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We give examples showing that Kidwell’s inequality for the
maximal degree of the Brandt-Lickorish-Millett-Ho polyno-
mial is in general not sharp.

1. Introduction.

The Q (or absolute) polynomial is a polynomial invariant in one variable
z of links (and in particular knots) in S3 without orientation. It can be
defined by being 1 on the unknot and the relation

A1 + A−1 = z(A0 + A∞).(1)

Here Ai denote the Q polynomials of links Ki, such that Ki (i ∈ Z ∪ {∞})
possess diagrams equal except in one tangle site (or “room” in the termi-
nology of [LM]), where an i-tangle (in the Conway [Co] sense) is inserted.
See Figure 1.

∞ 0 −1 1

Figure 1. The Conway tangles.

The polynomial was discovered in 1985 independently by Brandt, Lick-
orish and Millett [BLM] and Ho [Ho]. Several months after its discovery,
Kauffman [Ka] found a 2-variable polynomial F (a, z), specializing to Q by
setting a = 1.

In [Ki], Kidwell found a nice inequality for the maximal degree of the Q
polynomial:
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Theorem 1.1 (Kidwell). Let D be a diagram of a knot (or link) K. Then

max deg Q(K) ≤ c(D)− d(D),(2)

where c(D) is the crossing number of D and d(D) its maximal bridge length,
i.e., the maximal number of consecutive crossing over- or underpasses. More-
over, if D is alternating (i.e., d(D) = 1) and prime, then equality holds in
(2).

In [Mo, Problem 4, p. 560] he asked whether (2) always becomes equality
when minimizing the r.h.s. over all diagrams D of K. From the theorem
it follows that this is true for alternating knots and also for those non-
alternating knots K, where max deg Q(K) = c(K) − 2 (here c(K) denotes
the crossing number of K). All non-alternating knots in Rolfsen’s tables [Ro]
have this property except for one – the Perko knot 10161 (and its obversed
duplication 10162), where max deg Q = 6. Hence, as quoted by Kidwell, this
knot became a promising candidate for strict inequality in (2). To express
ourselves more easily, we define:

Definition 1.1. Call a knot K Q-maximal, if (2) with the r.h.s. minimized
over all diagrams D of K becomes equality.

The aim of this note is to show that indeed the Perko knot is not Q-
maximal. We give several modifications of our arguments and examples
showing how they can be applied to exhibit non-Q-maximality.

2. Plane curves.

We start with some discussion of plane curves.

Definition 2.1. A non-closed plane curve is a C1 map γ : [0, 1] → R2

with γ(0) 6= γ(1) and only transverse self-intersections. γ carries a natural
orientation.

Example 2.1. Here are some plane curves:

In the following, whenever talking of plane curves we mean non-closed
ones with orientation, unless otherwise stated. However, in some cases it
is possible to forget about orientation if it is irrelevant. It is convenient
to identify γ with γ([0, 1]) wherever this causes no confusion. Whenever
we want to emphasize that a line segment in a local picture starts with an
endpoint, the endpoint will be depicted as a thickened dot.

Definition 2.2. The crossing number c(γ) of a curve γ is the number of
self-intersections (crossings). A curve γ with c(γ) = 0 is called simple or
trivial.
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Definition 2.3. We call a non-closed curve γ̃ transversely homotopic to γ
(and denote it by γ̃ ∼ γ) if γ̃(0) = γ(0), γ̃(1) = γ(1) and γ̃ intersects γ
only transversely. Call the number d(γ) = min{#(γ ∩ γ̃) : γ̃ ∼ γ } − 2 the
endpoint distance of γ. (The term ‘−2’ serves to discount the coincidence of
endpoints.)

A curve γ̃ realizing this minimum is called minimal transversely homotopic
to γ. Such γ̃ can be chosen to have no self-intersections.

Example 2.2. The curves and have d = 0, while d
( )

= 1.

Definition 2.4. We call a plane curve γ composite, if there is a closed plane
curve γ′ (with no self-intersections) such that γ′ intersects γ in exactly one
point, transversely, and in both components of R2 \ γ′ there are crossings
of γ. In this case γ′ separates γ into two parts γ1 and γ2, which we call
components of γ. We write γ = γ1#γ2. Conversely, this can be used to
define the operation ‘#’ (connected sum) of γ1 and γ2, wherever γ1(1) or
γ2(0) are in the closure of the unbounded component of their complements.
We call γ prime, if it is not composite.

