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We consider topological Markov chains (also called Markov
shifts) on countable graphs. We show that a transient graph
can be extended to a recurrent graph of equal entropy which
is either positive recurrent of null recurrent, and we give an
example of each type. We extend the notion of local entropy to
topological Markov chains and prove that a transitive Markov
chain admits a measure of maximal entropy (or maximal mea-
sure) whenever its local entropy is less than its (global) en-
tropy.

Introduction.

In this article we are interested in connected oriented graphs and topological
Markov chains. All the graphs we consider have a countable set of vertices.
If G is an oriented graph, let ΓG be the set of two-sided infinite sequences
of vertices that form a path in G and let σ denote the shift transformation.
The Markov chain associated to G is the (noncompact) dynamical system
(ΓG, σ). The entropy h(G) of the Markov chain ΓG was defined by Gurevich;
it can be computed by several ways and satisfies the Variational Principle
[7] and [8].

In [16] Vere-Jones classifies connected oriented graphs as transient, null
recurrent or positive recurrent according to the properties of the series as-
sociated with the number of loops, by analogy with probabilistic Markov
chains. To a certain extent, positive recurrent graphs resemble finite graphs.
In [7] Gurevich shows that a Markov chain on a connected graph admits a
measure of maximal entropy (also called maximal measure) if and only if
the graph is positive recurrent. In this case, this measure is unique and it
is an ergodic Markov measure.

In [13] and [14] Salama gives a geometric approach to the Vere-Jones
classification. The fact that a graph can (or cannot) be “extended” or
“contracted” without changing its entropy is closely related to its class. In
particular a graph with no proper subgraph of equal entropy is positive
recurrent. The converse is not true [14] (see also [6] for an example of
a positive recurrent graph with a finite valency at every vertex that has
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no proper subgraph of equal entropy). This result shows that the positive
recurrent class splits into two subclasses: A graph is called strongly positive
recurrent if it has no proper subgraph of equal entropy; it is equivalent to a
combinatorial condition (a finite connected graph is always strongly positive
recurrent). In [13] and [14] Salama also states that a graph is transient if
and only if it can be extended to a bigger transient graph of equal entropy.
We show that any transient graph G is contained in a recurrent graph of
equal entropy, which is positive or null recurrent depending on the properties
of G. We illustrate the two possibilities — a transient graph with a positive
or null recurrent extension — by an example.

The result of Gurevich entirely solves the question of existence of a max-
imal measure in term of graph classification. Nevertheless it is not so easy
to prove that a graph is positive recurrent and one may wish to have more
efficient criteria. In [10] Gurevich and Zargaryan give a sufficient condition
for existence of a maximal measure; it is formulated in terms of exponential
growth of the number of paths inside and outside a finite subgraph. We give
a new sufficient criterion based on local entropy.

Why consider local entropy? For a compact dynamical system, it is known
that a null local entropy implies the existence of a maximal measure ([11], see
also [1] for a similar but different result). This result may be strengthened in
some cases: It is conjectured that, if f is a map of the interval which is Cr,
r > 1, and satisfies htop(f) > hloc(f), then there exists a maximal measure
[2]. Our initial motivation comes from the conjecture above because smooth
interval maps and Markov chains are closely related. If f : [0, 1] → [0, 1]
is C1+α (i.e., f is C1 and f ′ is α-Hölder with α > 0) with htop(f) > 0
then an oriented graph G can be associated to f , G is connected if f is
transitive, and there is a bijection between the maximal measures of f and
those of ΓG [2] and [3]. We show that a Markov chain is strongly positive
recurrent, thus admits a maximal measure, if its local entropy is strictly less
that its Gurevich entropy. However this result does not apply directly to
interval maps since the “isomorphism” between f and its Markov extension
is not continuous so it may not preserve local entropy (which depends on
the distance).

The article is organized as follows. Section 1 contains definitions and
basic properties on oriented graphs and Markov chains. In Section 2, after
recalling the definitions of transient, null recurrent and positive recurrent
graphs and some related properties, we show that any transient graph is
contained in a recurrent graph of equal entropy (Proposition 2.8) and we
give an example of a transient graph which extends to a positive recurrent
(resp. null recurrent) graph. Section 3 is devoted to the problem of exis-
tence of maximal measures: Theorem 3.8 gives a sufficient condition for the
existence of a maximal measure, based on local entropy.
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1. Background.

