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For the purposes of this paper, Dehn surgery along a curve
K in a 3-manifold M with slope σ is ‘exceptional’ if the re-
sulting 3-manifold MK(σ) is reducible or a solid torus, or the
core of the surgery solid torus has finite order in π1(MK(σ)).
We show that, providing the exterior of K is irreducible and
atoroidal, and the distance between σ and the meridian slope
is more than one, and a homology condition is satisfied, then
there is (up to ambient isotopy) only a finite number of such
exceptional surgery curves in a given compact orientable 3-
manifold M , with ∂M a (possibly empty) union of tori. More-
over, there is a simple algorithm to find all these surgery
curves, which involves inserting tangles into the 3-simplices
of any given triangulation of M . As a consequence, we de-
duce some results about the finiteness of certain unknotting
operations on knots in the 3-sphere.

1. Introduction.

Consider the following motivating problem from knot theory. Let L be a
nontrivial knot in S3. If K is an unknotted curve disjoint from L, then Dehn
surgery along K with slope 1/q has the effect of adding |q| full twists to L,
yielding a knot L′, say. (See Figure 1.2.) Suppose that L′ is the unknot,
or (more generally) that L′ has smaller genus than that of L. Then, for a
given knot L, are there only a finitely many possibilities for q and K (up
to ambient isotopy keeping L fixed)? The following theorem deals with this
question.

Theorem 1.1. Let L be a knot in S3 which is not a nontrivial satellite
knot. Let K be an unknotted curve in S3, disjoint from L and having zero
linking number with L. Let q be an integer with |q| > 1. Suppose that 1/q
surgery about K yields a knot L′ with genus(L′) < genus(L). Then, for a
given knot L, there are only finitely many possibilities for K and q up to
ambient isotopy keeping L fixed, and there is an algorithm to find them all.

Such ‘unknotting operations’ have been the object of considerable study.
For example, the author in [8] dealt with the case where K bounds a disc
intersecting L in two points of opposite sign, and proved that if such a
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surgery reduces the genus of L, then there exists an upper bound on |q|
which depends only on L, not K. Theorem 1.1 gives a great deal more
than numerical restrictions on |q|. It provides a classification of all such
unknotting operations for a given knot L, when |q| > 1 and the linking
number of K and L is zero.

Theorem 1.1 is an almost immediate corollary of new results on Dehn
surgery. Let M be an arbitrary compact orientable 3-manifold M , with ∂M
a (possibly empty) union of tori. (In Theorem 1.1, M is the exterior of
the knot L.) Our aim is to find the knots K in M with ‘exceptional’ or
‘norm-exceptional’ surgeries, which we define as follows.

Definition 1.3. Let σ be a slope on ∂N (K) other than the meridional slope
µ. Let MK(σ) be the manifold obtained by Dehn surgery along K via the
slope σ. Then σ is an exceptional slope and K is an exceptional surgery
curve if any of the following holds:

(i) MK(σ) is reducible,
(ii) MK(σ) is a solid torus, or
(iii) the core of the surgery solid torus has finite order in π1(MK(σ)).

Also, σ and K are norm-exceptional if there is some z ∈ H2(M− int(N (K)),
∂M) which maps to an element zσ ∈ H2(MK(σ), ∂MK(σ)), such that the
Thurston norm of zσ less than the Thurston norm of z. (See Section 3 for a
definition of the Thurston norm.)

If K satisfies the conditions of Theorem 1.1, then it is a norm-exceptional
surgery curve in M = S3 − int(N (L)). The reason for distinguishing norm-
exceptional surgery curves from the exceptional case is that, in the former
situation, our results will be slightly weaker. We restrict attention to knots
K with irreducible atoroidal exteriors. For technical reasons, we also have to
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assume that H2(M−int(N (K)), ∂M) is nontrivial. This implies in particular
that the first Betti number of M must be nonzero.

We will show that the problem of finding exceptional surgery curves in a
given 3-manifold M falls naturally into two cases, which depend on ∆(σ, µ),
where ∆(σ, µ) is the intersection number on ∂N (K) between the surgery
slope σ and the meridian slope µ. It is not hard to find examples of 3-
manifolds M as above containing an infinite number of pairwise non-isotopic
surgery curves K with exceptional or norm-exceptional surgery slopes σ
satisfying ∆(σ, µ) = 1. (We will do this in Section 12.) However, the main
theorem of this paper asserts that, if ∆(σ, µ) > 1, then there is only a finite
number of possibilities for K and σ.

Theorem 1.4. Let M be a compact connected orientable 3-manifold, with
∂M a (possibly empty) union of tori. Let K be a knot in M such that M −
int(N (K)) is irreducible and atoroidal, and with H2(M−int(N (K)), ∂M) 6=
0. Let σ be an exceptional or norm-exceptional slope on ∂N (K), such that
∆(σ, µ) > 1, where µ is the meridian slope on ∂N (K). Then, for a given
M , there are at most finitely many possibilities for K and σ up to ambient
isotopy, and there is an algorithm to find them all.

The algorithm is surprisingly simple. We describe it in Section 2. The
input into the algorithm is any triangulation of M , or the following gen-
eralisation of a triangulation. Let P be a (possibly empty) collection of
components of ∂M . Then a generalised triangulation of M is a represen-
tation of M − P as a union of 3-simplices, with some or all of their faces
identified in pairs and then possibly with some subcomplex removed. For
example, an ideal triangulation is the case where P = ∂M and where the
subcomplex removed is the 0-cells. We will also refer to the case where
P = ∅ as a genuine triangulation.

There is a yet simpler algorithm which deals with the σ-cable of K, which
is defined to be the knot in M lying on ∂N (K) having slope σ. Recall that
a tangle is a (possibly empty) collection of disjoint arcs properly embedded
in a 3-ball. Two tangles are identified if there is an isotopy of the 3-ball
which is fixed on the boundary and which takes one tangle to the other.

Theorem 1.5. There is a finite collection of tangles, each lying in a 3-
simplex and with the following property. Let M , K and µ be as in Theo-
rem 1.4, and let σ be an exceptional slope on ∂N (K) with ∆(σ, µ) > 1. Pick
any generalised triangulation of M . Then, we may insert a tangle from
this finite collection into each 3-simplex, in such a way that the tangles join
to form a knot which is ambient isotopic to the σ-cable of K. This finite
collection of tangles is constructible and is independent of M , K and σ.

Since these tangles are defined up to isotopy of the 3-simplex ∆3 which
is fixed on ∂∆3, Theorem 1.5 immediately gives that there are only finitely
many possibilities in M for the σ-cable of K.
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Theorem 1.5 is a very surprising result. If ∆(σ, µ) is large, then one would
expect the σ-cable of K to intersect the triangulation of M in a complicated
way. But the above result asserts that one can control this complexity. It is
also surprising that the same finite collection of tangles should work for all
M and all triangulations. Note that in Theorem 1.5 we did not assume that
K and σ were norm-exceptional. In this case, we have the following slightly
weaker result.

Theorem 1.6. Let M , K and µ be as in Theorem 1.4, and let σ be a norm-
exceptional slope on ∂N (K) with ∆(σ, µ) > 1. If M is closed, pick any
genuine triangulation of M . In the case where M has nonempty boundary,
pick any ideal triangulation of M . Then, we may insert into each 3-simplex
a tangle from the finite collection of Theorem 1.5, in such a way that the
tangles join to form a knot which is ambient isotopic to the σ-cable of K.

It is in fact possible to write down explicitly this list of tangles. We will
give an algorithm in Section 11 to do this. We have not actually run this
algorithm, since the task is fairly lengthy and is more suited to computer
implementation.

2. The algorithm to find all possibilities for K and σ.

In this section, we describe the algorithm for finding, in a given 3-manifold
M , all surgery curves K with exceptional or norm-exceptional surgery slopes
σ, satisfying the conditions of Theorem 1.4. The first (and most important)
step is to construct a finite list of possibilities for K and σ, some of which
may be neither norm-exceptional nor exceptional.

We will in Section 11 construct a finite collection of graphs, each embed-
ded in a 3-simplex ∆3. Each graph G meets ∂∆3 in a collection of vertices.
These vertices have valence one and lie in the interior of the 2-simplices of
∂∆3. There is also a specified regular neighbourhood N (G) and a collec-
tion of disjoint arcs properly embedded in ∆3, lying in ∂N (G). Each arc is
assigned one of two labels, γ or τ . Each graph G (together with N (G) and
the arcs γ and τ) is defined up to isotopy of ∆3 which is fixed on ∂∆3.

We will show during the course of the paper that it is possible to ambient
isotope K and σ, and to find a handle structure H on N (K) with the
following properties. Each tetrahedron ∆3 of the generalised triangulation
of M intersects the 0-handles and 1-handles of H in N (G), where G is one of
the graphs mentioned above. The 2-handles of H will be attached to N (G)
along the arcs τ . There will also be a curve of slope σ on ∂N (K) which
intersects ∆3 in the arcs γ.

The algorithm to find all possibilities for K and σ therefore proceeds as
follows. We insert one of these graphs into each 3-simplex of the generalised
triangulation of M . If ∆2 is any 2-simplex of M adjacent to two 3-simplices,
and G1 and G2 are the graphs inserted into these two 3-simplices, then we
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insist that N (G1) ∩∆2 = N (G2) ∩∆2, and also that the endpoints in ∆2

of the arcs labelled γ (respectively, τ) in G1 correspond precisely with the
endpoints in ∆2 of the arcs labelled γ (respectively, τ) in G2. Thus, the
graphs G combine to form a graph (which we also call G) embedded in M .
We insist that G is disjoint from ∂M . The collections of arcs combine to
form a collection of curves γ and τ properly embedded in M and lying in
∂N (G). We insist that each component of γ and τ is a simple closed curve,
and that γ is connected. Since there are only finitely many 3-simplices in
the representation of M and there are only finitely many possibilities for
N (G) ∩∆3, τ ∩∆3 and γ ∩∆3 for each 3-simplex ∆3 in M , there are only
finitely many possibilities for N (G), τ and γ. The handlebody N (G) and
curves τ specify a handle structure of a 3-manifold M ′, which is a candidate
for N (K). At this stage, M ′ may be something other than a solid torus.

The algorithm proceeds by calculating H1(M ′) and H1(∂M ′), and the
map H1(∂M ′) → H1(M ′) induced by inclusion. If this is not the map
Z ⊕ Z → Z that is projection onto one factor, we stop. If it is, we can
algorithmically find generators λ and µ of H1(∂N (M ′)) such that λ maps to
1 ∈ H1(M ′), and µ maps to 0 ∈ H1(M ′). We can construct a simple closed
curve representative of λ on ∂N (M ′) which avoids the 2-handles of M ′. If
M ′ is N (K), then this curve is ambient isotopic in M to K. The simple
closed curve γ has slope σ. Thus, we have constructed K and σ. If we wish,
we can also calculate ∆(λ, σ) and ∆(µ, σ). If K is homologically trivial,
this (together with orientation information) gives the rational number p/q
associated with σ.

The above algorithm constructs a finite number of possibilities for K and
σ. We now wish to rule out the cases where K and σ are neither exceptional
nor norm-exceptional. We construct the manifold MK(σ). There is an
algorithm to determine whether MK(σ) is reducible ([5] and [11]), and there
is an algorithm to determine whether MK(σ) is a solid torus ([5] and [11]).
The assumption that H2(M − int(N (K)), ∂M) is nontrivial implies that
H1(MK(σ)) is infinite and hence that π1(MK(σ)) is infinite. If MK(σ) is
irreducible, then according to Corollary 9.9 of [3], π1(MK(σ)) is torsion-
free. Thus, if the core of the surgery solid torus in MK(σ) has finite order
in π1(MK(σ)), then it is homotopically trivial. There is an algorithm to
determine this, since the word problem is soluble for the fundamental groups
of Haken 3-manifolds [13]. Finally, there is an algorithm to find the unit
ball of the Thurston norm (Algorithm 5.9 of [12]), and so we can determine
whether σ is norm-exceptional.

3. The sutured manifold theory background.

The definition of an exceptional surgery was specifically designed so that
sutured manifold theory can be applied. Sutured manifolds were defined
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and studied by Gabai [1] who used them to construct taut foliations on
certain 3-manifolds. In this section, we will outline a version of the theory
due to Scharlemann [10]. Almost everything in this section can be found
elsewhere, mostly in Scharlemann’s paper [10]. We include it here because it
is absolutely central to our argument, but a reader familiar with the theory
of sutured manifolds may safely skip this section.

Sutured manifold theory is intimately linked to the Thurston norm. Here,
we give a definition of the Thurston norm and some related definitions of
tautness.

Let S be a compact oriented surface embedded in a compact oriented
3-manifold M . Let χ(S) denote its Euler characteristic. If S is connected,
define

χ−(S) = max{0,−χ(S)}.

When S is not connected, define χ−(S) to be the sum of χ−(Si) over all the
components Si of S.

Let P be a subset of ∂M , and let z be an element of H2(M,P ) which is rep-
resented by some embedded compact oriented surface. Then the Thurston
norm of z is given by

x(z) = min{χ−(S) : S is an embedded surface representing z}.

Let (S, ∂S) ⊂ (M,∂M) be an oriented compact surface embedded in M .
Let P be a subset of ∂M which contains ∂S. Then S is norm-minimising in
H2(M,P ) if x([S, ∂S]) = χ−(S). In the case where P = ∂S, then S is taut if
it is incompressible and norm minimising in H2(M,P ). This use of the word
‘taut’ is not entirely standard; some authors (for example, [12]) insist only
that S be incompressible and norm-minimising in its class in H2(M,∂M).
However, our definition is more suited to sutured manifold theory.

A sutured manifold (M,γ) is a compact oriented 3-manifold M , with ∂M
decomposed into two subsurfaces R− and R+, such that R− ∪ R+ = ∂M
and R−∩R+ = γ, where γ is a union of disjoint simple closed curves, known
as the sutures. The subsurfaces R− and R+ are oriented so that the normal
vectors of R− (respectively, R+) point into (respectively, out of) M . The
symbolR± will denote ‘R− orR+’. When we wish to emphasise a particular
sutured manifold, we will use the symbol R±(M).

A sutured manifold (M,γ) is taut if M is irreducible, and R− and R+ are
taut. For example it is not hard to show the following. Suppose that ∂M
is a (possibly empty) union of tori, and that R− = ∂M and R+ = ∅. Then
(M, ∅) is taut if and only is M is neither reducible nor a solid torus.

One of the main techniques of the theory is to decompose a sutured mani-
fold along a properly embedded surface. If (M,γ) is a sutured manifold, and
S is an oriented surface properly embedded in M , with ∂S and γ in general
position, then MS = M − int(N (S)) inherits a sutured manifold structure
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(MS , γS). This is written (M,γ) S−→ (MS , γS). This decomposition is said
to be taut if (M,γ) and (MS , γS) are both taut.

If (M,γ) is a connected taut sutured manifold and z is any nonzero ho-
mology class in H2(M,∂M), then (Theorem 2.6 of [10]) there is a taut
decomposition (M,γ) S−→ (MS , γS) such that:

(i) No curve of ∂S bounds a disc in R±(M),
(ii) no component X of MS has ∂X ⊂ R−(MS) or ∂X ⊂ R+(MS), and
(iii) [S, ∂S] = z ∈ H2(M,∂M).

When S satisfies (i), we will say that ∂S has essential intersection with
R±(M). It is not hard to show that if (M,γ) S−→ (MS , γS) is a taut de-
composition and ∂S has essential intersection with R±(M), then S itself is
taut.

Thus if H2(M,∂M) 6= 0, we may perform a taut sutured manifold de-
composition along a taut surface having essential intersection with R±. But
if H2(M,∂M) is trivial, then it is a classical fact that ∂M is a (possibly
empty) union of 2-spheres. If M is irreducible, then this implies that either
∂M = ∅ or M is a collection of 3-balls. Using this argument, Gabai proved
that, if (M,γ) is a connected taut sutured manifold and H2(M,∂M) 6= 0,
then there is a sequence of taut decompositions

(M,γ) = (M1, γ1)
S1−→ (M2, γ2)

S2−→ . . . · · · Sn−1−→ (Mn, γn),

with Mn a union of 3-balls.
An important step in Gabai’s argument is to show that this sequence of

decompositions cannot continue indefinitely. This is not at all obvious. In
the case where Si is incompressible and ∂-incompressible in Mi and has no
component parallel to a subsurface of ∂Mi, it was proved by Haken [2] that
such a sequence of decompositions must eventually terminate. However, it is
sometimes necessary to consider surfaces Si which are ∂-compressible. Nev-
ertheless, Gabai constructed a (complicated) argument which proved that
this sequence of taut sutured manifold decompositions can be guaranteed to
terminate. He did this by defining a complexity of a sutured manifold and
then arguing by induction. In Section 5, we will offer a new definition of
complexity for a sutured manifold with a given handle decomposition.

There is an extremely useful property of sutured manifold decompositions,
which is summarised in the phrase ‘tautness usually pulls back’. It is this
property which makes sutured manifold theory distinctly different from the
theory of Haken manifolds.

Theorem 3.1 (Theorem 3.6 of [10]). Let (M,γ) S−→ (MS , γS) be a decom-
position, where ∂S has essential intersection with R±(M), and where no
component of S is a compression disc for a torus component of R±(M). If
(MS , γS) is taut, then so is (M,γ).
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There is a partial converse to this theorem which can be useful. If D is a
disc properly embedded in M intersecting γ transversely in two points, then
D is known as a product disc. If A is an annulus properly embedded in M
with one component of ∂A in R− and one in R+, then A is known as a prod-
uct annulus. These surfaces play a useful rôle, since if (M,γ) S−→ (MS , γS) is
a decomposition along a product disc or an incompressible product annulus,
then (M,γ) is taut if and only if (MS , γS) is taut.

We have now described enough sutured manifold theory to explain the
definition of an exceptional surgery curve, given in Section 1. The following
argument is well-known, and is due to Gabai [1]. Let K be a knot in a
compact connected orientable 3-manifold M , where ∂M is (possibly empty)
union of tori. If M − int(N (K)) is neither reducible nor a solid torus, then
(M − int(N (K)), ∅) is a taut sutured manifold, with R− = ∂M ∪∂N (K). If
H2(M− int(N (K)), ∂M) 6= 0, then we may perform a taut sutured manifold
decomposition

(M − int(N (K))) S1−→ (M2 − int(N (K))),

such that:
• S1 is disjoint from ∂N (K),
• no simple closed curve of ∂S1 bounds a disc in R±(M), and
• no component X of M2 has ∂X ⊂ R−(M2) or ∂X ⊂ R+(M2).

