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According to theorems of C. Gordon, J. Luecke, and W.
Parry, if a knot exterior X has two distinct planar boundary
slopes r1, r2, then at least one of the manifolds X(r1), X(r2)
has a connected summand M with nontrivial torsion in first
homology. The 3-manifolds M obtained in this way, which we
call t-manifolds, have special Heegaard splittings, or t-manifold
structures. In this paper we study the topology of t-manifolds
from the point of view of the homology presentation matrices
induced by their t-manifold structures, classify all genus two
t-manifold structures, and show that, under some conditions,
one of the Dehn fillings of X is a connected sum of t-manifolds
and (at most) one prime non t-manifold summand.

1. Introduction.

Let X be a knot exterior, i.e., a connected, compact, orientable, irreducible
3-manifold with torus boundary. For r a slope in ∂X, let X(r) be the
manifold obtained by Dehn-filling X along r. If r and s are two distinct
planar boundary slopes on ∂X, then by [6, §4] at least one of the manifolds
X(r), X(s) contains a connected summand M with nontrivial torsion in first
homology. Such a manifold M can be constructed as follows: Let P,Q be
essential planar surfaces in X with boundary slope r, s, respectively; we may
assume that P,Q intersect transversely in planar graphs GP = P ∩Q ⊂ P
and GQ = P ∩ Q ⊂ Q without boundary parallel arcs, and that any circle
component of P ∩ Q is essential in P and Q. By [8] and [9], ∆(r, s) = 1
and at least one of the two graphs, say GQ, has a set of disk faces Σ which
represents all types. Let P̂ be the surface obtained by capping each boundary
component of P with a disk, so that P̂ = S2, and let (E, ∂E) ⊂ (P̂ , intP )
be a disk which contains the edges of all faces in Σ. It is then possible to
choose the collection Σ so that every disk in it lies locally on the same side of
E (cf. [6, §4]). Subject to these constraints, we further assume that |Σ| is as
small as possible (where | . . . | stands for cardinality or number of connected
components).

Now, the 2-sphere P̂ splits the filling solid torus of X(r) into a finite
collection of ‘1-handles’ H. Following [6, §4], let N(E,Σ) ⊂ X(r) be the
regular neighborhood of the set E ∪ H∗ ∪ Σ, where H∗ ⊂ H denotes the
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collection of 1-handles each of which is intersected by the boundary of at
least one disk in Σ. Then M can be taken to be the manifold N̂(E,Σ)
(where Ŷ is obtained by capping off each boundary 2-sphere component of
Y with a 3-ball); that M has nontrivial torsion in first homology follows
from [13]. We remark that we can take E = P̂ whenever P̂ separates, in
which case ∂N(E,Σ) consists of two 2-spheres, one of which is parallel to
P̂ and the other having fewer than |∂P | boundary components. We call
the collection Σ a generalized Scharlemann cycle, and say that M has been
obtained by attaching the generalized Scharlemann cycle Σ to E (or P̂ , as
the case may be). Perhaps the simplest example of this situation is provided
by the example of Gordon and Litherland [7, Appendix] (see also [15, §4]).

The construction of the manifold M can be abstracted as follows:
Throughout, we work in the PL-category, and all manifolds are assumed
to be compact and orientable. Some familiarity of the reader with the pa-
pers [4, Chapter 2] and [8, 6] is assumed; we also refer the reader to [3] for
standard definitions and notation about Heegaard splittings. Let Hn be a
genus n handlebody with a fixed complete disk system D = {D1, . . . , Dn};
we call the circles ∂D = {∂D1, . . . , ∂Dn} the meridians of Hn. A collection
of disjoint circles C embedded in ∂Hn is said to intersect ∂D coherently
if, for each c ∈ C and D ∈ D, the intersection c ∩ ∂D is transverse and
|c · D| = |c ∩ D|. This last condition can be restated as saying that each
curve in C intersects a given meridian circle of Hn always in the same di-
rection.

Now fix orientations of Hn and the components of ∂D and C. For each
circle c in C, let a(c) = (a(c)1, . . . , a(c)n) be the ordered n-tuple whose i-th
entry is given by the algebraic intersection number c ·Di of c with ∂Di. The
collection C represents all types (relative to the meridians of Hn) if the set
of integral vectors {a(c), c ∈ C} represents all n-types in the sense of Parry
[13], that is, if for any real vector x = (x1, . . . , xn) ∈ Rn there is a vector
a(c) ∈ C such that all the nonzero terms in the expansion of the standard
inner product 〈a(c), x〉 have the same sign.

For any collection C of disjoint circles embedded in ∂Hn and satisfying
the conditions:

1) C intersects ∂D coherently,
2) C represents all types,
3) no proper subcollection of C represents all types, and
4) every meridian circle in ∂D is intersected nontrivially by at least one

circle in C,

the 3-manifold M obtained by attaching 2-handles to ∂Hn along the circles
in C and capping off any resulting 2-sphere boundary components will be
called a t-manifold. The particular data S = (Hn,D,C) used to construct
M will be called a genus n t-manifold structure of M, and we will refer to
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the curves in C as the attaching circles of the t-manifold structure. Observe
that the integral matrix AM whose rows are the vectors {a(c), c ∈ C} is a
presentation matrix for H1(M).

It follows from the definition that any genus one t-manifold is either S3 or
a lens space. In the first part of this paper we give a complete classification
of the 3-manifolds that admit a genus two t-manifold structure; this is the
content of our first theorem:

Theorem 1.1. If M is a t-manifold with a genus two t-manifold structure,
then M = M1∪∂M2, where each Mi is a Seifert fibered space over a disk with
at most two singular fibers, such that the regular fibers of M1,M2 intersect
in one point in ∂M1 = ∂M2.

In particular, M is either toroidal, a Seifert fibered space over a 2-sphere
with 3 singular fibers, a lens space, or S3, and it is irreducible but not always
Haken.

It is possible to determine when a 3-manifold M admitting a decomposi-
tion of the form M = M1 ∪∂ M2 as in Theorem 1.1 is indeed a t-manifold,
via coherency invariants which are derived from the Euler numbers of M1

and M2. These invariants are constructed via a function [[. . .]] : R → 1
2Z

defined as follows: [[x]] = [x] + 1/2 for each real number x that is not an
integer (here [. . . ] denotes the greatest integer function), and [[x]] = x for
each integer x. Observe that [[. . .]] is an odd periodic function of period 1.

Theorem 1.2.
(a) Let M be a 3-manifold of the form M = M ∪∂ M ′, where M,M ′ are

Seifert-fibered spaces over a disk with two singular fibers, glued along
their torus boundaries in such a way that their regular fibers intersect
in one point. Let the Seifert invariants of M and M ′ be (a1, p1; a2, p2)
and (a′1, p

′
1; a

′
2, p

′
2), where ai, a

′
i > 1 for each i. Then M has a genus

two t-manifold structure iff ([[p1/a1]]+[[p2/a2]])·([[p′1/a′1]]+[[p′2/a′2]]) < 0.
(b) Let M be a Seifert fibered manifold over the 2-sphere with three sin-

gular fibers and Seifert invariant (a1, p1; a2, p2; a3, p3), where ai >
1 for each i. Then M admits a genus two t-manifold structure iff
[[p1/a1]] + [[p2/a2]] + [[p3/a3]] 6= ±1/2.

Before discussing higher genus t-manifold structures, we slightly gener-
alize the notion of types representation. We will say that a nonempty set
of vectors X in Rn represents all types if for each vector v ∈ Rn there is
a vector x ∈ X such that all the nonzero terms in the expansion of the
standard inner product 〈v, x〉 have the same sign. Observe that we allow
sets of nonintegral vectors to represent all types. We extend this definition
to matrices, and say that a real k × n matrix represents all types if its set
of row vectors, viewed as elements of Rn, represent all types. The following
result is the starting point for our analysis of the topological structure of
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t-manifolds; it essentially follows from Lemma 4.4 in [9] (see also [6, Lemma
3.2]), though our approach to the proof is somewhat different:

Theorem 1.3. Let A be a k×n matrix representing all types. Then one of
the following must hold:

(a) A has a column of zeroes;
(b) A proper subset of the rows of A represents all types;
(c) A has rank n.

Matrices which represent all types and do not satisfy conditions (a) or (b)
of Theorem 1.3 will be called proper matrices. In this sense, a finite set of
vectors in Rn which represents all types ‘efficiently’ must be a spanning set,
and proper matrices are those matrices which represent all types ‘efficiently’.
Observe that, for a t-manifold M with t-manifold structure S = (Hn,D,C),
the associated integral matrix AM is proper. The following result summa-
rizes some immediate properties of M and the matrix AM (cf. [6, Theorem
4.3]):

Theorem 1.4. Let M be any t-manifold with a genus n t-manifold structure
and t-presentation matrix AM 6= (1). Then:

(a) AM has rank n;
(b) M is closed;
(c) H1(M) is finite and nontrivial.