1.1. Graphs and paths. Let G be an oriented graph with a countable set
of vertices V (G). If u, v are two vertices, there is at most one arrow u→ v.
A path of length n is a sequence of vertices (u0, . . . , un) such that ui → ui+1

in G for 0 ≤ i < n. This path is called a loop if u0 = un. We say that the
graph G is connected if for all vertices u, v there exists a path from u to v;
in the literature, such a graph is also called strongly connected.

If H is a subgraph of G, we write H ⊂ G; if in addition H 6= G, we write
H ⊆/ G and say that H is a proper subgraph. If W is a subset of V (G),
the set V (G) \W is denoted by W . We also denote by W the subgraph of
G whose vertices are W and whose edges are all edges of G between two
vertices in W .

Let u, v be two vertices. We define the following quantities:
• pG

uv(n) is the number of paths (u0, . . . , un) such that u0 = u and un = v;
Ruv(G) is the radius of convergence of the series

∑
pG

uv(n)zn.
• fG

uv(n) is the number of paths (u0, . . . , un) such that u0 = u, un = v
and ui 6= v for 0 < i < n; Luv(G) is the radius of convergence of the
series

∑
fG

uv(n)zn.

Proposition 1.1 (Vere-Jones [16]). Let G be an oriented graph. If G is
connected, Ruv(G) does not depend on u and v; it is denoted by R(G).

If there is no confusion, R(G) and Luv(G) will be written R and Luv. For
a graph G′ these two radii will be written R′ and L′uv.

1.2. Markov chains. Let G be an oriented graph. ΓG is the set of two-
sided infinite paths in G, that is,

ΓG = {(vn)n∈Z | ∀n ∈ Z, vn → vn+1 in G} ⊂ (V (G))Z.

σ is the shift on ΓG. The (topological) Markov chain on the graph G is the
system (ΓG, σ).

The set V (G) is endowed with the discrete topology and ΓG is endowed
with the induced topology of (V (G))Z. The space ΓG is not compact unless
G is finite. A compatible distance on ΓG is given by d, defined as follows:
V (G) is identified with N and the distance D on V (G) is given by D(n,m) =∣∣ 1
2n − 1

2m

∣∣. If u = (un)n∈Z and v = (vn)n∈Z are two elements of ΓG,

d(u, v) =
∑
n∈Z

D(un, vn)
2|n|

≤ 3.

The Markov chain (ΓG, σ) is transitive if for any nonempty open sets
A,B ⊂ ΓG there exists n > 0 such that σn(A) ∩B 6= ∅. Equivalently, ΓG is
transitive if and only if the graph G is connected. In the sequel we will be
interested in connected graphs only.
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1.3. Entropy. If G is a finite graph, ΓG is compact and the topological
entropy htop(ΓG, σ) is well-defined (see e.g., [5] for the definition of the
topological entropy). If G is a countable graph, the Gurevich entropy [7] of
G is given by

h(G) = sup{htop(ΓH , σ) | H ⊂ G,H finite}.
This entropy can also be computed in a combinatorial way, as the expo-

nential growth of the number of paths with fixed endpoints [8].

Proposition 1.2 (Gurevich). Let G be a connected oriented graph. Then
for any vertices u, v

h(G) = lim
n→+∞

1
n

log pG
uv(n) = − logR(G).

Another way to compute the entropy is to compactify the space ΓG and
then use the definition of topological entropy for compact metric spaces. If
G is an oriented graph, denote the one-point compactification of V (G) by
V (G) ∪ {∞} and define ΓG as the closure of ΓG in (V (G) ∪ {∞})Z. The
distance d naturally extends to ΓG. In [7] Gurevich shows that this gives
the same entropy; this means that there is only very little dynamics added
in this compactification. Moreover, the Variational Principle is still valid for
Markov chains [7].

Theorem 1.3 (Gurevich). Let G be an oriented graph. Then

h(G) = htop(ΓG, σ) = sup{hµ(ΓG) | µ σ-invariant probability measure}.

2. On the classification of connected graphs.

2.1. Transient, null recurrent, positive recurrent graphs. In [16]
Vere-Jones gives a classification of connected graphs as transient, null re-
current or positive recurrent. The definitions are given in Table 1 (lines 1
and 2) as well as properties of the series

∑
pG

uv(n)zn which give an alterna-
tive definition.

In [13] and [14] Salama studies the links between the classification and
the possibility to extend or contract a graph without changing its entropy.
It follows that a connected graph is transient if and only if it is strictly
included in a connected graph of equal entropy, and that a graph with no
proper subgraph of equal entropy is positive recurrent.