If K is norm-exceptional, we insist that [S1, ∂S1] = z ∈ H2(M − int(N (K)),
∂M), where z is the relevant homology class from Definition 1.3. Repeating
this process, we construct a sequence of taut sutured manifold decomposi-
tions

(M − int(N (K)), ∅) S1−→ · · · Sn−1−→ (Mn − int(N (K)), γn),
satisfying the above conditions, and where H2(Mn − int(N (K)), ∂Mn) = 0.
If M − int(N (K)) is atoroidal, then it is possible to show that this implies
that Mn is a solid torus regular neighbourhood of K and possibly some
3-balls. No component X of Mn has ∂X ⊂ R−(Mn) or ∂X ⊂ R+(Mn).
In particular, if X is the component of Mn containing K, then γn ∩ X is
a collection of essential curves on ∂X, parallel to some slope ρ, say, on
∂N (K). If we Dehn fill M − int(N (K)) via any slope τ on ∂N (K), then
Mn − int(N (K)) is filled to become a 3-manifold Mn(τ) which is a solid
torus and some 3-balls. Now, Mn(τ) inherits a sutured manifold structure
(Mn(τ), γn) from Mn − int(N (K)), which is taut if the surgery slope τ is
not the slope ρ of the sutures. Since tautness pulls back, this implies that

(MK(τ), ∅) S1−→ · · · Sn−1−→ (Mn(τ), γn)

is a sequence of taut sutured manifolds, with each Si taut in Mi(τ). This
implies that:

(i) MK(τ) is irreducible,
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(ii) MK(τ) is not a solid torus,
(iii) the core of the surgery solid torus in MK(τ) has infinite order in

π1(MK(τ)), and
(iv) S1 is taut in MK(τ).

Now, if σ is an exceptional or norm-exceptional surgery slope on ∂N (K),
then at least one of the above cannot be true for MK(σ). Thus, σ must be the
slope ρ which is parallel to the sutures in Mn. We assume in Theorems 1.4,
1.5 and 1.6 that ∆(σ, µ) > 1 which implies in particular that σ 6= µ. Thus,
the facts (i)-(iv) above are true for τ = µ, and also

(M, ∅) S1−→ · · · Sn−1−→ (Mn, γn)

is a taut sutured manifold sequence. Each component of γn lies inside M as
the σ-cable of K, or as an unknotted curve. The idea behind Theorems 1.4,
1.5 and 1.6 is (roughly speaking) inductively to find nice embeddings of Mi

in M . In particular, we will show that we can arrange that γn∩∆3 is one of
a finite list of possibilities for each 3-simplex ∆3 of M . Since one component
of γn is the σ-cable of K, this will establish Theorem 1.5.

Thus, our definition of an exceptional surgery curve fits neatly into the
sutured manifold setting. The sutured manifold theory which we have out-
lined above formed the basis for a theorem in [6] which will be an important
technical tool in this paper. This result (Theorem 1.4 of [6]) deals with
the interaction of exceptional surgery curves and embedded surfaces in a
sutured manifold, and is given below.

Theorem 3.2. Let (M,γ) be a taut sutured manifold, let K be a knot in M
and let σ be a slope on ∂N (K). Suppose that at least one of the following
is true:

(i) σ is an exceptional surgery slope, or
(ii) σ is a norm-exceptional surgery slope, ∂M is a (possibly empty) union

of tori and γ = ∅.
Suppose that ∆(σ, µ) > 1, where µ is the meridian slope on ∂N (K). Sup-
pose also that M − int(N (K)) is irreducible and atoroidal and that H2(M −
int(N (K)), ∂M) 6= 0. Let F be a surface properly embedded in M , with com-
ponents F1, . . . , Fn, none of which is a sphere or disc disjoint from γ. Then
there is an ambient isotopy of K in M , after which we have the following
inequality for each i:

|K ∩ Fi| ≤
−2χ(Fi) + |γ ∩ Fi|

2(∆(σ, µ)− 1)
.

The numerator −2χ(Fi) + |γ ∩ Fi| is known as the index I(Fi) of Fi.
Note in particular that a product disc and an annulus disjoint from γ both
have zero index. Thus, if ∆(σ, µ) > 1, Theorem 3.2 implies that we may
ambient isotope K off a collection of product discs and annuli disjoint from
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γ. Given that such surfaces play a useful technical rôle in sutured manifold
theory, this will be very convenient. In fact, this is the only point in proof
of Theorems 1.4, 1.5 and 1.6 where we use that ∆(σ, µ) > 1.

4. Vertical form and standard form for submanifolds.

Recall that we are given a generalised triangulation of M . From this, we
will construct the dual handle decomposition, which associates an i-handle
with each (3 − i)-simplex of M not lying entirely in ∂M . For this dual
handle decomposition, the boundary of each 0-handle has at most four discs
of intersection with the 1-handles, and each 1-handle has at most three discs
of intersection with the 2-handles. An example is given below.

We will now give some definitions and conventions regarding handle de-
compositions. We will throughout this paper denote the i-handles of a han-
dle decomposition by Hi. Henceforth, we will only consider handle decom-
positions of n-manifolds with the following properties:

• For i > 0, the i-handles are attached to
⋃

j<iHj .
• If Hi = Dn−i × Di (respectively, Hj = Dn−j × Dj) is an i-handle

(respectively, j-handle) with j < i, then Hi∩Hj = E×Dj = Dn−i×F
for some submanifold E (respectively, F ) of ∂Dn−j (respectively, ∂Di).

In words, the second condition requires that the attaching map of each
handle respects the product structures of the handles to which it is attached.
For a 3-manifold, this is relevant only for j = 1 and i = 2. In the case of a
handle decomposition of a 3-manifold, we also insist that:

• No 2-handle is disjoint from H1.



0-handle

1-handle 2-handle

Figure 4.1.
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We will use the term handle structure for a decomposition satisfying these
conditions. Note in particular that the dual handle decomposition of a 3-
manifold arising from a generalised triangulation has these properties. We
will use H to denote a handle structure, but occasionally, we will also write
H(M) when we wish to emphasise the manifold M . Note also that a handle
structure H on a 3-manifold M induces a handle structure on ∂M , which
we will usually write as H(∂M).

We will fix a handle structure H of M , and then will consider embedded
submanifolds of M . We wish to ensure that each submanifold lies inside
H in a manageable way. The relevant notions are ‘vertical’ and ‘standard’
form, the first of which we now define.

Definition 4.2. Let M be an n-manifold with a handle structure H. Let S
be an (n− 1)-manifold properly embedded in M . Then S is in vertical form
if, for each i-handle Dn−i ×Di of H, we have S ∩ (Dn−i ×Di) = E ×Di,
where E is a properly embedded submanifold of Dn−i. In particular, S is
disjoint from Hn.

0-handle 1-handle 2-handle

Figure 4.3.

The only two cases which we will consider are where n = 2 or n = 3.
Examples of 2-manifolds in vertical form in a 3-manifold are given in Fig. 4.3.
The relevance of vertical form is its ubiquity.

Lemma 4.4. Let M be an n-manifold with a handle structure H, and let S
be an (n − 1)-manifold properly embedded in M . Then there is an ambient
isotopy which takes S into vertical form with respect to H.

Proof. We perform a sequence of ambient isotopies. The first pulls S off Hn.
The second places S in vertical form in Hn−1, and so on. Let Ci be the co-
cores of Hi; thus Hi = Ci×Di. We perform an ambient isotopy which makes
S transverse to Ci. By construction, S is already vertical inHj for j > i, and
so we may take this isotopy to be supported in Hi−∂Hi. After the isotopy,
we may find a small disc Di

0 ⊂ int(Di), such that S ∩ (Ci ×Di
0) = Ei ×Di

0,
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for some submanifold Ei of Ci. Then we may use the product structure on
Di−int(Di

0) ∼= Si−1×I to ambient isotope Ci×Di
0 onto Ci×Di = Hi. We can

take this isotopy of M to be supported in an arbitrarily small neighbourhood
of Hi, and also to leave S ∩ Hj invariant for j > i. After performing these
isotopies for i = n, n− 1, . . . , 0, we finish with S in vertical form. �

If (M,γ) is a sutured manifold with a handle structure H, then by Lem-
ma 4.4 there is an isotopy of ∂M which takes γ into vertical form (with
respect to the induced handle decomposition H(∂M) on ∂M). This isotopy
of ∂M extends to an isotopy of M . We can therefore assume that γ is in
vertical form in H(∂M), and we will henceforth make this assumption.

If S is any surface properly embedded in M , we would like to ensure that
we can place S in vertical form, and still keep γ vertical in H(∂M). This is
the purpose of the following lemma.

Lemma 4.5. Let (M,γ) be a sutured manifold with a handle structure H,
such that γ is vertical in H(∂M). If S is a surface properly embedded in M ,
in general position with respect to γ, then there is an ambient isotopy which
leaves γ invariant and which moves S into vertical form.

Proof. The first two steps of the ambient isotopy in Lemma 4.4 are supported
in a small neighbourhood of H3 ∪H2. Hence, we may assume that it leaves
γ fixed. Since S and γ are in general position, we may pick the co-cores C1

of the 1-handles so that C1 ∩ S ∩ γ = ∅. The ambient isotopy supported
in a neighbourhood of H1 can then be taken to leave γ invariant. There
is no restriction on S ∩ H0, once S lies in the remaining handles in the
correct way. Hence, we have ambient isotoped S into vertical form, leaving
γ invariant. �

For inductive purposes, we define a notion of complexity for surfaces in
vertical form in a handle structure of a 3-manifold.

Definition 4.6. The complexity of a vertical surface S is the ordered pair
of integers (|S ∩H2|, |∂S ∩H1|).

We order these pairs lexicographically. In other words, the pairs (n1, n2)
and (m1,m2) satisfy (n1, n2) > (m1,m2) precisely when:
• n1 > m1, or
• n1 = m1 and n2 > m2.

It is clear that this ordering is a well-ordering.
In the case of surfaces in 3-manifolds, there is a notion which is a little

stronger than vertical form.

Definition 4.7. Let S be a vertical surface in a handle structure H of a
3-manifold M . Then S is standard if S intersects each handle of H in a
(possibly empty) collection of discs.



EXCEPTIONAL SURGERY CURVES 113

0-handle 1-handle 2-handle

Figure 4.8.

Examples of surfaces in standard form are given in Fig. 4.8. A general
surface S in M might not have a representation in standard form, but if
S is incompressible and M is irreducible, then we now show that it can be
ambient isotoped into standard form.

Lemma 4.9. Let (M,γ) be an irreducible sutured manifold with a handle
structure H. Let S be a vertical incompressible surface properly embedded in
M , with no component of S a 2-sphere. Then there is an ambient isotopy
of S which leaves γ fixed and which takes S into standard form without
increasing its complexity.

Proof. If S is not in standard form, then it must differ from standard form in
some 1-handle or some 0-handle of H. Suppose first that, in some 1-handle
H1 = D2×D1, there is a component of S ∩H1 which is α×D1, for a simple
closed curve α. If both curves of α× ∂D1 bound discs in H0, then S has a
2-sphere component. Hence, we may assume that S differs from standard
form in some 0-handle H0. That is, suppose that S ∩H0 is not a union of
discs. Then, since no component of S is a 2-sphere, S ∩H0 is compressible
in H0, via a compression disc D. Since S is incompressible, ∂D bounds a
disc D′ in S. The disc D′ does not lie wholly in H0, and so must intersect
H1. As M is irreducible, we may ambient isotope S, taking D′ onto D.
This does not increase the complexity of S, and it reduces the number of
components of S ∩ H1. Hence, this process terminates with S in standard
form. The isotopy at each stage leaves ∂M (and hence γ) fixed. �

We may therefore assume that if S and M satisfy the conditions of
Lemma 4.9, then S is in standard form. We will now show that, if (MS , γS)
is the sutured manifold resulting from the decomposition along S, then MS

has an induced handle structure with γS in vertical form in H(∂MS).
If H is an i-handle D3−i × Di of H(M), then each component of H −

int(N (S)) inherits a structure X × Di, where X is a (3 − i)-submanifold
of D3−i. This is true because S is vertical. Since S is standard, then each
component of X is a copy of D3−i, and so each component of H− int(N (S))
has the structure of an i-handle. These handles combine to give a handle
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structure on MS . The curves γS are a subgraph of the graph ∂N (∂S) ∪ γ.
Since ∂S and γ are both vertical in H(∂M), the curves γS are then vertical
in H(∂MS).

It is a very useful property that (MS , γS) inherits a handle structure from
that of (M,γ). It is the basis for an inductive proof of Theorems 1.4, 1.5
and 1.6. However, to construct such a proof, we need to define a ‘complexity’
for handle structures.

5. Complexity of handle structures of sutured manifolds.

We will now define a notion of complexity for a handle structure H of a
sutured manifold (M,γ). We will focus on the 2-spheres ∂H0. Lying in these
2-spheres, there is the surface ∂H0 ∩ (H1 ∪ H2). We denote this surface by
F(H), or sometimes simply F .

Picture of
near 0-handle



M

Figure 5.1.

Recall from Section 4 that we insisted that no 2-handle of H is disjoint
from H1. Therefore, F inherits a handle structure, with ∂H0 ∩H1 forming
the 0-handles of F (which we denote by F0), and ∂H0 ∩ H2 forming the
1-handles of F (which we denote by F1). Note that each component of the
surface cl(∂H0−F) lies either in ∂M or in ∂H3, and the curves γ∩∂H0 are
properly embedded in cl(∂H0 −F).

If S is in standard form, then the simple closed curves S ∩ ∂H0 satisfy
the following (fairly weak) restrictions:
• S ∩ ∂H0 is disjoint from H3,
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• S ∩ F is vertical in F ,
• no curve of S ∩ ∂H0 lies entirely within a 0-handle of F .

The nature of F will determine the complexity of H. One invariant of F
will be of particular importance, namely its index. Recall from Section 3
that the index I(F ) of a component F of F is defined to be

I(F ) = −2χ(F ) + |F ∩ γ|.
If V is a 0-handle of F , then the valence of V is the number of arcs of V ∩F1.
We also define the index of V to be

I(V ) = |V ∩ F1|+ |V ∩ γ| − 2.

The reason for this terminology is that

I(F ) =
∑

V ∈F∩F0

I(V ).

For each component F of F , we define the following integers:

C1(F ) = |F ∩ F1|+ 1,

C2(F ) = I(F ),

C3(F ) = |∂F |.
The F-complexity set CF (H) of H is defined to be the set of ordered triples

CF (H) = {(C1(F ), C2(F ), C3(F )) : F a component of F with I(F ) > 0},
where repetitions are retained. If X is a subset of M , with X∩F a nonempty
collection of components of F , then we similarly define

CF (X) = {(C1(F ), C2(F ), C3(F )) : F

a component of X ∩ F with I(F ) > 0},
where again repetitions are retained.

An example is given in Fig. 5.2 of how F and its complexity behave when
H is decomposed along a surface S.

We compare the triples (C1(F ), C2(F ), C3(F )) and (C1(F ′), C2(F ′),
C3(F ′)) by defining (C1(F ), C2(F ), C3(F )) > (C1(F ′), C2(F ′), C3(F ′)) if:
• C1(F ) > C1(F ′), or
• C1(F ) = C1(F ′) and C2(F ) > C2(F ′), or
• C1(F ) = C1(F ′) and C2(F ) = C2(F ′) and C3(F ) > C3(F ′).

It is clear that this is a total ordering and a well-ordering.
We define a total order on the F-complexity of handle structures, as

follows. If H and H′ are two handle structures, we order their F-complexity
sets CF (H) and CF (H′) into two non-increasing sequences of triples. We
extend each of these sequences by concatenating with an infinite sequence of
triples (0, 0, 0). (Note that always C1(F ) > 0, and so (C1(F ), C2(F ), C3(F ))
> (0, 0, 0).) Then, we compare the first (and hence largest) triple (C1(F ),
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-complexity = (7, 4, 4)

-complexity = (4, 6, 2)

S

Figure 5.2.

C2(F ), C3(F )) of CF (H) with the first (and hence largest) triple (C1(F ′),
C2(F ′), C3(F ′)) of CF (H′). If (C1(F ), C2(F ), C3(F )) > (C1(F ′), C2(F ′),
C3(F ′)), say, then we define CF (H) > CF (H′). Otherwise, we pass to
the second triples of CF (H) and CF (H′). Continuing in this way, we can
compare the F-complexities of H and H′.

We now define the complexity C(H) of a handle structure H to be the
ordered pair (CF (H), n(H)), where n(H) is the number of 0-handles of H
containing a component of F(H) with positive index. We compare the
complexity of handle structures H and H′ by asserting that C(H) > C(H′)
if one of the following holds:

• CF (H) > CF (H′), or
• CF (H) = CF (H′) and n(H) < n(H′).

Lemma 5.3. This ordering on complexity of handle structures is a well-
ordering.

Proof. We need to show that there cannot exist an infinite strictly decreasing
sequence {C(Hi) : i ∈ N}. Suppose that there is such a sequence. Then
CF (Hi) ≥ CF (Hi+1) for each i. Suppose first that this inequality is strict for
only finitely many i. Then we may pass to a subsequence in which CF (Hi)
is constant. Then the number of components of F(Hi) with positive index
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is constant. However, since C(Hi) > C(Hi+1) for each i, n(Hi) < n(Hi+1)
for each i. This is impossible.

Therefore, we may suppose that CF (Hi) > CF (Hi+1) for infinitely many
i. Pass to this subsequence. Let Tn

i be the nth largest triple of CF (Hi). For
each i, there is a natural number N(i), such that:
• Tn

i = Tn
i+1 for n < N(i), and

• T
N(i)
i > T

N(i)
i+1 .

Define M(i) = minj≥i N(j). Then {M(i) : i ∈ N} is a non-decreasing
sequence. For all i, M(i) ≤ N(i), and for infinitely many i, this is an
equality. Consider the sequence of triples {TM(i)

i : i ∈ N}. Then T
M(i)
i ≥

T
M(i)
i+1 ≥ T

M(i+1)
i+1 . For the infinitely many i when M(i) = N(i), we have

T
M(i)
i = T

N(i)
i > T

N(i)
i+1 = T

M(i)
i+1 ≥ T

M(i+1)
i+1 .

Thus, the infinite sequence of triples {TM(i)
i : i ∈ N} contains an infinite

strictly decreasing sequence. This is impossible, since the ordering on the
triples is a well-ordering. �

By the above lemma, we can use the complexity of handle structures as
the basis for an inductive argument. We will start with a sutured manifold
(M,γ) with a handle structure H. If H2(M,∂M) 6= 0, we will perform
a taut decomposition (M,γ) S−→ (MS , γS). The manifold MS will inherit
a handle structure H′. We will try to ensure that the complexity of H′
is no more than that of H (and preferably, strictly less than that of H).
The following lemma asserts that, to guarantee this, we need only restrict
attention to smaller parts of H. For example, it shows that we need only
check C(H0 ∩H′) ≤ C(H0) for each 0-handle H0 of H.

Lemma 5.4. Let H (respectively H′) be a handle structure for a sutured
manifold (M,γ) (respectively (M ′, γ′)). Suppose that the 0-handles of H
(respectively H′) have been partitioned into n subsets A1, . . . , An (respect-
ively, A′1, . . . , A

′
n). (For example, each Ai may be some 0-handle H0 of H,

and A′i is H0∩H′.) Suppose that for each i, C(A′i) ≤ C(Ai). Then C(H′) ≤
C(H). Additionally, if C(A′i) < C(Ai) for some i, then C(H′) < C(H).

