 we
characterize the irreducible numerical semigroups giving special attention
to their Apéry sets. In Section 3 we study the irreducible numerical semi-
groups with multiplicity 3 and 4. We explicitly give the family of irreducible
numerical semigroups of this kind. The aim of Section 4 is to give an upper
bound for the cardinal of a minimal presentation for an irreducible numer-
ical semigroup in function of their multiplicity and embedding dimension.
Finally, in Section 5 we study those irreducible numerical semigroups having
multiplicity greater than or equal to five and embedding dimension equal to
its multiplicity minus one.

2. Characterization of irreducible numerical semigroups.

Throughout this section S denotes a numerical semigroup, such that S 6= N.
It is well-known (see for instance [12]) that S ∪ {g(S)} is also a numerical
semigroup.

Theorem 1. The following conditions are equivalent:
1) S is irreducible,
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2) S is maximal in the set of all numerical semigroups with Frobenius
number g(S),

3) S is maximal in the set of all numerical semigroups that do not contain
g(S).

Proof. 1) ⇒ 2) Let S be a numerical semigroup such that S ⊆ S and g(S) =
g(S). Then S = (S ∪ {g(S)}) ∩ S. Since S is irreducible, we deduce that
S = S.

2) ⇒ 3) Let S be a numerical semigroup such that S ⊆ S and g(S) /∈ S.
Then S ∪ {g(S) + 1, g(S) + 2, . . . } is a numerical semigroup that contains S
with Frobenius number g(S). Therefore, S = S ∪ {g(S) + 1, g(S) + 2, . . . }
and so S = S.

3) ⇒ 1) Let S1 and S2 be two numerical semigroups that contain S
properly. Then, by hypothesis, g(S) ∈ S1 and g(S) ∈ S2. Therefore S 6=
S1 ∩ S2 and so S is irreducible. �

From [6] and [2] we deduce the next result.

Proposition 2.
1) If g(S) is odd, then S is irreducible if and only if for all h, h

′ ∈ Z, such
that h+ h

′
= g(S), we have that either h ∈ S or h

′ ∈ S (that is, S is
symmetric).

2) If g(S) is even, then S is irreducible if and only if for all h, h′ ∈
Z \ {g(S)

2 }, such that h + h′ = g(S), we have that either h ∈ S or
h′ ∈ S (that is, S is pseudo-symmetric).

Let n ∈ S \ {0}. Denote by 0 = w(1) < w(2) · · · < w(n) the smallest ele-
ments in S in respective congruence classes mod n. We denote by Ap(S, n),
the Apéry set of n in S (see [1]), the set {0 = w(1) < w(2) < · · · < w(n)}.
It is well-known (see [13]) that Ap(S, n) = {x ∈ S : x − n /∈ S} and that
w(n) = g(S) + n.

The following result is also well-known (see [1], [4] or [11]):

Proposition 3. Let n ∈ S \ {0}. Then S is irreducible with an odd Frobe-
nius number (that is, S is symmetric) if and only if w(i)+w(n−i+1) = w(n)
for all i ∈ {1, . . . , n}.

Now we see how is the Ap(S, n) when S is irreducible with an even Frobe-
nius number.

Lemma 4. If S is irreducible with an even Frobenius number and n ∈ S \
{0}, then g(S)

2 + n ∈ Ap(S, n).

Proof. It is enough to prove that g(S)
2 + n ∈ S, since g(S)

2 /∈ S, but this
follows from Proposition 2 ((g(S)

2 + n) + (g(S)
2 − n) = g(S)). �
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Proposition 5. Let S be a numerical semigroup with an even Frobenius
number and n ∈ S \ {0}. Then S is irreducible if and only if

Ap(S, n) = {0 = w(1) < w(2) < . . .

< w(n− 1) = g(S) + n} ∪ {g(S)/2 + n}
and w(i) + w(n− i) = w(n− 1) for all i ∈ {1, . . . , n− 1}.

Proof. First note that if g(S) is even, then g(S)
2 +n ∈ Ap(S, n) and g(S)

2 +n <
max Ap(S, n). If i ∈ {1, . . . , n − 1}, then w(i) − n /∈ S and w(i) − n 6=
g(S)

2 . By Proposition 2, we have that g(S) − (w(i) − n) ∈ S and thus
w(n−1)−w(i) = g(S)+n−w(i) ∈ S. Since w(n−1) ∈ Ap(S, n) we deduce
that w(n − 1) − w(i) ∈ Ap(S, n). Furthermore w(n − 1) − w(i) 6= g(S)

2 + n

because otherwise we would have w(i) = g(S)
2 . Hence the reader can check

that w(i) + w(n− i) = w(n− 1).
Conversely, let x be an integer such that x 6= g(S)

2 and x /∈ S. Let us
show that g(S)−x ∈ S. Take w ∈ Ap(S, n) such that w ≡ x(mod n). Then
x = w − kn for some k ∈ N \ {0}. We distinguish two cases:

(1) If w = g(S)
2 +n, then g(S)−x = g(S)−(g(S)

2 +n−kn) = g(S)
2 +(k−1)n.

Besides, x 6= g(S)
2 leads to k 6= 1 and therefore k ≥ 2. Hence we can

assert that g(S)− x ∈ S.
(2) If w 6= g(S)

2 + n, then g(S) − x = g(S) − (w − kn) = g(S) + n − w +
(k − 1)n = w(n − 1) − w + (k − 1)n ∈ S, since w(n − 1) − w ∈ S by
hypothesis.

�

Note that if S has embedding dimension two, then S is irreducible with
odd Frobenius number (i.e., S is symmetric); in fact S is a complete in-
tersection (see [3, 7]).

Observe also that µ(S) ≤ m(S) for every numerical semigroup S. The
semigroups with µ(S) = m(S) have been widely studied in the literature
(see for instance [2, 12, 15]) and are called MED-semigroups (numerical
semigroups with maximal embedding dimension).

Proposition 6. Let S be an irreducible numerical semigroup.
1) If g(S) is odd and m(S) ≥ 3, then µ(S) ≤ m(S)− 1.
2) If g(S) is even and m(S) ≥ 4, then µ(S) ≤ m(S)− 1.

Proof. 1. See Section 2 of [11].
2. It is enough to prove that µ(S) 6= m(S). If µ(S) = m(S), then S is

minimally generated by {m(S), n1, . . . , nm(S)−1} and therefore Ap(S, n) is
of the form

Ap(S, n) = {0 < n2 < · · · < nm(S)−1} ∪
{
n1 =

g(S)
2

+m(S)
}
.
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Since m(S) − 1 ≥ 3 then n1 6= n2 6= nm(S)−1. By Proposition 5 we
deduce that nm(S)−1−n2 ∈ S, which contradicts the fact that {m(S), n1, . . . ,
nm(S)−1} is a minimal system of generators for S. �

Note that S = 〈3, 7, 11〉 is an irreducible numerical semigroup with Frobe-
nius number g(S) = 8 (it is easy to see that 8 belongs to every numerical
semigroup that properly contains S). That is why in 2) of the above propo-
sition we need that m(S) ≥ 4 instead of m(S) ≥ 3.

Using 1) and 2) of the above proposition we can assert that if S is an
irreducible numerical semigroup with m(S) ≥ 4, then µ(S) ≤ m(S)− 1.

3. Irreducible numerical semigroups with multiplicity 3 and 4.

In this section we study the irreducible numerical semigroups with multi-
plicity 3 and 4. By the remark made after Proposition 5, we know that if
µ(S) = 2, then S is irreducible. Recall also, that from Proposition 6, if
m(S) = 4 and S is irreducible then µ(S) ≤ 3.

Therefore, we focus our study in the cases:
1) S is irreducible with m(S) = µ(S) = 3,
2) S is irreducible with m(S) = 4 and µ(S) = 3.
The following result is an immediate consequence of [2, Theorems I.4.2,

I.4.4]. Here we offer an alternative proof by using Apéry sets.

Theorem 7. The following conditions are equivalent:
1) S is an irreducible numerical semigroup with m(S) = µ(S) = 3,
2) S is generated by {3, x+ 3, 2x+ 3} with x not a multiple of 3.

Proof. 1) ⇒ 2) If m(S) = µ(S) = 3, then {3, n1, n2} is a minimal system of
generators for S. From Proposition 6 we deduce that g(S) is even and by
Proposition 5 we have that

Ap(S, 3) =
{

0, n1 =
g(S)

2
+ 3, n2 = g(S) + 3

}
.

Taking x = g(S)
2 we have that n1 = x + 3 and n2 = 2x + 3. Furthermore,

x = g(S)
2 /∈ S and thus x is not a multiple of 3.

2) ⇒ 1) Clearly {3, x + 3, 2x + 3} is a minimal system of generators for
S and thus m(S) = µ(S) = 3. We have that Ap(S, 3) = {0, x + 3, 2x + 3}.
Hence 2x+ 3 = g(S) + 3 and therefore g(S)

2 + 3 = x+ 3. From Proposition 5
we deduce that S is irreducible. �

S = 〈3, 3 +x, 2x+ 3〉 is a MED-semigroup. Applying the results obtained
in [12] we deduce that a minimal presentation for S is:

ρ = {(2X1, X0 +X2), (2X2, xX0 +X1), ((x+ 1)X0, X1 +X2)}.
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Now we study the irreducible numerical semigroups with multiplicity 4.
We distinguish two cases taking into account that the Frobenius number is
odd (a symmetric semigroup) or even (a pseudo-symmetric semigroup).

Herzog proves in [7] that a numerical semigroup S with minimal system
of generators {n0, n1, n2} is irreducible with an odd Frobenius number (i.e.,
symmetric) if and only if it is a complete intersection. Applying the results
obtained in [5] this occurs if and only if ni ∈

〈
nj

(nj ,nk) ,
nk

(nj ,nk)

〉
for some

{i, j, k} = {0, 1, 2}, where (nj , nk) denotes the greatest common divisor (gcd
for short) of nj , nk.

Theorem 8. The following conditions are equivalent:

1) S is an irreducible numerical semigroup, g(S) is odd, m(S) = 4 and
µ(S) = 3,

2) S is a numerical semigroup generated by {4, 2x, x+2y} with y ∈ N\{0}
and x an odd integer greater than or equal to 3.

Proof. 1) ⇒ 2) If m(S) = 4 and µ(S) = 3, then {4, n1, n2} is a minimal
system of generators for S. From the previous remark we only have two
cases:

a) Assume that d = gcd{4, n1} and n2 ∈ 〈4
d ,

n1
d 〉. Notice that d = 2 and

n1 = 2x with x an odd number greater than or equal to 3. Furthermore
1 = gcd{4, n1, n2}, then n2 is an odd number and n2 ∈ 〈2, x〉 thus
n2 = x+ 2y (because all odd numbers in 〈2, x〉 are of this kind).

b) Assume that d = gcd{n1, n2} and 4 ∈ 〈n1
d ,

n2
d 〉. From here we deduce

that n1 = 2d, n2 = k2d with k2 odd and d an odd integer greater than
or equal to 3. Therefore, n2 = d+(k2−1)d with (k2−1)d even. Taking
x = d and y = (k2−1)d

2 we obtain the desired result.

2) ⇒ 1) Clearly, 2 = gcd{4, 2x} and x+2y ∈ 〈4
2 ,

2x
2 〉. By the remark made

before this theorem we have that S is an irreducible numerical semigroup
with an odd Frobenius number. Now, we need to show that {4, 2x, x+ 2y}
is a minimal system of generators for S, but this is clear because:

1) x+ 2y /∈ 〈4, 2x〉, since x+ 2y is odd,
2) 2x /∈ 〈4, x + 2y〉, since if 2x = a4 + b(x + 2y) with a, b ∈ N, then

applying that 2x is an even integer not a multiple of 4 and that x+ 2y
is odd, we deduce that b ≥ 2, contradicting that 2(x+ 2y) > 2x.

�

The semigroup S = 〈4, 2x, x + 2y〉 has Frobenius number g(S) = 3x +
2y − 4, furthermore using that it is a complete intersection we deduce that
a minimal presentation for S is:

ρ = {(2X1, xX0), (2X2, yX0 +X1)}.
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Finally, we study the irreducible numerical semigroups such that g(S) is
even, m(S) = 4 and µ(S) = 3.

Theorem 9. The following conditions are equivalent:
1) S is an irreducible numerical semigroup, g(S) is even, m(S) = 4 and

µ(S) = 3,
2) S is generated by {4, x + 2, x + 4} with x an odd integer greater than

or equal to 3.

Proof. 1) ⇒ 2) If m(S) = 4 and µ(S) = 3, then {4, n1, n2} is a minimal
system of generators for S. From Lemma 4 we know that g(S)

2 +4 ∈ Ap(S, 4).
We distinguish two cases:

a) If g(S)
2 + 4 is a minimal generator then, by Proposition 5, we deduce

that

Ap(S, 4) =
{

0, n1 =
g(S)

2
+ 4, n2, 2n2 = g(S) + 4

}
.

Taking x = g(S)
2 , then n1 = x + 4 and n2 = x + 2. Furthermore

g(S) /∈ S and therefore x is odd.
b) If g(S)

2 + 4 is not a minimal generator, then

Ap(S, 4) =
{

0, n1, n2,
g(S)

2
+ 4
}
.

Hence g(S) + 4 = n1 or g(S) + 4 = n2. Suppose that g(S) + 4 = n1

then, by Proposition 5, we deduce that n1−n2 ∈ S, contradicting that
{4, n1, n2} is a minimal system of generators.

2) ⇒ 1) Clearly, {4, x+ 2, x+ 4} is a minimal system of generators of S,
whence m(S) = 4 and µ(S) = 3. The reader can check that

Ap(S, 4) = {0, x+ 2, x+ 4, 2x+ 4}.
Therefore g(S) = 2x and then

Ap(S, 4) =
{

0,
g(S)

2
+ 4,

g(S) + 4
2

, g(S) + 4
}
.

Using Proposition 5 we obtain that S is irreducible. �

Note that S = 〈4, x + 2, x + 4〉 has Frobenius number 2x. Applying [7]
and that this semigroup is not symmetric (therefore it is not a complete
intersection), we can deduce that a minimal presentation for S is:

ρ = {(2X2, X0 + 2X1), (3X1, kX0 +X2), (tX0, X1 +X2)}

with k = 3(x+2)−(x+4)
4 and t = (x+4)+(x+2)

4 . Observe that 3(x+ 2)− (x+ 4)
is a multiple of 4 if and only if x is odd, and (x+ 4) + (x+ 2) is a multiple
of 4 if and only if x is odd.
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4. An upper bound of the cardinality of a minimal presentation
for an irreducible numerical semigroup.

Let S be a numerical semigroup with minimal system of generators {n0 <
n1 < · · · < np}. In [12] it is shown the following result (#MRS denotes the
cardinality of a minimal presentation for S).

Proposition 10. Let S be a numerical semigroup. Then

#MRS ≤ n0(n0 − 1)
2

− 2(n0 − 1− p).

In [11] this bound is improved in the case S is symmetric. In fact, the
following result is given there:

Proposition 11. If S is symmetric, n0 ≥ 3 and p ≥ 2, then

#MRS ≤ (n0 − 2)(n0 − 1)
2

− 1 + (p+ 2− n0).

Our aim in this section is to prove the analogue to this result for S an
irreducible semigroup with even Frobenius number.

Throughout this section S is an irreducible numerical semigroup with
g(S) even and p ≥ 3.

For n ∈ S define the graph Gn = (Vn, En), as

Vn = {ni ∈ {n0, . . . , np} : n− ni ∈ S},
En = {[ni, nj ] : n− (ni + nj) ∈ S, i, j ∈ {0, . . . , p}, i 6= j}.

From [12] we can deduce the following result.

Proposition 12. If {n0, n1, . . . , np, g(S)} is a minimal system of genera-
tors for S′ = S∪{g(S)}, g(S) > n0 and ni and n0 are in the same connected
component of Gg(S)+n0+ni

for all i ∈ {1, . . . , p}, then

#MRS + p+ 2 = #MRS′.

Applying Proposition 5 and using that p ≥ 3 we deduce that g(S) +no ≥
ni + nj for some i, j ∈ {1, . . . , p} and therefore g(S) > n0. Furthermore,
{n0, n1, . . . , np, g(S)} is a minimal system of generators for S′ = S ∪{g(S)},
since otherwise we would deduce from [12] that np = g(S) + n0, which
contradicts Proposition 5 for p ≥ 3.