Remark 2.1. In [13] Salama claims that Luu is independent of u, which is
not true; in [14] he uses the quantity L = infu Luu and he states that ifR = L
then R = Luu for all vertices u, which is wrong too (see Proposition 3.2
in [9]). It follows that in [13] and [14] the statement “R=L” must be
interpreted either as “R = Luu for some u” or “R = Luu for all u” depending
on the context. This encouraged us to give the proofs of Salama’s results in
this article.
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transient null positive
recurrent recurrent∑

n>0

fG
uu(n)Rn < 1 1 1∑

n>0

nfG
uu(n)Rn ≤ +∞ +∞ < +∞∑

n≥0

pG
uv(n)Rn < +∞ +∞ +∞

lim
n→+∞

pG
uv(n)Rn 0 0 λuv > 0

R = Luu R = Luu R ≤ Luu

Table 1. Properties of the series associated to a transient,
null recurrent or positive recurrent graph G; these properties
do not depend on the vertices u, v (G is connected).

In [14] Salama shows that a transient or null recurrent graph satisfies
R = Luu for all vertices u; we give the unpublished proof due to U. Fiebig
[6].

Proposition 2.2 (Salama). Let G be a connected oriented graph. If G is
transient or null recurrent then R = Luu for all vertices u. Equivalently, if
there exists a vertex u such that R < Luu then G is positive recurrent.

Proof. For a connected oriented graph, it is obvious that R ≤ Luu for all u,
thus the two claims of the Proposition are equivalent. We prove the second
one.

Let u be a vertex of G such that R < Luu. Let F (x) =
∑

n≥1 f
G
uu(n)xn

for all x ≥ 0. If we break a loop based in u into first return loops, we get
the following formula: ∑

n≥0

pG
uu(n)xn =

∑
k≥0

(F (x))k.(1)

Suppose that G is transient, that is, F (R) < 1. The map F is analytic on
[0, Luu) and R < Luu thus there exists R < x < Luu such that F (x) <
1. According to Equation (1) one gets that

∑
n≥0 p

G
uu(n)xn < +∞, which

contradicts the definition of R. Therefore G is recurrent. Moreover R <
Luu by assumption, thus

∑
n≥1 nf

G
uu(n)Rn < +∞, which implies that G is

positive recurrent. �

Definition 2.3. A connected oriented graph is called strongly positive re-
current if R < Luu for all vertices u.

Lemma 2.4. Let G be a connected oriented graph and u a vertex.
i) R < Luu if and only if

∑
n≥1 f

G
uu(n)Ln

uu > 1.
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ii) If G is recurrent then R is the unique positive number x such that∑
n≥1 f

G
uu(n)xn = 1.

Proof. Use the fact that F (x) =
∑

n≥1 f
G
uu(n)xn is increasing. �

The following result deals with transient graphs [13]:

Theorem 2.5 (Salama). Let G be a connected oriented graph of finite pos-
itive entropy. Then G is transient if and only if there exists a connected
oriented graph G′ ⊇/ G such that h(G′) = h(G). If G is transient then G′

can be chosen transient.

Proof. The assumption on the entropy implies that 0 < R < 1. Suppose
first that there exists a connected graph G′ ⊇/ G such that h(G′) = h(G),
that is, R′ = R. Fix a vertex u in G. The graph G is a proper subgraph of
G′ thus there exists n such that fG

uu(n) < fG′
uu(n), which implies that∑

n≥1

fG
uu(n)Rn <

∑
fG′

uu(n)R′n ≤ 1.

Therefore G is transient.
Now suppose that G is transient and fix a vertex u in G. One has∑
n≥1 f

G
uu(n)Rn < 1. Let k ≥ 2 be an integer such that∑

n≥1

fG
uu(n)Rn +Rk < 1.

Define the graph G′ by adding a loop of length k based at the vertex u; one
has R′ ≤ R and∑

n≥1

fG′
uu(n)R′n ≤

∑
n≥1

fG′
uu(n)Rn =

∑
n≥1

fG
uu(n)Rn +Rk < 1.(2)

Equation (2) implies that R ≤ L′uu and also that the graph G′ is transient,
so R′ = L′uu by Proposition 2.2. Then one has L′uu = R′ ≤ R ≤ L′uu thus
R = R′. �

In [14] Salama proves that if R = Luu for all vertices u then there exists a
proper subgraph of equal entropy. We show that the same conclusion holds
if one supposes that R = Luu for some u. The proof below is a variant of
the one of Salama. The converse is also true, as shown by U. Fiebig [6].