Proof. Arrange the triples of CF (H) into a non-increasing sequence {Tj :
j ∈ N}. Consider the first integer j for which Tj > Tj+1. Then the
triples T1, . . . , Tj are all some fixed triple T . The partitioning of H0 gives a
partitioning of T1, . . . , Tj into n subsets (some of which may be empty).
Say that k(i) of these lie in Ai. Since C(A′i) ≤ C(Ai), we must have
CF (A′i) ≤ CF (Ai). So, there are at most k(i) copies of T in A′i, and there
are no larger triples. Hence, in CF (H′), there are at most j copies of T
and no larger triples. If there are fewer than j copies of T in C(H′), then
CF (H′) < CF (H), and the lemma is proved. Otherwise, we can remove
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each copy of T from CF (H) and CF (H′), without affecting any ordering.
Continuing in this fashion with the next largest triples of C(H), and so on,
we see that CF (H′) ≤ CF (H). Also, if we have equality, then we must have
had CF (A′i) = CF (Ai) for each i. Since C(A′i) ≤ C(Ai), the number of
0-handles in A′i containing components of F(H′) with positive index is at
least the number of 0-handles in Ai containing components of F(H) with
positive index. Therefore, n(H′) ≥ n(H) and so C(H′) ≤ C(H). Also, if we
have equality, then we must have had C(A′i) = C(Ai) for each i. �

To perform an inductive argument we need to ensure that the complexity
of H′ is less than that of H, where H′ is the induced handle structure on
(MS , γS). However, this is not in general true. To guarantee this, it is
important that each 0-handle of F has positive index, and to ensure this, we
may first need to decompose (M,γ) along some product discs and annuli, and
then simplify the handle decomposition of the resulting sutured manifold.
Even then, to ensure that complexity is reduced by decomposition along S,
we may need to perform some modifications to S.

We will give these procedures in Sections 7-10. But first we explain the
idea behind the above definition of complexity. The surface S is in general
∂-compressible in M and in [4] it was shown that there may exist infinitely
long hierarchies of incompressible ∂-compressible surfaces in a 3-manifold.
Thus, it is vital that we use the fact that M has a sutured manifold structure.
This is encoded in the quantity C2(F ) which was defined to be the index
of a component F of F . We therefore study how index behaves under
decomposition.

Let H (respectively, H′) be the handle decomposition of (M,γ) (respec-
tively, (MS , γS)). Let F = F(H) and let F ′ = F(H′). Let V be a 0-handle of
F and let V ′

1 , . . . , V
′
k be the 0-handles V ∩F ′. Now, V ′

1 , . . . , V
′
k are obtained

from V by cutting along properly embedded arcs. The endpoint of each
arc either lies in R±(M) or in F1(H). Therefore, an elementary counting
argument shows that

I(V ) =
k∑

i=1

I(V ′
i ).

In particular, if F is a component of F and F ′ = F ∩F ′, then I(F ) = I(F ′).
Hence, we can ensure that the quantity C2 does not increase, as long as

we create no discs of F ′ with negative index. Thus, our goal is to alter
S in order to remove these discs. But, in general, this does not seem to
be possible. An example is given in Figure 5.2. There, a 0-handle of H
is decomposed into two 0-handles of H′. A negative index disc of F ′ is
created, but note that, nevertheless, the complexity of the handle structure
has decreased.
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It is fairly easy to show that, in general, under mild assumptions on
S, neither C1 nor C3 can increase. Our aim is to show that, if C1 is left
unchanged, then in fact no negative index discs of F ′ are created, and so C2

is not increased. Furthermore, if C1, C2 and C3 are all left unchanged, then
[S, ∂S] = 0 ∈ H2(M,∂M).

6. Overview of the proof of the main theorems.

We have now developed enough machinery to outline the proofs of Theo-
rems 1.4, 1.5 and 1.6. We start with a generalised triangulation of M , and
using this, we construct the dual handle structure H(M) (which we some-
times abbreviate to H). Roughly speaking, the idea is to decompose M
along surfaces until we end with a solid torus neighbourhood of K, plus
perhaps some 3-balls. At each stage, we will be examining a 3-manifold
M ′ embedded in M . This manifold M ′ will have a handle structure which
respects H(M), in the following sense.

Definition 6.1. Let (M,γ) be a sutured manifold with a handle structure
H(M). Let (M ′, γ′) be a sutured manifold lying in M with a handle structure
H(M ′). ThenH(M ′) respectsH(M) if each of the following conditions holds:
• The 0-handles of M ′ lie in the 0-handles of M .
• The 1-handles of M ′ lie in the 1-handles of M in a vertical fashion and

inherit their product structure.
• The surface F(M ′) lies in F(M), with the intersection F1(M ′)∩F1(M)

lying in F1(M) in a vertical fashion.
Note that, if H(M ′) respects H(M), then automatically the arcs γ′ ∩

H1(M ′) are vertical in H1(M) and the discs H2(M ′) ∩H1(M ′) are vertical
inH1(M). Thus, the only restriction on the 2-handles of M ′ is a requirement
on their attaching maps. The remainder of each 2-handle may lie inside M
in a complicated way.

Occasionally, the handle structure of M ′ will resemble the handle struc-
ture of M in some 0-handle, in the following sense.

Definition 6.2. Suppose that the handle structure H(M ′) of (M ′, γ′) re-
spects the handle structure H(M) of (M,γ). Let H0 be a 0-handle of M .
Then H(M ′) ∩ H0 is obtained from H0 by a trivial modification if each of
the following conditions is satisfied:

(i) There is at most one 0-handle H ′
0 of H(M ′)∩H0 containing a compo-

nent of F(M ′) with positive index;
(ii) H0 − H ′

0 consists of a parallelity region R between ∂H0 − ∂H ′
0 and

∂H ′
0 − ∂H0;

(iii) for any component F of F(M)∩H0 with positive index, F ∩R is either
empty or a parallelity region between arcs and circles of F ∩ ∂H ′

0 and
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arcs and circles in ∂F , the parallelity region respecting the handle
structure of F ;

(iv) the arcs ∂H ′
0 ∩ γ′ are parallel in R to the arcs of ∂H0 ∩ γ, possibly

joined up by index zero discs of F(M);
(v) ∂H ′

0 ∩ F(M) and ∂H ′
0 ∩ F(M ′) have the same handle structure.

Roughly speaking, a trivial modification leaves components of F(M) with
positive index relatively unaltered.

We make the following definition: If H(M) is a handle structure for M ,
we define the important 0-handles IH0(M) to be the 0-handles H0 with
H0∩F containing at least one component with positive index. In Sections 7
and 8, we will prove the following result, which gives a method of modifying
a handle decomposition so that, afterwards, each 0-handle of F has positive
index. Recall from Section 5 that the index of a component of F is equal to
the sum of the indices of its 0-handles. So this implies that each component
of F has positive index. Therefore, each 0-handle of H is either important
or disjoint from the 1-handles and 2-handles.

Proposition 6.3. Let H(M) be a handle structure of a taut sutured mani-
fold (M,γ). Suppose that each component of M has nonempty boundary, and
that no component of M is a solid torus. Suppose also that no component
of M is a Seifert fibre space disjoint from γ, with base space a disc and
having two exceptional fibres. Then there is a (possibly empty) sequence of
taut decompositions

(M,γ) P1−→ · · · Pm−→ (M ′, γ′),

where each Pi is either a product disc or an incompressible annulus disjoint
from the sutures. There is a handle structure H(M ′) of (M ′, γ′) and an
embedding of M ′ in M isotopic to the embedding arising from the sutured
manifold decomposition, with the following properties:

(i) H(M ′) respects H(M).
(ii) For each 0-handle H0 of H(M), the complexity of H0 ∩ H(M ′) is no

more than that of H0.
(iii) For each 0-handle H0 of H(M), the intersections

H0 ∩ IH0(M ′)

H0 ∩ IH0(M ′) ∩ F(M ′)

H0 ∩ IH0(M ′) ∩ γ′

are each one of a finite number of possibilities (up to trivial modifi-
cations), which depend only on F(M) ∩H0 and H0 ∩ γ, and are oth-
erwise independent of M and M ′.
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(iv) If H0 is a 0-handle of H(M) and the complexity of H0 ∩ H(M ′) is
equal to that of H0, then H0 ∩H(M ′) is obtained from H0 by a trivial
modification.

(v) Each 0-handle of F(M ′) has positive index.
(vi) For each 0-handle H ′

0 of H(M ′), H ′
0 ∩ (F(M ′) ∪ γ′) is connected.

Once we have such a handle structure, we then perform a sutured manifold
decomposition.

Proposition 6.4. Let H(M) be a handle structure of a taut sutured man-
ifold (M,γ). Suppose that each 0-handle of F(M) has positive index, and
that, for each 0-handle H0 of H(M), H0 ∩ (F(M) ∪ γ) is connected. Let
(M,γ) S−→ (MS , γS) be a taut sutured manifold decomposition, where ∂S
has essential intersection with R±(M) and [S, ∂S] 6= 0 ∈ H2(M,∂M). Then
there is a surface S′ properly embedded in (M,γ) and a commutative diagram
of sutured manifold decompositions and pull-backs

(M,γ) S−→ (MS , γS) = (M̂1, γ̂1)
P1←− . . .

Pr−1←− (M̂r, γ̂r)yS′ ‖
(M ′, γ′) = (M̂m, γ̂m)

Pm−1←− (M̂m−1, γ̂m−1)
Pm−2←− . . .

Pr←− (M̂r, γ̂r).

Each Pi is either a product disc, an incompressible product annulus or (for
i < r) a surface parallel to a subsurface Fi of R±(M̂i+1), with the orienta-
tions of Pi and Fi disagreeing near ∂Pi. The induced handle structure H(M ′)
on (M ′, γ′) satisfies properties (i), (ii), (iii) and (iv) of Proposition 6.3 and
also the following:

(v) For some 0-handle H0 of H(M), C(H(M ′) ∩H0) < C(H0).

Proof of Theorems 1.4, 1.5 and 1.6 using Propositions 6.3 and 6.4. Let H be
the dual handle structure for M , arising from the generalised triangulation
of M . We give M the trivial sutured manifold structure with R− = ∂M
and R+ = ∅. If this is not taut, then M is either reducible or a solid torus.
Hence, by Theorem 5.1 of [10], there are no exceptional or norm-exceptional
surgery curves in M satisfying the hypotheses of Theorem 1.4. Hence we
may assume that (M, ∅) is taut.

We will construct a sequence of taut sutured manifolds (Mi, γi) where
1 ≤ i ≤ n. The first sutured manifold (M1, γ1) will be (M, ∅). Each sutured
manifold (Mi, γi) will have a handle structure Hi, and there will be an
embedding of Mi in Mi−1 having the following properties (some of which
are only relevant for i > 1):

(i) Hi respects Hi−1.
(ii) For each 0-handle H0 of Hi−1, the complexity of H0 ∩ Hi is no more

than that of H0.
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(iii) For each 0-handle H0 of Hi−1, the intersections

H0 ∩ IH0
i

H0 ∩ IH0
i ∩ F(Hi)

H0 ∩ IH0
i ∩ γi

are each one of a finite number of possibilities (up to trivial modifica-
tion), which depend only on F(Hi−1) ∩H0 and H0 ∩ γi−1.

(iv) For a 0-handle H0 of Hi−1, if the complexity of H0 ∩ Hi is equal to
that of H0, then H0∩Hi is obtained from H0 by a trivial modification.

(v) For some 0-handle H0 of Hi−1 (i > 2), we have C(H0 ∩Hi) < C(H0).
(vi) For 1 < i < n, each 0-handle H0 of F(Hi) has positive index, and

H0 ∩ (F(Hi) ∪ γi) is connected.
(vii) K lies in Mi.
(viii) For 1 ≤ i < n, H2(Mi − int(N (K)), ∂Mi) 6= 0.
(ix) If Mi(σ) is the manifold obtained from Mi by Dehn surgery along K

with slope σ, then at least one of the following is true:
• Mi = M ,
• (Mi(σ), γi) is not taut, or
• the core of the surgery solid torus has finite order in π1(Mi(σ)).

The final manifold Mn of the sequence is a solid torus neighbourhood of
K, plus perhaps some 3-balls. The sequence is constructed using Proposi-
tions 6.3 and 6.4 in an alternating fashion.

We now show how to continue this sequence beyond (M1, γ1). We would
like to let (M, ∅) = (M2, γ2), but (vi) above need not be satisfied in this
case. Note, however, that each 0-handle of F(M) does indeed have positive
index in either of the following cases:
• M is closed (and so we have a genuine triangulation), or
• ∂M 6= ∅ and we have an ideal triangulation.

In the case where K and σ are norm-exceptional, we would like to ensure that
one of the above is true. In Theorem 1.6, we explicitly make this assumption.
In Theorem 1.4, we alter the given generalised triangulation of M so that it
is either genuine or ideal. This can be done algorithmically. Hence, in the
case where K and σ are norm-exceptional, we let (M, ∅) = (M2, γ2).

Suppose now that K and σ are exceptional and that some 0-handle of F
has nonpositive index. Then we use Proposition 6.3 to decompose (M, ∅)
along product discs and incompressible annuli disjoint from the sutures,
resulting in a taut sutured manifold (M ′, γ′) satisfying (i)-(vi) of 6.3. Since
∆(σ, µ) > 1, Theorem 3.2 gives that we may ambient isotope K off each
decomposing surface, and hence K lies in M ′.

To apply Proposition 6.3, we need to check that M is not a Seifert fibre
space, with base space a disc, having two exceptional fibres, and having
γ = ∅. We will suppose it is, and then achieve a contradiction. Let α be
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an arc properly embedded in the base space, separating the two exceptional
points. Then α lifts to an annulus A in M . Using Theorem 3.2, we may
ambient isotope K off A. Let M̂ be the solid torus which is the closure of the
component of M − A containing K. Then, ∂M̂ is an incompressible torus
in M − int(N (K)). Since M − int(N (K)) is atoroidal, we deduce that ∂M̂
must be parallel to ∂N (K) and so K is isotopic to the exceptional fibre lying
in M̂ . But then H2(M − int(N (K)), ∂M) is trivial, contrary to assumption.
Hence, we may apply Proposition 6.3, and then we let (M2, γ2) = (M ′, γ′).

We now verify (ix). We only applied Proposition 6.3 in the case where K
and σ are exceptional. Hence, either (MK(σ), ∅) is not taut or the core of
the surgery solid torus has finite order in π1(MK(σ)). We shall show that
either (M ′

K(σ), γ′) is not taut or the core of the surgery solid torus has finite
order in π1(M ′

K(σ)). Suppose that (M ′
K(σ), γ′) is taut. Then, by 3.1, the

sequence of decompositions

(MK(σ), γ) P1−→ · · · Pm−→ (M ′
K(σ), γ′),

is taut. In particular, (MK(σ), γ) is taut, and therefore (iii) of 1.3 holds.
Also, since each Pi has essential intersection with R±, it is therefore in-
compressible. Therefore, the map π1(M ′

K(σ)) → π1(MK(σ)) induced by
inclusion is an injection. Therefore, the core of the surgery solid torus has
finite order in π1(M ′

K(σ)).
Thus, we have now constructed (M2, γ2) and have verified that it has the

correct properties. Suppose that we have constructed a sequence as far as
(Mi, γi), satisfying (i)-(ix) above. If H2(Mi − int(N (K)), ∂Mi) is trivial,
then we stop. If this homology group is nontrivial, then (see Section 3 or
Theorem 2.6 of [10]) we may find a taut decomposition

(Mi − int(N (K)), γi)
S−→ (M ′

i − int(N (K)), γ′i),

such that
• S is disjoint from ∂N (K),
• no curve of ∂S bounds a disc in R±(Mi),
• no component X of M ′

i has ∂X ⊂ R−(M ′
i) or ∂X ⊂ R+(M ′

i), and
• [S, ∂S] 6= 0 ∈ H2(Mi − int(N (K)), ∂Mi).

This implies that [S, ∂S] 6= 0 ∈ H2(Mi, ∂Mi). In the case where K and σ
are norm-exceptional and Mi = M , we insist that [S, ∂S] = z ∈ H2(M −
int(N (K)), ∂M), where z is the homology class in Definition 1.3.

Let M ′
i(σ) be the result of M ′

i after Dehn surgery along K with slope σ.
Since (Mi(σ), γi) is not taut or the core of the surgery solid torus has finite
order in π1(Mi(σ)), the argument above gives that (M ′

i(σ), γi) is not taut
or the core of the surgery solid torus has finite order in π1(M ′

i(σ)). Using
the argument in Section 3 (see also Theorem 1.8 of [1]), we deduce that the
decomposition (Mi, γi)

S−→ (M ′
i , γ

′
i) is taut. Since each 0-handle of F(Hi)
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has positive index, we may apply Proposition 6.4 to (Mi, γi), and so end with
a sutured manifold (M ′′

i , γ′′i ) with a handle-decomposition H′′i , satisfying (i)-
(iv) of 6.3 and (v) of 6.4. Again using 3.2, we may isotope K off each product
disc and incompressible product annulus, and so we may assume K lies in
M ′′

i . Also, using the commutative diagram in Proposition 6.4, we deduce
that (M ′′

i (σ), γ′′i ) is not taut or the core of the surgery solid torus has finite
order in π1(M ′′

i (σ)).
If any component of M ′′

i is a solid torus disjoint from K, we decompose
it along a meridian disc. If the component X of M ′′

i containing K is a solid
torus, then the atoroidality of M − int(N (K)) implies that K is the core of
X. In this case, we set (Mn, γn) = (X, γ′′i ∩X), together with some 3-balls
obtained by decomposing M ′′

i −X.
We may therefore assume that no component of M ′′

i is a solid torus, and
so we can apply 6.3 to (M ′′

i , γ′′i ) to obtain a sutured manifold (Mi+1, γi+1)
satisfying (i)-(ix) above. Note that each component of F(Hi+1) has positive
index, and therefore, the only 0-handles of Hi+1 not lying in IH0

i+1 are
handles disjoint from F(Hi+1).

By (ii), (v) and Lemma 5.4, the complexity of Hi+1 is strictly less than
that of Hi. Hence, eventually, the sequence terminates with a sutured man-
ifold (Mn, γn) such that H2(Mn− int(N (K)), ∂Mn) = 0. Then Mn is a solid
torus neighbourhood of K, plus perhaps some 3-balls. By (ix), the sutures
γn ∩N (K) are parallel to σ.

Note that, for each 0-handle H0 of H(M), there are only finitely many
possibilities for F(M) ∩ H0. Thus, by induction on complexity using (ii),
(iii) and (iv) above, there is in each 0-handle H0 of H(M), only a finite
number of possibilities for

H0 ∩ IH0
n

H0 ∩ IH0
n ∩ F(Hn)

H0 ∩ IH0
n ∩ γn.