Lemma 13. If i ∈ {1, . . . , p}, w ∈ Ap(S, n0) and n0 and ni are in two
different connected components of Gw+ni, then for all w′ ∈ Ap(S, n0) such
that w − w′ ∈ S \ {0} we have that w′ + ni ∈ Ap(S, n0)

Proof. Suppose that w′ + ni /∈ Ap(S, n0), then w′ + ni − n0 ∈ S. Let
s ∈ S \ {0} be such that w = w′ + s and j ∈ {0, . . . , p} such that s−nj ∈ S.
Then, w+ni− (ni +nj) ∈ S and w+ni− (nj +n0) ∈ S. Therefore [ni, nj ],
[nj , n0] ∈ En and so ni and n0 are in the same connected component of
Gw+ni . �
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Lemma 14. If i ∈ {1, . . . , p}, then n0 and ni are in the same connected
component of Gg(S)+n0+ni

.

Proof. Suppose that n0 and ni are in two different connected components
of Gg(S)+n0+ni

. Let j ∈ {1, . . . , p} be such that nj 6= g(S)
2 + n0 and ni 6= nj

(this is possible because p ≥ 3). By Lemma 13 and Proposition 5 we deduce
that g(S) + n0 − nj + ni ∈ Ap(S, n0).

Observe that g(S) + n0 − nj + ni = g(S)
2 + n0, since otherwise using

Proposition 5 we would obtain that g(S) + n0 − (g(S) + n0 − nj + ni) ∈ S
and therefore nj − ni ∈ S, contradicting that {n0, . . . , np} is a minimal
system of generators for S.

Let us observe that ni 6= g(S)
2 +n0 because otherwise we would deduce from

g(S)+n0−nj+ni = g(S)
2 +n0, that nj = g(S)+n0 and applying Proposition 5

we can assert that S = 〈n0,
g(S)

2 + n0, g(S) + n0〉, which contradicts that
p ≥ 3.

Now assume that Ap(S, n0) = {0 = w(1) < · · · < w(n0−1)}∪
{

g(S)
2 + n0

}
.

We distinguish two cases:

1) If g(S)
2 +n0 ∈ {n1, . . . , np}, then from Proposition 5 and Lemma 13 we

have that

w(1) + ni = w(2), w(2) + ni = w(3), . . . , w(n0 − 2) + ni = w(n0 − 1).

Hence,

Ap(S, n0) = {0, ni, 2ni, . . . , (n0 − 2)ni} ∪
{
g(S)

2
+ n0

}
and thus S = 〈n0, ni,

g(S)
2 + n0〉, a contradiction because p ≥ 3.

2) If g(S)
2 +n0 /∈ {n1, . . . , np}, then again from Proposition 5 and Lemma 13

we obtain that

Ap(S, n0) =
{

0, ni, . . . , kni =
g(S)

2
+ n0, nj , nj + ni, . . . ,

nj + tni = g(S) + n0

}
for some k, t ∈ N. Therefore, S = 〈n0, ni, nj〉, in contradiction again
with p ≥ 3.

�

Proposition 15.

#MRS ≤ (n0 − 2)(n0 − 1)
2

− 1 + (p+ 2− n0).
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Proof. Applying Lemma 14 and Proposition 12 we deduce that #MRS =
#MR(S ∪ {g(S)})− (p+ 2). From Proposition 10 we have that

#MR(S ∪ {g(S)}) ≤ n0(n0 − 1)
2

− 2(n0 − 1− p− 1).

Hence,

#MRS ≤ (n0 − 2)(n0 − 1)
2

− 1 + (p+ 2− n0).

�

From Propositions 15 and 11 we can obtain the following result.

Theorem 16. If S is an irreducible numerical semigroup with µ(S) ≥ 4,
then

#MRS ≤ (m(S)− 2)(m(S)− 1)
2

− 1 + (µ(S) + 1−m(S)).

Note that if µ(S) = 2, then #MRS = 1 and if µ(S) = 3, then #MRS = 2
or 3 depending on the parity of g(S) (see[7]).

5. Irreducible numerical semigroups with maximal embedding
dimension.

A MEDI-semigroup is an irreducible semigroup with multiplicity m ≥ 5
and embedding dimension m − 1. Remember from Proposition 6 that if S
is irreducible and m(S) ≥ 5, then µ(S) ≤ m(S)− 1 and this is why we use
the name MEDI-semigroup to indicate that it is an irreducible numerical
semigroup with the maximal possible embedding dimension.

If S = 〈m(S), n1, . . . , nm(S)−2〉 is a MEDI-semigroup, then

Ap(S,m(S)) = {0, n1, . . . , nm(S)−2, g(S) +m(S)}.

Moreover, from Propositions 3 and 5 we can deduce that g(S) + m(S) =
ni +nj with i, j ∈ {1, . . . ,m(S)−2} and i 6= j. Applying now [14, Theorem
1] we get that

#MRS =
(m(S)− 2)(m(S)− 1)

2
− 1.

Note that for m(S) ∈ {3, 4}, the previous formula is not true (for this
reason in the definition of MEDI-semigroup we need that m(S) ≥ 5). In
fact, for m(S) = 3 applying the previous formula, we have #MRS = 0
but we know that a minimal presentation for 〈3, n1〉 has cardinal 1. For
m(S) = 4 applying the previous formula, we have #MRS = 2 and we know
that in this class there are semigroups with minimal presentation of cardinal
3 (see the remark after Theorem 9).

If S is a MEDI-semigroup with g(S) odd, then S is a MEDSY-semi-
group according to the terminology used in [11].
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Theorem 17. If S is an irreducible numerical semigroup with µ(S) ≥ 5,
then the following conditions are equivalent:

1) S is a MEDI-semigroup, and
2) #MRS = (m(S)−2)(m(S)−1)

2 − 1.

Proof. 2) ⇒ 1) Since µ(S) ≥ 4, by Theorem 16 we know that

#MRS ≤ (m(S)− 2)(m(S)− 1)
2

− 1 + (µ(S) + 1−m(S)).

Since

#MRS =
(m(S)− 2)(m(S)− 1)

2
− 1,

we get that µ(S) = m(S)− 1 and therefore S is a MEDI-semigroup.
1) ⇒ 2) Proved already (see the beginning of this section). �

The next result appears in [11].

Lemma 18. Let A = {0 = w(1), w(2), . . . , w(m)} be a subset of N such
that w(i) 6≡ w(j)(mod m) for all 1 ≤ i < j ≤ m, and let S be a numerical
semigroup generated by A ∪ {m}. Then Ap(S,m) = A if and only if for all
1 ≤ i, j ≤ m there exist 1 ≤ k ≤ m and t ∈ N such that w(i) + w(j) =
w(k) + tm.

Proposition 19. If S is an irreducible numerical semigroup with m(S) ≥ 5
and

Ap(S,m(S)) = {0 = w(1) < w(2) < · · · < w(m(S))},
then the semigroup S′ generated by

{m(S), w(2) +m(S), . . . , w(m(S)− 1) +m(S)}
is a MEDI-semigroup.

Proof. In [11, Proposition 2.4] it is proved that {m(S), w(2) + m(S), . . . ,
w(m(S) − 1) + m(S)} is a minimal system of generators for S′. Further-
more, in that proposition, it is also shown that if S is symmetric, then S′ is
MEDSY-semigroup. Therefore it is enough to prove that if S is irreducible
with g(S) even, then S′ is irreducible. From Lemma 18 we obtain that

Ap(S′,m(S)) = {0 < w(2) +m(S) < · · · < w(m(S)− 1) +m(S)

< w(m(S)) + 2m(S)}

and, by Proposition 5, we get that S′ is irreducible. �

As a consequence of the previous proof we have that g(S′) = g(S)+2m(S).

Proposition 20. If S is a MEDI-semigroup with a minimal system of gen-
erators {m(S) < n1 < · · · < nm(S)−2}, then the semigroup S′ generated by
{m(S), n1 −m(S), . . . , nm(S)−2 −m(S)} is irreducible.
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Proof. In [11, Propositon 2.5] it is proved that if S is a MEDSY-semigroup
then S′ is symmetric. Therefore, it is enough to prove that if S is a MEDI-
semigroup with g(S) even, then S′ is irreducible.

Assume that nj = g(S)
2 +m(S) and

Ap(S,m(S)) = {0, n1, . . . , nm(S)−2, g(S) +m(S) = n1 + nm(S)−2}.
Using Lemma 18 it is easy to prove that

Ap(S′,m(S)) = {0, n1 −m(S), . . . , nm(S)−2 −m(S), g(S)−m(S)}.

From Proposition 5 we conclude that S′ is irreducible (note that g(S′) =
g(S)− 2m(S) and nj −m(S) = g(S′)

2 +m(S)). �

Applying Propositions 19 and 20 and a similar reasoning to the one used
in the proof of [11, Theorem 2.6] we obtain the following result:

Theorem 21. There is one to one correspondence between the irreducible
semigroups with Frobenius number g and multiplicity m ≥ 5 and the MEDI-
semigroups with Frobenius number g + 2m, multiplicity m and the rest of
minimal generators greater than 2m.

Acknowledgements. Special thanks to P. A. Garćıa-Sánchez and the ref-
eree for their comments and suggestions.
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[6] R. Fröberg, G. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup
Forum, 35 (1987), 63-83, MR 88d:20092, Zbl 0614.10046.

[7] J. Herzog, Generators and relations of abelian semigroups and semigroup rings,
Manuscripta Math., 3 (1970), 175-193, MR 42 #4657, Zbl 0211.33801.

[8] E. Kunz, The value semigroup of a one dimensional Gorenstein ring, Proc. Amer.
Math. Soc., 25 (1970), 748-751, MR 42 #263, Zbl 0197.31401.
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THE SCHRÖDINGER EQUATION ON SPHERES

Michael Taylor

It is shown that the fundamental solution to the Schrödinger
equation on a d-dimensional sphere has an explicit description
at times that are rational multiples of π. This leads to sharp
Lp estimates on the solution operator at those times. Analo-
gous, though less explicit, results are obtained when spheres
are replaced by Zoll manifolds, and when potentials are added.

1. Introduction.

Let ∆ denote the Laplace-Beltrami operator on the d-dimensional sphere
Sd, with its standard metric. The fundamental solution to the Schrödinger
equation:

i
∂u

∂t
= ∆u, u(0, x) = δp(x),(1.1)

is a distribution on R×Sd with fairly nasty behavior; its singular support is
all of R×Sd. However, J. Rauch pointed out to me that when d = 1 and t is
a rational multiple of π (we say t ∈ πQ), then e−it∆δ(x) ∈ D′(S1) is a finite
sum of delta functions on S1. Hence for such t ∈ πQ, e−it∆ is bounded on
Lp(S1) for each p ∈ [1,∞]. Here we work out an equally precise description
of e−it∆ on D′(Sd), for each t ∈ πQ. From this follows a precise account of
the Lp-Sobolev mapping properties of e−it∆, for such t.

In §2 we will derive the basic identities for e−it∆ on D′(Sd) when t ∈ πQ.
For such t we express e−it∆ in terms of solution operators to a wave equation.
This leads to the sharp Lp-Sobolev estimates. Establishing sharpness is
simply a matter of showing that certain coefficients in the formula for e−it∆

do not vanish. This issue is settled in §3.
In §4 we discuss various extensions of these results. It is mentioned that

another extension of the S1 case is to d-dimensional tori, and that formulas
there have a number-theoretical significance. We also discuss extensions to
Zoll surfaces and to situations where a potential is added to the Laplace
operator.

145
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2. Basic identities.

For d = 1, we have the Fourier series representation for S(t, x) = e−it∆δ(x)
at t = 2πm/n:

S(2πm/n, x) =
1

2π

∞∑
ν=−∞

e2πiν
2m/n eiνx.(2.1)

If we set ν = nj+` and produce a double sum over j ∈ Z, ` ∈ {0, . . . , n−1},
the sum over j becomes

∞∑
j=−∞

einjx =
2π
n

n−1∑
j=0

δ2πj/n,(2.2)

and we obtain the distribution on S1 = R/(2πZ):

S(2πm/n, x) =
1
n

n−1∑
j=0

G(m,n, j) δ2πj/n(x),(2.3)

with

G(m,n, j) =
n−1∑
`=0

e2πi(`
2m+`j)/n.(2.4)

Let us note that the sum is really over ` ∈ Z/(n). In particular we can
replace ` by −` and hence see that G(m,n, j) is even in j. We also note
that our formulas implicitly assume n > 0, but we need make no restriction
on the sign of m.

The following alternative presentation of (2.3) has some advantages: Set

Γ(m, k, j) =
1
2k
G(m, 2k, j) =

1
2π

2k−1∑
`=0

eπi(`
2m+`j)/k.(2.5)

If we set n = 2k in (2.3), we have

S(πm/k, x) =
2k−1∑
j=0

Γ(m, k, j) δπj/k(x).(2.6)

These formulas will prove useful in our analysis of the higher-dimensional
case.

We now consider e−it∆ on Sd. As is common in analysis on spheres, we
take

A =

√
−∆ +

(d− 1
2

)2
.(2.7)
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It is well-known that

SpecA =
{d− 1

2
+ j : j = 0, 1, 2, . . .

}
.(2.8)

In particular SpecA ⊂ Z if d is odd and SpecA ⊂ Z + 1
2 if d is even.

Now when SpecA ⊂ Z we can analyze functions of the self-adjoint oper-
ator A by the formula

ϕ(A) =
∫
S1

ϕ̂(t) cos tA dt,(2.9)

provided ϕ is even, with

ϕ̂(t) =
1

2π

∞∑
ν=−∞

ϕ(ν) eiνt.(2.10)

This is easily confirmed via the spectral theorem and Fourier inversion, if
ϕ : Z → C is summable. Then a limiting argument gives it for any bounded
(or even polynomially bounded) ϕ (yielding ϕ̂ ∈ D′(S1)), exploiting the
smooth dependence on t of the family of operators cos tA, acting on D′(Sd).
In particular we can apply (2.9) with ϕ(ν) = ϕs(ν) = eisν

2
. If s = mπ/k,

then ϕ̂s is given by (2.1), with n = 2k, so by (2.6) we have

eπi(m/k)A
2

=
2k−1∑
j=0

Γ(m, k, j) cos
πj

k
A,(2.11)

yielding a formula for

e−it∆ = e−it(d−1)2/4 eitA
2

(2.12)

at t = mπ/k, on D′(Sd), when d is odd.
In case SpecA ⊂ Z + 1

2 , then Spec 2A ⊂ Z, and (2.9) applies with A
replaced by 2A. Taking ϕ(ν) = ϕs(ν) as before, we have

e4πi(m/k)A
2

=
2k−1∑
j=0

Γ(m, k, j) cos
2πj
k
A,(2.13)

yielding a formula for e−it∆ at t = 4πm/k on D′(Sd), valid for d even (and
also for d odd).

Note that cos tA is a solution operator for a hyperbolic PDE. In fact,
given f ∈ D′(Sd), u(t, x) = (cos tA)f(x) solves

utt −
(

∆−
(d− 1

2

)2)
u = 0, u(0, x) = f(x), ut(0, x) = 0.(2.14)

In particular, for each t, cos tA is a Fourier integral operator of order zero.
Its mapping properties on Lp Sobolev spaces Hs,p are well-known (cf. [S3]),
and by (2.11) and (2.13) they are shared by e−it∆ for each t ∈ πQ. Thus we
have the following:
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Proposition 2.1. Given p ∈ (1,∞), s ∈ R, we have

e−πi(m/k)∆ : Hs,p(Sd) −→ Hs−(d−1)|1/2−1/p|,p(Sd).(2.15)

Such estimates also hold in the endpoint cases p = 1,∞, with L1 replaced
by the local Hardy space h1 and L∞ replaced by bmo.

It is well-known that such a mapping property cannot be improved for
cos tA when 0 < t < π. We aim to show that (2.15) cannot be improved,
with some obvious exceptions, noted in §3. In view of (2.11) and (2.13) this
merely amounts to examining whether cancellations can arise. In fact (2.11)
and (2.13) can be collapsed somewhat, to involve cos tνA with {tν} running
over [0, π], without multiplicities. We take up the task of doing this.

3. Further analysis of the coefficients.

First look at (2.11), and note that Γ(m, k, j), given by (2.5), is even in j
and periodic of period 2k in j, so Γ(m, k, j) = Γ(m, k, 2k − j). Also, when
SpecA ⊂ Z, cos(2π − t)A = cos tA, so cos(πj/k)A is unchanged when j is
replaced by 2k − j. Thus we have on D′(Sd) for d odd:

eπi(m/k)A
2

= Γ(m, k, 0)I + Γ(m, k, k)P + 2
k−1∑
j=1

Γ(m, k, j) cos
πj

k
A.(3.1)

Here I is the identity operator and P = cosπA. When A is given by (2.7)
on D′(Sd), with d odd, we have

Pf(x) = (−1)(d−1)/2f(−x).(3.2)

Looking at (2.13), we also see that

e4πi(m/k)A
2

= Γ(m, k, 0)I + Γ(m, k, k)Q+ 2
k−1∑
j=1

Γ(m, k, j) cos
2πj
k
A.(3.3)

In this case Q = cos 2πA. From (2.8) we see that Q = (−1)d−1I. In other
words,

e4πi(m/k)A
2

=
{

Γ(m, k, 0) + (−1)d−1Γ(m, k, k)
}
I(3.4)

+ 2
k−1∑
j=1

Γ(m, k, j) cos
2πj
k
A.