It is possible to extract some more information about the topology of a
t-manifold by studying the distribution of zero entries in its t-presentation
matrices. Define the girth of any k× l matrix as the number k + l. The zero
girth (0-girth for short) of a matrix is then defined as the largest girth of any
of its zero submatrices. The following result gives a bound on the 0-girth of
a square matrix that represents all types properly:

Theorem 1.5. An n× n matrix A that represents all types is proper iff its
0-girth is at most n− 1.

This result can be used to give a nice characterization of proper square
matrices (see Corollary 5.7) and, along with well-known results of A. Casson
and C. Gordon on reducible Heegaard splittings of 3-manifolds, to show that
some t-manifolds having ‘square’ t-manifold structures of smallest possible
genus may not be hyperbolic.

Theorem 1.6. Let M be a t-manifold with a genus n t-manifold structure
and square t-presentation matrix AM . If the Heegaard genus of M is n, then
either:

(a) M is reducible or contains an incompressible embedded torus, or
(b) the 0-girth of AM is at most n− 2.
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Moreover, if the matrix AM has a 2× 2 submatrix which does not represent
all types, then (a) holds.

A t-manifold can be thought of as a generalized lens space, just like a
generalized Scharlemann cycle generalizes the notion of Scharlemann cycle.
From this point of view, it may not be surprising that no t-manifold with
a Heegaard genus two t-manifold structure is hyperbolic. One can then ask
whether there are hyperbolic t-manifolds at all. The above theorem gives a
partial answer to this question in the negative, but the general case is still
open.

We also prove that t-manifolds arise in a natural way from Dehn fillings
of knot spaces along different planar boundary slopes; the following result
is a mild extension of [15, Theorem 1.3]:

Theorem 1.7. Let X denote a knot space with distinct planar boundary
slopes r, s. Then, either X(s) has a lens space (t-manifold, resp.) connected
summand or X(r) has a t-manifold (lens space, resp.) connected summand
and at most one prime factor of X(r) is not part of some t-manifold (it is
not a lens space, resp.) connected summand.

The paper is organized as follows: We prove in Section 2 some basic results
on systems of arcs in 4-punctured 2-spheres, which will be used in Section 3
to prove Theorem 1.1. Theorem 1.2 is proved in Section 4, where coherency
invariants of the Seifert fiber structures are introduced. Theorem 1.3 and
Theorem 1.5 are proved in Section 5, along with other properties of proper
matrices and their 0-girths. Proofs of Theorems 1.4, 1.6, and 1.7 are given
in Section 6.

I want to thank Andrew Casson for many suggestions and helpful discus-
sions on these results, some of which formed part of my thesis.

2. Systems of arcs in 4-punctured 2-spheres.

Let H be an orientable genus two handlebody with fixed meridian disks
D, D and corresponding meridian circles m = ∂D, m = ∂D, and let γ be
an essential closed 1-submanifold of ∂H that intersects m ∪m transversely.
Cutting ∂H along the meridian circles m,m yields a 4-punctured sphere
S0; denote the punctures corresponding to m by m1,m2, and those corre-
sponding to m by m1,m2. We say that the collection Γ(γ) = γ ∩ S0 ⊂ S0 is
standard if its components are essential arcs in S0 which can be sorted out
into six subcollections Γi(γ), 1 ≤ i ≤ 6, as follows:
Γ1(γ): Arcs connecting m1 and m1, Γ2(γ): Arcs connecting m2 and m2,
Γ3(γ): Arcs connecting m1 and m2, Γ4(γ): Arcs connecting m2 and m1,
Γ5(γ): Arcs connecting m1 and m2, Γ6(γ): Arcs connecting m1 and m2.

Observe that Γ(γ) does not contain any arc connecting a boundary com-
ponent of S0 to itself (see Figure 1) and has no circle components. We will
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Figure 1. Γ(γ) ⊂ S0.
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Figure 2. The four-punctured sphere S0 cut along the arc a.

omit the argument γ when this does not cause any confusion. Two arcs a, b
of Γ(γ) are parallel in S0 if the closure of one of the components of S0\(a∪b)
is a rectangle.

Lemma 2.1. Let Γ(γ) be a standard system of arcs in S0.
(a) If Γ5 6= ∅ (Γ6 6= ∅, resp.), then either:

(i) Each collection Γ5 and Γ6 consists of mutually parallel arcs, or
(ii) Γ5 (Γ6, resp.) contains two non-parallel arcs a, b such that every

arc in Γ5 (Γ6, resp.) is parallel to one of a or b, and Γ6 (Γ5, resp.)
is empty.

(b) Let ni = |Γi| for each i. Then n1 = n2 and n3 = n4.

Proof. Suppose that Γ5 contains two non-parallel arcs a, b. Cut S0 along a to
obtain a 3-punctured sphere S′0 with boundary components m1,m2, C and
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containing b, where C consists of one arc from each of m1 and m2 connected
by two arcs parallel to a, as indicated in Figure 2(a).

If there is an arc c in S′0 disjoint from b connecting m1 and m2, then cutting
S′0 along c yields an annulus A with two boundary components C,C ′ and
containing b. Since both endpoints of b lie on C, b must be boundary-parallel
to C in A and hence it must be parallel to a in S0, which is a contradiction.
Therefore, Γ6 is empty and b separates m1 from m2 in S′0 (Figure 2(b)).

Cut S′0 along b to obtain two annuli A1, A2, each containing m1,m2,
respectively. Then any arc in A1 or A2 connecting m1 and m2 must be
boundary-parallel (see Figure 2(b)), hence parallel in S0 to one of a or b.

Suppose now that all the arcs of Γ5 are parallel. By amalgamating all
these arcs if necessary, we may assume that Γ5 contains only one arc d.
Since d does not separate m1 from m2, Γ6 may not be empty. If indeed
Γ6 is not empty, then all its arcs must be mutually parallel, for otherwise
the argument above would apply to show that Γ5, contrary to hypothesis,
is empty. This establishes Part (a).

For Part (b), observe that the number of endpoints of arcs of Γ in m1 and
m2 match, and so

n1 + n3 + n5 = n2 + n4 + n5,

which implies that n1 + n3 = n2 + n4. Similarly, comparing the number of
endpoints of Γ in m1 and m2 yields n1 + n4 = n2 + n3, whence n1 = n2 and
n3 = n4. �

We call a standard system of arcs Γ(γ) ⊂ S0 split whenever the arcs in
Γ5(γ) or Γ6(γ) split into two nonempty, non-parallel collections of parallel
arcs as in Lemma 2.1 (a)(ii). Otherwise, Γ(γ) is said to be non-split.

A waist circle of ∂H is an essential circle w ⊂ ∂H separating m from
m; such a circle always bounds a disk properly embedded in H. Any waist
circle is said to be Γ(γ)-simple if it is transverse to Γ(γ) and disjoint from
Γ5(γ) ∪ Γ6(γ).

Lemma 2.2. There exists a Γ-simple waist circle w iff Γ is non-split. Such
a waist circle is unique up to isotopy if Γ5 ∪ Γ6 is not empty, and may be
assumed to intersect each arc of Γ \ (Γ5 ∪ Γ6) in one point.

Proof. Let w be a Γ-simple waist circle. Without loss of generality, we may
assume Γ5 is not empty. If Γ5 contains two arcs a, a′, then the component
of S0 cut along w ∪ a which contains a′ is an annulus, with one boundary
component consisting of one arc from each of the circles m1,m2 connected
by two arcs parallel to a, while the other boundary component is a curve
parallel to w. It is then clear that a′ must be parallel to a, so Γ is non-split.

Conversely, suppose Γ is non-split. Without loss of generality, we may
assume that Γ5 contains exactly one arc (either by creating it or by amal-
gamating all its arcs). Denote such an arc by b, and let N be a regular
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neighborhood of b in S0, small enough to be disjoint from all other arcs in
Γ. We then obtain a Γ-simple waist circle w by band-connecting m1 and m2

along N . Observe that each arc of Γ \ (Γ5 ∪ Γ6) is intersected by w exactly
in one point.

Now suppose w is a Γ-simple waist in S0 and that Γ5 contains an arc c.
Cut S0 along the arc c to obtain a 3-punctured sphere S′0 with boundary
components m1,m2, C, where C consists of pieces from m1,m2 and two
arcs parallel to c. Since w separates m1 ∪m2 from C, w and C cobound an
annulus in S′0 and are therefore parallel in S0. The uniqueness of w up to
isotopy follows. �

3. Genus two t-manifold structures.

This section is devoted to the proof of Theorem 1.1. The properties of
standard systems of arcs established in the previous section will enable us
to get a detailed picture of genus two t-manifold structures.

