Vol. 209, No. 2, 2003

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The discriminant of a symplectic involution

Grégory Berhuy, Marina Monsurrò and Jean-Pierre Tignol

Vol. 209 (2003), No. 2, 201–218
Abstract

An invariant for symplectic involutions on central simple algebras of degree divisible by 4 over fields of characteristic different from 2 is defined on the basis of Rost’s cohomological invariant of degree 3 for torsors under symplectic groups. We relate this invariant to trace forms and show how its triviality yields a decomposability criterion for algebras of degree 8 with symplectic involution.

Milestones
Received: 15 March 2002
Revised: 20 May 2002
Published: 1 April 2003
Authors
Grégory Berhuy
Département de mathématiques
École Polytechnique Fédérale de Lausanne
CH-1015 Lausanne
Switzerland
Marina Monsurrò
Département de mathématiques
École Polytechnique Fédérale de Lausanne
CH-1015 Lausanne
Switzerland
Jean-Pierre Tignol
Institut de Mathématique Pure et Appliquée
Université catholique de Louvain
B-1348 Louvain-la-Neuve
Belgium