Proposition 2.6. Let G be a connected oriented graph of positive entropy.
i) If there is a vertex u such that R = Luu then there exists a connected

subgraph G′ ⊆/ G such that h(G′) = h(G).
ii) If there is a vertex u such that R < Luu then for all proper subgraphs

G′ one has h(G′) < h(G).
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Proof. i) Suppose that R = Luu. If u0 = u is followed by a unique vertex,
let u1 be this vertex. If u1 is followed by a unique vertex, let u2 be this
vertex, and so on. If this leads to define un for all n then h(G) = 0, which
is not allowed.

Let uk be the last built vertex; there exist two distinct vertices v, v′ such
that uk → v and uk → v′. Let G′1 be the graph G deprived of the arrow
uk → v and G′2 the graph G deprived of all the arrows uk → w, w 6= v.
Call Gi the connected component of G′i that contains u (i = 1, 2); obviously
Gi ⊆/ G. For all n ≥ 1 one has

fG
uu(n) = fG

uku(n− k) = fG1
uku(n− k) + fG2

uku(n− k),

thus there exists i ∈ {1, 2} such that Luu = Luku(Gi). One has

R ≤ R(Gi) ≤ Luku(Gi) = Luu = R,

thus R = R(Gi), that is, h(G) = h(Gi).

ii) Suppose that R < Luu and consider G′ ⊆/ G. Suppose first that u
is a vertex of G′. The graph G is positive recurrent by Proposition 2.2 so∑

n≥1 f
G
uu(n)Rn = 1. Since G′ ⊆/ G there exists n such that fG′

uu(n) < fG
uu(n),

thus ∑
n≥1

fG′
uuR

n < 1.(3)

Moreover L′uu ≥ Luu. If G′ is transient then R′ = L′uu (Proposition 2.2)
thus R′ ≥ Luu > R. If G′ is recurrent then

∑
n≥1 f

G′
uuR

′n = 1 thus R′ > R

because of Equation (3). In both cases R′ > R, that is, h(G′) < h(G).
Suppose now that u is not a vertex of G′ and fix a vertex v in G′. Let

(u0, . . . , up) a path (in G) of minimal length between u = u0 and v = up,
and let (v0, . . . , vq) be a path of minimal length between v = v0 and u = vq.

If (w0 = v, w1, . . . , wn = v) is a loop in G′ then

(u0 = u, u1, . . . , up = w0, w1, . . . , wn = v0, v1, . . . , vq = u)

is a first return loop based in u in the graph G. For all n ≥ 0 we get that
pG′

vv(n) ≤ fG
uu(n+ p+ q), thus R′ ≥ Luu > R, that is, h(G′) < h(G). �

The following result gives a characterization of strongly positive recurrent
graphs. It is a straightforward corollary of Proposition 2.6 (see also [6]).

Theorem 2.7. Let G be a connected oriented graph of positive entropy. The
following properties are equivalent:

i) For all u one has R < Luu (that is, G is strongly positive recurrent ),
ii) there exists u such that R < Luu,
iii) G has no proper subgraph of equal entropy.
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2.2. Recurrent extensions of equal entropy of transient graphs.
We show that any transient graph G can be extended to a recurrent graph
without changing the entropy by adding a (possibly infinite) number of
loops. If the series

∑
nfG

vv(n)Rn is finite then the obtained recurrent graph
is positive recurrent (but not strongly positive recurrent), otherwise it is null
recurrent.

Proposition 2.8. Let G be a transient graph of finite positive entropy.
Then there exists a recurrent graph G′ ⊃ G such that h(G) = h(G′). More-
over G′ can be chosen to be positive recurrent if

∑
n>0 nf

G
uu(n)Rn < +∞

for some vertex u of G, and G′ is necessarily null recurrent otherwise.

Proof. The entropy of G is finite and positive thus 0 < R < 1 and there
exists an integer p such that 1

2 ≤ pR < 1. Define α = pR. Let u be a vertex
of G and define D = 1−

∑
n≥1 f

G
uu(n)Rn; one has 0 < D < 1. Moreover∑

n≥1

αn ≥
∑
n≥1

1
2n

= 1,

thus ∑
n≥k+1

αn = αk
∑
n≥1

αn ≥ αk.(4)

We build a sequence of integers (ni)i∈I such that 2
∑

i∈I α
ni = D. For

this, we define inductively a strictly increasing (finite or infinite) sequence
of integers (ni)i∈I such that for all k ∈ I

k∑
i=0

αni ≤ D

2
<

k∑
i=0

αni +
∑

n>nk

αn.