Example 2.3.

# =

# =

# =

# =

# =

# =

# = ???

These examples illustrate that the connected sum in general depends on
the orientation of the summands and their order.

It is clear that the crossing number is additive under connected sum and
it’s a little exercise to verify that the endpoint distance is as well.

The path we are going to follow starts with the following:
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Exercise 2.1. Verify that the complement of a curve γ has c(γ) + 1 con-
nected components, and conclude from that that d(γ) ≤ c(γ).

Hint: One way to show that is to observe it when γ is trivial, to prove that
you can obtain any γ from the trivial one by the four local moves

←→ ←→

←→ ←→

(3)

and to trace how the number of components and c(γ) change under these
moves.

For the Perko knot we need to work a little harder. We need to prove
that d(γ) ≤ max(3, c(γ)− 3) if γ prime. This was originally achieved by the
author by refining the argument in the exercise above. Subsequently, Kid-
well further generalized and simplified the argument, showing the following
stronger inequality.

Theorem 2.1 (Kidwell). For any plane curve γ we have d(γ) ≤ c(γ)/2.

A proof of this theorem will be given in the Appendix.

3. Non-Q-maximal knots.

Using Kidwell’s theorem, we are prepared to exhibit the Perko knot as non-
Q-maximal.

Theorem 3.1. If D is a prime diagram of a knot K of c(D) crossings with
a bridge of length l = c(D)− k, and D has minimal crossing number among
all such diagrams for fixed k, then l ≤ k/2, hence c(D) ≤ 3/2k.

From this we have the desired example:

Example 3.1. If 10161 were Q-maximal, then we could pose k = 6 in the
theorem and would obtain a 9 crossing diagram of the knot, which does not
exist. Hence 10161 is not Q-maximal.

Proof of Theorem 3.1. This is basically Kidwell’s theorem. Consider γ′ to
be the part of D consisting of the maximal (length) bridge and γ consisting
of the rest of (the solid line of) D with signs of all crossings ignored. Then
the freedom to move the bridge corresponds to the freedom to move γ′. �

Clearly, for many phenomena Rolfsen’s tables up to 10 crossings are very
limited. Scanning the list of non-alternating knots of at most 15 crossings
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provided by Thistlethwaite (see [HTW]), I found 192 15 crossing knots
for which max deg Q ≤ 8, and hence for which we would be done showing
non-Q-maximality already with Exercise 2.1. The most striking examples
are the knots 15119574 and 15119873, where max deg Q = 4. Although for
both knots max degz F (a, z) = 11, the coefficients of the 7 highest powers
of z cancel when setting a = 1. This property exhibits non-Q-minimality in
an alternative way, because Theorem 1.1 in fact can be analogously shown
to hold with the maximal z-degree of the Kauffman polynomial F (a, z) in
place of max deg Q. Nevertheless, placing emphasis on maxdeg Q rather
than maxdegz F (a, z) in the above discussion, beside by Kidwell’s original
work, can be justified at least because for the main example, the Perko knot,
max deg Q = maxdegz F (a, z), and so the geometric argument is needed.

There are several ways that the theorem can be modified.

Theorem 3.2. If D is a diagram of a knot K of c(D) crossings with a
bridge of length l = c(D) − k, then u(K) ≤ bk/2c, where u(K) denotes the
unknotting number of K.

Proof. By switching at most half of the crossings in D not involved in the
maximal bridge, the remaining part γ of the plane curve (this time with
signs of the crossings) can be layered, i.e., any crossing is passed the first
time as over- and then as under-crossing or vice versa. But reinstalling the
bridge to a layered γ gives a layered, and hence unknotted, diagram. �

Corollary 3.1. If u(K) > bmax deg Q(K)/2c, then K is not Q-maximal.
�

Unfortunately, this corollary does not work to show non-Q-maximality
of Perko’s knot. Verifying both hand-sides of the inequality (using that the
unknotting number of 10161 is 3, see [St, Km, Ta]), we find that we just have
equality. And that equality does not suffice is seen, e.g., from all 8 closed
positive braid knots in Rolfsen’s tables (see [Cr, Bu]) and more generally
from the (2, n)-torus knots for n odd.

For knots of > 10 crossings unknotting numbers are not tabulated (any-
where I know of) and a general machinery does not exist to compute them,
hence when wanting to extend the search space for examples applicable to
Corollary 3.1, it makes sense to replace the unknotting number by lower
bounds for it, which can be computed straightforwardly. I tried two such
bounds. First we have the signature σ:

Corollary 3.2. If |σ(K)| > max deg Q(K), then K is not Q-maximal.