Clearly, a genus two t-manifold structure on a 3-manifold M has exactly
two attaching curves, and since its first homology is finite, M is a closed
manifold. Denote the meridian circles of the genus two handlebody H by
u, v, and assume that M has a t-manifold structure consisting of two attach-
ing circles x, y embedded in ∂H. Hence H ′ = M \H is a handlebody and so
the pair (H,H ′) is a Heegaard splitting of M. Observe that the circles u, v
in ∂H ′ also give a t-manifold structure to M with respect to the meridians
x, y of H ′.

We denote ∂H cut along u∪ v by S0, and label its boundary components
by u1, u2 and v1, v2. Similarly, we denote ∂H ′ cut along x ∪ y by S′0 and
label its boundary components by x1, x2 and y1, y2.

Lemma 3.1.

(a) The collections of arcs Γ(x ∪ y) ⊂ S0 and Γ(u ∪ v) ⊂ S′0 are standard.
(b) Without loss of generality, we may assume that

Γ1(x ∪ y) ∪ Γ2(x ∪ y) ⊂ x and Γ3(x ∪ y) ∪ Γ4(x ∪ y) ⊂ y,
Γ1(u ∪ v) ∪ Γ2(u ∪ v) ⊂ u and Γ3(u ∪ v) ∪ Γ4(u ∪ v) ⊂ v.

(c) Each of the collections Γi(x ∪ y), Γi(u ∪ v) is nonempty for 1 ≤ i ≤ 4
and consists of parallel arcs.

Proof. From the definition of t-manifold, no arc in Γ(x∪y) connects a bound-
ary component of S0 to itself; hence Γ(x ∪ y) is standard, so (a) follows.

Suppose now that an arc of Γ1(x∪y) is part of x, oriented to run from u1

to v1. Then x must intersect u always from u2 to u1, and v from v1 to v2.
By coherency and the fact that x and y must represent all types, it follows
that Γ1(x ∪ y) ∪ Γ2(x ∪ y) ⊂ x and Γ3(x ∪ y) ∪ Γ4(x ∪ y) ⊂ y. The other
cases are similar, so (b) holds.
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Figure 3.

If, say, Γ1(x ∪ y) is empty, then x must be disjoint from one of u or
v, violating condition 4) in the definition of t-manifold. The fact that the
collections in (c) consist of parallel arcs follows now from Lemma 2.1. �

Let ni = |Γi(x∪y)| and n′i = |Γi(u∪v)|. From Lemma 2.1(b), ni = nj and
n′i = n′j for {i, j} = {1, 2}, {3, 4}. For convenience, we will use the notation:

a = n1, b = n3, α = n′1, β = n′3.

The proof of Theorem 1.1 now splits into two cases:

Case 1. Both Γ(x ∪ y) ⊂ S0 and Γ(u ∪ v) ⊂ S′0 are split.

Case 2. Either Γ(x ∪ y) ⊂ S0 or Γ(u ∪ v) ⊂ S′0 is non-split.

Proof of Case 1. Suppose that Γ5(x ∪ y) splits, so that Γ6(x ∪ y) is empty
by Lemma 2.1(a)(ii). Hence, the endpoints of Γ(x ∪ y) in v1 are just those
of Γ1(x ∪ y) and Γ4(x ∪ y). Since Γ1(x ∪ y) ⊂ x and Γ4(x ∪ y) ⊂ y, x ∪ y
must intersect v in the pattern of Figure 3. Therefore, each of Γ3(u∪v) and
Γ4(u∪v) must consist of exactly one arc, so β = 1. If now, say, Γ5(u∪v) ⊂ S′0
splits, so Γ6(u ∪ v) is empty by Lemma 2.1(a)(ii), then

|v ∩ y| = |v1 ∩ y| = |Γ6(u ∪ v) ∩ v|+ |Γ4(u ∪ v)| = 1

and so v and y intersect in one point. It follows that the Heegaard splitting
(H,H ′) of M can be reduced to a genus one Heegaard splitting; hence M
is a lens space and has the form required in the theorem. �

Proof of Case 2. Suppose that Γ(x∪ y) is non-split. Then Lemma 2.2 guar-
antees the existence of a Γ(x ∪ y)-simple waist circle w of H. We proceed
according to two subcases:

Subcase 2(a). Either a = 1 or b = 1.

Assume, without loss of generality, that a = 1. Let Dw ⊂ H, Dx ⊂ H ′ be
properly embedded disks bounded by w and x, respectively. By construction
(see Lemma 2.2), w intersects each arc of Γ1(x ∪ y) ∪ Γ2(x ∪ y) ⊂ x in one
point and hence (since a = n1 = n2 = 1) x in two points.
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Let ζ be a properly embedded arc in Dx connecting these two points,
and let Nζ be a small regular neighborhood of ζ in H ′. The genus three
handlebody Hζ = H ∪ Nζ contains a properly embedded annulus Aζ =
Dw ∪ B, where B is a properly embedded band in Nζ , that separates Hζ

into a pair of genus two handlebodies Hζ,u,Hζ,v containing u, v, respectively.
Observe that ζ can be extended to a core of the annulus Aζ via an arc in
Dw (see Figure 4).

Now, Nζ separates Dx into two disks Dx,u and Dx,v, properly embedded
in Hζ,u and Hζ,v, respectively; since these two disks intersect the meridians
of the Nζ-handles of Hζ,u,Hζ,v in one point, respectively, it follows that

H ∪N(Dx) = (Hζ,u ∪N(Dx,u)) ∪Aζ
(Hζ,v ∪N(Dx,v)) = Vζ,u ∪Aζ

Vζ,v,

where Vζ,u, Vζ,v are solid tori whose meridian circles intersect the core of Aζ

in s = |x ∩ u| and t = |x ∩ v| points, respectively. Hence, N(H ∪ Dx) is a
Seifert fibered space over a disk with (at most) two singular fibers of indices
s and t.

It only remains to attach a 2-handle to H ∪ N(Dx) along y and cap off
the resulting sphere component to obtain M. Observe that y intersects each
boundary component of Aζ in b points (recall b = n3 = n4, see Figure 4).
Therefore, M is a Seifert fibered space over the 2-sphere with (at most)
three singular fibers of indices s, t and b. Replacing the fibration in a fibered
solid torus neighborhood of some singular fiber in a suitable way shows that
M has the required form.

Subcase 2(b). a > 1 and b > 1.
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If Γ(u∪v) ⊂ S′0 splits then a = 1 or b = 1 according to the first half of the
argument for Case 1 above. Therefore Γ(u∪v) is non-split; by Subcase 2(a),
we may also assume that α > 1 and β > 1.

By construction (see Lemma 2.2), w intersects x ∪ y in the pattern given
in Figure 5, from which we deduce that:

(1) Γ(w) ⊂ S′0 is standard: For no arc of Γ(w) in S′0 runs from a component
of ∂S′0 to itself.

(2) |Γi(w)| = 1 for 1 ≤ i ≤ 4.
(3) |w ∩ x| = 2 + |Γ5(w)| and |w ∩ y| = 2 + |Γ6(w)|: To see this, split w at

the four points A,B, C, D marked in Figure 5. The arc AB contains
a subset Γ′5(w) of the arcs in Γ5(w), while the arc CD contains the
remaining arcs Γ′′5(w). Hence, |AB ∩ x| = 1 + |Γ′5(w)| and |CD ∩ x| =
1 + |Γ′′5(w)|, so that |w ∩ x| = 2 + |Γ5(w)| holds. The other equality
follows in a similar way.

(4) |w ∩ x| = 2a and |w ∩ y| = 2b: This follows from the construction of w
in Lemma 2.2.

(5) Γ(w) ⊂ S′0 is non-split: For suppose that Γ5(w) ⊂ S′0 splits, so that
Γ6(w) is empty. Comparing items (3) and (4) above yields 2 = 2b,
hence b = 1, contrary to hypothesis.

These facts imply that Γ(u∪v∪w) ⊂ S′0, which is automatically standard,
is also non-split; a similar remark holds for the collection Γ(x ∪ y ∪ w′) ⊂
S0. Let w′ be a Γ(u ∪ v ∪ w)-simple waist circle which bounds a properly
embedded disk Dw′ in H ′.

Claim 1. |w ∩ w′| = 4 and w is a Γ(x ∪ y ∪ w′)-simple waist.