— Let n0 be the greatest integer n ≥ 2 such that
∑

k≥n α
k > D

2 . By choice
of n0 one has

∑
n≥n0+1 α

n ≤ D
2 , thus αn0 ≤ D

2 by Equation (4). This is the
required property at rank 0.
— Suppose that (n0, . . . , nk) is already defined. If

∑k
i=0 α

ni = D
2 then

I = {0, . . . , k} and we stop the construction. Otherwise let nk+1 be the
greatest integer n > nk such that

k∑
i=0

αni +
∑
j≥n

αj >
D

2
.

By choice of nk+1 and Equation (4), one has

αnk+1 ≤
∑

j≥nk+1+1

αj ≤ D

2
−

k∑
i=0

αni .

This is the required property at rank k + 1.
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Define a new graph G′ ⊃ G by adding 2pni loops of length ni based at the
vertex u. Obviously one has R′ ≤ R, and

∑
i∈I(pR)ni = D

2 by construction.
Therefore ∑

n≥1

fG′
uu(n)Rn =

∑
n≥1

fG
uu(n)Rn +

∑
i∈I

2(pR)ni = 1.(5)

This implies that R ≤ L′uu. If G′ is transient then
∑

n≥1 f
G′
uu(n)R′n < 1

and R′ = L′uu by Proposition 2.2, thus R ≤ R′ and Equation (5) leads to a
contradiction. Therefore G′ is recurrent. By Lemma 2.4(ii) one has R′ = R,
that is, h(G′) = h(G). In addition,∑

n≥1

nfG′
uu(n)Rn =

∑
n≥1

nfG
uu(n)Rn +

∑
i∈I

niα
ni

and this quantity is finite if and only if
∑
nfG

uu(n)Rn is finite. In this case
the graph G′ is positive recurrent.

If
∑
nfG

uu(n)Rn = +∞, let H be a recurrent graph containing G with
h(H) = h(G). Then H is null recurrent because∑

n≥1

nfH
uu(n)Rn ≥

∑
n≥1

nfG
uu(n)Rn = +∞.

�

Example 2.9. We build a positive (resp. null) recurrent graph G such that∑
fG

uu(n)Ln
uu = 1 and then we delete an arrow to obtain a graph G′ ⊂ G

which is transient and such that h(G′) = h(G). First we give a description
of G depending on a sequence of integers a(n) then we give two different
values to the sequence a(n) so as to obtain a positive recurrent graph in one
case and a null recurrent graph in the other case.

Let u be a vertex and a(n) a sequence of nonnegative integers for n ≥ 1,
with a(1) = 1. The graph G is composed of a(n) loops of length n based at
the vertex u for all n ≥ 1 (see Figure 1). More precisely, define the set of
vertices of G as

V = {u} ∪
+∞⋃
n=1

{vn,i
k | 1 ≤ i ≤ a(n), 1 ≤ k ≤ n− 1},

where the vertices vn,i
k above are distinct. Let vn,i

0 = vn,i
n = u for 1 ≤ i ≤

a(n). There is an arrow vn,i
k → vn,i

k+1 for 0 ≤ k ≤ n− 1, 1 ≤ i ≤ a(n), n ≥ 1
and there is no other arrow in G. The graph G is connected and fG

uu(n) =
a(n) for n ≥ 1.

The sequence (a(n))n≥2 is chosen such that it satisfies∑
n≥1

a(n)Ln = 1,(6)
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u

Figure 1. The graphs G and G′; the bold loop (on the left)
is the only arrow that belongs to G and not to G′, otherwise
the two graphs coincide.

where L = Luu > 0 is the radius of convergence of the series
∑
a(n)zn. If G

is transient then R = Luu by Proposition 2.2, but Equation (6) contradicts
the definition of transient. Thus G is recurrent. Moreover, R = L by
Lemma 2.4(ii).

The graph G′ is obtained from G by deleting the arrow u→ u. Obviously
one has L′uu = L and ∑

n≥1

fG′
uu(n)Ln = 1− L < 1.

This implies that G′ is transient because R′ ≤ L′uu. Moreover R′ = L′uu by
Proposition 2.2 thus R′ = R, that is, h(G′) = h(G).

Now we consider two different sequences a(n).

1) Let a(n2) = 2n2−n for n ≥ 1 and a(n) = 0 otherwise. Then L = 1
2 and∑

n≥1

fG
uu(n)Ln =

∑
n≥1

2n2−n 1
2n2 =

∑
n≥1

1
2n

= 1.

Moreover ∑
n≥1

nfG
uu(n)Ln =

∑
n≥1

n2

2n
< +∞,

hence the graph G is positive recurrent.