Each possibility for H0∩IH0
n∩γn gives a tangle in the associated 3-simplex

of M . These tangles join to form γn (with possibly some unknotted curves
removed). Some component of γn is the σ-cable of K, and hence the tangles
required for Theorems 1.5 and 1.6 are constructed by taking all possible
subtangles of H0 ∩ IH0

n ∩ γn.
Each possibility for H0 ∩ IH0

n and H0 ∩ IH0
n ∩ F0(Hn) gives a graph G

in the associated 3-simplex of M . When the collection of these graphs (one
in each 3-simplex of M) are joined, they form the 0-handles and 1-handles
of Mn. The 2-handles of Mn are attached along the annuli (H0

n ∪ H1
n) ∩

H2
n, which are determined by H0

n ∩ F1(Hn). Thus, we readily see that the
algorithm given in Section 2 constructs all possibilities for K and σ. Hence,
Theorem 1.4 is established. �
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We end this section with the following:

Proof of Theorem 1.1.
This is an almost immediate corollary of Theorem 1.4, but there is one

complication. If we set M = S3 − int(N (L)), then it is not obvious that
M − int(N (K)) is atoroidal. To establish this, we will use a modified form
of the argument in Proposition 2.3 of [6].

Suppose therefore that T is an incompressible torus in M − int(N (K))
which is not parallel to ∂N (K) or ∂N (L). Since we are assuming that L
is not a nontrivial satellite knot, then T must be compressible in M or be
parallel to ∂N (L). In the latter case, K lies in the collar between T and
∂N (L), and then it is easy to see that L′ is a winding number one satellite
of L. In particular, genus(L′) ≥ genus(L), which is contrary to hypothesis.
Therefore, T must be compressible in M . There are now two cases.

Case 1. T lies in a 3-ball in M .
Then, T separates S3 into a nontrivial knot exterior X disjoint from K

and L, and a solid torus containing K and L. Let Y be the manifold obtained
from M by removing the interior of X. Let Y ′ be the manifold obtained
from S3−int(N (L′)) by removing the corresponding knot exterior, which we
also call X. Note that H2(Y − int(N (K)), ∂Y ) is nontrivial. Also, ∂Y has
compressible boundary. So, by Theorem 5.1 of [10] (see also the argument
in Section 3) the minimal genus of a Seifert surface for L′ in the complement
of X is at least the genus of L in the complement of X, which is the genus
of L. Since X is a nontrivial knot exterior, the minimal genus of a Seifert
surface for L′ in the complement of X is just the genus of L′. So, in this
case, the genus of L′ is at least the genus of L, which is a contradiction.

Case 2. T bounds a solid torus V in M which contains K.
Let V ′ be the manifold obtained from V by 1/q Dehn surgery along K.

Case 2A. K has winding number zero in V .
Then consider a minimal genus Seifert surface S for the knot L′. We may

assume that it intersects ∂V ′ in a collection of simple closed curves, which
inherit an orientation from S. The union of these curves is homologically
trivial in V ′. Hence, by making annular modifications to S, if necessary,
which do not increase its genus, we may assume that each curve of S ∩ ∂V ′

is homologically trivial in V ′. Since K has winding number zero in V , these
curves are also homologically trivial in V . Hence, we may fill them in with
meridian discs in V . This gives a Seifert surface for L with genus at most
that of S, which is a contradiction.

Case 2B. K has nonzero winding number in V .
Since K and L have zero linking number, so do L and the core of V .

Therefore, there exists a Seifert surface S′ for L′ which is disjoint from V ′.
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If ∂V ′ is incompressible in V ′, then by Lemma A.16 of [7], there is a
minimal genus Seifert surface for L′ which is disjoint from V ′. This gives a
Seifert surface for L, and again we reach the contradiction that genus(L) ≤
genus(L′).

So, we may assume that ∂V ′ is compressible in V ′. This implies that V ′ is
a solid torus, since it cannot be reducible, as it lies in S3. Now, 1/q surgery
along a knot K in the solid torus V never yields another solid torus if |q| > 1,
unless K is a core of V or K lies in a 3-ball in V [9]. If K lies in a 3-ball in
V , then 1/q surgery along K does not alter L, which is a contradiction. If
K is a core of V , then T is parallel to ∂N (K), contradicting the assumption
that it is essential.

This proves then that M − int(N (K)) is atoroidal. Theorem 1.1 now
follows directly from Theorem 1.4. �

7. Simplifying handle structures.

In the next two sections, we will give a proof of Proposition 6.3. In particular,
we will assume that each component of M has nonempty boundary, and that
no component of M is a solid torus or a Seifert fibre space as in 6.3. We start
by giving various elementary procedures for simplifying a handle structure
H of the taut sutured manifold (M,γ). Our aim is to end with a handle
structure in which each 0-handle of F has positive index. Each procedure
will satisfy (i)-(iv) of 6.3. It will not increase the complexity of the handle
structure, but it need not decrease it. To ensure that these procedures
eventually terminate, we therefore introduce the following definition:

Definition 7.1. Let H be a handle structure for a sutured manifold (M,γ).
Define the extended F-complexity for H to be the set of triples

C+
F (H) = {(C1(F ), C2(F ), C3(F )) : F a component of F},

where repetitions are retained. Here, C1, C2 and C3 are the integers defined
in Section 5. We also define the extended complexity C+(H) to be the ordered
pair (C+

F (H), n(H)).

The difference between the extended F-complexity and the F-complexity
of a handle structure is that extended F-complexity also takes into account
components of F with nonpositive index.

We order the extended F-complexities and extended complexities as we
do the F-complexities and complexities of handle structures (see Section 5).
As in Lemma 5.3, this is a well-ordering. The procedures we give in the next
two sections will all reduce the extended complexity of the handle structure,
and so are guaranteed to terminate.

The following lemma will be useful in our verification that (i)-(iv) of 6.3
holds and that extended complexity is reduced:
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Lemma 7.2. Let (M,γ) be a sutured manifold with a handle structure H.
Let (M ′, γ′) be embedded in M , with a handle structure H′ which respects
H. Suppose that, for each component F of F , either C+

F (F ∩ F ′) < C+
F (F )

or F ⊂ F ′. Suppose also that the former of the above two possibilities holds
for at least one component F of F . Suppose also that, if I(F ) ≤ 0, then the
index of each component of F ∩F ′ is nonpositive. Then, C+

F (H′) < C+
F (H),

and (i), (ii) and (iv) of 6.3 are verified.

Proof. A version of the argument in Lemma 5.4 gives that C+
F (H′) < C+

F (H).
We now check (ii) and (iv) of 6.3. (Note that (i) of 6.3 is part of the
hypothesis of the lemma.) For each component F of F , we have one of the
following possibilities:

(i) F ⊂ F ′ and so F ∩ F ′ is a copy of F , or
(ii) I(F ) > 0 and CF (F ∩ F ′) ≤ C+

F (F ∩ F ′) < C+
F (F ) = CF (F ), or

(iii) I(F ) ≤ 0 and CF (F ∩ F ′) = CF (F ).
In (iii), we are using that if I(F ) ≤ 0, then the index of each component of

F∩F ′ is nonpositive, and so does not contribute to F-complexity. Therefore,
for any 0-handle H0 of H, CF (H′∩H0) ≤ CF (H0). Also, if we have equality,
then (ii) above cannot occur for any component F of F ∩H0, which implies
that components F of F ∩ H0 with positive index remain unchanged and
hence that n(H′ ∩H0) ≥ n(H0). So, C(H′ ∩H0) ≤ C(H0). This verifies (ii)
of 6.3. Also, if C(H′ ∩H0) = C(H0), then H′ ∩H0 is obtained from H0 by
a trivial modification, verifying (iv) of 6.3. �

Before we describe the procedures in detail, we mention that many of
them simply remove some handles of H. The following lemma will therefore
be useful:

Lemma 7.3. Let H′ be a collection of handles of H forming a 3-manifold
M ′ embedded in M , with H−H′ containing at least one i-handle for some
i ≤ 2. Suppose that H′ is a handle structure, that each handle of H − H′
is disjoint from γ and that (M ′, γ) is a sutured manifold structure. Then,
(i)-(iv) of 6.3 are satisfied, and extended F-complexity is reduced.

Proof. It follows straight from the definition that H′ respects H. Let us
now check that the hypotheses of 7.2 hold. Let F be some component of F
and let F ′ = F ∩ F ′. The 1-handles of F are either removed or divided up
amongst the components of F ′. In particular, each component X of F ′ has
C1(X) ≤ C1(F ). If this inequality is an equality for some X, then in fact
F ′ = F . Hence, either C+

F (F ′) < C+
F (F ) or F ⊂ F ′. Also, the former case

holds for some component F of F .
We now check that if I(F ) ≤ 0, then each component of F ′ has non-

positive index. But F ′ is obtained from F by removing some 1-handles (or
equivalently, cutting F along properly embedded arcs), then removing some
0-handles disjoint from γ. Thus, each component X of F ′ has χ(X) ≥ χ(F )
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and γ ∩ X ≤ γ ∩ F . Hence, X does not have positive index if F does not
have positive index.

Thus, by Lemma 7.2, (i), (ii) and (iv) of 6.3 hold and extended F-
complexity is reduced. Also, (iii) of 6.3 is obvious. �

Procedure 1. Slicing a 0-handle along a disc.

Suppose that there is a disc D properly embedded in some 0-handle H0

with D ∩ γ = D ∩ F = ∅, and which separates F ∩ H0. Then, ∂D either
lies in ∂H3 or in R±. In the former case, ∂D bounds a disc D′ in ∂H3,
since each component of ∂H3 is a sphere. In the case where ∂D lies in R±,
the incompressibility of R± implies that ∂D bounds a disc D′ in R±. The
irreducibility of M implies that D∪D′ bounds a ball B in M . Procedure 1 is
the removal of all handles ofH which intersect int(B), other than H0. If D′ ⊂
∂H3, we extendH3 over B. By Lemma 7.3, (i)-(iv) of 6.3 hold, and extended
F-complexity is reduced. Thus, using this procedure, we eventually obtain
a handle structure H(M ′) on the resulting sutured manifold (M ′, γ′), with
H ′

0 ∩ (F(M ′) ∪ γ′) connected, for each 0-handle H ′
0 of H(M ′). This is (vi)

of 6.3.

Procedure 2. Collapsing a 2-handle and a 1-handle disjoint from γ.

Suppose now that H1 is a 1-handle of M which is disjoint from γ and which
intersects H2 in a single disc. Then this disc is contained in a single 2-handle
H2. We may remove H1 and H2, without changing the homeomorphism
type of (M,γ). Lemma 7.3 gives that (i)-(iv) of 6.3 are satisfied, and that
extended F-complexity is reduced.

Procedure 3. Collapsing a 2-handle and a 1-handle containing an arc of
γ.

Let H1 be a 1-handle of M which intersects γ in a single arc, and which
intersects H2 in a single disc, lying in a 2-handle H2. Procedure 3 is the
collapsing of H1 and H2. This moves γ ∩ H1 onto an arc running along
∂(H0 ∪ H1 − H1). Let (M ′, γ′) be the new sutured manifold, with handle
structure H′.

This procedure has the following effect on F : Removing H2∩∂H0 (which
is a collection of 1-handles of F), removing H1∩∂H0 (which is precisely two
0-handles of F) and then replacing each handle of F which we have removed
with a sub-arc of γ. Thus, if F is a component of F , and F ′ = F ∩F ′, then
each component of X of F ′ has C1(X) ≤ C1(F ), and if we have equality for
some component X, then in fact F is unchanged by the procedure. This
verifies one of the hypotheses of Lemma 7.2.

We now check that if F has nonpositive index, then each component X
of F ′ has nonpositive index. Suppose therefore F has nonpositive index and
that F is changed by the procedure. It is simple to show that I(F ) is the
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sum of the indices of X, as X ranges over all components of F ′. Therefore,
the only way that a component X of F ′ can have positive index is if another
component of F ′ has negative index. However, since F is changed by the
procedure, then each component of F ′ touches γ′, and hence I(X) ≥ 0 for all
components X of F ′. Lemma 7.2 now gives us that extended F-complexity
decreases and that (i), (ii) and (iv) of 6.3 hold. It is straightforward to verify
(iii) of 6.3.

Procedure 4. Decomposing along a product disc, then sliding γ.

Suppose that H1 is a 1-handle of H which is disjoint from H2 and which
has |H1 ∩ γ| = 2. Let D be one of the two discs of H1 ∩ H0, lying in some
0-handle H0. Push D a little into H0. Then D is a product disc, which we
decompose along. This decomposition creates a new handle decomposition
which respects H, and leaves both the complexity and extended complexity
of H unchanged. But now the two arcs of H1 ∩ γ are joined by an arc of
H0 ∩ γ. We may therefore perform an ambient isotopy which slides γ off
H1. Then, using Procedure 1, we may remove H1. Again, (i)-(iv) of 6.3 are
satisfied and extended F-complexity is reduced.

Procedure 5. Collapsing a 3-ball disjoint from γ.

Suppose that a component of M is a 3-ball disjoint from γ, comprised of
two 0-handles joined by a 1-handle. Then we may collapse the 1-handle and
one of the 0-handles. This reduces the extended F-complexity and (i)-(iv)
of 6.3 are satisfied.

Procedure 6. Collapsing a 2-handle and a 3-handle.

Let H2 = D1×D2 be a 2-handle, with one component of ∂D1×D2 in ∂M ,
and the other component touching a 3-handle H3. Then we may remove H2

and H3 without changing the homeomorphism type of M . By Lemma 7.3,
this procedure reduces extended F-complexity and satisfies (i)-(iv) of 6.3.
Note that we are assuming in 6.3 that each component of M has nonempty
boundary. Hence, if H3 is nonempty, we may always apply this procedure
somewhere. In this way, we remove all 3-handles from M .

The above six procedures are not enough to ensure that each 0-handle
of F has positive index. To deal with components of F which are annuli
disjoint from γ, we must clump collections of handles into groups, known as
amalgams, which are defined as follows:

Definition 7.4. An amalgam A is a connected collection of handles with
the following properties:

(i) A is disjoint from γ,
(ii) A is an I-bundle over a connected surface G,
(iii) the (I − ∂I)-bundle over ∂G is disjoint from ∂M ∪ ∂H3,



130 MARC LACKENBY

(iv) the handles of A touching the (I − ∂I)-bundle over ∂G are 1-handles
and 2-handles,

(v) no 2-handle or 3-handle of H−A touches A,
(vi) the ∂I-bundle over G lies in R±, and
(vii) cl(H−A) inherits a handle structure from H.
An amalgam is trivial if it is a single 2-handle; otherwise it is nontrivial.

An amalgam A behaves in many ways just like a 2-handle. For example,
it is attached onto the 0-handles and 1-handles of H −A in a fashion that
is very similar to the attachment of a 2-handle.

The main example of a nontrivial amalgam A is a connected collection of
2-handles and 1-handles disjoint from γ and H3, such that each 1-handle of
A intersects H2 in precisely two discs, and these discs lie in 2-handles of A.
For then the co-core D2 of each 1-handle H1 = D2×D1 in A has a product
structure as I × I, in which H1 ∩H2 = ∂I × I ×D1. The product structures
on the 1-handles combine with the product structures on the 2-handles to
form an I-bundle structure on A with the required properties. An example
is given in Figure 7.5.

1-handles

Amalgam

Other 2-handles

Figure 7.5.

In Section 8, we will show how to remove all nontrivial amalgams. This,
together with Procedures 1-6 is enough to ensure that each 0-handle of F
has positive index.

Lemma 7.6. Let H be a handle-decomposition of a connected sutured man-
ifold with nonempty boundary, containing no nontrivial amalgams. If some
0-handle of F has nonpositive index, then we may apply one of Procedures 1-
6.
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Proof. Let V be a 0-handle of F with nonpositive index. Then, there are a
number of cases.

1. |H2 ∩ V | = 0 and |γ ∩ V | = 0.
2. |H2 ∩ V | = 1 and |γ ∩ V | = 0.
3. |H2 ∩ V | = 1 and |γ ∩ V | = 1.
4. |H2 ∩ V | = 0 and |γ ∩ V | = 2.
5. |H2 ∩ V | = 0 and |γ ∩ V | = 1.
6. |H2 ∩ V | = 2 and |γ ∩ V | = 0.
For i = 2, 3 and 4, we may apply Procedure i. In Case 1, let H1 be the

1-handle containing V , and let V ′ be ∂H1 ∩ ∂H0 − V . If we cannot apply
Procedure 1 to either of the discs V or V ′, then this component of M is a 3-
ball disjoint from γ, comprised of two 0-handles joined by a single 1-handle.
We may therefore apply Procedure 5. Case 5 cannot arise since γ separates
∂M into R− and R+. By applying Procedure 6 if necessary, we may assume
that M contains no 3-handles. In Case 6, the 1-handle of H containing V
is part of a nontrivial amalgam, contrary to assumption. �

8. Removing nontrivial amalgams.

We now give a procedure for removing all nontrivial amalgams, which will
complete the proof of Proposition 6.3. Suppose that there is a nontrivial
amalgam A in the handle structure H of the taut sutured manifold (M,γ).
We will assume that A is maximal, in the sense that if any other handles are
added to A, the resulting collection of handles does not form an amalgam.
We will also assume that we cannot apply any of Procedures 1-6 in Section 7.
In particular, due to Procedure 6, this implies that M has no 3-handles.
Recall that A has the structure of an I-bundle over a connected surface G.
The I-bundle over ∂G will be denoted by ∂vA.

Note that (iii) of 7.4 implies that ∂vA is a union of intersections between
handles of H. By (v) of 7.4, only 0-handles and 1-handles of H − A touch
∂vA. By (iv) of 7.4, only 1-handles and 2-handles of A touch ∂vA. Hence,
we may define a handle structure on ∂vA as follows: The 0-handles of ∂vA
arise from the intersection of 1-handles of A with the 0-handles of H − A.
The 1-handles of ∂vA arise from the intersection of 2-handles of A with
0-handles and 1-handles of H−A.

Lemma 8.1. Suppose that we cannot apply Procedure 2 of Section 7. Then
each 0-handle of ∂vA abuts precisely two 1-handles of ∂vA.

Proof. If not, then some 0-handle of ∂vA abuts precisely one 1-handle of
∂vA, since ∂vA is a collection of annuli. This 0-handle D is a component
of H1 ∩ H0. Let H0 (respectively, H1) be the 0-handle (respectively, the
1-handle) of H containing D. Then H1 lies in A, but H0 does not. Since D
abuts precisely one 1-handle of ∂vA, H1 intersects A ∩ H2 in a single disc,
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lying in some 2-handle H2. This in fact must the only intersection between
H1 and H2, by (v) of 7.4. Hence, we may apply Procedure 2 of Section 7 to
H1 and H2, which is a contradiction. �

The following lemma will also be useful:

Lemma 8.2. Let H be a handle structure for (M,γ) to which we cannot
apply any of Procedures 1-6. Let A be a maximal amalgam in H. Let F be
a component of F touching ∂vA. Then F has positive index.