Proof. Since w′ is a Γ(w)-simple waist of H ′, then w′ intersects w only at
the arcs Γi(w) for i = 1, . . . , 4. By item (2) above, we know that |Γi(w)| = 1
for i = 1, . . . , 4. Hence,

|w ∩ w′| = |Γ1(w)|+ |Γ2(w)|+ |Γ3(w)|+ |Γ4(w)| = 4.

In particular, this implies that w is a Γ(x ∪ y ∪ w′)-simple waist. �
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Figure 6. The waist circles w and w′ in ∂H.

Claim 2. The circles w∪w′ split the surface S = ∂H = ∂H ′ into two bands
(rectangles) B,B′ and two annuli A,A′.

Proof. Each of the circles w,w′ separates S into two once-punctured tori.
Let Tw be the closure of one of the components of S \ w, so that Tw is a
punctured torus with boundary w. Since w′ separates S, the two arcs of
w′∩Tw must be parallel in Tw and therefore separate Tw into a band B and
an annulus A. Similarly, w′ separates the other component of S \ w into a
band B′ and an annulus A′ (see Figure 6). �

The disk Dw separates H into two components whose closures are solid
tori Vu, Vv with meridian circles u ⊂ ∂Vu and v ⊂ ∂Vv. Without loss of
generality, we may assume that ∂Vu = A ∪ B ∪ Dw and ∂Vv = A′ ∪ B′ ∪
Dw. Similarly, the waist disk Dw′ separates H ′ into two components whose
closures are solid tori Vx, Vy, with meridian circles x ⊂ ∂Vx and y ⊂ ∂Vy.
Here, we may assume that ∂Vx = A ∪B ∪Dw′ and ∂Vy = A′ ∪B′ ∪Dw′ .

Now let T be the torus Dw ∪ B ∪ B′ ∪ Dw′ , which is embedded in M.
It follows from the previous paragraph (see also Figure 6) that T separates
M into two components whose closures are Vu ∪A Vx and Vv ∪A′ Vy. Since
each arc of w in ∂Vx intersects x geometrically in a points (see Figure 5),
the core of A must intersect x geometrically in a points. Similarly, the core
of A intersects u geometrically in α points, while the core of A′ intersects y
and v geometrically in b and β points, respectively.

The fibration of A by core circles can be easily extended to a Seifert
fibration of Vu and Vx, with singular fibers of indices a and α, respectively,
while the circle fibration of A′ extends to a Seifert fibration of Vv and Vy

with singular fibers of indices b and β, respectively. Hence, the manifolds
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M1 = Vu ∪A Vx and M2 = Vv ∪A′ Vy are Seifert fibered spaces over a disk
with two singular fibers of indices a, α and b, β, respectively.

To determine how the fibers of M1 and M2 intersect at the boundary, we
observe that:

• Vx and Vy lie on opposite sides of T and intersect at Dw′ , and
• the annulus complementary to A in ∂Vx is given by B∪Dw′ , while the

annulus complementary to A′ in ∂Vy is given by B′ ∪Dw′ .

Now, it is clear that the cores of the annuli B ∪Dw′ ⊂ ∂M1 and B′ ∪Dw′ ⊂
∂M2 intersect in one point; in fact, the disk Dw′ can be thought of as being
a fat regular neighborhood of such a point of intersection; it follows that
the fibers of M1 and M2 intersect in one point. The proof of Theorem 1.1
is now complete. �

4. Coherency invariants.

In this section we prove Part (a) of Theorem 1.2; Part (b) is somewhat
similar, and we refer the reader to [14] for a detailed proof. The determi-
nation of when a decomposition of a manifold M as in Theorem 1.1 gives
rise to a t-manifold structure will depend on invariants of the Seifert fibered
structures that detect the necessary coherent intersections. We begin by
describing how these invariants are constructed via Seifert invariants. The
set of notes by Jankins and Neumann [12] contain a nice exposition of basic
facts about Seifert fibered spaces, some of which we present here to set the
notation we will be using in the sequel.

Let p : M → D be an oriented Seifert fibered space over a disk with two
singular fibers of indices a1, a2 and fixed orientation on all fibers. Denote
by xi the projection point in D of the singular fiber of index ai.

Let α ⊂ D be a properly embedded arc separating D into two disks D1, D2

with xi ∈ int Di. The fibered annulus A = p−1(α) then separates M into
two solid tori V1 and V2, with p−1(xi) ⊂ Vi. We take one of the components
of ∂A as representative of the regular fibers of M , and denote it by h. Let
D∗ = D \ int(D′

1 ∪D′
2), where D′

i ⊂ Di is a small disk containing xi in its
interior, and let M∗ = p−1(D∗) be the associated trivial S1-bundle over D∗.

Assume now that an oriented simple closed curve µ ⊂ ∂M intersecting the
fibers of ∂M transversely in one point is given. Any section s : D∗ → M∗ of
p|M∗ such that s(∂D) = µ can be used to frame the torus ∂Vi via the curves
µi = s(∂Di) (framing meridians) and h (longitude), where each µi inherits
its orientation from µ; we call µi a µ-meridian of Vi. Observe that µ1 ∩ µ2

is an arc in A receiving opposite orientations from the framing meridians
µ1, µ2. To stress the dependency between the circle µ and the section s used
to frame M , we refer to such a framing as a µ-framing of M .
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With respect to a particular µ-framing, the meridian circle mi ⊂ ∂Vi of
Vi can be oriented so that, in H1(∂Vi), it is of the form

mi = aiµi + pih, ai > 0.

The ordered 4-tuple (a1, p1; a2, p2) is called the Seifert invariant of M . The
Euler number of the Seifert fibration on M is defined as e(M) = a1/p1 +
a2/p2. These invariants are sensitive to changes in the orientation of the
manifold and/or the fibers, e.g., e(−M) = −e(M), where −M denotes the
manifold M with the opposite orientation.

Remark 4.1. The Seifert invariant also depends on the particular section
used to construct it. In fact, if a different section is used, then the new
Seifert invariant obtained will be of the form (a1, p1 + k1a1; a2, p2 + k2a2),
where k1 and k2 are integers such that k1 + k2 = 0 (see [12]). The Euler
number of M , however, is independent of the section used to get the Seifert
invariant.

The function [[. . .]] defined in the Introduction can now be used to con-
struct an invariant of M similar to its Euler number. If the Seifert invariant
of M with respect to some µ-framing is (a1, p1; a2, p2), define

c(M) = [[p1/a1]] + [[p2/a2]].

The periodicity of the function [[. . .]] and Remark 4.1 immediately imply
that c(M) is an invariant of M ; that is, like e(M), c(M) depends only on
the oriented Seifert fiber structure of M and not on the particular Seifert
invariant used in its construction.

Let M,M ′ be oriented Seifert fibered spaces over a disk with two singular
fibers, and suppose that M = M ∪∂ M ′ in such a way that the fibers of
M,M ′ at the boundary intersect in one point after an orientation reversing
gluing. Under these conditions, the manifold M admits certain Heegaard
splittings similar to the ones considered in the proof of Subcase 2(b) of
Theorem 1.1 (Section 3).

Let h ⊂ ∂M, h′ ⊂ ∂M ′ be fibers intersecting in one point; we use these
(oriented) fibers to induce framings on M,M ′ in the sense of the previous
section. That is, M is given an h′-framing and M ′ and h-framing, and we
choose our notation so that:

M = V1 ∪A V2,
fiber = h ⊂ ∂A,

µi = h′-meridian of ∂Vi,
mi = aiµi + pih, ai > 1,

µi · h = 1 in ∂Vi,
Seifert invariant =(a1, p1; a2, p2)

and

M ′ = V ′1 ∪A′ V ′2 ,
fiber = h′ ⊂ ∂A′,

µ′i = h-meridian of ∂V ′i ,
m′

i = a′iµ
′
i + p′ih

′, a′i > 1,
µ′i · h′ = 1 in ∂V ′i ,

Seifert invariant =(a′1, p
′
1; a

′
2, p

′
2).

Let T be the embedded separating torus ∂M = ∂M ′ in M. The four
circles ∂A ∪ ∂A′ split T into four squares, each of which represents one of
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Figure 7. m1 ⊂ ∂V1.

the intersections Vi∩V ′j for {i, j} ⊂ {1, 2}, as in Figure 8. Clearly, M admits
the following genus two Heegaard splittings:

(a) M = (V1 ∪V1∩V ′
1

V ′1) ∪∂ (V2 ∪V2∩V ′
2

V ′2),

(b) M = (V1 ∪V1∩V ′
2

V ′2) ∪∂ (V2 ∪V2∩V ′
1

V ′1).