2) Let a(1) = 1, a(2n) = 22n−n for n ≥ 2 and a(n) = 0 otherwise. One can
compute that L = 1

2 , and∑
n≥1

fG
uu(n)Ln =

1
2

+
∑
n≥2

22n−n 1
22n =

1
2

+
∑
n≥2

1
2n

= 1.

Moreover ∑
n≥1

nfG
uu(n)Ln =

1
2

+
∑
n≥2

2n 1
2n

= +∞
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hence the graph G is null recurrent.

Remark 2.10. Let G be a transient graph of finite entropy. Fix a vertex u
and choose an integer k such that

∑
n≥k R

n < 1−
∑

n≥1 f
G
uu(n)Rn. For every

integer n ≥ k let mn = bR−nc, add bR−(mn−n)c loops of length mn based
at the vertex u and call G′ the graph obtained in this way. It can be shown
that the graph G′ is transient, h(G′) = h(G) and

∑
n≥1 nf

G′
uuR

′n = +∞.
Then Proposition 2.8 implies that every transient graph is included in a null
recurrent graph of equal entropy.

Remark 2.11. In the more general setting of thermodynamic formalism
for countable Markov chains, Sarig puts to the fore a subclass of positive
recurrent potentials which he calls strongly positive recurrent [15]; his moti-
vation is different, but the classifications agree. If G is a countable oriented
graph, a potential is a continuous map φ : ΓG → R and the pressure P (φ)
is the analogous of the Gurevich entropy, the paths being weighted by eφ;
a potential is either transient or null recurrent or positive recurrent. Con-
sidering the null potential φ ≡ 0, we retrieve the case of (non-weighted)
topological Markov chains. In [15] Sarig introduces a quantity ∆u[φ]; φ is
transient (resp. recurrent) if ∆u[φ] < 0 (resp. ∆u[φ] ≥ 0). The potential is
called strongly positive recurrent if ∆u[φ] > 0, which implies it is positive
recurrent. A strongly positive recurrent potential φ is stable under pertur-
bation, that is, any potential φ+ tψ close to φ is positive recurrent too. For
the null potential, ∆u[0] = log

(∑
n≥1 f

G
uu(n)Ln

)
, thus ∆u[0] > 0 if and only

if the graph is strongly positive recurrent (Lemma 2.4 and Theorem 2.7). In
[9] strongly positive recurrent potentials are called stable positive.

Examples of (non-null) potentials which are positive recurrent but not
strongly positive recurrent can be found in [15]; some of them resemble
much the Markov chains of Example 2.9, their graphs being composed of
loops as in Figure 1.

3. Existence of a maximal measure.

3.1. Positive recurrence and maximal measures. A Markov chain on
a finite graph always has a maximal measure [12], but it is not the case for
infinite graphs [7]. In [8] Gurevich gives a necessary and sufficient condition
for the existence of such a measure.

Theorem 3.1 (Gurevich). Let G be a connected oriented graph of finite
positive entropy. Then the Markov chain (ΓG, σ) admits a maximal measure
if and only if the graph is positive recurrent. Moreover, such a measure is
unique if it exists, and it is an ergodic Markov measure.

In [10] Gurevich and Zargaryan show that if one can find a finite con-
nected subgraph H ⊂ G such that there are more paths inside than outside
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H (in term of exponential growth), then the graph G has a maximal mea-
sure. This condition is equivalent to strong positive recurrent as it was
shown by Gurevich and Savchenko in the more general setting of weighted
graphs [9].

Let G be a connected oriented graph, W a subset of vertices and u, v
two vertices of G. Define tWuv(n) as the number of paths (v0, . . . , vn) such
that v0 = u, vn = v and vi ∈ W for all 0 < i < n, and put τW

uv =

lim sup
n→+∞

1
n

log tWuv(n).

Theorem 3.2 (Gurevich-Zargaryan). Let G be a connected oriented graph
of finite positive entropy. If there exists a finite set of vertices W such that
W is connected and for all vertices u, v in W , τW

uv ≤ h(W ), then the graph
G is strongly positive recurrent.

For graphs that are not strongly positive recurrent the entropy is mainly
concentrated near infinity in the sense that it is supported by the infi-
nite paths that spend most of the time outside a finite subgraph (Proposi-
tion 3.3). This result is obtained by applying inductively the construction
of Proposition 2.6(i). As a corollary, there exist “almost maximal measures
escaping to infinity” (Corollary 3.4). These two results are proven and used
as tools to study interval maps in [4], but they are interesting by themselves,
that is why we state them here.