Proof. Since we cannot apply any of Procedures 1-6, the only 0-handles of
F with nonpositive index have valence two and are disjoint from γ (see the
proof of Lemma 7.6). If F has nonpositive index then each 0-handle of F
must be of this form. Hence, F is an annulus disjoint from γ. Therefore, F
must be the only component of F lying in H0, where H0 is the 0-handle of
H containing F . For, otherwise we could apply Procedure 1.

Consider a handle of F lying in ∂vA. This is a component of intersection
between H0 and some 1-handle or 2-handle of H. By (iv) of 7.4, we must
have H0 6∈ A.

If F lies entirely in ∂vA, then each handle of H touching H0 must be in A,
and so we may extend A over H0, contradicting its maximality. Therefore,
F ∩ ∂vA is not the whole of F .

If V is a 0-handle of F lying in ∂vA, then the 1-handle of H touching V
must lie in A. Hence, by (v) of 7.4, the 1-handles of F touching V also lie in
∂vA. Hence, we may find a 0-handle F0 of F and a 1-handle F1 of F which
are adjacent, with F1 in ∂vA, but F0 not in ∂vA. Let H1 (respectively, H2)
be the 1-handle (respectively, 2-handle) of H containing F0 (respectively,
F1). Then, we must have H0 6∈ A, H1 6∈ A and H2 ∈ A. Let H ′

2 be
the 2-handle other than H2 which touches H1. (If H2 touches H1 in two
discs, then let H ′

2 = H2.) If H ′
2 ∈ A, then we may extend A over H1. If

H ′
2 6∈ A, we may extend A over H1 ∪H ′

2. In each case, the maximality of A
is contradicted. �

We now consider the various possibilities for A case by case.

Case 1. A is an I-bundle over a disc G.
In this case, we replace A with a single 2-handle H2. We attach H2 to

H0∪H1−A using the annulus ∂vA. We now check that H′ = (H−A)∪H2

is a handle structure. By (vii) of 7.4, the only requirement that is not
immediately obvious is that H2 touches some 1-handle. But, if not, then
∂vA would have been an annular component of F , contradicting Lemma 8.2.

We now check that extended F-complexity is decreased and that (i)-(iv)
of 6.3 are satisfied. It is clear that H′ respects H. This is because (for
i = 0 and 1) each i-handle of H′ is an i-handle of H and inherits its product
structure. Of course, H2 need not lie in any 2-handle of H, but this was not
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a requirement of Definition 6.1. This explains why Definition 6.1 did not
make more stringent requirements on 2-handles.

If F is any component of F and F ′ = F ∩ F ′, then F ′ is either a copy
of F , or is completely removed, or is obtained by performing a sequence of
the following operations: Remove a 0-handle of F which abuts precisely two
1-handles of F , and amalgamate these two 1-handles into a single 1-handle
of F ′. Hence, Lemma 7.2 ensures that Conditions (ii) and (iv) of 6.3 are
satisfied and also that extended F-complexity is reduced. Condition (iii) of
6.3 is clear.

We may therefore assume that A is an I-bundle over a surface G other
than a disc.

Case 2. ∂vA = ∅.
In other words, G is a closed surface. If ∂A is entirely contained in R− or

entirely contained in R+, then it has zero Euler characteristic, since (M,γ)
is taut and so G is a torus or Klein bottle. In either case, we pick a non-
separating orientation-preserving curve in G, and perform a decomposition
along the I-bundle over this curve. This cuts A into a solid torus. We
perform one further taut decomposition along a product disc, ending with
a single 3-ball. We let this be a 0-handle of H′. Suppose now that ∂A
intersects both R− and R+. Then A must be a product G×I. We can then
perform a sequence of decompositions along product annuli and product
discs, ending with a 3-ball, which again we let be a single 0-handle of H′.

We therefore assume that ∂vA is nonempty.

Case 3. Each annulus of ∂vA is an incompressible product annulus.

Then by Lemma 4.2 of [10], the decomposition (M,γ) ∂vA−→ (M ′, γ′) is
taut. We perform this decomposition. In other words, we separate off A
from H −A, and add sutures γ′ as appropriate. By definition, H −A is a
handle structure.

The amalgam A does not inherit a handle structure (for example, 1-
handles of A need not be attached to 0-handles of A). However, since ∂vA
touches both R− and R+, the ∂I-bundle over G cannot be connected, and
so A must a product G × I. As in Case 2, we may perform some further
decompositions along product discs, which reduce G × I to a ball. We let
this be a single 0-handle of H′.

This whole procedure has the effect of removing some components of F
and also replacing some 0-handles and 1-handles of F with arcs of γ′ ∩
H0(M ′). An argument almost identical to that in Procedure 3 of Section 7
establishes that the hypotheses of Lemma 7.2 hold. Therefore, (i)-(iv) of 6.3
hold and extended F-complexity has been reduced.

We therefore assume that some annulus of ∂vA is not an incompressible
product annulus.
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Case 4. Some annulus A of ∂vA is compressible in M .
Then A compresses in M to two discs D′

1 and D′
2 with boundaries in

R±. Since R± is incompressible in M and M is irreducible, D′
1 and D′

2 are
parallel in M to discs D1 and D2 in R±. We pick A so that the curve ∂D1

is an innermost curve of ∂vA ∩R± in R±. Since A is not an I-bundle over
a disc, this implies that int(D1) is disjoint from A. The parallelity region
between the discs Di and D′

i is a ball Bi. Then, B1 and B2 are either disjoint
or nested.

Case 4A. B1 and B2 are disjoint.
Then, D1 and D2 are disjoint, and the sphere D1 ∪D2 ∪A bounds a ball

B in M . Since A∩B = A, we can extend the I-bundle structure of A over
B. This contradicts the maximality of A.

Case 4B. B1 and B2 are nested.
Then B1 ⊂ B2 and D1 ⊂ D2. The component V of M − int(N (A)) lying

wholly within B2 is homeomorphic to the exterior of a knot in S3. The
amalgam A lies in V , and we may therefore remove V from M and still
retain a handle structure. This does not change the homeomorphism type
of M and Lemma 7.3 gives that extended F-complexity decreases and that
(i)-(iv) of 6.3 hold.

Case 5. ∂vA is incompressible, and some component of ∂vA is not a product
annulus.

Now, the ∂I-bundle over G has at most two components. Therefore, if
some component of ∂vA is not a product annulus, then no component of
∂vA is a product annulus. Let us suppose that ∂vA is disjoint from R−
(say).

Pick any component A of ∂vA. Then we let A1 and A2 be two parallel
copies of A, incoherently oriented in such a way that the parallelity region
Y in M ′ = M − int(N (A1 ∪ A2)) inherits four sutures. Isotope A1 and A2

a little so that they become standard surfaces. Consider the decomposition
(M,γ) A1∪A2−→ (M ′, γ′).

Case 5A. (M ′, γ′) is taut.
Then we perform this decomposition. We now check the requirements

of 6.3 and also that extended F-complexity has been reduced. We will use
Lemma 7.2 to do this.

Let H′ be the handle structure which (M ′, γ′) inherits. Consider a com-
ponent F of F which is altered by this decomposition, and let F ′ be F ∩F ′.
By Lemma 8.2, F must have had positive index.

Suppose that the extended F-complexity of F ′ is at least that of F ; we aim
to reach a contradiction. We must have C1(X) ≥ C1(F ) for some component
X of F ′. But each 1-handle of F gives rise to precisely one 1-handle of F ′.
Hence, X must have all the 1-handles of F ′.
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Each component of A∩F yields three discs of F ′. Two of these discs have
no 1-handles and intersect γ′ four times. The remaining disc has at least
one 1-handle, and has negative index. Since it has least one 1-handle, it
must be X, and therefore X has negative index. Therefore C2(X) < C2(F ).
Hence, C+

F (F ′) < C+
F (F ). Lemma 7.2 now gives that (i), (ii) and (iv) of 6.3

hold, and that extended complexity has been reduced. Verifying (iii) of 6.3
is straightforward.

Case 5B. (M ′, γ′) is not taut.
Since M is irreducible, so must M ′ be. Also, R±(M ′) is norm-minimising

in H2(M ′, γ′). For if S is any surface in M ′ with S∩∂M ′ = γ′ and [S, ∂S] =
[R±(M ′), γ′] ∈ H2(M ′, γ′), then [S − Y, ∂S − Y ] = [R±(M ′) − Y, γ′ − Y ]
= [R±(M), γ] ∈ H2(M,γ). So, χ−(S) ≥ χ−(S − Y ) ≥ χ−(R±(M)) =
χ−(R±(M ′)). Hence, the only way that (M ′, γ′) can fail to be taut is if
R±(M ′) is compressible. This compression cannot reduce χ−(R±(M ′)),
as R±(M ′) is norm-minimising. Hence, any compressible component of
R±(M ′) is a torus or annulus. However, any circle in a compressible an-
nulus is homotopically trivial in M . In particular, A could not have been
incompressible, contrary to assumption. Thus, if R±(M ′) is not taut, there
are three cases to consider:

(i) Only one of A1 and A2 (say A1) lies in a compressible torus component
of R±(M ′) (called T1, say) which disjoint from γ′, or

(ii) A1 and A2 both lie in the same compressible torus T1 disjoint from γ′,
or

(iii) A1 and A2 lie in distinct compressible tori T1 and T2 disjoint from γ′.

Since Ti is compressible and M ′ is irreducible, Ti bounds a solid torus Vi

in M ′.
In Case (iii), the component of M containing A is the union of two solid

tori, glued along an essential annulus. Thus, it is a Seifert fibre space with
base space a disc and having at most two exceptional fibres (which are
the cores of the solid tori). Also, it is disjoint from γ. Recall that, in
the statement of 6.3, we explicitly ruled out the case where it is has two
exceptional fibres. If it has at most one exceptional fibre, it is a solid torus,
and again, we ruled this case out.

In Case (ii), we pick the Ai which is closest to A. Then, the orientation

of Ai and R+ ∩ A agree near ∂Ai. The decomposition (M,γ) Ai−→ (M1, γ1)
is taut. Exactly as in Case 5A, this reduces extended F-complexity and
(i)-(iv) of 6.3 are satisfied.

In Case (i), suppose first that M − int(N (V1)) contains A. As above, the
decomposition (M,γ) A2−→ (M1, γ1) is taut, and, again, this reduces extended
F-complexity and (i)-(iv) of 6.3 are satisfied.
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Suppose now that V1 contains A. Then again the decomposition (M,γ)
A2−→ (M1, γ1) is taut. This time one must work a little harder to verify that
extended F-complexity decreases and that (i)-(iv) of 6.3 are satisfied. Let
F be a component of F , let F ′ = F ∩ F(M1) and let H0 be the 0-handle of
H containing F . By Lemma 8.2, if F is altered, then it must have positive
index, and so it contributes towards F-complexity. If C+

F (F ′) ≥ C+
F (F ), then

as in Case 5A, there must be a single component X of F ′ containing all the
1-handles of F ′. Also, X arises from a component of F ∩A. However, unlike
in Case 5A, X will not have negative index. In fact, it will be a disc which
intersects γ1 in four points. Hence, it has index two. Now, F has positive
index and therefore its index is at least two. Thus, if C+

F (F ′) ≥ C+
F (F ), the

index of F is precisely two. If F is an annulus intersecting γ in two points,
then C3(F ) > C3(X) and so C+

F (F ) > C+
F (F ′). Hence, we may assume that

F is a disc intersecting γ in four points. In this case, all but two 0-handles
of F have valence two and are disjoint from γ. The two remaining 0-handles
D1 and D2 each have valence one. These two handles contain a total of four
points of γ ∩ F . Since ∂vA is disjoint from R−, each Di contains an even
number of points of γ ∩F . If one of these 0-handles contains no points of γ,
then it becomes a compression disc for R±(M1), which contradicts the fact
that (M1, γ1) is taut. Hence, each Di contains precisely two points of γ ∩F .
If these two points are joined by an arc of γ ∩ ∂H0, then again R±(M1) is
compressible, which is a contradiction. Therefore, for each i, the two points
γ ∩Di are not joined by an arc of γ ∩ ∂H0.

Now, F ′ is X, together with two index zero discs. We remove the two
index zero discs using Procedure 4. The component X is a copy of F , and so
CF (F ′) = CF (F ). If F was not the only component of F in H0, then these
components of F have positive index, since otherwise we can apply one of
Procedures 1-5. Hence, n(H′ ∩ H0) > 1 = n(H0), where n(H′ ∩ H0) was
defined in Section 5 to be the number of 0-handles of H′ ∩H0 containing a
component of F ′ of positive index. This implies that C(H0 ∩H′) < C(H0).
If F was the only component of F in H0, then this is a trivial modification.
This verifies (i)-(iv) of 6.3.

We now need to check C+(H′) < C+(H). But, if it is not, then the above
must happen in every 0-handle of H which is altered by the decomposition.
This implies that the component of M − int(N (V1)) containing A is a solid
torus V2 with A∩V2 a single annulus in ∂V2 having winding number one. But
V1 is a solid torus, and so this component of M is a solid torus, contradicting
one of the assumptions of 6.3. �
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9. Modifications to a decomposing surface.

In the previous two sections, we performed a sequence of alterations to H.
We are now ready to tackle Proposition 6.4. Consider the taut decomposi-
tion (M,γ) S−→ (MS , γS), where S is a compact oriented surface properly
embedded in M , having essential intersection with R±. This implies that
S is taut and hence incompressible. Thus, by Lemmas 4.5 and 4.9, we can
assume that S is in standard form in H. But, as was remarked in Section 5,
there is a great deal of freedom over the form of S ∩ ∂H0. The aim here
is to perform a series of alterations to S, creating a new standard surface
S′ which has a considerably more restricted intersection with ∂H0. The
sutured manifold obtained by decomposing (M,γ) along S′ will be written
as (MS′ , γS′).

Modification 1. Tubing along an arc.

Suppose that α is an arc in R± with α ∩ S = ∂α. Then there is an
embedding of α × [−1, 1] in R± with α × {0} = α and (α × [−1, 1]) ∩ S =
∂α× [−1, 1]. Suppose that the orientation that α× [−1, 1] inherits from R±
agrees with the orientation of S near ∂α× [−1, 1]. Then we call α a tubing
arc. We construct a new surface S′ as follows: Embed α× [−1, 1]× [0, 1] in
M so that (α× [−1, 1]× [0, 1]) ∩ ∂M = α× [−1, 1]× {0} = α× [−1, 1] and
(α× [−1, 1]× [0, 1]) ∩ S = ∂α× [−1, 1]× [0, 1]. Then let

S′ = S ∪ (α× [−1, 1]× {1})
∪ (α× {−1, 1} × [0, 1])

− (∂α× (−1, 1)× [0, 1)).

S

[-1,1]X
P

S'

Figure 9.1.

We say that S′ is obtained from S by tubing along the arc α. Note that if
{∗} is a point in α− ∂α, then P = {∗} × [−1, 1]× [0, 1] is a product disc in
(MS′ , γS′). There is a commutative diagram:
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(M,γ) S′−→ (MS′ , γS′)yS

yP

(MS , γS) = (MS , γS).

Hence, (MS , γS) is taut if and only if (MS′ , γS′) is taut. However, S′ need
not have essential intersection with R±(M).

Modification 2. Slicing under an incompressible annulus.

Suppose that there is an annulus A in R± which is incompressible in M
and has A∩S = ∂A. Let A× [0, 1] be embedded in M , so that (A× [0, 1])∩
∂M = A × {0} = A, and so that (A × [0, 1]) ∩ S = ∂A × [0, 1]. If the
orientation of A agrees with that of S near ∂A, then we construct a new
surface S′ = S∪ (A×{1})− (∂A× [0, 1)) by slicing under the incompressible
annulus A. Let C be a core circle of A. If we give C× [0, 1] any orientation,
then we have a commutative diagram:

(M,γ) S′−→ (MS′ , γS′)yS

yC×[0,1]

(MS , γS) = (MS , γS).

Since A is incompressible in M , the annulus C × [0, 1] is incompressible
in (MS′ , γS′), and so by 4.2 of [10], (MS , γS) is taut if and only if (MS′ , γS′)
is taut.

S

Slide

D

Figure 9.2.

Modification 3. Sliding ∂S across γ.

Suppose that D is a disc in ∂M , such that D ∩ S is an arc α in ∂D
and D ∩ γ is an arc properly embedded in D disjoint from α. Suppose
that the orientation of D near ∂S agrees with the orientation of S. Let
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D× [0, 1] be embedded in M so that (D× [0, 1])∩ ∂M = D× {0} = D and
(D × [0, 1]) ∩ S = α× [0, 1]. Let

S′ = S ∪ ∂(D × [0, 1])

− (D − ∂D)× {0}
− (α− ∂α)× [0, 1).

(See Figure 9.2.) Then (MS , γS) and (MS′ , γS′) are homeomorphic.

Modification 4. Slicing under a disc of contact.

Suppose that there is a disc D in R± with D∩S = ∂D, with the orienta-
tion of D matching that of S near ∂D. Then D is known as a disc of contact.
Embed D× [0, 1] in M , so that (D× [0, 1])∩∂M = D×{0} = D, and so that
(D× [0, 1])∩S = ∂D× [0, 1]. The surface S′ = S ∪ (D×{1})− (∂D× [0, 1))
is obtained from S by slicing under the disc of contact.

S D

+-

Figure 9.3.

Unfortunately, in this case, we have no guarantee that (MS′ , γS′) is taut.
But the following sequence of lemmas circumvents this. We introduce a
temporary definition.

Definition 9.4. The surface S in (M,γ) is mountainous if some curve of
∂S bounds a disc D in R±, such that the orientation of D disagrees with
that of S near ∂D. The disc D may also intersect S away from ∂D.

Lemma 9.5. Suppose that S is not mountainous. Let S′ be obtained from
S by a sequence of Modifications 1, 2 and 3. Then S′ is not mountainous.

Proof. It suffices to consider the case where S′ is obtained from S by a single
modification of Type 1, 2 or 3. Consider first a modification of Type 1.
Suppose that some curve of ∂S′ bounds a disc D in R±, with orientation on
D disagreeing with that on S′. Then at least one of the curves of α×{−1, 1}
must lie in ∂D, since S was not mountainous.

If both curves of α×{−1, 1} lie in ∂D, then the curves ∂D∪(∂α×[−1, 1])−
((α−∂α)×{−1, 1}) would have bounded the discs D− ((α−∂α)× [−1, 1]).
Then S would have been mountainous.

Suppose now that only one curve of α×{−1, 1} lies in ∂D, say α×{−1}.
Then α×{1} lies in D−∂D, and so is part of a component of ∂S′ bounding
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a disc D′ in R±. Then, D− (D′−∂D′)− ((α−∂α)× [−1, 1]) is a disc which
would have made S mountainous.