We will call any genus two Heegaard splitting of M obtained in this way
standard. Define the coherency invariant C(M) of M as

C(M) = c(M)c(M ′) = ([[p1/a1]] + [[p2/a2]]) · ([[p′1/a′1]] + [[p′2/a′2]]).

Note that this invariant is independent of the orientations of M,M ′.

Proof of Theorem 1.2. We will show that any standard Heegaard splitting
of the manifold M gives rise to a t-manifold structure on M iff C(M) < 0.
To fix notation, we assume that the Heegaard splitting under consideration
is of Type (a).

Let H1 = V1 ∪V ′1 and H2 = V2 ∪V ′2 . We turn the meridian circles m1,m
′
1

of V1, V
′
1 into meridian circles of H1 by isotoping them away from the square

V1 ∩ V ′1 ; similarly, we isotope m2,m
′
2 in H2 away from the square V2 ∩ V ′2 .

Figure 7 shows m1 ⊂ ∂V1 with all regions involved.

Remark 4.2. Observe that, as m1 = a1µ1 + p1h
′ and a1 > 0, the merid-

ian circle m1 and µ1 (which is essentially h′) both intersect h in the same
direction. A similar remark applies to the other meridians.

Consider now the genus two handlebody H1 with meridian circles m1,m
′
1

and attaching curves m2,m
′
2 ⊂ ∂H1. In order for M to get a t-manifold

structure from this Heegaard diagram, the intersections between the attach-
ing curves and the meridian circles of H1 must be coherent and represent
all types. We first observe that:
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Figure 8. m′
1,m2 and m1,m

′
2 always intersect coherently.
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Figure 9. The arcs of m1,m2 in the annulus A.

• All the intersections of m1 with m2 occur in the annulus A, while all
the intersections of m1 with m′

2 occur in the square V1 ∩ V ′2 , and
• all the intersections of m′

1 with m′
2 occur in the annulus A′, while all

the intersections of m′
1 with m2 occur in the square V ′1 ∩ V2.

From the way the meridians intersect the square regions, it follows that
such intersections must necessarily be coherent, as in Figure 8. The orienta-
tions of the arcs shown in Figure 8 were obtained from our observations in
Remark 4.2. Hence, the signs of the intersections within the squares depend
only on the framings induced by h ∪ h′ on M,M ′.

The intersections occurring in the annuli A and A′ are a bit more involved.
Figure 9 shows how m1 and m2 may intersect in A ⊂ V1. Observe that,
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since m1 and m2 do not intersect the squares V1 ∩ V ′1 and V2 ∩ V ′2 , they can
only intersect A in a restricted way which may give rise to intersections of
opposite signs (i.e., incoherent intersections).

To study this coherency problem, we first turn A into a torus TA by gluing
the boundary circles of A in such a way that the arcs µ1 ∩ A, m1 ∩ A, and
m2 ∩ A each give rise to a closed curve in TA. (Equivalently, we collapse
the annulus in ∂V1 complementary to A onto h to get TA.) We call the
resulting curves µ1|A, m1|A, m2|A, respectively, and orient them following
the orientation of the arcs used in their construction. As framing for TA, we
take the circles µ1|A ⊂ TA and h ⊂ TA with µ1|A · h = 1. In this way, since
the framed tori TA and ∂V1 are essentially ‘the same’, we have that

m1|A = a1µ1|A + p1h,

and since the two arcs µ1∩A and µ2∩A agree but have opposite orientations
in A (see Figure 9), then

m2|A = −a2µ1|A + p2h.

We further observe that h ⊂ TA naturally splits into two arcs h1, h2, such
that m1|A intersects h only in h1 and m2|A intersects h only in h2. Now, it
is clear that

m1,m2 intersect coherently in A iff m1|A,m2|A intersect coherently in
TA.

We abstract the present situation in the form of the following lemma
characterizing coherent intersections of embedded curves in a torus relative
to a fixed curve:

Lemma 4.3. Let T be a torus with oriented meridian-longitude curves µ
and λ. Suppose that λ is the union of two arcs λ1, λ2, and that two embedded
circles γ1, γ2 in T are given such that γi intersects λ in int(λi) only, for
i = 1, 2. Subject only to this constraint, we further assume that γ1 and γ2

intersect minimally.
If γi = aiµ + piλ and ai ≥ 2, for i = 1, 2, then γ1 and γ2 intersect

coherently iff [[p1/a1]] 6= [[p2/a2]]. More precisely, we have that γ1 and γ2

intersect coherently with γ1 · γ2 > 0 iff [[p2/a2]] > [[p1/a1]].

We remark that the conditions given in the lemma are independent of
the meridian circle µ used to specify coordinates in T . The proof of the
lemma is given at the end of this section, and we use it now to study the
coherent intersection of the circles m1,m2 and m′

1,m
′
2 in the annuli A and

A′, respectively. For such coherent intersections to represent all types, we
must have that either:

(i) m2 and m′
2 intersect m1 in the same direction and m′

1 in opposite
directions, or
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(ii) m2 and m′
2 intersect m′

1 in the same direction and m1 in opposite
directions.

We deal with (i) first, and refer to the frames of ∂V1 and ∂V ′1 to compute
all intersection numbers. From Figure 8 above, we can see that

m1 ·m′
2 > 0 and m′

1 ·m2 > 0;

therefore, (i) is equivalent to:
(i′) m1 ·m2 > 0 and m′

1 ·m′
2 < 0.

The coherent intersections of m1,m2 that satisfy (i′) can be handled from
the point of view of the framed torus TA and the curves m1|A,m2|A via
Lemma 4.3. To apply the lemma, though, the µ1-coefficients of both curves
must be positive to begin with. This is only a problem for m2|A, easily
corrected by rephrasing (i′) in terms of −m2|A; that is,

m1,m2 intersect coherently
and m1 ·m2 > 0 iff m1|A,m2|A intersect coherently

and m1|A · (−m2|A) < 0

iff [[−p2/a2]] < [[p1/a1]]

iff c(M) = [[p1/a1]] + [[p2/a2]] > 0.

Similarly, m′
1,m

′
2 intersect coherently and m′

1 ·m′
2 < 0 iff c(M ′) < 0. Since

it is now apparent that (ii) is equivalent to c(M) < 0 and c(M ′) > 0, we
conclude that the manifold M gets a t-manifold structure from the given
Heegaard splitting iff C(M) = c(M)c(M ′) < 0. The Heegaard splitting
(b) can be handled in a similar way and yields the same conclusion. The
theorem follows. �

Proof of Lemma 4.3. Let A be the annulus obtained by cutting T along λ,
and consider the arcs of γi in A. Call any two such arcs λi-parallel if they
cobound a band in A that is disjoint from the two copies of λj (j 6= i) in
∂A. There can be simultaneously at most two disjoint arcs that are not
λi-parallel. Since ai ≥ 2, it follows that the arcs of γi in A must split into
two non λi-parallel families of λi-parallel arcs; amalgamate each of these
families into one arc, and call the resulting two arcs xi and yi. These two
arcs give rise to a closed curve in T in the obvious way, which we denote
by γi and orient so as to follow the orientation of the arcs xi, yi. The new
curves γi’s share the following properties in common with the γi’s:

• γ1, γ2 intersect coherently iff γ1, γ2 intersect coherently;
• in the case of coherent intersections, γ1 · γ2 and γ1 · γ2 have the same

sign.
Both properties follow easily from the way the γi’s were constructed. We
now claim that:
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Figure 10. The arcs xi and yi in the annulus A.

Claim. γ1 and γ2 intersect coherently iff their intersection number in T is
nonzero.

Proof. To see this, let xi, yi be the two arcs of γi in A. We proceed according
to the following two cases:

Case 1. No two arcs of γ1, γ2 in A intersect in more than one point.

In this case, the situation must be as in Figure 10(a), where clearly the
intersection number of the curves is zero and the intersection is not coherent.

Case 2. One arc of γ1 intersects an arc of γ2 in at least two points.

Suppose |x1 ∩ x2| ≥ 2; Figure 10(b) shows the annulus A and all the
arcs involved. Observe that the arc x2 must intersect x1 and y1 in the
same direction as y2, inducing coherent intersections (and hence nontrivial
intersection number). This proves our claim. �

To translate the information obtained about γ1 and γ2 in terms of γ1 and
γ2, we proceed as follows. Choose the notation so that min{|xi∩µ|, |yi∩µ|} =
|xi ∩ µ| = ni. In order to construct the closed curve γi, the arc yi must be
of the form xi ± λ, and so |yi ∩ µ| = |xi ∩ µ|+ 1 = ni + 1. Therefore,

γi = 2µ + sgn(pi)(2ni + 1)λ.