Now we have terms cos tjA, with tj ∈ (0, 2π), and we still want to cut the
sum down. This time, use

cos(2π − t)A = (cos 2πA) cos tA− (sin 2πA) sin tA.(3.5)

As seen above, cos 2πA = (−1)d−1I, and meanwhile Spec 2A ⊂ Z ⇒ sin 2πA
= 0, so we have cos(2π− t)A = (−1)d−1 cos tA = − cos tA if d is even, which
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we assume from here to the end of formula (3.8) below. To work on the sum
over j in (3.4), we consider separately two cases.

First suppose k = 2ν is even. Then we can write the sum over 1 ≤ j ≤
k − 1 in (3.4) as

k/2−1∑
j=1

{
Γ(m, k, j)− Γ(m, k, k − j)

}
cos

2πj
k
A+ Γ(m, k, ν) cosπA.(3.6)

Recalling that SpecA ⊂ Z + 1
2 for d even, we have cosπA = 0, so in this

case we have

e4πi(m/k)A
2

=
{

Γ(m, k, 0)− Γ(m, k, k)
}
I(3.7)

+ 2
k/2−1∑
j=1

{
Γ(m, k, j)− Γ(m, k, k − j)

}
cos

2πj
k
A.

Next suppose k = 2ν + 1 is odd. Then we have

e4πi(m/k)A
2

=
{

Γ(m, k, 0)− Γ(m, k, k)
}
I(3.8)

+ 2
(k−1)/2∑
j=1

{
Γ(m, k, j)− Γ(m, k, k − j)

}
cos

2πj
k
A.

To reiterate, (3.7) and (3.8) hold on D′(Sd) for d even.
Now at this point there are no cancellations between terms in any of the

formulas (3.1), (3.7), and (3.8). To be precise, suppose f is supported in
a ball of radius < 1/2k in Sd. Then, in each of these formulas, we have
that the various terms (cos tνA)f that arise have disjoint singular support.
There remains the issue of whether the coefficients of these various terms
cos tνA might vanish. In fact, some do, and we now take up the question of
exactly which coefficients vanish and which do not.

We mention some properties of Γ(m, k, j), whose proofs are given in [HB],
and also in [T2]. First, Γ(m, k, j) can vanish sometimes. In fact

mk + j odd =⇒ Γ(m, k, j) = 0.(3.9)

Now let us set Γ(m, k) = Γ(m, k, 0). There is the following result of [HB]:

Lemma 3.1. Assume that m and k are relatively prime.
(i) If mk and j are even, then, with µ solving µm = 1 mod k,

Γ(m, k, j) = e−πi(m/k)(j/2)
2µ2

Γ(m, k).(3.10)

(ii) If mk and j are odd, then, with ν solving 4νm = 1 mod k,

Γ(m, k, j) = e−4πi(m/k)ν2j2 Γ(4m, k).(3.11)
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Furthermore, in Cases (i) and (ii), respectively, we have

|Γ(m, k)| = k−1/2, |Γ(4m, k)| = k−1/2.(3.12)

In particular, when m and k are relatively prime,

mk + j even =⇒ Γ(m, k, j) 6= 0.(3.13)

The results (3.9) and (3.13) specify precisely which coefficients arising in
(3.1), for eπi(m/k)A

2
on D′(Sd) with d odd, are nonvanishing, when m and

k are relatively prime. It remains to look at the coefficients that arise in
(3.7)-(3.8), describing e4πi(m/k)A

2
on D′(Sd) for d even. Again we take m

and k to be relatively prime. We consider three main cases, each having two
subcases.

Case (I): m even, k odd.

j even =⇒ Γ(m, k, j) 6= 0 and Γ(m, k, k − j) = 0,

j odd =⇒ Γ(m, k, j) = 0 and Γ(m, k, k − j) 6= 0.

In both subcases, Γ(m, k, j)− Γ(m, k, k − j) 6= 0.

Case (II): m odd, k even.

j odd =⇒ Γ(m, k, j) = Γ(m, k, k − j) = 0,

j even =⇒ Γ(m, k, j)− Γ(m, k, k − j)

= {e−πi(m/k)(j/2)2µ2 − e−πi(m/k)(k/2−j/2)
2µ2}Γ(m, k).

We take a closer look at this expression. Recall that |Γ(m, k)| = k−1/2 in
this case. Meanwhile the quantity in braces is equal to

e−πi(m/k)(j/2)
2µ2
[
1− e−πi(m/k)(k

2/4−jk/2)µ2
]
.(3.14)

We look at the exponent in the last exponential in (3.14). Say µm = 1 +
ak, a ∈ Z. Then (µ + bk)m = 1 + (a + bm)k = 1 + a1k, and since m is
odd we can arrange that a1 be even. The quantity (3.10) is independent of
the choice of µ mod k, so we can just assume a is even. Now the exponent
mentioned above is seen to be the negative of

πiµ
(k

4
− j

2

)
+ πiaµ

(k2

4
− jk

2

)
,

so the quantity (3.14) vanishes if and only if k/4− j/2 is an even integer.

Case (III): m odd, k odd.

j even =⇒ Γ(m, k, j) = 0 and Γ(m, k, k − j) 6= 0,

j odd =⇒ Γ(m, k, j) 6= 0 and Γ(m, k, k − j) = 0.
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These considerations specify all the coefficients arising in (3.1), (3.7), and
(3.8), except that (3.12) specifies Γ(m, k) (for mk even) only up to phase.
Further specification can be found in [T2].

Having these formulas for e−it∆ when t ∈ πQ, we note that there are
explicit formulas for the action of cos tA on functions on Sd. We write them
down here (at least for d odd). Demonstrations can be found in Chapter 8
of [T1]. If d = 2ν + 1 is odd, we have

(cos tA)f(x) = Cν(sin t)
( 1

sin t
∂

∂t

)ν(
sin2ν−1 t fx(t)

)
,(3.15)

for 0 < t < π, where fx(t) is the mean value of f over the shell

Σx(t) = {y ∈ Sd : dist(x, y) = t},(3.16)

and where dist(x, y) denotes the spherical distance. Here Cν = 1/(2ν− 1)!!,
where (2ν − 1)!! = 3 · 5 . . . (2ν − 1). Note that the strong Huygens principle
holds here; (cos tA)δp is supported on the shell Σp(t). If d = 2ν is even,
there is a formula in similar analogy to the solution to the wave equation on
R × Rd for d even; we refer to [T1] for details. Of course, in this case the
strong Huygens principle fails, but the singular support of (cos tA)δp lies on
Σp(t).

We apply the results of this section to demonstrate the sharpness of the
operator regularity stated in (2.15), with a discrete set of exceptions. Some
of the exceptions are apparent from the fact that Spec(−∆) = {j(j+d−1) :
j = 0, 1, 2, . . . }, hence consists of integers (even integers if d is even). Thus
e−πit∆ = I on functions on Sd whenever d is odd and t is an even integer,
and whenever d is even and t is an integer. We check this observation against
the formulas (3.1) and (3.7)-(3.8). Doing so will produce another discrete
set of ts for which e−πit∆ is bounded on all the spaces Hs,p(Sd) and show
that for all other t ∈ Q the operator mapping properties given in (2.15)
cannot be improved.

First suppose d is odd, so (3.1) applies. Assume m and k are relatively
prime. The “wave contribution” is

2
k−1∑
j=1

Γ(m, k, j) cos
πj

k
A.(3.17)

If k = 1, this sum is empty, and we have eπimA
2

= Γ(m, 1, 0)I+Γ(m, 1, 1)P .
When m is even, Γ(m, 1, 1) = 0 and we recover the observation made in the
previous paragraph. If k = 2 in (3.1), then the sum (3.17) has one term,
involving Γ(m, 2, 1), which vanishes, by (3.9), so eπi(m/2)A

2
= Γ(m, 2, 0)I +

Γ(m, 2, 2)P . Hence e−πit∆ : Hs,p(Sd) → Hs,p(Sd) for all s, p if d is odd and
2t ∈ Z. If k ≥ 3 in (3.1), then the sum (3.17) contains terms involving
the coeffcients Γ(m, k, 1) and Γ(m, k, 2), and by (3.13) at least one of these
terms is not zero, so (2.15) cannot be improved.
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Next suppose d is even, so (3.7) applies to e−πit∆ if t = 4m/k with k even,
and (3.8) applies if k is odd. Assume m and k are relatively prime. This
time the “wave contribution” is

2
[(k−1)/2]∑
j=1

{
Γ(m, k, j)− Γ(m, k, k − j)

}
cos

2πj
k
A.(3.18)

If k = 1 or 2, this sum is empty. If k = 4, the sum (3.18) has one term, with
coefficient Γ(m, 4, 1)− Γ(m, 4, 3) = 0. These results recover the observation
that e−πit∆ = I for t ∈ Z. If k ≥ 3 is odd, then Cases (I) and (III) show
none of the terms in (3.18) vanish. If k ≥ 6 is even, a check of Case (II)
shows some of the terms in (3.18) can vanish, but in no cases do all of
them vanish, so there are no further cases when (2.15) can be improved. In
particular, for k = 6 one has Γ(m, 6, 2) − Γ(m, 6, 4) 6= 0 and for k = 8 one
has Γ(m, 8, 2)− Γ(m, 8, 6) 6= 0.

4. Remarks and extensions.

Here we make several remarks on applications and extensions of the calcu-
lations made in §2.

Remark 1. The quantities G(m,n, j) and Γ(m, k, j) defined in (2.4)-(2.5),
which arise in the calculation of S(2πm/n, x), are Gauss sums, of interest
in number theory. Another way to evaluate S(2πm/n, x) is to take the
free-space fundamental solution S0(t, x) giving e−it∆ on R× R and sum its
translates S0(t, x− 2πν), ν ∈ Z. Carrying this out yields a formula similar
to (2.3), but with coefficients involving different Gauss sums. Comparing
the calculations produces a straightforward and nifty proof of the reciprocity
formula for Gauss sums:

n−1∑
`=0

e2πi`
2m/n e2πi`j/n =

1 + i

2

( n
m

)1/2
e−πij

2/2mn
2m−1∑
`=0

e−πi`
2n/2m eπij`/m.

(4.1)

This formula was first derived (by different means) by Landsberg and Schaar,
in the 1890s. Specializing to j = 0, m = 1 gives the classical formula

n−1∑
`=0

e2πi`
2/n =

1 + i

2
(1 + i−n)

√
n,(4.2)

due to Gauss, used in one of his proofs of the quadratic reciprocity formula.
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Remark 2. Another multidimensional extension of (2.3) involves
eitQ(D)δ(x) on the torus Td = Rd/(2πZ)d, where

Q(ξ) = ξ ·Aξ, At = A ∈ G`(d,Z), detA = ±1.(4.3)

Then eitQ(D)δ(x) can be evaluated for t ∈ πQ. Again two methods work.
One involves Fourier series on Td. The other involves writing down the fun-
damental solution SQ0 (t, x) giving eitQ(D) on R×Rd and summing SQ0 (t, x+
2πν) over ν ∈ Zd. Both produce finite linear combinations of delta func-
tions supported on a lattice in Td, and comparing calculations produces reci-
procity formulas for multivariate Gauss sums, obtained (by different means)
in [K]. The reader can try this as an exercise, or see [T2] for details.

Remark 3. There are other extensions of the material presented above,
arising from the fact that the identity (2.11) is valid whenever A is a self-
adjoint operator with spectrum contained in Z. This can be applied as
follows: Let M be a d-dimensional Zoll manifold, a compact Riemannian
manifold on which all geodesics have minimal period 2π, and consider H =
−∆ + V , with positive, real-valued V ∈ C∞(M). As shown in [CdV]
(cf. also §29.2 of [H]), there exists a positive, self-adjoint A ∈ OPS1(M)
and S ∈ OPS−1, commuting with each other (and with H) and α ∈ R, such
that

√
−∆ + V = A+ αI + S, Spec A ⊂ Z.(4.4)

(Here OPSm(M) denotes the space of mth order pseudodifferential opera-
tors of classical type on M .) Then

eit(−∆+V ) = eit(α
2+2AS+2αS+S2) e2iαtA eitA

2
.(4.5)

Noting that eitA is a group of operators with the same Sobolev space map-
ping properties as used to prove Proposition 2.1, and that the first factor on
the right side of (4.5) is a family of operators in OPS0(M), and applying
(2.11) to eitA

2
for t ∈ πQ, we see that

eπi(m/k)(−∆+V ) : Hs,p(M) −→ Hs−(d−1)|1/2−1/p|,p(M),(4.6)

extending (2.15) to this context.

Remark 4. In [GGR] it is shown that, when d = 1, e−it∆ does not map
Lp(S1) to itself for any p 6= 2 when t /∈ πQ. By contrast with such an
indication that S(t, ·) ∈ D′(S1) is less regular for t /∈ πQ than for t ∈ πQ,
results in [KR] give a sense in which S(t, ·) ∈ D′(S1) is more regular for
(most) t /∈ πQ than for t ∈ πQ. Here regularity is measured in the scale
of Besov spaces Bs

∞,∞(S1). It is clear from Formula (2.3) that S(t, ·) ∈
B−1
∞,∞(S1) for t ∈ πQ and one cannot improve this. It is shown in [KR]
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that, for a.e. t ∈ R,

S(t, ·) ∈ B−s∞,∞(S1), ∀ s > 1
2
.(4.7)

More precise results relate the best s to the continued fraction expansion of
t/π; see [KR] for details.

It is tempting to speculate that S(t, ·) ∈ D′(S1) is more regular in B−sp,p(S
1)

for rational than for irrational t/π when p < 2 and more regular for irrational
than for rational t/π when p > 2. But at this point this is just a speculation.

Remark 5. We also mention the recent paper [BGT], dealing with the
Schrödinger equation on a compact d-dimensional Riemannian manifold M .
It is shown that, given ϕ ∈ C∞0 (R), there exists α > 0 such that, for
h ∈ (0, 1],

‖e−it∆ϕ(h2∆)f‖L∞(M) ≤ C|t|−d/2‖f‖L1(M), |t| ≤ αh.(4.8)

This is used to produce Strichartz estimates, leading to solvability results for
nonlinear Schrödinger equations. In [BGT], the sharpness of some of their
Strichartz estimates is verified in particular for M = Sd, with its standard
metric.

Acknowledgment. Thanks to Jeffrey Rauch for several interesting con-
versations related to this work. This work was performed while the author
was at MSRI, and was partially supported by NSF grant DMS-9877077.
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THE MEROMORPHIC CONTINUATION OF THE
RESOLVENT OF THE LAPLACIAN ON LINE BUNDLES

OVER CH(n)

Cynthia E. Will

Let G = SU(n, 1), K = S(U(n) × U(1)), and for l ∈ Z,
let {τl}l∈Z be a one-dimensional K-type and let El the line
bundle over G/K associated to τl. In this work we prove that
the resolvent of the Laplacian, acting on C∞

c -sections of El

is given by convolution with a kernel which has a meromor-
phic continuation to C. We prove that this extension has only
simple poles and we identify the images of the corresponding
residues with (g, K)-submodules of the principal series repre-
sentations. We show that for certain values of the parameters
these modules are holomorphic (or antiholomorphic) discrete
series.

1. Introduction.

In [9] the meromorphic continuation of the resolvent kernel of the Laplacian
acting on functions was studied in the case of the so called Damek-Ricci
spaces. These include, in particular, symmetric spaces of strictly negative
curvature. This meromorphic continuation has simple poles and the residues
are finite rank operators whose images can be explicitly described and their
dimensions determined. In the present paper, we shall prove similar results
in the case of the action of the Laplacian on line bundles over CHn. We use
work by Shimeno on the theory of spherical functions in this context. We
prove that in a certain open half-plane of C, the resolvent is given by convo-
lution with an explicit kernel and this has a meromorphic continuation to C.
We prove that this continuation has simple poles located at parameters of
reducibility of certain principal series representations of G. The correspond-
ing residues are convolution operators and their images are isomorphic to
(g,K)-submodules of the principal series representations. For some values
of the parameters, these modules are finite dimensional and for others they
are holomorphic, antiholomorphic or limits of discrete series representations,
hence infinite dimensional. This is in contrast with the case of the trivial
K-type, studied in [9].