Now consider the case where S′ is obtained from S by slicing under an
incompressible annulus A. This has the effect of removing two curves of ∂S,
neither of which bounded discs inR±. Hence, in this case, S′ is mountainous
if and only if S is mountainous.

Finally, consider the case where S′ is obtained from S by sliding an arc
of ∂S across γ. Then, this only creates new intersection points between the
surface and γ, and so a curve of ∂S′ disjoint from γ is a copy of a curve of
∂S disjoint from γ. Thus, if S′ is mountainous, then so is S. �

Lemma 9.6. Suppose that no component of S is a disc disjoint from γ.
Let S′ be a surface obtained from S by Modifications 1, 2 and 3. Then no
component of S′ is a disc disjoint from γ.

Proof. It suffices to consider a single modification of Type 1, 2 or 3. If a
component of S′ which is a disc disjoint from γ arises by tubing along an arc
α, then the components of S containing ∂α were both discs disjoint from γ,
contrary to assumption. If a disc component of S′ arises by slicing under
an annulus, then that annulus could not have been incompressible in M . A
Type 3 modification cannot create components of S′ disjoint from γ. �

Lemma 9.7. Let S be a surface in a taut sutured manifold (M,γ) having
essential intersection with R±. Let S2 be obtained from S by a sequence of
Modifications 1, 2 and 3, and let S3 be obtained from S2 by slicing under
a disc of contact D. Then S3 is in fact obtained from S by a sequence of
Modifications 1, 2 and 3.

Proof. We shall prove this by induction on the number n of Type 1, 2 and
3 modifications from S to S2. For n = 0, the statement of the lemma is
empty, since S = S2 has essential intersection with R±(M) and so has no
discs of contact.

Suppose now the lemma is true for sequences of length at most (n − 1).
Let S1 be the surface obtained from S by the first (n − 1) modifications.
Then S2 is obtained from S1 by a modification of Type 1, 2 or 3, and S3 is
obtained from S2 by slicing under a disc of contact D.

Suppose that S2 is obtained from S1 by tubing along an arc α. Then, D
is disjoint from α× (−1, 1). If the disc D is disjoint from α× {−1, 1}, then
we can obtain S3 from S1 by slicing under D, which gives a surface S4 say,
then tubing along α. Inductively, S4 is obtained from S by Modifications 1,
2 and 3, and so the lemma is true in this case. Hence, we may assume that
D touches at least one of the arcs α × {−1, 1}. If it touches only one arc,
then S3 is ambient isotopic to S1, and the lemma is true. If D touches both
arcs, then D∪(α× [−1, 1]) is an annulus A in R±. The two curves of ∂A are
boundary components of S1. If A is compressible in M , then both curves
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of ∂A bound discs in R±, since (M,γ) is taut. One of these discs has an
orientation disagreeing with that of S1 near the boundary of the disc, and
so S1 is mountainous, contrary to Lemma 9.5. Hence, A is incompressible
in M . We may slice under A to obtain S3 from S1. This proves the lemma
in this case.

Suppose that S2 is obtained from S1 by slicing under an incompressible
annulus A. Then A cannot lie in D, since A is incompressible. Hence, we can
obtain S3 from S1 by slicing under D, then slicing under A. The inductive
hypothesis proves the lemma.

Similarly, if S2 is obtained from S1 by sliding an arc of ∂S1 across γ,
then the relevant component of ∂S2 is disjoint from D, and therefore we
may obtain S3 from S1 by slicing under D, then performing the Type 3
modification. Again, the inductive hypothesis proves the lemma. �

Corollary 9.8. Let S be a surface in the taut sutured manifold (M,γ) hav-
ing essential intersection with R±. Then any surface obtained from S by
Modifications 1, 2, 3 and 4 is in fact obtained from S by Modifications 1, 2
and 3.

Unfortunately, if S′ is a surface created from S by Modifications 1, 2 and
3, then S′ need not be incompressible. The incompressibility of S was useful
in showing that S can be isotoped into standard form. We therefore need
the following lemma:

Lemma 9.9. Let S be a surface in (M,γ), having essential intersection with
R±. Suppose that (M,γ) S−→ (MS , γS) is taut. Let S′ be a surface obtained
from S by a sequence of Modifications 1, 2 and 3. If S′ is in vertical form
with respect to some handle structure on (M,γ), then we may perform an
ambient isotopy of S′ and perhaps some Type 4 modifications, taking S′ into
standard form, without increasing its complexity.

Proof. Consider again the proof of Lemma 4.9. The crucial property of S was
that if D is any disc in M−∂M with D∩S = ∂D, then ∂D bounds a disc D′

in S, and we may ambient isotope D′ onto D. In fact, we need only restrict
attention to discs D lying in a single 0-handle of M . In the case of S′, the
circle ∂D need not bound a disc in S′, since S′ might not be incompressible.
But, since (MS′ , γS′) is taut, ∂D bounds a disc D′ in R±(MS′). Consider a
circle C of D′ ∩ ∂S′ innermost in D′. By Lemma 9.6, this cannot bound a
disc of S′. Hence, it bounds a disc of contact in R±(M). Slice under this
disc of contact. By Corollary 9.8, the new surface (also called S′) is in fact
obtained from S by a sequence of Modifications 1, 2 and 3. Hence, the new
(MS′ , γS′) is taut. So, we may repeat this process and, in this way, we may
remove all circles of D′ ∩ ∂S′. But then ∂D bounds a disc D′ in S′, and we
may ambient isotope D′ onto D. The new surface S′ is obtained from the
old S′ by removing S′ ∩ (D′ − ∂D′) and gluing in D. Thus, the complexity
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of the new S′ is no more than the complexity of the old S′. Continuing in
this fashion, we may get S′ into standard form. �

We will alter S, using Modifications 1, 2, 3 and 4, until S has become a
standard surface satisfying each of the following three conditions:

1. Each curve of S ∩ ∂H0 meets any 1-handle of F in at most one arc.
2. There exists no tubing arc in ∂F0 ∩R±.
3. Suppose that D is a disc in F0 with ∂D the union of two arcs α and

β, where α = S ∩ ∂D and β = D ∩ ∂F0. Suppose that one endpoint
of α lies in R± and one endpoint lies in F1. Then at least one of the
following must happen:
• β touches at least two components of ∂F0 ∩ ∂F1,
• β touches γ and the orientation of α and β disagree locally near

α ∩ β ∩R±, or
• β touches γ at least twice, and the orientation of α and β agree

locally near α ∩ β ∩R±.
Diagrams clarifying Conditions 1, 2 and 3 are given in Figures 9.10, 9.11

and 9.12. The alterations to S which ensure that Conditions 1, 2 and 3 hold
will reduce its complexity, and so they are guaranteed to terminate. The
above three conditions are not quite sufficient for our purposes. We also
wish to ensure that the following two conditions hold:

4. Each curve of S ∩ ∂H0 meets any component of R± ∩ ∂H0 in at most
one arc.

5. If α is an arc of S ∩ F0 with both endpoints in R±, then each of the
two arcs in ∂F0 joining ∂α must either touch ∂F1 or hit γS more than
twice.

A diagram clarifying Condition 5 is given in Figure 9.17. To achieve
Conditions 4 and 5, we will need two further types of modification to S,
which we will describe later. We now show that Conditions 1-3 can be
achieved. By Lemma 4.9, we may assume that S is in standard form. Each
alteration to S leaves it in vertical form, but not necessarily standard form.
However, we can then use Lemma 9.9 to get S into standard form, since
the alterations to S used there result in the removal of some components of
S ∩ ∂H0, and hence the new S also satisfies Conditions 1-3.

Condition 1. Each curve of S ∩ ∂H0 meets any 1-handle of F in at most
one arc.

Suppose that this condition does not hold. We will construct a ball B
lying in M − ∂M , such that B ∩ S is a disc in ∂B. We will then ambient
isotope S across B, and in doing so, reduce the complexity of S.

By assumption, there is a curve C of S ∩ ∂H0 containing two sub-arcs
α1 and α2, which are both properly embedded in the same 1-handle D1 of
F . Pick C to be a curve of S ∩ ∂H0 which is innermost in ∂H0 amongst all
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These two arcs

the same component
of

cannot belong to

0-handle of 
1-handle of 

Figure 9.10.

curves with this property. Since S is standard, there is a disc D2 of S ∩H0

with ∂D2 = C. Let H0 (respectively, H2) be the 0-handle (respectively,
2-handle) containing α1 and α2, and let E1 and E2 be the discs of H2 ∩ S
containing α1 and α2. By the ‘innermost’ assumption on C, the two arcs
α1 and α2 are adjacent in D1, in the sense that no other arcs of S ∩D1 lie
between them. Let B′ be the closure of the component of H2 − (E1 ∪ E2)
lying between E1 and E2. The ball B′ will be part of B.

Let β1 be an arc in the interior of D1 which runs from α1 to α2, but which
intersects S in no other points. Let β2 be an arc properly embedded in D2,
with ∂β2 = ∂β1. Then β1∪β2 bounds a disc D3 in H0. We can assume that
D3 − ∂D3 misses S and ∂H0. Let B be a small neighbourhood of D3 ∪ B′

in M . Then an ambient isotopy of S across B has the effect of reducing
|S ∩ H2|, by removing the discs E1 and E2. The new surface is a vertical
surface with lower complexity than that of S.

Condition 2. There exists no tubing arc in ∂F0 ∩R±.

Arcs of
0-handle of

Figure 9.11.
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Suppose that α is such an arc. We will tube S along α. Let H1 be the 1-
handle ofH containing α. We may pick α×[−1, 1] so that (α×[−1, 1])∩H1 is
vertical in H1, and so that cl((α×[−1, 1])−H1) is two small discs inH0. Then
the surface S′ constructed from S by tubing along α has lower complexity
than that of S, since |S ∩H2| = |S′ ∩H2|, and |∂S′ ∩H1| = |∂S ∩H1| − 2.

Condition 3. Suppose that D is a disc in F0 with ∂D the union of two
arcs α and β, where α = S ∩ ∂D and β = D ∩ ∂F0. Suppose that one
endpoint of α lies in R± and one endpoint lies in F1. Then at least one of
the following must happen:
• β touches at least two components of ∂F0 ∩ ∂F1,
• β touches γ and the orientation of α and β disagree locally near α ∩

β ∩R±, or
• β touches γ at least twice, and the orientation of α and β agree locally

near α ∩ β ∩R±.

No arc of

can do this 0-handle of

1-handle of 

Figure 9.12.

Suppose that D is such a disc but that it fails to satisfy each of the three
alternatives of Condition 3. In particular, β touches only one component of
∂F0 ∩ ∂F1 (which is therefore the component of ∂F0 ∩ ∂F1 which contains
an endpoint of α). Suppose also that there is no sub-arc of β which violates
Condition 2. Let H1 = D2 × I be the 1-handle of H containing D.

There are a number of cases to consider. Suppose first that β ∩ γ = ∅.
Then, let B be the vertical ball D × I in H1. Let D′ be the disc of S ∩ H2

which touches α at a single point. Let B′ be the closure of the component of
H2−D′ which has nonempty intersection with β−∂β. There is an ambient
isotopy of S across the ball B ∪B′, leaving S in vertical form, and reducing
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|S ∩ H2|. This isotopy will also move parts of S lying in D × I, but this
causes no problems.

Suppose now that β ∩ γ 6= ∅. Then, by assumption, the orientations of α
and β agree near α∩ β ∩R±, and also β ∩ γ is a single point. Suppose first
that there is no arc of S ∩ F0 other than α lying in D. Then we perform
a Type 3 modification, supported in a small neighbourhood of H1, which
slides the vertical arc (β∩α∩R±)×I in H1 across the vertical arc (β∩γ)×I.
Then, we can perform the ambient isotopy described above to reduce the
complexity of S.

Suppose now that there exists some arc of S ∩ ∂F0 other than α lying in
D. Let α1 be the arc adjacent to α. If the sub-arc β1 of β lying between α
and α1 is a tubing arc, then Condition 2 is violated. If β1 is not a tubing
arc, then there are two possibilities: β1 touches γ, or the orientations of α1

and β1 disagree near α1 ∩ β1. Applying this argument to each arc of S ∩D
with an endpoint lying between β∩α∩R± and β∩γ, we see that these arcs
are all coherently oriented. In particular, we can slide each of these arcs
across γ. Then, we can apply the ambient isotopy described above.

Thus, we may ensure that S satisfies Conditions 1, 2 and 3. We now
ensure that S also satisfies Condition 4 and 5. To do this, we will need two
further modifications.

Modification 5. Surgery along a product disc.

This is defined to be the reverse of a Type 1 modification.

Modification 6. Removal of a product region.

Suppose that a component F1 of S is parallel to a surface F2 in R±, and
the orientations of F1 and F2 disagree near ∂F1 = ∂F2. Suppose also that the
interior of the parallelity region between F1 and F2 is disjoint from S. If we
remove F1 from S, creating a new surface S′, then (MS , γS) is homeomorphic
to (MS′ , γS′), plus a product component (F1 × [0, 1], ∂F1 × {0}). Hence,
(MS′ , γS′) is taut if and only if (MS , γS) is taut.

We need some lemmas to ensure that Modifications 5 and 6 are well
behaved.

Lemma 9.13. Let S be a surface in (M,γ), and let S2 be a surface obtained
from S by a sequence of n Type 5 modifications. Let S3 be obtained from S2

by slicing under a disc of contact. Then in fact, S3 is obtained from S by a
sequence of Type 4 modifications, and then at most n Type 5 modifications.

Proof. This is by induction on n. For n = 0, the lemma is trivial. Therefore,
assume that the lemma is true for less than n Type 5 modifications, and let
S1 be the surface obtained from S by the first (n− 1) Type 5 modifications.
Let α be the tubing arc for S2. If the disc of contact D is disjoint from α, then
we may slice under D before doing the Type 5 move, and so the lemma is true
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by induction. If D is not disjoint from α, then D1 ∪D2 = D− (α× (−1, 1))
is two discs of contact for S1, and S3 is obtained by slicing under both D1

and D2. Applying the inductive hypothesis twice proves the lemma. �

Lemma 9.14. Let S be a surface in (M,γ). Let S2 be a surface obtained
from S by a sequence of Type 5 modifications, and let S3 be a surface obtained
from S2 by a Type 6 modification. Then S3 is obtained from S by at most
one Type 6 modification, then perhaps some Type 5 modifications.

Proof. We will prove this by induction on the number n of Type 5 modifi-
cations from S to S2. For n = 0, the statement of the lemma is empty. So,
assume that the statement is true for sequences of length at most (n − 1).
Let S1 be the surface obtained from S by the first (n − 1) Type 5 modifi-
cations. The surface S1 is obtained from S2 by tubing along an arc α. Let
F1 be the component of S2 which we remove in the Type 6 modification.
If neither component of ∂α lies in F1, then we may obtain S3 from S1 by
performing the Type 6 modification, then the Type 5 modification. The
lemma is then true by induction. If both components of ∂α lie in F1, then
a single Type 6 modification takes S1 to S3, and again the lemma is true by
induction. If a single component of ∂α lies in F1, then we find a (possibly
empty) collection of properly embedded arcs in F1 which cut it to a disc.
These arcs define Type 5 moves which can be applied to S1, at the end of
which we obtain a surface ambient isotopic to S3. Hence, in this case also,
the lemma is true. �

Lemma 9.15. Let S be a surface in (M,γ) which is not mountainous. Let
S′ be obtained from S by a sequence of Type 6 modifications, then by slic-
ing under a disc of contact D. Then S′ is obtained from S by a Type 4
modification, then some Type 6 modifications.

Proof. Suppose that some component F1 of S has ∂F1 lying in int(D). Then
it must be removed by some Type 6 modification. In particular, it must be
parallel to a subsurface F2 of D. The outermost component of ∂F2 in D is
a component of ∂S which makes S mountainous, contrary to assumption.
Hence, each component of S is disjoint from int(D), and we may therefore
slice under D before performing the Type 6 modifications. �

The above lemmas all give the following proposition:

Proposition 9.16. Let S be a taut surface in the taut sutured manifold
(M,γ), with S having essential intersection with R±. Let S′ be obtained
from S firstly by a (possibly empty) sequence of Modifications 1, 2, 3 and 4,
then by a (possibly empty) sequence of Modifications 3, 4, 5 and 6. Then S′

is in fact obtained from S by a (possibly empty) sequence of Modifications 1,
2 and 3, then possibly by some Type 6 modifications, then possibly some Type
3 and 5 modifications. In particular, no Type 4 modifications are needed.
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Proof. Consider the sequence of numbers from 1 to 6 which are the type of
each modification. Ignore repetitions; for example, if we perform two Type
3 modifications in a row, then only write down one 3. Lemma 9.13 implies
that if we write down 54, we may replace this with 45 or 4. Lemma 9.14
implies that if we write down 56, we may instead write down 65, 5, 6 or
nothing. Also, we may replace 34 with 43, since each slide across γ creates
a component of ∂S touching γ, whereas each slice under a disc of contact
deals with a component of ∂S disjoint from γ. Hence, we can perform the
Type 4 modifications before the Type 3 modifications. Similarly, we can
replace 36 with 63. Hence, in the sequence of 3, 4, 5 and 6 modifications,
we can arrange to do all the Type 5 and 3 modifications last. Corollary 9.8
asserts that we may replace the initial sequence of 1, 2, 3 and 4 with just
a sequence of 1, 2 and 3. Let S1 be the surface obtained from S after
this initial sequence. Then, the sequence of numbers after S1 is a (possibly
empty) sequence of 4 and 6 (starting with 6), and then possibly a sequence
of 5 and 3. If the sequence of 6 and 4 is empty or a single 6, the proposition
is proved. Otherwise, the sequence of 6 and 4 starts with 64. By Lemma 9.5,
S1 is not mountainous and so, by Lemma 9.15, we may replace the 64 with
46. We may include the 4 in the initial sequence of 1, 2 and 3. Proceeding
in this way, we prove the proposition. �

We have so far modified S using Modifications 1, 2, 3 and 4, resulting
in a surface satisfying Conditions 1, 2 and 3. We are now going to make
some further alterations, using Modifications 3, 4, 5 and 6, resulting in a
surface S′ which also satisfies Conditions 4 and 5. The point behind the
above proposition is that we can in fact obtain S′ from S without slicing
under discs of contact.

Condition 4. Each curve of S ∩ ∂H0 meets any component of R± ∩ ∂H0

in at most one arc.

Suppose that, on the contrary, there are two arcs α1 and α2 of S∩R±∩∂H0

properly embedded in a component of R±∩∂H0, such that α1 and α2 belong
to the same component of S∩∂H0. We may assume that there is an arc β in
R± ∩ ∂H0 with one endpoint in α1, one endpoint in α2, and the remainder
of β disjoint from S. There is also a disc D in H0 with ∂D containing β,
and D ∩ S = cl(∂D − β).