Now suppose that a′i copies of xi and a′′i copies of yi are needed to construct
γi, where a′i + a′′i = ai. Then,

γi = aiµ + piλ
= (a′i + a′′i )µi + sgn(pi)

(
nia

′
i + (ni + 1)a′′i

)
λ

= aiµ + sgn(pi)(niai + a′′i )λ
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whence pi = sgn(pi)(niai +a′′i ), and so ni = [ |pi/ai| ], where the brackets de-
note the greatest integer function. Observing that 2[[x]] = sgn(x)(2[ |x| ] + 1)
for x not an integer, we can write

γ1 · γ2 6= 0 iff sgn(p1)(2n1 + 1) 6= sgn(p2)(2n2 + 1)

iff [[p1/a1]] 6= [[p2/a2]]

and

γ1 · γ2 > 0 iff sgn(p2)(2n2 + 1)− sgn(p1)(2n1 + 1) > 0

iff [[p2/a2]] > [[p1/a1]].

The lemma follows. �

5. Proper matrices.

In this section, we introduce some basic properties of proper matrices and
give a proof of Theorem 1.3.

Two k × n matrices are said to be t-equivalent if one can be obtained
from the other by performing a finite sequence of operations of the following
types:

(a) Permutating any row (column, resp.) with any other row (column,
resp.);

(b) multiplying any row or column by ±1;
(c) substituting any nonzero entry by any nonzero real number of the same

sign.
These operations will be referred to as t-equivalences of Types (a), (b),

and (c). Observe that if A and A′ are t-equivalent, then A is proper iff
A′ is proper; this fact will be used frequently. Given vectors v′ ∈ Rs and
v′′ ∈ Rn−s, we use the notation (v′|v′′) to represent the vector in Rn obtained
by taking the entries of v′ followed by those of v′′.

Proof of Theorem 1.3 (cf. [9, Lemma 4.4]). Assume (c) does not hold, and
let v be a nonzero vector in Rn which is orthogonal to all the rows of A. Let
a be a row of A that represents v. If all the entries of v are nonzero then a
must be the zero vector, since 〈v, a〉 = 0. As the zero vector represents all
types, either A consists of a row of zeroes and satisfies (a), or else it must
satisfy (b). Hence, passing to a t-equivalent matrix if necessary, we may
assume that v is of the form (O|v′′), where, for some 0 < s < n, all the
entries of v′′ ∈ Rn−s are nonzero, and O ∈ Rs is the zero vector.

Let u′ be any vector in Rs, and consider the vector u = (u′|v′′). If
a = (a′|a′′) is any row of A that represents the vector u, then a′′ = O
since 〈v, a〉 = 0. Hence, the matrix B whose rows are the rows of A of the
form (a′|O), O ∈ Rn−s, represents all n-types. If A = B then (a) holds,
otherwise (b) holds. �
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In the context of proper matrices, Parry’s Theorem [13] can be restated
as follows:

Lemma 5.1 (Parry’s Theorem Restated). Let A be an integral k×n proper
matrix. Then there is an n× n submatrix A0 of A such that |det(A0)| ≥ 2.

Proof. By Parry’s Theorem, for some subset S of the rows of A, the group
GS = Zn/〈S〉 has nontrivial torsion. Let S′ be a maximal linearly indepen-
dent subset of S; then G′S = Zn/〈S′〉 also has nontrivial torsion. Since A
is proper, rank(A) = n and so there is a set T which consists of n linearly
independent rows of A and contains S′. Since the group GT = Zn/〈T 〉 nec-
essarily has nontrivial torsion (and is finite), the matrix A0 whose rows are
the vectors in T satisfies the conclusion of the lemma. �

In the next lemma, we give a sufficient condition for a matrix to represent
all types in terms of t-equivalence.

Lemma 5.2. Let A be a k× n matrix. If any matrix that is t-equivalent to
A has rank n, then A represents all types.

Proof. Suppose A fails to represent some vector v ∈ Rn; without loss of
generality, and after a t-equivalence if necessary, we may assume that v =
(1, 1, . . . , 1). Then every row of A must have two entries with opposite signs.
If a is any row of A, let a∗ be a row vector obtained by substituting a pair of
oppositely signed nonzero entries of a with a pair of nonzero real numbers
of the same signs, respectively, such that the sum of the entries of a∗ is
zero, and let A∗ be the matrix whose rows are the a∗’s. Then clearly A∗ is
t-equivalent to A, but rank (A∗) < n since the column vectors of A∗ add up
to zero. The lemma follows. �

For any nonsingular n×n matrix A = (aij), we say that det(A) is coherent
if all the nonzero terms in the usual expansion

∑
σ sgn(σ)a1σ(1) · · · · · anσ(n)

of det(A) have the same sign.

Lemma 5.3. Let A be an n × n nonsingular matrix. Then every matrix
that is t-equivalent to A is nonsingular iff det(A) is coherent.

Proof. Suppose det(A) is not coherent, say two terms sgn(σ)a1σ(1) . . . anσ(n)

and sgn(σ′)a1σ′(1) . . . anσ′(n) in the expansion of det(A) are nonzero and have
opposite signs. Fix the numbers a1σ(1), . . . , anσ(n), and replace each of the
other nonzero entries of A by a sufficiently small number of the same sign.
Obtain in this way a matrix B that is t-equivalent to A, and such that
det(B) and sgn(σ)a1σ(1) . . . anσ(n) have the same sign. In a similar way, we
can find a matrix B′ which is t-equivalent to A and such that det(B′) and
sgn(σ′)a1σ′(1) . . . anσ′(n) have the same sign. Since the set A of all matrices
which are t-equivalent to A is connected (homeomorphic to Rk, where k
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is the number of nonzero entries of A) and the determinant function is
continuous on A, it follows that det(A0) = 0 for some A0 ∈ A.

Conversely, suppose that A is nonsingular and det(A) is coherent, and let
A′ be t-equivalent to A. Then there is a matrix A′′ such that:

(i) A′′ can be obtained via Type (c) t-equivalences on A, and
(ii) A′′ can be obtained via Type (a) or (b) t-equivalences on A′.

It follows from (i) that det(A′′) is coherent and hence that A′′ is nonsin-
gular. Since |det(A′)| = |det(A′′)| by (ii), A′ is nonsingular as claimed. �

Remark 5.4. Implicit in Lemma 5.3 is the fact that, for nonsingular ma-
trices, the property of having coherent determinant is invariant under t-
equivalence.

Recall that a matrix is proper if it represents all types and does not satisfy
(a) or (b) of Theorem 1.3. More generally, we say that a matrix A represents
types properly, and that it is t-proper for short, if each row of A represents
some type which is not represented by any other row of A. Clearly, proper
matrices are t-proper, but the converse, in general, does not hold; observe
however that a matrix is proper iff it is t-proper and represents all types. In
this context, the previous two lemmas combine to prove the following result:

Corollary 5.5. Let A be a nonsingular t-proper square matrix. Then A is
proper iff det(A) is coherent. �

The next result is a mild generalization of Parry’s Theorem for square
matrices.

Lemma 5.6. Let A be a nonsingular n × n matrix (n ≥ 2) with integral
entries and coherent determinant. Then |det(A)| ≥ 2.

Proof. If n = 2 then A is t-equivalent to a matrix of the form
(

+ +
+ −

)
by

performing only Type (a) or (b) t-equivalences; hence |det(A)| ≥ 2. Pro-
ceeding by induction, suppose that A = (aij) is a nonsingular n× n matrix
with n > 2 and coherent determinant. After performing Type (a) or (b)
t-equivalences on A if necessary, we may assume that both a11 and its cofac-
tor C11 are nonzero. Let M11 be the (n− 1)× (n− 1) minor corresponding
to a11, so that det(M11) = C11. Since det(A) = a11C11 + . . . is coherent (see
Remark 5.4), it follows that det(M11) is also coherent; as M11 is nonsingu-
lar we get that |det(M11)| ≥ 2 by the induction hypothesis, and hence that
|det(A)| ≥ 2 by coherency of det(A). �

A matrix that represent all types is proper iff it is t-proper. In the case
of square matrices, it is possible to replace the later condition by one that
involves only some knowledge about the 0-girth of the matrix. This is the
content of Theorem 1.5, whose proof is given below. We point out that the
0-girth of a square matrix is invariant under t-equivalence, a fact which is
used implicitly in the proof.