An outline of the paper is as follows: In Sections 2 and 3 we introduce
notation and describe some results due mainly to Shimeno, to be used in
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the rest of the paper. In Section 4 we study the meromorphic continua-
tion of the resolvent kernel, and we describe the images of the residues as
(g,K)-submodules of the principal series. We show in particular that any
holomorphic or anti-holomorphic representation occurs as image of a residue,
as well as any limit of discrete series and any finite dimensional representa-
tion whose contain a one dimensional K-type. Moreover, in the last case,
we also prove that this module is the kernel of the standard intertwining
operator of the principal series representation.

We finally discuss in Section 5, in detail, the case when G = SU(1, 1).
This paper is part of my thesis work. I am very grateful to my advisor,

R. Miatello, for his guidance and constant support. I also wish to thank J.
Vargas for helpful conversations.

2. Preliminaries.

2.1. Basic notation. We begin by introducing notation that will be used
throughout this paper. As is customary, we will denote a Lie group by an
upper case letter and its Lie algebra by the corresponding lower case gothic
letter.

If G = SU(n, 1), then the Lie algebra of G is given by g = {X ∈ sl(n +
1,C) : XJ + JX

t = 0}, where J =
[

0 0 1
0 Id 0
1 0 0

]
.

Let g = k + p be the Cartan decomposition associated to the Cartan
involution θ(X) = X

t. Thus

k =
{[

A 0
0 y

]
: A ∈ u(n), tr(A) + y = 0

}
and

p =
{[

0 b

b
t 0

]
: b ∈ Cn

}
.

If we put H0 =
[

0 0 1
0 0 0
1 0 0

]
, it is easy to see that a = RH0 is a maximal abelian

subalgebra of p and z = R
[

i
n
I 0

0 −i

]
is the center of k, where i =

√
−1. We

have that k = ks + z, where ks = [k, k] is the semisimple part of k. Let M be
the centralizer of A in K, that is for n > 1

M =


 eis 0 0

0 U 0
0 0 eis

 : U ∈ U(n− 1), det(U)e2is = 1

 .

If t is the set of diagonal matrices of k, then tc is a Cartan subalgebra of gc.
The corresponding root system is

∆ = {γi,j = εi − εj : 1 ≤ i 6= j ≤ n+ 1}
where εi(Diag(h1, . . . , hn+1)) = hi. We choose an ordering in the dual space
of it such that the system of positive roots is ∆+ = {γi,j : i < j}. Let ∆c
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and ∆n be the set of compact and noncompact roots respectively. We fix a
bilinear form B on g, given by a multiple of the Killing form of g such that
B(H0,H0) = 1, and for γ ∈ t∗c we denote by Hγ the element of t defined by
γ(H) = B(H,Hγ) for all H ∈ t. Denote by

t− = RHγ1,n+1 , and t+ = {H ∈ t : γ1,n+1(H) = 0}.

Since {γ1,n+1} is a basis of ∆n, we have that t = t−⊕ t+, and there exists an
automorphism c of gc, such that c maps it− bijectively to a, fixing t+ (see
[10, p. 281]). Therefore, h = t+ + a is a Cartan subalgebra of g, where

h =

H =


iu1 0 0 t

0
. . . 0 0

0 0 iun 0
t 0 0 iu1

 :

n∑
j=2

uj + 2u1 = 0,

t, uj ∈ R

 .

Let εj be the linear funtional on a∗c defined by

ε1(H) = iu1 + t, εn+1(H) = iu1 − t, and εj(H) = iuj (1 < j ≤ n).

Thus, with the natural ordering, the corresponding set of positive roots is

R+ = {αi,j = εi − εj+1 : 1 ≤ i ≤ j ≤ n}.

We denote by Σ the set of restricted roots of the pair (g, a), and we use a
compatible ordering in the dual space of a. Hence, for n > 1, Σ+ = {α, 1

2α}
is the set of positive restricted roots, where α is the restriction of α1,n+1.
The corresponding root spaces are given by

gα/2 =
{[

0 tx 0
−x 0 x
0 tx 0

]
;x ∈ Cn−1

}
and gα = R

[−i 0 i
0 0 0
−i 0 i

]
,

and thus mα = dim gα = 1 and mα/2 = dim gα/2 = 2(n− 1).
We will identify the dual space a∗c with C under the correspondence ν =

z 1
2α 7→ z. In other words, since α(H0) = 2, we are identifying ν with
ν(H0). As usual, let ρ be the linear functional on a defined by ρ(H) =
1
2

∑
β∈R+

mββ(H). Hence, under the above convention, ρ is identified with n.

We denote by W the Weyl group of G, and we note that in this case
W = {±Id}.

If A+ = {exp(tH0) : t > 0 }, then we have the Cartan decomposition
of G, G = KCl(A+)K. We take on A the measure da = dt, on K we use
the Haar measure so that the total mass is one, and on G we use the Haar
measure such that∫

G
f(g)dg =

∫
KA+K

δ(t)f(k1ak2)dk1dadk2

where δ(t) = 22n−1(sinh t)2(n−1) sinh 2t.
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For any g ∈ G, let g = κ(g) expH(g)n(g) be the Iwasawa decomposition
of g.

2.2. Representations. We denote by K̂ and M̂ the set of irreducible uni-
tary representations of K and M , respectively. For l ∈ Z let τl be the one-
dimensional representation of K associated to the character χl

([
A 0
0 y

])
= yl.

We note that every one-dimensional representation of K is of this form. We
set σl = τl|M .

For each l ∈ Z, we define mα(l) = 1 − 2l, mα/2(l) = 2(n − 1) + 2l and

ρ(l) = 1
2

∑
β∈R+

mβ(l)β. Thus, under the above identification ρ(l) = n− l (see

§2.1).
Let El denote the homogeneous line bundle over G/K associated with τl.

We identify the space of C∞-sections of El with the space C∞(G/K; τl) of
C∞-functions onG such that f(xk) = τl(k)−1f(x) for any x ∈ G, k ∈ K. We
denote by Dl = Dl(G/K), the space of left invariant differential operators
on G which leave C∞(G/K; τl) invariant. We note that for l = 0, τl is the
trivial representation of K, and D0 = D(G/K). Recall that we have the
isomorphism (see for instance [12, Thm. 2.1])

Dl ' U(g)K/U(g)K ∩ U(g)kl
where kl = {X + τl(X) | X ∈ z}.

Since τl is a one-dimensional representation, τl|M is clearly multiplicity
free (i.e., no constituent occurs twice), then by [1, Thm. 3] Dl is commuta-
tive.

Definition 2.1. A complex valued function f on G is said to be τl-radial if

f(k1xk2) = τl(k1)−1f(x)τl(k2)−1 for all g ∈ G, k1, k2 ∈ K.

The space of τl-radial C∞-functions on G will be denoted by C∞l (G). We
note that C∞l (G) is an algebra with the following convolution product:

f ? g(x) =
∫
G
f(y−1x)g(y)dy.

Let f− denote the restriction to A+ of a function f ∈ C∞l (G). It follows from
the Cartan decomposition G = KCl(A+)K that f ∈ C∞l (G) is determined
by f−. For D ∈ U(g), we denote by ∆l(D) the τl-radial component, that is,
∆l(D) is a differential operator on A+ satisfying

(Df)− = ∆l(D)(f−) ∀ f ∈ C∞l (G).

We will now recall some facts on the radial component of C, the Casimir
operator of gc with respect to B. Let X1, . . . , X2(n−1) and X0 be basis of
gα/2 and gα respectively, such that −B(Xi, θ(Xj)) = δi,j . Let {U1, . . . , Ur}
be an orthonormal basis of m with respect to −B|m.
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Proposition 2.2. If f ∈ C∞l (G) and Cm denotes the Casimir element of
m with respect to −B|m, then

∆l(C)f(at)

=
(
d2

dt2
− τl(Cm) + ((2n− 1) coth t+ 2 coth 2t)

d

dt
− l2

(cosh t)2

)
f(at).

Proof. If we define, as usually, for j = 0, . . . , 2(n− 1)

Zj = 2−
1
2 (Xj + θ(Xj)), Yj = 2−

1
2 (Xj − θ(Xj)),

then, it is easy to see that

C = H2
0 − Cm +

2(n−1)∑
j=0

Y 2
j −

2(n−1)∑
j=0

Z2
j .

Using arguments analogous to those in [13, p. 280] (see also [3, Lemma 22]),
we can see that in our case we obtain for f ∈ C∞l (G/K):

Cf(at) =
d2

dt2
f(at)− τl(Cm)f(at) + (2(n− 1) coth t+ 2 coth 2t)

d

dt
f(at)

+ (sinh t)−2

2(n−1)∑
j=1

τl(Z2
j )f(at) + (sinh 2t)−2τl(Z2

0 )f(at)

+ (coth t)2
2(n−1)∑
j=1

f(at)τl(Z2
j ) + (coth 2t)2f(at)τl(Z2

0 )

− 2(sinh t)−1(coth t)
2(n−1)∑
j=1

τl(Zj)f(at)τl(Zj)

− 2(sinh 2t)−1(coth 2t) τl(Z0)f(at)τl(Z0)−
2(n−1)∑
j=0

τl(Z2
j )f(at).

Here, we have used that α(H0) = 2, and therefore α(log(at)) = 2t.

On the other hand, it is easy to see that if X =
[

0 tx 0
−x 0 x
0 tx 0

]
∈ gα/2, then

(X + θ(X)) =
[

0 2tx 0
−2x 0 0

0 0

]
.

Hence, by the definition of τl, τl(Zj) = 0 for j = 1, . . . , 2(n − 1). We also
have that Z0 = −i(E1,1 − En+1,n+1), and then τl(Z0) = il. Therefore, the
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above equation becomes

Cf(at) =
d2

dt2
f(at)− τl(Cm)f(at) + (2(n− 1) coth t+ 2 coth 2t)

d

dt
f(at)

− l2
(
(sinh 2t)−2 + (coth 2t)2 − 2(sinh 2t)−1 coth 2t− 1

)
f(at)

and the last term of the right-hand side of the above equation equals l2

(cosh t)2
,

as was to be shown. �

Remark. In the case l = 0, a τ0-radial function corresponds to a K-
biinvariant function on G, and Proposition 2.2 generalizes the formula for
the action of ∆(C) in this case given in [8, §1, p. 667].

3. Spherical functions.

Definition 3.1. If l ∈ Z and φ is a complex valued τl-radial continuous
function on G, then φ is said to be a τl-spherical function if φ(e) = 1 and
Dφ = χ(D)φ for each D ∈ Dl, with χ(D) ∈ C.

We have the following description of the τl-spherical functions (see for
instance [12, Prop. 6.1]), as an Einsenstein Integral (see [13, 8.12.2]).

Proposition 3.2. For l ∈ Z, g ∈ G and ν ∈ a∗, define

Φν,l(g) =
∫
K
e−(ν+ρ)(H(g−1k))τl(k−1κ(g−1k))dk.

The function φν,l is a τl-spherical function on G and every τl-spherical func-
tion is of this form, for some ν ∈ a∗c . Furthermore, φν,l = φµ,l if and only
if µ = sν for some s ∈W, and the map ν → φν,l(g) is holomorphic for each
g ∈ G.

In order to give another characterization of τl-spherical functions, we will
recall some facts on the principal series representations of G. Let P = MAN

be the minimal parabolic subgroup of G. For ν ∈ a∗c and l ∈ Z, let (πν,l,H
l,ν
P )

be the induced representation from P to G of the representation (πl,ν ,Hν)
of P , given by πl,ν(man)v = a(ν+ρ)σl(m)v.

Since [τl : σl] = 1, by Frobenius reciprocity, τl appears in the K-decom-
position of H l,ν

P , and then we can define 1ν,l ∈ H l,ν
P such that 1ν,l|K = τl.

Moreover. we have that

〈πν,l(g)1ν,l, 1ν,l〉 =
∫
K

1ν,l(g−1k)1ν,l(k)dk

=
∫
K
e−(ν+ρ)H(g−1k)τ−l(k−1κ(g−1k))dk
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This means that φν,−l(g) = 〈πν,l(g)1ν,l, 1ν,l〉, and so it can be shown that
the restriction Φ−ν,l of Φν,l to A+ satisfies the differential equation:

∆l(C)Φ−ν,l = χ(ν, l)Φ−ν,l

where χ(ν, l) = ν2 − ρ2 + τ−l(Cm) ([13, p. 280]).
As in the case of the trivial K-type, these spherical functions are also

related with hypergeometric functions, as we will now see.

Proposition 3.3 ([11, Prop. 2.6]). Let u(t) = 2 cosh t, then we have that

u(t)l · (∆l(C) + ρ2 − τl(Cm)) · u(t)−l = L(l) + ρ(l)2

where L(l) = d2

dt2
+ ((2n− 1) coth t+ (1− 2l) tanh t) ddt .

Using this proposition one can see that the function

ψ(t) = ul(t)Φ−ν,l(exp(tH0))

is an even smooth function on (0,+∞) satisfying ψ(0) = 1 and

L(l)ψ = λ(ν, l)ψ(1)

where λ(ν, l) = ν2−ρ(l)2. Furthermore, it is known that the Jacobi function

φ
(n−1,−l)
iν = 2F1

(
n− l + ν

2
,
n− l − ν

2
, n,−(sinh t)2

)
is the unique solution satisfying these conditions (see [6, §2.1]). Therefore

Φν,l(exp tH0) = (2 cosh t)−lφ(n−1,−l)
iν (t).

It can also be seen (see [6, p. 7] and [11, p. 384]) that for ν /∈ −N, a
second solution of (1) in (0,+∞) is given by

Q̃ν,l(t) = (2 cosh t)−(ν+ρ(l))
2F1

(
n− l + ν

2
,
n+ l + ν

2
, 1 + ν, (cosh t)−2

)
.

(2)

As a function of ν, Q̃ν,l is holomorphic on C \ N, and for ν /∈ Z, Q̃ν,l and
Q̃−ν,l are linearly independent, and so, as in the case l = 0, we can write

(2 cosh t)lΦν,l(exp(tH0)) = c(ν, l)Q̃−ν,l(t) + c(−ν, l)Q̃ν,l(t)(3)

where

c(ν, l) =
2n−l−ν(n− 1)! Γ(ν)
Γ(ν+n+l

2 )Γ(ν+n−l2 )
,(4)

and if Re ν > 0 , the asymptotic behavior of Φν,l, as t→∞, is given by:

Φν,l(exp(tH0)) ∼ c(ν, l) et(ν−ρ).(5)
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We will also need the following fact (see [4, Prop. 2.2]):

δ1/2·(∆l(C) + ρ2) · δ−1/2(6)

=
d2

dt2
+ τ−l(Cm) +

∑
β∈R+

1
4
mβ

2
(l)(2−mβ

2
(l)− 2mβ(l))4 sinh (2t)−2.

With all these elements in place, we can adapt most of the arguments in
[8, 9], to obtain generalizations of the results of [9, §3].

Theorem 3.4. If ν ∈ C, ν /∈ −N, then there exists a function Qν,l ∈
C∞−l(G−K) with the following properties:

(a) ∆l(C)Qν,l = χ(ν, l)Qν,l. Qν,l(x) is holomorphic for ν /∈ −N and if
ν ∈ −N, Qν,l(x) has at most a simple pole.

(b) Φ−ν,l = c(−ν, l)Q−ν,l + c(ν, l)Q−−ν,l.
(c) As t 7→ 0, Qν,l(exp(tH0)) ∼ d(ν)t−2(n−1)| log t|δn,1 , for some meromor-

phic function d(ν) on C, holomorphic if ν /∈ −N. Furthermore, if ν ∈
C \−N, then Qν,l(g) lies in L1

loc(G), and if Re ν > ρ, Qν,l(g) ∈ L1(G).
(d) limt7→0+ δ(t) d

dtQν,l(exp(tH0)) = −2νc(ν, l).
(e) If f ∈ C∞c (G/K, τl) and ν /∈ −N then for Re ν > ρ∫

G
Qν,l(x−1y)(C − λ(ν, l)Id)f(y)dy = −2ν c(ν, l)f(x).(7)

Proof. Let Qν,l(katk′) = τl(k)u(t)−lQ̃ν,l(t)τl(k′). As we noted before, since
Q̃ν,l is a solution of L(l)g(t) = λ(ν, l)g(t), Qν,l is a solution of ∆l(C)f− =
χ(ν, l)f−.

It is clear from the definition that Qν,l ∈ C∞−l(G \K), and by the above
observations, it satisfies (a). From our definition, it is also clear that (b) is
equivalent to (3).