Proposition 3.3. Let G be a connected oriented graph which is not strongly
positive recurrent and W a finite set of vertices. Then for all integers n
there exists a connected subgraph Gn ⊂ G such that h(Gn) = h(G) and for
all w ∈W , for all 0 ≤ k < n, fGn

ww(k) = 0.

Corollary 3.4. Let G be a connected oriented graph which is not strongly
positive recurrent. Then there exists a sequence of ergodic Markov measures
(µn)n≥0 such that limn→+∞ hµn(ΓG, σ) = h(G) and for all finite subsets of
vertices W , lim

n→+∞
µn ({(un)n∈Z ∈ ΓG | u0 ∈W}) = 0.

3.2. Local entropy and maximal measures. For a compact system, the
local entropy is defined according to a distance but does not depend on
it. One may wish to extend this definition to noncompact metric spaces
although the notion obtained in this way is not canonical.

Definition 3.5. Let X be a metric space, d its distance and let T : X → X
be a continuous map.

The Bowen ball of centre x, of radius r and of order n is defined as

Bn(x, r) = {y ∈ X | d(T ix, T iy) < r, 0 ≤ i < n}.
E is a (δ, n)-separated set if

∀y, y′ ∈ E, y 6= y′,∃0 ≤ k < n, d(T ky, T ky′) ≥ δ.
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The maximal cardinality of a (δ, n)-separated set contained in Y is denoted
by sn(δ, Y ).

The local entropy of (X,T ) is defined as hloc(X) = lim
ε→0

hloc(X, ε), where

hloc(X, ε) = lim
δ→0

lim sup
n→+∞

1
n

sup
x∈X

log sn(δ,Bn(x, ε)).

If the space X is not compact, these notions depend on the distance.
When X = ΓG, we use the distance d introduced in Section 1.2. The local
entropy of ΓG does not depend on the identification of the vertices with N.

Proposition 3.6. Let ΓG be the topological Markov chain on G and ΓG its
compactification as defined in Section 1.2. Then hloc(ΓG) = hloc(ΓG).

Proof. Let u = (un)n∈Z ∈ ΓG, ε > 0 and k ≥ 1. By continuity there exists
η > 0 such that, if v ∈ ΓG and d(u, v) < η then d(σi(u), σi(v)) < ε for
all 0 ≤ i < k. By definition of ΓG there is v ∈ ΓG such that d(u, v) < η,
thus u ∈ Bk(v, ε), which implies that Bk(u, ε) ⊂ Bk(v, 2ε). Consequently
hloc(ΓG, ε) ≤ hloc(Γ, 2ε), and hloc(ΓG) ≤ hloc(ΓG). The reverse inequality is
obvious. �

We are going to prove that, if hloc(ΓG) < h(G), then G is strongly positive
recurrent. First we introduce some notations.

Let G be an oriented graph. If V is a subset of vertices, H a subgraph of
G and u = (un)n∈Z ∈ ΓG, define

CH(u, V )

= {(vn)n∈Z ∈ ΓH | ∀n ∈ Z, un ∈ V ⇒ (vn = un), un 6∈ V ⇒ vn 6∈ V }.

If S ⊂ ΓG and p, q ∈ Z ∪ {−∞,+∞}, define

[S]qp = {(vn)n∈Z ∈ ΓG | ∃(un)n∈Z ∈ S,∀p ≤ n ≤ q, un = vn}.

Lemma 3.7. Let G be an oriented graph on the set of vertices N.

i) If V ⊃ {0, . . . , p + 2} then for all u ∈ ΓG and all n ≥ 1, CG(u, V ) ⊂
Bn(u, 2−p).

ii) If u = (un)n∈Z and v = (vn)n∈Z are two paths in G such that (u0, . . . ,
un−1) 6= (v0, . . . , vn−1) and ui, vi ∈ {0, . . . , q − 1} for 0 ≤ i ≤ n − 1
then (u, v) is (2−q, n)-separated.

Proof. (i) Let u = (un)n∈Z ∈ ΓG. If v = (vn)n∈Z ∈ CG(u, V ), then
D(uj , vj) ≤ 2−(p+2) for all j ∈ Z. Consequently for all 0 ≤ i < n

d(σi(u), σi(v)) =
∑
k∈Z

D(ui+k, vi+k)
2|k|

≤
∑
k∈Z

2−(p+2)

2|k|
≤ 3 · 2−(p+2) < 2−p.
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(ii) Let 0 ≤ i ≤ n−1 such that ui 6= vi. By hypothesis, ui, vi ≤ q−1. Suppose
that ui < vi. Then d(σi(u), σi(v)) ≥ D(ui, vi) = 2−ui(1 − 2−(vi−ui)) ≥
2−q. �

Theorem 3.8. Let G be a connected oriented graph of finite entropy on the
set of vertices N. If hloc(ΓG) < h(G), then the graph G is strongly positive
recurrent and the Markov chain (ΓG, σ) admits a maximal measure.