REPRESENTATION OF TYPES AND 3-MANIFOLDS 389

Proof of Theorem 1.5. Suppose A represents all types but is not proper;
then, by definition, A must either have a column of zeroes or some proper
subset of its rows must represent all types. In the first case the 0-girth of
A is at least n + 1 (the girth of any zero-column); in the second case, let
A0 be a k× n submatrix of A that represents all types, with k < n smallest
among all choices. After a t-equivalence, if necessary, we may assume that
A0 = (B | O), where B is a k × l matrix which represents all types and has
no zero columns. The minimality of k then implies that B is proper and
hence that l ≤ k by Theorem 1.3. Since A is t-equivalent to a matrix of the
form (

B O
C D

)
, O = zero matrix,(5.1)

the 0-girth of A is at least k + (n − l) ≥ n. Hence, in all cases, the 0-girth
of A is greater than n− 1.

For the converse, assume that A is proper. If the 0-girth of A is at least
n then, after performing a t-equivalence if necessary, A may be assumed to
be of the form given in (5.1), where B is a k × l matrix with l ≤ k < n;
observe that k = l > 0 since A is nonsingular, so B and D are square
matrices. Since A is proper, each matrix t-equivalent to A is proper and
hence nonsingular. From the equation det(A) = det(B) det(D) we can then
see that B and every matrix t-equivalent to B must also be nonsingular.
Hence, by Lemma 5.2, B represents all types, contradicting the properness
of A. �

The n× n matrix

An =



+ + . . . . . . + +
+ + . . . . . . + −
+ + . . . . . . − 0
...

...
+ + − 0 . . . 0
+ − 0 . . . . . . 0


,

where the signs of the nonzero entries are as shown, is proper and its 0-girth
is n−1, which shows that the upper bound for the 0-girth of a proper matrix
given in Theorem 1.5 is the best possible.

Combining Theorem 1.5 with Lemmas 5.2 and 5.3, we get the following
characterization of proper square matrices:

Corollary 5.7. Let A be an n × n nonsingular matrix, n ≥ 2. Then A is
proper iff det(A) is coherent and the 0-girth of A is at most n− 1. �

Corollary 5.8. Let A be a square matrix. Then A is proper iff AT is proper.

The family of proper square matrices An given above is part of the bigger
family of proper square matrices that have 2×2 submatrices not representing
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all types. We will see shortly that every member of this bigger family also
has maximal 0-girth. The first step in this direction consists in showing that
singular square matrices which remain singular under t-equivalences must
have ‘large’ 0-girths.

Lemma 5.9. Let A be an n × n matrix. Then the 0-girth of A is at least
n + 1 iff every matrix that is t-equivalent to A is singular.

This is a well-known result in combinatorics which goes back to P. Hall’s
Theorem [10] and the the marriage problem; a short proof of Hall’s Theorem
can be found in the paper of Halmos and Vaughn [11], and a proof of
Lemma 5.9 can be found in the book of C. Berge [1, Theorem 9, p. 105].

We now restrict our attention to the family of proper square matrices that
have 2× 2 submatrices not representing all types.

Lemma 5.10. Let A be an n× n proper matrix with n > 2. If some 2× 2
submatrix of A does not represent all types, then the 0-girth of A is n− 1.

Proof. After a t-equivalence, if necessary, A may be assumed to be of the
form  a b . . .

c d . . .
...

... B

 ,

where a, b, c, d are all positive real numbers and B is an (n − 2) × (n − 2)
matrix. Then det(A) = (ad− bc) det(B) + k1a + k2b + k3c + k4d + k, where
the numbers det(B), k1, k2, k3, k4, and k do not depend on a, b, c, or d.

After some some t-equivalence of A, if necessary, we may assume that
det(B) ≥ 0. For any positive real number x, let Ax,+ and Ax,− be the
matrices t-equivalent to A obtained by assigning the values a = x, b = 1, c =
1, d = x and a = 1, b = x, c = x, d = 1, respectively. If det(B) > 0 then

lim
x→∞

det(Ax,+) = ∞ and lim
x→∞

det(Ax,−) = −∞,

so that det(A) must be zero at some ‘point’ of the connected set R4
+ =

{(a, b, c, d) | a, b, c, d > 0}, which, in light of Theorem 1.3 and the invariance
of properness under t-equivalences, contradicts the properness of A. Hence
det(B) = 0, and similarly det(B′) = 0 whenever B′ is t-equivalent to B,
which by Lemma 5.9 implies that the 0-girth of the (n− 2)× (n− 2) matrix
B, and hence of A, must be at least n− 1. That A has 0-girth exactly equal
to n− 1 now follows from Theorem 1.5. �

A word about standard notation in combinatorial matrix theory is ap-
propriate now (cf. [2]). An n × n matrix A is sign-nonsingular if det(A)
is coherent (equivalently, if |per(A)| = |det(A)|, where per(A) denotes the
permanent of A); if A is a (0, 1)-matrix, then A is indecomposable if its 0-
girth is at most n− 1. Thus, any nonsingular (0, 1)-matrix is proper iff it is
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Figure 11. Lines in X = P 2(F2).

sign-nonsingular and indecomposable (Corollary 5.7), and any square matrix
that represents all types is proper iff it is indecomposable (Theorem 1.5).

A finite projective plane of order q ≥ 1 is an n × n (0, 1)-matrix A that
satisfies the equation AAT = qI + J , where n = q2 + q + 1 and J is the
matrix all of whose entries are 1’s (cf. [2, §1.3]). The smallest projective
plane corresponds to the value q = 1 and is given by the proper matrix

1 1 0
1 0 1
0 1 1

.

When q is the power of a prime, an example of such a matrix can be con-
structed using the points and lines of the projective plane P 2(Fq), where Fq

is the field of q elements. For instance, in the case q = 2, there is only one
finite projective plane (up to permutation of rows or columns), obtained as
follows:

Let X = P 2(F2) denote the projective space of the 3-dimensional vector
space F 3

2 over the field F2 of two elements. The space X consists of 7 points
which are organized into subsets that represent the lines of X (the images of
2-dimensional subspaces of F 3

2 ). The set X is shown in Figure 11, where each
point of X has been identified with an integer from 1 to 7; any three points
connected by a line or circle form a line in X. For each line l = {i, j, k},
i < j < k, of X, let [l] be the ordered 7-tuple consisting of 0’s and +’s,
whose +-entries occur at positions i, j, k, and let AX be the matrix whose
rows are the vectors [l] obtained in this way. The matrix AX is called the
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incidence matrix of X. Hence, up to t-equivalence,

AX =



0 + + 0 + 0 0
+ 0 + 0 0 + 0
+ + 0 0 0 0 +
0 0 0 0 + + +
+ 0 0 + + 0 0
0 + 0 + 0 + 0
0 0 + + 0 0 +


.

We can see that AX is proper as follows: Let ε be any 7-type, and color red
and green its positive and negative entries, respectively. Then AX represents
ε if a set of three like-colored entries of ε correspond with the locations of
+’s in some row of AX . Suppose ε has three red-colored entries which do
not correspond to a the +’s in any row of AX , say they correspond to the
subset 1, 2, 3 of X (which is not a line). Then if any of the entries of ε in
positions 5, 6, or 7 is colored red we are done, for the sets 1, 2, 7, 2, 3, 5,
and 1, 3, 6 are lines of X. Otherwise, all three positions 5,6, and 7 of ε
must be colored green and again we are done. By homogeneity of the space
X, the same argument must work in all other cases, which proves that AX

represents all types. That AX is proper now follows from Theorem 1.5 since
the 0-girth of AX is 5; in particular, the results in this section imply that
AX is sign-nonsingular, a property deemed ‘unusual’ in [2, §1.3].

Higher order finite projective planes do not share the properness nor the
sign-nonsingularity of the small cases q ≤ 2; we leave the details of this fact
to the interested reader, in the form of an exercise:

Exercise 5.11. Let A be a finite projective plane of order q ≥ 1. Then:
(a) A is indecomposable; in fact, the 0-girth of A is q2 + 1.
(b) A represents all types (equivalently, A is sign-nonsingular) iff q ≤ 2.

6. Topology of t-manifolds.

We now apply the results on proper matrices and representation of types
established in the previous section to the study of general t-manifolds. Let
M denote a t-manifold with a genus n t-manifold structure S = (Hn,D,C)
and associated integral matrix AM . Recall that AM is a presentation matrix
for the group H1(M); any presentation matrix of H1(M) obtained in this
way will be called a t-presentation matrix of M . Recall that AM is proper.

Proof of Theorem 1.4 (cf. [6, Theorem 4.3]). The result is obvious for genus
one t-manifold structures with the only exception of S3, which the hypoth-
esis AM 6= (1) excludes.