The proof of (c) is similar to that in the case of the trivial K-type, so
it will be omitted (see [9]). Note that (2) implies that Q̃ν,l(t) ∼ e−t(ν+ρ(l))

when t 7→ ∞, therefore Qν,l(exp(tH0)) ∼ e−(ν+ρ) when t 7→ ∞. This fact
allows us to prove (d) as in the case of l = 0.

In order to see (e), we first note that since if f ∈ C∞c (G/K, τl), so is
Lx−1f , then it suffices to see that∫

G
Qν,l(y)(C − λ(ν, l))f(y) dy = −2νc(ν, l)f(e).

The left-hand side equals∫ ∞

0
Qν,l(at)(C − λ(ν, l))

∫
K
τl(k)f(kat) dk δ(t) dt.
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If f ∈ C∞c (G/K, τl), then f l(at) :=
∫
K τl(k)f(kat) dk is a τl-radial function

on G. Hence we can replace C by its radial part to obtain∫ ∞

0

(
δ

1
2 (t)Qν,l(at)δ

1
2 (t)∆l(C)f l(at)− δ

1
2 (t)∆l(C)Qν,l(at)δ

1
2 (t)f l(at)

)
dt.

Now using the radialization (6) and arguing as in [9, pp. 1225], we obtain
that the above is equal to∫ ∞

0

d

dt

(
δ(t)Qν,l(exp(tH0))

d

dt
f l(at)− δ(t)

d

dt
Qν,l(exp(tH0))f l(at)

)
dt.

Therefore, looking at the asymptotic behavior as t 7→ 0, and as t 7→ ∞,
we obtain that the above integral equals limt7→0+ δ(t) d

dtQν,l(exp(tH0))f l(e).
Then, using (d) we are done. �

4. The residues of the resolvent kernel.

Let R̃(λ(ν, l)) denote the kernel operator with kernel Kν,l(x, y) :=−Qν,l(x
−1y)

2νc(ν,l)

and let R(λ(ν, l)) denote the resolvent of C acting on L2(G/K, τl). By
Theorem 3.4, if Re ν > ρ, then R̃(λ(ν, l)) = R(λ(ν, l)).

Since ν 7→ Kν,l is defined also for Re ν ≤ ρ, we are interested in R̃(λ(ν, l))
acting on C∞c (G/K, τl) as a meromorphic continuation of R(λ(ν, l)). In the
next theorem, we will give a description of the singularities of R̃(λ(ν, l)).

Theorem 4.1. R̃(λ(ν, l)) has simple poles lying at ν = ν±k,l with ν−k,l =
−|l| − n − 2k, k ∈ N0, and ν+

k,l = |l| − n − 2k, for k ∈ N0 such that
|l| − n − 2k ≥ 0. If ν is a pole and we set, for f ∈ C∞c (G,K, τl), Tν(f) :=
Resz=ν R̃(λ(z, l))(f), then Tν(f) = p(ν) f ∗ Φ̌ν,−l.

Proof. We know that Φν,l(g) is everywhere holomorphic as a function of ν.
Hence, using (a) and (b) of Theorem 3.4, we find that the poles of Kν,l are
precisely the zeros of 2νc(ν, l).

Furthermore, it is easy to see from (4) that the zeros of c(ν, l) are at
ν = ν±k,l, as in the statement of the theorem. On the other hand, we have

that |ν+
k,l| < |ν−0,l|, when |l| > n, so that ν+

k,l is defined. Hence Q−ν,l

2νc(−ν,l) is
analytic at ν±k,l. Thus, for f ∈ C∞c (G/K, τl), using Theorem 3.4(b), we get
that if ν is a pole, then

Resz=ν R̃(λ(z, l))(f) = p(ν) f ∗ Φ̌ν,−l,

where p(ν) = −Resz=ν(2νc(ν, l)c(−ν, l))−1. �

Now we want to study the image of these operators, and in order to do
this, we will introduce certain irreducible representations of K, for n > 1.
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For p, q ∈ N0, we denote by Vp,q, the set of harmonic polynomials in
z ∈ Cn of bidegree (p, q), and define on this space the action of K given by

τl,p,q

([
A 0
0 y

])
f(z) = yq−p+lf(tzA).

Proposition 4.2 ([2, § 2]). Let τ be an arbitrary K-type which contains
the M -type σl. Then there exist p, q ∈ N0 such that τ is equivalent with Vp,q.

Actually, if we put Fp,q(z) = zp1z
q
1 2F1(−p,−q, n − 1,−(|z2|2 + · · · +

|zn|2)/|z1|2) then Fp,q ∈ Vp,q, and it is easy to see that τl,p,q(X)Fp,q =
σl(X)Fp,q for X ∈M .

For any P ∈ HomM (Vp,q,Hl) and ν ∈ a∗c we can define a K-intertwining
operator from Vp,q to H l,ν

P by L(P, f, ν)(g) = e−(ν+ρ)H(g)P (τl,p,q(κ(g)−1)f),
for f ∈ Vp,q (see [13, 8.11.4]). Furthermore, since [τl,p,q : σl] = 1, we have
that f 7→ L(P, f, ν) is an injective K-intertwining operator.

Let P denote the linear map from Vp,q to C defined by P (f) = f(1, 0, . . . ,
0). It is clear that P ∈ HomM (Vp,q,Hl), and then we have the related ho-
momorphism L(P, f, ν). Let Ṽp,q ⊂ H l,ν

P denote the image of Vp,q under this
homomorphism and let A(w, l, ν) : Hν,l

P 7→ H−ν,l
P denote the standard inter-

twining operator, where w = diag (−1,−1, 1, . . . , 1) ∈ K is a representative
of the nontrivial element of W .

In particular, from [2, § 3] we have that

A(w, l, ν)L(P, Fp,q, ν) = (−1)p+qcτl,p,q
(σl, ν)L(P, Fp,q,−ν)

where cτl,p,q
(σl, ν) is given by

cτl,p,q
(σl, ν) =

kΓ(ν)
∏p−1
j=0(ν − n+ l − 2j)

∏q−1
j=0(ν − n− l − 2j)

Γ(ν+n−l+2p
2 )Γ(ν+n+l+2q

2 )
.

If ν 6= 0, let Dl
ν = {(p, q) ∈ N2

0 : cτl,p,q
(σl, ν) = 0}. If (p, q) ∈ Dl

ν , it is
clear that L(P, Fp,q, ν) ∈ KerA(w, l, ν) which is a G-module. Hence Ṽp,q ⊂
KerA(w, l, ν), and moreover, by Frobenius reciprocity and Proposition 4.2
we have that

KerA(w, l, ν) = ⊕(p,q)∈Dl
ν
Ṽp,q.

It is easy to see that

Dl
ν−k

=
{

(p, q) ∈ N2
0 : p ≤ k +

l + |l|
2

, q ≤ k +
|l| − l

2

}
,

and therefore KerA(w, l, ν−k ) =
∑

(p,q)∈Dl

ν−
k

Ṽp,q is a finite dimensional (g,K)-

module. It is clear that its restriction contains τl = τl,0,0.

For ν = 0, since we know that c(ν, l) has a pole, we can consider the
normalized intertwining operator B(w, l, ν) = Γ(ν)−1A(w, l, ν); now, since
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Γ(ν)−1cτl,p,q
(σl, ν) is holomorphic at ν = 0, then as in the other cases, we

have that KerB(w, l, 0) =
∑

(p,q)∈Dl
0

Ṽp,q, where

Dl
0 =

{
(p, q) ∈ N2

0 : Γ(ν)−1cτl,p,q
(σl, ν)|ν=0 = 0

}
.

We note that since ν = 0 is a pole, then |l| − n = 2k with k ∈ N and one
can verifies that

Dl
0 =

{
(p, q) ∈ N2

0 : p ≤ k =
l − n

2

}
, if l > 0,

Dl
0 =

{
(p, q) ∈ N2

0 : q ≤ k =
−l − n

2

}
, if l < 0.

It is well-known that H l,ν
P is equivalent to H l,−ν

P
and the intertwining

operator is R(w), where R is the right regular representation of G. It is
also known that if A(P , P, σl, ν) denotes the standard intertwining operator
from H l,ν

P to H l,ν

P
, then A(w, l, ν) = R(w)A(P , P, σl, ν) (see [5, VII §4]).

Let V (µ, l) denote the image of the residue of R̃(λ(ν, l)) at ν = µ, and
V (µ, l)K the space of K-finite vectors in V (µ, l). Now, using a generalization
of Helgason’s theorem ([10, §7]), we can give a very explicit description of
V (µ, l)K .

Theorem 4.3. If µ is a pole of R̃(λ(ν, l)), then V (µ, l)K is a (g,K)-module.
This module is of finite dimension only in the case when µ = ν−k,l for k ∈ N0.
The modules corresponding to µ = ν+

k,l are equivalent, as (g,K)-modules, to
holomorphic discrete series representations. Moreover, in the case when
µ = ν−k,l and µ = 0 these (g,K)-modules are isomorphic to KerA(w, l, ν−k,l)
and KerB(w, l, 0) respectively.

Proof. If f ∈ C∞c (G/K, l) and x ∈ G, by Theorem 4.1 we have that:

Tν±k,l
(f)(x) = p(ν±k,l) f ∗ φ̌ν±k,l,−l

(x)

= p(ν±k,l)
〈
πν±k,l

(x−1)πν±k,l,l
(f)1ν±k,l,l

, 1ν±k,l,l

〉
.

Hence, V (ν, l)K is isomorphic to the (g,K)-module generated by 1l,ν , so
we will now describe this module.

In order to do this, we will give a condition on ν for 1l,ν to generate a
finite dimensional (g,K)-submodule of H l,ν

P .
For λ ∈ h∗c we define

m0 = λ(iX) and m1 =
2〈λ, α〉
〈α, α〉

,
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where as in [10, 4.4], X =
[−1

2
n−1

Id

−1

]
.

If λ|t+∩k1
= 0, then by [10, Prop 7.1] , λ is dominant integral if and only

if m0 and m1 are integers such that |m0| ≤ m1 and (−1)m0 = (−1)m1 .
We note that {α, ε1, . . . , εn} is a basis of h∗c , then straightforward calcu-

lation shows that if λ = a1α +
∑n

i=2 aiεi ∈ h∗c , then λ|t+∩k1
= 0 if and only

if a2 = a3 = · · · = an. Hence, if we denote β =
∑n

i=2 εi, and λ = a1α+ a0β,
then we have that m0 = −2a0 and m1 = 2a1.

On the other hand, by [10, Thm. 7.2], λ = a1α+a0β, is a highest weight
of a finite dimensional irreducible representation of G, whose restriction to
K contains the one-dimensional K-type χm0 with multiplicity one.

Furthermore, in the proof of the theorem, we can see that this represen-
tation is equivalent to ImA(P , P, σl, µ), a subrepresentation of H l,ν

P
, where

µ = λ|a + ρ.
Therefore, 1l,ν generates a finite dimensional G-submodule of H l,ν

P (with
highest weight λ) if and only if ν = −λ|a − ρ, where λ = l

2β + (|l|+ 2k)α2 .
We note that because of our identification, ν = νk,l, as we want to show.
On the other hand, we have proved that KerA(w, l, ν−k,l) is a finite dimen-

sional submodule of H
l,ν−k,l

P which contains 1l,ν−k,l
. We also know that H

l,ν−k,l

P

is equivalent to H
l,−ν−k,l

P
, and it has only one irreducible representation ([5,

p. 273]). Therefore, it is clear that the (g,K)-submodule of H
l,ν−k,l

P generated
by 1l,ν−k,l

is KerA(w, l, ν−k,l).

We will now study the case when ν = ν+
k,l. We begin by observing that

in the rank one case, [11, Thm. 5.1] states that if λ ∈ a∗c , λ = ν.α2 , with
ν ≥ 0, then Φλ,l belongs to L2(G/K, τl) if and only if

〈−λ− ρ(|l|), α〉
〈α, α〉

∈ N.(8)

In particular, there exists λ ∈ a∗c such that Φλ,l belongs to L2(G/K, τl) if and
only if |l| > n. We note that (8) means that −ν− (n− |l|) = 2k with k ∈ N,
or equivalently, ν = ν+

k,l for some k. Hence the (g,K)-module generated by

1l,ν in H l,ν
P is infinitesimally equivalent to a discrete series representation if

and only if ν = ν+
k,l

Moreover, Shimeno proves in [11, Thm 5.10], that these are actually
infinitesimally equivalent to holomorphic discrete series representations.

For ν = 0, it is known that if H l,0
p is reducible, it is a sum of two inequiv-

alent irreducible representations. These representations are called limits of
discrete series. Since they are inequivalent and B(w, l, 0) is an intertwining
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operator, it is easy to see that KerB(w, l, 0) is the (g,K)-submodule of H l,0
P

generated by 1l,0, concluding the proof. �

Remark 4.4. We wish to point out that every (irreducible) finite dimen-
sional, discrete series, or limit of discrete series representation of G, con-
taining a one-dimensional K-type can be seen as a residue of the resolvent
kernel. That is, if (π,Hπ) is a finite dimensional representation of G con-
taining a one-dimensional K-type χm, then there exists a line bundle over
G/K such that this representation is isomorphic to the residue of the mero-
morphic continuation of the resolvent of the Casimir operator acting on that
line bundle. In fact, if λ is the highest weight of π, then by [10, Thm 7.2]
λ = aα + bβ, where a = |b| + k. Then by the above, Hπ is isomorphic to
Vk,2b, the image of the residue of R(λ(ν, 2b)) at ν = ν−k,2b.

In the case that (π,Hπ) is a discrete series, this implies that Φλ,m be-
longs to L2(G/K, τm), and then by [11, Thm 5.1] λ = ν+

k,m. Hence, Hπ is
isomorphic to V (ν+

k,m,m).
Finally, if (π,Hπ) is a limit of discrete series containing the one-dimensional

K-type τm, it means that Hm,0
P is reducible, and so m ≡ n (2) and

|m| > n ([5, p. 621] ). Thus, Hπ is isomorphic to the image of the residue
of R(λ(ν,m)) at ν = ν+

|m|−n
2

,m
.

Remark 4.5. We observe that ν = 0 is not a pole of the resolvent kernel
R̃l(λ(ν, l)), in the case when l = 0.

We will now use the Weyl dimension formula to calculate the dimension
of the representation V (ν−k,l). The fundamental weights of gc are Λj =
ε1 + · · · + εj , 1 ≤ j ≤ n, hence α = Λ1 + Λn and β = Λn − Λ1. Hence,
we are interested in the dimension of the gc-module asociated to Λk,l =
l
2β +

(
|l|+2k

2

)
α =

(
|l|−l

2 + k
)

Λ1 +
(
|l|+l

2 + k
)

Λn. Then we have that

dim(Vk,l) =
∏

1≤i<j≤n+1

〈Λk,l + ρ, εi − εj〉
〈ρ, εi − εj〉

=
∏

1<j≤n

|l|−l
2 + k + j − 1

j − 1
·
∏

1<i≤n

|l|+l
2 + k + n+ 1− i

n+ 1− i

· 1
n

(
|l|+ l

2
+
|l| − l

2
+ 2k + n

)
and so

dim(Vk,l) =
( |l|−l

2 + k + n− 1
|l|−l

2 + k

)
.

( |l|+l
2 + k + n− 1

|l|+l
2 + k

)
.
|l|+ 2k + n

n
.
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5. The case G = SU(1, 1).

We will consider now the case when G = SU(1, 1). We shall see that the
results will be entirely similar to those in the case of SU(n, 1), n > 1, but
we shall analyze this case separately, because the notation and some of the
definitions are different.

We have that θ(X) = X
t and g = k + p, where

k =
{[

it 0
0 −it

]
: t ∈ R

}
and p =

{[
0 b

b 0

]
: b ∈ C

}
.

If H0 =
[

0 1
1 0

]
and a = RH0, then M = {±I} and in this case, K̂ =

{τl : l ∈ Z} and M̂ = {1, ε}, where ε denotes the nontrivial character of
M . Therefore, for each ν ∈ C we have two principal series representations,
Hν,+ and Hν,− corresponding to 1 and ε, respectively and τl|m = I if and
only if l ≡ 0 (2), τl|m = ε, otherwise. Now, Proposition 2.2 may be stated
as follows:

∆l(C) =
d2

dt2
+ 2 coth t

d

dt
+ l2(cosh t)−2.(9)

Furthermore, Proposition 3.3 becomes

u(t)l ◦ (∆l(C) + ρ2) ◦ u(t)−l =
d2

dt2
+ (coth t+ (1− 2l) tanh t)

d

dt
+ ρ(l)2,

where u(t) = 2 cosh t.
We now define a differential operator on R+, as in Proposition 3.3:

L(l) =
d2

dt2
+ (coth(t) + (1− 2l) tanh(t))

d

dt
.