Clearly, replacing u(K) by lower bounds for it makes the condition more
and more restrictive. However, when checking the above mentioned list of
192 knots, I found that at least one of them satisfied strict inequality. It is
15166028, where σ = 8 and maxdeg Q = 7.
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15119574 15119873 15166028

Figure 2. Three non-Q-maximal knots.

Another possibility is to minorate u(K) by the bound coming from the Q
polynomial itself.

Corollary 3.3. If 2 log−3 Q(−1) > max deg Q(K), then K is not Q-max-
imal.

Remark 3.1. The negative logarithm base may disturb the reader because
such logarithms are usually not defined. But by work of Sakuma, Murakami,
Nakanishi (see Theorem 8.4.8 (2) of [Kw]) and Lickorish and Millett [LM]
Q(−1) is always a(n integral) power of −3 and this one it is referred to by
this expression.

The inequality in Corollary 3.3 looks rather bizarre. First, the inequality
u(K) ≥ log−3 Q(−1) is in general much less sharp than the one with the
signature and secondly, the inequality in Corollary 3.3 requires the coeffi-
cients of Q to be of an average magnitude which grows exponentially with
max deg Q. Thus, non-surprisingly, my quest for applicable examples among
the non-alternating 15 and 16 crossing knots ended with no success in this
case.

Question 3.1. Is there a knot K with 2 log−3 Q(−1) > max deg Q(K)?

I nevertheless gave the above inequality, because it is self-contained w.r.t.
Q and would decide about non-Q-maximality from Q itself (without knowing
anything else about the knot) and hence is, in some sense, also beautiful.
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Appendix I. A proof of Theorem 2.1 (by M. Kidwell).

By the additivity of c and d under connected sum, it clearly suffices to prove
the inequality for γ prime. We can also exclude another degeneracy of γ.

Definition I.1. A nugatory crossing of γ is a crossing p such that there is a
closed curve γ′ with γ ∩γ′ = {p} and γ′ intersects transversely both strands
of γ intersecting at p.

If γ has a nugatory crossing, then one of the components of R2 \ γ has
both and the other one has no one of the endpoints of γ. Removing the
part of γ in latter component and smoothing γ near p reduces c(γ), but not
d(γ), hence we may (say, by induction on c(γ)) also assume that γ has no
nugatory crossing.

Let γ : [0, 1] → R2 be a prime curve in the plane with no nugatory cross-
ings. We will assume that γ has only transverse crossings. In fact, we will
speak of “right angles” and “straight angles” as if all crossings are orthog-
onal. Without loss of generality, assume that γ(0) lies on the boundary of
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the unbounded region U of R2 \ γ. Define the index of any region R of
R2 \ γ as the minimum intersection number of a curve with one endpoint
in R and the other in U with γ. Thus the unbounded region has index 0.
The endpoint distance d(γ) of γ is the index of the region with γ(1) on its
boundary. Call any portion of γ between two crossing points an edge of γ.
The indices of regions that share an edge along their boundary either differ
by one or are equal. Call an edge neutral if its two incident regions have the
same index. (The edges containing γ(0) and γ(1) are considered neutral.
By the assumption that γ is prime, these are the only edges of γ that border
only one region.) We define the index of a neutral edge to be the common
index of its two incident regions. We call a curve γ′ efficient if its endpoints
lie in regions of index i and j and γ′ intersects γ in exactly |i− j| points.

Lemma I.1. An efficient curve γ′ cannot intersect a neutral edge of γ.

Proof. Let the endpoints of γ′ lie in regions of index i and j with i ≤ j.
Suppose γ′ intersects a neutral edge of index k which borders regions R1 and
R2, and let a and b be points in [0, 1] such that γ′(a) ∈ R1 and γ′(b) ∈ R2.
Then γ′([0, a]) intersects γ in at least |k − i| points, γ′([a, b]) intersects γ in
at least one point and γ′([b, 1]) intersects γ in at least |j − k| points. The
sum of these three numbers exceeds j − i. �

Lemma I.2. If a crossing point C of γ is incident to a neutral edge, then
it is incident to at least two neutral edges.