Suppose first that β is a tubing arc and hence that D is disjoint from
γS . Since R±(MS) is incompressible, ∂D bounds a disc D′ in R±(MS). If
∂S ∩D′ is a single arc, then we may ambient isotope S ∩D′ onto D. It is
straightforward to verify that the resulting surface S′ is standard and still
satisfies Conditions 1-3. This procedure does not increase |S ∩ H2| and it
decreases |∂S ∩H1|. Hence, it decreases the complexity of S.

We must deal with the case where ∂S ∩ D′ contains some circles. Pick
one C innermost in D′, bounding a disc E in D′. Then E is either a disc
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of contact or a disc component of S. In the former case, we slice under the
disc of contact. We now give a procedure for dealing with the latter case.
The curve C bounds a disc E′ in R±(M), and E ∪ E′ bounds a ball B in
M . Pick a curve C ′ of E′ ∩ ∂S innermost in E′. Then we may apply either
Modification 4 or Modification 6 to the component of S containing C ′. In
this way, we eventually remove all components of S lying in B. We can then
apply Modification 6 to E. Continuing in this fashion, we eventually remove
all circles of ∂S ∩D′. Then we may ambient isotope S ∩D′ onto D.

Suppose now that β is not a tubing arc, in which case the disc D is a
product disc in MS . Let D × [−1, 1] be embedded in H0, so that
• D × {0} = D,
• (D × [−1, 1]) ∩ γ = ∅,
• (D × [−1, 1]) ∩R±(M) = β × [−1, 1],
• (D × [−1, 1]) ∩ S = cl(∂D − β)× [−1, 1].

Let S′ be S − (cl(∂D− β)× (−1, 1))∪ (D× {−1, 1}). Let {∗} be a point in
β − ∂β. Then S is obtained from S′ by tubing along the arc {∗} × [−1, 1].
Hence, S′ is obtained from S by a Type 5 modification. It is straightforward
to check that S′ still satisfies Conditions 1, 2 and 3. This procedure leaves
the complexity of S unchanged. It also creates two discs of S′ ∩ H0 from
one disc of S ∩ H0. Each of the new discs either touches γ or touches H1.
But S ∩ γ = S′ ∩ γ and S ∩ H1 = S′ ∩ H1. Hence, eventually, this process
terminates.

Condition 5. If α is an arc of S ∩ F0 with both endpoints in R±, then
each of the two arcs in ∂F0 joining ∂α must either touch ∂F1 or hit γS

more than twice.

Forbidden arcs of
0-handle of 

Figure 9.17.

Let α be such an arc. Suppose that there is an arc β in ∂F0 joining the
endpoints of α, such that β is disjoint from F1 and touches γS at most twice.
Let D be the disc of F0 containing α. Then, since Condition 2 holds, we
may take α to be extrememost in D, separating off a disc D′ from D with
D′ ∩ S = α. Then D′ is a disc properly embedded in MS . Hence, ∂D′ hits
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γS either twice or not at all. If ∂D′ is disjoint from γS , then β is a tubing
arc, contrary to Condition 2.

Suppose therefore that ∂D′ hits γS at precisely two points. If both of
these points lie at the endpoints of α, then we will apply Modification 5. If
H1 = D×D1 is the 1-handle containing α, then we will take the tubing arc
to be a slight extension of {∗} ×D1, where {∗} is a point in β. The result
of this Type 5 modification is to leave |S ∩ H2| unchanged and to reduce
|∂S ∩H1| by 2. Hence, it reduces the complexity of S.

If there is a point P of γS ∩∂D′ not lying at an endpoint of α, then P lies
on γ, and we can perform a Type 3 modification sliding α×D1 across P×D1.
This slide leaves the complexity of S unchanged. After possibly performing
this operation once more, we end with a situation where both points of
γS ∩ ∂D′ lie at the endpoints of α. Hence, we may apply Modification 5 to
reduce the complexity of S. It is clear that, in the above procedure, we have
not violated Conditions 1-3.

10. Behaviour of handle complexity under decomposition.

The aim of this section is to complete the proof of Proposition 6.4. Recall
that we are given a taut decomposition (M,γ) S−→ (MS , γS), where S has
essential intersection with R±(M). Also, (M,γ) is equipped with a handle
structure H, for which each 0-handle of F = F(H) has positive index.

In the previous section, we performed a sequence of alterations to S,
resulting in a new standard surface (called S′, say) satisfying Conditions

1-5. Let (M,γ) S′−→ (M ′, γ′) be the decomposition along S′ and let H′
be the induced handle structure on M ′. Note that [S, ∂S] = [S′, ∂S′] ∈
H2(M,∂M).

Proposition 9.16 asserted that it sufficed to perform a sequence of Modi-
fications 1, 2 and 3, then some Type 6 modifications, then some Type 3 and
5 modifications. If a Type 1 or 2 modification to S results in a surface S1,
then there is a pull-back (MS , γS) P←− (MS1 , γS1), where P is a product disc
or incompressible product annulus. Hence, the sequence of Modifications 1,
2, 3 and 6 gives rise to the sequence of pull-backs

(M,γ) = (M̂1, γ̂1)
P1←− · · · Pr−1←− (M̂r, γ̂r)

which was mentioned in Proposition 6.4. Then Modifications 3 and 5 give
the sequence of decompositions

(M̂r, γ̂r)
Pr−→ · · · Pm−1−→ (M̂m, γ̂m) = (M ′, γ′).

In the case of a Type 5 modification, the relevant decomposing surface is a
product disc.

We just have to check that Conditions (i)-(v) of 6.4 hold if S′ satisfies
Conditions 1-5. Since S′ is standard, (i) is trivially true. We claim that
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Conditions 1, 2 and 4 guarantee (iii). Conditions 1 and 4 ensure that there
is only a finite number of possibilities for each curve of S′ ∩ ∂H0, up to
ambient isotopy which keeps γ and each handle invariant.

Lemma 10.1. Let C and C ′ be two disjoint simple closed curves of S′∩∂H0

where S′ satisfies Conditions 1, 2 and 4. If there is an isotopy of ∂H0 which
leaves γ and each handle of F invariant and which takes C onto C ′, then
C and C ′ are parallel in a way which respects γ and the handle structure on
F .

Proof. Let α be an arc of C ∩ F0, C ∩ F1 or C ∩ R±, and let α′ be the
image of α after the isotopy taking C to C ′. It suffices to show that no arc
of C or C ′ lies between α and α′. Suppose that there is such an arc. If α
lies in F1, then this means that Condition 1 is violated. If α lies in R±,
then Condition 4 is violated. If α lies in F0, then by Condition 4, C must
intersect F0 in two arcs which are joined by two arcs in R±. If V is the
0-handle of F containing α∪α′, then some sub-arc of ∂V is a tubing arc for
S′, contrary to Condition 2. �

Hence, there is only a finite number of possible arrangements for S′∩∂H0,
up to possibly taking multiple parallel copies of each curve and performing
an ambient isotopy which leaves H0, H0 ∩F and H0 ∩γ invariant. Consider
therefore a collection C of n parallel curves of S′ ∩ ∂H0, the parallelity
regions respecting F and γ. Let H ′

1, . . . ,H
′
n−1 be the associated 0-handles

of H′ lying between them. There are three possibilities: Either each curve
of C lies entirely in F , or each curve of C is disjoint from F , or each curve
of C hits ∂F . In the first case, F ′ ∩ H ′

i is an annulus disjoint from γ′ for
each i, and so none of the H ′

i lie in IH0(M ′), and hence can be ignored.
Similarly, in the second case, none of the H ′

i lie in IH0(M ′). In the final
case, we claim that at most one H ′

i lies in IH0(M ′). For if two adjacent
curves of C are coherently oriented, then F ′ intersects the 0-handle between
them in a collection of product discs. Hence, this 0-handle does not lie in
IH0(M ′). If two adjacent curves of C are incompatibly oriented (say they
point towards each other), then the arcs of ∂F lying between them must all
point out of F . Otherwise, Condition 2 is violated. Hence, at most one pair
of adjacent curves of C can be incoherently oriented. In particular, at most
one H ′

i can lie in IH0(M ′). Therefore, (iii) of 6.4 is established.
We will now focus on a component F of F , and will compare its complexity

with the complexity of F ′ = F ∩ F ′.

Lemma 10.2. Let S′ be a standard surface satisfying Condition 1. Then
no simple closed curve of S′ ∩ F bounds a disc in F .

Proof. We may pick such a simple closed curve to be innermost in F , bound-
ing a disc D, which inherits a handle structure from F . Since D is a disc,
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there is a 0-handle of D with valence at most one. If this 0-handle has va-
lence zero, then S′ is not standard. If this 0-handle has valence one, then
Condition 1 is violated. �

The following corollary of Lemma 10.2 is a simple property of planar
surfaces:

Corollary 10.3. Let S′ be a standard surface satisfying Condition 1. Then
one of the following holds:
• Each component X of F ′ has |∂X| < |∂F |, or
• F ′ is obtained from F by cutting along arcs and circles which are par-

allel to arcs and circles in ∂F .

Condition 1 also has the following implication:

Lemma 10.4. Let S′ be a standard surface satisfying Condition 1. Then
any component of F ′ meets any 1-handle of F in at most one disc.

Proof. Suppose, on the contrary, that there is a component X of F ′ meeting
a 1-handle D of F in more than one disc. Let D1 and D2 be two discs of
X ∩D, and let α1 be an arc in X joining D1 to D2. Let α2 be an arc in D
transverse to S′∩D, joining the endpoints of α1, in such a way that α1∪α2

forms a simple closed curve, which bounds a disc D′ in ∂H0(M). There
exists at least one circle C of S′ ∩ ∂H0 entering D′ through α2. This arc
cannot leave D′ through α1 and so must leave D′ through α2. Hence, C
violates Condition 1. �

Lemma 10.5. Let S′ be a standard surface satisfying Conditions 1, 2 and
3. Let D be a component of F ′ with a negative index 0-handle. Then there
is a 1-handle of F which lies entirely in D.

Proof. The 0-handle V of D must be disjoint from γ′ and have valence at
most one. The boundary of V is divided into ∂V ∩∂F , ∂V ∩S′ and at most
one arc V ∩F1(M ′). If α is an arc of ∂V ∩ ∂F with both endpoints lying in
S′, then α is a tubing arc, contrary to Condition 2.

Suppose first that V has zero valence. Then, ∂V is divided into ∂V ∩ ∂F
and ∂V ∩S′. However, we cannot have an arc of ∂V ∩∂F , since its endpoints
would lie in S′ and so would be a tubing arc. Hence, ∂V lies wholly in S′. But
this violates the assumption that S′ is standard, which is a contradiction.

Now suppose that V has valence one, with a single 1-handle E of F ′
attached to it. Let β1 and β2 be the two arcs of ∂E ∩ ∂D. Then each βi

originally came from ∂F or from S′ ∩ F .
If both β1 and β2 lie inside S′ ∩ F , then the arc ∂V − ∂E also lies inside

S′ ∩ F , for otherwise there would be an arc of ∂V ∩ ∂F with endpoints in
S′, violating Condition 2. But if ∂V − ∂E lies wholly in S′, then Condition
1 is violated. Similarly, if β1 lies inside S′ ∩ F and β2 lies inside ∂F , then
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Condition 3 is violated. If both β1 and β2 lie inside ∂F , then E is the
required 1-handle of F lying solely in D. �

An example of a component D of F ′ with I(D) < 0 is given in Fig. 5.2.

Proposition 10.6. Let F be a component of F , and let F ′ = F ∩ F ′.
Suppose that every 0-handle of F has positive index. If S is a standard
surface satisfying Conditions 1-5, then CF (F ′) ≤ CF (F ). Also, if we have
equality, then each component of S′∩F is a circle parallel to a component of
∂F disjoint from γ. The parallelity region inherits a handle structure from
F in which each 0-handle has valence two.

Proof. Suppose that CF (F ′) ≥ CF (F ). By Lemma 10.4, each component
Y of F ′ has C1(Y ) ≤ C1(F ). If some component D of F ′ has negative
index, then some 0-handle of D has negative index and so by Lemma 10.5,
all remaining components Y of F ′ have C1(Y ) < C1(F ). But by definition
D does not contribute to the F-complexity of F ′. Hence CF (F ′) < CF (F ),
which is contrary to assumption. Thus no component of F ′ has negative
index. Hence, the index of F is shared among the components of F ′. Since
CF (F ′) ≥ CF (F ), then one component X of F ′ has C1(X) = C1(F ) and
I(X) = I(F ). All other components Y of F ′ have zero index, and so, by
definition, they do not contribute to the F-complexity of F ′. By Corollary
10.3, |∂X| ≤ |∂F |. Hence, CF (F ′) ≤ CF (F ), and so CF (F ′) = CF (F ).

We now wish to examine further the case when CF (F ′) = CF (F ). Since
|∂X| = |∂F |, Corollary 10.3 implies that F ′ is obtained from F by cutting
along arcs and circles which are parallel to arcs and circles in ∂F . Each
component of F ′ −X has index zero. If V is a 0-handle of F ′ not lying in
X, then V cannot have negative index. For otherwise, Lemma 10.5 would
imply that C1(X) < C1(F ). Thus, each 0-handle V of F ′ − X must have
zero index.

We will now show that in fact there are no index zero discs of F ′. If there
is such a disc, then there is an arc of F ∩S′ extrememost in F , parallel to an
arc in ∂F via a parallelity disc D. If this disc D does not have zero index,
then D = X and hence F is a disc. In this case, we may find an arc of F ∩S′

which is extrememost in F and which does separate off an index zero disc.
Thus, we may assume that D has zero index. Let V be a 0-handle of D with
valence at most one. Since V has zero index, there are two cases to consider.
If V has valence zero and hits γ′ twice, then Condition 5 is violated. If V
has valence one and hits γ′ once, then Condition 3 is violated.

Hence, each component of F ∩ S′ is a simple closed curve parallel to a
curve of ∂F . An extrememost component of F ∩S′ separates off an annulus
A. If A = X, then F is an annulus, in which case we may find an arc
of F ∩ S′ extrememost in F which is parallel to a component of ∂F via a
component of F ′ other than X. Hence, we may assume A 6= X. Therefore,
A has zero index, and so each 0-handle of A has valence two and is disjoint
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from γ. Repeating this argument for each component of F ∩ S′ proves the
proposition. �

The following verifies (ii), (iv) and (v) of Proposition 6.4 and completes
the proof of that proposition and hence of Theorems 1.4, 1.5 and 1.6:

Proposition 10.7. Suppose that every 0-handle of F has positive index.
Suppose also that H0 ∩ (F(M) ∪ γ) is connected for each 0-handle H0 of
H(M). Let S′ be a standard surface satisfying Conditions 1-5, with [S′, ∂S′]
6= 0 ∈ H2(M,∂M). Then C(H0 ∩H′) ≤ C(H0) for each 0-handle H0 of H.
Also, this inequality is strict for some 0-handle H0. If this inequality is an
equality for some 0-handle H0, then H0∩H′ is obtained from H0 by a trivial
modification.

Proof. Suppose that C(H0∩H′) ≥ C(H0) for some 0-handle H0 of H. Then
CF (H0 ∩ H′) ≥ CF (H0). But, by Proposition 10.6, each component F of
F has CF (F ∩ F ′) ≤ CF (F ). Hence CF (H0 ∩ H′) ≤ CF (H0). Therefore,
for each component F of F ∩ H0, we must have CF (F ∩ F ′) = CF (F ).
Proposition 10.6 then implies that each component of S′ ∩F ∩H0 is a circle
parallel to a component of ∂F disjoint from γ. Therefore, n(H′ ∩ H0) ≥
n(H0) = 1. Hence, C(H′ ∩H0) ≤ C(H0).

Suppose that this is an equality for some 0-handle H0 of H. Then, as
above, this implies that n(H′∩H0) = n(H0) = 1. Also, the argument above
gives that each component of S′ ∩F ∩H0 is a circle parallel to a component
of ∂F disjoint from γ. This component of ∂F bounds a disc in ∂H0 with
interior disjoint from F , since H0∩(F(M)∪γ) is connected. Hence, H0∩H′
is obtained from H0 by a trivial modification.

Suppose now that C(H0 ∩ H′) = C(H0) for every 0-handle H0 of H. We
aim to achieve a contradiction. Let C be the collection of circles of S′ ∩ F
extrememost in F . Then, there is a collection of annuli A in F which is
disjoint from γ and with A ∩ S′ = C. Let D be the collection of discs
of S′ ∩ H0 which C bounds. Then A ∪ D is a collection of discs properly
embedded in M which are parallel to discs in R± via balls B0. These balls
lie in H0 since H0∩ (F(M)∩γ) is connected for each 0-handle H0 of H(M).

For each 1-handle H1 = D2 × [0, 1], the discs D2 × {0} and D2 × {1}
are each divided up by the decomposition along S′. For i = 0 and 1, all
but one 0-handle of D2 × {i} − int(N (S′)) has index zero. The remaining
component has index equal to the index of D2 × {i}. But the index of
D2 × {i} is positive, since we are assuming that the index of each 0-handle
of F is positive. Hence, the product structure on H1 matches A∩(D2×{0})
with A ∩ (D2 × {1}). We may therefore unambiguously define A ∩D2. Let
B1 be the union (over all 1-handles) of the balls (A∩D2)× [0, 1]. Similarly,
we may find a collection B2 of components of H2 − int(N (S′)), and such
that B2 ∩H0 = H2 ∩A.
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Then B0∪B1∪B2 is a parallelity region between some closed components
of S′ and a subsurface ofR±. If we remove these components, we may repeat
the argument, and show eventually that each component of S′ which touches
F is closed and parallel to some component of R±. This does not quite show
that [S′, ∂S′] = 0 ∈ H2(M,∂M), since there may be components of S′ which
are disjoint from F . Such a component X lies entirely in a 0-handle H0 of
H. But recall from above that n(H′ ∩H0) = n(H0) = 1. Hence, ∂X cannot
separate components of H0∩F . In particular, X is parallel to a disc in ∂M .
Therefore, [S′, ∂S′] = 0 ∈ H2(M,∂M), contrary to assumption. �

11. The algorithm to construct the tangles.

In this section, we demonstrate how to construct the graphs G required
for algorithm of Theorem 1.4 which we outlined in Section 2. Recall that
each graph G is embedded in a 3-simplex ∆3 and comes with a regular
neighbourhood N (G) and arcs labelled γ and τ in ∂N (G). Recall that the
arcs γ form the tangles required for Theorems 1.5 and 1.6.

In line with the rest of this paper, we work with the handle structure H
arising by dualising the given generalised triangulation of M . We will focus
on a single 0-handle H0 of H. The algorithm starts with the 0-handle H0

and the surface F(M)∩H0. This surface is one of finitely many possibilities,
but, for the moment, we will assume that F(M) ∩H0 is as in Figure 11.1.
In general, it may be a subsurface of this; we will explain later how to cope
with this eventuality.