As in the case when n > 1, one can relate the spherical functions Φν,l with
the solutions of L(l)f = (ν2−ρ(l)2)f , where ρ(l) = 1− l (see §2.1), and find
that they are given by

Φν,l(exp(tH0)) = (2 cosh t)−lφ(0,−l)
iν (t).

In the same way, we can see that if we take the solution in (2) of the above
equation for n = 1 and ν /∈ −N, we get the following eigenfunction of ∆l(C)
on A+:

Qν,l(exp tH0)

= (2 cosh(t))−(ν+ρ(l))
2F1

(
1− l + ν

2
,
1 + l + ν

2
, 1 + ν, cosh(t)−2

)
,

which satisfies

(2 cosh t)lΦν,l(exp(tH0)) = c(ν, l)Q−ν,l(at) + c(−ν, l)Qν,l(at)
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where

c(ν, l) =
21−l−νΓ(ν)

Γ(ν+1+l
2 )Γ(ν+1−l

2 )
.

With all this in place, we can prove Theorem 3.4 in our case, obtain-
ing in the same way the meromorphic continuation of the resolvent kernel
Kν,l(x, y) = −Qν,l(x

−1y)
2νc(ν,l) , hence we have the following theorem, which gives

results analogous to those in Theorem 4.1 and Theorem 4.3 in the present
case.

Theorem 5.1. R̃(λ(ν)) has simple poles lying at ν = ν±k,l, where ν−k,l =
−|l| − 1 − 2k, with k ∈ N0, and ν+

k,l = |l| − 1 − 2k, with k ∈ N such that

|l| − 1− 2k ≥ 0. If ν is a pole, Resz=ν R̃(λ(z))(f) = p(ν) f ∗ φ̌ν,−l.
Moreover, the rank of the residue of R̃(λ(ν)) at ν = ν−k,l is a finite dimen-

sional (g,K)-module. The residues at ν = ν+
k,l are infinitesimally equivalent

to holomorphic discrete series representations.

Proof. Since the proof can be done as in the general case, we will only prove
the representation theory assertion. As in the general case, we have that
φν,−l(g) = 〈πν,l1l,ν , 1l,ν〉, where 1l,ν(kan) = a−(ν+ρ)τl(k)−1 belongs to Hν,+

(resp. Hν,−) if l is even (resp. l odd).
If we denote k(θ) =

[
eiθ 0
0 e−iθ

]
, then τl(k(θ)) = e−ilθ, and therefore

1ν,l(k(θ)an) = a−(ν+ρ)eilθ. On the other hand, since g is isomorphic to
g̃ = sl(2,R), for each ν ∈ C, 1ν,l can be identified with the function of
SL(2,R) defined by

φ−l

([
e−it 0
0 e−it

] [
e2it e2itx
0 1

] [
cos θ sin θ
− sin θ cos θ

])
= e(ν+1)te−ilθ.

This function belongs to H(ν) = {f : Sl(2,R) 7→ C : f(ank) = aν+1f(k),
f|K ∈ L2(K)} (see [7, p. 116]) and the (g,K)-modules of Hν,± generated by
1ν,l are isomorphic to the (g̃,K)-modules of H(ν) generated by φ−l.

We note that the difference in the sign (with [7]) is due to the different
choices in the Iwasawa decompositions.

We thus have that Vν−k,l,l
'

|l|−1+2k∑
j=1

〈φ−(|l|+2(k−j))〉, and therefore Vν−k,l,l
is

finite dimensional. If ν+
k,l 6= 0, then we obtain the discrete series:

Vν+
k,l,l

'



∑
j≡l (2)
j≤−l+2k

〈φj〉 l > 0

∑
j≡l (2)
j≥−l−2k

〈φj〉 l < 0.
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Finally, we can see that if ν = 0 is a pole then l is odd, and therefore we
obtain the so called ‘Mock discrete series’ or limit of discrete series repre-
sentations:

V0,l '



∑
j≡l (2)
j≤−1

〈φj〉 l > 0

∑
j≡l (2)
j≥1

〈φj〉 l < 0

thus concluding the proof. �
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THE HEAT KERNEL AND THE RIESZ TRANSFORMS
ON THE QUATERNIONIC HEISENBERG GROUPS

Fuliu Zhu

In this paper we use the method of stochastic integral due
to Gaveau to construct the heat kernel for the quaternionic
Heisenberg groups, and then follow the line of Coulhon et al.
to deduce the uniformly boundedness of the Riesz transforms
on these nilponent Lie groups.

0. Introduction.

As the heat kernel plays an important role in many problems in harmonic
analysis, an explicit usable expression is very much desirable.

An explicit expression for the heat kernel for the Heisenberg group Hn =
Cn ×R was obtained by Hulanicki [9] and by Gaveau [7]. Gaveau [7] also
obtained the heat kernel for free nilpotent Lie groups of step two. Cygan [4]
obtained the heat kernel for all nilpotent Lie groups of step two. But neither
Gaveau’s expression for free nilpotent Lie groups nor Cygan’s expression for
arbitrary nilpotent Lie groups of step two were as explicit as in the case of
Heisenberg groups.

The Hulanicki-Gaveau’s formula for the heat kernel for the Heisenberg
group has many interesting applications: Hueber [8] et al. used it to describe
the Martin boundary corresponding to the sublaplacian of the Heisenberg
group, Garofalo [6] et al. used it to study the regularity of boundary points
in the Dirichlet problem for the heat equation on the Heisenberg group,
while Coulhon [3] et al. used it to show the uniform boundedness of Riesz
transforms on the Heisenberg group. Although these applications are very
impressive, they depend heavily on explicit expressions for the heat kernel.
All of these works motivate the following question: Are there other nilpotent
Lie groups for which the expressions for the heat kernel are as explicit as in
the case of the Heisenberg group?

The first aim of this paper is to look for such formulae for the heat kernel
for the quaternionic Heisenberg groups. These groups are defined by replac-
ing the complex field C by the field of quaternions H in the definition of
Hn. More precisely, we make Hn×R3 into a nilpotent Lie group of step two
by suitably defining the group operation. On this group there is a natural
sublaplacian with an associated heat kernel. We use the method of Gaveau

175
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[7], i.e., the stochastic integral, to calculate the heat kernel for the quater-
nionic Heisenberg group and obtain a closed form expression which closely
resembles that of the heat kernel for Heisenberg groups. As we know, apart
from the standard Heisenberg group, the quaternionic Heisenberg group is
the only nilpotent Lie group on which an explicit formula for the heat kernel
has been obtained up to now.

The second aim of this paper is to use the explicit formula for the heat
kernel to study the uniform boundedness of the Riesz transforms on the
quaternionic Heisenberg group. That is, the Riesz transforms are bounded
on Lp spaces with norms independent of the dimension of the group. On the
standard Heisenberg group this problem was addressed by Colhon [3] et al..
We apply their method to the quaternionic groups and by overcoming con-
siderable difficulties in the process of calculation, finally prove the uniform
boundedness of Riesz transforms on the quaternionic Heisenberg group.

We hope that we can use this explicit expression of the heat kernel to solve
other problems in the harmonic analysis on the quaternionic Heisenberg
group.

1. Prelimilaries.

We identify the division ring H of quaternions with R × R3. For p =
(x0,x),q = (y0,y) ∈ H, the quaternionic multiplication is defined as:

pq = (x0,x)(y0,y) = (x0y0 − x.y, x0y + y0x + x× y),

where x.y and x× y are the inner and exterior product of x and y respec-
tively. For p = (x0,x) ∈ H, we use the notations x0 = Re p, x = Im p. The
conjugate of p is denoted as p = (x0,−x) and |p| = (p.p)1/2 is the norm of
p.

The product space Hn ×R3 together with the multiplication

(p1, . . . ,pn,u).(q1, . . . ,qn,v)

=

(
p1 + q1, . . . ,pn + qn,u + v + 2

n∑
r=1

Im (qr.pr)

)

constitutes a Lie group, called the quaternionic Heisenberg group, and de-
noted by HHn (Allcock’s notation [1]).

We know [2] that if

pr = (xr0,xr) = (xr0, (xr1, xr2, xr3)) ∈ Hn,

for 1 ≤ r ≤ n and u = (u1, u2, u3) ∈ R3,



THE HEAT KERNEL AND THE RIESZ TRANSFORMS 177

then the vector fields

Xr0 =
∂

∂xr0
− 2xr1

∂

∂u1
− 2xr2

∂

∂u2
− 2xr3

∂

∂u3
,

Xr1 =
∂

∂xr1
+ 2xr0

∂

∂u1
+ 2xr3

∂

∂u2
− 2xr2

∂

∂u3
,

Xr2 =
∂

∂xr2
− 2xr3

∂

∂u1
+ 2xr0

∂

∂u2
+ 2xr1

∂

∂u3
,

Xr3 =
∂

∂xr3
+ 2xr2

∂

∂u1
− 2xr1

∂

∂u2
+ 2xr0

∂

∂u3

form a basis of the Lie algebra of HHn. The commutators of these vector
fields satisfy

[Xr0, Xs1] = 4δrs
∂

∂u1
= [Xr2, Xs3],

[Xr0, Xs2] = 4δrs
∂

∂u2
= [Xr3, Xs1],

[Xr0, Xs3] = 4δrs
∂

∂u3
= [Xr1, Xs2]

with all other brackets equal to zero. So the quaternionic Heisenberg group
is a nilpotent Lie group of step two.

Following the case of the Heisenberg groups [5], we introduce on HHn

the group {δt : 0 < t <∞} of dilations defined by

δt(p,u) = (tp, t2u) = (tp1, . . . , tpn, t2u).

These dilations satisfy the distributive law

δt((p,u).(q,v)) = δt(p,u).δt(q,v).

We also define the norm function on HHn by

|(p,u)| = (|p|4 + |u|2)1/4 =

( n∑
r=1

3∑
i=0

|xri|2
)2

+
3∑
j=1

u2
j

1/4

,

which satisfies
|δt(p,u)| = t|(p,u)|.

Let e = (0, 0) be the identity element of the group HHn.
We know [5] that Kohn’s sublaplace operator on the quaternionic Heisen-

berg group is defined as

4 =
n∑
r=1

3∑
i=0

X2
ri.
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A simple calculation shows that

4 =
n∑
r=1

3∑
i=0

∂2

∂x2
ri

+ 4
n∑
r=1

3∑
i=1

(
xr0

∂2

∂xri∂ui
− xri

∂2

∂xr0∂ui

)

+ 4
n∑
r=1

3∑
i=0

x2
ri

3∑
j=1

∂2

∂u2
j

+ 4
n∑
r=1

∑
(i,j,k)

xri

(
∂2

∂xrj∂uk
− ∂2

∂xrk∂uj

)
,

where (i, j, k) means the cyclic permutation of (1, 2, 3).

2. The heat kernels of the quaternionic Heisenberg groups.

In this section we shall use the method developed by Gaveau [7] and Hulan-
icki [9] to derive an explicit expression of the heat kernel of the quaternionic
Heisenberg group. Firstly we have:

Lemma 2.1. The diffusion of the infinitesimal generator 1
24 starting at e

is the process
g(s) = (xri(s), uj(s))1≤r≤n, 0≤i≤3, 1≤j≤3,

where (xri(s))1≤r≤n, 0≤i≤3 are 4n standard Brownian motions, and

uj(s) = 2
n∑
r=1

∫ s

0
xr0dxrj(t)− xrjdxr0(t) + xrkdxri(t)− xridxrk(t).

Proof. As in [7], the projection on Hn = R4n of the diffusion to be found is

the diffusion of the infinitesimal generator 1
2

n∑
r=1

3∑
i=0

∂2

∂xri
2 , which is given by

4n standard Brownian motions (x1(s), . . . ,xn(s)). Hence it is sufficient to
compute the stochastic differentials duj(1 ≤ j ≤ 3).

We observe that the matrix of principal symbols of 4 is given by

G =


I4 . . . 0 A1
...

. . .
...

...
0 . . . I4 An
tA1 . . . tAn C


where, for 1 ≤ r ≤ n,

Ar =


−2xr1 −2xr2 −2xr3
2xr0 2xr3 −2xr2
−2xr3 2xr0 2xr1
2xr2 −2xr1 2xr0


and

C =

(
4

n∑
r=1

|xr|2
)
I3.
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In these expressions, Ik denotes the identity matrix of order k. Let

Σ =

 I4 . . . 0 A1
...

. . .
...

...
0 . . . I4 An

 .

It is obvious that
tΣΣ = G,

and we know that [7] the matrix Σ gives stochastic differentials of the dif-
fusion 1

24:

(dx1, . . . , dxn, du1, du2, du3) = (dx1, . . . , dxn)

 I4 . . . 0 A1
...

. . .
...

...
0 . . . I4 An

 .

It is easy to obtain

dui = 2
n∑
r=1

(xr0dxri − xridxr0 + xrjdxrk − xrkdxrj).

Let
1
2
4 =

∂

∂s
be the equation of propagation of heat, where s(≥ 0) denotes the time.
Assume that ps(e,g), for g ∈ HHn, be the heat kernel with pole at e. From
the definition we have

ps(e,g)dg = Prob (gω(s) ∈ dg),

where dg is the left-invariant measure on HHn. Let

y = (y1, . . . ,yn) = (y10, . . . , y13, . . . , yn0, . . . , yn3)

and v = (v1, v2, v3) be the dual variables of x = (x1, . . . ,xn) and u =

(u1, u2, u3) respectively. We write |x|2 =
n∑
r=1

3∑
i=0

x2
ri and

a = 4


0 v1 v2 v3
−v1 0 v3 −v2
−v2 −v3 0 v1
−v3 v2 −v1 0

 ,

A = diag (a, . . . , a︸ ︷︷ ︸
n

).

If X is a skew-symmetric matrix of order 4n and w ∈ R4n, we write

ψs(X,w) = exp

[
1
s

(
−|w|2 + tw

(
I4n −

s2X2

4π2

)−1

w

)]
det
(
I4n −

sX

2π

)−1
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where tw is the transpose of the vector w.

With these preparations, we have:

Theorem 2.2. The Euclidean Fourier transform of ps(e,g) is given by the
formula

p̂s(e, .)(y,v)

= (2πs)−2n

∫
R4n

exp

(
√
−1

n∑
r=1

3∑
i=0

yrixri −
|x|2

2s

) ∞∏
m=1

ψs

(
A

m
,x
)
dx.

Proof. By the definition, we have

p̂s(e, .)(y,v)

=
∫
R4n+3

exp

√−1

 n∑
r=1

3∑
i=0

yrixri +
3∑
j=1

vjuj

 ps(e, (x,u))dxdu

= E0

exp
√
−1

 n∑
r=0

3∑
i=0

yrixri(s) +
3∑
j=1

vjuj(s)


= E0

(
exp

√
−1

n∑
r=1

3∑
i=0

yrixri(s)

)

· E0

exp
√
−1

3∑
j=1

vjuj(s)|, xri(s) = xri

 ,

where E0(. . . |xri(s) = xri) denotes the conditional expectation given the
xri(s). So it is sufficient to evaluate

E0

exp

√−1
3∑
j=1

vjuj(s)

 |xri(s) = xri

 .

We express the 4n standard real Brownian motions as the Fourier series with
independent Gaussian variables as their coefficients, i.e., when s 6= 2π,

xri(s) =
sξ(ri)√

2π
+

∞∑
m=1

1
m
√
π

(
ξ(ri)m (cosms− 1)− ξ

′(ri)
m sinms

)
,

where ξ
(ri)
m and ξ

′(ri)
m are one-dimensional standard normal distributions

which are independent of each other, and xri(2π) = Uri.
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From Lemma 2.1 we get immediately

ui(2π) = 4
n∑
r=1

1
m

[
ξ(r0)m

(
ξ
′(ri)
m − Uri√

π

)
− ξ(ri)m

(
ξ
′(r0)
m − Ur0√

π

)
+ξ(rj)m

(
ξ
′(rk)
m − Urk√

π

)
− ξ(rk)m

(
ξ
′(rj)
m − Urj√

π

)]
.

Thus

E0

exp

√−1
3∑
j=1

vjuj(2π)

 |xri(2π) = Uri


=

∞∏
m=1

E0

(
exp

4
√
−1
m

{
3∑
i=1

vi

n∑
r=1

[
ξ(r0)m

(
ξ
′(ri)
m − Uri√

π

)
− ξ(ri)m

(
ξ
′(r0)
m − Ur0√

π

)
+ ξ(rj)m

(
ξ
′(rk)
m − Urk√

π

)
− ξ(rk)m

(
ξ
′(rj)
m − Urj√

π

)]}∣∣∣xri(2π) = Uri

)
.

