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In this article, we consider the maximal value of the
Thurston–Bennequin invariant of Legendrian knots which to-
pologically represent a fixed knot type in the standard contact
3-space and we prove a formula of the value under the con-
nected sum operation of knots.

1. Introduction.

The standard contact structure ξ0 on 3-space R3 = {(x, y, z)} is the plane
field on R3 given by the kernel of the 1-form dz−ydx. A Legendrian knot K
in the contact manifold (R3, ξ0) is a knot which is everywhere tangent to the
contact structure ξ0. The Thurston-Bennequin invariant tb(K) of a Legen-
drian knot K in (R3, ξ0) is the linking number of K and a knot K ′ which is
obtained by moving K slightly along the vector field ∂

∂z . For a topological
knot type k in R3, the maximal Thurston-Bennequin invariant mtb(k) is
defined to be the maximal value of tb(K), where K is a Legendrian knot
which topologically represents k. For any k, by the Bennequin’s inequality
in [1], we know that mtb(k) is an integer (i.e., not ∞). There are several
computations of mtb(k) (for example, see [3], [5], [8], [9], [10], [11]).

In this paper, we prove the following theorem:

Theorem 1.1. Let k1]k2 be the connected sum of topological knots k1 and
k2 in R3. Then mtb(k1]k2) = mtb(k1) + mtb(k2) + 1.

Remark 1.2. After writing this paper, the author was informed that J.
Etnyre and K. Honda [4] have also obtained a result on connected sum
of Legendrian knots which extensively includes Theorem 1.1 and that T.
Tanaka [12] have partially proved Theorem 1.1 by using a technique of
algebraic knot theory.

2. Fronts.

Let K be a Legendrian knot in (R3, ξ0 = ker(dz − ydx)). Then a diagram
(i.e., projection) of K in xz-plane is called front as in Figure 1.

A front does not have vertical tangents; generically, its only singularities
are transverse double points and semicubical cusps. Note that the number
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z

x

Figure 1.

of the cusps is even. Since y = ∂z
∂x along K, the missing y coordinate is the

slope of the front. Therefore the front of K is free from selftangencies, and,
at a double point, the branch with a greater slope is higher along the y axis.
Conversely such a diagram uniquely determines K as its front. So, as usual
in knot theory, we identify a Legendrian knot K with its front, also denoted
by K.

The Thurston-Bennequin invariant tb(K) is computed in terms of the
double points and cusps of its front. See Figure 2, where K is oriented and
the choice of the orientaion is irrelevant for the value of tb(K).

tb=  # +# -# �-#

-1/2 # of cusps
Figure 2.

For example, tb(K) = 1 for the front in Figure 1.

Proposition 2.1. For two topological knots k1 and k2, we have mtb(k1]k2)
≥ mtb(k1) + mtb(k2) + 1.

Proof. Let K1 and K2 be Legendrian knots whose topological types are k1

and k2, respectively and mtb(k1) = tb(K1) and mtb(k2) = tb(K2). We also
regard K1 and K2 as fronts. Further we can assume that K1∩K2 = ∅ and K1
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Figure 3.

(resp. K2) lies in the left (resp. right) region of xz-plane, i.e., {(x, z)|x < 0}
(resp. {(x, z)|x > 0}) as in Figure 3.

Then we connect K1 and K2 by joining a right cusp of K1 and a left cusp
of K2 as in Figure 4.

0

Figure 4.
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This procedure produces a Legendrian knot whose topological type is
k1]k2 and Thurston-Bennequin invariant is mtb(k1) + mtb(k2) + 1. This
completes the proof. �

3. Preliminaries from contact topology.

In this section, we recall some basic notions and theorems from recent
3-dimensional contact topology. In fact, the proof of Theorem 1.1 essen-
tially relies on the previous foundational work of E. Giroux, Honda and Y.
Eliashberg-M. Fraser. In particular, we assume the reader is familiar with
convex surface theory started by Giroux in [6]. For details and proofs, see
[2], [3], [6], [7], [8]. Let ξn = ker(sin(2πnz)dx+cos(2πnz)dy) be the contact
structure on a solid torus V = {(x, y, z) ∈ R3

z|x2 + y2 ≤ ε}, where n ∈ N
and R3

z is R3 modulo z 7→ z + 1. The characteristic foliation on an embed-
ded surface in a contact 3-manifold is the singular foliation defined by the
intersection of the contact structure and the surface. The set of tangents of
ξn to ∂V forms a disjoint union of two simple closed curves on ∂V , which
are called Legendrian divides.