At each stage j ∈ N of the algorithm, we will construct a finite list of
possibilities for the following objects lying in H0:

• A subset H0
j of H0, which is a union of 3-balls embedded in H0,

• a subsurface F(Hj) of H0
j ∩ F(M), and

• arcs γj properly embedded in cl(∂H0
j −F(Hj)).

Figure 11.1.
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Each component of ∂H0
j − (F(Hj) ∪ γj) will have a specified orientation,

pointing into or out of H0
j . When we wish to refer to the above data, we

will denote it simply by Hj .
For j = 1, we take H0

1 = H0, F(H1) = H0 ∩ F(M), and γ1 = ∅. We
consider all possible orientations for ∂H0

1 − F(H1). If (as we supposed
above) H0 ∩ F(M) is as in Figure 11.1, then there are four components of
∂H0

1 −F(H1), and so there are 16 possible orientations.
The algorithm constructs the list of possibilities for Hj+1 by considering

each possibility for Hj in turn, and performing some modifications to it,
which we describe below. These modifications have the property that, if Hj

is some fixed possibility at the jth stage, then each possibility for Hj+1 to
which it gives rise satisfies one of the following:

• C(Hj+1) < C(Hj) or
• C(Hj+1) = C(Hj) and C+(Hj+1) < C+(Hj).

Thus, by Lemma 5.3, the algorithm will terminate at stage m, say. However,
we do not know this value of m until we run the algorithm.

It should be clear that this algorithm is modelling within the single 0-
handle H0 what is happening in the Proof of Theorem 1.4. Recall that, in
that proof, we constructed a sequence of sutured manifolds embedded within
M , and examined how each sutured manifold (Mi, γi) intersected any given
0-handle H0. However, the intersection Mi ∩H0 does not necessarily corre-
spond precisely with the ith stage of the algorithm we are about to outline.
This is because, when passing from a single possibility for Hj to several pos-
sibilities for Hj+1, we insist that complexity or extended complexity strictly
decreases within our given 0-handle. However, at each stage in the induction
of Theorem 1.4, we merely insisted that complexity decreased within some
0-handle (not necessarily the one we are examining). Therefore, in order to
determine how the final sutured manifold Mn lies in H0, we must consider
every possibility for Hj , where 1 ≤ j ≤ m. Given one such possibility Hj ,
we construct the graph G by associating a vertex of G with each compo-
nent of H0

j ; we associate an edge of G with each component of F0(Hj); the
curves τ are specified by F1(Hj); the arcs γ are formed by taking all possible
subtangles of γj .

We now give the heart of the algorithm, namely the procedure which
constructs each possibility for Hj+1 arising from a single possibility for Hj .
We apply one of the following procedures to Hj (and we give the points in
Sections 7-9 where we applied them):

1. Removal of a component of H0
j .

This can occur in Procedures 1 and 5 of Section 7. It can also occur in
Cases 1, 2, 3 and 4B of Section 8. When a component of H0

j is removed, so
are the components of F(Hj) and arcs of γj which it contains.
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2. Removing some handles of F(Hj) disjoint from γj .
In order that the new surface inherits a handle structure, we insist that if

a 0-handle of F(Hj) is removed, then so are the 1-handles of F(Hj) which
abut it. Also, we may only perform this procedure if the components of
∂H0

j−(F(Hj)∪γj) which touch any removed handle have orientations which
agree. This operation can occur in Procedures 1, 2, 5 and 6 of Section 7,
and Case 4B of Section 8.

Note that, in general, F(M) ∩ H0 is obtained from the surface in Fig-
ure 11.1 by removing some handles. Therefore, by applying this procedure
at the first stage j = 1, we can incorporate all possibilities for F(M) ∩H0

into this algorithm.

3. Replacing handles of F(Hj) with a sub-arc of γj+1.
Here, we may replace a 1-handle of F(Hj) with an arc of γj+1, providing

that the components of ∂H0
j − (F(Hj) ∪ γj) which touch this handle have

orientations which disagree. We may also remove a 0-handle of F(Hj) which
has valence one and which intersects γj in a single point, providing that we
also remove the 1-handle of F(Hj) which it abuts and we then replace these
handles with a sub-arc of γj+1. This occurs in Procedure 3 of Section 7 and
in Case 3 of Section 8.

4. Removal of a product disc component of F(Hj).
If F is a disc component of F(Hj) intersecting γj twice, we may replace

F with an arc of γj+1 joining the two points of F ∩ γj . This occurs in
Procedure 4 of Section 7.

5. Removal of a valence two 0-handle of F(Hj).
If V is a 0-handle of F(Hj) which is disjoint from γj and which abuts two

distinct 1-handles of F(Hj), then we may combine V and the two 1-handles
into a single 1-handle of F(Hj+1). This occurs in Case 1 of Section 8.

6. Decomposition along a surface.
This step models the sutured manifold decomposition outlined in Sec-

tion 9. We only perform this operation providing each 0-handle of F(Hj)
has positive index and providing H0 ∩ (F(Hj) ∪ γj) is connected for each
0-handle H0 of Hj . We construct all possible oriented curves C which satisfy
Conditions 1-5 of Section 9 (viewing C as a possibility for S′ ∩ ∂H0). There
is only a finite number of possibilities (C1, . . . , Ct, say) for C. We then let
C ′ be a collection of disjoint simple closed curves in ∂H0

j , each curve being a
copy of one of the Ci’s, and with no two components of C ′ representing the
same Ci (although, two components of C ′ may be the same underlying curve,
but have opposite orientations). We insist that C ′ also satisfies Condition
2 of Section 9. We then extend C ′ to a collection of disjoint discs properly
embedded in H0

j . We then decompose H0
j along these discs, creating a new
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collection of 0-handles H0
j+1, which naturally inherit F(Hj+1) and sutures

γj+1. By the argument of Propositions 10.6 and 10.7, C(Hj+1) < C(Hj),
unless each component of C ′ is a curve lying entirely in F(Hj) parallel to
some component of ∂F(Hj) disjoint from γj , the parallelity region respect-
ing the handle structure of F(Hj). In this case, the modification is trivial.
We therefore do not include this case as a possibility for Hj+1. However, the
modification may alter the orientations of some components of ∂H0

j−F(Hj)
disjoint from γj . We therefore have to consider all possible orientations for
these components as giving distinct possibilities for Hj .

7. Amalgam removal.

We only perform this operation when each component of F(Hj) has pos-
itive index and each 0-handle of F(Hj) with nonpositive index has valence
two and is disjoint from γj . Suppose that D is a union of handles of F(Hj)
which forms a disc disjoint from γ. Suppose also that if D has any 0-handles,
then each such 0-handle abuts precisely two 1-handles of F(Hj), both of
which lie in D. Suppose also that the two components of ∂H0

j−(F(Hj)∪γj)
which touch D have the same orientation. We take one or two copies of ∂D
and move them a little, creating a curve C1 (and possibly C2) which in-
tersect F(Hj) in a collection of arcs lying in 0-handles of F(Hj). Extend
each Ci to a disc Di properly embedded in H0

j . If we have both D1 and D2,
we orient them inconsistently, in a way which gives the parallelity region
between them some sutures. If we are just dealing with D1, we consider
both possible orientations. We then decompose H0

j along D1 (and possibly
D2), providing this is not a trivial modification, as outlined in Operation 6
above. This occurs in Case 5 of Section 8. Note that we cannot necessarily
include this case here in Operation 6, since the curves C1 and C2 might fail
Conditions 2, 4 or 5 of Section 9.

The Figure 11.2 gives a concrete example of some of the above operations.
It is clear that these procedures may implemented algorithmically, although
they may pose some challenges for a computer programmer.

12. Exceptional and norm-exceptional surgeries with
∆(σ, µ) = 1.

We now give examples which demonstrate that the restriction on ∆(σ, µ) in
Theorems 1.4, 1.5 and 1.6 is necessary. We give a method of constructing in
a 3-manifold M (satisfying certain conditions) an infinite number of surgery
curves K with exceptional or norm-exceptional surgery slopes σ satisfying
∆(σ, µ) = 1, where µ is the meridian slope on ∂N (K).

Let M be a compact orientable 3-manifold with ∂M a (possibly empty)
union of tori. Suppose also that M is irreducible, atoroidal and has in-
compressible boundary. Let S be a connected oriented surface properly
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Operation 5
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0
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0
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0
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Orientation into

Figure 11.2.

embedded in M with [S, ∂S] 6= 0 ∈ H2(M,∂M), and so that S is incom-
pressible and norm-minimising in its homology class. Then S is neither a
sphere nor a disc. Let K be any essential simple closed curve on S disjoint
from ∂S. Let σ be the slope of the curves ∂N (K) ∩ S, which is known as
‘surface framing’.

Proposition 12.1. The slope σ is exceptional or norm-exceptional.

Proof. The surface S determines a class z ∈ H2(M − int(N (K)), ∂M) as
follows: The two curves S ∩ ∂N (K) divide ∂N (K) into two annuli. At-
tach either of these annuli to S − int(N (K)) and let S′ be the resulting
surface. Then z = [S′, ∂S′] ∈ H2(M − int(N (K)), ∂M) is independent
of the choice of annulus. In fact, S′ is norm-minimising in its class in
H2(M − int(N (K)), ∂M), since χ−(S′) = χ−(S) = x([S, ∂S]) ≤ x([S′, ∂S′]).
Let zσ ∈ H2(MK(σ), ∂MK(σ)) be the image of z under the map induced by
inclusion.
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We may construct a surface Sσ in MK(σ) by starting with S− int(N (K))
and attaching a disc to each curve of S ∩ ∂N (K), the discs being meridian
discs in the surgery solid torus. Then [Sσ, ∂Sσ]=zσ ∈ H2(MK(σ), ∂MK(σ)).
Also, −χ(Sσ) = −χ(S′)− 2. Since we assumed that S was connected, there
are two possibilities:

(i) χ−(Sσ) < χ−(S′), or
(ii) χ−(Sσ) = χ−(S′) = 0.

In Case (i), x(zσ) < x(z), and therefore K and σ are norm-exceptional.
In Case (ii), Sσ is a non-separating sphere or two non-separating discs in
MK(σ). If Sσ is a sphere, then MK(σ) is reducible. If Sσ is two discs, then
MK(σ) has compressible boundary, which implies that either MK(σ) is a
solid torus or it is reducible. Thus, in this case, K and σ are exceptional. �

We now show that one may find an infinite number of such knots K
on a given S (satisfying some conditions), such that no two knots in this
collection are ambient isotopic to each other in M .

Proposition 12.2. Let M be a compact 3-manifold with ∂M a (possibly
empty) union of tori and with H1(M) torsion free. Let S be a compact
connected oriented surface properly embedded in M which has positive genus
and which is norm-minimising in its class in H2(M,∂M). Then, we may
find an infinite collection of knots, each essential curves on S, no two of
which are ambient isotopic in M .

Proof. We may find two simple closed curves C1 and C2 on S which intersect
each other precisely once. If one of these curves has infinite order in H1(M)
(C1, say), then, for any integer n, consider the curve nC1 + C2, which is
constructed by taking n (coherently oriented) parallel copies of C1, together
with C2 and smoothing off the double-points. This is the required collection
of knots on S.

Suppose therefore that C1 and C2 have finite order in H1(M). Since
H1(M) is torsion free, this implies that C1 and C2 are homologically trivial.
We will construct our collection of knots by analysing the ‘Seifert form’ on
S. Given two disjoint homologically trivial closed curves α1 and α2 in M ,
define their linking number lk(α1, α2) to be the signed intersection number
between α2 and a (not necessarily embedded) Seifert surface for α1. This
is independent of the choice of Seifert surface for α1, since any two Seifert
surfaces can be glued to form a closed (not necessarily embedded) surface,
with which C2 has zero intersection, since it is homologically trivial. Also,
it is symmetric: lk(α1, α2) = lk(α2, α1). Given any curve C on S, define C+

to be the push-off of C from S in some specified normal direction. Define
the framing fr(C) of any curve C on S which is homologically trivial in M
as lk(C+, C). Now,

lk(C+
1 , C2)− lk(C1, C

+
2 ) = ±1,
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since C1 and C2 intersect in one point on S. This implies that

lk(C+
1 , C2) + lk(C1, C

+
2 ) 6= 0.

Let n1 be an arbitrary integer. Then

fr(n1C1 + C2)

= lk((n1C1 + C2)+, n1C1 + C2)

= n2
1lk(C+

1 , C1) + n1(lk(C+
2 , C1) + lk(C+

1 , C2)) + lk(C+
2 , C2)

= n2
1k1 + n1k2 + k3,

for integers k1, k2 and k3, where k2 = lk(C1, C
+
2 ) + lk(C+

1 , C2) 6= 0. Hence,
fr(n1C1 + C2) takes infinitely many values.

We now claim that if C and C ′ on S are two closed curves on S which are
homologically trivial in M and freely homotopic in M , then fr(C) = fr(C ′).
A free homotopy is realised by a map f : A → M , where A is an annulus
and where f(∂A) = C ∪ C ′. We may ensure that f respects the product
structure onN (S) and hence that f−1(S) is ∂A, together with some properly
embedded simple closed curves. We may also ensure that no region of A−
int(N (f−1(S))) is a disc, and hence that f−1(S) is a collection α0, α1, . . . , αn

of disjoint essential simple closed curves in A, where ∂A = α0 ∪ αn. Since
the image of the annulus lying between αi and αi+1 is disjoint from S, then
fr(αi) = fr(αi+1). Therefore, fr(C) = fr(C ′).

Hence, we have constructed the required infinite collection of knots. �

We now show that we may ensure that each knot K in this infinite col-
lection has M − int(N (K)) irreducible and atoroidal.

Proposition 12.3. Let M and S be as above. Then each essential simple
closed curve K on S has M − int(N (K)) irreducible. Also, there are (up
to ambient isotopy in M) at most finitely many knots K on S for which
M − int(N (K)) is toroidal.

Proof. Let K be an essential simple closed curve on S. If M − int(N (K))
contains a reducing sphere, then this bounds a ball in M . By assumption,
M is irreducible, and so the knot K must lie in this 3-ball, and is therefore
homotopically trivial in M . However, K is essential on S and S is π1-
injective, since it is incompressible. This is a contradiction.

Suppose now that M − int(N (K)) is toroidal, and let T be an essential
torus in M − int(N (K)). Since M is atoroidal, T either is parallel in M to
a component of ∂M or is compressible in M . Consider the former case, and
let T 2 × I be the parallelity region between T and a component T ′ of ∂M .
We may assume that the intersection S∩ (T 2×I) is a collection of discs and
annuli, with K being a core of one of these annuli. Hence, K is parallel to a
curve on T ′. It is not hard to show that if K1 and K2 are two curves on S
both parallel to curves in T ′, then either K1 and K2 are ambient isotopic in
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M or S contains a component parallel to T ′. However, S is connected and
nontrivial in H2(M,∂M), which gives a contradiction.

Hence, we may restrict attention to the case where T is compressible in
M . This implies that T bounds a solid torus or lies in a 3-ball in M . We
will show that the latter case cannot arise. For, S − int(N (K)) and T are
both essential in M − int(N (K)), and so we may isotope these surfaces in
M−int(N (K)), so that no curve of S∩T bounds a disc in T or S−int(N (K)).
So no curve of S ∩ T bounds a disc in S. But if T were to lie in a 3-ball
in M , then each curve of S ∩ T would be homotopically trivial in M , and
hence in S. Thus, S ∩ T would have to be empty. We now consider the
intersection between S and the compression disc for T . By an innermost
curve argument, we may isotope S and K, keeping them disjoint from T , so
that afterwards they are disjoint from this disc. But then T compresses in
M − int(N (K)), which is a contradiction.

Thus, we may assume that T bounds a solid torus V in M . We may also
assume that the surface V ∩ S is incompressible in V and so is a collection
of discs and annuli. The knot K lies on one such annulus A. If A has
winding number one in V , then K is a core of V and so T is parallel to
∂N (K), contradicting the assumption that T is essential in M− int(N (K)).
If A has winding number greater than one in V , then a cabling annulus
for K is constructed by gluing A − int(N (K)) to the closure of one of the
components of T −A. It is now not hard to show that K is ambient isotopic
to the core K ′ of an annular component A′ of V ∩S, where K ′ has a cabling
annulus disjoint from S. For the purposes of the proof of Proposition 12.3,
we may consider the knot K ′ instead of K. Suppose therefore that the
cabling annulus for K is disjoint from S.

Claim. Let K1 and K2 be two essential simple closed curves on S, each
cabled with cabling annulus disjoint from S. Suppose that the cabling annuli
both lie on the same side of S. Then there is an isotopy of S which takes
K1 off K2.

We may take the cabling annulus Ai for Ki to be properly embedded
in M − int(N (S)). Then a component of M − int(N (S ∪ Ai)) is a solid
torus Vi. A simple examination of the intersection between the annulus A1

and the solid torus V2 establishes that we may isotope A1 off V2 unless the
winding number of A2 along is V2 is two. Thus, the claim is proved unless
the winding number of Ai in Vi is two, for both i = 1 and 2. In this case
Vi is an I-bundle over a Möbius band, with Vi ∩ ∂N (S) being precisely the
∂I-bundle. Therefore, if K1 and K2 cannot be homotoped off each other,
V1 ∪V2 is an I-bundle over a connected non-orientable surface G other than
a Möbius band. The I-bundle over ∂G is a collection of annuli. If any of
these annuli are compressible, we may extend the I-bundle. Thus, we may
construct an I-bundle X over a compact connected non-orientable surface
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G′, such that the I-bundle over ∂G′ is incompressible in M , and so that
X ∩ ∂N (S) is the ∂I-bundle over G′. If G′ is a Möbius band, then there is
an isotopy of S taking K1 off K2. Suppose therefore that G′ has negative
Euler characteristic. Expand the I-bundle a little, so that the ∂I-bundle
lies in S. If we remove the ∂I-bundle from S, and attach the I-bundle over
∂G′, we create a surface S′ with [S′, ∂S′] = [S, ∂S] ∈ H2(M,∂M), and with
χ(S′) > χ(S). This contradicts the assumption that S is norm-minimising
and incompressible.

There are at most finitely many disjoint essential non-parallel simple
closed curves on S. This proves the proposition. �

Propositions 12.1, 12.2 and 12.3 give the following result:

Theorem 12.4. Let M be a compact orientable 3-manifold with ∂M a
(possibly empty) union of tori. Suppose that M is irreducible and atoroidal,
and has incompressible boundary. Suppose also that H1(M) is torsion free
and that some nontrivial element of H2(M,∂M) is represented by a norm-
minimising incompressible surface with positive genus. Then (up to ambi-
ent isotopy) there is an infinite number of surgery curves K in M , with
exceptional or norm-exceptional surgery slopes σ satisfying ∆(σ, µ) = 1,
where µ is the meridian slope on ∂N (K). We may ensure that each knot
K in this collection has M − int(N (K)) irreducible and atoroidal, and has
H2(M − int(N (K)), ∂M) 6= 0.
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