In the last expression, all conditional information is exhausted, so the con-
ditional expectation is actually reduced to the expectation. Hence it is
sufficient to consider the terms

Jm = E

(
exp

4
√
−1
m

{
3∑
i=1

vi

n∑
r=1

[
ξ(r0)m

(
ξ
′(ri)
m − Uri√

π

)
− ξ(ri)m

(
ξ
′(r0)
m − Ur0√

π

)
+ξ(rj)m

(
ξ
′(rk)
m − Urk√

π

)
− ξ(rk)m

(
ξ
′(rj)
m − Urj√

π

)]})
.

Setting ξ”(ri)
m = ξ

′(ri)
m − Uri√

π
, we first integrate with respect to ξ(ri)m , which

yields

Jm = E

(
exp

(
− 1

2m2

n∑
r=1

3∑
i=0

(µ(ri)
m )2

))
,

where

µ(r)
m =


µ

(r0)
m

µ
(r1)
m

µ
(r2)
m

µ
(r3)
m

 = 4


0 v1 v2 v3
−v1 0 v3 −v2
−v2 −v3 0 v1
−v3 v2 −v1 0




ξ
”(r0)
m

ξ
”(r1)
m

ξ
”(r2)
m

ξ
”(r3)
m

 = aξ”(r)m ,

written briefly as
µm = Aξ”m.

The skew-symmetric matrix A is more simple than that in [7], which
makes the calculation from now on easier than that in [7], and causes the
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heat kernel of the quaternionic Heisenberg groups to be more simple and
more concrete than those of the general nilpotent Lie groups of step two.

Thus
n∑
r=1

3∑
i=0

(µ(ri)
m )2 = (Aµ′′m, Aµ

′′
m) = −(A2µ′′m, µ

′′
m).

Let B = 1
m2A

2, as in [7]. Then we have

Jm =
1

(2π)2n

∫
R4n

exp
1
2

[
(Bξ′′m, ξ

′′
m)−

(
ξ′′m −

Um√
π
, ξ′′m −

Um√
π

)]
dξ′′m

= exp
(
−|Um|

2

2π
+

1
2π

tUm(I4n −B)−1Um

)/√
det(I4n −B).

This yields

E0

exp

√−1
3∑
j=1

vj

n∑
r=1

3∑
i=0

xri(s)

 |xri(s) = xri

 =
∞∏
m=1

ψs

(
1
m
A,x

)
.

Thus the proof of Theorem 2.2 is finished.

We may explicitly give the diagonalization by 2× 2 block matrices of the
skew-symmetric matrix A as follows: Let ρ =

√
v2
1 + v2

2 + v2
3, σ =

√
v2
2 + v2

3,
and set

Y0 =


1
0
0
0

 , Y1 =
1
ρ


0
v1
v2
v3

 , Y2 =
1
ρσ


0
−σ2

v1v2
v1v3

 , Y3 =
1
σ


0
0
−v3
v2

 .

It is easy to see that these vectors are orthonormal and

aY0 = −4ρY1, aY1 = 4ρY0, aY2 = −4ρY3, aY3 = 4ρY2.

Now we introduce an orthogonal matrix ω = (Y0, Y1, Y2, Y3). It is readily
seen that

tωaω = diag
((

0 4ρ
−4ρ 0

)
,

(
0 4ρ
−4ρ 0

))
= p.

Furthermore, if we set
Ω = diag(ω, . . . , ω︸ ︷︷ ︸

n

),

then

tΩAΩ = diag

( 0 4ρ
−4ρ 0

)
, . . . ,

(
0 4ρ
−4ρ 0

)
︸ ︷︷ ︸

2n

 = P.

Now we can give the explicit expression of the heat kernel:
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Theorem 2.3. The heat kernel on the quaternionic Heisenberg group HHn

is given by

ps(x,u) = ps(e, (x,u))

= (2πs)2n(2π)−(4n+3)

∫
R3

exp(−(
√
−1u.v + |x|2ρcoth2sρ))

·
(

2sρ
sinh2sρ

)2n

dv.

Proof. After the orthogonal transformation represented by matrix Ω,
Theorem 2.2 can be rewritten as

p̂s(e, .)(y,v)(1)

= (2πs)−2n

∫
R4n

exp

(
√
−1

n∑
r=1

3∑
i=0

yrixri −
|x|2

2s

)

·
∞∏
m=1

exp

[
1
s

(
−|x|2 + txΩ

(
I4n −

s2P 2

4π2m2

)−1
tΩx

)]

· det
(
I4n −

sP

2πm

)−1

dx.

It is easy to verify that

det
(
I4n −

sP

2πm

)
=
(

1 +
4s2ρ2

π2m2

)2n

,

tΩx = (tωx1, . . . ,
tωxn),

(tωxr)20 + (tωxr)21 =
1
ρ2

ρ2x2
r0 +

(
3∑
i=1

vixri

)2
 ,

(tωxr)22 + (tωxr)23

=
1
ρ2

[(
−σxr1 +

v1v2
σ

xr2 +
v1v3
σ

xr3

)2
+
(
−ρv3
σ

xr2 +
ρv2
σ
xr3

)2
]

=
1
ρ2

ρ2
3∑
i=1

x2
ri −

(
3∑
i=1

vixri

)2
 ,

and hence
3∑
i=0

(tωxr)2i =
3∑
i=0

x2
ri, |tΩx|2 = |x|2.
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From the expression of matrix P we have

exp

[
1
s

(
−|x|2 + txΩ

(
I4n −

s2P 2

4π2m2

)−1
tΩx

)]

= exp

{
1
s

n∑
r=1

(
−|xr|2 + txrω

(
I4 −

s2p2

4π2m2

)−1
tωxr

)}

= exp

{
1
s

n∑
r=1

3∑
i=0

(
−1 +

π2m2

π2m2 + 4s2ρ2

)
x2
ri

}
,

since

u

sinhu
=

∞∏
m=1

(
1 +

u2

π2m2

)−1

,

and

cothu =
1
u

+
∞∑
m=1

2u
π2m2 + u2

,

therefore

∞∏
m=1

exp

[
1
s

(
−|x|2 + txΩ

(
I − s2P 2

4π2m2

)−1
tΩx

)]
det
(
I − sP

2πm

)−1

= exp

(
1
s

n∑
r=1

3∑
i=0

∞∑
m=1

−4s2ρ2

π2m2 + 4s2ρ2
x2
ri

) ∞∏
m=1

(
1 +

4s2ρ2

π2m2

)−2n

= exp
(
|x|2

2s
(1− 2sρcosh2sρ)

)(
2sρ

sinh2sρ

)2n

.

Substituting this equality into the right-hand side of (1) and taking the
Euclidean Fourier transform, we obtain at once the desired result.

3. The Green functions of the quaternionic Heisenberg groups.

It is known that the Green function can be derived from the heat kernel by
the formula

G(g) =

+∞∫
0

ps(e,g)ds.
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So using Theorem 2.3, the Green function of the quaternionic Heisenberg
group can be written as

G(x,u) =

+∞∫
0

ps(e, (x,u))ds

= (2π)−(6n+3)

+∞∫
0

s−2nds

∫
R3

exp
(
−
(√
−1v.u + |x|2ρcoth2sρ

))

·
(

2sρ
sinh2sρ

)2n 3∏
j=1

dvj .

First by performing the change of variables vj→svj , then it follows that
ρ→sρ, and

G(x,u)

= (2π)−(6n+3)

+∞∫
0

s−(2n+3)ds

∫
R3

exp
{

1
s

(
√
−1v.u + |x|2ρcoth2ρ)

}

·
(

2ρ
sinh2ρ

)2n 3∏
j=1

dvj

= (2π)−(6n+3)Γ(2n+ 2)
∫
R3

(|x|2coth2ρ+
√
−1v.u)−(2n+2)

·
(

2ρ
sinh2ρ

)2n 3∏
j=1

dvj ,

where Γ(.) is Euler’s Gamma-function.
In Euclidean space R3, we use polar coordinates and let the positive

direction of the z-axis coincide with that of vector u, i.e., we set

u = |u|(0, 0, 1), v = ρ(sinθcosϕ, sinθsinϕ, cosθ).

Thus
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G(x,u)

(2)

= 2n(2π)−(6n+3)Γ(2n+ 2)

+∞∫
0

ρ2

(
ρ

sinh2ρ

)2n

dρ

·
∫ 2π

0

∫ π

0
(|x|2ρcoth2ρ+

√
−1ρ|u|cosθ)−(2n+2)sinθdθdφ

= 22n(2π)−(6n+2) Γ(2n+ 2)
2n+ 1

∫ +∞

0

(
1

sinh2ρ

)2n 1√
−1|u|

·
[
(|x|2coth2ρ−

√
−1|u|)−(2n+1) − (|x|2coth2ρ+

√
−1|u|)−(2n+1)

]
dρ.

For n = 1 it is easy to complete the last integration, and we obtain:

Proposition 3.1. The Green function G(x,u) of the quaternionic Heisen-
berg group HH1 is

G(x,u) = 4(2π)−8(|x|4 + |u|2)−2.

Proof. When n = 1, performing the integral in the right-hand side of Equa-
tion (2) gives us

G(x,u) = (2π)−8 1√
−1|u||x|2

·
[
(|x|2coth2ρ−

√
−1|u|)−2 − (|x|2coth2ρ+

√
−1|u|)−2

]ρ=+∞

ρ=0

= 4(2π)−8(|x|4 + |u|2)−2.

For general n ∈ N, there is some difficulty to evaluate the integration in
Equation (2), while the above proposition and the corresponding results for
the Heisenberg groups [5] motivate us to pose:

Theorem 3.2. The Green functions G(x,u) of the quaternionic Heisenberg
groups HHn are

G(x,u) = cn(|x|4 + |u|2)−(n+1),

where

c−1
n = 4(n+ 1)(n+ 2)

∫
HHn

|x|2(|x|4 + |u|2 + 1)−(n+3)d(x,u).

The method of proof is completely analogous to that for the Heisenberg
groups [5].
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4. Riesz transforms on the quaternionic Heisenberg groups.

In this section we shall study the uniformly boundedness of the Riesz trans-
forms with respect to the dimensions of the quaternionic Heisenberg groups.

Stein [11] first studied the Riesz transforms on Euclidean spaces. After-
ward various authors investigated the Riesz transform on Riemannian man-
ifolds. Although the boundedness of the Riesz transform on every nilpotent
Lie group is well-known [10]. It was Coulhon [3] et al. who first showed the
uniform boundedness of Riesz transforms with respect to the dimensions of
the Heisenberg groups.

In our investigation there are many properties analogous to that in [3],
and for completeness we quote briefly these points. One part which differs,
however, is the so called “main estimate” in [3], so this part is presented in
detail.

4.1. The vector of the Riesz transforms. For the quaternionic Heisen-
berg groups, the skew-adjoint Riesz transforms are defined analogously to
that in [3] by

R̃ri = Xri4−1/2 +4−1/2Xri, 1 ≤ r ≤ n, 0 ≤ i ≤ 3.

In [3] Coulhon et al. proved the following results:

Lemma 4.1. The skew-adjoint Riesz transform has the expression

R̃rif(x,u) =
∫
HHn

Xrip1(e, (y,v))H(y,v)f(x,u)d(y,v),

where

H(y,v)f(x,u) =
∫ +∞

0
[f((x,u)δt((y,v)−1))− f((x,u)δt(y,v))]

dt

t
.

In fact, this formula is valid for every stratified Lie group.

Lemma 4.2. For every p∈(1,+∞), there exists c > 0 depending only on p,
such that

‖H(y,v)‖p→p≤c, ∀n∈N, ∀(y,v)∈HHn.

Lemma 4.3. There exists c′ > 0 such that

‖Xrip1‖L1(HHn) ≤ c′, ∀n∈ N, ∀1 ≤ r ≤ n, 0 ≤ i ≤ 3.

This follows from the fact that one can express the heat kernels for the
quaternionic Heisenberg groups HHn as pns , then it is easy to verify that

pn1 (x1, . . . ,xn,u) = [p1
1(x1, .) ∗ · · · ∗ p1

1(xn, .)](u).

For f∈C∞0 (HHn) and (x,u)∈HHn, we define a vector field

R̃f(x,u) = (R̃10f(x,u), . . . , R̃n3f(x,u))



188 FULIU ZHU

and its Euclidean length

|R̃f(x,u)| =

(
n∑
r=1

3∑
i=0

|R̃rif(x,u)|2
)1/2

.

Let Sn be the unit sphere in the quaternionic Heisenberg group HHn, i.e.,

Sn =

{
h = (z,w) ∈ HHn

∣∣∣ z = (z1, . . . , zn) ∈ Hn, w ∈ R3,

(
n∑
r=1

3∑
i=0

z2
ri

)2

+
3∑
j=1

w2
j = 1

}
.

As in [3], we can deduce that

|R̃f(x,u)| =
∫
Sn

∫ +∞

0

n∑
r=1

3∑
i=0

λriXrip1(δt(h))H(h)f(x,u)t4n+5dtdσ(h),

where dσ(h) is the surface element on Sn, the λri are dependent on f and

(x,u), and
n∑
r=1

3∑
i=0

λ2
ri = 1(we have also used the fact that Hδt(y,v) = H(y,v)).

Applying Hölder’s inequality with respect to dσ, we get, for 1/p+ 1/q = 1,

|R̃f(x,u)|

(3)

≤

∥∥∥∥∥
∫ +∞

0

n∑
r=1

3∑
i=0

λriXrip1(δt(h))t4n+5dt

∥∥∥∥∥
Lq(dσ(h))

‖Hhf(x,u)‖Lp(dσ(h)).

After a rotation on Sn
⋂

Hn, one can send
n∑
r=1

3∑
i=0

λriXri to X10, and it is

clear that the heat kernel p1(δt(h)) is invariant under this rotation, hence∥∥∥∥∥
∫ +∞

0

n∑
r=1

3∑
i=0

λriXrip1(δt(h))t4n+5dt

∥∥∥∥∥
Lq(dσ(h))

(4)

=
∥∥∥∥∫ +∞

0
X10p1(δt(h))t4n+5dt

∥∥∥∥
Lq(dσ(h))

.

Via Lemma 4.2, the argument analogous to that in [3] implies that there
exists c(p) > 0 such that

‖‖Hhf(x,u)‖Lp(dσ(h))‖Lpd(x,u) ≤ c(p)[σ(Sn)]1/p‖f‖Lp(dx,u).(5)
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4.2. The main estimate. Let

Φ(h) =
∫ +∞

0
X10p1(δt(h))t4n+5dt, h∈Sn.

Theorem 2.3 gives us

p1(x,u)=
1

(2π)6n+3

∫
R3

exp
{
−(
√
−1v.u + |x|2ρcoth2ρ)

}( 2ρ
sinh2ρ

)2n 3∏
j=1

dvj .

Since X10 = ∂
∂x10

−
3∑
i=1

2x1i
∂
∂ui
, it follows that

X10p1(x,u) =
1

(2π)6n+3

∫
R3

−2x10ρcoth2ρ+ 2
√
−1

3∑
j=1

vjx1j

(6)

· exp{−(
√
−1v.u + |x|2ρcoth2ρ)}

(
2ρ

sinh2ρ

)2n 3∏
j=1

dvj

=
2

(2π)6n+3
(−F1(x,u) +

√
−1F2(x,u)),

where

F1(x,u) = x10

∫
R3

exp{−(
√
−1v.u + |x|2ρcoth2ρ)}

·
(

2ρ
sinh2ρ

)2n

ρcoth2ρ
3∏
j=1

dvj ,

F2(x,u) =
∫
R3

exp{−(
√
−1v.u + |x|2ρcoth2ρ)}

·
(

2ρ
sinh2ρ

)2n 3∑
j=1

vjx1j

3∏
j=1

dvj .

Thus

Φ(h) =
2

(2π)6n+3

∫ +∞

0
[−F1(δt(h)) +

√
−1F2(δt(h))]t4n+5dt(7)

=
2

(2π)6n+3
(−Φ1 +

√
−1Φ2)(h).
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Let h = (z,w) = (z10, . . . , zn3, w1, w2, w3)∈Sn. So we get

Φ1(h) =
∫ +∞

0
F1(δt(h))t4n+5dt

= z10

∫
R3

∫ +∞

0
exp{−t2(

√
−1v.w + |z|2ρcoth2ρ)}

·
(

2ρ
sinh2ρ

)2n

ρcoth2ρt4n+6dt
3∏
j=1

dvj

=
1
2

Γ
(
n+ 7

2

)
z10

∫
R3

(|z|2ρcoth2ρ+
√
−1v.w)−

4n+7
2

·
(

2ρ
sinh2ρ

)2n

ρcoth2ρ
3∏
j=1

dvj .