Proof. Fix C and ε > 0 such that hloc(ΓG, ε) < C < h(G). Let p be
an integer such that 2−(p−1) < ε. Let G′ be a finite subgraph such that
h(G′) > C and let V be a finite subset of vertices such that V is connected
and contains the vertices of G′ and the vertices {0, . . . , p}. Define W = V ,
Vq = {n ≤ q} and Wq = Vq \ V = W ∩ Vq for all q ≥ 1.

Our aim is to bound tWuu′(n) = tVuu′(n). Choose u, u′ ∈ V and let (w0, . . . ,
wn0) be a path between u′ and u with wi ∈ V for 0 ≤ i ≤ n0. Fix n ≥ 1.
One has tWuu′(n) = lim

q→+∞
t
Wq

uu′(n).

Fix δ0 > 0 such that

∀δ ≤ δ0, lim sup
n→+∞

1
n

sup
v∈ΓG

log sn(δ,Bn(v, ε)) < C.

Take q ≥ 1 arbitrarily large and δ ≤ min{δ0, 2−(q+1)}. Choose N such that

∀n ≥ N,∀v ∈ ΓG,
1
n

log sn(δ,Bn(v, ε)) < C.(7)

If tWq

uu′(n) 6= 0, choose a path (v0, . . . , vn) such that v0 = u, vn = u′ and
vi ∈Wq for 0 < i < q. Define v(n) = (v(n)

i )i∈Z as the periodic path of period
n+ n0 satisfying v(n)

i = vi for 0 ≤ i ≤ n and v(n)
n+i = wi for 0 ≤ i ≤ n0.

Define the set Eq(n, k) as follows (see Figure 2):

Eq(n, k) =
[
CVq(v(n), V )

]k(n+n0)

0
∩

[
v(n)

]0

−∞
∩

[
v(n)

]+∞

k(n+n0)
.

The paths in Eq(n, 1) are exactly the paths counted by tWq

uu′(n) which are
extended outside the indices {0, . . . , n} like the path v(n), thus #Eq(n, 1) =

t
Wq

uu′(n). Similarly, #Eq(n, k) =
(
t
Wq

uu′(n)
)k

.

By definition, Eq(n, k) ⊂ CG(v(n), V ) and {0, . . . , p} ⊂ V thus Eq(n, k) ⊂
Bk(n+n0)(v(n), ε) by Lemma 3.7(i). Moreover, if (wi)i∈Z and (w′i)i∈Z are
two distinct elements of Eq(n, k), there exists 0 ≤ i < k(n + n0) such that
wi 6= w′i and wi, w

′
i ≤ q, thus Eq(n, k) is a (δ, k(n + n0))-separated set by

Lemma 3.7(ii). Choose k such that k(n+ n0) ≥ N . Then by Equation (7)

#Eq(n, k) ≤ sk(n+n0)(δ,Bk(n+n0)(v
(n), ε)) < ek(n+n0)C .
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NI

-n0

u’u

0 n n+n 2n+n i

(n)v
u

Wq

2(n+n 0)

V
u u’u u’

0 0

Figure 2. The set Eq(n, k) (k = 2 on the picture): v(n)

(in solid) is a periodic path, u (in dashes) is a element of
Eq(n, k). Between the indices 0 and k(n + n0), v(n) and u

coincide when v
(n)
i is in V and v(n) and u are in Wq at the

same time. Before 0 or after k(n+n0), the two paths coincide.

As #Eq(n, k) =
(
t
Wq

uu′(n)
)k

, one gets tWq

uu′(n) < e(n+n0)C . This is true for all
q ≥ 1, thus

tWuu′(n) = lim
q→+∞

t
Wq

uu′(n) ≤ e(n+n0)C

and
τW
uu′ = τV

uv′ ≤ C < h(V ).

Theorem 3.2 concludes the proof. �

Remark 3.9. Define the entropy at infinity as h∞(G) = limn→+∞ h(G\Gn)
where (Gn)n≥0 is a sequence of finite graphs such that

⋃
nGn = G. The

local entropy satisfies hloc(ΓG) ≥ h∞(G) but in general these two quantities
are not equal and the condition h∞(G) < h(G) does not imply that G is
strongly positive recurrent. This is illustrated by Example 2.9 (see Figure 1).
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