Suppose M has a genus n t-manifold structure, where n > 1; then (a)
follows directly from the properness of AM , hence M is closed and H1(M)



REPRESENTATION OF TYPES AND 3-MANIFOLDS 393

is finite. Since any rank n submatrix of AM is a presentation matrix for
H1(M), that H1(M) is nontrivial follows from Lemma 5.1. �

Let {H,D,C} be a t-manifold structure of some t-manifold M . Since, by
Theorem 1.4, the manifold M is closed, the set H ′ = M \H is a handlebody
and hence the pair (H,H ′) is a Heegaard splitting of M . That the curves in
C intersect the meridians of H coherently easily proves the following result:

Corollary 6.1. Let M be a t-manifold with a k × n t-presentation matrix
AM . If any of the entries of AM is ±1, then the Heegaard genus of M is
strictly less than n. �

Some more information on the topology of a given t-manifold can be ob-
tained if a suitable t-manifold structure is at hand. For example, many of
the t-manifold structures in Section 3 arise from Heegaard diagrams of min-
imal genus. We will see how to partially generalize this situation to higher
genus t-manifold structures in the cases when the t-presentation matrix is
square, where some of the results of Section 5 on 0-girths of proper matrices
can be exploited to give topological information on the t-manifold.

Let M be a t-manifold with t-manifold structure S = {Hn,D,C} and
t-presentation matrix AM . Then C has at most 3n − 3 components and
represents all n-types. Now, the 2n different n-types come in pairs ε,−ε, and
clearly every k × n proper matrix with no zero entries must be t-equivalent
to the matrix whose rows are the vectors ε just described; in particular,
k = 2n−1. We combine these two simple observations with the main theorem
of [3] to prove the following result:

Lemma 6.2. Let M be a t-manifold with a genus n t-manifold structure
{Hn,D,C} and associated Heegaard splitting (Hn,H ′

n). If n ≥ 5 then the
splitting (Hn,H ′

n) is not strongly irreducible. In particular, either (Hn,H ′
n)

is reducible or M contains an incompressible closed surface of positive genus.

Proof. Since 3n− 3 < 2n−1 for n ≥ 5, our previous observations imply that
AM must have at least one zero entry. This implies that for some circle c ∈ C
and disk D ∈ D, c ∩D = ∅, hence the splitting is not strongly irreducible
and the last part of the lemma follows from [3, Theorem 3.1]. �

The conclusion of the previous lemma can be considerably strengthened
in the special case when the t-manifold structure gives a Heegaard splitting
of minimal genus. This is the content Theorem 1.6, whose proof we proceed
to give. In the process, we will follow the notation of [3, §3] closely.

Proof of Theorem 1.6. Let the t-manifold structure of M be given by the
data S = {Hn,D = {D1, . . . , Dn},C = {c1, . . . , cn}} and let H ′

n be the
handlebody in M complementary to Hn. We think of the circles in C as
the meridian circles of H ′

n, which bound disjoint properly embedded disks
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D′ = {D′
1, . . . , D

′
n} in H ′

n. Since the Heegaard genus of M is n, M will be
reducible once the Heegaard splitting (Hn,H ′

n) is reducible.
Recall from Theorem 1.5 that the 0-girth of AM is at most n − 1. If

the 0-girth of AM is n − 1, then there are k meridian disks of Hn, say
D∗ = {D1, . . . , ∂Dk}, and l meridian disks of H ′

n, say C∗ = {D′
1, . . . , D

′
l},

which are pairwise disjoint, such that k, l > 0 and k+l = n−1. Observe that
the circles ∂C∗∪∂D∗ are homologically independent in the Heegaard surface
F = ∂Hn; hence T = σ(F ; ∂C∗ ∪ ∂D∗) is a torus and so c(∂C∗ ∪ ∂D∗) =
2n− 2.

If the torus T is incompressible in M we are done, so we may assume
T compresses. By the proof of [3, Theorem 3.1], it follows that either the
Heegaard splitting (Hn,H ′

n) is reducible or there are nonempty collections
E,E′ of disjoint, properly embedded disks in Hn,H ′

n, respectively, such that

∂E ∩ ∂E′ = ∅ and c(∂E ∪ ∂E′) > c(∂E), c(∂E′),

with c(∂E ∪ ∂E′) > c(∂C∗ ∪ ∂D∗) = 2n − 2. But, for any 1-submanifold
α of F , c(α) ≤ 2n − 1, with equality holding only if σ(F ;α) consists of 2-
spheres. Hence σ(F ; ∂E ∪ ∂E′) is a union of 2-spheres and, by the proof of
[3, Theorem 3.1], the Heegaard splitting (Hn,H ′

n) again must be reducible.
The last part of the theorem follows immediately from Lemma 5.10. �

Proof of Theorem 1.7. We assume here that X(s) has no lens space con-
nected summand; the case when X(s) has no t-manifold summand is similar
(cf. [15, Theorem 1.3]). By [6, Theorem 4.3], X(r) always has a t-manifold
summand.

Suppose that X(r) has two prime connected summands M1 and M2, nei-
ther of which is part of a t-manifold summand. Let P̂ be a 2-sphere in X(r)
which ‘separates’ M1 from M2, and such that P = P̂ ∩X is properly embed-
ded in X with |∂P | smallest subject to these constraints; then P is essential
in X with boundary slope r. Let Q be an essential planar surface in X with
boundary slope s; we may assume that P and Q intersect transversely and
that any circle component of P ∩ Q is nontrivial in both P and Q. Since
X(s) has no lens space connected summand, the graph GQ = P ∩ Q ⊂ Q
represents all types by [8]. Let Σ be a generalized Scharlemann cycle of
GQ; attaching Σ to P̂ (see the Introduction) produces a 2-sphere P̂ ′ in X(r)
which cobounds a t-manifold with P̂ and satisfies |∂P ′| < |∂P |. Since neither
manifold M1 nor M2 is part of a t-manifold summand of X(r), it follows
that P̂ ′ ‘separates’ M1 from M2 in X(r), contradicting the minimality of
|∂P |. The theorem follows. �

We end this section with two examples of proper matrices and a couple
of open questions.
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Figure 12. Two realizations of the matrix A.

Consider the matrix

A =


1 1 1
1 1 −1
1 −1 1
1 −1 −1

 .

Figure 12 shows two t-manifold structures with t-presentation matrix A;
in the case of Figure 12(a) and (b) the t-manifold has fundamental group
isomorphic to Z/2Z ∗ Z/2Z and Q8, respectively, where Q8 = 〈u, v | u2 =
(uv)2 = v2〉 is the classical quaternion group; hence the manifold in Fig-
ure 12(a) is homeomorphic to P 3#P 3 (see Corollary 6.1). In particular,
there exist reducible t-manifolds.

It can be proved that the fundamental group of any t-manifold with t-
presentation matrix A is isomorphic to one of the two groups above [14].

Another interesting example involves the matrix

F =


1 1 1 0
1 −1 0 1
1 0 −1 −1
0 1 −1 1

 .

It is not hard to see that any proper 4 × 4 matrix with 0-girth at most
2 is t-equivalent to F . However, F is not a t-presentation matrix for any
t-manifold M with t-manifold structure S = {H4,D = {D1, . . . , D4},C =
{c1, . . . , c4}}. To see this, let x1, . . . , x4 represent generators of π1(H4) dual
to the Di’s, respectively; then π1(M) = 〈x1, . . . , x4 | c1, . . . , c4〉. Due to the
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coherency of the intersections between the ∂Di’s and the cj ’s, there are only
a few choices for each word ci. For example, we may have that, up to cyclic
permutation,

c1 = xyz, c2 = xy−1w, c3 = xz−1w−1, c4 = yz−1w,

which would yield

π1(M) ≈ G = 〈x, t | x3t3 = 1, txt−1 = x−2〉

after substituting w = xt. A little more computation shows that all the
possible groups π1(M) obtained in this way are isomorphic to G [14]; hence
in all cases π1(M) is nilpotent of order 27, and H1(M) ≈ Z/3Z ⊕ Z/3Z.
This contradicts the fact that any finite nilpotent 3-manifold group is cyclic
or has even order [5], which proves our claim.

The above example of the 4× 3 proper matrix A shows that a t-manifold
may be reducible; in that particular case, however, we can see that the prime
factors of the t-manifold are also t-manifolds (in fact, lens spaces). So we
ask:

Question 1. Are the prime factors of any t-manifold also t-manifolds?

A positive answer to this question would improve the conclusion of The-
orem 1.7 to say: If X(s) has no lens space connected summands, then at
most one of the prime factors of X(r) is not a t-manifold.

By Theorem 1.1, no t-manifold with a genus two t-manifold structure is
hyperbolic, and Theorem 1.6 provides many more examples of non hyper-
bolic t-manifolds. So we ask:

Question 2. Are there any hyperbolic t-manifolds?

A negative answer to this last question would imply that t-manifolds are
exceptionally rare, as would be the reducible surgeries giving rise to them.
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