Taking the polar coordinates in R3 as in the proof of Proposition 3.1, the
above function becomes

Φ1(h) =
1
2

Γ
(

4n+ 7
2

)
z10

∫ +∞

0

∫ π

0

∫ 2π

0
(|z|2coth2ρ+

√
−1|w|cosθ)−

4n+7
2

·
(

2ρ
sinh2ρ

)2n

ρ−
4n+1

2 coth2ρsinθdθdφdρ

=
22n

4n+ 5
2πΓ

(
4n+ 7

2

)
z10

∫ +∞

0
ρcosh2ρ

(
ρ

sinh2ρ

)−3/2( 1√
−1|w|

)
·
[
(|z|2cosh2ρ−

√
−1|w|sinh2ρ)−

4n+5
2

− (|z|2cosh2ρ+
√
−1|w|sinh2ρ)−

4n+5
2

]
dρ.

On Sn we perform the change of variables given by |z|2 = cosψ, |w| =
sinψ. Then

(|z|2cosh2ρ−
√
−1|w|sinh2ρ)−

4n+5
2 − (|z|2cosh2ρ+

√
−1|w|sinh2ρ)−

4n+5
2

(8)

= cosh−
4n+5

2 (2ρ−
√
−1ψ)− cosh−

4n+5
2 (2ρ+

√
−1ψ)

= 2(4n+ 5)
√
−1cosh−

4n+7
2 2ρsinh2ρψ +O(|ψ|).

Noting that |ψ|
|w| = |ψ|

|sinψ| ≤ c, we obtain the inequality:

|Φ1(h)| ≤ 22n+1(2π)Γ
(

4n+ 7
2

)
|z10|

·
∫ +∞

0
cosh−

4n+5
2 2ρ sinh22ρ

(
ρ

sinh2ρ

)−1/2

dρ.
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Since sinh2ρ
ρ = 2cosh(2θρ) ≤ 2cosh2ρ, with 0 < θ < 1, we finally obtain an

estimation for Φ1(h):

|Φ1(h)| ≤ 22n+3/2(2π)Γ
(

4n+ 7
2

)
|z10|

∫ +∞

0
cosh−2n2ρdρ(9)

≤ c.24n(2π)Γ
(

4n+ 7
2

)
|z10|B(n, n),

where B(n, n) is Euler’s Beta-function, since
∫ +∞
0 cosh−2n 2ρ dρ =

22n−2B(n, n).
Now we begin to estimate Φ2(h). This is different from the case of

the Heisenberg groups. In the present situation the method to evaluate
Φ2(h) is not analogous to that for Φ1(h), so we record its details. Let
z′1 = (z11, z12, z13). Then

Φ2(h) =
∫ +∞

0
F2(δt(h))t4n+5dt

= −
√
−1
∫ +∞

0

∫
R3

exp{−t2(
√
−1v.w + |z|2ρcoshρ)}

·
(

2ρ
sinh2ρ

)2n

t4n+6
3∑
j=1

vjz1jdt
3∏
j=1

dvj

= −
√
−1
2

Γ
(

4n+ 7
2

)∫
R3

(|z|2ρcoth2ρ+
√
−1v.w)−

4n+7
2

·
(

2ρ
sinh2ρ

)2n

z′1.v
3∏
j=1

dvj .

In the w-space we take polar coordinates, and let the positive direction of
the z-axis coincide with that of the vector w, i.e.,

w = |w|(0, 0, 1),

v = ρ(sinθcosφ, sinθsinφ, cosθ),

z′1 = |z′1|(sinθ′cosφ′, sinθ′sinφ′, cosθ′),

where θ′ is the angle between vectors w and z′1. Therefore
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Φ2(w) = −
√
−1
2

Γ
(

4n+ 7
2

)
|z′1|

·
∫ +∞

0

∫ π

0

∫ 2π

0
(|z|2ρ coth 2ρ+

√
−1ρ|w| cos θ)−

4n+7
2

· (sin θsinθ′ cosφ cosφ′ + sin θ sin θ′ sinφ sinφ′ + cos θ cos θ′)ρ3 sin θ

·
(

2ρ
sinh 2ρ

)2n

dφ dθ dρ.

First, integrating with respect to φ yields

Φ2(h) = −22n−1(2π)
√
−1Γ

(
4n+ 7

2

)
|z′1| cos θ′

·
∫ +∞

0

∫ π

0
(|z|2 cosh 2ρ+

√
−1|w|sinh2ρ cos θ)−

4n+7
2

·
(

ρ

sinh 2ρ

)−7/2

ρ3 sin θ cos θ dθ dρ.

Let

K(ρ) =
∫ π

0
(|z|2cosh2ρ+

√
−1|w|sinh2ρcosθ)−

4n+7
2 sinθcosθdθ.

Then a simple calculation gives us

K(ρ) =
1√

−1|w|sinh2ρ

∫ π

0

[
(|z|2cosh2ρ+

√
−1|w|sinh2ρcosθ)−

4n+5
2

−|z|2cosh2ρ(|z|2cosh2ρ+
√
−1|w|sinh2ρcosθ)−

4n+7
2

]
sinθdθ

=
1

(
√
−1|w|sinh2ρ)2

{
2

4n+ 3

[
(|z|2cosh2ρ−

√
−1|w|sinh2ρ)−

4n+3
2

−(|z|2cosh2ρ+
√
−1|w|sinh2ρ)−

4n+3
2

]
− 2

4n+ 5
|z|2cosh2ρ

[
(|z|2cosh2ρ−

√
−1|w|sinh2ρ)−

4n+5
2

−(|z|2cosh2ρ+
√
−1|w|sinh2ρ)−

4n+5
2

]}
.
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Similar to (8), we have

K(ρ)

= − 1√
−1|w|2 sinh2 2ρ

{
2

4n+ 3

·
[
cosh−

4n+3
2 (2ρ−

√
−1ψ)− cosh−

4n+3
2 (2ρ+

√
−1ψ)

]
− 2

4n+ 5
|z|2 cosh 2ρ

·
[
cosh−

4n+5
2 (2ρ−

√
−1ψ)− cosh−

4n+5
2 (2ρ+

√
−1ψ)

]
+O(ψ)

}

= − 4
√
−1

|w|2 sinh2 2ρ

{
cosh−

4n+5
2 2ρ sinh 2ρψ(1− |z|2) + O(ψ)

}
,

and hence we obtain the estimation

|K(ρ)| ≤ c.
1

|w| sinh2 2ρ

∣∣∣∣∣ cosh−
4n+5

2 2ρ sinh 2ρ
(√

−1ψ
sinψ

)

− |z|2 cosh−
4n+5

2 2ρ sinh 2ρ
(√

−1ψ
sinψ

) ∣∣∣∣∣
≤ c

(1− |z|2)
|w| sinh 2ρ

cosh−
4n+5

2 2ρ ≤ c

sinh 2ρ
cosh−

4n+5
2 2ρ.

The last inequality follows from the fact that 1 − |z|2 = |w|2
1+|z|2 ≤ |w|2 ≤ 1,

since (z,w)∈Sn. Substituting the estimation of K(ρ) into the expression of
Φ2(h), we finally obtain

|Φ2(h)| ≤ c.22n−1(2π)Γ
(

4n+ 7
2

)
|z′1|

∫ +∞

0
cosh−

4n+5
2 2ρ

(
ρ

sinh2ρ

)−5/2

dρ

(10)

≤ c.22n(2π)Γ
(

4n+ 7
2

)
|z′1|

∫ +∞

0
cosh−2n2ρdρ

≤ c.24n(2π)Γ
(

4n+ 7
2

)
|z′1|B(n, n).

Lemma 4.4. The surface measure of the unit sphere Sn of the quaternionic
Heisenberg group HHn is

σ(Sn) = 2π2n+3/2 Γ(n)
Γ(2n)Γ(n+ 3/2)

.
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Proof. Let f∈L1(HHn) and

I(f) =
∫
HHn

f(x,u)d(x,u)

=
∫ +∞

0

∫ +∞

0

∫
Σ4n−1

∫
Σ2

f(Rz, ρw)R4n−1ρ2dwdz dρ dR,

where

Σn−1 =

{
x = (x1, . . . , xn)∈Rn

∣∣∣ n∑
i=1

x2
i = 1

}
is the unit sphere in Euclidean space Rn. Performing the change of variables
R2 = l2cosθ, ρ = l2sinθ, we get

I(f) =
∫ +∞

0

∫ π/2

0

∫
Σ4n−1

∫
Σ2

f(lz cos1/2 θ, l2w sin θ)

· l4n+5 cos2n−1 θ sin2 θ dw dz dθ dl.

Hence

∫
Sn

f(h)dσ(h) =
∫ π/2

0

∫
Σ4n−1

∫
Σ2

f(zcos1/2θ,wsinθ)cos2n−1θsin2θdwdzdθ.

(11)

In particular,

σ(Sn) =
∫ π/2

0

∫
Σ4n−1

∫
Σ2

cos2n−1θsin2θdwdzdθ

= |Σ4n−1|.|Σ2|
∫ π/2

0
cos2n−1θsin2θdθ =

1
2
|Σ4n−1|.|Σ2|B(n, 3/2).

Then Lemma 4.4 follows from the expression of the surface measure
|Σn−1| = 2πn/2

Γ(n/2) of the unit sphere in Euclidean space Rn.

Now we turn to evaluate the following integral:

Lemma 4.5. We have∫
Sn

|z10|qdσ(h) =
2π2n+1Γ(n+ q/4)Γ( q+1

2 )
Γ(n+ q/4 + 3/2)Γ(2n+ q/2)

.

Proof. Let Σ4n−1 = {z = (z1, z′)∈R4 ×R4n−4 | |z1|2 + |z′|2 = 1}. We
introduce new polar coordinates by setting z1 = acosφ, z′ = bsinφ with
a∈Σ3, b∈Σ4n−5, 0 ≤ φ ≤ π/2. Then formula (11) reads as∫

Sn

f(h)dσ(h)

=
∫ π/2

0

∫ π/2

0

∫
Σ3

∫
Σ4n−5

∫
Σ2

f(acos1/2θcosφ,bcos1/2θsinφ,wsinθ)

· cos2n−1θsin2θcos3φsin4n−5φdwdbdadθdφ.
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In particular, we have∫
Sn

|z10|qdσ(h) =
∫ π/2

0

∫ π/2

0

∫
Σ3

∫
Σ4n−5

∫
Σ2

|a0cos1/2θcosφ|q(12)

· cos2n−1θsin2θcos3φsin4n−5φdwdbdadθdφ.

Furthermore, on the unit sphere Σ3 of the a-space, we employ the spherical
coordinates, i.e.,

a =


a0

a1

a2

a3

 =


sinψ1

cosψ1sinψ2

cosψ1cosψ2sinφ3

cosψ1cosψ2cosψ3

 ,

with −π/2 ≤ ψ1, ψ2 ≤ π/2 and −π ≤ ψ3 ≤ π. Then the integral on Σ3 in
(12) becomes∫

Σ3

|a0|qda

=
∫ π/2

−π/2

∫ π/2

−π/2

∫ π

−π
|sinψ1|qcos2ψ1cosψ2dψ3dψ2dψ1 = 4πB

(
q + 1

2
,

3
2

)
.

Finally we obtain∫
Sn

|z10|qdσ(h)

= 4πB
(
q + 1

2
,

3
2

)
·
∫ π/2

0

∫ π/2

0

∫
Σ4n−5

∫
Σ2

cos2n+q/2−1θsin2θcosq+3φsin4n−5φdwdbdφdθ

= π|Σ4n−5||Σ2|B
(
q + 1

2
,

3
2

)
B

(
n+

q

4
,

3
2

)
B

(
q + 4

2
, 2n− 2

)
,

as required.

Corollary 4.6. We also have∫
Sn

|z′1|qdσ(h) =
q + 1

2

(
π2n+1Γ(n+ q

4)Γ( q+1
2 )

Γ(n+ q+6
4 )Γ(2n+ q

2)

)
.

Proof. Since

|z′1| =

(
3∑
i=1

a2
1i

)1/2

cos1/2 θ cosφ = cosψ1 cos1/2 θ cosφ,
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an analogous calculation to that in the proof of Lemma 4.5 gives:

∫
Sn

|z′1|qdσ(h)

= π|Σ4n−5||Σ2|B
(
q + 3

2
,
1
2

)
B

(
n+

q

4
,
1
2

)
B

(
q + 4

2
, 2n− 2

)
,

which is exactly the conclusion of Corollary 4.6.

Lemma 4.7. There exists a constant c = c(q) > 0, such that, ∀n∈N,

(∫
Sn

|Φ(h)|qdσ(h)
)1/q

≤ c[σ(Sn)]−1/p.

Proof. We know ([10]) that when x→+∞,

Γ(x)
Γ(x+ a)

∼x−a, a > 0,(13)

and Stirling’s formula

Γ(x)∼
√

2πxx−1/2exp(−x).(14)

From Equations (7), (9), (10), it follows that

|Φ(h)| ≤ c.
24n

(2π)6n+2
Γ(2n+ 7/2)B(n, n)max{|z10|, |z′1|}.

Via Lemmas 4.4 and 4.5 and Corollary 4.6 we get
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[σ(Sn)]1/p.
(∫

Sn

|Φ(h)|qdσ(h)
)1/q

≤ c.
24n

(2π)6n+2
Γ(2n+ 7/2)B(n, n)

·

(
π2n+1Γ(n+ q/4)Γ( q+1

2 )

Γ(n+ q+6
4 )Γ(2n+ q/2)

)1/q (
2π2n+3/2Γ(n)

Γ(n+ 3/2)Γ(2n)

)1/p

≤ c.
24n

(2π)4n+1
Γ(2n+ 7/2)B(n, n)

·
(

Γ(n+ q/4)
Γ(n+ q/4 + 3/2)Γ(2n+ q/2)

)1/q ( Γ(n)
Γ(n+ 3/2)Γ(2n)

)1/p

≤ c.Γ(2n+ 7/2)B(n, n)
(

1
Γ(2n+ q/2)

)1/q ( 1
Γ(2n)

)1/p

≤ c.B(n, n)
(

Γ(2n+ 7/2)
Γ(2n)

)(
Γ(2n)

Γ(2n+ q/2)

)1/q

≤ c.(2n)3B(n, n)

≤ c.(2n)3
(

(
√

2πnn−1/2 exp(−n))2√
2π(2n)2n−1/2 exp(−2n)

)
≤ c,

which completes the proof of Lemma 4.7. (In the proof of this Lemma, we
have used formulas (13) and (14).)

Due to Lemma 4.7 and the inequalities (3), (4), (5) we have proved:

Proposition 4.8. For every p∈(0, +∞), there exsists a constant c(p) > 0,
such that

‖R̃f‖Lp(HHn) ≤ c(p)‖f‖Lp(HHn), ∀f∈C∞0 (HHn), ∀n∈N.

4.3. The full Riesz transforms. We consider the full Riesz transform
Rf(x,u) = (R10f(x,u), . . . , Rn3f(x,u)), where

Rrif(x,u) = (Xri4−1/2f)(x,u)

= lim
ε→0+

∫
HHn

Xrip1(y,v)
∫ 1/ε

ε
f((x,u)δt((y,v)−1))

dt

t
d(y,v).

Analogous to (6), we have

Xrip1(y,v) =
2

(2π)6n+3
(−F1 +

√
−1F2)(y,v) =

2
(2π)6n+3

F (y,v),
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hence

(Xri4−1/2f)(x,u)

= − 2
(2π)6n+3

lim
ε→0+

∫
HHn

(F1 −
√
−1F2)(y,v)

·
∫ 1/ε

ε
f((x,u)δt((y,v)−1))

dt

t
d(y,v),

where

F1(x,u) = x10

∫
R3

exp{−(
√
−1v.u + |x|2ρcoth2ρ)}

·
(

2ρ
sinh2ρ

)2n

ρcoth2ρ
3∏
j=1

dvj ,

F2(x,u) =
∫
R3

exp{−(
√
−1v.u + |x|2ρcoth2ρ)}

·
(

2ρ
sinh2ρ

)2n 3∑
j=1

x1jvj

3∏
j=1

dvj .

From these equations it is easy to see that

F (−x,u) = −F (x,u),

and hence we can write

(Xri4−1/2f)(x,u)

=
1

(2π)6n+3

∫
HHn

F (y,v)

·
∫ +∞

0
[f((x,u)δt(−y,−v))− f((x,u)δt(y,−v))]

dt
t

d(y,v).

Similar arguments to those in [3] show that:

Theorem 4.9. For every p∈(1, +∞), there exists a constant c = c(p) > 0,
such that for all n∈N,

1
c
‖f‖Lp(HHn) ≤ ‖|Rf |‖Lp(HHn) ≤ c‖f‖Lp(HHn), ∀f∈C∞0 (HHn).
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