The next lemma is proved by a standard Darboux-type argument.

Lemma 3.1. For any Legendrian knot K in (R3, ξ0), there exists a suffi-
ciently small neighborhood N(K) such that (N(K),K, ξ0) is isomorphic to
(V, {(0, 0, z)}, ξn) for some n.

As ∂V is a convex surface (i.e., has a contact vector field transverse to
∂V ), the following lemma can be proved by convex surface theory:

Lemma 3.2. Let T be any embedded torus in (R3, ξ0) and W a solid torus
bounded by T . Suppose the characteristic foliation on T is diffeomorphic to
that on ∂V and identifying these, the Legendrian divides on T are isotopic
to the core curve of W through an isotopy in W . Then (W, ξ0) is isomorphic
to (V, ξn) for some n.

The following theorem on the classification of topologically trivial Leg-
endrian knots due to Eliashberg-Fraser [2] is also needed for the proof of
Theorem 1.1:

Theorem 3.3. Any topologically trivial Legendrian knot is Legendrian iso-
topic to one of standard forms expressed as fronts in Figure 5.

4. Proof of Theorem 1.1.

By Proposition 2.1, it is sufficient to show the converse inequality.
Suppose K̂ is a Legendrian knot in (R3, ξ0) whose topological type is

the connected sum of k1 and k2 and its Thurston-Bennequin invariant is
maximal. By Lemma 3.1, there exists a neighbourhood N(K̂) of K̂ such
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cusps

double points
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Figure 5.

that (N(K̂), ξ0) is isomorphic to (V, ξn) for some n. Let B1 and B2 be 3-balls
in R3 such that B1 (resp. B2) splits K̂ into the component corresponding to
k1 (resp. k2) and B1 ∩B2 = ∅ (Figure 6).

B1
B2

Figure 6.

Further, by convex surface theory, we can assume that (i) ∂B1 and ∂B2

are convex and (ii) ∂B1 ∩ ∂N(K̂) and ∂B2 ∩ ∂N(K̂) are Legendrian knots
on ∂B1 and ∂B2, respectively and (iii) each dividing set on ∂Bi (i.e., the
subset of ∂Bi consisting of tangents of ξ0 and a contact vector field defining
the convex surface) intersects ∂Bi ∩N(K̂) as a diameter of the disk.
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Then by Edge-Rounding Lemma due to Honda in [7], we have a solid torus
W such that (i) W equals B1 ∪B2 ∪N(K̂) except small neighbourhoods of
∂B1 ∩ ∂N(K̂) and ∂B2 ∩ ∂N(K̂) and (ii) ∂W is a convex surface whose
characteristic foliation is diffeomorphic to that of ∂V . By Lemma 3.2, it
follows that (W, ξ0) is isomorphic to (V, ξn) for some n. And notice that W
is unknotted in R3 and hence the core curve K of W which is Legendrian
is also unknotted. Further, by a standard argument, we can assume that
K agrees with K̂ in the region of N(K̂) − (B1 ∪ B2). So by Theorem 3.3,
K is Legendrian isotopic to one of standard forms in Figure 5. Therefore
W is also identified with a small neighbourhood of that of the standard
form. Further, by a homogeneous property of V and a parallel translation
of W , we can assume that a region of W corresponding to B1 (resp. B2) lies
in {(x, y, z)|x < 0} (resp. {(x, y, z)|x > 0}). Then, identifying K̂ with its
front, we can divide K̂ along a vertical line into Legendrian knots K1 and
K2 corresponding to k1 and k2, respectively as the converse procedure in
the proof of Proposition 2.1.

Counting the Thurston-Bennequin invariant of K1 and K2, we have tb(K̂)
= mtb(k1]k2) = tb(K1) + tb(K2) + 1. Therefore mtb(k1]k2) ≤ mtb(k1) +
mtb(k2) + 1.

This completes the proof of the main theorem.
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