Proof. Let the neutral edge be incident to two regions of index i. Then the
other two regions incident to C can only have index i, i− 1, or i + 1. Since
these two regions are incident to a common edge, their indices cannot be
i − 1 and i + 1. If one of these regions has index i, then two neutral edges
form a right angle at C. If these regions have index i± 1, then two neutral
edges form a straight angle at C. Figure 3 illustrates these two cases. �

i i

i± 1 i

i i

i± 1 i± 1

Figure 3. Two types of crossings involving neutral edges
(the thickened lines), together with the indices of their neigh-
bored regions.

If three neutral edges are incident to one crossing point, then all four
regions incident to that point must have the same index, and thus the fourth
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edge incident to that point must also be neutral. We next show that this
case cannot occur.

Lemma I.3. Four neutral edges cannot be incident to one crossing point
C.

Proof. One edge incident to C is part of a continuous chain of neutral edges
ending at γ(0) and another is part of a continuous chain of neutral edges
ending at γ(1). The other two edges at C must be part of a continuous
chain of neutral edges that forms a loop. (All these assertions follow from
Lemma I.2.) Let R be any region of R2 \ γ in the interior of this loop.
By definition of index, there is an efficient path joining a point in R to a
point in U . This path must cross the loop of neutral edges, contradicting
Lemma I.1. �

These lemmas taken together show that the union of all neutral edges of
γ is a simple curve joining γ(0) to γ(1). We call this curve the neutral curve.

Lemma I.4. For every number i with 0 ≤ i ≤ d(γ), there is at least one
neutral edge of index i.

Proof. The first and last edges along the neutral curve of γ have index 0
and d(γ). Figure 3 shows that adjacent neutral edges have equal indices or
indices that differ by 1. �

More particularly, adjacent edges that form a straight angle at a crossing
point have indices that differ by 1 and edges that form a right angle have
equal indices.

Lemma I.5. Unless γ is a simple curve, there is at least one crossing point
C of γ incident to neutral edges which form a right angle.

Proof. If γ consists entirely of neutral edges then, by Lemma I.3, γ must be
a simple curve. The curve that starts at γ(0) and goes “straight ahead” at
every crossing point traverses all of γ. Thus if the neutral curve is to be a
proper subset of γ, it must contain at least one right angle. �

We are now ready to count crossing points, edges and regions in the plane
and apply Euler’s Theorem.

Theorem I.1. If γ is prime, without nugatory crossings and has crossing
number c(γ), then d(γ) ≤ bc(γ)/2c.

Proof. Without changing the Euler characteristic of our configuration, we
can eliminate γ(0), γ(1) and the edges incident to them. We are left with a
configuration with c(γ) vertices, two with valence 3 and c(γ)−2 with valence
4.
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1

1

2

3

2

1

0

Figure 4. A plane curve and its neutral curve (the thickened
part). The numbers in the regions denote their indices.

The edge count is

4
(
c(γ)− 2

)
+ 3 · 2

2
= 2c(γ)− 1.

If F is the number of faces (regions of R2 \ γ, including the unbounded
region), then

c(γ)−
(
2c(γ)− 1

)
+ F = 2, and so F = c(γ) + 1.

We now count regions that are incident to the (original) neutral curve. (The
curve in Figure 4 may aid understanding.) There is the unbounded region
of index 0 and the region of index d(γ) containing γ(1). By Lemma I.4,
there are at least two regions of index i for 1 ≤ i ≤ d(γ) − 1, since we are
assuming that γ is prime. However, at any crossing point where the neutral
curve makes a right angle, there are three regions of the same index, distinct
by our assumption that γ has no nugatory crossings. Thus we can compare
the total number of regions to the lower bound on the number of regions
along the neutral curve:

c(γ) + 1 ≥ 2 + 2
(
d(γ)− 1

)
+ 1 = 2d(γ) + 1, or

c(γ) ≥ 2d(γ), or

d(γ) ≤ c(γ)
2

.

Since the numbers d(γ) and c(γ) are integers, we have our desired relation.
�
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Figure 5. Two more curves with c = 2d(= 6).

The curve in Figure 4 can be generalized to a family of examples with
c(γ) = 2d(γ) for any even number c(γ). Thus the inequality cannot be
improved.

These curves are not all curves with c = 2d; Figure 5 shows two other
ones. However, one can give an explicit description of all such curves. We
leave this as a task to the reader.

Exercise I.1. Show that γ satisfies c(γ) = 2d(γ) if and only if its neutral
curve has exactly one angle, and splicing this angle

−→ one obtains a picture like

(with its obvious generalization).
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